[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018079732A1 - Laminated glass and film material for laminated-glass interlayer - Google Patents

Laminated glass and film material for laminated-glass interlayer Download PDF

Info

Publication number
WO2018079732A1
WO2018079732A1 PCT/JP2017/038968 JP2017038968W WO2018079732A1 WO 2018079732 A1 WO2018079732 A1 WO 2018079732A1 JP 2017038968 W JP2017038968 W JP 2017038968W WO 2018079732 A1 WO2018079732 A1 WO 2018079732A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
laminated glass
acrylic polymer
laminated
plate
Prior art date
Application number
PCT/JP2017/038968
Other languages
French (fr)
Japanese (ja)
Inventor
直己 高原
吉田 明弘
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2018547796A priority Critical patent/JPWO2018079732A1/en
Publication of WO2018079732A1 publication Critical patent/WO2018079732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin

Definitions

  • the present invention relates to laminated glass and a film material for an interlayer film of laminated glass.
  • laminated glass is widely used as glass for vehicles such as automobiles, aircraft, buildings, etc., even if it is damaged by an external impact, it is safe because the glass fragments do not scatter. Yes.
  • Laminated glass is generally a laminate having at least one pair of glass plates and an intermediate film that is interposed between them and bonds the glass plates together.
  • An example of the interlayer film for laminated glass is a film formed from a polyvinyl acetal resin such as a polyvinyl butyral resin plasticized with a plasticizer (Patent Documents 1 to 3).
  • an object of the present invention is to achieve both sufficiently excellent optical properties and high splitting properties for laminated glass to which a transparent plastic plate is applied.
  • One aspect of the present invention provides a laminated glass including two opposing glass plates and an intermediate film sandwiched between the two glass plates.
  • One of the two glass plates is a transparent plastic plate, and the other is an inorganic glass plate.
  • the impact strength measured by an impact resistance test in which the intermediate film includes an acrylic polymer and a hard sphere is dropped toward the laminated glass may be 0.03 J / cm 2 or more.
  • the acrylic polymer may have a weight average molecular weight of 100,000 to 1,000,000.
  • (meth) acrylate means at least one of “acrylate” or “methacrylate” corresponding thereto.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminated glass.
  • a laminated glass 1 shown in FIG. 1 has two glass plates 11 and 12 facing each other and an intermediate film 5 sandwiched between the two glass plates 11 and 12.
  • the glass plate 11 also referred to as “first glass plate”
  • the intermediate film 5 and the glass plate 12 (also referred to as “second glass plate”) are laminated in this order.
  • One of the two glass plates 11 and 12 can be a transparent plastic plate and the other can be an inorganic glass plate.
  • the inorganic glass plate can be selected from those usually used as a glass plate constituting the laminated glass. By providing the inorganic glass plate, the surface of the laminated glass can have good scratch resistance.
  • the inorganic glass plate may be, for example, a float glass, a tempered glass (air-cooled tempered glass, chemically tempered glass, etc.), or a multilayer glass plate.
  • transparent plastic plate a plastic plate having optical properties such as transparency suitable for laminated glass is used.
  • transparent plastic plates include polycarbonate resin plates (PC plates), polymethyl methacrylate resin plates (PMMA plates), cyclopolyolefin resin plates (COP plates), polyethylene terephthalate resin plates (PET plates), polyethylene plates (PE plates) , Polypropylene plate (PP plate), polystyrene plate (PS plate), and triacetyl cellulose plate (TAC plate).
  • PC plates polycarbonate resin plates
  • PMMA plates polymethyl methacrylate resin plates
  • COP plates cyclopolyolefin resin plates
  • PET plates polyethylene terephthalate resin plates
  • PE plates polyethylene plates
  • PE plates Polypropylene plate
  • PS plate polystyrene plate
  • TAC plate triacetyl cellulose plate
  • the intermediate film 5 is a resin layer mainly containing an acrylic polymer.
  • the intermediate film 5 is in direct contact with most of the main surfaces of the adjacent glass plates 11 and 12 on the side of the intermediate film 5 (for example, 90% by area or more of the main surfaces), so that the two glass plates 11 and 12 are in contact with each other. Bonding together. Details of the resin composition for the intermediate film constituting the intermediate film 5 will be described later.
  • the thickness of the intermediate film 5 may be 10 to 5000 ⁇ m, or 25 to 1000 ⁇ m.
  • the light transmittance of each of the glass plates 11 and 12 and the intermediate film 5 in the visible light region may be 80% or more, 90% or more, or 95% or more.
  • the light transmittance of the entire laminated glass 1 with respect to light rays in the visible light region may be 80% or more, 90% or more, or 95% or more.
  • the upper limit of light transmittance is 100%.
  • the impact strength measured by an impact resistance test in which a hard sphere is dropped toward the laminated glass 1 may be 0.03 J / cm 2 or more.
  • the laminated glass exhibits an impact strength of 0.03 J / cm 2 or more in at least an impact resistance test in which a hard sphere is dropped toward the laminated glass from the inorganic glass plate side.
  • the laminated glass may exhibit an impact strength of 0.03 J / cm 2 or more in an impact resistance test in which a hard sphere is dropped from either side of the two glass plates toward the laminated glass.
  • Laminated glass exhibiting high impact strength can have sufficient splitting resistance.
  • the upper limit of impact strength is not particularly limited, but is usually 10 J / cm 2 or less. Details of the method of measuring the impact strength will be described in Examples described later.
  • the impact strength of the laminated glass can be set to a predetermined value or more by appropriately setting the thicknesses of the glass plate and the interlayer film.
  • the thickness of the transparent plastic plate may be 0.1 to 100 mm, 0.5 to 10 mm, or 0.5 to 5 mm.
  • the thickness of the inorganic glass plate may be 0.1 to 50 mm, 0.5 to 30 mm, 1 to 20 mm, or 2 to 10 mm.
  • the total thickness of the laminated glass 1 is usually 0.5 to 1000 mm or 1 to 15 mm in many cases.
  • the laminated glass of the present embodiment having such a thickness is easy to show high impact strength while being sufficiently light compared to the laminated glass composed only of the inorganic glass plate and the intermediate film.
  • the thickness of the glass plate and the intermediate film is controlled within the above range, for example.
  • Impact strength can be easily increased.
  • the weight average molecular weight of the acrylic polymer being 100,000 or more can also contribute to the improvement of impact strength.
  • the peel strength between the intermediate film 5 and the glass plate 11 or the glass plate 12 may be 5 N / 10 mm or more, 8 N / 10 mm or more, 10 N / 10 mm or more, or 30 N / 10 mm or less.
  • the peel strength here was measured by a 180 ° peel test for 3 seconds at a peeling speed of 300 mm / min at 25 ° C. using a tensile tester (trade name “Tensilon RTC-1210” manufactured by Orientec Co., Ltd.). Value.
  • the laminated glass is not limited to the embodiment shown in FIG. 1 and can be appropriately changed.
  • the laminated glass may further include an inorganic glass plate and / or a transparent plastic plate as an additional glass plate (such as a third glass plate).
  • an additional intermediate film is usually provided also between the additional glass plate and the adjacent glass plate.
  • the additional intermediate film may also contain the same acrylic polymer as the intermediate film 5.
  • the laminated glass may further have various functional layers selected from an antireflection layer, an antifouling layer, a dye layer, a hard coat layer, and the like.
  • the antireflection layer is a layer having antireflection properties such that the visible light reflectance of the laminated glass is 5% or less.
  • the antireflection layer can be, for example, a transparent substrate such as a transparent plastic film treated by a known antireflection method.
  • the antifouling layer is provided in order to make the surface difficult to get dirty.
  • the dye layer is provided in order to reduce unnecessary wavelength light transmitted through the laminated glass.
  • the hard coat layer is provided to increase the surface hardness of the laminated glass.
  • the hard coat layer may be a laminated film having a base film such as a polyethylene film and a film made of an acrylic resin (urethane acrylate, epoxy acrylate, etc.) or an epoxy resin formed on the base film.
  • the laminated glass according to the present embodiment includes, for example, two glass plates 11 and 12 that are bonded together with a resin layer for forming the intermediate film 5 interposed therebetween, and includes the glass plates 11 and 12 and the resin layer. It can be manufactured by a method including a step of obtaining a body and a step of heating and pressurizing the laminate.
  • the glass plates 11 and 12 may be bonded together with a resin layer interposed, for example, by a method including providing a resin layer on the glass plate 11 and subsequently laminating the glass plate 12 on the resin layer. it can.
  • the resin layer can be provided on the glass plate 11 using, for example, a film material for an interlayer film of laminated glass described later.
  • the bubbles in the laminate can be efficiently removed by heating and pressurizing the laminate.
  • an autoclave is used for heating and pressurization.
  • the heating temperature may be 30 to 150 ° C, or 50 to 70 ° C.
  • the pressure may be 0.3 to 1.5 MPa, or 0.3 to 0.5 MPa.
  • the heating and pressurization time may be 5 to 60 minutes, or 10 to 30 minutes. If the heating and pressurizing conditions are within these ranges, bubbles in the laminate can be removed particularly effectively.
  • the intermediate film 5 is formed of a resin composition for an intermediate film of laminated glass containing an acrylic polymer.
  • This resin composition for an intermediate film can contribute to the development of high splitting properties of the laminated glass. Furthermore, an intermediate film formed from the resin composition for an intermediate film is less likely to cause whitening of the laminated glass even in a high humidity environment, and is excellent in terms of reliability.
  • the acrylic polymer is a polymer mainly composed of monomers having one (meth) acryloyl group in the molecule.
  • the acrylic polymer may be a homopolymer of one kind of monomer or a copolymer composed of two or more kinds of monomers.
  • the acrylic polymer may have a weight average molecular weight of 100,000 or more.
  • the weight average molecular weight of the acrylic polymer may be 110,000 or more, or 120,000 or more.
  • the acrylic polymer may have a weight average molecular weight of 1,000,000 or less. If the weight average molecular weight of the acrylic polymer is 1,000,000 or less, a laminated glass showing a low haze and a high peel strength as well as an excellent impact strength is particularly easily obtained.
  • a weight average molecular weight means a standard polystyrene conversion value measured by gel permeation chromatography.
  • the glass transition temperature (Tg) of the acrylic polymer may be ⁇ 10 ° C. or lower. If the Tg of the acrylic polymer is low, the impact strength of the laminated glass tends to be high. From the same viewpoint, the Tg of the acrylic polymer may be ⁇ 15 ° C. or lower.
  • the lower limit of Tg of the acrylic polymer is not particularly limited. Usually, it is ⁇ 40 ° C. or higher.
  • the monomer having a (meth) acryloyl group constituting the acrylic polymer is typically a (meth) acryloyloxy group (CH 2 ⁇ CHC ( ⁇ O) O— or CH 2 ⁇ C (CH 3 ) C ( ⁇ O ) A monofunctional monomer having one O-).
  • (meth) acrylic acid methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl ( (Meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate (n-lauryl ( (Meth) acrylate), isomyristyl (meth) acrylate, stearyl (meth) acrylate and alkyl (meth) acrylate having an alkyl group such as isostearyl acrylate (the alkyl group
  • monomers constituting the acrylic polymer include (meth) acrylamide and derivatives thereof.
  • Acrylamide derivatives include (meth) acryloylmorpholine; N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide And N-hydroxyethyl (meth) acrylamide.
  • the acrylic polymer may contain as a monomer unit a copolymerizable monomer copolymerizable with a monomer having a (meth) acryloyl group. However, usually 80% by mass or more, or 90% by mass or more of the whole acrylic polymer is composed of monomer units derived from a monomer having a (meth) acryloyl group.
  • the copolymerization monomer include styrene, 4-methylstyrene, vinylpyridine, vinylpyrrolidone, vinyl acetate, cyclohexylmaleimide, phenylmaleimide, and maleic anhydride.
  • the content of the acrylic polymer in the resin composition for an intermediate film, or the resin layer and the intermediate film formed therefrom is 80% by mass or more based on the total amount of the resin composition for the intermediate film, the resin layer or the intermediate film. 90 mass% or more, or 95 mass% or more.
  • the resin composition for an interlayer film according to this embodiment may further contain other components such as various additives.
  • various additives include polymerization inhibitors, antioxidants, light stabilizers, silane coupling agents, surfactants, leveling agents, inorganic fillers, and the like.
  • the polymerization inhibitor is added for the purpose of enhancing the storage stability of the resin composition, and an example thereof is paramethoxyphenol.
  • Antioxidants are added for the purpose of improving the heat resistant colorability of the interlayer film, and examples thereof include phosphorus-based; phenol-based; thiol-based antioxidants such as triphenyl phosphite.
  • the light stabilizer is added for the purpose of increasing the resistance to active energy rays such as ultraviolet rays, and an example thereof is HALS (Hindered Amine Light Stabilizer).
  • Silane coupling agents are added to improve adhesion to glass plates.
  • Examples include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and ⁇ -aminopropyltrimethoxysilane. , ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and ⁇ -glycidoxypropylmethyldiisopropenoxysilane.
  • the surfactant is added to control the peelability from the base material, and examples thereof include a polydimethylsiloxane compound and a fluorine compound.
  • the leveling agent is added to impart flatness to the resin composition, and examples thereof include compounds that lower the surface tension of silicon-based and fluorine-based compounds. These additives may be used alone, or a plurality of additives may be used in combination. The content of these additives is generally about 0.01 to 5% by mass with respect to the total amount of the resin composition.
  • the inorganic filler can be used as long as appropriate transparency of the laminated glass is maintained.
  • examples of the inorganic filler include crushed silica, fused silica, mica, clay mineral, short glass fiber, fine glass powder, hollow glass, calcium carbonate, quartz powder, and metal hydrate.
  • the content of the inorganic filler may be 0.01 to 100 parts by mass, 0.05 to 50 parts by mass, or 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
  • the resin composition for an interlayer film can be produced, for example, by mixing an acrylic polymer and an additive that is added as necessary and stirring them.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a film material for an interlayer film of laminated glass.
  • the film material 2 for interlayer film of laminated glass shown in FIG. 2 has a base material 21, a resin layer 5a, and a base material 22, which are laminated in this order.
  • the resin layer 5a is a layer that becomes an intermediate film when sandwiched between glass plates, and can be a layer that includes the above-described resin composition for an intermediate film.
  • the resin layer 5a may have pressure-sensitive adhesiveness that allows easy bonding of glass plates. According to such a film material, the resin layer 5a can be easily stored and transported.
  • the resin layer 5a may have at least one layer that satisfies the following viscoelasticity requirements (a) and (b).
  • the viscoelasticity of the resin layer 5a itself may satisfy these requirements.
  • (A) The storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 ⁇ 10 5 to 1 ⁇ 10 8 Pa.
  • the frequency range of 100 to 100,000 Hz corresponds to the strain rate generated in the laminated glass when a hard sphere that has fallen freely from a height of about several centimeters to a few tens of centimeters collides with the laminated glass. Therefore, for example, when the maximum value of the loss coefficient is larger than 0.4 in the range of the reference temperature of 25 ° C. and the frequency of 100 to 100,000 Hz, higher splitting properties are more easily exhibited than the glass single plate.
  • the maximum value of the loss factor may be 0.5 or more, 1.1 or less, or 1.0 or less.
  • the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 ⁇ 10 5 or more, particularly excellent effects are obtained in terms of mechanical properties and reliability (heat resistance, weather resistance).
  • the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 ⁇ 10 8 Pa or less, particularly excellent effects are obtained in terms of impact resistance.
  • the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz may be 1.5 ⁇ 10 5 or more, or 5 ⁇ 10 6 Pa or less.
  • the values of the storage elastic modulus and the loss coefficient (tan ⁇ ) can be obtained from a composite curve (master curve) obtained from dynamic viscoelasticity measurement and a time-temperature conversion rule.
  • the dynamic viscoelasticity measurement is, for example, a tensile measurement according to a method in accordance with JIS K 0129: 2005 under conditions of a temperature of ⁇ 70 to 100 ° C., a frequency of 0.05 Hz, 0.5 Hz, 5 Hz or 50 Hz, and a strain amount of 1% Done in mode.
  • a master curve is created by setting the reference temperature to 25 ° C. using the WLF method or the Arrhenius law. The maximum value of tan ⁇ can be read.
  • the base materials 21 and 22 may be, for example, a polymer film selected from polyethylene terephthalate, polypropylene, and polyethylene, and in particular, may be a polyethylene terephthalate film (hereinafter sometimes referred to as “PET film”). .
  • PET film polyethylene terephthalate film
  • the edge part of the base materials 21 and 22 may protrude outside the outer edge of the resin layer 5a.
  • One of the substrates 21 and 22 may be a substrate (heavy release separator) that exhibits a relatively large peel strength, and the other may be a substrate (light release separator) that exhibits a relatively small peel strength. .
  • the peel strength between the light release separator and the resin layer 5a is lower than the peel strength between the heavy release separator and the resin layer 5a.
  • the peelability of the substrate can be appropriately adjusted depending on the conditions of the surface treatment that imparts the peelability.
  • the base material as a light release separator is peeled off, and the exposed surface of the resin layer 5a is attached to the first glass plate.
  • the base material as the heavy release separator is released from the resin layer 5a.
  • the exposed surface of the resin layer 5a is attached to the second glass plate.
  • the thickness of the substrate as the heavy release separator may be 50 to 200 ⁇ m, 60 to 150 ⁇ m, or 70 to 130 ⁇ m from the viewpoint of workability.
  • the thickness of the substrate as the light release separator may be 25 to 150 ⁇ m, 30 to 100 ⁇ m, or 40 to 75 ⁇ m from the viewpoint of workability.
  • the film material 2 for an intermediate film can be obtained, for example, by forming a resin composition for an intermediate film on the substrate 21.
  • the film formation can be performed by a normal method. For example, by applying a coating liquid prepared by diluting the resin composition for an intermediate film with a solvent onto the substrate 21, and drying the solvent from the coating film to form the resin layer 5a.
  • An intermediate film material can be obtained.
  • the coating method include a flow coating method, a roll coating method, a gravure coating method, a wire bar coating method, and a lip die coating method.
  • the solid content concentration of the coating liquid may be 30% by mass or more, or 40% by mass or more, based on the mass of the coating liquid. It may be 70% by mass or less, or 60% by mass or less.
  • the viscosity of the coating solution may be 1 Pa ⁇ s or more, or 5 Pa ⁇ s or more, or 30 Pa ⁇ s or less, 5 Pa ⁇ s or less, or 15 Pa ⁇ s or less at the coating temperature.
  • Acrylic polymer synthetic acrylic polymer A 96.0 g of isostearyl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., trade name “ISTA”) as an initial monomer was attached to a reaction vessel equipped with a cooling tube, a thermometer, a stirring device, a dropping funnel and a nitrogen introduction tube. 24.0 g of hydroxyethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name “HEA”) and 150.0 g of methyl ethyl ketone were added. The reaction solution was heated from 25 ° C. to 80 ° C. in 15 minutes while the inside of the reaction vessel was purged with nitrogen at a flow rate of 100 ml / min.
  • Acrylic polymer B 96.0 g and 2 of 2-ethylhexyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd., trade name “EHA”) as an initial monomer was attached to a reaction vessel equipped with a cooling tube, a thermometer, a stirring device, a dropping funnel and a nitrogen introducing tube.
  • EHA 2-ethylhexyl acrylate
  • -24.0 g of hydroxyethyl acrylate (trade name “HEA” manufactured by Osaka Organic Chemical Industry Co., Ltd.) and 150.0 g of methyl ethyl ketone were added.
  • the reaction solution was heated from 25 ° C. to 80 ° C. in 15 minutes while the inside of the reaction vessel was purged with nitrogen at a flow rate of 100 ml / min.
  • Acrylic polymer D In a reaction vessel equipped with a cooling tube, a thermometer, a stirrer, a dropping funnel and a nitrogen introduction tube, 120.0 g of lauryl acrylate as an initial monomer (manufactured by Kyoeisha Chemical Co., Ltd., trade name “Light Acrylate LA”), 150.0 g of methyl ethyl ketone was added. While the inside of the reaction vessel was purged with nitrogen at an air flow of 100 ml / min, it was heated from 25 ° C. to 80 ° C. for 15 minutes.
  • Acrylic polymer E In a reaction vessel equipped with a cooling tube, a thermometer, a stirrer, a dropping funnel and a nitrogen introducing tube, 78.4 g of n-butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) as an initial monomer and 2-ethylhexyl acrylate 19. 6.0 g, 2.0 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 100.0 g of ultrapure water (manufactured by Wako Pure Chemical Industries, Ltd.) and 3.0 g of polyvinyl alcohol as a stabilizer were added. The reaction vessel was heated from 25 ° C. to 65 ° C.
  • acrylic polymer E weight average molecular weight 2270000, Tg: ⁇ 18 ° C. which is a copolymer of n-butyl acrylate, 2-ethylhexyl acrylate and acrylic acid was obtained.
  • the weight average molecular weight and glass transition temperature of the synthesized acrylic polymer were measured by the following procedure. The measurement results are shown in Table 1.
  • Weight average molecular weight (Mw) The weight average molecular weight of the acrylic polymer was determined by converting from a chromatogram obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. As a standard polystyrene for preparing a calibration curve, 5 sample sets (PStQuick MP-H, PStQuick B [trade name, manufactured by Tosoh Corporation]) were used. GPC was measured with the following equipment and measurement conditions.
  • HLC-8320GPC High-speed GPC device HLC-8320GPC (detector: differential refractometer) (trade name, manufactured by Tosoh Corporation)
  • Solvent Tetrahydrofuran (THF) -Column: Column TSKGEL SuperMultipore HZ-H (trade name, manufactured by Tosoh Corporation)
  • Column size Column length is 15 cm and column inner diameter is 4.6 mm ⁇
  • Flow rate 0.35 mL / min ⁇
  • Sample concentration 10 mg / THF 5 mL
  • Injection volume 20 ⁇ L
  • Tg Glass transition temperature
  • the Tg of the acrylic polymer was determined by viscoelasticity measurement using a rheometer (manufactured by Anton Paar, MCR302). Measurement conditions and methods are shown below. Measurement conditions and rotor name: Parallel plate (PP12) ⁇ Frequency: 1 (s-1) ⁇ Strain amount: 1% Measuring method: The acrylic polymer formed to a thickness of 200 ⁇ m was attached to the metal stage of the rheometer. In this state, while heating the metal stage to 50 ° C., the acrylic polymer film was sandwiched between the metal stage and a parallel plate facing the metal stage. The distance between the metal stage and the parallel plate was set to 195 ⁇ m.
  • the metal plate was cooled to ⁇ 70 ° C., and then the viscoelasticity of the acrylic polymer was measured while increasing the temperature from ⁇ 70 ° C. to 50 ° C. at a temperature increase rate of 3 ° C./min.
  • the temperature at the maximum peak of tan ⁇ was recorded as the glass transition temperature (Tg).
  • Example 1 Preparation of laminated glass (Example 1) [Production of film material for interlayer film] Two types of polyethylene terephthalate films (thickness 75 ⁇ m, manufactured by Fujimori Kogyo Co., Ltd.) having different peelability were prepared as substrates. Using these, a film material for an intermediate film having a resin layer containing an acrylic polymer was produced by the following procedures (I) and (II).
  • the viscoelasticity of the resin layer of the obtained film material for interlayer film was measured using a dynamic viscoelasticity measuring device (TA Instruments Co., Ltd., product name “RSA-G2”) in the temperature range of ⁇ 70 to 100 ° C.
  • the measurement was performed in the tensile measurement mode under the conditions of a frequency of 0.05 Hz, 0.5 Hz, 5 Hz or 50 Hz, and a strain amount of 1%. From the measurement results, a master curve was created using TRIOS Software (TA Instruments Co., Ltd., product name) using the Arrhenius equation with a reference temperature of 25 ° C.
  • the storage elastic modulus at a frequency of 1000 Hz and the maximum value of the loss coefficient (tan ⁇ ) within a frequency range of 100 to 100,000 Hz were read.
  • the viscoelasticity of the intermediate films produced in other examples or comparative examples described later was also measured.
  • the light release separator was peeled from the film material for the interlayer film.
  • the exposed resin layer is affixed to float glass (length 110 mm, width 110 mm, thickness 2.7 mm) as a first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to put the resin layer on the float glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer.
  • the exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator.
  • the obtained laminate was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a 30-minute hold to obtain a laminated glass having a structure of float glass / interlayer film / PC.
  • Example 2 A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer B was used instead of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
  • Example 3 The same film material for an interlayer film as in Example 1 was used, except that a polymethyl methacrylate plate (PMMA plate, 110 mm long, 110 mm wide, 3.0 mm thick) was used instead of the PC plate. A laminated glass having a structure of float glass / intermediate film / PMMA was obtained.
  • PMMA plate polymethyl methacrylate plate
  • Example 4 The same tempered glass / intermediate as in Example 1, except that the same interlayer film material as in Example 1 was used and tempered glass (110 mm long, 110 mm wide, 0.55 mm thick) was used instead of float glass. A laminated glass having a film / PC configuration was obtained.
  • Example 5 [Production of film material for interlayer film] Two types of polyethylene terephthalate films (thickness 75 ⁇ m, manufactured by Fujimori Kogyo Co., Ltd.) having different peelability were prepared as substrates. Using these, a film material for an intermediate film having a resin layer containing the acrylic polymer A was prepared by the following procedures (I) and (II).
  • the light release separator was peeled from the film material for the interlayer film.
  • the exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as the first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer.
  • the exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator.
  • the obtained laminated body was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a holding time of 30 minutes to obtain a laminated glass having a configuration of tempered glass / interlayer film / PC.
  • Example 6 The light release separator was peeled from the same film material for an interlayer film as in Example 1.
  • the exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as the first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer.
  • the exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator.
  • PC plate polycarbonate plate
  • the obtained laminate (tempered glass / resin layer / PC plate) was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a 30-minute hold.
  • the light release separator was peeled from the same film material for an interlayer film as in Example 1.
  • the exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as a third glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered.
  • the heavy release separator was peeled off, and the laminate of the tempered glass / resin layer was laminated on the surface of the tempered glass / resin layer / PC plate laminate on the PC plate side so that the resin layer was inward. . Thereafter, the entire laminate is heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a holding time of 30 minutes to obtain a laminated glass / interlayer / PC / intermediate / tempered glass composition. Glass was obtained.
  • Example 1 A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer C was used instead of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
  • Example 2 A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer D was used in place of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
  • Example 3 Float glass / intermediate in the same manner as in Example 1 except that the same film material for an interlayer film as in Example 1 was used, and float glass (110 mm long, 110 mm wide, 2.7 mm thick) was used instead of the PC plate. A laminated glass having a membrane / float glass configuration was obtained.
  • Comparative Example 5 A laminate having the structure of float glass / intermediate film / PC in the same manner as in Comparative Example 4 except that one of the two float glasses was replaced with a PC plate (110 mm long, 110 mm wide, 3.0 mm thick). Glass was obtained.
  • Acrylic polymer E was dissolved in ethyl acetate to prepare an acrylic polymer solution having a concentration of 40% by mass.
  • Tolylene diisocyanate (Nikka Trading, trade name “TDI”) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution having a concentration of 25% by mass.
  • 100 parts by mass of the acrylic polymer solution and 2.0 parts by mass of the crosslinking agent solution were mixed and stirred.
  • the obtained mixed solution was formed on a polyethylene terephthalate film as a heavy release separator, and the coating film was dried to form a resin layer having a thickness of 3.8 ⁇ 10 2 ⁇ m.
  • a polyethylene terephthalate film as a light release separator was laminated on the formed resin layer to obtain an interlayer film material.
  • float glass 110 mm long, 110 mm wide, 2.7 mm thick
  • the obtained resin layer was sandwiched between two float glasses (length 110 mm, width 110 mm, thickness 2.7 mm).
  • the obtained laminate was put in a rubber bag and deaerated at a vacuum degree of 2660 Pa for 20 minutes.
  • the rubber bag was put into an oven while being deaerated, and the laminate was pressurized with a vacuum pressure while being held at 90 ° C. for 30 minutes.
  • the laminate was pressed in an autoclave at 135 ° C. and a pressure of 118 N / cm 2 for 20 minutes to obtain a laminated glass having a resin layer containing a PVB resin as an intermediate film.
  • E mgH / A
  • E Impact strength [J / cm 2 ]
  • m Mass of hard sphere [kg]
  • g Gravitational acceleration
  • H Crack height [m]
  • A Laminated glass area [cm 2 ]
  • the impact strength of the laminated glass was measured for each of a test in which a hard sphere collides with the laminated glass from the first glass plate side and a test in which the rigid sphere collides with the laminated glass from the second glass plate or the third glass plate side. .
  • the laminated glasses prepared in the examples and comparative examples are fixed to a sample holder of an accelerated weather resistance tester (manufactured by Suga Test Instruments Co., Ltd., SX75), and an irradiation intensity of 180 W / m 2 and a wavelength of 300 are set using a xenon long life arc lamp as a light source.
  • the sample was subjected to an accelerated weathering test under the conditions of a temperature of 63 ° C., a humidity of 50% RH and a test time of 300 hours while irradiating light of ⁇ 400 nm.
  • the case where haze is 1.0 or less and the occurrence of bubbles is not visually confirmed is “Pass”, and the case where haze is 1.0 or more or the occurrence of bubbles is visually confirmed is “NG”. It was.
  • the light release separator was peeled from the film material for the interlayer film.
  • the exposed resin layer is affixed to float glass (length 110 mm, width 110 mm, thickness 2.7 mm) as a first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to put the resin layer on the float glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer.
  • a polyester film having a length of 200 mm, a width of 100 mm, and a thickness of 125 ⁇ m was bonded to the exposed resin layer to obtain a test sample.
  • a cut having a length of 200 mm and a width of 10 mm was cut into the sample with a cutter from above the polyester film.
  • a tensile tester (Orientec Co., Ltd., trade name: RTC-1210)
  • the polyester film at the incised part was grasped, the peeling angle was 180 °, the peeling speed was 300 mm / min, and the measurement time was 3 seconds.
  • a peel test was performed under the condition of a temperature of 25 ° C. From the load at this time, peel strength (N / 10 mm) was determined.
  • the laminated glass of each example showed excellent impact strength with sufficiently low haze.
  • the laminated glass of each comparative example shown in Table 3 or Table 4 was not sufficient in terms of impact resistance and / or showed high haze, such as peeling in an impact resistance test.
  • SYMBOLS 1 Laminated glass, 2 ... Film material for intermediate films of laminated glass, 5 ... Intermediate film, 5a ... Resin layer, 11, 12 ... Glass plate, 21, 22 ... Base material.

