WO2018079659A1 - Block copolymer, dispersing agent, and pigment dispersion composition - Google Patents
Block copolymer, dispersing agent, and pigment dispersion composition Download PDFInfo
- Publication number
- WO2018079659A1 WO2018079659A1 PCT/JP2017/038717 JP2017038717W WO2018079659A1 WO 2018079659 A1 WO2018079659 A1 WO 2018079659A1 JP 2017038717 W JP2017038717 W JP 2017038717W WO 2018079659 A1 WO2018079659 A1 WO 2018079659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- block copolymer
- block
- mass
- aromatic
- Prior art date
Links
- 0 O=C(C=*1)NC1=O Chemical compound O=C(C=*1)NC1=O 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F6/00—Post-polymerisation treatments
- C08F6/06—Treatment of polymer solutions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D17/00—Pigment pastes, e.g. for mixing in paints
Definitions
- the present invention relates to a block copolymer, a dispersant, and a pigment dispersion composition.
- a pigment dispersion method for example, a coating film made of a pigment dispersion composition in which a pigment, a dispersant, and a dispersion medium (solvent) are mixed is formed on a substrate, exposed through a photomask having a desired pattern shape, and alkali developed. Is done.
- a transparent electrode for driving the liquid crystal is formed thereon by vapor deposition or sputtering, and further an orientation for aligning the liquid crystal in a certain direction.
- a film is formed.
- these transparent electrodes and alignment films their formation is generally performed at a high temperature of 200 ° C. or higher.
- heat resistance such as a decrease in contrast ratio of the color filter and a change in hue becomes a problem before and after the process involving high heat.
- Patent Document 1 in order to obtain a color filter having excellent heat resistance, an AB block comprising an A block having a quaternary ammonium base in the side chain and a B block not having a quaternary ammonium base. It is disclosed that a copolymer is used as a pigment dispersant for a color filter (see Patent Document 1 (claim 1, paragraphs 0049 to 0058)).
- Patent Document 2 an AB block copolymer comprising an A block having an acidic group in the side chain and a B block having an amino group or a quaternary ammonium base in the side chain is used as a pigment dispersant.
- the coating characteristics, long-term storage stability, and alkali developability are improved (see Patent Document 2 (Claim 1, paragraphs 0031 to 0034, 0038 to 0040)).
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a block copolymer that can be used as, for example, a dispersant and has excellent heat resistance.
- the block copolymer of the present invention that has been able to solve the above-mentioned problems includes an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (1), and a general formula ( And a B block including the structural unit represented by 2).
- R ⁇ 11> , R ⁇ 12 > and R ⁇ 13 > show the chain or cyclic hydrocarbon group which may have a substituent each independently. Two or more of R 11 , R 12 and R 13 may be bonded to each other to form a cyclic structure.
- X 1 represents a divalent linking group.
- R 14 represents a hydrogen atom or a methyl group.
- Y ⁇ represents at least one selected from the group consisting of an aromatic dicarboxylic imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion, and an aromatic carboxylate anion.
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- a conventional polymer having a quaternary ammonium base generally uses a halogen anion as a counter ion of a quaternary ammonium cation.
- a polymer containing a halogen anion is considered to be inferior in heat resistance because it causes a counterion elimination reaction in a high temperature atmosphere.
- the counter ion of the quaternary ammonium cation in the B block is an aromatic dicarboxylic acid imide anion, an aromatic sulfonic acid anion, an aromatic phosphonic acid anion, or an aromatic carboxylic acid anion, Excellent in properties.
- the block copolymer of this invention has A block which has an acidic group, and B block which has a specific structure, it can be used as a dispersing agent.
- the block copolymer is preferably an AB type block copolymer.
- the content of the structural unit derived from the vinyl monomer having an acidic group is preferably 2% by mass to 20% by mass in 100% by mass of the A block.
- the content of the structural unit represented by the general formula (1) is preferably 30% by mass to 85% by mass in 100% by mass of the B block.
- the content of the A block is preferably 35% by mass to 85% by mass in 100% by mass of the block copolymer.
- the present invention includes a first composition containing the block copolymer and a second composition obtained by washing the first composition with water and drying.
- the molecular weight distribution (PDI) of the block copolymer contained in the first composition is preferably 2.0 or less.
- the dispersing agent containing the said block copolymer, a 1st composition, or a 2nd composition is contained in this invention.
- the present invention includes a pigment dispersion composition containing the dispersant, a pigment, and a dispersion medium. Examples of such a composition include a pigment dispersion composition for a color filter.
- the production method of the block copolymer of the present invention is represented by an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the following formula (2), and the following formula (3).
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- R 31 , R 32 and R 33 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. Two or more of R 31 , R 32 and R 33 may be bonded to each other to form a cyclic structure.
- X 3 represents a divalent linking group.
- R 34 represents a hydrogen atom or a methyl group.
- X ⁇ represents a halogen anion.
- an aromatic dicarboxylic acid imide, aromatic sulfonic acid, aromatic phosphonic acid or an alkali metal salt of aromatic carboxylic acid is used to convert the counter ion of the quaternary ammonium cation from the halogen anion to the aromatic dicarboxylic acid. It becomes easy to exchange (anion exchange) with an acid imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion or an aromatic carboxylate anion.
- each ion is classified based on the HASB rule.
- halide ions eg, chloride ions
- Alkali metal ions eg, potassium ions
- Aromatic dicarboxylic imide anions, aromatic sulfonate anions, aromatic phosphonate anions and aromatic carboxylate anions having a ⁇ -electron system of aromatic rings are considered to be classified as soft bases.
- Quaternary ammonium ions in the polymer are considered to be classified as soft acids.
- a combination of an acid and a base having the same degree of hardness such as a soft base for a soft acid and a hard base for a hard acid, has a strong binding force. It is considered that the anion exchange is facilitated by generating an ion pair having a strong binding force in the anion exchange.
- the production method preferably prepares the block copolymer precursor using living radical polymerization.
- the production method preferably includes a step (C) of washing the block copolymer obtained in the step (B) with water.
- a block copolymer that can be used as a dispersant and has excellent heat resistance can be provided.
- the block copolymer of the present invention is represented by an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (1) described later, and a general formula (2) described later. And a B block including a structural unit.
- a block can be rephrased as “A segment”, and “B block” can be rephrased as “B segment”.
- the “vinyl monomer” refers to a monomer having a carbon-carbon double bond capable of radical polymerization in the molecule.
- the “structural unit derived from a vinyl monomer” refers to a structural unit in which a carbon-carbon double bond capable of radical polymerization of a vinyl monomer is polymerized into a carbon-carbon single bond.
- (Meth) acryl means “at least one of acrylic and methacrylic”.
- “(Meth) acrylate” means “at least one of acrylate and methacrylate”.
- “(Meth) acryloyl” refers to “at least one of acryloyl and methacryloyl”.
- the A block is a polymer block having a structural unit derived from a vinyl monomer having an acidic group. It is thought that alkali development becomes easy because A block has an acidic group. Therefore, the block copolymer can be suitably used in a pigment dispersion composition for a color filter used for producing a color filter employing alkali development.
- a block may have only 1 type of structural unit derived from the vinyl monomer which has an acidic group, and may have 2 or more types.
- the vinyl monomer having an acidic group is preferably at least one selected from a vinyl monomer having a carboxy group, a vinyl monomer having a sulfonic acid group, or a vinyl monomer having a phosphoric acid group.
- at least one selected from a (meth) acrylic monomer having a carboxy group, a (meth) acrylic monomer having a sulfonic acid group, or a (meth) acrylic monomer having a phosphoric acid group is preferable.
- vinyl monomers having a carboxy group examples include (meth) acrylic acid; hydroxy groups such as 2- (meth) acryloyloxyethyl succinate, 2- (meth) acryloyloxyethyl maleate, 2- (meth) acryloyloxyethyl phthalate A monomer obtained by reacting an acid anhydride such as maleic anhydride, succinic anhydride or phthalic anhydride with a vinyl monomer (preferably hydroxyalkyl (meth) acrylate) having a carboxylic acid; crotonic acid, maleic acid, itaconic acid and the like.
- an acid anhydride such as maleic anhydride, succinic anhydride or phthalic anhydride
- a vinyl monomer preferably hydroxyalkyl (meth) acrylate
- vinyl monomer having a sulfonic acid group examples include vinyl sulfonic acid, styrene sulfonic acid, ethyl disulfonate (meth) acrylate, methylpropyl sulfonic acid (meth) acrylamide, and ethyl sulfonate (meth) acrylamide.
- Examples of the vinyl monomer having a phosphate group include 2- (phosphonooxy) ethyl (meth) acrylate.
- the content of the structural unit derived from the vinyl monomer having an acidic group is preferably 2% by mass or more, more preferably 5% by mass or more, further preferably 7% by mass or more, and 20% by mass in 100% by mass of the A block. % Or less is preferable, more preferably 18% by mass or less, and still more preferably 16% by mass or less. If the content of the structural unit derived from the vinyl monomer having an acidic group is 2% by mass or more, the dissolution rate when neutralized with an alkali is increased in alkali development, and if it is 20% by mass or less, the hydrophilicity is high. However, it is possible to prevent the formed pixels from becoming messy.
- the A block may have a structural unit other than the structural unit derived from the vinyl monomer having an acidic group.
- the other structural unit that can be contained in the A block is not particularly limited as long as it is formed by a vinyl monomer that can be copolymerized with both a vinyl monomer having an acidic group and a vinyl monomer that forms the B block described later.
- Vinyl monomers that can form other structural units of the A block may be used alone or in combination of two or more.
- Examples of the ⁇ -olefin include 1-hexene, 1-octene, 1-decene and the like.
- Examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methoxystyrene, 2-hydroxymethylstyrene, 1-vinylnaphthalene and the like.
- Examples of the vinyl monomer containing a heterocycle include 2-vinylthiophene, N-methyl-2-vinylpyrrole, 1-vinyl-2-pyrrolidone, 2-vinylpyridine, 4-vinylpyridine and the like.
- Examples of the vinylamide include N-vinylformamide, N-vinylacetamide, N-vinyl- ⁇ -captolactam and the like.
- Examples of vinyl carboxylate include vinyl acetate, vinyl pivalate, vinyl benzoate and the like.
- Examples of dienes include butadiene, isoprene, 4-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene and the like.
- (Meth) acrylic monomers include (meth) acrylates having a chain alkyl group (straight chain alkyl group or branched chain alkyl group); (meth) acrylates having a cyclic alkyl group (monocyclic structure); aromatic ring groups (Meth) acrylate having (meth) acrylamide; (meth) acrylate having a polyethylene glycol structural unit; (meth) acrylate having a hydroxy group; caprolactone adduct of (meth) acrylate having a hydroxy group; ) Acrylate; (meth) acrylate having a cyclic ether group.
- Examples of the (meth) acrylate having a chain alkyl group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (Meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like.
