WO2018083802A1 - 短絡検出装置 - Google Patents
短絡検出装置 Download PDFInfo
- Publication number
- WO2018083802A1 WO2018083802A1 PCT/JP2016/082998 JP2016082998W WO2018083802A1 WO 2018083802 A1 WO2018083802 A1 WO 2018083802A1 JP 2016082998 W JP2016082998 W JP 2016082998W WO 2018083802 A1 WO2018083802 A1 WO 2018083802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- voltage
- short circuit
- load
- current
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3646—Constructional arrangements for indicating electrical conditions or variables, e.g. visual or audible indicators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a short circuit detection device that detects an internal short circuit of a secondary battery.
- an internal short circuit may occur in the lithium ion secondary battery.
- the internal short circuit of the lithium ion secondary battery may reduce the performance of the lithium ion secondary battery and is not preferable.
- Patent Document 1 regards the value obtained by subtracting the theoretical value of the capacity change from the actual value of the capacity change of the lithium ion secondary battery as the capacity consumed by the internal short circuit, A technique for determining whether or not an internal short circuit has occurred in a lithium ion secondary battery has been proposed. According to this technology, it is possible to detect an internal short circuit of the lithium ion secondary battery during discharge in real time.
- the open circuit voltage of the lithium ion secondary battery is calculated in order to obtain the theoretical value of the capacity change of the lithium ion secondary battery.
- the open circuit voltage is calculated based on the closed circuit voltage obtained by measuring the closed circuit voltage of the lithium ion secondary battery. At this time, a change in the internal resistance of the lithium ion secondary battery is taken into consideration.
- the change in the internal resistance of the lithium ion secondary battery can be accurately estimated if it is a steady discharge.
- it is difficult to accurately estimate the change in the internal resistance of the lithium ion secondary battery in a system in which unsteady discharge is performed such as an electric vehicle.
- an open circuit voltage is not accurately calculated and an internal short circuit cannot be accurately detected.
- an object of the present invention is to provide a short-circuit detection device that can accurately detect an internal short circuit of a secondary battery being discharged in real time, regardless of how the secondary battery is used.
- the short-circuit detection device determines whether or not a first voltage value obtained by detecting a voltage of a secondary battery discharged to a load by a voltage sensor is less than a threshold value. Is less than the threshold, the load is adjusted to reduce the current flowing from the secondary battery to the load.
- the short-circuit detection device of the present invention determines whether or not the second voltage value obtained by detecting the voltage of the secondary battery after load adjustment by the voltage sensor is less than the first voltage value, and the second voltage When the value is less than the first voltage value, the internal short circuit of the secondary battery is recognized.
- the short-circuit detection device of the present invention determines whether the voltage value obtained by detecting the voltage of the secondary battery discharged to the load by the voltage sensor is less than the first threshold, and the voltage value is the first value. When it is less than one threshold, the amount of change per unit time of the voltage of the secondary battery is calculated. And the short circuit detection apparatus of this invention judges whether the variation
- the short-circuit detection device of the present invention detects the voltage of the secondary battery discharged to the load by the voltage sensor, calculates the fluctuation frequency of the voltage, and detects the current flowing from the secondary battery to the load by the current sensor. To calculate the fluctuation frequency of the current. Then, the short circuit detection device of the present invention determines whether or not the voltage fluctuation frequency is higher than the current fluctuation frequency, and if the voltage fluctuation frequency is higher than the current fluctuation frequency, the internal short circuit of the secondary battery is detected. recognize.
- FIG. 1 is a diagram showing a schematic configuration of a short-circuit detection device 100 according to the first embodiment of the present invention.
- the short circuit detection device 100 detects an internal short circuit that occurs in the secondary battery 200 that is discharged to the load 300.
- Secondary battery 200 is, for example, a lithium ion secondary battery.
- the load 300 is, for example, a motor that operates by receiving power from the secondary battery 200 or various electronic devices.
- the short circuit detection device 100 includes a voltage sensor 110, a current sensor 120, an external resistor 130, a switch 140, and a control unit 150.
- the voltage sensor 110 is connected in parallel to the secondary battery 200 and detects the cell voltage of the secondary battery 200.
- the voltage value obtained by detecting the cell voltage of the secondary battery 200 by the voltage sensor 110 is transmitted to the control unit 150.
- the current sensor 120 is provided between the secondary battery 200 and the load 300, and detects a current flowing from the secondary battery 200 to the load 300.
- the current value obtained by detecting the current with the current sensor 120 is transmitted to the control unit 150.
- the external resistor 130 is connected in parallel to the secondary battery 200 and discharges the power of the secondary battery 200.
- the external resistor 130 is, for example, a discharge resistor circuit that discharges the power of the secondary battery 200 by consuming the power of the secondary battery 200.
- the switch 140 includes a first switch 140a provided between the secondary battery 200 and the external resistor 130, and a second switch 140b provided between the secondary battery 200 and the load 300.
- the first and second switches 140a and 140b are, for example, relay switches. By switching on / off states of the first and second switches 140a and 140b, the first state in which the secondary battery 200 and the load 300 are connected, and the secondary battery 200 and the external resistor 130 are connected. The second state is switched.
- the control unit 150 controls the operation of each unit described above.
- the control unit 150 includes a CPU (Central Processing Unit) and various memories, and controls operations of the external resistor 130, the switch 140, and the load 300 according to a program.
- CPU Central Processing Unit
- the control unit 150 of the present embodiment functions as a first determination unit, a load adjustment unit, a second determination unit, and a recognition unit when the CPU executes a corresponding program.
- the first determination unit determines whether or not the first voltage value obtained by detecting the cell voltage of the secondary battery 200 discharged to the load 300 by the voltage sensor 110 is less than a threshold value.
- the load adjustment unit adjusts the load 300 to reduce the current flowing from the secondary battery 200 to the load 300.
- the second determination unit determines whether or not the second voltage value obtained by detecting the cell voltage of the secondary battery 200 after load adjustment by the voltage sensor 110 is less than the first voltage value.
- the recognizing unit recognizes an internal short circuit of the secondary battery 200 when it is determined that the second voltage value is less than the first voltage value. Specific processing contents of each unit will be described later.
- FIG. 2 is a schematic cross-sectional view schematically showing the basic configuration of the secondary battery 200.
- the secondary battery 200 of the present embodiment is a bipolar secondary battery.
- the bipolar secondary battery 200 has a structure in which a substantially rectangular power generation element 210 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 220 that is a battery exterior material.
- the positive electrode active material layer 212 is formed on one surface of the current collector 211, and the negative electrode active material layer 213 is formed on the other surface of the current collector 211.
- a plurality of bipolar electrodes 215 are formed. Each bipolar electrode 215 is stacked via the electrolyte layer 216 to form the power generation element 210.
- the electrolyte layer 216 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material.
- the bipolar electrodes 215 and the electrolyte layers 216 are alternately stacked. That is, the electrolyte layer 216 is sandwiched between the positive electrode active material layer 212 of one bipolar electrode 215 and the negative electrode active material layer 213 of another bipolar electrode 215 adjacent to the one bipolar electrode 215. ing.
- the adjacent positive electrode active material layer 212, electrolyte layer 216, and negative electrode active material layer 213 constitute one single cell layer 217. Therefore, it can be said that the bipolar secondary battery 200 has a configuration in which the single battery layers 217 are stacked. Further, for the purpose of preventing liquid junction due to leakage of the electrolytic solution from the electrolyte layer 216, a seal portion 218 is disposed on the outer peripheral portion of the unit cell layer 217.
- a positive electrode active material layer 212 is formed only on one side of the positive electrode outermost layer current collector 211 a located in the outermost layer of the power generation element 210.
- the negative electrode active material layer 213 is formed only on one side of the negative electrode side outermost current collector 211b located in the outermost layer of the power generation element 210.
- the positive electrode active material layer 212 may be formed on both surfaces of the positive electrode side outermost layer current collector 211a.
- the negative electrode active material layer 213 may be formed on both surfaces of the outermost layer current collector 211b on the negative electrode side.
- the positive electrode current collector plate 221 is disposed so as to be adjacent to the outermost layer current collector 211 a on the positive electrode side, and this is extended and led out from the laminate film 220.
- the negative electrode current collector plate 222 is disposed so as to be adjacent to the outermost layer current collector 211b on the negative electrode side, and is similarly extended and led out from the laminate film 220.
- the voltage sensor 110 of the short circuit detection device 100 detects the voltage between the positive and negative current collectors 221 and 222 led out from the laminate film 220 as the cell voltage of the secondary battery 200.
- the number of single battery layers 217 stacked is adjusted according to a desired voltage.
- the number of the single battery layers 217 may be reduced as long as a sufficient output can be secured even if the thickness of the battery is reduced as much as possible.
