[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018082000A1 - 无人机及天线组件 - Google Patents

无人机及天线组件 Download PDF

Info

Publication number
WO2018082000A1
WO2018082000A1 PCT/CN2016/104509 CN2016104509W WO2018082000A1 WO 2018082000 A1 WO2018082000 A1 WO 2018082000A1 CN 2016104509 W CN2016104509 W CN 2016104509W WO 2018082000 A1 WO2018082000 A1 WO 2018082000A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
switch
antenna
signal strength
configuration information
Prior art date
Application number
PCT/CN2016/104509
Other languages
English (en)
French (fr)
Inventor
李栋
吕超
胡孟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2016/104509 priority Critical patent/WO2018082000A1/zh
Priority to CN201680004369.7A priority patent/CN107278195B/zh
Publication of WO2018082000A1 publication Critical patent/WO2018082000A1/zh
Priority to US16/400,515 priority patent/US20190260122A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/36Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like adapted to receive antennas or radomes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/30Means for trailing antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0808Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching comparing all antennas before reception
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present invention relates to an antenna assembly, and more particularly to a radiation pattern adaptive antenna assembly.
  • the drone's antenna is mostly a directional antenna, and its radiation pattern will not be adjusted accordingly.
  • the position of the drone is constantly changing during flight, so that the maximum radiation direction of the radiation pattern cannot always face the ground control end, thus affecting the communication and data transmission before the drone and the ground control end, such as image transmission. , control distance, etc.
  • the technical problem to be solved by the present invention is to provide a UAV and an antenna assembly, which can adaptively adjust the radiation pattern of the antenna assembly according to its own state, so that the maximum radiation direction of the antenna assembly always faces the ground end.
  • the controller ensures the speed and quality of image transmission and increases the control distance to the drone.
  • An aspect of the present invention provides a drone, the drone including a body, an inertial measurement unit, configured to acquire posture information of the drone, and a power system installed in the body for Providing flight power, a memory for storing preset antenna component configuration information, an antenna assembly for communicating with the ground terminal controller, and one or more processors for configuring information according to the preset antenna component, Adjusting the radiation pattern of the antenna assembly.
  • Another aspect of the present invention provides a drone control method, the drone including an antenna assembly, the method comprising: calculating a position of the drone relative to a ground end controller; And adjusting a radiation pattern of the antenna assembly according to the location and preset antenna component configuration information.
  • a third aspect of the present invention provides a drone control method, the drone including an antenna assembly, the method comprising: detecting a signal strength of an antenna component; and configuring the antenna component according to the signal strength and preset Information, adjusting the radiation pattern of the antenna assembly.
  • the antenna assembly includes a first switch, a second switch, a first antenna unit, a second antenna unit, a third antenna unit, and a fourth antenna unit.
  • the one or more processors are further configured to calculate a tilt angle of the drone relative to the ground end controller, and according to the tilt angle and the preset antenna assembly The configuration information is adjusted to adjust the radiation pattern of the antenna assembly.
  • the one or more processors are further configured to obtain a vertical height of the drone relative to the ground end controller, and obtain the drone relative to the ground end controller a horizontal distance, the tilt angle is calculated according to the vertical height and the horizontal distance, and a radiation pattern of the antenna assembly is adjusted according to the tilt angle and the preset antenna component configuration information.
  • the one or more processors are further configured to: in the preset antenna component configuration information, search for a desired radiation pattern and its corresponding switch configuration information according to the tilt angle, and according to the The switch configuration information configures the antenna assembly to produce the desired radiation pattern.
  • the one or more processors are further configured to detect a signal strength of the at least five switch states within a predetermined time interval, and extract a maximum from a signal strength of the at least five switch states a signal strength, calculating a difference between the maximum signal strength and a signal strength of the current switch state, analyzing a difference between the maximum signal strength and a signal strength of the current switch state by a critical switching value, and controlling the antenna component to switch to the The state of the switch corresponding to the maximum signal strength.
  • the first switch is a single pole double throw switch and the second switch is a single pole triple throw switch.
  • the first antenna unit, the second antenna unit, the The third antenna unit and the fourth antenna unit are placed at a difference of 60 degrees.
  • At least one of the first antenna unit, the second antenna unit, the third antenna unit, and the fourth antenna unit includes a dipole, a monopole, and an inverted F antenna. At least one of the loop antennas.
  • FIG. 1 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a bottom of a drone according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a drone according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an antenna assembly for a drone according to an embodiment of the present invention.
  • 5 is a desired radiation pattern of a drone antenna assembly according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a relative position of a drone and a ground-to-control controller according to an embodiment of the present invention
  • FIG. 7 is a flowchart of Embodiment 1 of a radiation adjustment pattern of an unmanned aerial vehicle adaptive adjustment antenna assembly according to the present invention.
  • FIG. 8 is a flowchart of Embodiment 2 of a radiation adjustment pattern of an unmanned aerial vehicle adaptive adjustment antenna assembly according to the present invention.
  • FIG. 10 is a second diagram of the radiation pattern of the antenna assembly of the unmanned aerial vehicle in different switching states according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a drone according to an embodiment of the present invention.
  • the drone 100 can include a fuselage 110 that includes a central portion 111 and one or more outer portions 112.
  • the fuselage 110 includes four outer portions 112 (such as the arm 113).
  • the four outer portions 112 extend from the central portion 111, respectively.
  • the body 110 can include any number of external portions 112 (eg, 6, 8, etc.).
  • each of the outer portions 112 can carry a propulsion system 120 that can drive the drone 100 to move (e.g., climb, land, horizontally move, etc.).
  • the arm 113 can carry a corresponding motor 121, and the motor 121 can drive the corresponding propeller 122 to rotate.
  • the drone 100 can control any set of motors 121 and their corresponding propellers 122 without being affected by the remaining motors 121 and their corresponding propellers.
  • the body 110 can carry a load 130, such as an imaging device 131.
  • the imaging device 131 can include a camera, for example, an image, video, etc. around the drone can be taken.
  • the camera is photosensitive to light of various wavelengths including, but not limited to, visible light, ultraviolet light, infrared light, or any combination thereof.
  • the load 130 can include other kinds of sensors.
  • the load 130 is coupled to the body 110 via a pan/tilt 150, such that The load 130 can be moved relative to the fuselage 110.
  • the imaging device 131 can move relative to the body 110 to capture images, videos, and the like around the drone 100.
  • the landing gear 114 can support the drone 100 to protect the load 130 when the drone 100 is on the ground.
  • the drone 100 can include a control system 140 that includes components disposed in the drone 100 and components that are separate from the drone 100.
  • the control system 140 can include a first controller 141 disposed on the drone 100, and a remote from the drone 100 and coupled via a communication link 160 (eg, a wireless link)
  • the second controller 142 is connected to the first controller 141.
  • the first controller 141 can include one or more processors, memory, and an onboard computer readable medium 143a that can store program instructions for controlling the behavior of the drone 100,
  • the behavior includes, but is not limited to, operation of the propulsion system 120 and the imaging device 131, controlling the drone to perform automatic landing, and the like.
  • the second controller 142 can include one or more processors, memory, off-board computer readable media 143b, and one or more input and output devices 148, such as display device 144 and control device 145.
  • An operator of the drone 100 can remotely control the drone 100 through the control device 145 and receive feedback information from the drone 100 via the display device 144 and/or other devices.
  • the drone 100 can operate autonomously, at which time the second controller 142 can be omitted, or the second controller 142 can only be used to make the drone operator heavy Write a function for drone flight.
  • the drone 100 is controlled by an onboard software development kit.
  • the onboard computer readable medium 143a can be moved out of the drone 100.
  • the off-board computing readable medium 143b can be moved out of the second controller 142.
  • the drone 100 can include two forward looking cameras 171 and 172 that are sensitive to light of various wavelengths (eg, visible light, infrared light, ultraviolet light) for shooting. An image or video around the drone. In some embodiments, the drone 100 includes one or more sensors placed at the bottom.
  • various wavelengths eg, visible light, infrared light, ultraviolet light