- Examples of the (meth) acrylate having a cyclic alkyl group include cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, and cyclododecyl (meth) acrylate.
- Examples of the (meth) acrylate having an aromatic ring group include benzyl (meth) acrylate, phenyl (meth) acrylate, and phenoxyethyl (meth) acrylate.
- Examples of (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like.
- Examples of the (meth) acrylate having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like. (Meth) acrylate etc. are mentioned.
- the caprolactone adduct of (meth) acrylate having a hydroxy group includes a 1 mol adduct of caprolactone of 2-hydroxyethyl (meth) acrylate, a 2 mol adduct of caprolactone of 2-hydroxyethyl (meth) acrylate, and 2-hydroxyethyl (meth).
- Examples include acrylate caprolactone 3 mol adduct, 2-hydroxyethyl (meth) acrylate caprolactone 4 mol adduct, 2-hydroxyethyl (meth) acrylate caprolactone 5 mol adduct, and the like.
- Examples of the (meth) acrylate having an alkoxy group include methoxyethyl (meth) acrylate and ethoxyethyl (meth) acrylate.
- Examples of the (meth) acrylate having a cyclic ether group include glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, (meth) acryloylmorpholine, 2- (4-morpholinyl) ethyl (meth) acrylate, (3- Ethyl oxetane-3-yl) methyl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, 2- [(2-Tetrahydropyranyl) oxy] ethyl (meth) acrylate, 1,3-dioxane- (meth) acrylate and the like.
- the vinyl monomer that can form another structural unit that can be included in the A block is preferably a (meth) acrylic monomer, (meth) acrylate having a chain alkyl group, (meth) acrylate having an aromatic ring group, polyethylene glycol structure At least one selected from the group consisting of (meth) acrylates having units, (meth) acrylates having hydroxy groups, caprolactone adducts of (meth) acrylates having hydroxy groups, and (meth) acrylates having cyclic ether groups More preferably.
- the vinyl monomer that can be used in the A block can be used alone or in combination of two or more.
- the total content of these structural units is preferably 30% by mass or more, more preferably 35% by mass or more, and further preferably 40% by mass or more in 100% by mass of the A block.
- 98 mass% or less is preferable, More preferably, it is 95 mass% or less, More preferably, it is 90 mass% or less.
- a block is (meth) acrylamide, (meth) acrylate having a polyethylene glycol structural unit, (meth) acrylate having a hydroxy group, caprolactone adduct of (meth) acrylate having a hydroxy group, (meth) acrylate having an alkoxy group And having a structural unit derived from at least one vinyl monomer selected from the group consisting of (meth) acrylates having a cyclic ether group, the total content of these structural units is 100% by mass in the A block. Is preferably 2% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, preferably 70% by mass or less, more preferably 65% by mass or less, and further preferably 60% by mass or less. .
- the A block preferably has no amino group. That is, it is preferable that the vinyl monomer constituting the A block does not contain a vinyl monomer having an amino group.
- the pigment when used as a pigment dispersant, the pigment is adsorbed by both the A block and the B block, and the dispersion performance of the pigment is lowered.
- the content of the structural unit derived from the vinyl monomer having an amino group in the A block is preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.1% by mass or less, and most preferably 0% by mass. %.
- the various structural units contained in the A block may be contained in any form such as random copolymerization and block copolymerization in the A block. From the viewpoint of uniformity, it is preferably contained in the form of random copolymerization.
- the A block may be formed of a copolymer of a structural unit composed of an a1 block and a structural unit composed of an a2 block.
- the B block is a polymer block having a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2). Since the B block has a quaternary ammonium base in addition to a tertiary amino group, it is considered to have a high affinity with the pigment.
- the structural unit represented by the general formula (1) has a quaternary ammonium salt in the structure, and as its anion component, an aromatic dicarboxylic acid imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion and an aromatic It has at least one selected from the group consisting of carboxylate anions.
- the structural unit represented by the general formula (1) in the B block may be only one type or may have two or more types.
- R ⁇ 11> , R ⁇ 12 > and R ⁇ 13 > show the chain or cyclic hydrocarbon group which may have a substituent each independently. Two or more of R 11 , R 12 and R 13 may be bonded to each other to form a cyclic structure.
- X 1 represents a divalent linking group.
- R 14 represents a hydrogen atom or a methyl group.
- Y ⁇ represents at least one selected from the group consisting of an aromatic dicarboxylic imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion, and an aromatic carboxylate anion.
- the chain hydrocarbon group represented by R 11 to R 13 includes both straight and branched chain groups.
- Examples of the group represented by R 11 to R 13 include an alkyl group having 1 to 4 carbon atoms which may have a substituent, and an aralkyl group having 7 to 16 carbon atoms which may have a substituent.
- a methyl group, an ethyl group, a propyl group, and a benzyl group (—CH 2 C 6 H 5 ) are more preferable.
- Examples of the cyclic structure formed by bonding two or more of R 11 to R 13 to each other include a 5- to 7-membered nitrogen-containing heteromonocycle or a condensed ring formed by condensing two of these.
- the nitrogen-containing heterocycle preferably has no aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulas (11-1), (11-2), and (11-3).
- R 61 is any one of R 11 to R 13 .
- R 62 represents an alkyl group having 1 to 6 carbon atoms.
- l represents an integer of 0 to 5.
- m represents an integer of 0 to 4.
- n represents an integer of 0 to 4. When l is 2 to 5, m is 2 to 4, and n is 2 to 4, a plurality of R 62 may be the same or different.
- examples of the divalent linking group X 1 include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a —CONH—R 15 — group, a —COO—R 16 — group
- R 15 and R 16 are a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms.
- the divalent linking group X 1 is preferably a —COO—R 16 — group, more preferably a —COO—R 17 — group (wherein R 17 is a methylene group, an alkylene group having 2 to 4 carbon atoms).
- Y ⁇ as a counter ion represents at least one selected from the group consisting of an aromatic dicarboxylic imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion and an aromatic carboxylate anion.
- Y ⁇ as the counter ion is preferably an aromatic dicarboxylic acid imide anion or an aromatic sulfonic acid anion.
- An aromatic dicarboxylic acid imide anion is an anion of an aromatic dicarboxylic acid imide and is obtained by removing a proton from nitrogen constituting dicarbomide.
- the aromatic dicarboxylic imide has an aromatic ring and an imide group (—C ( ⁇ O) NHC ( ⁇ O) —) directly bonded to the aromatic ring in the molecule. Both ends of the imide group may be bonded to one aromatic ring, or may be bonded to different aromatic rings.
- the aromatic dicarboxylic acid imide anion those represented by the general formula (12) are preferable.
- Ring A represents an aromatic ring which may have a substituent.
- the aromatic ring constituting the ring A is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- As the monocycle a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- the aromatic dicarboxylic acid imide anion includes 1,3-dioxo-1,3-dihydro-2H-isoindole-2-ide (formula (12-1)); 1,3-dioxo-1,3-dihydro- 2H-benzo [f] isoindole-2-id (formula (12-2)); 1,3-dioxo-1,3-dihydro-2H-benzo [g] isoindole-2-id (formula (12-) 3)); 5-phenyl-1,3-dioxo-1,3-dihydro-2H-isoindole-2-ide (formula (12-4)); 1,3-dioxo-1,3-dihydro-2H -Naphtho [2,3-f] isoindole-2-id (formula (12-5)); 1,3-dioxo-1,3-dihydro-2H-naphtho [2,
- the aromatic sulfonic acid anion is an anion of aromatic sulfonic acid.
- the aromatic sulfonic acid has an aromatic ring and a sulfonic acid group directly bonded to the aromatic ring in the molecule.
- an aromatic sulfonate anion what is represented by following formula (13) is preferable.
- Ar represents the aromatic ring which may have a substituent.
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- As the monocycle a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- aromatic sulfonate anions examples include benzenesulfonate anion (formula (13-1)); 1-naphthalenesulfonate anion (formula (13-2)); 2-naphthalenesulfonate anion (formula (13-3)) 4-biphenylsulfonate anion (formula (13-4)); 2-anthracenesulfonate anion (formula (13-5)); 1-anthracenesulfonate anion (formula (13-6)); 3-phenanthrenesulfone Acid anion (formula (13-7)); p-styrene sulfonate anion (formula (13-8)); p-toluenesulfonate anion (formula (13-9)).
- Aromatic phosphonic acids have an aromatic ring and a phosphonic acid group directly bonded to the aromatic ring in the molecule.
- aromatic phosphonate anion what is represented by following formula (14) is preferable.
- Ar represents the aromatic ring which may have a substituent.
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- As the monocycle a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- benzenephosphonate anion (formula (14-1)); 1-naphthalenephosphonate anion (formula (14-2)); 2-naphthalenephosphonate anion (formula (14-3)) 4-biphenylphosphonate anion (formula (14-4)); 2-anthracenephosphonate anion (formula (14-5)); 1-anthracenephosphonate anion (formula (14-6)); 3-phenanthrenephosphone Acid anion (formula (14-7)); and the like.
- the aromatic carboxylic acid anion is an anion of an aromatic carboxylic acid.
- the aromatic carboxylic acid has an aromatic ring and a carboxy group directly bonded to the aromatic ring in the molecule.
- an aromatic carboxylate anion what is represented by following formula (15) is preferable.
- Ar represents the aromatic ring which may have a substituent.
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- As the monocycle a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- aromatic carboxylate anion examples include benzoate anion (formula (15-1)); 1-naphthalenecarboxylate anion (formula (15-2)); 2-naphthalenecarboxylate anion (formula (15-3)); 4-biphenylcarboxylate anion (formula (15-4)); 2-anthracenecarboxylate anion (formula (15-5)); 1-anthracenecarboxylate anion (formula (15-6)); 3-phenanthrenecarboxylic acid An anion (formula (15-7)); p-styrene carboxylate anion (formula (15-8)); p-toluenecarboxylate anion (formula (15-9)).
- the content of the structural unit represented by the general formula (1) is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and 85% by mass in 100% by mass of the B block. % Or less, more preferably 80% by mass or less, and still more preferably 75% by mass or less.
- the structural unit represented by the general formula (2) has a tertiary amine structure.
- the structural unit represented by the general formula (2) in the B block may be only one type, or may have two or more types.
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- the chain hydrocarbon group represented by R 21 or R 22 includes both linear and branched chains.
- Examples of the group represented by R 21 or R 22 include an alkyl group having 1 to 4 carbon atoms which may have a substituent, and an aralkyl group having 7 to 16 carbon atoms which may have a substituent.
- a methyl group, an ethyl group, a propyl group, and a benzyl group are more preferable.
- Examples of the cyclic structure formed by bonding R 21 or R 22 to each other include a 5- to 7-membered nitrogen-containing heteromonocycle or a condensed ring formed by condensing two of these.
- the nitrogen-containing heterocycle preferably has no aromaticity, and more preferably a saturated ring.