- the short circuit detection device 100 of the present embodiment detects an internal short circuit of the secondary battery 200 that is discharged to the load 300 in real time.
- the operation of the short-circuit detection device 100 will be described in detail with reference to FIG.
- FIG. 3 is a flowchart showing a procedure of a short-circuit detection process executed by the short-circuit detection device 100.
- the first switch 140a between the secondary battery 200 and the external resistor 130 is in an off state
- the second switch 140b between the secondary battery 200 and the load 300 is in an on state.
- the short circuit detection device 100 detects the voltage value Va of the secondary battery 200 being discharged (step S101). More specifically, the voltage sensor 110 detects the cell voltage of the secondary battery 200 discharged to the load 300 as the first voltage value Va. The first voltage value Va detected by the voltage sensor 110 is transmitted to the control unit 150.
- the short circuit detection device 100 determines whether or not the voltage value Va of the secondary battery 200 is less than the threshold value Vs (step S102). More specifically, the control unit 150 determines whether or not the first voltage value Va detected in the process shown in step S101 is less than a predetermined threshold value Vs.
- the threshold value Vs is a voltage value serving as a reference when starting a process of determining whether or not an internal short circuit has occurred in the secondary battery 200, and is set as appropriate.
- the threshold value Vs is, for example, a voltage value corresponding to 2.5 V with respect to the cell voltage 4.2 V of the fully charged single battery layer, and the single battery layer It is set according to the number of stacked layers.
- step S102 NO
- the short circuit detection device 100 returns to the process of step S101.
- the short circuit detection device 100 adjusts the load 300 to limit the output of the secondary battery 200 (Ste S103). More specifically, the control unit 150 reduces the current flowing from the secondary battery 200 to the load 300 by, for example, reducing the rotational speed of the motor that is the load 300. As a result, the magnitude of the current flowing from the secondary battery 200 to the load 300 decreases from the first current value Ia to the second current value Ib.
- the short circuit detection device 100 detects the voltage value Vb of the secondary battery 200 after load adjustment (step S104). More specifically, the voltage sensor 110 detects the cell voltage of the secondary battery 200 that is discharged to the load 300 adjusted in the process shown in step S103 as the second voltage value Vb. The second voltage value Vb detected by the voltage sensor 110 is transmitted to the control unit 150.
- the short circuit detection device 100 determines whether or not the voltage value Vb is less than the voltage value Va (step S105). More specifically, the control unit 150 determines whether or not the second voltage value Vb detected in the process shown in step S104 is less than the first voltage value Va detected in the process shown in step S101. .
- the short circuit detection device 100 When it is determined that the voltage value Vb is not less than the voltage value Va (step S105: NO), the short circuit detection device 100 returns the output of the secondary battery 200 to the normal output (step S106) and returns to the process of step S101. More specifically, the control unit 150 determines that the cause of the cell voltage of the secondary battery 200 being lower than the threshold value Vs is due to an increase in the internal resistance (overvoltage) of the secondary battery 200, and Judge that there is no internal short circuit. Then, control unit 150 returns load 300 adjusted in the process shown in step S103 to the state before adjustment, and increases the current flowing from secondary battery 200 to load 300. As a result, the magnitude of the current flowing from the secondary battery 200 to the load 300 is restored from the second current value Ib to the first current value Ia.
- step S105 when it is determined that the voltage value Vb is less than the voltage value Va (step S105: YES), the short circuit detection device 100 disconnects the load 300 (step S107). More specifically, the control unit 150 assumes that the cause of the cell voltage of the secondary battery 200 being lower than the threshold value Vs is due to the internal short circuit of the secondary battery 200, and the internal short circuit has occurred in the secondary battery 200. Judge that Then, the control unit 150 controls the second switch 140b to electrically disconnect the load 300 from the secondary battery 200.
- the control unit 150 controls the first switch 140 a to electrically connect the external resistor 130 to the secondary battery 200. If the external resistor 130 is connected to the secondary battery 200, the power of the secondary battery 200 is consumed by the external resistor 130, and the power of the secondary battery 200 is discharged by the external resistor 130.
- the short circuit detection device 100 of the present embodiment it is determined whether or not an internal short circuit has occurred in the secondary battery 200 in a state where the internal resistance of the secondary battery 200 hardly changes. For this reason, according to the short circuit detection device 100 of the present embodiment, an internal short circuit of the secondary battery 200 can be accurately detected even in a system in which unsteady discharge is performed. Therefore, the internal short circuit of the secondary battery 200 can be accurately detected in real time regardless of the usage mode of the secondary battery 200.
- an internal short circuit is detected by calculating the amount of change per unit time of the cell voltage of the secondary battery 200.
- FIG. 4 is a flowchart showing a procedure of short circuit detection processing according to the present embodiment.
- the configuration of the short circuit detection device 100 according to this embodiment is the same as that of the first embodiment except that the processing for detecting an internal short circuit is different. Description is omitted.
- control unit 150 of the short-circuit detection device 100 functions as a first determination unit, a change amount detection unit, a second determination unit, and a recognition unit when the CPU executes a corresponding program.
- the first determination unit determines whether or not the voltage value obtained by detecting the cell voltage of the secondary battery 200 discharged to the load 300 by the voltage sensor 110 is less than the first threshold value.
- the change amount detection unit calculates a change amount per unit time of the cell voltage of the secondary battery 200.
- the second determination unit determines whether the amount of change per unit time of the cell voltage of the secondary battery 200 is greater than a second threshold value.
- the recognizing unit recognizes an internal short circuit of the secondary battery 200 when it is determined that the amount of change per unit time of the cell voltage is greater than the second threshold.
- the short circuit detection device 100 detects the voltage value Va of the secondary battery 200 being discharged (step S201). More specifically, the voltage sensor 110 detects the cell voltage of the secondary battery 200 that is discharged with respect to the load 300 as the voltage value Va.
- the short circuit detection device 100 determines whether or not the voltage value Va of the secondary battery 200 is less than the first threshold value Vs (step S202). More specifically, the control unit 150 determines whether or not the voltage value Va detected in the process shown in step S201 is less than a predetermined first threshold value Vs.
- the first threshold value Vs is a voltage value serving as a reference when starting a process for determining whether or not an internal short circuit has occurred in the secondary battery 200, and is set as appropriate.
- the threshold value Vs is, for example, a voltage value corresponding to 2.5 V with respect to the cell voltage 4.2 V of the fully charged single battery layer, and the single battery layer It is set according to the number of stacked layers.
- step S202 NO
- the short circuit detection device 100 returns to the process of step S201.
- the short-circuit detection device 100 calculates the change amount ⁇ Vb / ⁇ t of the cell voltage per unit time. (Step S203). More specifically, the control unit 150 calculates the cell voltage change amount ⁇ Vb / ⁇ t per unit time from the change in the cell voltage value periodically detected by the voltage sensor 110.
- the short circuit detection device 100 determines whether or not the cell voltage change amount ⁇ Vb / ⁇ t per unit time is larger than the second threshold value ⁇ Vu / ⁇ t (step S204). More specifically, the control unit 150 determines whether or not the cell voltage change amount ⁇ Vb / ⁇ t per unit time calculated in the process shown in step S203 is larger than a predetermined second threshold value ⁇ Vu / ⁇ t. .
- the second threshold value ⁇ Vu / ⁇ t is a value for distinguishing the voltage drop of the secondary battery 200 and the normal voltage drop of the secondary battery 200 caused by the internal short circuit, and is appropriately set.
- the second threshold value ⁇ Vu / ⁇ t is a value corresponding to, for example, 2 V / second with respect to the cell voltage 4.2 V of the fully charged single battery layer, It is set according to the number of stacked unit cell layers.
- step S204 NO
- the short circuit detection device 100 determines that no internal short circuit has occurred in the secondary battery 200, and the step The process returns to S201.
- step S204 when it is determined that the change amount ⁇ Vb / ⁇ t of the cell voltage is larger than the second threshold value ⁇ Vu / ⁇ t (step S204: YES), the short circuit detection device 100 assumes that an internal short circuit has occurred in the secondary battery 200.
- the load 300 is disconnected (step S205). Since the process after step S205 is the same as the process after step S107 in FIG. 3, the description of the process after step S205 will be omitted.
- the change amount ⁇ Vb / ⁇ t per unit time of the cell voltage of the secondary battery 200 is calculated. If the change amount ⁇ Vb / ⁇ t of the cell voltage per unit time is larger than the second threshold value ⁇ Vu / ⁇ t, it is recognized that an internal short circuit has occurred in the secondary battery 200, and external discharge of the secondary battery 200 is performed. Done.
- FIG. 5 is a diagram showing an example of the relationship between the cell voltage and time of the secondary battery 200 during discharge.