  • the drone 100 can include two lower looking cameras 173 and 174 placed at the bottom of the fuselage 110.
  • the drone 100 further includes two ultrasonic sensors 177 and 178 placed at the bottom of the body 110.
  • the ultrasonic sensors 177 and 178 can detect and/or monitor objects and ground at the bottom of the drone 100 and measure the distance from the object or the ground by transmitting and receiving ultrasonic waves.
  • the drone 100 may include an inertial measurement unit (English: inertial measurement unit, IMU), an infrared sensor, a microwave sensor, a temperature sensor, a proximity sensor (English: proximity sensor), a three-dimensional laser Range finder, 3D TOF, etc.
  • IMU inertial measurement unit
  • IMU inertial measurement unit
  • the three-dimensional laser range finder and the three-dimensional TOF can detect the distance of an object or a body surface under the drone.
  • the inertial measurement unit can be used to measure height and attitude information of most drones, including but not limited to pitch angles, roll angles, and yaw angles.
  • the inertial measurement unit may include, but is not limited to, one or more accelerometers, gyroscopes, magnetometers, or any combination thereof.
  • the accelerometer can be used to measure the acceleration of the drone to calculate the speed of the drone.
  • the drone further includes a barometer that can be used to detect the height of the drone.
  • the drone further includes a GPS module (not shown).
  • the GPS module is configured to acquire location information of the drone, such as coordinates, latitude and longitude, and the like.
  • the GPS module is further configured to acquire a horizontal distance between the UAV and a ground end controller, and the ground end controller includes, but is not limited to, a remote controller, a ground end image transmission device, and the like.
  • the drone further includes a power system including at least one electric machine and at least one electronic governor for providing flight power to the drone.
  • FIG. 3 is a schematic diagram of a module of a drone according to an embodiment of the present invention.
  • the drone 100 may include one or more processors 301, a sensor module 302, a storage module 303, and an input and output module 304.
  • the control module 301 can include one or more processors, including but not limited to a microprocessor (English: microcontroller), a reduced instruction set computer (English: reduced instruction set computer, referred to as: RISC), dedicated integration Circuit Application specific integrated circuits (ASIC), application-specific instruction-set processor (ASIP), central processing unit (English: central processing unit, CPU), physical processing English (English: physics processing unit, referred to as: PPU), digital signal processor (English: digital signal processor, referred to as DSP), field programmable gate array (English: field programmable gate array, referred to as: FPGA).
  • a microprocessor English: microcontroller
  • RISC reduced instruction set computer
  • ASIC dedicated integration Circuit Application specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • CPU central processing unit
  • PPU physical processing English
  • digital signal processor English: digital signal processor, referred to as DSP
  • field programmable gate array English: field programmable gate array, referred to as: FPGA
  • the sensor module 302 may include one or more sensors including, but not limited to, a temperature sensor, a TOF (time of flight) sensor, an inertial measurement unit, an accelerometer, an image sensor (such as a camera), an ultrasonic sensor, Microwave sensor, proximity sensor, 3D laser range finder, infrared sensor, barometer, etc.
  • sensors including, but not limited to, a temperature sensor, a TOF (time of flight) sensor, an inertial measurement unit, an accelerometer, an image sensor (such as a camera), an ultrasonic sensor, Microwave sensor, proximity sensor, 3D laser range finder, infrared sensor, barometer, etc.
  • the inertial measurement unit can be used to measure the height of the drone.
  • the inertial measurement unit may include, but is not limited to, one or more accelerometers, gyroscopes, magnetometers, or any combination thereof.
  • the accelerometer can be used to measure the acceleration of the drone to calculate the speed of the drone.
  • the storage module 303 can include, but is not limited to, a read only memory (ROM), a random access memory (RAM), a programmable system memory (PROM), an electronic erasable programmable read only memory (EEPROM), and the like.
  • the storage module 303 can include a transitory computer readable medium that can store code, logic or instructions for performing one or more of the steps described elsewhere herein.
  • the control module 301 can perform one or more steps individually or collectively in accordance with code, logic or instructions of the non-transitory computer readable medium described herein.
  • the storage module 303 is configured to store preset antenna component configuration information.
  • the one or more processors may adjust a radiation pattern of the drone according to the preset antenna component configuration information.
  • the communication module 304 can include, but is not limited to, an antenna assembly or the like.
  • the antenna assembly is for communicating with a ground end controller.
  • the one or more processors can adjust a radiation pattern of the antenna assembly based on the preset antenna component configuration information.
  • the drone further includes an input and output module (not shown),
  • the input/output module is configured to output information or instructions to an external device, such as receiving an instruction sent by the input/output device 148 (see FIG. 1), or transmitting an image taken by the imaging device 131 (see FIG. 1) to the Input and output device 148 is described.
  • FIG. 4 is a schematic diagram of an antenna assembly for a drone according to an embodiment of the present invention.
  • the antenna assembly 400 includes four antenna elements: an antenna unit 401, an antenna unit 402, an antenna unit 403, an antenna unit 404, and two switches, a switch 405 and a switch 406.
  • the antenna assembly can be mounted within the foot of the drone, or within the fuselage.
  • the antenna unit 401, the antenna unit 402, the antenna unit 403, and the antenna unit 404 are placed at a difference of 60 degrees.
  • the switch 405 is a single pole double throw switch, and the switch 406 is a single pole triple throw switch.
  • the common terminal RFin1 of the switch 405 is grounded, and the common terminal RFin2 of the switch 406 is connected to an input signal.
  • the input signal includes, but is not limited to, a control signal sent by the ground end controller to the antenna assembly 400, a signal containing the status information sent by the antenna assembly 400 to the ground terminal controller, and an image signal sent by the antenna assembly 400 to the ground end controller. Wait.
  • At least one of the antenna unit 401, the antenna unit 402, the antenna unit 403, and the antenna unit 404 includes, but is not limited to, a dipole, a monopole, and an inverted F antenna ( English: inverted-F antenna), loop antenna, etc.
  • the drone may change at least two of the four antenna units by configuring the switch 405 and/or the switch 406 according to preset antenna component configuration information to change A radiation pattern of the antenna assembly 400.
  • the preset antenna component configuration information may include Table 1 and Table 2. Referring to Table 1, Table 1 shows the switch configuration truth table and the corresponding switch state.
  • Switch 405 has two ports RF1 and RF2, and Ctrl indicates a signal that controls the state of switch 405.
  • switch 406 has three ports RF1, RF2, and RF3, and Ctrl2 represents a signal that controls the state of switch 406.
  • one or more processors of the drone may issue Ctrl or Ctrl2 to control the state of the switch 405 and the switch 406.
  • Table 1 can be stored in the memory of the drone.
  • the drone may control the switch 405 and the location according to a position relative to the ground end controller (eg, a remote control, a ground end image transmission device, etc.), such as a tilt angle or the like.
  • the state of switch 406 is taken to obtain the desired radiation pattern.
  • represents the tilt angle of the drone with respect to the ground end controller, and different tilt angles correspond to different radiation patterns and switch states, such as when the tilt angle ⁇ is greater than 57 degrees and less than 90 degrees, Corresponding to the radiation pattern 1, corresponding to the switch state 1.
  • Table 2 can be stored in the memory of the drone.
  • the structure of the above switch is only for facilitating understanding of the present invention and should not be considered as the only implementation of the present invention. It will be apparent to those skilled in the art that the structure of the above-described switch assembly can be modified or changed based on the understanding of the present invention, but the modifications or variations are still within the scope of the present invention.
  • the antenna assembly may include three or more switches, five or more antenna elements, and the angles between the five or more antenna elements may be the same or different.
  • FIG. 5 is a schematic diagram of a desired radiation pattern of the antenna assembly of the UAV according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of the UAV and the ground end control according to an embodiment of the present invention.
  • Schematic diagram of the relative position of the device As shown, the drone can be moved relative to the ground end controller 601, and a represents the tilt angle of the drone 602 relative to the ground end controller 601.
  • H represents the vertical distance of the drone 602 with respect to the ground end controller 601
  • L represents the horizontal distance of the drone 602 with respect to the ground end controller 601.
  • the present invention can control the position of the drone 602 relative to the ground end controller 601, control the switch 405 and the switch 406 to obtain a desired radiation pattern so that the radiation direction of the antenna assembly is always Facing the ground end controller 601, thereby improving the image transmission quality and the control distance of the drone.
  • FIG. 5A is a corresponding desired radiation pattern when the tilt angle ⁇ is greater than 57 degrees and less than or equal to 90 degrees.