Landscapes

  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Disclosed is a laminated glass provided with: two glass plates that are disposed so as to face each other; and an interlayer that is sandwiched between the two glass plates. Of the two glass plates, one is a transparent plastic plate, and the other is an inorganic glass plate. The interlayer contains an acrylic polymer. This laminated glass has an impact strength of at least 0.03 J/cm2 as measured by an impact resistance test in which a rigid sphere is dropped on the laminated glass.

Description

合わせガラス、及び合わせガラスの中間膜用フィルム材Laminated glass and film material for interlayer film of laminated glass
 本発明は、合わせガラス、及び合わせガラスの中間膜用フィルム材に関する。 The present invention relates to laminated glass and a film material for an interlayer film of laminated glass.
 現在、自動車のような車輌、航空機、建築物等用のガラスとしては、外部衝撃を受けて破損しても、ガラスの破片が飛散することが少なく安全であるため、合わせガラスが広く用いられている。 Currently, laminated glass is widely used as glass for vehicles such as automobiles, aircraft, buildings, etc., even if it is damaged by an external impact, it is safe because the glass fragments do not scatter. Yes.
 合わせガラスは、一般に、少なくとも1対のガラス板と、それらの間に介在してガラス板同士を接着する中間膜とを有する積層体である。合わせガラス用中間膜の一例として、可塑剤により可塑化されたポリビニルブチラール樹脂等のポリビニルアセタール樹脂から形成された膜が挙げられる(特許文献1~3)。 Laminated glass is generally a laminate having at least one pair of glass plates and an intermediate film that is interposed between them and bonds the glass plates together. An example of the interlayer film for laminated glass is a film formed from a polyvinyl acetal resin such as a polyvinyl butyral resin plasticized with a plasticizer (Patent Documents 1 to 3).
特開昭62-100463号公報JP-A-62-100463 特開2005-206445号公報JP 2005-206445 A 国際公開第2012/091117号International Publication No. 2012/091117
 合わせガラスの軽量化のために、無機ガラス板と透明プラスチック板との組み合わせが検討されている。ところが、その場合、従来の中間膜を適用するとヘーズが大きくなる傾向がある。そのため、透明プラスチック板を適用した合わせガラスに関して、外部からの衝撃に耐えるための高い防割性とともに、十分に優れた光学特性を得ることが困難であった。 In order to reduce the weight of laminated glass, combinations of inorganic glass plates and transparent plastic plates are being studied. However, in that case, when a conventional intermediate film is applied, the haze tends to increase. For this reason, it has been difficult to obtain sufficiently excellent optical characteristics as well as high splitting ability to withstand external impacts for laminated glass to which a transparent plastic plate is applied.
 そこで本発明の目的は、透明プラスチック板を適用した合わせガラスに関して、十分に優れた光学特性及び高い防割性を両立させることにある。 Therefore, an object of the present invention is to achieve both sufficiently excellent optical properties and high splitting properties for laminated glass to which a transparent plastic plate is applied.
 本発明の一側面は、対向する2枚のガラス板と、2枚のガラス板の間に挟まれた中間膜と、を備える合わせガラスを提供する。2枚のガラス板のうち一方が透明プラスチック板で、他方が無機ガラス板である。中間膜がアクリル重合体を含み、当該合わせガラスに向けて剛球を落下させる耐衝撃試験によって測定される衝撃強度が、0.03J/cm以上であってもよい。あるいは、アクリル重合体が10万以上100万以下の重量平均分子量を有していてもよい。 One aspect of the present invention provides a laminated glass including two opposing glass plates and an intermediate film sandwiched between the two glass plates. One of the two glass plates is a transparent plastic plate, and the other is an inorganic glass plate. The impact strength measured by an impact resistance test in which the intermediate film includes an acrylic polymer and a hard sphere is dropped toward the laminated glass may be 0.03 J / cm 2 or more. Alternatively, the acrylic polymer may have a weight average molecular weight of 100,000 to 1,000,000.
 本発明者らの知見によれば、透明プラスチック板と無機ガラス板との組み合わせを含む合わせガラスに関して、アクリル重合体を含む中間膜を適用することにより、十分に優れた光学特性及び高い防割性を両立させることができる。 According to the knowledge of the present inventors, for laminated glass including a combination of a transparent plastic plate and an inorganic glass plate, by applying an interlayer film containing an acrylic polymer, sufficiently excellent optical properties and high splitting property Can be made compatible.
 透明プラスチック板を用いた合わせガラスに関して、十分に優れた光学特性及び高い防割性を両立させることができる。 Regarding laminated glass using a transparent plastic plate, it is possible to achieve both excellent optical properties and high splitting properties.
合わせガラスの一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of a laminated glass. 合わせガラスの中間膜用フィルム材の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the film material for interlayer films of a laminated glass.
 以下、場合により図面を参照しつつ本発明の実施形態について説明をする。ただし、本発明は以下の実施形態に何ら限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings depending on cases. However, the present invention is not limited to the following embodiments.
 本明細書において「(メタ)アクリレート」とは、「アクリレート」又はそれに対応する「メタクリレート」のうち少なくとも一方を意味する。(メタ)アクリロイル等の他の類似表現についても同様である。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, “(meth) acrylate” means at least one of “acrylate” or “methacrylate” corresponding thereto. The same applies to other similar expressions such as (meth) acryloyl. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
<合わせガラス>
 図1は、合わせガラスの一実施形態を示す模式断面図である。図1に示す合わせガラス1は、対向する2枚のガラス板11,12と、2枚のガラス板11,12の間に挟まれた中間膜5とを有する。言い換えると、ガラス板11(「第1のガラス板」ともいう。)、中間膜5、及びガラス板12(「第2のガラス板」ともいう)がこの順で積層されている。2枚のガラス板11,12のうち、一方が透明プラスチック板で、他方が無機ガラス板であることができる。
<Laminated glass>
FIG. 1 is a schematic cross-sectional view showing an embodiment of a laminated glass. A laminated glass 1 shown in FIG. 1 has two glass plates 11 and 12 facing each other and an intermediate film 5 sandwiched between the two glass plates 11 and 12. In other words, the glass plate 11 (also referred to as “first glass plate”), the intermediate film 5, and the glass plate 12 (also referred to as “second glass plate”) are laminated in this order. One of the two glass plates 11 and 12 can be a transparent plastic plate and the other can be an inorganic glass plate.
 無機ガラス板は、合わせガラスを構成するガラス板として通常用いられているものから選択することができる。無機ガラス板が設けられることにより、合わせガラスの表面が良好な耐傷性を有することができる。無機ガラス板は、例えば、フロートガラス、強化ガラス(風冷強化ガラス、化学強化ガラス等)、又は複層ガラスの板であってもよい。 The inorganic glass plate can be selected from those usually used as a glass plate constituting the laminated glass. By providing the inorganic glass plate, the surface of the laminated glass can have good scratch resistance. The inorganic glass plate may be, for example, a float glass, a tempered glass (air-cooled tempered glass, chemically tempered glass, etc.), or a multilayer glass plate.
 透明プラスチック板としては、合わせガラスに適した透明性等の光学特性を有するプラスチック板が用いられる。透明プラスチック板の例としては、ポリカーボネート樹脂板(PC板)、ポリメチルメタクリレート樹脂板(PMMA板)、シクロポリオレフィン樹脂板(COP板)、ポリエチレンテレフタレート樹脂板(PET板)、ポリエチレン板(PE板)、ポリプロピレン板(PP板)、ポリスチレン板(PS板)、及びトリアセチルセルロース板(TAC板)が挙げられる。 As the transparent plastic plate, a plastic plate having optical properties such as transparency suitable for laminated glass is used. Examples of transparent plastic plates include polycarbonate resin plates (PC plates), polymethyl methacrylate resin plates (PMMA plates), cyclopolyolefin resin plates (COP plates), polyethylene terephthalate resin plates (PET plates), polyethylene plates (PE plates) , Polypropylene plate (PP plate), polystyrene plate (PS plate), and triacetyl cellulose plate (TAC plate).
 中間膜5は、主としてアクリル重合体を含む樹脂層である。中間膜5は、隣接するガラス板11,12それぞれの中間膜5側の主面の大部分(例えば、主面のうち90面積%以上)に直接接することで、2枚のガラス板11,12同士を接着している。中間膜5を構成する中間膜用樹脂組成物の詳細については後述される。中間膜5の厚みは、10~5000μm、又は、25~1000μmであってもよい。 The intermediate film 5 is a resin layer mainly containing an acrylic polymer. The intermediate film 5 is in direct contact with most of the main surfaces of the adjacent glass plates 11 and 12 on the side of the intermediate film 5 (for example, 90% by area or more of the main surfaces), so that the two glass plates 11 and 12 are in contact with each other. Bonding together. Details of the resin composition for the intermediate film constituting the intermediate film 5 will be described later. The thickness of the intermediate film 5 may be 10 to 5000 μm, or 25 to 1000 μm.
 ガラス板11,12、及び中間膜5それぞれの可視光領域(波長:380nm~780nm)の光線に対する光透過率が、80%以上、90%以上、又は95%以上であってもよい。合わせガラス1全体の可視光領域の光線に対する光透過率が、80%以上、90%以上、又は95%以上であってもよい。光線透過率の上限は100%である。 The light transmittance of each of the glass plates 11 and 12 and the intermediate film 5 in the visible light region (wavelength: 380 nm to 780 nm) may be 80% or more, 90% or more, or 95% or more. The light transmittance of the entire laminated glass 1 with respect to light rays in the visible light region may be 80% or more, 90% or more, or 95% or more. The upper limit of light transmittance is 100%.
 合わせガラス1に向けて剛球を落下させる耐衝撃試験によって測定される衝撃強度が、0.03J/cm以上であってもよい。合わせガラスは、少なくとも、無機ガラス板の側から合わせガラスに向けて剛球を落下させる耐衝撃試験において0.03J/cm以上の衝撃強度を示す。ただし、合わせガラスが、2枚のガラス板のいずれの側から合わせガラスに向けて剛球を落下させる耐衝撃試験においても、0.03J/cm以上の衝撃強度を示してもよい。高い衝撃強度を示す合わせガラスは、十分な防割性を有することができる。同様の理由から、合わせガラス1の衝撃強度は、0.05J/cm以上、又は0.06J/cm以上であってもよい。衝撃強度の上限は、特に限定されないが、通常、10J/cm以下である。衝撃強度の測定方法の詳細は、後述の実施例で説明される。 The impact strength measured by an impact resistance test in which a hard sphere is dropped toward the laminated glass 1 may be 0.03 J / cm 2 or more. The laminated glass exhibits an impact strength of 0.03 J / cm 2 or more in at least an impact resistance test in which a hard sphere is dropped toward the laminated glass from the inorganic glass plate side. However, the laminated glass may exhibit an impact strength of 0.03 J / cm 2 or more in an impact resistance test in which a hard sphere is dropped from either side of the two glass plates toward the laminated glass. Laminated glass exhibiting high impact strength can have sufficient splitting resistance. For the same reason, the impact strength of the laminated glass 1, 0.05 J / cm 2 or more, or may be 0.06 J / cm 2 or more. The upper limit of impact strength is not particularly limited, but is usually 10 J / cm 2 or less. Details of the method of measuring the impact strength will be described in Examples described later.
 一般に、合わせガラスの厚みが大きくなると、衝撃強度が大きくなる傾向がある。そのため、ガラス板及び中間膜の厚みを適切に設定することにより、合わせガラスの衝撃強度を所定の値以上とすることができる。十分な衝撃強度等の観点から、透明プラスチック板の厚みは、0.1~100mm、又は、0.5~10mm、又は0.5~5mmであってもよい。無機ガラス板の厚みは、0.1~50mm、0.5~30mm、1~20mm、又は2~10mmであってもよい。合わせガラス1全体の厚みは、通常、0.5~1000mm、又は1~15mmである場合が多い。この程度の厚みを有する本実施形態の合わせガラスは、無機ガラス板と中間膜のみから構成された合わせガラスと比較して十分に軽量でありながら、高い衝撃強度を示し易い。 Generally, as the thickness of laminated glass increases, the impact strength tends to increase. Therefore, the impact strength of the laminated glass can be set to a predetermined value or more by appropriately setting the thicknesses of the glass plate and the interlayer film. From the viewpoint of sufficient impact strength and the like, the thickness of the transparent plastic plate may be 0.1 to 100 mm, 0.5 to 10 mm, or 0.5 to 5 mm. The thickness of the inorganic glass plate may be 0.1 to 50 mm, 0.5 to 30 mm, 1 to 20 mm, or 2 to 10 mm. The total thickness of the laminated glass 1 is usually 0.5 to 1000 mm or 1 to 15 mm in many cases. The laminated glass of the present embodiment having such a thickness is easy to show high impact strength while being sufficiently light compared to the laminated glass composed only of the inorganic glass plate and the intermediate film.
 中間膜としてアクリル重合体を含む樹脂層を適用することにより、合わせガラスの十分な光学特性を維持しながら、ガラス板及び中間膜の厚みを例えば上記の範囲内で制御することで、合わせガラスの衝撃強度を容易に高めることができる。アクリル重合体の重量平均分子量が10万以上であることも、衝撃強度の向上に寄与することができる。 By applying a resin layer containing an acrylic polymer as an intermediate film, while maintaining sufficient optical properties of the laminated glass, the thickness of the glass plate and the intermediate film is controlled within the above range, for example. Impact strength can be easily increased. The weight average molecular weight of the acrylic polymer being 100,000 or more can also contribute to the improvement of impact strength.
 中間膜5とガラス板11又はガラス板12との間の剥離強度は、5N/10mm以上、8N/10mm以上、10N/10mm以上、又は30N/10mm以下であってもよい。ここでの剥離強度は、引張試験機(株式会社オリエンテック製、商品名「テンシロン RTC-1210」)を用いた、25℃において引き剥がし速度300mm/分で3秒間の180度ピール試験により測定される値を意味する。 The peel strength between the intermediate film 5 and the glass plate 11 or the glass plate 12 may be 5 N / 10 mm or more, 8 N / 10 mm or more, 10 N / 10 mm or more, or 30 N / 10 mm or less. The peel strength here was measured by a 180 ° peel test for 3 seconds at a peeling speed of 300 mm / min at 25 ° C. using a tensile tester (trade name “Tensilon RTC-1210” manufactured by Orientec Co., Ltd.). Value.
 合わせガラスの構成は図1の態様に限定されず、適宜変更が可能である。例えば、合わせガラスが、追加のガラス板(第3のガラス板等)として、無機ガラス板及び/又は透明プラスチック板を更に有していてもよい。その場合、通常、追加のガラス板とそれに隣り合うガラス板との間にも追加の中間膜が設けられる。追加の中間膜も、中間膜5と同様のアクリル重合体を含んでいてもよい。 The configuration of the laminated glass is not limited to the embodiment shown in FIG. 1 and can be appropriately changed. For example, the laminated glass may further include an inorganic glass plate and / or a transparent plastic plate as an additional glass plate (such as a third glass plate). In that case, an additional intermediate film is usually provided also between the additional glass plate and the adjacent glass plate. The additional intermediate film may also contain the same acrylic polymer as the intermediate film 5.
 合わせガラスは、反射防止層、防汚層、色素層、及びハードコート層等から選ばれる各種の機能層を更に有していてもよい。 The laminated glass may further have various functional layers selected from an antireflection layer, an antifouling layer, a dye layer, a hard coat layer, and the like.
 反射防止層は、合わせガラスの可視光反射率を5%以下とするような反射防止性を有している層である。反射防止層は、例えば、既知の反射防止方法で処理された透明プラスチックフィルム等の透明基材であることができる。防汚層は、表面に汚れがつきにくくするために設けられる。色素層は、合わせガラスで透過する不要な波長の光を低減するために設けられる。ハードコート層は、合わせガラスの表面硬度を高めるために設けられる。ハードコート層は、ポリエチレンフィルム等の基材フィルムと、基材フィルム上に形成された、アクリル樹脂(ウレタンアクリレート、エポキシアクリレート等)、エポキシ樹脂等の膜とを有する積層フィルムであってもよい。 The antireflection layer is a layer having antireflection properties such that the visible light reflectance of the laminated glass is 5% or less. The antireflection layer can be, for example, a transparent substrate such as a transparent plastic film treated by a known antireflection method. The antifouling layer is provided in order to make the surface difficult to get dirty. The dye layer is provided in order to reduce unnecessary wavelength light transmitted through the laminated glass. The hard coat layer is provided to increase the surface hardness of the laminated glass. The hard coat layer may be a laminated film having a base film such as a polyethylene film and a film made of an acrylic resin (urethane acrylate, epoxy acrylate, etc.) or an epoxy resin formed on the base film.