- Specific examples include structures represented by the following formulas (21-1), (21-2), and (21-3).
- R 71 represents an alkyl group having 1 to 6 carbon atoms.
- l represents an integer of 0 to 5.
- m represents an integer of 0 to 4.
- n represents an integer of 0 to 4.
- l is 2 to 5
- m is 2 to 4
- n is 2 to 4, a plurality of R 71 may be the same or different.
- examples of the divalent linking group X 2 include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a —CONH—R 24 — group, and a —COO—R 25 — group.
- R 24 and R 25 are a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms].
- the content of the structural unit represented by the general formula (2) is preferably 15% by mass or more, more preferably 20% by mass or more, further preferably 25% by mass or more, and 70% by mass in 100% by mass of the B block. % Or less, more preferably 65% by mass or less, and still more preferably 60% by mass or less.
- the B block may be only the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2), or may include other structural units. From the viewpoint of maintaining affinity with the pigment, the total content of the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) in the B block is 80% by mass or more. More preferably, it is 90 mass% or more, More preferably, it is 95 mass% or more. Moreover, it is preferable that B block does not contain substantially the structural unit derived from the vinyl monomer which has the acidic group which A block has. That is, the content of the structural unit derived from the vinyl monomer having an acidic group in the A block is preferably 5% by mass or less, and more preferably 2% by mass or less in 100% by mass of the B block.
- vinyl monomer that can form another structural unit of the B block include the same ones as exemplified as specific examples of the vinyl monomer that can form the other structural unit of the A block.
- the various structural units contained in the B block may be contained in any form such as random copolymerization and block copolymerization in the B block. From the viewpoint of uniformity, it is preferably contained in the form of random copolymerization.
- the B block may be formed of a copolymer of a structural unit composed of a b1 block and a structural unit composed of a b2 block.
- the structure of the block copolymer of the present invention is preferably a linear block copolymer.
- the linear block copolymer may have any structure (arrangement). From the viewpoint of the physical properties of the linear block copolymer or the physical properties of the composition, the A block is A and the B block is B.
- a diblock copolymer represented by AB when expressed as, (a-B) m type, (a-B) m -A type, (B-a) m -B type (m is an integer of 1 or more, for example, an integer of 1 to 3) the group consisting of It is preferably a copolymer having at least one structure selected from Among these, a diblock copolymer represented by AB is preferable from the viewpoint of handleability during processing and physical properties of the composition.
- the diblock copolymer represented by AB it is derived from a structural unit derived from a vinyl monomer having an acidic group in the A block and a vinyl monomer having a tertiary amino group in the B block. It is considered that the structural unit and the structural unit derived from the vinyl monomer having a quaternary ammonium base are localized, so that the pigment, the solvent, and the binder resin (alkali-soluble resin) can be efficiently operated suitably.
- the content of the A block is preferably 35% by mass or more, more preferably 40% by mass or more, still more preferably 45% by mass or more, and preferably 85% by mass or less, in 100% by mass of the entire block copolymer. More preferably, it is 80 mass% or less, More preferably, it is 75 mass% or less.
- the content of the B block is preferably 15% by mass or more, more preferably 20% by mass or more, still more preferably 25% by mass or more, and preferably 65% by mass or less, in 100% by mass of the entire block copolymer. More preferably, it is 60 mass% or less, More preferably, it is 55 mass% or less.
- the first composition of the present invention contains the block copolymer.
- the first composition contains components other than the block copolymer.
- the impurity resulting from the manufacturing method of a block copolymer is mentioned.
- at least one alkali selected from the group consisting of a quaternizing agent described later, aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid is used.
- a metal salt examples include a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide.
- the first composition is prepared by filtering impurities such as precipitated salts (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as aromatic dicarboxylic acid imide). It is preferable to remove.
- impurities such as precipitated salts (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as aromatic dicarboxylic acid imide). It is preferable to remove.
- the molecular weight of the block copolymer contained in the first composition is measured by a gel permeation chromatography (hereinafter referred to as “GPC”) method.
- the block copolymer preferably has a weight average molecular weight (Mw) of 5000 or more, more preferably 6000 or more, further preferably 7000 or more, preferably 15000 or less, more preferably 12000 or less, and still more preferably 10,000 or less. .
- Mw weight average molecular weight
- the molecular weight distribution (PDI) of the block copolymer contained in the first composition is preferably 2.0 or less, and more preferably 1.6 or less.
- the molecular weight distribution (PDI) is determined by (weight average molecular weight (Mw) of block copolymer) / (number average molecular weight (Mn) of block copolymer). The smaller the PDI, the narrower the molecular weight distribution and the more uniform the copolymer. When the value is 1.0, the molecular weight distribution is the narrowest. When the molecular weight distribution (PDI) of the block copolymer exceeds 2.0, one having a low molecular weight or one having a high molecular weight is included.
- the amine value of the first composition is preferably 10 mgKOH / g or more, more preferably 20 mgKOH / g or more, still more preferably 30 mgKOH / g or more, and 200 mgKOH / g from the viewpoint of the adsorptivity to the pigment and the pigment dispersibility.
- g or less is preferable, more preferably 150 mgKOH / g or less, and still more preferably 100 mgKOH / g or less.
- the acid value of the first composition is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, further preferably 15 mgKOH / g or more, preferably 50 mgKOH / g or less, more preferably 40 mgKOH / g or less, More preferably, it is 35 mgKOH / g or less.
- the binder resin alkali-soluble resin
- the second composition of the present invention is obtained by washing the first composition with water and drying.
- the second composition after washing and drying has a reduced content of salt (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide).
- salt a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide.
- the impurity resulting from the manufacturing method of a block copolymer is contained like the said 1st composition.
- the said 1st composition is a composition containing the said block copolymer, and the reaction liquid at the time of synthesize
- the block copolymer contained in the second composition may or may not have the structural unit represented by the general formula (1).
- said 2nd composition contains other components other than a block copolymer.
- the other components include aromatic dicarboxylic imides, aromatic sulfonic acids, aromatic phosphonic acids, and aromatic carboxylic acids. These aromatic dicarboxylic imides, aromatic sulfonic acids, aromatic phosphonic acids and aromatic carboxylic acids may be anions or alkali metal salts.
- the molecular weight of the block copolymer contained in the second composition is measured by a GPC method.
- the block copolymer preferably has a weight average molecular weight (Mw) of 5000 or more, more preferably 6000 or more, further preferably 7000 or more, preferably 15000 or less, more preferably 12000 or less, and still more preferably 10,000 or less. .
- Mw weight average molecular weight
- the weight average molecular weight is within the above range, the dispersion performance when used as a dispersant becomes better.
- the molecular weight distribution (PDI) of the block copolymer contained in the second composition is preferably 2.0 or less, and more preferably 1.6 or less. When the molecular weight distribution (PDI) of the block copolymer exceeds 2.0, one having a low molecular weight or one having a high molecular weight is included.
- the amine value of the second composition is preferably 10 mgKOH / g or more, more preferably 20 mgKOH / g or more, still more preferably 30 mgKOH / g or more, and 200 mgKOH / g from the viewpoint of the adsorptivity to the pigment and the pigment dispersibility.
- g or less is preferable, more preferably 150 mgKOH / g or less, and still more preferably 100 mgKOH / g or less.
- the acid value of the second composition is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, further preferably 15 mgKOH / g or more, preferably 50 mgKOH / g or less, more preferably 40 mgKOH / g or less, More preferably, it is 35 mgKOH / g or less.
- the second composition preferably has a halogen anion content of 8000 ppm or less, more preferably 6000 ppm or less, and even more preferably 4000 ppm or less.
- the method for producing a block copolymer of the present invention comprises an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (2) described later, and a general formula (3) described later.
- the “block copolymer precursor” refers to a block copolymer before anion exchange.
- a block copolymer precursor is prepared.
- the block copolymer precursor includes an A block including a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (2), and a structural unit represented by the general formula (3).
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- R 21 to R 23 and X 2 in the formula (2) are the same as those described in the description of the above (B block).
- R 31 , R 32 and R 33 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. Two or more of R 31 , R 32 and R 33 may be bonded to each other to form a cyclic structure.
- X 3 represents a divalent linking group.
- R 34 represents a hydrogen atom or a methyl group.
- X ⁇ represents a halogen anion.
- the chain hydrocarbon group represented by R 31 to R 33 includes both linear and branched chains.
- Examples of the group represented by R 31 to R 33 include an alkyl group having 1 to 4 carbon atoms which may have a substituent, and an aralkyl group having 7 to 16 carbon atoms which may have a substituent.
- a methyl group, an ethyl group, a propyl group, and a benzyl group are more preferable.
- Examples of the cyclic structure formed by bonding two or more of R 31 to R 33 to each other include a 5- to 7-membered nitrogen-containing heteromonocycle or a condensed ring formed by condensing two of these.
- the nitrogen-containing heterocycle preferably has no aromaticity, and more preferably a saturated ring. Specific examples include structures represented by the following formulas (31-1), (31-2), and (31-3).
- R 81 is any one of R 31 to R 33 .
- R 82 represents an alkyl group having 1 to 6 carbon atoms.
- l represents an integer of 0 to 5.
- m represents an integer of 0 to 4.
- n represents an integer of 0 to 4.
- l is 2 to 5
- m is 2 to 4
- n is 2 to 4, a plurality of R 82 may be the same or different.
- examples of the divalent linking group X 3 include a methylene group, an alkylene group having 2 to 10 carbon atoms, an arylene group, a —CONH—R 35 — group, a —COO—R 36 — group.
- R 35 and R 36 are a single bond, a methylene group, an alkylene group having 2 to 10 carbon atoms, or an ether group (alkyloxyalkyl group) having 2 to 10 carbon atoms].
- Examples of X ⁇ include halogen anions such as chloride ion, bromide ion and iodide ion, and chloride ion is preferable.
- the A block can be obtained, for example, by polymerizing a monomer composition containing a vinyl monomer having an acidic group.
- the vinyl monomer having an acidic group used in the step (A) those described above can be used, and are selected from a vinyl monomer having a carboxy group, a vinyl monomer having a sulfonic acid group, or a vinyl monomer having a phosphate group. At least one of these is preferred. Moreover, in addition to the vinyl monomer which has an acidic group, you may mix
- the B block is a monomer containing a vinyl monomer that can form the structural unit represented by the general formula (2) and a vinyl monomer that can form the structural unit represented by the general formula (3).
- a method of polymerizing the composition after polymerizing a monomer composition containing a vinyl monomer capable of forming the structural unit represented by the general formula (2), the polymer is represented by the general formula (2) in the obtained polymer. And a method of quaternizing a tertiary amine structure of a part of the structural unit.
- vinyl monomer which can form the structural unit represented by the said General formula (2) For example, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, dimethylaminobutyl (meth) Examples include acrylate, diethylaminoethyl (meth) acrylate, diethylaminopropyl (meth) acrylate, diethylaminobutyl (meth) acrylate, and the like.