  • FIG. 5B is a corresponding desired radiation pattern when the tilt angle ⁇ is greater than 32 degrees and less than or equal to 57 degrees.
  • FIG. 5C is a corresponding desired radiation radiation diagram when the inclination angle ⁇ is greater than -32 degrees and less than or equal to 32 degrees.
  • 5D is a corresponding desired radiation pattern when the tilt angle ⁇ is greater than -57 degrees less than or equal to -32 degrees.
  • Figure 5E is the The desired radiation pattern corresponding to the inclination angle ⁇ is greater than or equal to -90 degrees less than or equal to -57 degrees.
  • the drone can detect the vertical distance H by one or more sensors (eg, ultrasonic sensors, TOF sensors, barometers, etc.) onboard, and the detected by the GPS module The horizontal distance is calculated to calculate the tilt angle ⁇ .
  • the drone can control the switch 405 and the switch 406 to obtain a desired radiation pattern according to the tilt angle ⁇ .
  • one or more processors of the drone may send control signals (such as Ctrl, Ctrl2, etc.) to the switch 405 and the switch 406, and control the states of the switch 405 and the switch 406 to Obtain the desired radiation pattern.
  • the drone calculates that the tilt angle ⁇ is 40 degrees, and one or more processors of the drone can first obtain the expectation according to the tilt angle ⁇ by querying the table 2. Radiation pattern and corresponding switch status.
  • the one or more processors may query Table 1 according to the acquired switch state to obtain corresponding switch configuration information.
  • the one or more processors can then send control signals to the switch 405 and/or the switch 406 based on the acquired switch configuration information to control the antenna assembly to produce a desired radiation pattern.
  • the tilt angle ⁇ is 40 degrees
  • the one or more processors obtain the desired radiation pattern by querying Table 2 as FIG. 5B, and the corresponding switch state is state 2.
  • the one or more processors query Table 1 according to State 2 to obtain configuration information of the switch.
  • the configuration information is that the switch 405 is connected to the RF1 end, and the switch 406 is connected to the RF3 end. Thereafter, the one or more processors can send a control signal Ctrl (a value of 0) to the switch 405 to cause the switch 405 to be connected to the RF1 terminal. Likewise, the one or more processors can send a control signal Ctrl2 (value of 10) to the switch to cause the switch 406 to be connected to the RF3 terminal.
  • the antenna assembly can acquire a desired radiation pattern (Fig. 5B) to align the radiation direction of the antenna assembly with the ground end controller.
  • the drone can detect the tilt angle ⁇ in real time, and when the tilt angle ⁇ changes, the drone can acquire a new desired radiation pattern and corresponding switch configuration information. Obtaining the new desired radiation pattern by controlling the switch 405 and the switch 406 such that the radiation direction of the UAV antenna assembly is always facing And to the ground end controller, thereby improving image transmission quality and control distance of the drone.
  • the drone may detect the tilt angle a from time to time. For example, the drone can control the period in which the tilt angle ⁇ is detected according to the flight speed. If the flying speed of the drone is fast, the detection period of the tilt angle ⁇ can be increased. If the flying speed of the drone is very slow or 0, the detection period of the tilt angle ⁇ can be reduced.
  • the desired radiation pattern in FIG. 5 is only for facilitating understanding of the present invention.
  • the drone may include any number of desired radiation patterns, eg, Six or more desired radiation patterns.
  • Table 1 switch configuration truth table and corresponding switch status
  • Table 2 switch states corresponding to different tilt angles
  • FIG. 7 is a flowchart of Embodiment 1 of a radiation adjustment pattern of an unmanned aerial vehicle adaptively adjusting antenna assembly according to the present invention.
  • Step 701 Acquire a position of the drone relative to the ground end controller.
  • the position of the drone relative to the ground end controller may be the tilt angle a in the embodiment of FIG. 6, and the processor of the drone may pass an onboard sensor (eg, ultrasound) Sensor, TOF sensor, barometer, GPS module, etc.)
  • the vertical distance H and the horizontal distance L of the drone with respect to the ground end controller are measured, and the tilt angle ⁇ is calculated according to Formula 1.
  • the ground end controller may include, but is not limited to, a remote controller, a terrestrial end image transmission device, and the like.
  • Step 702 Acquire switch configuration information according to the location.
  • the processor may query the antenna component configuration information stored in the drone according to the position of the drone relative to the ground control end (such as the tilt angle ⁇ ) (such as a table). 1 and Table 2) to obtain a desired radiation pattern and corresponding switch configuration information (such as the configuration information of the switch 405 and the switch 406).
  • the switch configuration information can be used to configure the conduction mode of the switch 405 and the switch 406.
  • Step 703 Configure a switch according to the switch configuration information.
  • the processor may send control control signals (Ctrl, Ctrl2, etc.) to the switch 405 and the switch 406 according to the switch configuration information in step 702 to obtain a desired radiation pattern.
  • control control signals Ctrl, Ctrl2, etc.
  • the drone may periodically detect the vertical distance H and the horizontal distance L to calculate the tilt angle ⁇ .
  • FIG. 8 is a flowchart of Embodiment 2 of the radiation adjustment pattern of the unmanned aerial vehicle adaptive adjustment antenna assembly provided by the present invention.
  • step 801 a switch state is randomly selected as an initial state.
  • the drone can randomly select a switch state (such as state 2) as an initial state according to the switch configuration information in Table 1.
  • Step 802 Read signal strength values of the antenna components in all switch states in a preset time interval.
  • the one or more processors of the drone can read the signal strength values of the antennas in all switching states, such as RSSI (received signal strength indicator), within a predetermined time interval ⁇ t. value.
  • the signal strength value is an instantaneous signal strength value, such as an instantaneous RSSI value.
  • the predetermined time interval ⁇ t may be greater than or equal to 100 m, less than or equal to 1 s.
  • one or more processors of the drone select three moments within a predetermined time interval (e.g., 2 seconds) and read three instantaneous signal strength values for each of the switch states.
  • a predetermined time interval e.g. 2 seconds
  • step 803 an average value of the signal strength values of each of the switch states is calculated.
  • the one or more processors may calculate an average of the signal strength values for each of the switch states based on the signal strength values read in step 802. For example, referring to Table 3, each switch state corresponds to an average value of one signal strength value, and the signal strength value corresponding to state 1 is 1.567.
  • Step 804 calculating a difference ⁇ P1 between the maximum value of the maximum signal strength and the average value of the current switching signal strength.
  • the current switch state is state 2, and the corresponding signal strength average is 0.7.
  • the average maximum signal strength in all switch states is 2.833.
  • ⁇ P1 can be calculated to be 2.133.
  • Step 805 comparing the difference ⁇ P1 between the maximum signal strength average value and the current switching signal strength average value with the critical switching value ⁇ P. If ⁇ P1 is less than ⁇ P, the current switching state is maintained and the signal strength values of the antenna components in all switching states are continued to be read within a preset time interval.
  • Step 806 switching to a switch state corresponding to the maximum signal strength average.
  • the processor can control the switch 405 and the switch 406 to switch to a switch state corresponding to a maximum signal strength average. If ⁇ P is 0.3 dB and ⁇ P1 is greater than 0.3 dB, the processor sends a control signal to the switch 405 and/or the switch 406 to switch the switch state to state 3.
  • the critical switching value ⁇ P can be adjusted in real time
  • the predetermined time interval ⁇ t can also be adjusted in real time.
  • the detection speed can be accelerated, that is, ⁇ t is reduced
  • the detection speed can be reduced, that is, ⁇ t is increased.
  • FIG. 9 is a first embodiment of the radiation pattern of the antenna assembly of the unmanned aerial vehicle in different switching states according to an embodiment of the present invention.
  • the maximum gain of different switch states corresponds to different angles, such as the maximum gain of state 3 corresponding to an angle of 90 degrees.
  • the antenna assembly of the present invention can adjust the radiation pattern of the antenna assembly when the drone is in different positions, so that the maximum radiation direction of the antenna assembly always faces the ground end controller, that is, can be realized in all directions
  • the maximum gain of the ground end controller communication (gain optimization of 5 dB or more) ensures the speed and quality of image transmission, and increases the control distance to the drone.
  • Figure 10 is a diagram showing the radiation pattern of the antenna assembly of the UAV in different switching states according to the embodiment of the present invention.
  • the maximum gain of different switch states corresponds to different angles, such as the maximum gain of state 3 corresponding to an angle of 90 degrees.
  • the antenna assembly of the present invention can adjust the radiation pattern of the antenna assembly when the drone is in different positions, so that the maximum radiation direction of the antenna assembly always faces the ground end controller, that is, can be realized in all directions
  • the maximum gain of the ground end controller communication (gain optimization of 5 dB or more) ensures the speed and quality of image transmission, and increases the control distance to the drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