 本実施形態に係る合わせガラスは、例えば、2枚のガラス板11,12を、中間膜5を形成するための樹脂層を介在させながら貼り合せて、ガラス板11,12及び樹脂層を有する積層体を得る工程と、積層体を加熱及び加圧する工程とを含む方法により、製造することができる。 The laminated glass according to the present embodiment includes, for example, two glass plates 11 and 12 that are bonded together with a resin layer for forming the intermediate film 5 interposed therebetween, and includes the glass plates 11 and 12 and the resin layer. It can be manufactured by a method including a step of obtaining a body and a step of heating and pressurizing the laminate.
 ガラス板11,12は、例えば、ガラス板11上に樹脂層を設けることと、続いて樹脂層上にガラス板12を積層することとを含む方法により、樹脂層を介在させながら貼り合せることができる。樹脂層は、例えば後述の合わせガラスの中間膜用フィルム材を用いて、ガラス板11上に設けることができる。 The glass plates 11 and 12 may be bonded together with a resin layer interposed, for example, by a method including providing a resin layer on the glass plate 11 and subsequently laminating the glass plate 12 on the resin layer. it can. The resin layer can be provided on the glass plate 11 using, for example, a film material for an interlayer film of laminated glass described later.
 積層体の加熱及び加圧によって、積層体内の気泡を効率的に除去することができる。加熱及び加圧のために、例えば、オートクレーブが用いられる。加熱温度は、30~150℃、又は50~70℃であってもよい。圧力は0.3~1.5MPa、又は0.3~0.5MPaであってもよい。加熱及び加圧の時間は、5~60分、又は10~30分であってもよい。加熱及び加圧の条件がこれらの範囲内であれば、積層体内の気泡を特に効果的に除去できる。 The bubbles in the laminate can be efficiently removed by heating and pressurizing the laminate. For example, an autoclave is used for heating and pressurization. The heating temperature may be 30 to 150 ° C, or 50 to 70 ° C. The pressure may be 0.3 to 1.5 MPa, or 0.3 to 0.5 MPa. The heating and pressurization time may be 5 to 60 minutes, or 10 to 30 minutes. If the heating and pressurizing conditions are within these ranges, bubbles in the laminate can be removed particularly effectively.
<合わせガラスの中間膜用樹脂組成物>
 中間膜5は、アクリル重合体を含む、合わせガラスの中間膜用樹脂組成物から形成されている。この中間膜用樹脂組成物は、合わせガラスの高い防割性の発現に寄与することができる。さらに、この中間膜用樹脂組成物から形成された中間膜は、高湿度環境下でも合わせガラスの白化を生じさせ難く、信頼性の点でも優れている。
<Resin composition for interlayer film of laminated glass>
The intermediate film 5 is formed of a resin composition for an intermediate film of laminated glass containing an acrylic polymer. This resin composition for an intermediate film can contribute to the development of high splitting properties of the laminated glass. Furthermore, an intermediate film formed from the resin composition for an intermediate film is less likely to cause whitening of the laminated glass even in a high humidity environment, and is excellent in terms of reliability.
 アクリル重合体は、(メタ)アクリロイル基を分子内に1つ有するモノマーから主として構成される重合体である。アクリル重合体は、1種のモノマーの単独重合体であってもよいし、2種以上のモノマーから構成された共重合体であってもよい。 The acrylic polymer is a polymer mainly composed of monomers having one (meth) acryloyl group in the molecule. The acrylic polymer may be a homopolymer of one kind of monomer or a copolymer composed of two or more kinds of monomers.
 アクリル重合体が、10万以上の重量平均分子量を有していてもよい。アクリル重合体の重量平均分子量が大きいと、アクリレート重合体の分子鎖同士の絡み合いが複雑化することで中間膜が強靭化して、合わせガラスの衝撃強度が高くなる傾向がある。同様の観点から、アクリル重合体の重量平均分子量は、11万以上、又は12万以上であってもよい。アクリル重合体の重量平均分子量は、100万以下であってもよい。アクリル重合体の重量平均分子量は、100万以下であると、優れた衝撃強度とともに、低いヘーズ及び高い剥離強度を示す合わせガラスが特に得られ易い。ここで、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィーによって測定される、標準ポリスチレン換算値を意味する。 The acrylic polymer may have a weight average molecular weight of 100,000 or more. When the weight average molecular weight of the acrylic polymer is large, the entanglement of the molecular chains of the acrylate polymer is complicated, so that the interlayer film is toughened and the impact strength of the laminated glass tends to be high. From the same viewpoint, the weight average molecular weight of the acrylic polymer may be 110,000 or more, or 120,000 or more. The acrylic polymer may have a weight average molecular weight of 1,000,000 or less. If the weight average molecular weight of the acrylic polymer is 1,000,000 or less, a laminated glass showing a low haze and a high peel strength as well as an excellent impact strength is particularly easily obtained. Here, in this specification, a weight average molecular weight means a standard polystyrene conversion value measured by gel permeation chromatography.
 アクリル重合体のガラス転移温度(Tg)が、-10℃以下であってもよい。アクリル重合体のTgが低いと、合わせガラスの衝撃強度が高くなる傾向がある。同様の観点から、アクリル重合体のTgは、-15℃以下であってもよい。アクリル重合体のTgの下限は、特に制限されないが。通常、-40℃以上である。 The glass transition temperature (Tg) of the acrylic polymer may be −10 ° C. or lower. If the Tg of the acrylic polymer is low, the impact strength of the laminated glass tends to be high. From the same viewpoint, the Tg of the acrylic polymer may be −15 ° C. or lower. The lower limit of Tg of the acrylic polymer is not particularly limited. Usually, it is −40 ° C. or higher.
 アクリル重合体を構成する(メタ)アクリロイル基を有するモノマーは、典型的には(メタ)アクリロイルオキシ基(CH=CHC(=O)O-又はCH=C(CH)C(=O)O-)を1つ有する単官能モノマーである。その具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート(n-ラウリル(メタ)アクリレート)、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレート及びイソステアリルアクリレート等のアルキル基を有するアルキル(メタ)アクリレート(アルキル基の炭素数が1~18であってもよい);グリシジル(メタ)アクリレート;3-ブテニル(メタ)アクリレート等のアルケニル基を有するアルケニル(メタ)アクリレート(アルキル基の炭素数が2~18であってもよい);ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート;メトキシテトラエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート、メトキシオクタエチレングリコール(メタ)アクリレート、メトキシノナエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシヘプタプロピレングリコール(メタ)アクリレート、エトキシテトラエチレングリコール(メタ)アクリレート、ブトキシエチレングリコール(メタ)アクリレート及びブトキシジエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート及びジシクロペンタニル(メタ)アクリレート等の脂環式基を有する(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート及び4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート、2-(2-メタクリロイルオキシエチルオキシ)エチルイソシアネート及び2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート及びオクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;シロキサン骨格を有する(メタ)アクリレートが挙げられる。これらの化合物は、1種単独で又は2種以上を組み合わせて用いることができる。 The monomer having a (meth) acryloyl group constituting the acrylic polymer is typically a (meth) acryloyloxy group (CH 2 ═CHC (═O) O— or CH 2 ═C (CH 3 ) C (═O ) A monofunctional monomer having one O-). Specific examples thereof include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl ( (Meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate (n-lauryl ( (Meth) acrylate), isomyristyl (meth) acrylate, stearyl (meth) acrylate and alkyl (meth) acrylate having an alkyl group such as isostearyl acrylate (the alkyl group may have 1 to 18 carbon atoms); Lysidyl (meth) acrylate; alkenyl (meth) acrylate having an alkenyl group such as 3-butenyl (meth) acrylate (the alkyl group may have 2 to 18 carbon atoms); benzyl (meth) acrylate and phenoxyethyl ( (Meth) acrylate having an aromatic ring such as (meth) acrylate; methoxytetraethylene glycol (meth) acrylate, methoxyhexaethylene glycol (meth) acrylate, methoxyoctaethylene glycol (meth) acrylate, methoxynonaethylene glycol (meth) acrylate, Methoxypolyethylene glycol (meth) acrylate, methoxyheptapropylene glycol (meth) acrylate, ethoxytetraethylene glycol (meth) acrylate, butoxyethylene Alkali polyalkylene glycol (meth) acrylates such as recall (meth) acrylate and butoxydiethylene glycol (meth) acrylate; alicyclic groups such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate (Meth) acrylate having; (meth) acrylate having a hydroxyl group such as 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; tetrahydrofurfuryl (meth) acrylate; N, N-dimethylaminoethyl (meth) acrylate, 2- (2-methacryloyloxyethyloxy) ethyl isocyanate and 2- (meth) acryloyloxyethyl isocyanate (Meth) acrylates having isocyanate groups such as nates; tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate, dipropylene glycol mono (meth) acrylate, tripropylene Examples include polyalkylene glycol mono (meth) acrylates such as glycol mono (meth) acrylate and octapropylene glycol mono (meth) acrylate; and (meth) acrylates having a siloxane skeleton. These compounds can be used individually by 1 type or in combination of 2 or more types.
 アクリル重合体を構成するモノマーの他の例として、(メタ)アクリルアミド及びその誘導体がある。アクリルアミド誘導体としては、(メタ)アクリロイルモルホリン;N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN-ヒドロキシエチル(メタ)アクリルアミドが挙げられる。 Other examples of monomers constituting the acrylic polymer include (meth) acrylamide and derivatives thereof. Acrylamide derivatives include (meth) acryloylmorpholine; N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide And N-hydroxyethyl (meth) acrylamide.
 アクリル重合体は、(メタ)アクリロイル基を有するモノマーと共重合可能な共重合モノマーをモノマー単位として含んでいてもよい。ただし、通常、アクリル重合体全体のうち80質量%以上、又は90質量%以上は、(メタ)アクリロイル基を有するモノマーに由来するモノマー単位から構成される。共重合モノマーとしては、例えば、スチレン、4-メチルスチレン、ビニルピリジン、ビニルピロリドン、酢酸ビニル、シクロヘキシルマレイミド、フェニルマレイミド及び無水マレイン酸が挙げられる。 The acrylic polymer may contain as a monomer unit a copolymerizable monomer copolymerizable with a monomer having a (meth) acryloyl group. However, usually 80% by mass or more, or 90% by mass or more of the whole acrylic polymer is composed of monomer units derived from a monomer having a (meth) acryloyl group. Examples of the copolymerization monomer include styrene, 4-methylstyrene, vinylpyridine, vinylpyrrolidone, vinyl acetate, cyclohexylmaleimide, phenylmaleimide, and maleic anhydride.
 中間膜用樹脂組成物、又は、これから形成される樹脂層及び中間膜におけるアクリル重合体の含有量は、中間膜用樹脂組成物、樹脂層又は中間膜の全体量に対して、80質量%以上、90質量%以上、又は95質量%以上であってもよい。 The content of the acrylic polymer in the resin composition for an intermediate film, or the resin layer and the intermediate film formed therefrom is 80% by mass or more based on the total amount of the resin composition for the intermediate film, the resin layer or the intermediate film. 90 mass% or more, or 95 mass% or more.
 本実施形態の中間膜用樹脂組成物は、各種添加剤等の他の成分を更に含有していてもよい。各種添加剤としては、重合禁止剤、酸化防止剤、光安定化剤、シランカップリング剤、界面活性剤、レベリング剤、無機充填剤等が挙げられる。 The resin composition for an interlayer film according to this embodiment may further contain other components such as various additives. Examples of the various additives include polymerization inhibitors, antioxidants, light stabilizers, silane coupling agents, surfactants, leveling agents, inorganic fillers, and the like.
 重合禁止剤は、樹脂組成物の保存安定性を高める目的で添加され、その例としてはパラメトキシフェノールが挙げられる。酸化防止剤は、中間膜の耐熱着色性を高める目的で添加され、その例としてはトリフェニルホスファイト等のリン系;フェノール系;チオール系の酸化防止剤が挙げられる。光安定化剤は、紫外線等の活性エネルギー線に対する耐性を高める目的で添加され、その例としてはHALS(Hindered Amine Light Stabilizer)が挙げられる。シランカップリング剤は、ガラス板との密着性を高めるために添加され、その例としてはメチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、及びγ-グリシドキシプロピルメチルジイソプロペノキシシランが挙げられる。界面活性剤は、基材との剥離性を制御するために添加され、その例としてはポリジメチルシロキサン系化合物、及びフッ素系化合物が挙げられる。レベリング剤は、樹脂組成物の平坦性を付与するために添加され、その例としてはシリコン系、フッ素系の表面張力を下げる化合物が挙げられる。これらの添加剤は、単独で用いてもよく、また、複数の添加剤を組み合わせて用いてもよい。これらの添加剤の含有量は、一般に樹脂組成物の全量に対して0.01~5質量%程度である。 The polymerization inhibitor is added for the purpose of enhancing the storage stability of the resin composition, and an example thereof is paramethoxyphenol. Antioxidants are added for the purpose of improving the heat resistant colorability of the interlayer film, and examples thereof include phosphorus-based; phenol-based; thiol-based antioxidants such as triphenyl phosphite. The light stabilizer is added for the purpose of increasing the resistance to active energy rays such as ultraviolet rays, and an example thereof is HALS (Hindered Amine Light Stabilizer). Silane coupling agents are added to improve adhesion to glass plates. Examples include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and γ-aminopropyltrimethoxysilane. , Γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and γ-glycidoxypropylmethyldiisopropenoxysilane. The surfactant is added to control the peelability from the base material, and examples thereof include a polydimethylsiloxane compound and a fluorine compound. The leveling agent is added to impart flatness to the resin composition, and examples thereof include compounds that lower the surface tension of silicon-based and fluorine-based compounds. These additives may be used alone, or a plurality of additives may be used in combination. The content of these additives is generally about 0.01 to 5% by mass with respect to the total amount of the resin composition.
 無機充填剤は、合わせガラスの適切な透明性が維持される範囲で、用いられ得る。無機充填剤としては、例えば、破砕シリカ、溶融シリカ、マイカ、粘土鉱物、ガラス短繊維、ガラス微粉末、中空ガラス、炭酸カルシウム、石英粉末、及び金属水和物が挙げられる。無機充填剤の含有量は、樹脂組成物100質量部に対し、0.01~100質量部、0.05~50質量部、又は0.1~30質量部であってもよい。 The inorganic filler can be used as long as appropriate transparency of the laminated glass is maintained. Examples of the inorganic filler include crushed silica, fused silica, mica, clay mineral, short glass fiber, fine glass powder, hollow glass, calcium carbonate, quartz powder, and metal hydrate. The content of the inorganic filler may be 0.01 to 100 parts by mass, 0.05 to 50 parts by mass, or 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition.
 中間膜用樹脂組成物は、例えば、アクリル重合体及び必要により加えられる添加剤を混合し、これらを撹拌することにより製造することができる。 The resin composition for an interlayer film can be produced, for example, by mixing an acrylic polymer and an additive that is added as necessary and stirring them.
<合わせガラスの中間膜用フィルム材>
 図2は、合わせガラスの中間膜用フィルム材の一実施形態を示す模式断面図である。図2に示す合わせガラスの中間膜用フィルム材2は、基材21、樹脂層5a、及び基材22を有し、これらがこの順で積層されている。樹脂層5aは、ガラス板に挟まれたときに中間膜となる層であり、上述の中間膜用樹脂組成物を含む層であることができる。樹脂層5aは、ガラス板同士の容易な貼り合せを可能にする感圧接着性を有していていてもよい。このようなフィルム材によれば、樹脂層5aを、容易に保管及び運搬することができる。
<Film material for interlayer film of laminated glass>
FIG. 2 is a schematic cross-sectional view showing an embodiment of a film material for an interlayer film of laminated glass. The film material 2 for interlayer film of laminated glass shown in FIG. 2 has a base material 21, a resin layer 5a, and a base material 22, which are laminated in this order. The resin layer 5a is a layer that becomes an intermediate film when sandwiched between glass plates, and can be a layer that includes the above-described resin composition for an intermediate film. The resin layer 5a may have pressure-sensitive adhesiveness that allows easy bonding of glass plates. According to such a film material, the resin layer 5a can be easily stored and transported.
 樹脂層5aは、下記粘弾性の要件(a)及び(b)を満たす層を少なくとも1層有していてもよい。樹脂層5a自体の粘弾性が、これら要件を満たしていてもよい。