- the vertical axis in FIG. 5 is the cell voltage of the secondary battery 200, and the horizontal axis is time.
- the solid line in FIG. 5 shows the time profile of the cell voltage of the secondary battery 200 when an internal short circuit occurs when a specific current is output.
- the broken line in FIG. 5 shows a normal time profile of the cell voltage of the secondary battery 200 at a specific current output.
- the voltage change with respect to the discharge time differs greatly between the normal time and the occurrence of an internal short circuit. Specifically, the cell voltage at the normal time slowly decreases with the passage of time, while the cell voltage at the occurrence of a short circuit greatly decreases in a short time. Note that, when the overvoltage increases as the internal resistance of the secondary battery 200 increases, the voltage profile indicated by the broken line shifts downward as charging and discharging are repeated a plurality of times.
- the short circuit detection device 100 of the present embodiment by using the above phenomenon, by comparing the change amount ⁇ Vb / ⁇ t per unit time of the cell voltage of the secondary battery 200 with a predetermined second threshold value ⁇ Vu / ⁇ t, An internal short circuit of the secondary battery 200 is detected. According to such a configuration, an internal short circuit of the secondary battery 200 can be detected with high accuracy.
- the second threshold value may be a variable value.
- a conversion table indicating the relationship between the current value of the secondary battery 200 and the second threshold value is registered in the control unit 150 in advance, and the second threshold value is the magnitude of the current flowing from the secondary battery 200 to the load 300. Will be changed according to According to such a configuration, an internal short circuit of the secondary battery 200 can be detected with higher accuracy.
- the cell voltage of the secondary battery 200 per unit time is determined.
- a change amount ⁇ Vb / ⁇ t was calculated.
- the processing shown in steps S201 to S202 in FIG. 4 may be omitted.
- the amount of change ⁇ Vb / ⁇ t per unit time of the cell voltage of the secondary battery 200 is periodically calculated and compared with a predetermined second threshold value ⁇ Vu / ⁇ t.
- the described embodiment has the following effects in addition to the effects of the first embodiment.
- the internal short circuit can be performed in a shorter time than when the load 300 is adjusted to detect the internal short circuit. It can be detected.
- the present embodiment is an embodiment for detecting an internal short circuit that exhibits a behavior in which the cell voltage varies with the passage of time.
- FIG. 6 is a flowchart showing a procedure of short circuit detection processing according to the present embodiment.
- the configuration of the short circuit detection device 100 according to this embodiment is the same as that of the first embodiment except that the processing for detecting an internal short circuit is different. Description is omitted.
- control unit 150 of the short-circuit detection device 100 functions as a first frequency calculation unit, a second frequency calculation unit, a determination unit, and a recognition unit when the CPU executes a corresponding program.
- the first frequency calculation unit calculates the fluctuation frequency of the cell voltage of the secondary battery 200 that is discharged to the load 300.
- the second frequency calculation unit calculates the fluctuation frequency of the current flowing from the secondary battery 200 to the load 300.
- the determination unit determines whether the fluctuation frequency of the cell voltage is higher than the fluctuation frequency of the current.
- the recognizing unit recognizes an internal short circuit of the secondary battery 200 when it is determined that the cell voltage fluctuation frequency is higher than the current fluctuation frequency.
- the short circuit detection device 100 calculates the fluctuation frequency fa of the cell voltage (step S301). More specifically, the control unit 150 performs a frequency analysis (for example, fast Fourier transform) of the cell voltage detected by the voltage sensor 110, and calculates the fluctuation frequency fa of the cell voltage of the secondary battery 200.
- a frequency analysis for example, fast Fourier transform
- the short circuit detection device 100 calculates the fluctuation frequency fs of the current flowing from the secondary battery 200 to the load 300 (step S302). More specifically, the control unit 150 performs a frequency analysis of the current value detected by the current sensor 120 and calculates the fluctuation frequency fs of the current flowing from the secondary battery 200 to the load 300.
- the short-circuit detection device 100 determines whether or not the cell voltage fluctuation frequency fa is higher than the current fluctuation frequency fs (step S303). More specifically, the control unit 150 determines whether or not the cell voltage fluctuation frequency fa calculated in the process shown in step S301 is higher than the current fluctuation frequency fs calculated in the process shown in step S302.
- step S303 NO
- the short circuit detection device 100 determines that no internal short circuit has occurred in the secondary battery 200 and performs the process of step S301. Return to.
- step S303 when it is determined that the fluctuation frequency fa of the cell voltage is higher than the fluctuation frequency fs of the current (step S303: YES), the short circuit detection device 100 determines that the internal short circuit has occurred in the secondary battery 200 and the load 300 Disconnect (step S304). Since the process after step S304 is the same as the process after step S107 in FIG. 3, the description of the process after step S304 is omitted.
- the fluctuation frequency fa of the cell voltage of the secondary battery 200 is compared with the fluctuation frequency fs of the current flowing out of the secondary battery 200.
- the cell voltage fluctuation frequency fa is higher than the current fluctuation frequency fs, it is recognized that an internal short circuit has occurred in the secondary battery 200, and the secondary battery 200 is externally discharged.
- FIG. 7 is a diagram showing an example of the relationship between the cell voltage and time of the secondary battery 200 during discharge.
- the vertical axis in FIG. 7 is the cell voltage of the secondary battery 200, and the horizontal axis is time.
- the solid line in FIG. 7 shows the time profile of the cell voltage of the secondary battery 200 in which an internal short circuit has occurred that shows the behavior in which the cell voltage fluctuates over time.
- the broken line in FIG. 7 shows the time profile of the cell voltage of the secondary battery 200 in which a general internal short circuit has occurred.
- the cell voltage when the secondary battery 200 is internally short-circuited, the cell voltage may exhibit a behavior as indicated by a solid line.
- the cell voltage varies with a short period of about 1 Hz to 2 kHz.
- the current flowing from the secondary battery 200 to the load 300 does not follow the fluctuation of the cell voltage, and the fluctuation frequency of the current is lower than the fluctuation frequency of the cell voltage.
- the short-circuit detection device 100 of the present embodiment uses this phenomenon to detect an internal short-circuit in which the cell voltage shows a behavior as indicated by a solid line by comparing the cell voltage fluctuation frequency with the current fluctuation frequency.
- an internal short circuit that is not accompanied by a change in cell voltage as indicated by a broken line can be detected by the short circuit detection process of the first or second embodiment described above.
- the described embodiment has the following effects in addition to the effects of the first and second embodiments.
- the short circuit detection device 100 of the present invention has been described in the first to third embodiments described above.
- the present invention can be appropriately added, modified, and omitted by those skilled in the art within the scope of the technical idea.
- the control unit 150 of the short circuit detection device 100 recognizes that an internal short circuit has occurred in the secondary battery 200, the secondary battery 200 is disconnected from the load 300, External discharge occurred.
- the process of disconnecting the load 300 and performing external discharge may be omitted.
- the above-described third embodiment can be executed in combination with the first or second embodiment.
- the process of the flowchart shown in FIG. 3 and the process of the flowchart shown in FIG. 6 are performed alternately, for example.
- the process of the flowchart shown in FIG. 4 and the process of the flowchart shown in FIG. 6 are performed alternately, for example.
- 100 short-circuit detection device 110 voltage sensor, 120 current sensor, 130 External resistance, 140, 140a, 140b switch, 150 control unit (first determination unit, second determination unit, load adjustment unit, recognition unit, change amount calculation unit, first frequency calculation unit, second frequency calculation unit, determination unit, third determination unit, second recognition unit ), 200 secondary battery, 300 load.