一种无人机(100,602),包括,机身(110),惯性测量单元,用于获取所述无人机(100,602)的姿态信息,动力系统,安装在所述机身(110),用于提供飞行动力,存储器(303),用于存储预置的天线组件配置信息,天线组件(400),用于与地面端控制器(601)通信,以及一个或多个处理器(301),用于根据所述预置的天线组件配置信息,调整所述天线组件(400)的辐射方向图。

Description

无人机及天线组件 技术领域
本发明涉及一种天线组件,且特别涉及一种辐射方向图自适应的天线组件。
背景技术
无人机你载天线多为定向天线,其辐射方向图不会做相应的调节。而无人机在飞行时自身的位置在不断变化,导致其辐射方向图的最大辐射方向不能始终朝向地面控制端,从而影响无人机与地面控制端之前的通信及数据传输,如:图像传输、控制距离等。
发明内容
本发明主要解决的技术问题是提供一种无人机及天线组件,能够自适应的根据自身的状态调整所述天线组件的辐射方向图,以使所述天线组件的最大辐射方向始终朝向地面端控制器,保证了图像传输的速度和质量,增加了对无人机的控制距离。
本发明一方面提供了一种无人机,所述无人机包括,机身,惯性测量单元,用于获取所述无人机的姿态信息,动力系统,安装在所述机身,用于提供飞行动力,存储器,用于存储预置的天线组件配置信息,天线组件,用于与地面端控制器通信,以及一个或多个处理器,用于根据所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
本发明另一方面提供了一种无人机控制方法,所述无人机包括天线组件,所述方法包括,计算所述无人机相对于地面端控制器的位置; 以及根据所述位置和预置的天线组件配置信息,调整所述天线组件的辐射方向图。
本发明的第三方面提供了一种无人机控制方法,所述无人机包括天线组件,所述方法包括,检测天线组件的信号强度;以及根据所述信号强度及预置的天线组件配置信息,调整所述天线组件的辐射方向图。
在一些实施例中,所述天线组件包括第一开关、第二开关、第一天线单元、第二天线单元、第三天线单元及第四天线单元。
在一些实施例中,所述一个或多个处理器还用于,计算所述无人机相对于所述地面端控制器的倾斜角,以及根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
在一些实施例中,所述一个或多个处理器还用于,获取所述无人机相对于所述地面端控制器的垂直高度,获取所述无人机相对于所述地面端控制器的水平距离,根据所述垂直高度及所述水平距离计算所述倾斜角,以及根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
在一些实施例中,所述一个或多个处理器还用于,根据所述倾斜角在所述预置的天线组件配置信息中查找期望辐射方向图及其对应的开关配置信息,以及根据所述开关配置信息配置所述天线组件以产生所述期望辐射方向图。
在一些实施例中,所述一个或多个处理器还用于,在预定的时间区间内检测所述至少五个开关状态的信号强度,从所述至少五个开关状态的信号强度中提取最大信号强度,计算所述最大信号强度与当前开关状态的信号强度之差,通过临界切换值分析所述最大信号强度与所述当前开关状态的信号强度之差,以及控制所述天线组件切换至所述最大信号强度对应的开关状态。
在一些实施例中,所述第一开关为单刀双掷开关,所述第二开关为单刀三掷开关。
在一些实施例中,所述第一天线单元、所述第二天线单元、所述 第三天线单元及所述第四天线单元两两相差60度放置。
在一些实施例中,所述第一天线单元、所述第二天线单元、所述第三天线单元及所述第四天线单元中的至少一个包括偶极子、单极子、倒F型天线、环形天线中的至少一个。
附图说明
图1为本发明实施例提供的无人机的结构示意图;
图2为本发明实施例提供的无人机底部的结构示意图;
图3为本发明实施例提供的无人机的模块示意图;
图4为本发明实施例提供的用于无人机的天线组件的示意图;
图5为本发明实施例提供的无人机天线组件的期望辐射方向图;
图6为本发明实施例提供的无人机与地面对控制器相对位置示意图;
图7为本发明提供的无人机自适应调整天线组件辐射方向图实施例一的流程图;
图8为本发明提供的无人机自适应调整天线组件辐射方向图实施例二的流程图;
图9为本发明实施例提供的不同开关状态下无人机天线组件的辐射方向图一;
图10为本发明实施例提供的不同开关状态下无人机天线组件的辐射方向图二。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本发明的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
下面结合附图和实施例对本发明进行详细说明。
参阅图1,图1为本发明实施例提供的无人机结构示意图。无人机100可以包括机身110,所述机身110包括中央部分111以及一个或多个外部部分112。在图1所示的实施例中,所述机身110包括四个外部部分112(如机臂113)。所述四个外部部分112分别从所述中央部分111延伸出来。在其他实施例中,所述机身110可以包含任意数量的外部部分112(如6个、8个等)。在任何上述实施例中,每个所述外部部分112可以承载一个推进系统120,所述推进系统120可以驱动所述无人机100运动(如爬升、降落、水平移动等)。例如:所述机臂113可以承载对应的电机121,所述电机121可以驱动对应的螺旋桨122转动。所述无人机100可以控制任意一组电机121及其对应的螺旋桨122,而不受其余的电机121及其对应的螺旋桨影响。
所述机身110可以携带一个负载130,例如:成像装置131。在一些实施例中,所述成像装置131可以包括一个摄像头,例如:可以拍摄所述无人机周围的图像、视频等。所述摄像头光敏于各种波长的光线,包括但不限于可见光、紫外线、红外线或其中的任意组合。在一些实施例中,所述负载130可以包括其他种类的传感器。在一些实施例中,所述负载130通过云台150与所述机身110连接在一起,使 得所述负载130可以相对于所述机身110运动。例如:当所述负载130携带成像装置131时,所述成像装置131可以相对于机身110运动以拍摄所述无人机100周围的图像、视频等。如图所示,当无人机100位于地面时,起落架114可以支撑无人机100以保护所述负载130。
在一些实施例中,所述无人机100可以包括控制系统140,所述控制系统140包括置于所述无人机100的组件以及与所述无人机100分离的组件。例如,所述控制系统140可以包括一个置于所述无人机100上的第一控制器141,以及一个远离所述无人机100并通过通信链路160(如无线链路)与所述第一控制器141连接的第二控制器142。所述第一控制器141可以包括一个或多个处理器、存储器、以及机载计算机可读介质143a,所述机载计算机可读介质143a可以存储用于控制无人机100行为的程序指令,所述行为包括但不限于所述推进系统120及所述成像装置131的操作,控制所述无人机进行自动降落等。所述第二控制器142可以包括一个或多个处理器、存储器、机外计算机可读介质143b,以及一个或多个输入输出装置148,例如:显示装置144及控制装置145。所述无人机100的操作者可以通过所述控制装置145远程控制所述无人机100,并通过所述显示装置144和/或其他装置接收来自所述无人机100的反馈信息。在其他实施例中,所述无人机100可以自主运作,此时所述第二控制器142可以被省去,或者所述第二控制器142可以仅被用来使无人机操作者重写用于无人机飞行的函数。例如,通过机载软件开发工具包来控制所述无人机100。所述机载计算机可读介质143a可以被移出于所述无人机100。所述机外计算接可读介质143b可以被移出于所述第二控制器142。
在一些实施例中,所述无人机100可以包括两个前视摄像头171和172,所述前视摄像头171和172光敏于各种波长的光线(如可见光、红外光、紫外线)用于拍摄所述无人机周围的图像或视频。在一些实施例中,所述无人机100包括置于底部的一个或多个传感器。
图2是本发明实施例提供的无人机底部的结构示意图。所述无人机100可以包括两个置于所述机身110底部的下视摄像头173和174。 此外,所述无人机100还包括两个置于所述机身110底部的超声传感器177和178。所述超声传感器177和178可以检测和/或监测所述无人机100底部的物体及地面,并通过发送及接受超声波来测量离该物体或地面的距离。