(a)基準温度25℃、周波数1000Hzにおける貯蔵弾性率が1×10~1×10Paである
(b)基準温度25℃、周波数100~100,000Hzの範囲における損失係数の最大値が0.4を超える
The resin layer 5a may have at least one layer that satisfies the following viscoelasticity requirements (a) and (b). The viscoelasticity of the resin layer 5a itself may satisfy these requirements.
(A) The storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 × 10 5 to 1 × 10 8 Pa. (B) The maximum value of the loss coefficient at a reference temperature of 25 ° C. and a frequency of 100 to 100,000 Hz is Over 0.4
 周波数の範囲100~100000Hzは、数センチメートルから1メートル数十センチメートル程度の高さから自由落下した剛球が合わせガラスに衝突したときに合わせガラスに発生するひずみ速度に相当する。したがって、例えば、基準温度25℃、周波数100~100,000Hzの範囲で、損失係数の最大値が0.4よりも大きいと、ガラス単板よりも高い防割性が発現され易い。損失係数の最大値は、0.5以上であってもよく、1.1以下、又は1.0以下であってもよい。 The frequency range of 100 to 100,000 Hz corresponds to the strain rate generated in the laminated glass when a hard sphere that has fallen freely from a height of about several centimeters to a few tens of centimeters collides with the laminated glass. Therefore, for example, when the maximum value of the loss coefficient is larger than 0.4 in the range of the reference temperature of 25 ° C. and the frequency of 100 to 100,000 Hz, higher splitting properties are more easily exhibited than the glass single plate. The maximum value of the loss factor may be 0.5 or more, 1.1 or less, or 1.0 or less.
 基準温度25℃、周波数1000Hzにおける貯蔵弾性率が1×10以上であると、機械特性及び信頼性(耐熱性、耐候性)の点で特に優れた効果が得られる。基準温度25℃、周波数1000Hzにおける貯蔵弾性率が1×10Pa以下であると、耐衝撃性の点で特に優れた効果が得られる。同様の観点から、基準温度25℃、周波数1000Hzにおける貯蔵弾性率は、1.5×10以上であってもよく、5×10Pa以下であってもよい。 When the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 × 10 5 or more, particularly excellent effects are obtained in terms of mechanical properties and reliability (heat resistance, weather resistance). When the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 × 10 8 Pa or less, particularly excellent effects are obtained in terms of impact resistance. From the same viewpoint, the storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz may be 1.5 × 10 5 or more, or 5 × 10 6 Pa or less.
 ここで、上記の貯蔵弾性率及び損失係数(tanδ)の値は、動的粘弾性測定と時間-温度換算則から得られる合成曲線(マスターカーブ)から求めることができる。動的粘弾性測定は、例えば、JIS K 0129:2005に準拠した方法に従い、温度-70~100℃、周波数0.05Hz、0.5Hz、5Hz又は50Hz、ひずみ量1%の条件下、引張測定モードで行われる。粘弾性の測定結果から、WLF法又はアレニウス則を用いて、基準温度を25℃としてマスターカーブを作成し、このマスターカーブから、周波数1000Hzにおける貯蔵弾性率、及び、周波数100~100000Hzの範囲内におけるtanδの最大値を読み取ることができる。 Here, the values of the storage elastic modulus and the loss coefficient (tan δ) can be obtained from a composite curve (master curve) obtained from dynamic viscoelasticity measurement and a time-temperature conversion rule. The dynamic viscoelasticity measurement is, for example, a tensile measurement according to a method in accordance with JIS K 0129: 2005 under conditions of a temperature of −70 to 100 ° C., a frequency of 0.05 Hz, 0.5 Hz, 5 Hz or 50 Hz, and a strain amount of 1% Done in mode. From the measurement results of the viscoelasticity, a master curve is created by setting the reference temperature to 25 ° C. using the WLF method or the Arrhenius law. The maximum value of tan δ can be read.
 マスターカーブを作成するために、動的粘弾性測定の測定結果から、それぞれの温度の値に対して時間-温度換算因子αを下記のWLF式又はアレニウス式によって計算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 時間-温度換算因子αと、任意の温度Tにおける角周波数ωの値から、下記式(A)により、基準温度Tに対する角周波数ω’を算出することができる。角周波数ω’と測定された動的粘弾性特性との関係を描くことにより、横軸を周波数に改めたマスターカーブを得ることができる。
   α=ω’/ω  ・・・(A)
 なお、これらの一連の計算は、例えば、動的粘弾性測定装置「RSA-G2」に付帯のTRIOS Software(TAインスツルメント株式会社、製品名)を用いて行うことができる。
In order to create a master curve, a time-temperature conversion factor α T is calculated from the measurement result of the dynamic viscoelasticity measurement for each temperature value by the following WLF equation or Arrhenius equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
From the time-temperature conversion factor α T and the value of the angular frequency ω at an arbitrary temperature T, the angular frequency ω ′ with respect to the reference temperature T 0 can be calculated by the following equation (A). By drawing the relationship between the angular frequency ω ′ and the measured dynamic viscoelastic property, a master curve with the horizontal axis changed to frequency can be obtained.
α T = ω ′ / ω (A)
The series of calculations can be performed using, for example, TRIOS Software (product name of TA Instruments Co., Ltd.) attached to the dynamic viscoelasticity measuring device “RSA-G2”.
 基材21,22は、例えば、ポリエチレンテレフタレート、ポリプロピレン、及びポリエチレンから選ばれる重合体のフィルムであってもよく、特にポリエチレンテレフタレートフィルム(以下、「PETフィルム」という場合もある)であってもよい。基材21,22の端部が、樹脂層5aの外縁よりも外側に張り出していてもよい。 The base materials 21 and 22 may be, for example, a polymer film selected from polyethylene terephthalate, polypropylene, and polyethylene, and in particular, may be a polyethylene terephthalate film (hereinafter sometimes referred to as “PET film”). . The edge part of the base materials 21 and 22 may protrude outside the outer edge of the resin layer 5a.
 基材21,22のうち一方が相対的に大きい剥離強度を発現する基材(重剥離セパレータ)で、他方が相対的に小さい剥離強度を発現する基材(軽剥離セパレータ)であってもよい。軽剥離セパレータと樹脂層5aとの間の剥離強度は、重剥離セパレータと樹脂層5aとの間の剥離強度よりも低い。基材の剥離性は、剥離性を付与する表面処理の条件によって適宜調整することができる。 One of the substrates 21 and 22 may be a substrate (heavy release separator) that exhibits a relatively large peel strength, and the other may be a substrate (light release separator) that exhibits a relatively small peel strength. . The peel strength between the light release separator and the resin layer 5a is lower than the peel strength between the heavy release separator and the resin layer 5a. The peelability of the substrate can be appropriately adjusted depending on the conditions of the surface treatment that imparts the peelability.
 中間膜用フィルム材2を合わせガラス1を製造するために用いる場合、まず、軽剥離セパレータとしての基材を剥離し、露出した樹脂層5aの表面を第1のガラス板に貼り付ける。重剥離セパレータとしての基材側からローラー等で押し付けてもよい。続いて、重剥離セパレータとしての基材を樹脂層5aから剥離する。露出した樹脂層5aの表面を、第2のガラス板に貼り付ける。この方法により、樹脂層5aを介在させながら、2枚のガラス板を容易に貼り合せることができる。 When using the film material 2 for interlayer films for manufacturing the laminated glass 1, first, the base material as a light release separator is peeled off, and the exposed surface of the resin layer 5a is attached to the first glass plate. You may press with a roller etc. from the base-material side as a heavy peeling separator. Subsequently, the base material as the heavy release separator is released from the resin layer 5a. The exposed surface of the resin layer 5a is attached to the second glass plate. By this method, two glass plates can be easily bonded together with the resin layer 5a interposed.
 重剥離セパレータとしての基材の厚みは、作業性の観点から、50~200μmで、60~150μm、又は70~130μmであってもよい。軽剥離セパレータとしての基材の厚みは、作業性の観点から、25~150μm、30~100μm、又は40~75μmであってもよい。 The thickness of the substrate as the heavy release separator may be 50 to 200 μm, 60 to 150 μm, or 70 to 130 μm from the viewpoint of workability. The thickness of the substrate as the light release separator may be 25 to 150 μm, 30 to 100 μm, or 40 to 75 μm from the viewpoint of workability.
 中間膜用フィルム材2は、例えば、中間膜用樹脂組成物を基材21上に成膜することにより得ることができる。成膜は、通常の方法により行うことができる。例えば、中間膜用樹脂組成物を溶剤で希釈して調製した塗工液を基材21上に塗布することと、塗膜から溶剤を乾燥して樹脂層5aを形成することとを含む方法により、中間膜用フィルム材を得ることができる。塗工法としては、例えばフローコート法、ロールコート法、グラビアコート法、ワイヤバーコート法、及びリップダイコート法が挙げられる。 The film material 2 for an intermediate film can be obtained, for example, by forming a resin composition for an intermediate film on the substrate 21. The film formation can be performed by a normal method. For example, by applying a coating liquid prepared by diluting the resin composition for an intermediate film with a solvent onto the substrate 21, and drying the solvent from the coating film to form the resin layer 5a. An intermediate film material can be obtained. Examples of the coating method include a flow coating method, a roll coating method, a gravure coating method, a wire bar coating method, and a lip die coating method.
 上記塗工液を調製するための溶剤としては、例えば2-ブタノン、シクロヘキサノン等のケトン溶媒を用いることができる。塗工性の観点からは、塗工液の固形分濃度(溶剤以外の成分の濃度)は、塗工液の質量を基準として、30質量%以上、又は40質量%以上であってもよく、70質量%以下、又は60質量%以下であってもよい。塗工液の粘度は、塗工温度で1Pa・s以上、又は5Pa・s以上であってもよく、30Pa・s以下、5Pa・s以下、又は15Pa・s以下であってもよい。 As a solvent for preparing the coating liquid, for example, a ketone solvent such as 2-butanone or cyclohexanone can be used. From the viewpoint of coating properties, the solid content concentration of the coating liquid (concentration of components other than the solvent) may be 30% by mass or more, or 40% by mass or more, based on the mass of the coating liquid. It may be 70% by mass or less, or 60% by mass or less. The viscosity of the coating solution may be 1 Pa · s or more, or 5 Pa · s or more, or 30 Pa · s or less, 5 Pa · s or less, or 15 Pa · s or less at the coating temperature.
 以下、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
1.アクリル重合体の合成
アクリル重合体A
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管を取り付けた反応容器に、初期モノマーとしてのイソステアリルアクリレート(大阪有機化学工業株式会社製、商品名「ISTA」)96.0g及び2-ヒドロキシエチルアクリレート(大阪有機化学工業株式会社製、商品名「HEA」)24.0gと、メチルエチルケトン150.0gとを入れた。反応容器内を100ml/分の風量で窒素置換しながら、反応液を15分間で25℃から80℃まで加熱した。その後、反応液の温度を80℃に維持しながら、追加モノマーとしてのイソステアリルアクリレート24.0g及び2-ヒドロキシエチルアクリレート6.0gと、t-ブチルパーオキシ-2-エチルヘキサノエート1.0gとを含む溶液を120分間かけて滴下した。滴下終了後、更に2時間反応を進行させた。続いて、メチルエチルケトンを留去することによりイソステアリルアクリレートと2-ヒドロキシエチルアクリレートとの共重合体であるアクリル重合体A(重量平均分子量:120000、Tg:-18℃)を得た。
1. Acrylic polymer synthetic acrylic polymer A
96.0 g of isostearyl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., trade name “ISTA”) as an initial monomer was attached to a reaction vessel equipped with a cooling tube, a thermometer, a stirring device, a dropping funnel and a nitrogen introduction tube. 24.0 g of hydroxyethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name “HEA”) and 150.0 g of methyl ethyl ketone were added. The reaction solution was heated from 25 ° C. to 80 ° C. in 15 minutes while the inside of the reaction vessel was purged with nitrogen at a flow rate of 100 ml / min. Thereafter, while maintaining the temperature of the reaction solution at 80 ° C., 24.0 g of isostearyl acrylate and 6.0 g of 2-hydroxyethyl acrylate as additional monomers and 1.0 g of t-butylperoxy-2-ethylhexanoate were added. The solution containing was added dropwise over 120 minutes. After completion of the dropwise addition, the reaction was further allowed to proceed for 2 hours. Subsequently, methyl ethyl ketone was distilled off to obtain an acrylic polymer A (weight average molecular weight: 120,000, Tg: -18 ° C.), which is a copolymer of isostearyl acrylate and 2-hydroxyethyl acrylate.
アクリル重合体B
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管を取り付けた反応容器に、初期モノマーとしての2-エチルヘキシルアクリレート(和光純薬工業株式会社製、商品名「EHA」)96.0g及び2-ヒドロキシエチルアクリレート(大阪有機化学工業株式会社製、商品名「HEA」)24.0gと、メチルエチルケトン150.0gとを入れた。反応容器内を100ml/分の風量で窒素置換しながら、反応液を15分間で25℃から80℃まで加熱した。その後、温度を80℃に維持しながら、追加モノマーとしての2-エチルヘキシルアクリレート24.0g及び2-ヒドロキシエチルアクリレート6.0gと、t-ブチルパーオキシ-2-エチルヘキサノエート1.0gとを含む溶液を120分間かけて滴下した。滴下終了後、更に2時間反応を進行させた。続いて、メチルエチルケトンを留去することにより2-エチシルヘキシルアクリレートと2-ヒドロキシエチルアクリレートとの共重合体であるアクリル重合体B(重量平均分子量128000、Tg:-20℃)を得た。
Acrylic polymer B
96.0 g and 2 of 2-ethylhexyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd., trade name “EHA”) as an initial monomer was attached to a reaction vessel equipped with a cooling tube, a thermometer, a stirring device, a dropping funnel and a nitrogen introducing tube. -24.0 g of hydroxyethyl acrylate (trade name “HEA” manufactured by Osaka Organic Chemical Industry Co., Ltd.) and 150.0 g of methyl ethyl ketone were added. The reaction solution was heated from 25 ° C. to 80 ° C. in 15 minutes while the inside of the reaction vessel was purged with nitrogen at a flow rate of 100 ml / min. Thereafter, while maintaining the temperature at 80 ° C., 24.0 g of 2-ethylhexyl acrylate and 6.0 g of 2-hydroxyethyl acrylate as additional monomers and 1.0 g of t-butylperoxy-2-ethylhexanoate were added. The containing solution was added dropwise over 120 minutes. After completion of the dropwise addition, the reaction was further allowed to proceed for 2 hours. Subsequently, by distilling off methyl ethyl ketone, acrylic polymer B (weight average molecular weight 128000, Tg: −20 ° C.), which is a copolymer of 2-ethyhexyl acrylate and 2-hydroxyethyl acrylate, was obtained.
アクリル重合体C
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管を取り付けた反応容器に、初期モノマーとしてのイソステアリルアクリレート(大阪有機化学工業株式会社製、商品名「ISTA」)96.0g及び2-ヒドロキシエチルアクリレート(大阪有機化学工業株式会社製、商品名「HEA」)24.0gと、メチルエチルケトン150.0gとを入れた。100ml/分の風量で窒素置換しながら、15分間で25℃から80℃まで加熱した。その後、温度を80℃に維持しながら、追加モノマーとしてのイソステアリルアクリレート24.0g及び2-ヒドロキシエチルアクリレート6.0gと、t-ブチルパーオキシ-2-エチルヘキサノエート5.0gとを含む溶液を120分間かけて滴下した。滴下終了後、更に2時間反応を進行させた。続いて、メチルエチルケトンを留去することによりイソステアリルアクリレートと2-ヒドロキシエチルアクリレートとの共重合であるアクリル重合体C(重量平均分子量30000、Tg:-18℃)を得た。
Acrylic polymer C
96.0 g of isostearyl acrylate (manufactured by Osaka Organic Chemical Co., Ltd., trade name “ISTA”) as an initial monomer was attached to a reaction vessel equipped with a cooling tube, a thermometer, a stirring device, a dropping funnel and a nitrogen introduction tube. 24.0 g of hydroxyethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name “HEA”) and 150.0 g of methyl ethyl ketone were added. Heating was performed from 25 ° C. to 80 ° C. for 15 minutes while purging nitrogen with an air flow of 100 ml / min. Thereafter, while maintaining the temperature at 80 ° C., 24.0 g of isostearyl acrylate and 6.0 g of 2-hydroxyethyl acrylate as additional monomers and 5.0 g of t-butylperoxy-2-ethylhexanoate are contained. The solution was added dropwise over 120 minutes. After completion of the dropwise addition, the reaction was further allowed to proceed for 2 hours. Subsequently, methyl ethyl ketone was distilled off to obtain an acrylic polymer C (weight average molecular weight 30000, Tg: -18 ° C.), which was a copolymer of isostearyl acrylate and 2-hydroxyethyl acrylate.
アクリル重合体D
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管を取り付けた反応容器に、初期モノマーとしてのラウリルアクリレート(共栄社化学株式会社製、商品名「ライトアクリレートL-A」)120.0gと、メチルエチルケトン150.0gとを入れた。反応容器内を100ml/分の風量で窒素置換しながら、15分間で25℃から80℃まで加熱した。その後、温度を80℃に維持しながら、追加モノマーとしてのイソステアリルアクリレート24.0g及び2-ヒドロキシエチルアクリレート6.0gと、t-ブチルパーオキシ-2-エチルヘキサノエート5.0gとを含む溶液を120分間かけて滴下した。滴下終了後、更に2時間反応を進行させた。続いて、メチルエチルケトンを留去することによりイソステアリルアクリレートと2-ヒドロキシエチルアクリレートとの共重合体であるアクリル重合体C(重量平均分子量30000、Tg:-3℃)を得た。