- control unit first determination unit, second determination unit, load adjustment unit, recognition unit, change amount calculation unit, first frequency calculation unit, second frequency calculation unit, determination unit, third determination unit, second recognition unit
- 200 secondary battery 300 load.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
Abstract
【課題】二次電池の使用態様に関わらず、放電中の二次電池の内部短絡をリアルタイムに精度よく検出できる短絡検出装置を提供する。 【解決手段】短絡検出装置は、負荷に対して放電している二次電池の電圧を電圧センサにより検出して得られる第1電圧値Vaが閾値Vs未満であるか否かを判断し、第1電圧値Vaが閾値Vs未満である場合、負荷を調整して、二次電池から負荷に流れる電流を減少させ、負荷調整後の二次電池の電圧を電圧センサにより検出して得られる第2電圧値Vbが第1電圧値Va未満であるか否かを判断し、第2電圧値Vbが第1電圧値Va未満である場合、二次電池の内部短絡を認識する。
Description
本発明は、二次電池の内部短絡を検出する短絡検出装置に関する。
近年、環境保護運動の高まりを背景として、電気自動車(EV)およびハイブリッド電気自動車(HEV)の開発が進められている。これらのモータ駆動用電源として、繰り返し充放電可能なリチウムイオン二次電池が注目されている。
リチウムイオン二次電池に対して、たとえば、外部から機械的な衝撃が加えられた場合、リチウムイオン二次電池に内部短絡が生じることがある。リチウムイオン二次電池の内部短絡は、リチウムイオン二次電池の性能を低下させる可能性があり、好ましくない。
これに関連して、下記の特許文献1には、リチウムイオン二次電池の容量変化の実測値から容量変化の理論値を減算して得られた値を内部短絡によって消費された容量とみなし、リチウムイオン二次電池に内部短絡が生じたか否かを判断する技術が提案されている。この技術によれば、放電中のリチウムイオン二次電池の内部短絡をリアルタイムに検出できる。
上記の技術では、リチウムイオン二次電池の容量変化の理論値を求めるために、リチウムイオン二次電池の開回路電圧が算出される。開回路電圧は、リチウムイオン二次電池の閉回路電圧を計測し、閉回路電圧に基づいて算出される。このとき、リチウムイオン二次電池の内部抵抗の変化が考慮される。
リチウムイオン二次電池の内部抵抗の変化は、定常的な放電であれば、精度よく推定される。しかしながら、電気自動車のように非定常的な放電が行われる系では、リチウムイオン二次電池の内部抵抗の変化を精度よく推定することは困難である。このため、上記の技術では、非定常的な放電が行われる系にリチウムイオン二次電池が使用された場合、開回路電圧が精度よく算出されず、内部短絡を精度よく検出できないという問題がある。
本発明は、上述した問題を解決するためになされたものである。したがって、本発明の目的は、二次電池の使用態様に関わらず、放電中の二次電池の内部短絡をリアルタイムに精度よく検出できる短絡検出装置を提供することである。
本発明の上記目的は、下記の手段によって達成される。
本発明の短絡検出装置は、負荷に対して放電している二次電池の電圧を電圧センサにより検出して得られる第1電圧値が閾値未満であるか否かを判断し、第1電圧値が閾値未満である場合、負荷を調整して、二次電池から負荷に流れる電流を減少させる。そして、本発明の短絡検出装置は、負荷調整後の二次電池の電圧を電圧センサにより検出して得られる第2電圧値が第1電圧値未満であるか否かを判断し、第2電圧値が第1電圧値未満である場合、二次電池の内部短絡を認識する。
本発明の短絡検出装置は、負荷に対して放電している二次電池の電圧を電圧センサにより検出して得られる電圧値が第1閾値未満であるか否かを判断し、電圧値が第1閾値未満である場合、二次電池の電圧の単位時間当たりの変化量を算出する。そして、本発明の短絡検出装置は、単位時間当たりの変化量が第2閾値よりも大きいか否かを判断し、変化量が第2閾値よりも大きい場合、二次電池の内部短絡を認識する。
本発明の短絡検出装置は、負荷に対して放電している二次電池の電圧を電圧センサにより検出して電圧の変動周波数を算出し、二次電池から負荷に流れる電流を電流センサにより検出して電流の変動周波数を算出する。そして、本発明の短絡検出装置は、電圧の変動周波数が電流の変動周波数よりも高いか否かを判断し、電圧の変動周波数が電流の変動周波数よりも高い場合、二次電池の内部短絡を認識する。
本発明によれば、二次電池の使用態様に関わらず、放電中の二次電池の内部短絡をリアルタイムに精度よく検出できる。
以下、図面を参照して、本発明の実施形態を説明する。なお、図面の寸法比率は、説明の都合上誇張される場合があり、実際の比率とは異なる場合がある。
(第1実施形態)
図1は、本発明の第1実施形態に係る短絡検出装置100の概略構成を示す図である。本実施形態の短絡検出装置100は、負荷300に対して放電している二次電池200に生じる内部短絡を検出する。二次電池200は、たとえば、リチウムイオン二次電池である。負荷300は、たとえば、二次電池200から電力の供給を受けて動作するモータまたは各種の電子機器である。
図1は、本発明の第1実施形態に係る短絡検出装置100の概略構成を示す図である。本実施形態の短絡検出装置100は、負荷300に対して放電している二次電池200に生じる内部短絡を検出する。二次電池200は、たとえば、リチウムイオン二次電池である。負荷300は、たとえば、二次電池200から電力の供給を受けて動作するモータまたは各種の電子機器である。
図1に示すとおり、短絡検出装置100は、電圧センサ110、電流センサ120、外部抵抗130、スイッチ140、および制御部150を備える。
電圧センサ110は、二次電池200に対して並列に接続され、二次電池200のセル電圧を検出する。電圧センサ110により二次電池200のセル電圧を検出して得られた電圧値は、制御部150に送信される。
電流センサ120は、二次電池200と負荷300との間に設けられ、二次電池200から負荷300に流れる電流を検出する。電流センサ120により電流を検出して得られた電流値は、制御部150に送信される。
外部抵抗130は、二次電池200に対して並列に接続され、二次電池200の電力を放電する。外部抵抗130は、たとえば、二次電池200の電力を消費することにより、二次電池200の電力を放電する放電抵抗回路である。
スイッチ140は、二次電池200と外部抵抗130との間に設けられた第1スイッチ140aと、二次電池200と負荷300との間に設けられた第2スイッチ140bとを備える。第1および第2スイッチ140a,140bは、たとえば、リレースイッチである。第1および第2スイッチ140a,140bのオン/オフ状態が切り替えられることにより、二次電池200と負荷300とが接続される第1状態と、二次電池200と外部抵抗130とが接続される第2状態とが切り替えられる。
制御部150は、上記各部の動作を制御する。制御部150は、CPU(Central Processing Unit)および各種メモリを備えており、プログラムにしたがって、外部抵抗130、スイッチ140、および負荷300の動作を制御する。
本実施形態の制御部150は、対応するプログラムをCPUが実行することによって、第1判断部、負荷調整部、第2判断部、および認識部として機能する。ここで、第1判断部は、負荷300に対して放電している二次電池200のセル電圧を電圧センサ110により検出して得られる第1電圧値が閾値未満であるか否かを判断する。負荷調整部は、第1電圧値が閾値未満であると判断される場合、負荷300を調整して、二次電池200から負荷300に流れる電流を減少させる。第2判断部は、負荷調整後の二次電池200のセル電圧を電圧センサ110により検出して得られる第2電圧値が第1電圧値未満であるか否かを判断する。認識部は、第2電圧値が第1電圧値未満であると判断される場合、二次電池200の内部短絡を認識する。各部の具体的な処理内容については後述する。
次に、図2を参照して、短絡検出装置100により内部短絡が検出される二次電池200について説明する。図2は、二次電池200の基本構成を模式的に表した断面概略図である。本実施形態の二次電池200は、双極型二次電池である。双極型二次電池200は、充放電反応が実際に進行する略矩形の発電要素210が、電池外装材であるラミネートフィルム220の内部に封止された構造を有する。
図2に示すとおり、双極型二次電池200の発電要素210は、集電体211の一方の面に正極活物質層212が形成され、集電体211の他方の面に負極活物質層213が形成されて構成される複数の双極型電極215を有する。各双極型電極215は、電解質層216を介して積層されて発電要素210を形成する。電解質層216は、基材としてのセパレータの面方向中央部に電解質が保持されてなる構成を有する。この際、一の双極型電極215の正極活物質層212と当該一の双極型電極215に隣接する他の双極型電極215の負極活物質層213とが電解質層216を介して向き合うように、各双極型電極215および電解質層216が交互に積層されている。すなわち、一の双極型電極215の正極活物質層212と当該一の双極型電極215に隣接する他の双極型電極215の負極活物質層213との間に電解質層216が挟まれて配置されている。
隣接する正極活物質層212、電解質層216、および負極活物質層213は、一つの単電池層217を構成する。したがって、双極型二次電池200は、単電池層217が積層されてなる構成を有するともいえる。また、電解質層216からの電解液の漏れによる液絡を防止する目的で、単電池層217の外周部にはシール部218が配置されている。なお、発電要素210の最外層に位置する正極側の最外層集電体211aには、片面のみに正極活物質層212が形成されている。また、発電要素210の最外層に位置する負極側の最外層集電体211bには、片面のみに負極活物質層213が形成されている。しかしながら、正極側の最外層集電体211aの両面に正極活物質層212が形成されてもよい。同様に、負極側の最外層集電体211bの両面に負極活物質層213が形成されてもよい。