- the vinyl monomer that can form the structural unit represented by the general formula (2) may be used alone or in combination of two or more.
- the vinyl monomer that can form the structural unit represented by the general formula (3) is not particularly limited.
- the quaternizing agent includes alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, methyl iodide, etc.
- alkyl halides such as methyl chloride, ethyl chloride, methyl bromide, methyl iodide, etc.
- An aralkyl halide such as benzyl chloride, benzyl bromide or benzyl iodide; Among these, aralkyl halides such as benzyl chloride, benzyl bromide and benzyl iodide are preferable, and benzyl chloride is more preferable.
- the amount of the structural unit represented by the general formula (3) can be estimated by measuring the amount of the alkyl group and aralkyl group introduced by quaternization.
- step (A) a method of first producing an A block and polymerizing a monomer of a B block into the A block; a method of producing a B block first and polymerizing a monomer of the A block into the B block; A method in which the A block and the B block are coupled after the A block and the B block are manufactured separately; the vinyl that can form the structural unit represented by the general formula (2) in the A block by first manufacturing the A block A method of polymerizing a monomer composition containing a monomer and quaternizing a tertiary amine structure of a part of the structural unit represented by the general formula (2) in the obtained polymer; A monomer composition containing a vinyl monomer capable of forming the structural unit represented is polymerized, and a monomer of an A block is polymerized to this polymer, and the structure represented by the general formula (2) in the obtained polymer Part 3 of the unit A method for quaternizing a min structure; A block and a block having a structural unit represented by the general formula
- the polymerization method is not particularly limited, but living radical polymerization is preferred. That is, the first block copolymer is preferably polymerized using living radical polymerization.
- living radical polymerization not only the initiation reaction and the growth reaction, but also the termination of the growth end occurs due to the termination reaction and the chain transfer reaction, and the polymer tends to be a mixture of polymers having various molecular weights and heterogeneous compositions.
- the living radical polymerization method maintains the simplicity and versatility of the conventional radical polymerization method, the termination reaction and chain transfer are unlikely to occur, and the growth end grows without being deactivated. This is preferable in that it is easy to produce a polymer having a uniform composition.
- a method using a transition metal catalyst ATRP method
- RAFT method a method using a sulfur-based reversible chain transfer agent
- TERP method a method to be used since the ATRP method uses an amine-based complex, it may not be used unless the acidic group of the vinyl monomer having an acidic group is protected.
- the RAFT method when various monomers are used, it is difficult to obtain a low molecular weight distribution, and there may be a problem such as sulfur odor or coloring.
- the TERP method is preferably used from the viewpoints of diversity of usable monomers, molecular weight control in the polymer region, uniform composition, or coloring.
- the TERP method is a method of polymerizing a radical polymerizable compound (vinyl monomer) using an organic tellurium compound as a polymerization initiator.
- a radical polymerizable compound vinyl monomer
- organic tellurium compound organic tellurium compound
- Specific polymerization methods of the TERP method include the following (a) to (d).
- (A) A method in which a vinyl monomer is polymerized using an organic tellurium compound represented by the general formula (4).
- (B) A method in which a vinyl monomer is polymerized using a mixture of an organic tellurium compound represented by the general formula (4) and an azo polymerization initiator.
- (C) A method of polymerizing a vinyl monomer using a mixture of an organic tellurium compound represented by the general formula (4) and an organic ditellurium compound represented by the general formula (5).
- (D) A method of polymerizing a vinyl monomer using a mixture of an organic tellurium compound represented by the general formula (4), an azo polymerization initiator, and an organic ditellurium compound represented by the general formula (5).
- R 41 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group.
- R 42 and R 43 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
- R 44 represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group, an aromatic heterocyclic group, an alkoxy group, an acyl group, an amide group, an oxycarbonyl group, a cyano group, an allyl group or a propargyl group.
- R 41 represents an alkyl group having 1 to 8 carbon atoms, an aryl group or an aromatic heterocyclic group.
- the group represented by R 41 is an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group, and is specifically as follows.
- Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
- a linear or branched alkyl group such as a octyl group and a cyclic alkyl group such as a cyclohexyl group.
- a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
- the aryl group include a phenyl group and a naphthyl group.
- the aromatic heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
- the groups represented by R 42 and R 43 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and each group is specifically as follows.
- Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
- a linear or branched alkyl group such as a octyl group and a cyclic alkyl group such as a cyclohexyl group.
- a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
- the group represented by R 44 is a C 1-8 alkyl group, aryl group, substituted aryl group, aromatic heterocyclic group, alkoxy group, acyl group, amide group, oxycarbonyl group, cyano group, allyl group or A propargyl group, specifically as follows.
- alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl.
- a linear or branched alkyl group such as an octyl group, a cyclic alkyl group such as a cyclohexyl group, and the like.
- a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
- the aryl group include a phenyl group and a naphthyl group.
- a phenyl group is preferred.
- the substituted aryl group include a phenyl group having a substituent and a naphthyl group having a substituent.
- Examples of the substituent of the aryl group having a substituent include a halogen atom, a hydroxy group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carbonyl-containing group represented by —COR 441 (R 441 is a carbon number) 1-8 alkyl groups, aryl groups, alkoxy groups having 1 to 8 carbon atoms or aryloxy groups), sulfonyl groups, trifluoromethyl groups, and the like. These substituents are preferably substituted by 1 or 2 substituents.
- Examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
- the alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom.
- a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
- the acyl group include an acetyl group, a propionyl group, and a benzoyl group.
- Examples of the amide group include —CONR 4421 R 4422 (R 4421 and R 4422 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
- R 4421 and R 4422 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group.
- a group represented by —COOR 443 R 443 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group
- examples thereof include a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group.
- oxycarbonyl groups include methoxycarbonyl group and ethoxycarbonyl group.
- R 4441 and R 4442 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
- R 4443 , R 4444 and R 4445 are Each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group, and each substituent may be linked by a cyclic structure.
- R 4451 and R 4452 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
- R 4453 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
- Aryl group or silyl group are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
- organic tellurium compound represented by the general formula (4) examples include (methylterranylmethyl) benzene, (methylterranylmethyl) naphthalene, ethyl-2-methyl-2-methylterranyl-propionate, ethyl-2- Methyl-2-n-butylterranyl-propionate, (2-trimethylsiloxyethyl) -2-methyl-2-methylterranyl-propionate, (2-hydroxyethyl) -2-methyl-2-methylterranyl-propionate or (3-trimethylsilylpropargyl ) -2-methyl-2-methylterranyl-propinate, etc.
- Organics described in WO 2004/14848, WO 2004/14962, WO 2004/072126, and WO 2004/096870 Illustrate all tellurium compounds Rukoto can.
- organic ditellurium compound represented by the general formula (5) examples include dimethyl ditelluride, diethyl ditelluride, di-n-propyl ditelluride, diisopropyl ditelluride, dicyclopropyl ditelluride, Di-n-butylditelluride, di-s-butylditelluride, di-t-butylditelluride, dicyclobutylditelluride, diphenylditelluride, bis- (p-methoxyphenyl) ditelluride, bis- (p-aminophenyl) ditelluride, Examples thereof include bis- (p-nitrophenyl) ditelluride, bis- (p-cyanophenyl) ditelluride, bis- (p-sulfonylphenyl) ditelluride, dinaphthyl ditelluride or dipyridyl ditelluride.
- the azo polymerization initiator can be used without particular limitation as long as it is an azo polymerization initiator used in normal radical polymerization.
- 2,2′-azobis isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN), 1,1′-azobis (1-cyclohexanecarbonitrile) (ACHN), dimethyl-2,2′-azobisisobutyrate (MAIB), 4,4′-azobis (4-cyanovaleric acid) (ACVA), 1,1′-azobis (1-acetoxy-1-phenylethane), 2,2′-azobis (2-methylbutyramide), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile) (V-70), 2,2′-azobis (2-methylamidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imida
- the polymerization step is a container substituted with an inert gas.
- an inert gas For the purpose of promoting reaction, controlling molecular weight and molecular weight distribution, etc., depending on the type of vinyl monomer, the vinyl monomer and the organic tellurium compound of the general formula (4).
- An azo polymerization initiator and / or an organic ditellurium compound of the general formula (5) is mixed.
- the inert gas include nitrogen, argon, helium and the like. Argon and nitrogen are preferable.
- the amount of vinyl monomer used may be appropriately adjusted depending on the physical properties of the target copolymer.
- the vinyl monomer is preferably 5 to 10,000 mol per mol of the organic tellurium compound.
- the amount of the azo polymerization initiator used is usually an organic compound of the general formula (4).
- the azo polymerization initiator is preferably 0.01 mol to 10 mol with respect to 1 mol of the tellurium compound.
- the organic ditellurium compound of the general formula (5) is preferably 0.01 mol to 100 mol per 1 mol of the organic tellurium compound of the general formula (4).
- the organic tellurium compound of the general formula (4) when the organic tellurium compound of the general formula (4), the organic ditellurium compound of the general formula (5) and the azo polymerization initiator are used in combination, Usually, the azo polymerization initiator is preferably used in an amount of 0.01 mol to 100 mol with respect to 1 mol in total of the organic tellurium compound of the general formula (4) and the organic ditellurium compound of the general formula (5).
- the polymerization reaction can be carried out without a solvent, but it may be carried out using an aprotic solvent or a protic solvent generally used in radical polymerization and stirring the mixture.
- aprotic solvents that can be used include benzene, toluene, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, 2-butanone (methyl ethyl ketone), dioxane, propylene glycol monomethyl ether acetate, chloroform
- Examples include carbon chloride, tetrahydrofuran (THF), ethyl acetate, propylene glycol monomethyl ether acetate or trifluoromethylbenzene.
- protic solvent examples include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, hexafluoroisopropanol, and diacetone alcohol.
- the amount of the solvent used may be adjusted as appropriate. For example, it is preferably 0.01 ml or more, more preferably 0.05 ml or more, still more preferably 0.1 ml or more, and 50 ml or less with respect to 1 g of vinyl monomer. More preferably, it is 10 ml or less, More preferably, it is 1 ml or less.
- the reaction temperature and reaction time may be appropriately adjusted depending on the molecular weight or molecular weight distribution of the copolymer to be obtained, but are usually stirred at 0 to 150 ° C. for 1 minute to 100 hours.
- the TERP method can obtain a high yield and a precise molecular weight distribution even at a low polymerization temperature and a short polymerization time.
- the pressure is usually normal pressure, but it may be increased or decreased.
- the intended copolymer can be separated from the obtained reaction mixture by removing the solvent used, residual vinyl monomer and the like by a normal separation and purification means.
- the growth terminal of the copolymer obtained by the polymerization reaction is in the form of -TeR 41 (wherein R 41 is the same as described above), and it is deactivated by the operation in the air after the completion of the polymerization reaction.