Acrylic polymer D
In a reaction vessel equipped with a cooling tube, a thermometer, a stirrer, a dropping funnel and a nitrogen introduction tube, 120.0 g of lauryl acrylate as an initial monomer (manufactured by Kyoeisha Chemical Co., Ltd., trade name “Light Acrylate LA”), 150.0 g of methyl ethyl ketone was added. While the inside of the reaction vessel was purged with nitrogen at an air flow of 100 ml / min, it was heated from 25 ° C. to 80 ° C. for 15 minutes. Thereafter, while maintaining the temperature at 80 ° C., 24.0 g of isostearyl acrylate and 6.0 g of 2-hydroxyethyl acrylate as additional monomers and 5.0 g of t-butylperoxy-2-ethylhexanoate are contained. The solution was added dropwise over 120 minutes. After completion of the dropwise addition, the reaction was further allowed to proceed for 2 hours. Subsequently, methyl ethyl ketone was distilled off to obtain acrylic polymer C (weight average molecular weight 30000, Tg: −3 ° C.), which is a copolymer of isostearyl acrylate and 2-hydroxyethyl acrylate.
アクリル重合体E
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管を取り付けた反応容器に、初期モノマーとしてのn-ブチルアクリレート(和光純薬工業株式会社製)78.4gと、2-エチルヘキシルアクリレート19.6.0g及びアクリル酸(和光純薬工業株式会社製)2.0g及び超純水(和光純薬工業株式会社製)100.0gと安定剤としてポリビニルアルコール3.0gを入れた。反応容器内を100ml/分の風量で窒素置換しながら、15分間で25℃から65℃まで加熱した。その後、温度を65℃に維持しながら、t-ブチルパーオキシ-2-エチルヘキサノエート0.1gを加え、6時間反応を進行させた。水を留去することにより、n-ブチルアクリレート、2-エチルヘキシルアクリレート及びアクリル酸の共重合体であるアクリル重合体E(重量平均分子量2270000、Tg:-18℃)を得た。
Acrylic polymer E
In a reaction vessel equipped with a cooling tube, a thermometer, a stirrer, a dropping funnel and a nitrogen introducing tube, 78.4 g of n-butyl acrylate (manufactured by Wako Pure Chemical Industries, Ltd.) as an initial monomer and 2-ethylhexyl acrylate 19. 6.0 g, 2.0 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and 100.0 g of ultrapure water (manufactured by Wako Pure Chemical Industries, Ltd.) and 3.0 g of polyvinyl alcohol as a stabilizer were added. The reaction vessel was heated from 25 ° C. to 65 ° C. over 15 minutes while purging with nitrogen at a flow rate of 100 ml / min. Thereafter, 0.1 g of t-butylperoxy-2-ethylhexanoate was added while maintaining the temperature at 65 ° C., and the reaction was allowed to proceed for 6 hours. By distilling off water, acrylic polymer E (weight average molecular weight 2270000, Tg: −18 ° C.) which is a copolymer of n-butyl acrylate, 2-ethylhexyl acrylate and acrylic acid was obtained.
 合成したアクリル重合体の重量平均分子量及びガラス転移温度を以下の手順で測定した。測定結果を表1に示す。 The weight average molecular weight and glass transition temperature of the synthesized acrylic polymer were measured by the following procedure. The measurement results are shown in Table 1.
重量平均分子量(Mw)
 アクリル重合体の重量平均分子量を、ゲルパーミエーションクロマトグラフィー(GPC)によって得られたクロマトグラムから、標準ポリスチレンの検量線を使用して換算することによって決定した。検量線の作成のための標準ポリスチレンとして、5サンプルセット(PStQuick MP-H,PStQuick B[東ソー株式会社製、商品名])を用いた。GPCは下記の装置及び測定条件で測定した、
・装置:高速GPC装置 HLC-8320GPC(検出器:示差屈折計)(東ソー株式会社製、商品名)
・溶媒:テトラヒドロフラン(THF)
・カラム:カラムTSKGEL SuperMultipore HZ-H(東ソー株式会社製、商品名)
・カラムサイズ:カラム長が15cm、カラム内径が4.6mm
・測定温度:40℃
・流量:0.35mL/分
・試料濃度:10mg/THF5mL
・注入量:20μL
Weight average molecular weight (Mw)
The weight average molecular weight of the acrylic polymer was determined by converting from a chromatogram obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. As a standard polystyrene for preparing a calibration curve, 5 sample sets (PStQuick MP-H, PStQuick B [trade name, manufactured by Tosoh Corporation]) were used. GPC was measured with the following equipment and measurement conditions.
・ Device: High-speed GPC device HLC-8320GPC (detector: differential refractometer) (trade name, manufactured by Tosoh Corporation)
・ Solvent: Tetrahydrofuran (THF)
-Column: Column TSKGEL SuperMultipore HZ-H (trade name, manufactured by Tosoh Corporation)
Column size: Column length is 15 cm and column inner diameter is 4.6 mm
・ Measurement temperature: 40 ℃
・ Flow rate: 0.35 mL / min ・ Sample concentration: 10 mg / THF 5 mL
・ Injection volume: 20μL
ガラス転移温度(Tg)
 アクリル重合体のTgを、レオメータ(Anton Paar製、MCR302)を用いた粘弾性測定によって求めた。測定条件及び方法を以下に示す。
測定条件
・ローター名称:パラレルプレート(PP12)
・周波数:1(s-1)
・ひずみ量:1%
測定方法:
厚み200μmに製膜されたアクリル重合体を、レオメータの金属ステージに貼り付けた。この状態で金属ステージを50℃に加温しながら、金属ステージ及びこれと対向するパラレルプレートでアクリル重合体の膜を挟んだ。金属ステージとパラレルプレートの間隔を195μmに設定した。その後、金属プレートを-70℃まで冷却してから、-70℃から50℃まで、昇温速度3℃/分で昇温させながらアクリル重合体の粘弾性を測定した。tanδの最大ピークにおける温度をガラス転移温度(Tg)として記録した。
Glass transition temperature (Tg)
The Tg of the acrylic polymer was determined by viscoelasticity measurement using a rheometer (manufactured by Anton Paar, MCR302). Measurement conditions and methods are shown below.
Measurement conditions and rotor name: Parallel plate (PP12)
・ Frequency: 1 (s-1)
・ Strain amount: 1%
Measuring method:
The acrylic polymer formed to a thickness of 200 μm was attached to the metal stage of the rheometer. In this state, while heating the metal stage to 50 ° C., the acrylic polymer film was sandwiched between the metal stage and a parallel plate facing the metal stage. The distance between the metal stage and the parallel plate was set to 195 μm. Thereafter, the metal plate was cooled to −70 ° C., and then the viscoelasticity of the acrylic polymer was measured while increasing the temperature from −70 ° C. to 50 ° C. at a temperature increase rate of 3 ° C./min. The temperature at the maximum peak of tan δ was recorded as the glass transition temperature (Tg).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
2.合わせガラスの作製
(実施例1)
[中間膜用フィルム材の作製]
 基材として、剥離性の異なる2種類のポリエチレンテレフタレートフィルム(厚さ75μm、藤森工業株式会社製)を準備した。これらを用いて、以下の(I)、(II)の手順で、アクリル重合体を含有する樹脂層を有する中間膜用フィルム材を作製した。
2. Preparation of laminated glass (Example 1)
[Production of film material for interlayer film]
Two types of polyethylene terephthalate films (thickness 75 μm, manufactured by Fujimori Kogyo Co., Ltd.) having different peelability were prepared as substrates. Using these, a film material for an intermediate film having a resin layer containing an acrylic polymer was produced by the following procedures (I) and (II).
(I):アクリル重合体60質量部及び2-ブタノンを40.0質量部を、撹拌によって混合して、塗工液を得る。
(II):(I)で得られた塗工液を重剥離セパレータとしてのポリエチレンテレフタレートフィルム上にバーコーターを用いて塗布し、塗膜を100℃で5分間の加熱により乾燥して、厚み100μmの樹脂層を形成させる。樹脂層上に軽剥離セパレータとしてのポリエチレンテレフタレートフィルムを積層して、中間膜用フィルム材を得る。
(I): 60 parts by mass of an acrylic polymer and 40.0 parts by mass of 2-butanone are mixed by stirring to obtain a coating solution.
(II): The coating liquid obtained in (I) was applied onto a polyethylene terephthalate film as a heavy release separator using a bar coater, and the coating film was dried by heating at 100 ° C. for 5 minutes to a thickness of 100 μm. The resin layer is formed. A polyethylene terephthalate film as a light release separator is laminated on the resin layer to obtain an intermediate film material.
 得られた中間膜用フィルム材の樹脂層の粘弾性を、動的粘弾性測定器(TAインスツルメント株式会社、製品名「RSA-G2」)を用い、温度-70~100℃の範囲、周波数0.05Hz、0.5Hz、5Hz又は50Hz、ひずみ量1%の条件下、引張測定モードにて測定した。測定結果から、アレニウス式を用いて、基準温度を25℃として、TRIOS Software(TAインスツルメント株式会社、製品名)を用いてマスターカーブを作成した。得られたマスターカーブから、周波数1000Hzにおける貯蔵弾性率、及び、周波数100~100000Hzの範囲内における損失係数(tanδ)の最大値を読み取った。後述の他の実施例又は比較例で作製した中間膜の粘弾性も同様に測定した。 The viscoelasticity of the resin layer of the obtained film material for interlayer film was measured using a dynamic viscoelasticity measuring device (TA Instruments Co., Ltd., product name “RSA-G2”) in the temperature range of −70 to 100 ° C. The measurement was performed in the tensile measurement mode under the conditions of a frequency of 0.05 Hz, 0.5 Hz, 5 Hz or 50 Hz, and a strain amount of 1%. From the measurement results, a master curve was created using TRIOS Software (TA Instruments Co., Ltd., product name) using the Arrhenius equation with a reference temperature of 25 ° C. From the obtained master curve, the storage elastic modulus at a frequency of 1000 Hz and the maximum value of the loss coefficient (tan δ) within a frequency range of 100 to 100,000 Hz were read. The viscoelasticity of the intermediate films produced in other examples or comparative examples described later was also measured.
[合わせガラスの作製]
 中間膜用フィルム材から、軽剥離セパレータを剥離した。露出した樹脂層を、第1のガラス板としてのフロートガラス(縦110mm、横110mm、厚み2.7mm)に貼り付け、その状態で重剥離セパレータ側からローラーを押し付けて、樹脂層をフロートガラスに密着させた。その後、重剥離セパレータを樹脂層から剥離した。露出した樹脂層を、真空積層機を用いて真空状態で第2のガラス板としてのポリカーボネート板(PC板、縦110mm、横110mm、厚み3.0mm)に貼り付けた。得られた積層体を温度50℃、圧力0.5MPa、30分保持の条件でオートクレーブ内で加熱及び加圧して、フロートガラス/中間膜/PCの構成を有する合わせガラスを得た。
[Production of laminated glass]
The light release separator was peeled from the film material for the interlayer film. The exposed resin layer is affixed to float glass (length 110 mm, width 110 mm, thickness 2.7 mm) as a first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to put the resin layer on the float glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer. The exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator. The obtained laminate was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a 30-minute hold to obtain a laminated glass having a structure of float glass / interlayer film / PC.
(実施例2)
 アクリル重合体Aに代えてアクリル重合体Bを用いたこと以外は実施例1と同様にして、中間膜用フィルム材を得た。得られた中間膜用フィルム材を用いて、実施例1と同様にしてフロートガラス/中間膜/PCの構成を有する合わせガラスを得た。
(Example 2)
A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer B was used instead of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
(実施例3)
 実施例1と同じ中間膜用フィルム材を用い、PC板に代えてポリメチルメタクリレート板(PMMA板、縦110mm、横110mm、厚み3.0mm)を用いたこと以外は実施例1と同様にして、フロートガラス/中間膜/PMMAの構成を有する合わせガラスを得た。
(Example 3)
The same film material for an interlayer film as in Example 1 was used, except that a polymethyl methacrylate plate (PMMA plate, 110 mm long, 110 mm wide, 3.0 mm thick) was used instead of the PC plate. A laminated glass having a structure of float glass / intermediate film / PMMA was obtained.
(実施例4)
 実施例1と同じ中間膜用フィルム材を用い、フロートガラスに代えて強化ガラス(縦110mm、横110mm、厚み0.55mm)を用いたこと以外は実施例1と同様にして、強化ガラス/中間膜/PCの構成を有する合わせガラスを得た。
Example 4
The same tempered glass / intermediate as in Example 1, except that the same interlayer film material as in Example 1 was used and tempered glass (110 mm long, 110 mm wide, 0.55 mm thick) was used instead of float glass. A laminated glass having a film / PC configuration was obtained.
(実施例5)
[中間膜用フィルム材の作製]
 基材として、剥離性の異なる2種類のポリエチレンテレフタレートフィルム(厚さ75μm、藤森工業株式会社製)を準備した。これら用いて、以下の(I)、(II)の手順で、アクリル重合体Aを含有する樹脂層を有する中間膜用フィルム材を作製した。
(Example 5)
[Production of film material for interlayer film]
Two types of polyethylene terephthalate films (thickness 75 μm, manufactured by Fujimori Kogyo Co., Ltd.) having different peelability were prepared as substrates. Using these, a film material for an intermediate film having a resin layer containing the acrylic polymer A was prepared by the following procedures (I) and (II).
(I):アクリル重合体60質量部、2-ブタノンを40.0質量部、熱架橋剤としてポリイソシアネート化合物(東ソー株式会社、製品名「コロネートHL」)0.12質量部を、撹拌によって混合して、塗工液を得る。
(II):(I)で得られた塗工液を重剥離セパレータとしてのポリエチレンテレフタレートフィルム上にバーコーターを用いて塗布し、塗膜を100℃で5分間の加熱により乾燥して、厚さ100μmの樹脂層を形成させる。樹脂層上に軽剥離セパレータとしてのポリエチレンテレフタレートフィルムを積層して、中間膜用フィルム材を得る。
(I): 60 parts by mass of an acrylic polymer, 40.0 parts by mass of 2-butanone, and 0.12 parts by mass of a polyisocyanate compound (Tosoh Corporation, product name “Coronate HL”) as a thermal crosslinking agent were mixed by stirring. Thus, a coating liquid is obtained.
(II): The coating liquid obtained in (I) was applied onto a polyethylene terephthalate film as a heavy release separator using a bar coater, and the coating film was dried by heating at 100 ° C. for 5 minutes to obtain a thickness. A 100 μm resin layer is formed. A polyethylene terephthalate film as a light release separator is laminated on the resin layer to obtain an intermediate film material.
[合わせガラスの作製]
 中間膜用フィルム材から、軽剥離セパレータを剥離した。露出した樹脂層を、第1のガラス板としての強化ガラス(縦110mm、横110mm、厚み0.55mm)に貼り付け、その状態で重剥離セパレータ側からローラーを押し付けて、樹脂層を強化ガラスに密着させた。その後、重剥離セパレータを樹脂層から剥離した。露出した樹脂層を、真空積層機を用いて真空状態で第2のガラス板としてのポリカーボネート板(PC板、縦110mm、横110mm、厚み3.0mm)に貼り付けた。得られた積層体を温度50℃、圧力0.5MPa、30分保持の条件で、オートクレーブ内で加熱及び加圧して、強化ガラス/中間膜/PCの構成を有する合わせガラスを得た。
[Production of laminated glass]
The light release separator was peeled from the film material for the interlayer film. The exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as the first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer. The exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator. The obtained laminated body was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a holding time of 30 minutes to obtain a laminated glass having a configuration of tempered glass / interlayer film / PC.
(実施例6)
 実施例1と同じ中間膜用フィルム材から、軽剥離セパレータを剥離した。露出した樹脂層を、第1のガラス板としての強化ガラス(縦110mm、横110mm、厚み0.55mm)に貼り付け、その状態で重剥離セパレータ側からローラーを押し付けて、樹脂層を強化ガラスに密着させた。その後、重剥離セパレータを樹脂層から剥離した。露出した樹脂層を、真空積層機を用いて真空状態で第2のガラス板としてのポリカーボネート板(PC板、縦110mm、横110mm、厚み3.0mm)に貼り付けた。得られた積層体(強化ガラス/樹脂層/PC板)を温度50℃、圧力0.5MPa、30分保持の条件でオートクレーブ内で加熱及び加圧した。
 実施例1と同じ中間膜用フィルム材から、軽剥離セパレータを剥離した。露出した樹脂層を、第3のガラス板としての強化ガラス(縦110mm、横110mm、厚み0.55mm)に貼り付け、その状態で重剥離セパレータ側からローラーを押し付けて、樹脂層を強化ガラスに密着させた。続いて重剥離セパレータを剥離し、強化ガラス/樹脂層の積層体を、上記の強化ガラス/樹脂層/PC板の積層体のPC板側の表面に、樹脂層が内側になる向きで積層した。その後、全体の積層体を、オートクレーブ内で温度50℃、圧力0.5MPa、30分保持の条件で加熱及び加圧して、強化ガラス/中間膜/PC/中間膜/強化ガラスの構成を有する合わせガラスを得た。
(Example 6)
The light release separator was peeled from the same film material for an interlayer film as in Example 1. The exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as the first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer. The exposed resin layer was attached to a polycarbonate plate (PC plate, 110 mm long, 110 mm wide, 3.0 mm thick) as a second glass plate in a vacuum state using a vacuum laminator. The obtained laminate (tempered glass / resin layer / PC plate) was heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a 30-minute hold.