さらに、双極型二次電池200では、正極側の最外層集電体211aに隣接するように正極集電板221が配置され、これが延長されてラミネートフィルム220から導出されている。一方、負極側の最外層集電体211bに隣接するように負極集電板222が配置され、同様にこれが延長されてラミネートフィルム220から導出されている。短絡検出装置100の電圧センサ110は、ラミネートフィルム220から導出されている正極および負極集電板221,222間の電圧を、二次電池200のセル電圧として検出する。
なお、単電池層217の積層数は、所望する電圧に応じて調節される。また、双極型二次電池200では、電池の厚みを極力薄くしても十分な出力が確保できれば、単電池層217の積層数を少なくしてもよい。
このような二次電池200に対して外部から機械的な衝撃が加えられた場合、二次電池200に内部短絡が生じることがある。本実施形態の短絡検出装置100は、負荷300に対して放電している二次電池200の内部短絡をリアルタイムに検出する。以下、図3を参照して、短絡検出装置100の動作について詳細に説明する。
図3は、短絡検出装置100により実行される短絡検出処理の手順を示すフローチャートである。短絡検出処理の開始時、二次電池200と外部抵抗130との間の第1スイッチ140aはオフ状態にあり、二次電池200と負荷300との間の第2スイッチ140bはオン状態にある。
図3に示すとおり、まず、短絡検出装置100は、放電中の二次電池200の電圧値Vaを検出する(ステップS101)。より具体的には、電圧センサ110が、負荷300に対して放電している二次電池200のセル電圧を第1電圧値Vaとして検出する。電圧センサ110により検出された第1電圧値Vaは、制御部150に送信される。
次に、短絡検出装置100は、二次電池200の電圧値Vaが閾値Vs未満であるか否かを判断する(ステップS102)。より具体的には、制御部150が、ステップS101に示す処理で検出された第1電圧値Vaが、所定の閾値Vs未満であるか否かを判断する。ここで、閾値Vsは、二次電池200に内部短絡が生じたか否かを判断する処理を開始する際の基準となる電圧値であり、適宜設定される。二次電池200がリチウムイオン二次電池の場合、閾値Vsは、満充電状態の単電池層のセル電圧4.2Vに対して、たとえば、2.5Vに相当する電圧値であり、単電池層の積層数等に応じて設定される。
二次電池200の電圧値Vaが閾値Vs未満でないと判断する場合(ステップS102:NO)、短絡検出装置100は、ステップS101の処理に戻る。
一方、二次電池200の電圧値Vaが閾値Vs未満であると判断する場合(ステップS102:YES)、短絡検出装置100は、負荷300を調整して、二次電池200の出力を制限する(ステップS103)。より具体的には、制御部150が、たとえば、負荷300であるモータの回転数を低減して、二次電池200から負荷300に流れる電流を減少させる。その結果、二次電池200から負荷300に流れる電流の大きさが、第1電流値Iaから第2電流値Ibに減少する。
次に、短絡検出装置100は、負荷調整後の二次電池200の電圧値Vbを検出する(ステップS104)。より具体的には、電圧センサ110が、ステップS103に示す処理で調整された負荷300に対して放電している二次電池200のセル電圧を第2電圧値Vbとして検出する。電圧センサ110により検出された第2電圧値Vbは、制御部150に送信される。
次に、短絡検出装置100は、電圧値Vbが電圧値Va未満であるか否かを判断する(ステップS105)。より具体的には、制御部150が、ステップS104に示す処理で検出された第2電圧値Vbが、ステップS101に示す処理で検出された第1電圧値Va未満であるか否かを判断する。
電圧値Vbが電圧値Va未満でないと判断する場合(ステップS105:NO)、短絡検出装置100は、二次電池200の出力を通常出力に戻し(ステップS106)、ステップS101の処理に戻る。より具体的には、制御部150が、二次電池200のセル電圧が閾値Vsを下回った原因が二次電池200の内部抵抗(過電圧)の増加に起因しているとして、二次電池200に内部短絡が生じていないと判断する。そして、制御部150は、ステップS103に示す処理で調整した負荷300を調整前の状態に戻し、二次電池200から負荷300に流れる電流を増大させる。その結果、二次電池200から負荷300に流れる電流の大きさが、第2電流値Ibから第1電流値Iaに回復する。
一方、電圧値Vbが電圧値Va未満であると判断する場合(ステップS105:YES)、短絡検出装置100は、負荷300を切り離す(ステップS107)。より具体的には、制御部150が、二次電池200のセル電圧が閾値Vsを下回った原因が二次電池200の内部短絡に起因しているとして、二次電池200に内部短絡が生じていると判断する。そして、制御部150は、第2スイッチ140bを制御して、二次電池200から負荷300を電気的に切り離す。
そして、短絡検出装置100は、外部放電を開始し(ステップS108)、処理を終了する。より具体的には、制御部150が、第1スイッチ140aを制御して、二次電池200に外部抵抗130を電気的に接続する。二次電池200に外部抵抗130が接続されれば、二次電池200の電力が外部抵抗130により消費され、二次電池200の電力が外部抵抗130により放電される。
以上のとおり、図3に示すフローチャートの処理によれば、二次電池200の電圧値Vaが閾値Vsを下回った場合、負荷300が調整されて二次電池200から負荷300に流れる電流が減少される。そして、負荷調整後の二次電池200の電圧値Vbが負荷調整前の二次電池200の電圧値Va未満の場合、二次電池200に内部短絡が生じていることが認識され、二次電池200の外部放電が行われる。
なお、上述したとおり、二次電池200のセル電圧が閾値Vsを下回った原因が内部抵抗の増加に起因している場合、二次電池200から負荷300に流れる電流が減少すれば、内部抵抗による電圧損失は小さくなり、二次電池200のセル電圧は上昇する。一方、二次電池200のセル電圧が閾値Vsを下回った原因が内部短絡に起因している場合、二次電池200から負荷300に流れる電流が減少しても、二次電池200のセル電圧は上昇することなく低下する。本実施形態の短絡検出装置100では、この現象を利用して、二次電池200の内部短絡を検出する。
そして、本実施形態の短絡検出装置100では、二次電池200の内部抵抗がほとんど変化しない状態で二次電池200に内部短絡が生じたか否かが判断される。このため、本実施形態の短絡検出装置100によれば、非定常的な放電が行われる系でも、二次電池200の内部短絡を精度よく検出できる。したがって、二次電池200の使用態様に関わらず、二次電池200の内部短絡をリアルタイムに精度よく検出できる。
以上のとおり、説明した本実施形態は、以下の効果を奏する。
(a)二次電池200の内部抵抗に関わらず、二次電池200に内部短絡が生じたか否かが判断されるため、二次電池200の使用態様に関わらず、二次電池200の内部短絡をリアルタイムに精度よく検出できる。また、内部短絡に起因する電圧降下と内部抵抗の増加に起因する電圧降下とが区別されるため、二次電池200の内部短絡をより精度よく検出できる。
(b)二次電池200の内部短絡が検出された場合、二次電池200を負荷300から切り離して外部放電が行われるため、二次電池200の安全性がより高められる。
(c)双極型二次電池200の内部短絡を検出するため、双極型二次電池200により駆動される装置(電気自動車等)の実用性が向上する。
(第2実施形態)
次に、図4および図5を参照して、本発明の第2実施形態について説明する。本実施形態は、二次電池200のセル電圧の単位時間当たりの変化量を算出して内部短絡を検出する実施形態である。
次に、図4および図5を参照して、本発明の第2実施形態について説明する。本実施形態は、二次電池200のセル電圧の単位時間当たりの変化量を算出して内部短絡を検出する実施形態である。
図4は、本実施形態に係る短絡検出処理の手順を示すフローチャートである。なお、内部短絡を検出するための処理が異なる点を除いては、本実施形態に係る短絡検出装置100の構成自体は、第1実施形態と同様であるため、短絡検出装置100の構成についての説明は省略する。
また、本実施形態に係る短絡検出装置100の制御部150は、対応するプログラムをCPUが実行することによって、第1判断部、変化量検出部、第2判断部、および認識部として機能する。第1判断部は、負荷300に対して放電している二次電池200のセル電圧を電圧センサ110により検出して得られる電圧値が第1閾値未満であるか否かを判断する。変化量検出部は、電圧値が第1閾値未満であると判断される場合、二次電池200のセル電圧の単位時間当たりの変化量を算出する。第2判断部は、二次電池200のセル電圧の単位時間当たりの変化量が第2閾値よりも大きいか否かを判断する。認識部は、セル電圧の単位時間当たりの変化量が第2閾値よりも大きいと判断される場合、二次電池200の内部短絡を認識する。
図4に示すとおり、本実施形態に係る短絡検出処理では、まず、短絡検出装置100は、放電中の二次電池200の電圧値Vaを検出する(ステップS201)。より具体的には、電圧センサ110が、負荷300に対して放電している二次電池200のセル電圧を電圧値Vaとして検出する。
次に、短絡検出装置100は、二次電池200の電圧値Vaが第1閾値Vs未満であるか否かを判断する(ステップS202)。より具体的には、制御部150が、ステップS201に示す処理で検出された電圧値Vaが、所定の第1閾値Vs未満であるか否かを判断する。ここで、第1閾値Vsは、二次電池200に内部短絡が生じたか否かを判断する処理を開始する際の基準となる電圧値であり、適宜設定される。二次電池200がリチウムイオン二次電池の場合、閾値Vsは、満充電状態の単電池層のセル電圧4.2Vに対して、たとえば、2.5Vに相当する電圧値であり、単電池層の積層数等に応じて設定される。