- Tellurium atoms may remain. Since the copolymer in which the tellurium atom remains at the terminal is colored or inferior in thermal stability, it is preferable to remove the tellurium atom.
- a radical reduction method using tributylstannane or a thiol compound As a method for removing tellurium atoms, a radical reduction method using tributylstannane or a thiol compound; a method of adsorbing with activated carbon, silica gel, activated alumina, activated clay, molecular sieves, polymer adsorbent, etc .; Method of adsorbing metal: Add peroxide such as hydrogen peroxide or benzoyl peroxide, or blow air or oxygen into the system to oxidatively decompose tellurium atoms at the end of the copolymer.
- peroxide such as hydrogen peroxide or benzoyl peroxide
- Liquid-liquid extraction method or solid-liquid extraction method that removes residual tellurium compounds by combining solvents; purification method in solution state such as ultrafiltration that extracts and removes only those having a specific molecular weight or less can be used. These methods can also be used in combination.
- a method of quaternizing a tertiary amine structure of a part of the structural unit represented by the general formula (2) in the polymer a method of bringing the polymer into contact with a quaternizing agent can be mentioned. Specifically, after polymerizing a monomer composition containing a vinyl monomer that can form the structural unit represented by the general formula (2), a quaternizing agent is added to the reaction solution, followed by stirring. It is done.
- the temperature of the reaction solution to which the quaternizing agent is added is preferably 55 ° C. to 65 ° C., and the stirring time is preferably 5 hours to 20 hours.
- the solvent to be added for dilution include a solvent that can be used for the polymerization reaction, a protic solvent is preferable, and methanol is more preferable.
- the molecular weight of the block copolymer precursor is measured by the GPC method.
- the weight average molecular weight (Mw) of the block copolymer precursor is preferably 5000 or more, more preferably 6000 or more, further preferably 7000 or more, preferably 15000 or less, more preferably 12000 or less, and still more preferably 10,000. It is as follows.
- the molecular weight distribution (PDI) of the block copolymer precursor is preferably 2.0 or less, and more preferably 1.6 or less.
- the content of A block in the block copolymer precursor is preferably 35% by mass or more, more preferably 40% by mass or more, and still more preferably 45% by mass or more in 100% by mass of the entire block copolymer. Yes, 85 mass% or less is preferable, More preferably, it is 80 mass% or less, More preferably, it is 75 mass% or less.
- the content of B block in the block copolymer precursor is preferably 15% by mass or more, more preferably 20% by mass or more, and further preferably 25% by mass or more, in 100% by mass of the entire block copolymer. Yes, 65 mass% or less is preferable, More preferably, it is 60 mass% or less, More preferably, it is 55 mass% or less.
- the amine value of the block copolymer precursor is preferably 10 mgKOH / g or more, more preferably 20 mgKOH / g or more, and still more preferably 30 mgKOH / g or more, from the viewpoints of adsorptivity to pigment and pigment dispersibility. 200 mgKOH / g or less, more preferably 150 mgKOH / g or less, and still more preferably 100 mgKOH / g or less.
- the amine value of the block copolymer precursor is derived from the structural unit represented by the general formula (2).
- the acid value of the precursor of the block copolymer is preferably 5 mgKOH / g or more, more preferably 10 mgKOH / g or more, still more preferably 15 mgKOH / g or more, preferably 50 mgKOH / g or less, more preferably 40 mgKOH / g. g or less, more preferably 35 mgKOH / g or less.
- Step (B) In the step (B), after completion of the step (A), the precursor of the obtained block copolymer is selected from the group consisting of aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid. At least one alkali metal salt is allowed to act to obtain a block copolymer.
- the halogen anion of the structural unit represented by the general formula (3) is exchanged for an aromatic dicarboxylic acid imide anion, an aromatic sulfonic acid anion, an aromatic phosphonium ion, or an aromatic carboxylate anion (anion). Exchange).
- alkali metal in at least one alkali metal salt selected from the group consisting of aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid include lithium, sodium, potassium, rubidium, cesium, There is francium, and among these, lithium, sodium, and potassium are preferable because of economical advantages.
- alkali metal salt of aromatic dicarboxylic acid imide examples include those represented by the general formula (6).
- ring A represents an aromatic ring which may have a substituent group
- M 1 is an alkali metal
- the aromatic ring constituting the ring A is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- Examples of the alkali metal represented by M 1 include lithium, sodium, potassium, rubidium, cesium, and francium.
- alkali metal salt of the aromatic dicarboxylic acid imide examples include those represented by general formulas (6-1) to (6-7).
- M 1 represents an alkali metal.
- alkali metal salt of aromatic sulfonic acid examples include those represented by the general formula (7).
- Ar represents an aromatic ring which may have a substituent
- M 2 represents an alkali metal
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- As the monocycle a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- Examples of the alkali metal represented by M 2 include lithium, sodium, potassium, rubidium, cesium, and francium.
- alkali metal salt of aromatic sulfonic acid examples include those represented by general formulas (7-1) to (7-9).
- M 2 represents an alkali metal.
- alkali metal salt of aromatic phosphonic acid examples include those represented by the general formula (8).
- Ar represents an aromatic ring which may have a substituent
- M 3 represents an alkali metal.
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- Examples of the alkali metal represented by M 3 include lithium, sodium, potassium, rubidium, cesium, and francium.
- alkali metal salt of aromatic phosphonic acid examples include those represented by general formulas (8-1) to (8-7).
- M 3 represents an alkali metal.
- alkali metal salt of aromatic carboxylic acid examples include those represented by the general formula (9).
- Ar represents an aromatic ring which may have a substituent
- M 4 represents an alkali metal
- the aromatic ring constituting Ar is a ring structure having aromaticity.
- the aromatic ring includes both single rings and condensed rings.
- a 5- or 6-membered ring is preferable, and a benzene ring, a furan ring, a thiophene ring, and a pyrrole ring are preferable.
- the condensed ring is preferably a 2-5 condensed ring, and is preferably a naphthalene ring, an anthracene ring, a phenanthrene ring or an indole ring.
- Examples of the substituent that the aromatic ring may have include an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 14 carbon atoms, a nitro group, a cyano group, and a halogen group.
- Examples of the alkali metal represented by M 4 include lithium, sodium, potassium, rubidium, cesium, and francium.
- alkali metal salt of aromatic carboxylic acid examples include those represented by general formulas (9-1) to (9-9).
- step (B) as a method of allowing the alkali metal salt to act on the block copolymer precursor, a method in which the alkali metal salt is added to a solution in which the block copolymer precursor is dissolved and stirred. Is mentioned.
- the alkali metal salt may be added to the reaction solution after the polymerization in the step (A).
- the precursor of the block copolymer is isolated from the polymerization solution after completion of the step (A), and the alkali metal salt is added to a solution obtained by dissolving the precursor in a new solvent. It is preferable.
- an aprotic solvent or a protic solvent can be used as a solvent capable of dissolving the block copolymer precursor.
- aprotic solvents that can be used include benzene, toluene, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, 2-butanone (methyl ethyl ketone), dioxane, propylene glycol monomethyl ether acetate, chloroform
- Examples include carbon chloride, tetrahydrofuran (THF), ethyl acetate, propylene glycol monomethyl ether acetate or trifluoromethylbenzene.
- protic solvent examples include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, hexafluoroisopropanol, and diacetone alcohol.
- the amount of the solvent used for dissolving the block copolymer precursor may be appropriately adjusted.
- it is usually 2 ml to 10 ml with respect to 1 g of the block copolymer precursor.
- the range is preferably 2 ml to 5 ml.
- the amount of the at least one alkali metal salt selected from the group consisting of aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid in step (B) is a quaternary ammonium group. Is preferably 0.5 equivalents or more, more preferably 0.9 equivalents or more, preferably 1.1 equivalents or less, and more preferably 1.0 equivalents or less.
- the solution temperature at the time of contacting the block copolymer precursor with the alkali metal salt is usually 55 ° C. to 70 ° C., preferably 55 ° C. to 65 ° C., and the stirring time is usually 18 hours to 24 hours, preferably 20 hours to 22 hours.
- the first composition containing the block copolymer is obtained by removing the solvent from the reaction solution.
- the obtained first composition is an impurity such as a precipitated salt (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as aromatic dicarboxylic imide). Is preferably removed by filtration.
- the method for producing the block copolymer preferably includes a step (C) of washing the block copolymer obtained in the step (B) with water.
- a known washing method can be used, but liquid separation washing is preferable. Separation washing may be performed on the solution after completion of the step (B), or the first composition obtained by isolating the first composition of the block copolymer from the solution after completion of the step (B). You may perform with respect to the solution which melt
- the liquid separation cleaning As a specific example of the liquid separation cleaning, a solvent in which a block copolymer is dissolved and water are mixed, and then the separated aqueous layer is extracted.
- the content of the salt contained in the first composition a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide
- the second composition of the target block copolymer can be obtained by removing the solvent of the phase in which the block copolymer is dissolved under reduced pressure.
- the solvent for the above-described liquid separation operation may be any solvent that can dissolve the block copolymer and can be phase-separated from water. Examples thereof include ethyl acetate, butyl acetate, isopropyl acetate, and methyl isobutyl ketone. These may be used in combination. Moreover, the water used for washing may contain alcohol or the like.
- the amount of water used is preferably 0.1 to 10 times, more preferably 0.5 times the volume of the solvent phase in which the block copolymer is dissolved. ⁇ 5 times the amount.
- the liquid temperature at the time of liquid separation washing is preferably 10 ° C. to 60 ° C., more preferably 30 ° C. to 50 ° C., and particularly preferably 35 ° C. to 45 ° C.
- the dispersant of the present invention contains the block copolymer, the first composition or the second composition as a main component.
- the said dispersing agent consists only of the block copolymer of this invention, a 1st composition, or a 2nd composition.
- the pigment dispersion composition of the present invention contains the dispersant, a pigment, and a dispersion medium. In this case, the type and particle size of the pigment used are different depending on the application and are not particularly limited.
- the pigment dispersion composition can be used for a color filter.
- the tertiary amino group and quaternary ammonium base in the structure (B block) are strongly bonded to the acidic group of the pigment treated with the acidic pigment or the acidic group-containing dye derivative.
- the B block adsorbs to the pigment, or the aromatic part of the aromatic dicarboxylic acid imide anion which is a counter ion of the quaternary ammonium base adsorbs to the pigment skeleton part of the pigment, thereby improving the pigment dispersibility. It is thought to exert its effect. That is, since the dispersant of the present invention is a component that favorably disperses the pigment by this action, the type of pigment to be dispersed is not particularly limited.
- the content of the dispersant is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass with respect to 100 parts by mass of the pigment. More preferably, it is ⁇ 50 parts by mass.
- the pigment may be either an organic pigment or an inorganic pigment, but an organic pigment containing an organic compound as a main component is particularly preferable.