The light release separator was peeled from the same film material for an interlayer film as in Example 1. The exposed resin layer is affixed to tempered glass (length 110 mm, width 110 mm, thickness 0.55 mm) as a third glass plate, and in that state, a roller is pressed from the side of the heavy release separator to make the resin layer into tempered glass. Adhered. Subsequently, the heavy release separator was peeled off, and the laminate of the tempered glass / resin layer was laminated on the surface of the tempered glass / resin layer / PC plate laminate on the PC plate side so that the resin layer was inward. . Thereafter, the entire laminate is heated and pressurized in an autoclave under the conditions of a temperature of 50 ° C., a pressure of 0.5 MPa, and a holding time of 30 minutes to obtain a laminated glass / interlayer / PC / intermediate / tempered glass composition. Glass was obtained.
(比較例1)
 アクリル重合体Aに代えてアクリル重合体Cを用いたこと以外は実施例1と同様にして、中間膜用フィルム材を得た。得られた中間膜用フィルム材を用いて、実施例1と同様にしてフロートガラス/中間膜/PCの構成を有する合わせガラスを得た。
(Comparative Example 1)
A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer C was used instead of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
(比較例2)
 アクリル重合体Aに代えてアクリル重合体Dを用いたこと以外は実施例1と同様にして、中間膜用フィルム材を得た。得られた中間膜用フィルム材を用いて、実施例1と同様にしてフロートガラス/中間膜/PCの構成を有する合わせガラスを得た。
(Comparative Example 2)
A film material for an intermediate film was obtained in the same manner as in Example 1 except that the acrylic polymer D was used in place of the acrylic polymer A. Using the obtained film material for interlayer film, a laminated glass having a structure of float glass / intermediate film / PC was obtained in the same manner as in Example 1.
(比較例3)
 実施例1と同じ中間膜用フィルム材を用い、PC板に代えてフロートガラス(縦110mm、横110mm、厚み2.7mm)を用いたこと以外は実施例1と同様にして、フロートガラス/中間膜/フロートガラスの構成を有する合わせガラスを得た。
(Comparative Example 3)
Float glass / intermediate in the same manner as in Example 1 except that the same film material for an interlayer film as in Example 1 was used, and float glass (110 mm long, 110 mm wide, 2.7 mm thick) was used instead of the PC plate. A laminated glass having a membrane / float glass configuration was obtained.
(比較例4)
 アクリル重合体Eの100質量部と、アセチルアセトン亜鉛塩(東京化成工業製)0.5質量部と、アセチルアセトンアルミニウム塩(和光純薬工業株式会社製)0.7質量部とを溶融混錬した。得られた溶融混錬物を重剥離セパレータとしてのポリエチレンテレフタレートフィルム上に成膜して、厚さ3.8×10μmの樹脂層を形成させた。形成された樹脂層上に軽剥離セパレータとしてのポリエチレンテレフタレートフィルムを積層して、中間膜用フィルム材を得た。
 得れれた中間膜用フィルム材を用い、PC板に代えてフロートガラス(縦110mm、横110mm、厚み2.7mm)を用いたこと以外は実施例1と同様にして、フロートガラス/中間膜/フロートガラスの構成を有する合わせガラスを得た。
(Comparative Example 4)
100 parts by mass of acrylic polymer E, 0.5 parts by mass of acetylacetone zinc salt (manufactured by Tokyo Chemical Industry) and 0.7 parts by mass of acetylacetone aluminum salt (manufactured by Wako Pure Chemical Industries, Ltd.) were melt-kneaded. The obtained melt-kneaded material was deposited on a polyethylene terephthalate film as a heavy release separator to form a resin layer having a thickness of 3.8 × 10 2 μm. A polyethylene terephthalate film as a light release separator was laminated on the formed resin layer to obtain an interlayer film material.
Float glass / intermediate film / in the same manner as in Example 1 except that the obtained film material for interlayer film was used and float glass (110 mm long, 110 mm wide, 2.7 mm thick) was used instead of the PC plate. A laminated glass having a structure of float glass was obtained.
(比較例5)
 2枚のフロートガラスのうち1枚をPC板(縦110mm、横110mm、厚み3.0mm)に代えたこと以外は比較例4と同様にして、フロートガラス/中間膜/PCの構成を有する合わせガラスを得た。
(Comparative Example 5)
A laminate having the structure of float glass / intermediate film / PC in the same manner as in Comparative Example 4 except that one of the two float glasses was replaced with a PC plate (110 mm long, 110 mm wide, 3.0 mm thick). Glass was obtained.
(比較例6)
 アクリル重合体Eを酢酸エチルに溶解して、濃度40質量%のアクリル重合体溶液を調製した。架橋剤としてトリレンジイソシアネート(日化トレーディング、商品名「TDI」)を酢酸エチルに溶解して、濃度25質量%の架橋剤溶液を調製した。アクリル重合体溶液100質量部と、架橋剤溶液2.0質量部とを混合し、攪拌した。得られた混合溶液を、重剥離セパレータとしてのポリエチレンテレフタレートフィルム上に成膜し、塗膜を乾燥して、厚さ3.8×10μmの樹脂層を形成させた。形成された樹脂層上に軽剥離セパレータとしてのポリエチレンテレフタレートフィルムを積層して、中間膜用フィルム材を得た。
 得れれた中間膜用フィルム材を用い、PC板に代えてフロートガラス(縦110mm、横110mm、厚み2.7mm)を用いたこと以外は実施例1と同様にして、フロートガラス/中間膜/フロートガラスの構成を有する合わせガラスを得た。
(Comparative Example 6)
Acrylic polymer E was dissolved in ethyl acetate to prepare an acrylic polymer solution having a concentration of 40% by mass. Tolylene diisocyanate (Nikka Trading, trade name “TDI”) as a crosslinking agent was dissolved in ethyl acetate to prepare a crosslinking agent solution having a concentration of 25% by mass. 100 parts by mass of the acrylic polymer solution and 2.0 parts by mass of the crosslinking agent solution were mixed and stirred. The obtained mixed solution was formed on a polyethylene terephthalate film as a heavy release separator, and the coating film was dried to form a resin layer having a thickness of 3.8 × 10 2 μm. A polyethylene terephthalate film as a light release separator was laminated on the formed resin layer to obtain an interlayer film material.
Float glass / intermediate film / in the same manner as in Example 1 except that the obtained film material for interlayer film was used and float glass (110 mm long, 110 mm wide, 2.7 mm thick) was used instead of the PC plate. A laminated glass having a structure of float glass was obtained.
(比較例7)
 第2のガラス板としてフロートガラス板に代えてPC板(縦110mm、横110mm、厚さ3.0mm)を用いたこと以外は比較例6と同様にして、フロートガラス/中間膜/PCの構成を有する合わせガラスをえた。
(Comparative Example 7)
Structure of float glass / intermediate film / PC as in Comparative Example 6 except that a PC plate (110 mm long, 110 mm wide, 3.0 mm thick) was used instead of the float glass plate as the second glass plate A laminated glass having
(比較例8)
 ポリビニルブチラール樹脂(PVB樹脂、アセタール化度68.0モル%、ビニルアセテート成分の割合0.6モル% )100質量部と、可塑剤としてのトリエチレングリコールジ-2-エチルヘキサノエート38質量部とを混合し、これをミキシングロールで充分に溶融混練した。混錬物をプレス成形機で150℃、30分間プレス成形して、厚み3.8×10μmの樹脂層を形成させた。
(Comparative Example 8)
100 parts by mass of polyvinyl butyral resin (PVB resin, degree of acetalization 68.0 mol%, vinyl acetate component ratio 0.6 mol%) and 38 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer Were mixed and sufficiently melt-kneaded with a mixing roll. The kneaded material was press-molded with a press molding machine at 150 ° C. for 30 minutes to form a resin layer having a thickness of 3.8 × 10 2 μm.
 得られた樹脂層を2枚のフロートガラス(縦110mm、横110mm、厚み2.7mm)で挟み込んだ。得られた積層体をゴムバック内に入れ、2660Paの真空度で20分間脱気した。脱気した状態のままゴムバックをオーブンに入れ、90℃で30分間保持しながら、積層体を真空圧で加圧した。さらに、積層体をオートクレーブ中で135℃、圧力118N/cmの条件で20分間圧着して、PVB樹脂を含有する樹脂層を中間膜として有する合わせガラスを得た。 The obtained resin layer was sandwiched between two float glasses (length 110 mm, width 110 mm, thickness 2.7 mm). The obtained laminate was put in a rubber bag and deaerated at a vacuum degree of 2660 Pa for 20 minutes. The rubber bag was put into an oven while being deaerated, and the laminate was pressurized with a vacuum pressure while being held at 90 ° C. for 30 minutes. Furthermore, the laminate was pressed in an autoclave at 135 ° C. and a pressure of 118 N / cm 2 for 20 minutes to obtain a laminated glass having a resin layer containing a PVB resin as an intermediate film.
(比較例9)
 2枚のフロートガラスのうち1枚をPC板(縦110mm、横110mm、厚み3.0mm)に代えたこと以外は比較例8と同様にして、フロートガラス/PVB/PCの構成を有する合わせガラスを得た。
(Comparative Example 9)
Laminated glass having the structure of float glass / PVB / PC in the same manner as in Comparative Example 8 except that one of the two float glasses is replaced with a PC plate (110 mm long, 110 mm wide, 3.0 mm thick). Got.
(比較例10)
 縦110mm、横110mm、厚み6mmのポリカーボネート板を、比較用のガラス板として準備した。
(Comparative Example 10)
A polycarbonate plate having a length of 110 mm, a width of 110 mm, and a thickness of 6 mm was prepared as a comparative glass plate.
3.評価
 得られた合わせガラスを、以下の方法により評価した。結果を表2に示した。
[耐衝撃試験]
 100mm×100mmの正方形の開口を有する支持枠を準備した。この支持枠の開口全体が合わせガラスで塞がれるように、合わせガラスを支持枠で水平に保持した。支持枠の開口内の合わせガラスの中心点から半径25mm以内の位置に向けて、合わせガラス上方の所定の高さから質量約1040g、直径63.5mmの鋼球を垂直に自由落下させた。剛球を落下させる高さを、5cmから100cmまで、5cm刻みで順次増加させながら試験を繰返し、合わせガラスが割れたときの、剛球を落下させる高さ(割れ高さH)を記録した。それぞれの合わせガラス6枚について試験し、割れ高さの平均値を算出した。この値が大きいほど合わせガラスの防割性の高いといえる。割れ高さH、剛球の質量m、及び合わせガラスの面積(100cm)から、下記式により衝撃強度Eを求めた。
 E=mgH/A
E:衝撃強度[J/cm]、m:剛球の質量[kg]、g:重力加速度、H:割れ高さ[m]、A:合わせガラスの面積[cm
 合わせガラスの衝撃強度を、剛球を第1のガラス板側から合わせガラスに衝突させる試験と、剛球を第2のガラス板又は第3のガラス板側から合わせガラスに衝突させる試験のそれぞれについて測定した。
3. Evaluation The obtained laminated glass was evaluated by the following methods. The results are shown in Table 2.
[Shock resistance test]
A support frame having a square opening of 100 mm × 100 mm was prepared. The laminated glass was held horizontally by the support frame so that the entire opening of the support frame was closed with the laminated glass. A steel ball having a mass of approximately 1040 g and a diameter of 63.5 mm was freely dropped vertically from a predetermined height above the laminated glass toward a position within a radius of 25 mm from the center point of the laminated glass in the opening of the support frame. The test was repeated while gradually increasing the height at which the hard sphere was dropped from 5 cm to 100 cm in increments of 5 cm, and the height at which the hard sphere was dropped when the laminated glass broke (crack height H) was recorded. Each of the 6 laminated glasses was tested, and the average value of the crack heights was calculated. It can be said that the larger the value, the higher the splitting property of the laminated glass. From the crack height H, the mass m of the hard sphere, and the area (100 cm 2 ) of the laminated glass, the impact strength E was determined by the following formula.
E = mgH / A
E: Impact strength [J / cm 2 ], m: Mass of hard sphere [kg], g: Gravitational acceleration, H: Crack height [m], A: Laminated glass area [cm 2 ]
The impact strength of the laminated glass was measured for each of a test in which a hard sphere collides with the laminated glass from the first glass plate side and a test in which the rigid sphere collides with the laminated glass from the second glass plate or the third glass plate side. .
[ヘーズ]
 JIS K 7136に準拠した測定により、合わせガラスの中心点のヘーズを測定した。測定装置として日本電色工業株式会社製、商品名:Spectral haze meter SH7000を用い、光源をC、基準を空気をとした。
[Haze]
The haze at the center point of the laminated glass was measured by measurement based on JIS K 7136. A product name: Spectral haze meter SH7000 manufactured by Nippon Denshoku Industries Co., Ltd. was used as the measuring device, the light source was C, and the standard was air.
[表面硬度]
 表面硬度の評価は、No.553-M電動鉛筆引っかき硬度試験機(株式会社 安田精機製作所製)を用いて、JIS K5600-5-4に準じて行った。各種硬度の鉛筆を45゜の角度で試料の表面にあて、荷重をかけて引っ掻き試験を行い、傷がつかない最も硬い鉛筆の硬さを鉛筆硬度とした。
[surface hardness]
Evaluation of surface hardness is No. Using a 553-M electric pencil scratch hardness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the test was conducted according to JIS K5600-5-4. A pencil having various hardnesses was applied to the surface of the sample at an angle of 45 °, and a scratch test was performed by applying a load. The hardness of the hardest pencil that was not damaged was defined as pencil hardness.
[耐光性試験]
 実施例及び比較例で作製した合わせガラスを、促進耐候性試験機(スガ試験機社製、SX75)のサンプルホルダーに固定し、キセノンロングライフアークランプを光源として照射強度180W/m、波長300~400nmの光を照射しながら、温度63℃、湿度50%RH、試験時間300時間の条件で促進耐候性試験に供した。試験後のサンプルにおいて、ヘーズが1.0以下で目視によって気泡の発生が確認されない場合を「Pass」、ヘーズが1.0以上である又は目視によって気泡の発生が認められた場合を「NG」とした。
[Light resistance test]
The laminated glasses prepared in the examples and comparative examples are fixed to a sample holder of an accelerated weather resistance tester (manufactured by Suga Test Instruments Co., Ltd., SX75), and an irradiation intensity of 180 W / m 2 and a wavelength of 300 are set using a xenon long life arc lamp as a light source. The sample was subjected to an accelerated weathering test under the conditions of a temperature of 63 ° C., a humidity of 50% RH and a test time of 300 hours while irradiating light of ˜400 nm. In the sample after the test, the case where haze is 1.0 or less and the occurrence of bubbles is not visually confirmed is “Pass”, and the case where haze is 1.0 or more or the occurrence of bubbles is visually confirmed is “NG”. It was.
[剥離強度]
 中間膜用フィルム材から、軽剥離セパレータを剥離した。露出した樹脂層を、第1のガラス板としてのフロートガラス(縦110mm、横110mm、厚み2.7mm)に貼り付け、その状態で重剥離セパレータ側からローラーを押し付けて、樹脂層をフロートガラスに密着させた。その後、重剥離セパレータを樹脂層から剥離した。露出した樹脂層に、長さ200mm、幅100mm、厚み125μmのポリエステルフィルム(東洋紡株式会社製、商品名:コスモシャインA4300)を貼り合わせ試験用サンプルを得た。サンプルに、ポリエステルフィルムの上からカッターで長さ200mm、幅10mmの長さの切り込みを入れた。引張試験機(オリエンテック社製、商品名:RTC-1210)を用いて、切込みを入れた部分のポリエステルフィルムを掴み、引き剥がし角度180°、引き剥がし速度300mm/分で、測定時間3秒間、温度25℃の条件で剥離試験を行った。このときの荷重から、剥離強度(N/10mm)を求めた。
[Peel strength]
The light release separator was peeled from the film material for the interlayer film. The exposed resin layer is affixed to float glass (length 110 mm, width 110 mm, thickness 2.7 mm) as a first glass plate, and in that state, a roller is pressed from the side of the heavy release separator to put the resin layer on the float glass. Adhered. Thereafter, the heavy release separator was peeled from the resin layer. A polyester film having a length of 200 mm, a width of 100 mm, and a thickness of 125 μm (Toyobo Co., Ltd., trade name: Cosmo Shine A4300) was bonded to the exposed resin layer to obtain a test sample. A cut having a length of 200 mm and a width of 10 mm was cut into the sample with a cutter from above the polyester film. Using a tensile tester (Orientec Co., Ltd., trade name: RTC-1210), the polyester film at the incised part was grasped, the peeling angle was 180 °, the peeling speed was 300 mm / min, and the measurement time was 3 seconds. A peel test was performed under the condition of a temperature of 25 ° C. From the load at this time, peel strength (N / 10 mm) was determined.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示されるように、各実施例の合わせガラスは、十分に低いヘーズとともに、優れた衝撃強度を示した。表3又は表4に示す各比較例の合わせガラスは、耐衝撃試験において剥がれが生じるなど、耐衝撃性の点で十分でない、及び/又は、高いヘーズを示した。 As shown in Table 2, the laminated glass of each example showed excellent impact strength with sufficiently low haze. The laminated glass of each comparative example shown in Table 3 or Table 4 was not sufficient in terms of impact resistance and / or showed high haze, such as peeling in an impact resistance test.
 1…合わせガラス、2…合わせガラスの中間膜用フィルム材、5…中間膜、5a…樹脂層、11,12…ガラス板、21,22…基材。 DESCRIPTION OF SYMBOLS 1 ... Laminated glass, 2 ... Film material for intermediate films of laminated glass, 5 ... Intermediate film, 5a ... Resin layer, 11, 12 ... Glass plate, 21, 22 ... Base material.