二次電池200の電圧値Vaが第1閾値Vs未満でないと判断する場合(ステップS202:NO)、短絡検出装置100は、ステップS201の処理に戻る。
一方、二次電池200の電圧値Vaが第1閾値Vs未満であると判断する場合(ステップS202:YES)、短絡検出装置100は、単位時間当たりのセル電圧の変化量ΔVb/Δtを算出する(ステップS203)。より具体的には、制御部150が、電圧センサ110により周期的に検出しているセル電圧の値の変化から、単位時間当たりのセル電圧の変化量ΔVb/Δtを算出する。
次に、短絡検出装置100は、単位時間当たりのセル電圧の変化量ΔVb/Δtが、第2閾値ΔVu/Δtよりも大きいか否かを判断する(ステップS204)。より具体的には、制御部150が、ステップS203に示す処理で算出した単位時間当たりのセル電圧の変化量ΔVb/Δtが、所定の第2閾値ΔVu/Δtよりも大きいか否かを判断する。ここで、第2閾値ΔVu/Δtは、内部短絡に起因する二次電池200の電圧降下と二次電池200の通常の電圧降下とを区別するための値であり、適宜設定される。二次電池200がリチウムイオン二次電池の場合、第2閾値ΔVu/Δtは、満充電状態の単電池層のセル電圧4.2Vに対して、たとえば、2V/秒に相当する値であり、単電池層の積層数等に応じて設定される。
セル電圧の変化量ΔVb/Δtが第2閾値ΔVu/Δtよりも大きくないと判断する場合(ステップS204:NO)、短絡検出装置100は、二次電池200に内部短絡が生じていないとして、ステップS201の処理に戻る。
一方、セル電圧の変化量ΔVb/Δtが第2閾値ΔVu/Δtよりも大きいと判断する場合(ステップS204:YES)、短絡検出装置100は、二次電池200に内部短絡が生じているとして、負荷300を切り離す(ステップS205)。ステップS205以下の処理は、図3のステップS107以下の処理と同様であるため、ステップS205以下の処理についての説明は省略する。
以上のとおり、図4に示すフローチャートの処理によれば、二次電池200の電圧値Vaが第1閾値Vsを下回った場合、二次電池200のセル電圧の単位時間当たりの変化量ΔVb/Δtが算出される。そして、単位時間当たりのセル電圧の変化量ΔVb/Δtが第2閾値ΔVu/Δtよりも大きい場合、二次電池200に内部短絡が生じていることが認識され、二次電池200の外部放電が行われる。
次に、図5を参照して、本実施形態に係る短絡検出処理についてより詳細に説明する。
図5は、放電中の二次電池200のセル電圧と時間との関係の一例を示す図である。図5の縦軸は二次電池200のセル電圧であり、横軸は時間である。図5の実線は、特定の電流出力時に内部短絡が生じた場合の二次電池200のセル電圧の時間プロファイルを示す。図5の破線は、特定の電流出力時における二次電池200のセル電圧の通常の時間プロファイルを示す。
図5に示すとおり、通常時と内部短絡発生時とでは、放電時間に対する電圧変化が大きく異なる。具体的には、通常時のセル電圧は時間の経過に伴いゆっくりと低下し、その一方で、短絡発生時のセル電圧は短時間で大きく低下する。なお、二次電池200の内部抵抗の増加に伴い過電圧が増加する場合、充放電を複数回繰り返すにしたがって、破線で示す電圧プロファイルが下方にシフトする。
本実施形態の短絡検出装置100では、上記の現象を利用して、二次電池200のセル電圧の単位時間当たりの変化量ΔVb/Δtを所定の第2閾値ΔVu/Δtと比較することにより、二次電池200の内部短絡を検出する。このような構成によれば、二次電池200の内部短絡を精度よく検出できる。
(変形例)
なお、上述した実施形態では、第2閾値として固定値が用いられた。しかしながら、第2閾値は可変値であってもよい。この場合、制御部150には、二次電池200の電流値と第2閾値との関係を示す変換テーブルが予め登録され、第2閾値は、二次電池200から負荷300に流れる電流の大きさに応じて変更される。このような構成によれば、二次電池200の内部短絡をより精度よく検出できる。
なお、上述した実施形態では、第2閾値として固定値が用いられた。しかしながら、第2閾値は可変値であってもよい。この場合、制御部150には、二次電池200の電流値と第2閾値との関係を示す変換テーブルが予め登録され、第2閾値は、二次電池200から負荷300に流れる電流の大きさに応じて変更される。このような構成によれば、二次電池200の内部短絡をより精度よく検出できる。
また、上述した実施形態では、図4のステップS202に示す処理において二次電池200のセル電圧が第1閾値Vs未満であると判断された場合、二次電池200のセル電圧の単位時間当たりの変化量ΔVb/Δtが算出された。しかしながら、図4のステップS201~S202に示す処理は省略されてもよい。この場合、二次電池200のセル電圧の単位時間当たりの変化量ΔVb/Δtが周期的に算出され、所定の第2閾値ΔVu/Δtと比較される。
以上のとおり、説明した本実施形態は、第1実施形態の効果に加えて、以下の効果を奏する。
(d)二次電池200の単位時間当たりの変化量に基づいて二次電池200の内部短絡を検出するため、負荷300を調整して内部短絡を検出する場合に比べ、短時間で内部短絡を検出できる。
(第3実施形態)
次に、図6および図7を参照して、本発明の第3実施形態について説明する。本実施形態は、時間の経過に伴ってセル電圧が変動する挙動を示す内部短絡を検出する実施形態である。
次に、図6および図7を参照して、本発明の第3実施形態について説明する。本実施形態は、時間の経過に伴ってセル電圧が変動する挙動を示す内部短絡を検出する実施形態である。
図6は、本実施形態に係る短絡検出処理の手順を示すフローチャートである。なお、内部短絡を検出するための処理が異なる点を除いては、本実施形態に係る短絡検出装置100の構成自体は、第1実施形態と同様であるため、短絡検出装置100の構成についての説明は省略する。
また、本実施形態に係る短絡検出装置100の制御部150は、対応するプログラムをCPUが実行することによって、第1周波数算出部、第2周波数算出部、判断部、および認識部として機能する。第1周波数算出部は、負荷300に対して放電している二次電池200のセル電圧の変動周波数を算出する。第2周波数算出部は、二次電池200から負荷300に流れる電流の変動周波数を算出する。判断部は、セル電圧の変動周波数が電流の変動周波数よりも高いか否かを判断する。認識部は、セル電圧の変動周波数が電流の変動周波数よりも高いと判断される場合、二次電池200の内部短絡を認識する。
図6に示すとおり、本実施形態に係る短絡検出処理では、まず、短絡検出装置100は、セル電圧の変動周波数faを算出する(ステップS301)。より具体的には、制御部150が、電圧センサ110により検出されるセル電圧の周波数解析(たとえば、高速フーリエ変換)を行って、二次電池200のセル電圧の変動周波数faを算出する。
次に、短絡検出装置100は、二次電池200から負荷300に流れる電流の変動周波数fsを算出する(ステップS302)。より具体的には、制御部150が、電流センサ120により検出される電流値の周波数解析を行って、二次電池200から負荷300に流れる電流の変動周波数fsを算出する。
次に、短絡検出装置100は、セル電圧の変動周波数faが電流の変動周波数fsよりも高いか否かを判断する(ステップS303)。より具体的には、制御部150が、ステップS301に示す処理で算出したセル電圧の変動周波数faが、ステップS302に示す処理で算出した電流の変動周波数fsよりも高いか否かを判断する。
セル電圧の変動周波数faが電流の変動周波数fsよりも高くないと判断する場合(ステップS303:NO)、短絡検出装置100は、二次電池200に内部短絡が生じていないとして、ステップS301の処理に戻る。
一方、セル電圧の変動周波数faが電流の変動周波数fsよりも高いと判断する場合(ステップS303:YES)、短絡検出装置100は、二次電池200に内部短絡が生じているとして、負荷300を切り離す(ステップS304)。ステップS304以下の処理は、図3のステップS107以下の処理と同様であるため、ステップS304以下の処理についての説明は省略する。
以上のとおり、図6に示すフローチャートの処理によれば、二次電池200のセル電圧の変動周波数faが、二次電池200から流れ出る電流の変動周波数fsと比較される。そして、セル電圧の変動周波数faが電流の変動周波数fsよりも高い場合、二次電池200に内部短絡が生じていることが認識され、二次電池200の外部放電が行われる。
次に、図7を参照して、本実施形態に係る短絡検出処理についてより詳細に説明する。
図7は、放電中の二次電池200のセル電圧と時間との関係の一例を示す図である。図7の縦軸は二次電池200のセル電圧であり、横軸は時間である。図7の実線は、時間の経過に伴ってセル電圧が変動する挙動を示す内部短絡が生じた二次電池200のセル電圧の時間プロファイルを示す。図7の破線は、一般的な内部短絡が生じた二次電池200のセル電圧の時間プロファイルを示す。
図7に示すとおり、二次電池200の内部短絡時、実線で示すような挙動をセル電圧が示す場合がある。この場合、セル電圧は1Hz~2kHz程度の短い周期で変動する。このとき、二次電池200から負荷300に流れる電流は、セル電圧の変動に追従せず、電流の変動周波数はセル電圧の変動周波数よりも低くなる。本実施形態の短絡検出装置100では、この現象を利用して、セル電圧の変動周波数を電流の変動周波数と比較することにより、セル電圧が実線で示すような挙動を示す内部短絡を検出する。
なお、破線で示すようなセル電圧の変動を伴わない内部短絡は、上述した第1または第2実施形態の短絡検出処理により検出され得る。
以上のとおり、説明した本実施形態は、第1および第2実施形態の効果に加えて、以下の効果を奏する。
(e)二次電池200のセル電圧の変動周波数を電流の変動周波数と比較して、二次電池200の内部短絡を検出するため、セル電圧が時間の経過に伴って変動する挙動を示す内部短絡を検出できる。