- examples of the pigment include pigments of various colors such as a red pigment, a yellow pigment, an orange pigment, a blue pigment, a green pigment, and a purple pigment.
- the structure of the pigment is azo pigments such as monoazo pigments, diazo pigments, condensed diazo pigments, diketopyrrolopyrrole pigments, phthalocyanine pigments, isoindolinone pigments, isoindoline pigments, quinacridone pigments, indigo Examples thereof include polycyclic pigments such as pigments, thioindigo pigments, quinophthalone pigments, dioxazine pigments, anthraquinone pigments, perylene pigments, and perinone pigments. Only one type of pigment may be contained in the pigment dispersion composition, or a plurality of types may be used.
- pigments include C.I. I. Pigment® Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 122, 123, 146, 149, 168, 177, Red pigments such as 178, 179, 187, 200, 202, 208, 210, 215, 224, 254, 255, 264; I.
- Orange pigments such as Pigment Orange 36, 38, 43;
- the upper limit of the pigment content in the pigment dispersion composition is usually 80% by mass, preferably 70% by mass, and more preferably 60% by mass in the total solid content of the pigment dispersion composition.
- the lower limit of the pigment content in the pigment dispersion composition is usually 10% by mass, preferably 20% by mass, and preferably 30% by mass in the total solid content of the pigment dispersion composition. More preferred.
- a conventionally known organic solvent can be used as the dispersion medium.
- Glycol monoalkyl ethers such as ter, 3-methyl-3-methoxybutanol, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tripropylene glycol
- Monohydric or polyhydric alcohols Monohydric or polyhydric alcohols; aliphatic hydrocarbons such as n-pentane, n-octane, diisobutylene, n-hexane, hexene, isoprene, dipentene, dodecane; cyclohexane, methylcyclohexane, methylcyclohexene, bicyclohexyl, etc.
- Alicyclic hydrocarbons such as benzene, toluene, xylene, cumene; amyl formate, ethyl formate, ethyl acetate, butyl acetate Propyl acetate, amyl acetate, methyl isobutyrate, ethylene glycol acetate, ethyl propionate, propyl propionate, butyl butyrate, isobutyl butyrate, methyl isobutyrate, ethyl caprylate, butyl stearate, ethyl benzoate, 3-ethoxypropion Chain or cyclic esters such as methyl acid, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, butyl 3-methoxypropionate, ⁇ -butyrolactone; Alkoxycarboxylic acids such as 3-
- the organic solvent is preferably glycol alkyl ether acetates, monovalent or polyhydric alcohols from the viewpoints of dispersibility of pigments, solubility of the dispersant, applicability of the pigment dispersion composition, and the like.
- the solvent contained in the pigment dispersion composition may be only one type or a plurality of types.
- the content of the dispersion medium in the pigment dispersion composition is not particularly limited and can be appropriately adjusted.
- the upper limit of the content of the dispersion medium in the pigment dispersion composition is usually 99% by mass.
- the lower limit of the content of the dispersion medium in the pigment dispersion composition is usually 70% by mass and preferably 80% by mass in consideration of the viscosity suitable for application of the pigment dispersion composition.
- the dispersion medium can be used as a solvent for dissolving and removing precipitates formed from the pigment dispersion composition.
- an acidic group further having an acidic group is used in order to adsorb and adsorb the tertiary amino group and quaternary ammonium base in the block copolymer characterizing the present invention used as a dispersant. It is preferable to contain a pigment derivative of This dye derivative has an acidic functional group introduced into the dye skeleton.
- the dye skeleton the same or similar skeleton as the pigment constituting the pigment dispersion composition and the same or similar skeleton as the raw material of the pigment are preferable.
- the dye skeleton include azo dye skeleton, phthalocyanine dye skeleton, anthraquinone dye skeleton, triazine dye skeleton, acridine dye skeleton, and perylene dye skeleton.
- the acidic group introduced into the dye skeleton is preferably a carboxyl group, a phosphoric acid group, or a sulfonic acid group.
- a sulfonic acid group is preferable from the viewpoint of synthesis and the strength of acidity.
- the acidic group may be directly bonded to the dye skeleton, but may be bonded to the dye skeleton via a hydrocarbon group such as an alkyl group or an aryl group; an ester, ether, sulfonamide, or urethane bond.
- a hydrocarbon group such as an alkyl group or an aryl group
- an ester, ether, sulfonamide, or urethane bond may be directly bonded to the dye skeleton, but may be bonded to the dye skeleton via a hydrocarbon group such as an alkyl group or an aryl group; an ester, ether, sulfonamide, or urethane bond.
- the pigment dispersion composition of the present invention may contain a binder resin.
- the binder resin may be a polymer, for example.
- specific examples of monomers constituting the polymer include, for example, carboxyl groups such as (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid, and maleic anhydride Containing unsaturated monomer: methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, (meth) (Meth) acrylic such as 2-hydroxyethyl acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, isobornyl (meth) (Meth)
- Acid ester styrene, ⁇ -methylstyrene, 4-methylstyrene ( -Methylstyrene), 2-methylstyrene (o-methylstyrene), 3-methylstyrene (m-methylstyrene), 4-methoxystyrene (p-methoxystyrene), p-tert-butylstyrene, pn-butyl And aromatic unsaturated monomers (styrene monomers) such as styrene and p-tert-butoxystyrene.
- styrene monomers such as styrene and p-tert-butoxystyrene.
- the binder resin is preferably a copolymer of a carboxyl group-containing unsaturated monomer and a (meth) acrylic acid ester.
- a copolymer of (meth) acrylic acid and butyl (meth) acrylate a copolymer of (meth) acrylic acid and benzyl (meth) acrylate
- a copolymer of acrylic acid, butyl (meth) acrylate, and benzyl (meth) acrylate a copolymer of acrylic acid, butyl (meth) acrylate, and benzyl (meth) acrylate.
- the binder resin is particularly preferably a copolymer of (meth) acrylic acid and benzyl (meth) acrylate.
- the content of (meth) acrylic acid is usually 5% by mass to 90% by mass in all monomer components, and 10% by mass to It is preferably 70% by mass, and more preferably 20% by mass to 70% by mass.
- Mw is preferably from 3,000 to 100,000, more preferably from 5,000 to 50,000, and even more preferably from 5,000 to 20,000. When the Mw of the binder resin is 3,000 or more, the heat resistance, film strength, etc. of the coating film formed from the pigment dispersion composition are good, and when the Mw is 100,000 or less, the aqueous alkaline solution of this coating film Developability due to is further improved.
- the acid value of the binder resin is preferably 20 mgKOH / g to 170 mgKOH / g, and more preferably 50 mgKOH / g to 150 mgKOH / g. 90 mg KOH / g to 150 mg KOH / g is more preferable.
- the acid value of the binder resin is 20 mgKOH or more / g, the alkali developability when the pigment dispersion composition is used as a coating film is further improved, and when it is 170 mgKOH / g or less, the heat resistance is improved.
- the binder resin contained in the pigment dispersion composition may be only one type or a plurality of types.
- the content of the binder resin is preferably 5 parts by mass to 200 parts by mass, more preferably 10 parts by mass to 100 parts by mass with respect to 100 parts by mass of the pigment. More preferred is from 50 parts by weight to 50 parts by weight.
- the pigment dispersion composition is obtained by mixing a pigment, a dispersant, a dispersion medium, a dye derivative, a binder resin, and the like using a mixing and dispersing machine such as a paint shaker, a bead mill, a ball mill, a dissolver, or a kneader.
- the pigment dispersion composition is preferably filtered after mixing.
- the pigment dispersion composition may contain other additives as necessary.
- other additives include a photopolymerizable monomer, a photopolymerization initiator, a pH adjuster, an antioxidant, an ultraviolet absorber, a light stabilizer, an antiseptic, and an antifungal agent.
- the photopolymerizable monomer is preferably a compound having at least two ethylenically unsaturated double bonds that are compatible with the binder resin. As such a compound, when the pigment dispersion composition is used as a colorant for a color filter, it has alkali solubility and has one or more acidic groups and two or more ethylenically unsaturated bonds in one molecule.
- a compound is preferable, and a compound having one or more acidic groups and three or more ethylenically unsaturated bonds in one molecule is more preferable.
- the compound having at least two ethylenically unsaturated double bonds include polyfunctional (meth) acrylates such as bifunctional (meth) acrylate and trifunctional or higher functional (meth) acrylate. Among these, trifunctional or higher functional (meth) acrylates are preferable.
- an acidic group-containing polyfunctional (meth) acrylate is more preferable, and a trifunctional or higher acidic group-containing polyfunctionality is preferred.
- the acidic group is not particularly limited as long as it can be alkali-developed.
- the acidic group is preferably a carboxy group from the viewpoint of further improving the alkali developability and the handleability of the resin composition.
- a coating film of the pigment dispersion composition can be formed on the substrate by applying the pigment dispersion composition onto the substrate by a spin coating method, a roll coating method, a slit coating method or the like. After applying the pigment dispersion composition on the substrate, drying (desolvation treatment) or the like may be performed as necessary.
- the heat resistance of the block copolymer that characterizes the present invention used for the dispersant is excellent. It can be expected to suppress a decrease in contrast ratio and a change in hue.
- the measurement conditions were a column temperature of 40 ° C., a sample concentration of 100 mg / mL, a sample injection amount of 10 ⁇ L, and a flow rate of 0.6 mL / min.
- a calibration curve was prepared using polystyrene (manufactured by Tosoh Corporation, TSK Standard) as a standard substance, and a weight average molecular weight (Mw) and a number average molecular weight (Mn) were measured. Molecular weight distribution (PDI) was calculated from these measured values.
- the amine value is expressed by the mass of potassium hydroxide (KOH) equivalent to the basic component per gram of the solid content.
- KOH potassium hydroxide
- the measurement sample was dissolved in tetrahydrofuran, and the obtained solution was neutralized with 0.1 mol / L hydrochloric acid / 2-propanol solution using a potentiometric titrator (trade name: 915 KF Ti-touch, manufactured by Metrohm). .
- the amine value (B) was calculated by the following formula using the inflection point of the titration pH curve as the titration end point.
- the acid value represents the mass of potassium hydroxide required to neutralize acidic components per gram of solid content.
- the measurement sample was dissolved in tetrahydrofuron, and the resulting solution was subjected to neutralization titration with a 0.5 mol / L potassium hydroxide / ethanol solution.
- the acid value (A) was calculated by the following formula.
- A 56.11 ⁇ Vs ⁇ 0.5 ⁇ f / w
- Vs Amount of 0.5 mol / L potassium hydroxide / ethanol solution required for titration (mL)
- f Potency of 0.5 mol / L potassium hydroxide / ethanol solution
- the measurement was performed using a thermogravimetric / differential thermal simultaneous measurement apparatus (TG-DTA) (TG-DTA6300, manufactured by SII Nanotechnology).