在其他实施例中,所述无人机100可以包括惯性测量单元(英文:inertial measurement unit,缩写:IMU)、红外传感器、微波传感器、温度传感器、近距离传感器(英文:proximity sensor)、三维激光测距仪、三维TOF等。所述三维激光测距仪及所述三维TOF可以检测无人机具下方物体或体面的距离。
在一些实施例中,所述惯性测量单元可以用于测量多数无人机的高度和姿态信息,所述姿态信息包括但不限于俯仰角、横滚角及偏航角。所述惯性测量单元可以包括但不限于,一个或多个加速度计、陀螺仪、磁力仪或其中的任意组合。所述加速度计可以用于测量所述无人机的加速度,以计算所述无人机的速度。
在一些实施例中,所述无人机还包括气压计,所述气压计可以用于检测所述无人机的高度。
在一些实施例中,所述无人机还包括GPS模块(未示出)。所述GPS模块用于获取所述无人机的位置信息,如坐标、经纬度等。所述GPS模块还用于获取所述无人机与地面端控制器的水平距离,所述地面端控制器包括但不限于遥控器、地面端图像传输装置等。
在一些实施例中,所述无人机还包括动力系统,所述动力系统包括至少一个电机及至少一个电子调速器,所述动力系统用于为所述无人机提供飞行动力。
图3为本发明实施例提供的的无人机的模块示意图。参阅图3,无人机100可以包括一个或多个处理器301、传感器模块302、存储模块303以及输入输出模块304。
所述控制模块301可以包括一个或多个处理器,所述处理器包括但不限于微处理器(英文:microcontroller),精简指令集计算机(英文:reduced instruction set computer,简称:RISC),专用集成电路(英 文:application specific integrated circuits,简称:ASIC),专用指令集处理器(英文:application-specific instruction-set processor,简称:ASIP),中央处理单元(英文:central processing unit,简称:CPU),物理处理器英文(英文:physics processing unit,简称:PPU),数字信号处理器(英文:digital signal processor,简称DSP),现场可编程门阵列(英文:field programmable gate array,简称:FPGA)等。
所述传感器模块302可以包括一个或多个传感器,所述传感器包括但不限于温度传感器、TOF(英文:time of flight)传感器、惯性测量单元、加速度计、图像传感器(如摄像头)、超声传感器、微波传感器、近距离传感器、三维激光测距仪、红外传感器、气压计等。
在一些实施例中,所述惯性测量单元可以用于测量所述无人机的高度。所述惯性测量单元可以包括但不限于,一个或多个加速度计、陀螺仪、磁力仪或其中的任意组合。所述加速度计可以用于测量所述无人机的加速度,以计算所述无人机的速度。
所述存储模块303可以包括但不限于只读存储器(ROM)、随机存储器(RAM)、可编程制度存储器(PROM)、电子抹除式可编程只读存储器(EEPROM)等。所述存储模块303可以包括费暂时性计算机可读介质,其可以存储用于执行本文其他各处所描述的一个或多个步骤的代码、逻辑或指令。所述控制模块301,其可以根据本文所描述的非暂时性计算机可读介质的代码、逻辑或指令而单独地或共同地执行一个或多个步骤。
在一些实施例中,所述存储模块303用于存储预置的天线组件配置信息。所述一个或多个处理器可以根据所述预置的天线组件配置信息调整所述无人机的辐射方向图。
所述通信模块304可以包括但不限于天线组件等。所述天线组件用于与地面端控制器通信。在一些实施例中,所述一个或多个处理器可以根据所述预置的天线组件配置信息调整所述天线组件的辐射方向图。
在一些实施例中,所述无人机还包括输入输出模块(未示出), 所述输入输出模块用于向外部设备输出信息或指令,如接收所述输入输出装置148(见图1)发送的指令,或将所述成像装置131(见图1)拍摄的图像发送给所述输入输出装置148。
图4为本发明实施例提供的用于无人机的天线组件的示意图。如图所示,天线组件400包括四个天线单元:天线单元401、天线单元402、天线单元403、天线单元404,及两个开关,开关405及开关406。
在一些实施例中,所述天线组件可以安装在所述无人机的脚架内,或机身内。
在一些实施例中,所述天线单元401、所述天线单元402、所述天线单元403、所述天线单元404之间分别相差60度放置。所述开关405为单刀双掷开关,所述开关406为单刀三掷开关。所述开关405的公共端RFin1接地,所述开关406的公共端RFin2接输入信号。所述输入信号包括但不限于,地面端控制器向天线组件400发送的控制信号,天线组件400向地面端控制器发送的包含状态信息的信号,天线组件400向地面端控制器发送的图像信号等。
在一些实施例中,所述天线单元401、所述天线单元402、所述天线单元403及所述天线单元404中的至少一个包括但不限于偶极子、单极子、倒F型天线(英文:inverted-F antenna)、环形天线(loop antenna)等。
在一些实施例中,所述无人机可以根据预置的天线组件配置信息,通过配置所述开关405和/或所述开关406,连通四个天线单元中的至少两个天线单元,以改变所述天线组件400的辐射方向图。所述预置的天线组件配置信息可以包括表1和表2。参考表1,表1为开关配置真值表和对应的开关状态。开关405有两个端口RF1及RF2,Ctrl表示控制开关405状态的信号。类似地,开关406有三个端口RF1、RF2及RF3,Ctrl2表示控制开关406状态的信号。在一些实施例中,所述无人机的一个或多个处理器可以发出Ctrl或Ctrl2,以控制所述开关405及所述开关406的状态。
在一些实施例中,表1可以被存储在所述无人机的存储器中。
在一些实施例中,所述无人机可以根据相对于所述地面端控制器(如:遥控器、地面端图像传输装置等)的位置,如倾斜角等,控制所述开关405及所述开关406的状态,以获取期望辐射方向图。
参考表2,α表示所述无人机相对于所述地面端控制器的倾斜角,不同的倾斜角对应不同的辐射方向图及开关状态,如当倾斜角α大于57度小于90度时,对应辐射方向图1,对应开关状态1。
在一些实施例中,表2可以被存储在所述无人机的存储器中。
值得注意的是,上述开关的结构仅为了便于理解本发明,不应被视为是本发明唯一的实现方案。对本领域的普通技术人员来说,在理解本发明的基础上,可以对上述开关组件的结构进行修改或变换,但所述修改或变换仍在本发明的保护范围之内。例如,所述天线组件可以包括三个或三个以上的开关,五个或五个以上的天线单元,所述五个或五个以上的天线单元之间的角度可以相同或不同。
参考图5及图6,图5为本发明实施例提供的所述无人机天线组件期望辐射方向图的示意图,图6为本发明实施例提供的所述无人机与所述地面端控制器的相对位置示意图。如图所示,所述无人机可以相对于所述地面端控制器601运动,α表示所述无人机602相对于所述地面端控制器601的倾斜角。H表示所述无人机602相对于所述地面端控制器601的垂直距离,L表示所述无人机602相对于所述地面端控制器601的水平距离。本发明可以通过获取所述无人机602相对于所述地面端控制器601的位置,控制所述开关405及所述开关406,获取期望辐射方向图,以使所述天线组件的辐射方向始终朝向所述地面端控制器601,从而提升所述无人机的图像传输质量及控制距离。参阅图5及表2,图5A为所述倾斜角α大于57度小于或等于90度时对应的期望辐射方向图。图5B为所述倾斜角α大于32度小于或等于57度时对应的期望辐射方向图。图5C为所述倾斜角α大于-32度小于或等于32度时对应的期望辐射放线图。图5D为所述倾斜角α大于-57度小于或等于-32度时对应的期望辐射方向图。图5E为所述 倾斜角α大于或等于-90度小于或等于-57度时对应的期望辐射方向图。
在一些实施例中,所述无人机可以通过机载的一个或多个传感器(如:超声传感器、TOF传感器、气压计等),检测出所述垂直距离H,通过GPS模块检测出所述水平距离,以计算出所述倾斜角α。所述无人机可以根据所述倾斜角α,控制所述开关405及所述开关406以获取期望辐射方向图。例如,所述无人机的一个或多个处理器可以向所述开关405及所述开关406发送控制信号(如Ctrl、Ctrl2等),控制所述开关405及所述开关406的状态,以获取期望辐射方向图。