以上のとおり、説明した第1~第3実施形態において、本発明の短絡検出装置100を説明した。しかしながら、本発明は、その技術思想の範囲内において当業者が適宜に追加、変形、および省略できることはいうまでもない。
たとえば、上述した第1~第3実施形態では、短絡検出装置100の制御部150により二次電池200に内部短絡が生じたことが認識された場合、二次電池200が負荷300から切り離され、外部放電が行われた。しかしながら、二次電池200の内部短絡が認識された後、負荷300を切り離して外部放電を行う処理は省略されてもよい。
また、上述した第1~第3実施形態では、制御部150のCPUがプログラムを実行することによって各種処理を実現する場合を例に挙げて説明した。しかしながら、短絡検出装置100における各種処理は、専用のハードウエア回路によって実現されてもよい。
また、上述した第1~第3実施形態では、単電池層が直列接続された双極型二次電池の内部短絡を検出する場合を例に挙げて説明した。しかしながら、本発明は、単電池層が並列接続されている一般的な二次電池にも適用可能である。
また、上述した第3実施形態は、第1または第2実施形態と組み合わせて実行され得る。第1実施形態と第3実施形態を組み合わせる場合、たとえば、図3に示すフローチャートの処理と図6に示すフローチャートの処理とが交互に実行される。同様に、第2実施形態と第3実施形態を組み合わせる場合、たとえば、図4に示すフローチャートの処理と図6に示すフローチャートの処理とが交互に実行される。
100 短絡検出装置、
110 電圧センサ、
120 電流センサ、
130 外部抵抗、
140,140a,140b スイッチ、
150 制御部(第1判断部、第2判断部、負荷調整部、認識部、変化量算出部、第1周波数算出部、第2周波数算出部、判断部、第3判断部、第2認識部)、
200 二次電池、
300 負荷。
110 電圧センサ、
120 電流センサ、
130 外部抵抗、
140,140a,140b スイッチ、
150 制御部(第1判断部、第2判断部、負荷調整部、認識部、変化量算出部、第1周波数算出部、第2周波数算出部、判断部、第3判断部、第2認識部)、
200 二次電池、
300 負荷。
Claims (6)
- 二次電池の電圧を検出する電圧センサと、
負荷に対して放電している前記二次電池の電圧を前記電圧センサにより検出して得られる第1電圧値が閾値未満であるか否かを判断する第1判断部と、
前記第1電圧値が前記閾値未満であると判断される場合、前記負荷を調整して、前記二次電池から前記負荷に流れる電流を減少させる負荷調整部と、
負荷調整後の前記二次電池の電圧を前記電圧センサにより検出して得られる第2電圧値が前記第1電圧値未満であるか否かを判断する第2判断部と、
前記第2電圧値が前記第1電圧値未満であると判断される場合、前記二次電池の内部短絡を認識する認識部と、
を有する短絡検出装置。 - 二次電池の電圧を検出する電圧センサと、
負荷に対して放電している前記二次電池の電圧を前記電圧センサにより検出して得られる電圧値が第1閾値未満であるか否かを判断する第1判断部と、
前記電圧値が前記第1閾値未満であると判断される場合、前記二次電池の電圧の単位時間当たりの変化量を算出する変化量算出部と、
前記変化量が第2閾値よりも大きいか否かを判断する第2判断部と、
前記変化量が前記第2閾値よりも大きいと判断される場合、前記二次電池の内部短絡を認識する認識部と、
を有する短絡検出装置。 - 前記負荷に対して放電している前記二次電池の電圧を前記電圧センサにより検出して、前記電圧の変動周波数を算出する第1周波数算出部と、
前記二次電池から前記負荷に流れる電流を検出する電流センサと、
前記電流を前記電流センサにより検出して、前記電流の変動周波数を算出する第2周波数算出部と、
前記電圧の変動周波数が前記電流の変動周波数よりも高いか否かを判断する第3判断部と、
前記電圧の変動周波数が前記電流の変動周波数よりも高いと判断される場合、前記二次電池の内部短絡を認識する第2認識部と、
をさらに有する、請求項1または2に記載の短絡検出装置。 - 前記二次電池に接続され、前記二次電池の電力を放電する外部抵抗と、
前記二次電池の内部短絡が認識された場合、前記二次電池を前記負荷から切り離し、前記外部抵抗に接続するスイッチと、
をさらに有する、請求項1~3のいずれか1項に記載の短絡検出装置。 - 前記二次電池は、集電体の一方の面に正極活物質層が形成され他方の面に負極活物質層が形成された双極型電極と電解質層とが積層されて構成される発電要素を有する双極型二次電池である、請求項1~4のいずれか1項に記載の短絡検出装置。
- 二次電池の電圧を検出する電圧センサと、
負荷に対して放電している前記二次電池の電圧を前記電圧センサにより検出して、前記電圧の変動周波数を算出する第1周波数算出部と、
前記二次電池から前記負荷に流れる電流を検出する電流センサと、
前記電流を前記電流センサにより検出して、前記電流の変動周波数を算出する第2周波数算出部と、
前記電圧の変動周波数が前記電流の変動周波数よりも高いか否かを判断する判断部と、
前記電圧の変動周波数が前記電流の変動周波数よりも高いと判断される場合、前記二次電池の内部短絡を認識する認識部と、
を有する短絡検出装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680090261.4A CN109863416B (zh) | 2016-11-07 | 2016-11-07 | 短路检测装置 |
US16/346,883 US10656215B2 (en) | 2016-11-07 | 2016-11-07 | Short circuit detection device |
JP2018548535A JP6729714B2 (ja) | 2016-11-07 | 2016-11-07 | 短絡検出装置 |
PCT/JP2016/082998 WO2018083802A1 (ja) | 2016-11-07 | 2016-11-07 | 短絡検出装置 |
EP16920900.4A EP3537164B1 (en) | 2016-11-07 | 2016-11-07 | Short circuit detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/082998 WO2018083802A1 (ja) | 2016-11-07 | 2016-11-07 | 短絡検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018083802A1 true WO2018083802A1 (ja) | 2018-05-11 |
Family
ID=62076764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/082998 WO2018083802A1 (ja) | 2016-11-07 | 2016-11-07 | 短絡検出装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10656215B2 (ja) |
EP (1) | EP3537164B1 (ja) |
JP (1) | JP6729714B2 (ja) |
CN (1) | CN109863416B (ja) |
WO (1) | WO2018083802A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918948A (zh) * | 2018-06-25 | 2018-11-30 | 清华大学 | 动力电池内生电流的提取方法 |
CN117686921A (zh) * | 2024-02-02 | 2024-03-12 | 江苏林洋亿纬储能科技有限公司 | 检测电池内短路的方法和系统及计算设备 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021028707A1 (ja) * | 2019-08-12 | 2021-02-18 | 日産自動車株式会社 | 二次電池の短絡推定装置、短絡推定方法、及び短絡推定システム |
CN111537913A (zh) * | 2020-05-14 | 2020-08-14 | 广东汉力威技术有限公司 | 一种利用预放电回路诊断短路的方法 |
CN112834938B (zh) * | 2021-03-10 | 2022-08-12 | 东莞新能德科技有限公司 | 电池内短路检测方法、电子装置以及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182598A (ja) * | 1998-12-16 | 2000-06-30 | Hitachi Ltd | 非水電解液二次電池およびその熱動継電器 |
JP2007187533A (ja) * | 2006-01-12 | 2007-07-26 | Sanyo Electric Co Ltd | 電池の寿命判定方法 |
JP2010123565A (ja) * | 2008-10-20 | 2010-06-03 | Nissan Motor Co Ltd | 双極型二次電池、組電池およびそれらの電池を搭載した車両 |
JP2010536133A (ja) * | 2007-08-10 | 2010-11-25 | ソニー エリクソン モバイル コミュニケーションズ, エービー | 電池短絡の監視 |
JP2016090399A (ja) | 2014-11-05 | 2016-05-23 | 日本電信電話株式会社 | 短絡検出方法、短絡検出システムおよび短絡電流値算出方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5074648B2 (ja) | 2000-05-23 | 2012-11-14 | キヤノン株式会社 | 二次電池の内部状態検知方法、検知装置、該検知装置を備えた機器、内部状態検知プログラム、および該プログラムを収めた媒体 |
JP4739040B2 (ja) * | 2005-02-18 | 2011-08-03 | パナソニック株式会社 | 二次電池の内部短絡検出装置、二次電池の内部短絡検出方法、二次電池の電池パック及び電子機器 |