- TG-DTA thermogravimetric / differential thermal simultaneous measurement apparatus
- the measurement sample was dried under reduced pressure at 130 ° C. for 2 hours before measurement.
- the measurement conditions were a sample mass of about 10 mg, an air inflow rate of 200 ml / min, a heating rate of 10 ° C./min, and a measurement temperature range of 40 ° C. to 600 ° C.
- the temperature at which the sample mass decreased by 10% was read from the obtained TG curve, and this was taken as the heating weight decrease temperature.
- Sample preparation was performed as follows. About 10 mg of the second composition substance was put into a combustion furnace (trade name: AQF-2100H, manufactured by Mitsubishi Chemical Analytech). The heater of the combustion furnace was 900 ° C. (inside), the gas flow rate was 200 mL / min of argon, 400 mL / min of oxygen, 100 mL / min of argon for humidification, and the residence time of the combustion furnace was 15 minutes. The exhaust gas was captured by a collector (trade name: AU-250, manufactured by Mitsubishi Chemical Analytech). The sample solution was prepared by using ultrapure water as the absorbing solution and diluting 35 mL of the obtained water absorbing solution to 50 mL using ultrapure water.
- the content of the halogen anion was measured using ion chromatography (trade name: DIONEX ICS-1600, manufactured by Thermo Scientific).
- the column used was Ion Pac AS-14A (manufactured by DIONEX), and the eluent used was an eluent for anion analysis (trade name: AS12A, manufactured by DIONEX).
- the measurement conditions were a sample injection volume of 25 ⁇ L and a flow rate of 1.5 mL / min.
- a calibration curve (calibration curve) was prepared using a standard solution having a chlorine anion concentration of 1 ppm and 2 ppm as a standard substance, and the chlorine anion concentration was calculated.
- Precursor No. of the obtained block copolymer 1 had an Mw of 7618, a PDI of 1.30, an acid value of 32 mgKOH / g, an amine value of 64 mgKOH / g, and a heating weight loss temperature of 254 ° C.
- Block copolymer precursor Nos. 2 to 12 Block copolymer precursor no.
- the block copolymer precursor No. 1 was prepared in the same manner as in the preparation method of No. 1. 2 to 12 were produced.
- Tables 1 and 2 show the raw material monomers, organic tellurium compounds, organic ditellurium compounds, azo polymerization initiators, solvents, quaternizing agents, reaction conditions, and polymerization rates used.
- Tables 3 and 4 show the composition of precursors of each block copolymer, Mw, PDI, acid value, amine value, and heating weight reduction temperature.
- Block copolymer second composition No. 51 The block copolymer precursor No. obtained above. 1 PMA 110g and MP 110g were added to 87.5g and dissolved. Anion exchange was performed by adding 11.2 g of PIK to the obtained solution and reacting at 60 ° C. for 20 hours. The obtained reaction solution was cooled, ethyl acetate and water were added, and the mixture was stirred at 40 ° C. for 1 hour. Liquid separation was performed to obtain an organic layer. The obtained organic layer was concentrated under reduced pressure and dried to obtain a second composition No. 2 of the block copolymer. 51 was obtained. The second composition No. of the obtained block copolymer.
- Mw of the block copolymer contained was 7852, and PDI was 1.21.
- the acid value of the second composition was 32 mg KOH / g, the amine value was 89 mg KOH / g, the heating weight reduction temperature was 291 ° C., and the chlorine anion content was 3501 ppm (solid content conversion).
- a blended composition was prepared by preparing 3 parts by mass, 3 parts by mass of MP, and 81 parts by mass of PMA, and stirring for 2 hours with a planetary ball mill (0.3 mm zirconia beads). The viscosity of the obtained pigment dispersion composition was 4.0 mPa ⁇ s.
- a blended composition was prepared by preparing 3 parts by mass, 3 parts by mass of MP, and 81 parts by mass of PMA, and stirring for 2 hours with a planetary ball mill (0.3 mm zirconia beads). The viscosity of the obtained pigment dispersion composition was 3.0 mPa ⁇ s.
- the present invention includes the following embodiments.
- (Embodiment 1) It has an A block containing a structural unit derived from a vinyl monomer having an acidic group, and a B block containing a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2).
- R ⁇ 11> , R ⁇ 12 > and R ⁇ 13 > show the chain or cyclic hydrocarbon group which may have a substituent each independently. Two or more of R 11 , R 12 and R 13 may be bonded to each other to form a cyclic structure.
- X 1 represents a divalent linking group.
- R 14 represents a hydrogen atom or a methyl group.
- Y ⁇ represents at least one selected from the group consisting of an aromatic dicarboxylic imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion, and an aromatic carboxylate anion.
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- Embodiment 2 The block copolymer according to embodiment 1, which is an AB type block copolymer.
- Embodiment 7 The 1st composition of Embodiment 6 whose molecular weight distribution (PDI) of the said block copolymer is 2.0 or less.
- Embodiment 9 A dispersant comprising the block copolymer according to any one of Embodiments 1 to 6, the first composition according to Embodiment 7, or the second composition according to Embodiment 8.
- a pigment dispersion composition comprising the dispersant according to embodiment 9, a pigment, and a dispersion medium.
- the precursor of the block copolymer obtained in the step (A) is at least one alkali selected from the group consisting of aromatic dicarboxylic imides, aromatic sulfonic acids, aromatic phosphonic acids and aromatic carboxylic acids.
- R 21 and R 22 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. R 21 and R 22 may be bonded to each other to form a cyclic structure.
- X 2 represents a divalent linking group.
- R 23 represents a hydrogen atom or a methyl group.
- R 31 , R 32 and R 33 each independently represent a chain or cyclic hydrocarbon group which may have a substituent. Two or more of R 31 , R 32 and R 33 may be bonded to each other to form a cyclic structure.
- X 3 represents a divalent linking group.
- R 34 represents a hydrogen atom or a methyl group.
- X ⁇ represents a halogen anion.
- Embodiment 14 The manufacturing method of the block copolymer of Embodiment 12 or 13 provided with the process (C) which wash
- the block copolymer of the present invention alkali development is facilitated because the A block has an acidic group.
- the counter ion of the quaternary ammonium cation of the B block is an aromatic dicarboxylic acid imide anion, an aromatic sulfonic acid anion, an aromatic phosphonic acid anion or an aromatic carboxylic acid anion, the heat resistance is excellent. Therefore, the block copolymer of this invention can be used conveniently for the pigment dispersion composition for color filters used for manufacture of the color filter which employ
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Optical Filters (AREA)
Abstract
Description
本発明のブロック共重合体は、酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、後述する一般式(1)で表される構造単位および後述する一般式(2)で表される構造単位を含むBブロックとを有することを特徴とする。 <1 block copolymer>
The block copolymer of the present invention is represented by an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (1) described later, and a general formula (2) described later. And a B block including a structural unit.
Aブロックは、酸性基を有するビニルモノマーに由来する構造単位を有するポリマーブロックである。Aブロックは、酸性基を有することで、アルカリ現像が容易になると考えられる。そのため、前記ブロック共重合体は、アルカリ現像を採用したカラーフィルタの製造に使用されるカラーフィルタ用の顔料分散組成物に好適に使用できる。 (1.1 A block)
The A block is a polymer block having a structural unit derived from a vinyl monomer having an acidic group. It is thought that alkali development becomes easy because A block has an acidic group. Therefore, the block copolymer can be suitably used in a pigment dispersion composition for a color filter used for producing a color filter employing alkali development.
芳香族ビニルモノマーとしては、スチレン、α-メチルスチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メトキシスチレン、2-ヒドロキシメチルスチレン、1-ビニルナフタレン等が挙げられる。
ヘテロ環を含有するビニルモノマーとしては、2-ビニルチオフェン、N-メチル-2-ビニルピロール、1-ビニル-2-ピロリドン、2-ビニルピリジン、4-ビニルピリジン等が挙げられる。
ビニルアミドとしては、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-ε-カプトラクタム等が挙げられる。
カルボン酸ビニルとしては、酢酸ビニル、ピバル酸ビニル、安息香酸ビニル等が挙げられる。
ジエン類としては、ブタジエン、イソプレン、4-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン等が挙げられる。 Examples of the α-olefin include 1-hexene, 1-octene, 1-decene and the like.
Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methoxystyrene, 2-hydroxymethylstyrene, 1-vinylnaphthalene and the like.
Examples of the vinyl monomer containing a heterocycle include 2-vinylthiophene, N-methyl-2-vinylpyrrole, 1-vinyl-2-pyrrolidone, 2-vinylpyridine, 4-vinylpyridine and the like.
Examples of the vinylamide include N-vinylformamide, N-vinylacetamide, N-vinyl-ε-captolactam and the like.
Examples of vinyl carboxylate include vinyl acetate, vinyl pivalate, vinyl benzoate and the like.
Examples of dienes include butadiene, isoprene, 4-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene and the like.
ポリエチレングリコール(n=1~5)プロピルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)メチルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)エチルエーテル(メタ)アクリレート、ポリプロピレングリコール(n=1~5)プロピルエーテル(メタ)アクリレート等が挙げられる。 Examples of (meth) acrylamide include (meth) acrylamide, N-methyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide and the like. Examples of the (meth) acrylate having a polyethylene glycol structural unit include polyethylene glycol (n = 1 to 5) methyl ether (meth) acrylate, polyethylene glycol (n = 1 to 5) ethyl ether (meth) acrylate,
Polyethylene glycol (n = 1-5) propyl ether (meth) acrylate, polypropylene glycol (n = 1-5) methyl ether (meth) acrylate, polypropylene glycol (n = 1-5) ethyl ether (meth) acrylate, polypropylene glycol (N = 1 to 5) propyl ether (meth) acrylate and the like.
Bブロックは、一般式(1)で表される構造単位および一般式(2)で表される構造単位を有するポリマーブロックである。Bブロックは、3級アミノ基に加え4級アンモニウム塩基を有することから、顔料との高い親和性を有すると考えられる。 (1.2 B block)
The B block is a polymer block having a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2). Since the B block has a quaternary ammonium base in addition to a tertiary amino group, it is considered to have a high affinity with the pigment.
一般式(1)で表される構造単位は、構造中に4級アンモニウム塩を有し、そのアニオン成分として、芳香族ジカルボン酸イミドアニオン、芳香族スルホン酸アニオン、芳香族ホスホン酸アニオンおよび芳香族カルボン酸アニオンよりなる群から選択される少なくとも1種を有する。Bブロックにおける一般式(1)で表される構造単位は、1種のみであってもよいし2種以上を有していてもよい。 (1.2.1 Structural unit represented by general formula (1))
The structural unit represented by the general formula (1) has a quaternary ammonium salt in the structure, and as its anion component, an aromatic dicarboxylic acid imide anion, an aromatic sulfonate anion, an aromatic phosphonate anion and an aromatic It has at least one selected from the group consisting of carboxylate anions. The structural unit represented by the general formula (1) in the B block may be only one type or may have two or more types.