在一些实施例中,所述无人机计算出所述倾斜角α为40度,则所述无人机的一个或多个处理器可以根据所述倾斜角α首先通过查询表2,得到期望辐射方向图及对应的开关状态。所述一个或多个处理器可以根据获取的开关状态,查询表1,以获取对应的开关配置信息。然后所述一个或多个处理器可以根据获取的开关配置信息,向所述开关405和/或所述开关406发送控制信号,以控制所述天线组件产生期望辐射方向图。例如,所述倾斜角α为40度,所述一个或多个处理器通过查询表2得到期望辐射方向图为图5B,对应的开关状态为状态2。所述一个或多个处理器根据状态2查询表1,得到开关的配置信息。所述配置信息为所述开关405接RF1端,所述开关406接RF3端。之后,所述一个或多个处理器可以向所述开关405发送控制信号Ctrl(值为0),以使所述开关405接RF1端。同样地,所述一个或多个处理器可以向所述开关发送控制信号Ctrl2(值为10),以使所述开关406接RF3端。开关配置完成之后,所述天线组件即可获取期望辐射方向图(图5B),以使所述天线组件的辐射方向对准所述地面端控制器。
在一些实施例中,所述无人机可以实时地检测所述倾斜角α,当所述倾斜角α改变时,所述无人机可以获取新的期望辐射方向图及对应的开关配置信息,通过控制所述开关405及所述开关406,获取所述新的期望辐射方向图,以使所述无人机天线组件的辐射方向始终朝 向所述地面端控制器,从而提升所述无人机的图像传输质量及控制距离。
在其他实施例中,所述无人机可以不定时地检测所述倾斜角α。例如,所述无人机可以根据飞行速度来控制检测所述倾斜角α的周期。如果所述无人机的飞行速度很快,则可以增大所述倾斜角α的检测周期。如果所述无人机的飞行速度很慢或者为0,则可以减小所述倾斜角α的检测周期。
值得注意的是,图5中的期望辐射方向图仅为了便于理解本发明,在所述开关组件的结构发生改变的情况下,所述无人机可以包括任意数量的期望辐射方向图,如,六个或六个以上的期望辐射方向图。
表1开关配置真值表和对应的开关状态
Figure PCTCN2016104509-appb-000001
表2不同的倾斜角对应的开关状态
倾斜角 辐射方向图 开关状态
57<α≤90 图5A 状态1
32<α≤57 图5B 状态2
-32<α≤32 图5C 状态3
-57<α≤-32 图5D 状态4
-90≤α≤-57 图5E 状态5
图7为本发明提供的无人机自适应调整天线组件辐射方向图实施例一的流程图。
步骤701,获取所述无人机相对地面端控制器的位置。
在一些实施例中,所述无人机相对所述地面端控制器的位置可以为图6实施例中的倾斜角α,所述无人机的处理器可以通过机载的传感器(如:超声传感器、TOF传感器器、气压计、GPS模块等),检 测出所述无人机相对所述地面端控制器的垂直距离H及水平距离L,依据公式1计算出所述倾斜角α。所述地面端控制器可以包括但不限于,遥控器、地面端图像传输装置等。
α=arctan(H/L)            (公式1)
步骤702,根据位置获取开关配置信息。
在一些实施例中,所述处理器可以根据所述无人机相对地面控制端的位置(如所述倾斜角α),查询存储在所述无人机中预置的天线组件配置信息(如表1及表2),以获取期望辐射方向图及对应的开关配置信息(如所述开关405及所述开关406的配置信息)。所述开关配置信息可以用于配置所述开关405及所述开关406的导通方式。
步骤703,根据所述开关配置信息配置开关。
在一些实施例中,所述处理器可以根据步骤702中的开关配置信息,向所述开关405及所述开关406发送控制控制信号(Ctrl、Ctrl2等),以获取期望辐射方向图。
值得注意的是,上述流程图只是为了便于理解本发明,不应被视为是本发明唯一的实现方案。对本领域的普通技术人员来说,在理解本发明的基础上,可以对上述流程图中的步骤进行增加、删除及变换,但对所述流程图的修改仍在本发明的保护范围之内。例如,所述无人机可以周期性地检测所述垂直距离H及所述水平距离L,以计算所述倾斜角α。
图8为本发明提供的无人机自适应调整天线组件辐射方向图实施例二的流程图。
步骤801,随机选取一个开关状态作为初始状态。
在一些实施例中,所述无人机可以依据表1中的开关配置信息,随机选取一个开关状态(如状态2)作为初始状态。
步骤802,在预置的时间区间内读取所有开关状态下天线组件的信号强度值。
在一些实施例中,所述无人机的一个或多个处理器可以在一个预定的时间区间Δt内,读取所有开关状态下天线的信号强度值,如RSSI(英文:received signal strength indicator)值。在一些实施例中,所述信号强度值为瞬时信号强度值,如瞬时RSSI值。在一些实施例中,所述预定的时间区间Δt可以大于或等于100m,小于或等于1s。
如表3所示,所述无人机的一个或多个处理器在预定的时间区间(如2秒)内选取三个时刻,对每一个开关状态读取了三次瞬时信号强度值。
步骤803,计算每一种开关状态的信号强度值得平均值。
在一些实施例中,所述一个或多个处理器可以根据步骤802中读取的信号强度值计算出每一种开关状态的信号强度值的平均值。例如,参照表3,每一种开关状态对应一个信号强度值的平均值,状态1对应的信号强度值为1.567。
步骤804,计算最大信号强度平均值与当前开关信号强度平均值的差ΔP1。
仍然参照表3,当前开关状态为状态2,对应的信号强度平均值为0.7。所有开关状态中的最大信号强度平均值为2.833。则可以计算出ΔP1为2.133。
步骤805,将最大信号强度平均值与当前开关信号强度平均值的差ΔP1与临界切换值ΔP进行比较。如果ΔP1小于ΔP,则保持当前的开关状态,并继续在预置的时间区间内读取所有开关状态下天线组件的信号强度值。
步骤806,切换到最大信号强度平均值对应的开关状态。
在一些实施例中,如果ΔP1大于或等于ΔP,在所述处理器可以控制所述开关405及所述开关406,切换到最大信号强度平均值对应的开关状态。如ΔP为0.3dB,ΔP1大于0.3dB,则所述处理器向所述开关405和/或所述开关406发送控制信号,以将开关状态切换到状态3。
表3所有开关状态在预定的时间区间内的信号强度值及平均值
开关状态 0.4秒 0.8秒 1.2秒 平均值
状态1 1.2 1.6 1.9 1.567
状态2 0.7 0.6 0.8 0.7
状态3 2.5 3.1 2.9 2.833
状态4 0.2 0.5 0.9 0.533
状态5 1.7 1.6 1.9 1.733
值得注意的是,上述流程图只是为了便于理解本发明,不应被视为是本发明唯一的实现方案。对本领域的普通技术人员来说,在理解本发明的基础上,可以对上述流程图中的步骤进行增加、删除及变换,但所述对流程图的修改仍在本发明的保护范围之内。例如,所述临界切换值ΔP可以实时调整,所述预定的时间区间Δt也可实时调整,例如,当所述无人机快速飞行时,可以加快检测速度,即减小Δt,当所述无人机慢速飞行时,可以减小检测速度,即增加Δt。
图9为本发明实施例提供的不同开关状态下无人机天线组件的辐射方向图一。如图所示,不同的开关状态的最大增益对应不同的角度,如状态3的最大增益对应的角度为90度。本发明的天线组件可以在无人机处于不同位置时,调整所述天线组件的辐射方向图,以使所述天线组件的最大辐射方向始终朝向地面端控制器,即在各个方向都能实现与所述地面端控制器通信的最大增益(增益优化5dB以上),保证了图像传输的速度和质量,增加了对所述无人机的控制距离。
图10位本发明实施例提供的不同开关状态下无人机天线组件的辐射方向图二。如图所示,不同的开关状态的最大增益对应不同的角度,如状态3的最大增益对应的角度为90度。本发明的天线组件可以在无人机处于不同位置时,调整所述天线组件的辐射方向图,以使所述天线组件的最大辐射方向始终朝向地面端控制器,即在各个方向都能实现与所述地面端控制器通信的最大增益(增益优化5dB以上),保证了图像传输的速度和质量,增加了对所述无人机的控制距离。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。
最后应说明的是:以上各实施例仅用以说明本披露的技术方案,而非对其限制;尽管参照前述各实施例对本披露进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本披露各实施例技术方案的范围。