JP2009049005A (ja) | 2007-07-26 | 2009-03-05 | Panasonic Corp | 電池の内部短絡検知装置および方法、電池パック並びに電子機器システム |
JP2009032506A (ja) * | 2007-07-26 | 2009-02-12 | Panasonic Corp | 非水系電解質二次電池の内部短絡検知方法および装置 |
US20090155674A1 (en) | 2007-12-18 | 2009-06-18 | Mitsumi Electronic Co., Ltd. | Battery Pack, Portable Device, Internal Short Detecting Method, and Internal Short Detecting Program |
JP2011135656A (ja) | 2009-12-22 | 2011-07-07 | Sanyo Electric Co Ltd | バッテリシステム及びこれを備える車両並びにバッテリシステムの内部短絡検出方法 |
JP2012052857A (ja) | 2010-08-31 | 2012-03-15 | Panasonic Corp | 二次電池の異常検出回路、及び電池電源装置 |
WO2014129025A1 (ja) * | 2013-02-19 | 2014-08-28 | 古河電気工業株式会社 | 二次電池劣化判定方法及び二次電池劣化判定装置 |
JP5810116B2 (ja) | 2013-03-14 | 2015-11-11 | 古河電気工業株式会社 | 二次電池状態検出装置および二次電池状態検出方法 |
JP6096903B2 (ja) | 2013-07-11 | 2017-03-15 | 日本碍子株式会社 | 二次電池システムの異常発生部位を特定する装置、方法及びプログラム |
JP2013242324A (ja) * | 2013-07-11 | 2013-12-05 | Mitsubishi Motors Corp | 電池監視装置 |
KR20160024980A (ko) | 2013-07-24 | 2016-03-07 | 오토모티브 에너지 서플라이 가부시키가이샤 | 2차 전지의 검사 방법 |
DE102013214726A1 (de) | 2013-07-29 | 2015-01-29 | Bayerische Motoren Werke Aktiengesellschaft | Anordnung zur elektrischen Absicherung eines potentiellen Kurzschlusses bzw. einer Überlast in einem Gleichstromnetz mit systembedingten, variablem Quellinnenwiderstand |
CN105244850B (zh) * | 2015-10-09 | 2018-10-26 | 深圳市沛城电子科技有限公司 | 电池保护电路及其控制方法 |
JP6508094B2 (ja) * | 2016-03-10 | 2019-05-08 | トヨタ自動車株式会社 | 車両用電源システム |
-
2016
- 2016-11-07 WO PCT/JP2016/082998 patent/WO2018083802A1/ja unknown
- 2016-11-07 EP EP16920900.4A patent/EP3537164B1/en active Active
- 2016-11-07 JP JP2018548535A patent/JP6729714B2/ja active Active
- 2016-11-07 CN CN201680090261.4A patent/CN109863416B/zh active Active
- 2016-11-07 US US16/346,883 patent/US10656215B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182598A (ja) * | 1998-12-16 | 2000-06-30 | Hitachi Ltd | 非水電解液二次電池およびその熱動継電器 |
JP2007187533A (ja) * | 2006-01-12 | 2007-07-26 | Sanyo Electric Co Ltd | 電池の寿命判定方法 |
JP2010536133A (ja) * | 2007-08-10 | 2010-11-25 | ソニー エリクソン モバイル コミュニケーションズ, エービー | 電池短絡の監視 |
JP2010123565A (ja) * | 2008-10-20 | 2010-06-03 | Nissan Motor Co Ltd | 双極型二次電池、組電池およびそれらの電池を搭載した車両 |
JP2016090399A (ja) | 2014-11-05 | 2016-05-23 | 日本電信電話株式会社 | 短絡検出方法、短絡検出システムおよび短絡電流値算出方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3537164A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108918948A (zh) * | 2018-06-25 | 2018-11-30 | 清华大学 | 动力电池内生电流的提取方法 |
CN108918948B (zh) * | 2018-06-25 | 2020-02-07 | 清华大学 | 动力电池内生电流的提取方法 |
CN117686921A (zh) * | 2024-02-02 | 2024-03-12 | 江苏林洋亿纬储能科技有限公司 | 检测电池内短路的方法和系统及计算设备 |
CN117686921B (zh) * | 2024-02-02 | 2024-05-31 | 江苏林洋亿纬储能科技有限公司 | 检测电池内短路的方法和系统及计算设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109863416A (zh) | 2019-06-07 |
US20200064409A1 (en) | 2020-02-27 |
EP3537164A1 (en) | 2019-09-11 |
JPWO2018083802A1 (ja) | 2019-09-19 |
EP3537164B1 (en) | 2021-01-13 |
JP6729714B2 (ja) | 2020-07-29 |
EP3537164A4 (en) | 2020-03-11 |
CN109863416B (zh) | 2021-05-11 |
US10656215B2 (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018083802A1 (ja) | 短絡検出装置 | |
US9933491B2 (en) | Electric storage system | |
KR101577387B1 (ko) | 이차전지, 이를 포함하는 이차전지 모듈 및 이차전지 팩 | |
JP5660003B2 (ja) | 二次電池の劣化状態判別システム及び劣化状態判別方法。 | |
US10222423B2 (en) | Electrical storage system | |
US9899847B2 (en) | Battery system configured to set and reduce an upper limit power value that is discharged from an alkali secondary battery | |
JP2010088194A (ja) | 組電池の容量調整装置及び方法 | |
WO2014167644A1 (ja) | 電圧センサの故障検出装置 | |
JP5971680B2 (ja) | 電池寿命事前検知方法、電池システム、及び電池コントローラ | |
US20170125995A1 (en) | Electricity storage system | |
CN104160291A (zh) | 二次电池的控制装置、充电控制方法以及充电状态检测方法 | |
CN103563206A (zh) | 蓄电系统 | |
JP2010086911A (ja) | 組電池の性能検出装置及び制御装置 | |
WO2022224681A1 (ja) | 電池監視装置及びそれが搭載された電動車両 | |
JP2013053943A (ja) | 推定装置および推定方法 | |
JP2013233002A (ja) | 蓄電システムおよびその充放電制御方法 | |
JP5626190B2 (ja) | 蓄電システム | |
KR20170117552A (ko) | 배터리의 적어도 하나의 배터리 셀의 상태 변수의 모니터링 | |
JP2015061505A (ja) | 蓄電システム | |
JP6365820B2 (ja) | 二次電池の異常判定装置 | |
JP5394823B2 (ja) | 充電制御装置、キャパシタモジュール及び充電制御方法 | |
JP2016185029A (ja) | 充電状態検出装置、充電状態検出方法、充電状態検出システム、およびバッテリーパック | |
JP2016076335A (ja) | 二次電池システム | |
WO2013105139A1 (ja) | 二次電池の制御装置および制御方法 | |
JP5678879B2 (ja) | 蓄電システムおよび異常判定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16920900 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018548535 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2016920900 Country of ref document: EP Effective date: 20190607 |