Claims (12)

  1.  対向する2枚のガラス板と、前記2枚のガラス板の間に挟まれた中間膜と、を備える合わせガラスであって、
     前記2枚のガラス板のうち一方が透明プラスチック板で、他方が無機ガラス板であり、
     前記中間膜がアクリル重合体を含み、
     当該合わせガラスに向けて剛球を落下させる耐衝撃試験によって測定される衝撃強度が、0.03J/cm以上である、
    合わせガラス。
    A laminated glass comprising two opposing glass plates and an intermediate film sandwiched between the two glass plates,
    One of the two glass plates is a transparent plastic plate, the other is an inorganic glass plate,
    The intermediate film includes an acrylic polymer;
    The impact strength measured by an impact resistance test in which a hard sphere is dropped toward the laminated glass is 0.03 J / cm 2 or more.
    Laminated glass.
  2.  前記アクリル重合体が、10万以上100万以下の重量平均分子量を有する、請求項1に記載の合わせガラス。 The laminated glass according to claim 1, wherein the acrylic polymer has a weight average molecular weight of 100,000 to 1,000,000.
  3.  対向する2枚のガラス板と、前記2枚のガラス板の間に挟まれた中間膜と、を備える合わせガラスであって、
     前記2枚のガラス板のうち一方が透明プラスチック板で、他方が無機ガラス板であり、
     前記中間膜が、10万以上100万以下の重量平均分子量を有するアクリル重合体を含む、
    合わせガラス。
    A laminated glass comprising two opposing glass plates and an intermediate film sandwiched between the two glass plates,
    One of the two glass plates is a transparent plastic plate, the other is an inorganic glass plate,
    The interlayer film includes an acrylic polymer having a weight average molecular weight of 100,000 to 1,000,000.
    Laminated glass.
  4.  前記アクリル重合体が-10℃以下のガラス転移温度を有する、請求項1~3のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 3, wherein the acrylic polymer has a glass transition temperature of -10 ° C or lower.
  5.  前記中間膜が、前記アクリル重合体を含み下記粘弾性の要件(a)及び(b)を満たす層を少なくとも1層有する、請求項1~4のいずれか一項に記載の合わせガラス。
    (a)基準温度25℃、周波数1000Hzにおける貯蔵弾性率が1×10~1×10Paである
    (b)基準温度25℃、周波数100~100,000Hzの範囲における損失係数の最大値が0.4を超える
    The laminated glass according to any one of claims 1 to 4, wherein the intermediate film has at least one layer containing the acrylic polymer and satisfying the following viscoelastic requirements (a) and (b).
    (A) The storage elastic modulus at a reference temperature of 25 ° C. and a frequency of 1000 Hz is 1 × 10 5 to 1 × 10 8 Pa. (B) The maximum value of the loss coefficient at a reference temperature of 25 ° C. and a frequency of 100 to 100,000 Hz is Over 0.4
  6.  当該合わせガラスの厚みが0.5~1000mmである、請求項1~5のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 5, wherein the laminated glass has a thickness of 0.5 to 1000 mm.
  7.  前記透明プラスチック板が、ポリカーボネート樹脂板、又はポリメチルメタクリレート樹脂板である、請求項1~6のいずれか一項に記載の合わせガラス。 The laminated glass according to any one of claims 1 to 6, wherein the transparent plastic plate is a polycarbonate resin plate or a polymethyl methacrylate resin plate.
  8.  10万以上100万以下の重量平均分子量を有するアクリル重合体を含み、
     対向する2枚のガラス板と前記2枚のガラス板の間に挟まれた中間膜とを備える合わせガラスの前記中間膜を形成するために用いられ、
     前記2枚のガラス板のうち一方が透明プラスチック板で、他方が無機ガラス板である、
    合わせガラスの中間膜用樹脂組成物。
    Including an acrylic polymer having a weight average molecular weight of 100,000 to 1,000,000,
    Used to form the intermediate film of laminated glass comprising two glass plates facing each other and an intermediate film sandwiched between the two glass plates;
    One of the two glass plates is a transparent plastic plate and the other is an inorganic glass plate.
    A resin composition for an interlayer film of laminated glass.
  9.  前記アクリル重合体が-10℃以下のガラス転移温度を有する、請求項8に記載の合わせガラスの中間膜用樹脂組成物。 The resin composition for interlayer films of laminated glass according to claim 8, wherein the acrylic polymer has a glass transition temperature of -10 ° C or lower.
  10.  基材と、前記基材上に設けられた樹脂層と、を有し、
     前記樹脂層が、請求項8又は9に記載の合わせガラスの中間膜用樹脂組成物を含む層である、合わせガラスの中間膜用フィルム材。
    A base material, and a resin layer provided on the base material,
    The film material for intermediate films of a laminated glass whose said resin layer is a layer containing the resin composition for interlayer films of the laminated glass of Claim 8 or 9.
  11.  請求項1~7のいずれか一項に記載の合わせガラスを製造する方法であって、
     当該方法が、2枚の前記ガラス板を、前記アクリル重合体を含み前記中間膜を形成するための樹脂層を介在させながら貼り合せて、2枚の前記ガラス板及び前記樹脂層を有する積層体を得る工程を含む、方法。
    A method for producing the laminated glass according to any one of claims 1 to 7,
    In this method, the two glass plates are bonded to each other with the resin layer for forming the intermediate film including the acrylic polymer interposed therebetween, and the laminate having the two glass plates and the resin layer. A method comprising the steps of:
  12.  前記積層体を加熱及び加圧する工程を更に含む、請求項11に記載の方法。 The method according to claim 11, further comprising heating and pressurizing the laminate.
PCT/JP2017/038968 2016-10-31 2017-10-27 Laminated glass and film material for laminated-glass interlayer WO2018079732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547796A JPWO2018079732A1 (en) 2016-10-31 2017-10-27 Laminated glass and film material for interlayer film of laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2016/082346 2016-10-31
PCT/JP2016/082346 WO2018078881A1 (en) 2016-10-31 2016-10-31 Laminated glass and film material for laminated-glass interlayer