Claims (16)

  1. 一种无人机,其特征在于,包括:
    机身;
    惯性测量单元,用于获取所述无人机的姿态信息;
    动力系统,安装在所述机身,用于提供飞行动力;
    存储器,用于存储预置的天线组件配置信息;
    天线组件,用于与地面端控制器通信;以及
    一个或多个处理器,用于根据所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  2. 如权利要求1所述的无人机,其特征在于,所述天线组件包括第一开关、第二开关、第一天线单元、第二天线单元、第三天线单元及第四天线单元。
  3. 如权利要求2所述的无人机,其特征在于,所述一个或多个处理器还用于:
    计算所述无人机相对于所述地面端控制器的倾斜角;以及
    根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  4. 如权利要求3所述的无人机,其特征在于,所述一个或多个处理器还用于:
    获取所述无人机相对于所述地面端控制器的垂直高度;
    获取所述无人机相对于所述地面端控制器的水平距离;
    根据所述垂直高度及所述水平距离计算所述倾斜角;以及
    根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  5. 如权利要求4所述的无人机,其特征在于,所述一个或的多个处理器还用于:
    根据所述倾斜角在所述预置的天线组件配置信息中查找期望辐射方向图及其对应的开关配置信息;以及
    根据所述开关配置信息配置所述天线组件以产生所述期望辐射 方向图。
  6. 如权利要求2所述的无人机,其特征在于,所述一个或多个处理器用于:
    检测所述天线组件的信号强度;以及
    根据所述信号强度及所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  7. 如权利要求6所述的无人机,其特征在于,所述天线组件包括至少五个开关状态,所述一个或多个处理器还用于:
    在预定的时间区间内检测所述至少五个开关状态的信号强度;
    从所述至少五个开关状态的信号强度中提取最大信号强度;
    计算所述最大信号强度与当前开关状态的信号强度之差;
    通过临界切换值分析所述最大信号强度与所述当前开关状态的信号强度之差;以及
    控制所述天线组件切换至所述最大信号强度对应的开关状态。
  8. 如权利要求2所述的无人机,其特征在于,所述第一开关为单刀双掷开关,所述第二开关为单刀三掷开关。
  9. 如权利要求8所述的无人机,其特征在于,所述第一天线单元、所述第二天线单元、所述第三天线单元及所述第四天线单元两两相差60度放置。
  10. 如权利要求9所述的无人机,其特征在于,所述第一天线单元、所述第二天线单元、所述第三天线单元及所述第四天线单元中的至少一个包括偶极子、单极子、倒F型天线、环形天线中的至少一个。
  11. 一种无人机的控制方法,所述无人机包括天线组件,其特征在于,所述方法包括:
    计算所述无人机相对于地面端控制器的位置;以及
    根据所述位置和预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  12. 如权利要求11所述的方法,其特征在于,所述位置为所述无人机相对于所述地面端控制器的倾斜角。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括:
    获取所述无人机相对于所述地面端控制器的垂直高度;
    获取所述无人机相对于所述地面端控制器的水平距离;
    根据所述垂直高度及所述水平距离计算所述倾斜角;以及
    根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  14. 如权利要求13所述的方法,其特征在于,所述根据所述倾斜角和所述预置的天线组件配置信息,调整所述天线组件的辐射方向图包括:
    根据所述倾斜角在所述预置的天线组件配置信息中查找期望辐射方向图及其对应的开关配置信息;以及
    根据所述开关配置信息配置所述天线组件以产生所述期望辐射方向图。
  15. 一种无人机的控制方法,所述无人机包括天线组件,其特征在于,所述方法包括:
    检测所述天线组件的信号强度;以及
    根据所述信号强度及预置的天线组件配置信息,调整所述天线组件的辐射方向图。
  16. 如权利要求15所述的方法,其特征在于,所述天线组件包括至少五个开关状态,所述方法还包括:
    在预定的时间区间内检测所述至少五个开关状态的信号强度;
    从所述至少五个开关状态的信号强度中提取最大信号强度;
    计算所述最大信号强度与当前开关状态的信号强度之差;
    通过临界切换值分析所述最大信号强度与所述当前开关状态的信号强度之差;以及
    控制所述天线组件切换至所述最大信号强度对应的开关状态。
PCT/CN2016/104509 2016-11-04 2016-11-04 无人机及天线组件 WO2018082000A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/104509 WO2018082000A1 (zh) 2016-11-04 2016-11-04 无人机及天线组件
CN201680004369.7A CN107278195B (zh) 2016-11-04 2016-11-04 无人机及天线组件
US16/400,515 US20190260122A1 (en) 2016-11-04 2019-05-01 Unmanned aerial vehicle and antenna assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104509 WO2018082000A1 (zh) 2016-11-04 2016-11-04 无人机及天线组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/400,515 Continuation US20190260122A1 (en) 2016-11-04 2019-05-01 Unmanned aerial vehicle and antenna assembly