Publications (1)

Publication Number Publication Date
WO2018079732A1 true WO2018079732A1 (en) 2018-05-03

Family

ID=62024621

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/082346 WO2018078881A1 (en) 2016-10-31 2016-10-31 Laminated glass and film material for laminated-glass interlayer
PCT/JP2017/038968 WO2018079732A1 (en) 2016-10-31 2017-10-27 Laminated glass and film material for laminated-glass interlayer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082346 WO2018078881A1 (en) 2016-10-31 2016-10-31 Laminated glass and film material for laminated-glass interlayer

Country Status (3)

Country Link
JP (1) JPWO2018079732A1 (en)
TW (1) TW201823179A (en)
WO (2) WO2018078881A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111153A1 (en) * 2018-11-30 2020-06-04 日立化成株式会社 Laminated glass for vehicle
WO2020130116A1 (en) * 2018-12-21 2020-06-25 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
US20220089835A1 (en) * 2020-09-22 2022-03-24 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
WO2022064593A1 (en) * 2020-09-24 2022-03-31 昭和電工マテリアルズ株式会社 Shock absorbing film, method for manufacturing product provided with brittle material member, and electronic apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206739A (en) * 1993-01-13 1994-07-26 Nippon Shokubai Co Ltd Adhesive resin for producing laminated glass
JPH07118038A (en) * 1993-10-19 1995-05-09 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2001031451A (en) * 1999-07-22 2001-02-06 Mitsubishi Plastics Ind Ltd Interlayer for laminated glass and laminated glass
JP2002348150A (en) * 2001-05-28 2002-12-04 Mitsubishi Plastics Ind Ltd Self-adhesive sheet for intermediate film and transparent laminated body
JP2003336013A (en) * 2002-05-22 2003-11-28 Mitsubishi Plastics Ind Ltd Transparent pressure-sensitive adhesive, transparent pressure-sensitive adhesive sheet and laminate
JP2005041747A (en) * 2003-07-24 2005-02-17 Japan U-Pica Co Ltd Curable resin composition for injecting into laminated glass
JP2008169394A (en) * 2008-01-30 2008-07-24 Mitsubishi Plastics Ind Ltd Hot-melt type ultraviolet-crosslinking transparent self-adhesive sheet and laminated body
JP2010265170A (en) * 2008-12-22 2010-11-25 Sekisui Chem Co Ltd Laminate for laminated glass and interlayer for laminated glass
JP2016108230A (en) * 2014-11-10 2016-06-20 株式会社クラレ Interlayer for glass laminate and glass laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184897A1 (en) * 2012-06-08 2013-12-12 Corning Incorporated Laminated glass structures having high glass to polymer interlayer adhesion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06206739A (en) * 1993-01-13 1994-07-26 Nippon Shokubai Co Ltd Adhesive resin for producing laminated glass
JPH07118038A (en) * 1993-10-19 1995-05-09 Sekisui Chem Co Ltd Intermediate film for laminated glass
JP2001031451A (en) * 1999-07-22 2001-02-06 Mitsubishi Plastics Ind Ltd Interlayer for laminated glass and laminated glass
JP2002348150A (en) * 2001-05-28 2002-12-04 Mitsubishi Plastics Ind Ltd Self-adhesive sheet for intermediate film and transparent laminated body
JP2003336013A (en) * 2002-05-22 2003-11-28 Mitsubishi Plastics Ind Ltd Transparent pressure-sensitive adhesive, transparent pressure-sensitive adhesive sheet and laminate
JP2005041747A (en) * 2003-07-24 2005-02-17 Japan U-Pica Co Ltd Curable resin composition for injecting into laminated glass
JP2008169394A (en) * 2008-01-30 2008-07-24 Mitsubishi Plastics Ind Ltd Hot-melt type ultraviolet-crosslinking transparent self-adhesive sheet and laminated body
JP2010265170A (en) * 2008-12-22 2010-11-25 Sekisui Chem Co Ltd Laminate for laminated glass and interlayer for laminated glass
JP2016108230A (en) * 2014-11-10 2016-06-20 株式会社クラレ Interlayer for glass laminate and glass laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020111153A1 (en) * 2018-11-30 2020-06-04 日立化成株式会社 Laminated glass for vehicle
JPWO2020111153A1 (en) * 2018-11-30 2021-11-04 昭和電工マテリアルズ株式会社 Laminated glass for vehicles
WO2020130116A1 (en) * 2018-12-21 2020-06-25 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
JPWO2020130116A1 (en) * 2018-12-21 2021-11-11 積水化学工業株式会社 Laminated glass interlayer film and laminated glass
JP7377200B2 (en) 2018-12-21 2023-11-09 積水化学工業株式会社 Interlayer film for laminated glass and laminated glass
US20220089835A1 (en) * 2020-09-22 2022-03-24 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
US11713385B2 (en) * 2020-09-22 2023-08-01 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
US20230383092A1 (en) * 2020-09-22 2023-11-30 Ronggui Yang Durability-enhanced thermochromic film and method of manufacturing same
WO2022064593A1 (en) * 2020-09-24 2022-03-31 昭和電工マテリアルズ株式会社 Shock absorbing film, method for manufacturing product provided with brittle material member, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2018079732A1 (en) 2019-09-19
TW201823179A (en) 2018-07-01
WO2018078881A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP6907234B2 (en) Multilayer interlayer film and laminated glass
CN111918943B (en) Pressure-sensitive adhesive sheet, laminate sheet, and image display device using same
US11014340B2 (en) Intermediate film for laminated glass, and laminated glass
JP6508330B2 (en) Laminate
WO2018079732A1 (en) Laminated glass and film material for laminated-glass interlayer
KR102566973B1 (en) Photocurable pressure-sensitive adhesive sheet, photocurable pressure-sensitive adhesive sheet laminate, production method for photocurable pressure-sensitive adhesive sheet laminate, and production method for image display panel laminate
TW202136462A (en) Photosetting adhesive sheet, adhesive sheet and image display device
WO2017209013A1 (en) Photocurable resin composition for interlayer film for laminated glass, film material for interlayer film for laminated glass, and method for manufacturing laminated glass
TW201908267A (en) Resin composition for use in interlayer of laminate glass, film material for use in interlayer, and laminate glass manufacturing method
JP2020040869A (en) Resin composition for laminated glass interlayer, laminated glass interlayer, film material for laminated glass interlayer, laminated glass, and laminated glass manufacturing method, image display device, resin composition for impact-resistant member, impact-resistant film and film material for impact-resistant film
JP6733740B2 (en) Process for producing resin composition for interlayer film, film material for interlayer film and laminated glass
WO2018079720A1 (en) Laminated glass and production method therefor, and photocurable resin composition for laminated-glass interlayer
JP2021055101A (en) Transparent double-sided adhesive sheet
JP2004190012A (en) Acrylic resin composition
JP2018138504A (en) Interlayer film for glass laminate, and glass laminate
WO2020116395A1 (en) Layered body and method for manufacturing layered body
JPWO2019069373A1 (en) Resin film used for laminated glass interlayer film, laminated glass interlayer film material, laminated glass and method for manufacturing laminated glass
JP2019172529A (en) Resin composition for glass laminate and interlayer film for glass laminate using same, and film material for glass laminate interlayer film
JP7402136B2 (en) laminated glass
JP2019011222A (en) Glass laminate, film for interlayer for glass laminate, and manufacturing method of glass laminate
US12146084B2 (en) Adhesive sheet, laminated sheet, and image display device using same
JP2019104652A (en) Resin composition for intermediate film of laminated glass, film material for intermediate film of laminated glass, laminated glass, and method for manufacturing laminated glass
JP2019137573A (en) Laminated glass, method for producing laminated glass, and film material for intermediate film of laminated glass
JP2018138503A (en) Interlayer film for glass laminate, and glass laminate
WO2023111741A1 (en) Acrylate film composition to prevent the migration of small molecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547796

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865659

Country of ref document: EP

Kind code of ref document: A1