Publications (1)

Publication Number Publication Date
WO2018082000A1 true WO2018082000A1 (zh) 2018-05-11

Family

ID=60052984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104509 WO2018082000A1 (zh) 2016-11-04 2016-11-04 无人机及天线组件

Country Status (3)

Country Link
US (1) US20190260122A1 (zh)
CN (1) CN107278195B (zh)
WO (1) WO2018082000A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347817A (zh) * 2022-01-17 2022-04-15 哈尔滨工业大学(威海) 一种用于无人机充电的耦合充电装置以及系统
CN115694565A (zh) * 2021-07-26 2023-02-03 华为技术有限公司 用户设备及其天线的调整方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396443B2 (en) 2015-12-18 2019-08-27 Gopro, Inc. Integrated antenna in an aerial vehicle
CN107748573A (zh) * 2017-10-24 2018-03-02 中国电子科技集团公司第三十八研究所 无人机、基于无人机集群的天线阵、控制系统及控制方法
WO2019084818A1 (zh) * 2017-10-31 2019-05-09 深圳市大疆创新科技有限公司 多旋翼无人机的飞行控制方法、装置及多旋翼无人机
CN107967026B (zh) * 2017-11-23 2019-10-25 Oppo广东移动通信有限公司 天线组件、终端设备及改善天线辐射性能的方法
CN110265792B (zh) * 2018-03-12 2022-03-08 杭州海康威视数字技术股份有限公司 天线装置和无人机
US10790579B2 (en) 2018-05-24 2020-09-29 At&T Intellectual Property I, L.P. Adjustable antenna system for unmanned aerial vehicle
CN108808243A (zh) * 2018-06-15 2018-11-13 深圳臻迪信息技术有限公司 调整天线的方法、装置和无人设备系统
WO2019242013A1 (zh) * 2018-06-22 2019-12-26 深圳市大疆创新科技有限公司 无人飞行器及其天线
USD874531S1 (en) * 2018-06-26 2020-02-04 SZ DJI Technology Co., Ltd. Camera
USD874532S1 (en) * 2018-06-26 2020-02-04 SZ DJI Technology Co., Ltd. Camera with gimbal
CN108839808A (zh) * 2018-07-05 2018-11-20 上海歌尔泰克机器人有限公司 飞行控制装置和无人飞行器
WO2024004162A1 (ja) * 2022-06-30 2024-01-04 株式会社Acsl 無人航空機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334230A (en) * 1979-07-09 1982-06-08 Matsushita Electric Industrial Co. Ltd. Directivity-controllable antenna system
CN1645670A (zh) * 2004-01-23 2005-07-27 索尼株式会社 天线装置
US20050176374A1 (en) * 2004-02-09 2005-08-11 Chien-Hsing Fang Adjustable wireless communication device and antenna module and control method thereof
EP1593985A1 (de) * 2004-05-06 2005-11-09 Girsberger Elektronik AG Vorrichtung zur Erkennung der Sende-Betriebsart eines Lawinenverschütteten-Suchgerätes
US20110096757A1 (en) * 2001-11-01 2011-04-28 Airgain, Inc. Method for radio communication in a wireless local area network and transceiving device
CN205311921U (zh) * 2015-11-25 2016-06-15 深圳市大疆创新科技有限公司 航拍跟焦控制系统及飞行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3017502B1 (en) * 2013-07-01 2019-08-21 Intel Corporation Airborne antenna system with controllable null pattern
CN105556410B (zh) * 2014-12-31 2018-06-26 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334230A (en) * 1979-07-09 1982-06-08 Matsushita Electric Industrial Co. Ltd. Directivity-controllable antenna system
US20110096757A1 (en) * 2001-11-01 2011-04-28 Airgain, Inc. Method for radio communication in a wireless local area network and transceiving device
CN1645670A (zh) * 2004-01-23 2005-07-27 索尼株式会社 天线装置
US20050176374A1 (en) * 2004-02-09 2005-08-11 Chien-Hsing Fang Adjustable wireless communication device and antenna module and control method thereof
EP1593985A1 (de) * 2004-05-06 2005-11-09 Girsberger Elektronik AG Vorrichtung zur Erkennung der Sende-Betriebsart eines Lawinenverschütteten-Suchgerätes
CN205311921U (zh) * 2015-11-25 2016-06-15 深圳市大疆创新科技有限公司 航拍跟焦控制系统及飞行器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694565A (zh) * 2021-07-26 2023-02-03 华为技术有限公司 用户设备及其天线的调整方法
CN114347817A (zh) * 2022-01-17 2022-04-15 哈尔滨工业大学(威海) 一种用于无人机充电的耦合充电装置以及系统
CN114347817B (zh) * 2022-01-17 2023-12-22 哈尔滨工业大学(威海) 一种用于无人机充电的耦合充电装置以及系统

Also Published As

Publication number Publication date
US20190260122A1 (en) 2019-08-22
CN107278195A (zh) 2017-10-20
CN107278195B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2018082000A1 (zh) 无人机及天线组件
US11218689B2 (en) Methods and systems for selective sensor fusion
AU2018355491B2 (en) Method for configuring navigation chart, obstacle avoidance method and device, terminal, unmanned aerial vehicle
US10942529B2 (en) Aircraft information acquisition method, apparatus and device
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US11572196B2 (en) Methods and systems for movement control of flying devices
US10060741B2 (en) Topology-based data gathering
US11015956B2 (en) System and method for automatic sensor calibration
CN109478068B (zh) 动态地控制运载工具的方法、装置和存储介质
US10060746B2 (en) Methods and systems for determining a state of an unmanned aerial vehicle
EP3123260B1 (en) Selective processing of sensor data
EP3158417B1 (en) Sensor fusion using inertial and image sensors
EP3158411B1 (en) Sensor fusion using inertial and image sensors
CN107108023B (zh) 无人机及其控制方法
CN109219785B (zh) 一种多传感器校准方法与系统
EP3390227B1 (en) User interface for orienting antennas
WO2018094583A1 (zh) 无人机避障控制方法、飞行控制器及无人飞行器
US20170006148A1 (en) Unmanned aerial vehicle and control device thereof
US20190278303A1 (en) Method of controlling obstacle avoidance for unmanned aerial vehicle and unmanned aerial vehicle
CN112335190B (zh) 无线电链路覆盖图和减损系统及方法
WO2021087702A1 (zh) 坡地的地形预测方法、装置、雷达、无人机和作业控制方法
CN111093907A (zh) 机器人式运载工具的稳健导航
CN110997488A (zh) 动态控制用于处理传感器输出数据的参数的系统和方法
CN114636405A (zh) 飞行器传感器系统同步
WO2020220234A1 (zh) 无人机的控制方法和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920553

Country of ref document: EP

Kind code of ref document: A1