一般式(2)で表される構造単位は、3級アミン構造を有する。Bブロックにおける一般式(2)で表される構造単位は、1種のみであってもよいし2種以上を有していてもよい。 (1.2.2 Structural unit represented by general formula (2))
The structural unit represented by the general formula (2) has a tertiary amine structure. The structural unit represented by the general formula (2) in the B block may be only one type, or may have two or more types.
本発明のブロック共重合体の構造は、線状ブロック共重合体であることが好ましい。また、線状ブロック共重合体は、いずれの構造(配列)であっても良いが、線状ブロック共重合体の物性、または組成物の物性の観点から、AブロックをA、BブロックをBと表現したとき、(A-B)m型、(A-B)m-A型、(B-A)m-B型(mは1以上の整数、例えば1~3の整数)よりなる群から選択される少なくとも1種の構造を持つ共重合体であることが好ましい。これらの中でも、加工時の取扱い性、組成物の物性の観点から、A-Bで表されるジブロック共重合体であることが好ましい。A-Bで表されるジブロック共重合体を構成することで、Aブロックに有する酸性基を有するビニルモノマーに由来する構造単位と、Bブロックに有する3級アミノ基を有するビニルモノマーに由来する構造単位および4級アンモニウム塩基を有するビニルモノマーに由来する構造単位とが局在化し、効率的に顔料と、溶媒、バインダー樹脂(アルカリ可溶性樹脂)と好適に作用することができると考えられる。 (1.3 Block copolymer)
The structure of the block copolymer of the present invention is preferably a linear block copolymer. The linear block copolymer may have any structure (arrangement). From the viewpoint of the physical properties of the linear block copolymer or the physical properties of the composition, the A block is A and the B block is B. when expressed as, (a-B) m type, (a-B) m -A type, (B-a) m -B type (m is an integer of 1 or more, for example, an integer of 1 to 3) the group consisting of It is preferably a copolymer having at least one structure selected from Among these, a diblock copolymer represented by AB is preferable from the viewpoint of handleability during processing and physical properties of the composition. By constituting the diblock copolymer represented by AB, it is derived from a structural unit derived from a vinyl monomer having an acidic group in the A block and a vinyl monomer having a tertiary amino group in the B block. It is considered that the structural unit and the structural unit derived from the vinyl monomer having a quaternary ammonium base are localized, so that the pigment, the solvent, and the binder resin (alkali-soluble resin) can be efficiently operated suitably.
本発明の第一組成物は、前記ブロック共重合体を含有する。前記第一組成物は、前記ブロック共重合体以外の他の成分を含有する。前記他の成分としては、ブロック共重合体の製造方法に起因する不純物が挙げられる。例えば、ブロック共重合体の製造に、後述する4級化剤や、芳香族ジカルボン酸イミド、芳香族スルホン酸、芳香族ホスホン酸および芳香族カルボン酸よりなる群から選択される少なくとも1種のアルカリ金属塩を使用した場合、前記4級化剤に由来するハロゲン成分や、芳香族ジカルボン酸イミド等のアルカリ金属塩に由来するアルカリ金属成分が挙げられる。なお、第一組成物は、析出した塩(前記4級化剤に由来するハロゲン成分と、芳香族ジカルボン酸イミド等のアルカリ金属塩に由来するアルカリ金属成分との塩)などの不純物をろ過により除去することが好ましい。 <First composition of 2 block copolymer>
The first composition of the present invention contains the block copolymer. The first composition contains components other than the block copolymer. As said other component, the impurity resulting from the manufacturing method of a block copolymer is mentioned. For example, in the production of a block copolymer, at least one alkali selected from the group consisting of a quaternizing agent described later, aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid is used. When a metal salt is used, examples include a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide. The first composition is prepared by filtering impurities such as precipitated salts (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as aromatic dicarboxylic acid imide). It is preferable to remove.
本発明の第二組成物は、前記第一組成物を水洗し、乾燥することで得られる。水洗、乾燥後の第二組成物は、塩(前記4級化剤に由来するハロゲン成分と、芳香族ジカルボン酸イミド等のアルカリ金属塩に由来するアルカリ金属成分との塩)の含有量が低減されている。なお、第二組成物についても、前記第一組成物と同様に、ブロック共重合体の製造方法に起因する不純物が含まれている。前記第一組成物とは、前記ブロック共重合体を含有する組成物であり、ブロック共重合体を合成した際の反応液も含まれる。 <Second composition of 3-block copolymer>
The second composition of the present invention is obtained by washing the first composition with water and drying. The second composition after washing and drying has a reduced content of salt (a salt of a halogen component derived from the quaternizing agent and an alkali metal component derived from an alkali metal salt such as an aromatic dicarboxylic acid imide). Has been. In addition, about the 2nd composition, the impurity resulting from the manufacturing method of a block copolymer is contained like the said 1st composition. The said 1st composition is a composition containing the said block copolymer, and the reaction liquid at the time of synthesize | combining a block copolymer is also contained.
本発明のブロック共重合体の製造方法は、酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、後述する一般式(2)で表される構造単位および後述する一般式(3)で表される構造単位を含むBブロックとを有するブロック共重合体の前駆体を準備する工程(A);前記工程(A)で得られたブロック共重合体の前駆体に、芳香族ジカルボン酸イミド、芳香族スルホン酸、芳香族ホスホン酸および芳香族カルボン酸よりなる群から選択される少なくとも1種のアルカリ金属塩を作用させ、ブロック共重合体を得る工程(B);を備えることを特徴とする。なお、本発明において「ブロック共重合体の前駆体」とは、アニオン交換前のブロック共重合体のことをいう。 <Method for producing 4 block copolymer>
The method for producing a block copolymer of the present invention comprises an A block containing a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (2) described later, and a general formula (3) described later. A step (A) of preparing a block copolymer precursor having a B block containing a structural unit represented by formula (1): an aromatic dicarboxylic acid as a precursor of the block copolymer obtained in the step (A); A step (B) of obtaining a block copolymer by reacting at least one alkali metal salt selected from the group consisting of imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid. And In the present invention, the “block copolymer precursor” refers to a block copolymer before anion exchange.
前記工程(A)では、ブロック共重合体の前駆体を準備する。前記ブロック共重合体の前駆体は、酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、一般式(2)で表される構造単位および一般式(3)で表される構造単位を含むBブロックとを有する。 (4.1 Step (A))
In the step (A), a block copolymer precursor is prepared. The block copolymer precursor includes an A block including a structural unit derived from a vinyl monomer having an acidic group, a structural unit represented by the general formula (2), and a structural unit represented by the general formula (3). B block including
前記工程(A)において、Aブロックは、例えば、酸性基を有するビニルモノマーを含有するモノマー組成物を重合することで得られる。 (4.1.1 A block)
In the step (A), the A block can be obtained, for example, by polymerizing a monomer composition containing a vinyl monomer having an acidic group.
前記工程(A)において、Bブロックは、一般式(2)で表される構造単位を形成し得るビニルモノマーおよび一般式(3)で表される構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合する方法;一般式(2)で表される構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合した後、得られた重合物中の一般式(2)で表される構造単位の一部の3級アミン構造を4級化する方法が挙げられる。 (4.1.2 B block)
In the step (A), the B block is a monomer containing a vinyl monomer that can form the structural unit represented by the general formula (2) and a vinyl monomer that can form the structural unit represented by the general formula (3). A method of polymerizing the composition; after polymerizing a monomer composition containing a vinyl monomer capable of forming the structural unit represented by the general formula (2), the polymer is represented by the general formula (2) in the obtained polymer. And a method of quaternizing a tertiary amine structure of a part of the structural unit.
前記工程(A)としては、Aブロックを先に製造し、AブロックにBブロックのモノマーを重合する方法;Bブロックを先に製造し、BブロックにAブロックのモノマーを重合する方法;AブロックとBブロックとを別々に製造した後、AブロックとBブロックとをカップリングする方法;Aブロックを先に製造し、Aブロックに一般式(2)で表される構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合し、得られた重合物中の一般式(2)で表される構造単位の一部の3級アミン構造を4級化する方法;一般式(2)で表される構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合し、この重合物にAブロックのモノマーを重合し、得られた重合物中の一般式(2)で表される構造単位の一部の3級アミン構造を4級化する方法;Aブロックと一般式(2)で表される構造単位を有するブロックとを別々に製造し、これらのブロックをカップリングした後、得られた重合物中の一般式(2)で表される構造単位の一部の3級アミン構造を4級化する方法;が挙げられる。 (4.1.3 Method)
As the step (A), a method of first producing an A block and polymerizing a monomer of a B block into the A block; a method of producing a B block first and polymerizing a monomer of the A block into the B block; A method in which the A block and the B block are coupled after the A block and the B block are manufactured separately; the vinyl that can form the structural unit represented by the general formula (2) in the A block by first manufacturing the A block A method of polymerizing a monomer composition containing a monomer and quaternizing a tertiary amine structure of a part of the structural unit represented by the general formula (2) in the obtained polymer; A monomer composition containing a vinyl monomer capable of forming the structural unit represented is polymerized, and a monomer of an A block is polymerized to this polymer, and the structure represented by the general formula (2) in the obtained polymer Part 3 of the unit A method for quaternizing a min structure; A block and a block having a structural unit represented by the general formula (2) are separately produced, and after coupling these blocks, And a method of quaternizing part of the tertiary amine structure of the structural unit represented by the formula (2).
重合法は特に限定されないが、リビングラジカル重合が好ましい。すなわち、前記第一ブロック共重合体としては、リビングラジカル重合を用いて重合されたものが好ましい。従来のラジカル重合法は、開始反応、成長反応だけでなく、停止反応、連鎖移動反応により成長末端の失活が起こり、様々な分子量、不均一な組成のポリマーの混合物となり易い傾向がある。前記リビングラジカル重合法は、従来のラジカル重合法の簡便性と汎用性を保ちながら、停止反応や、連鎖移動が起こりにくく、成長末端が失活することなく成長するため、分子量分布の精密制御、均一な組成のポリマーの製造が容易である点で好ましい。 (4.1.4 Living radical polymerization)
The polymerization method is not particularly limited, but living radical polymerization is preferred. That is, the first block copolymer is preferably polymerized using living radical polymerization. In the conventional radical polymerization method, not only the initiation reaction and the growth reaction, but also the termination of the growth end occurs due to the termination reaction and the chain transfer reaction, and the polymer tends to be a mixture of polymers having various molecular weights and heterogeneous compositions. While the living radical polymerization method maintains the simplicity and versatility of the conventional radical polymerization method, the termination reaction and chain transfer are unlikely to occur, and the growth end grows without being deactivated. This is preferable in that it is easy to produce a polymer having a uniform composition.
(a)ビニルモノマーを、一般式(4)で表される有機テルル化合物を用いて重合する方法。
(b)ビニルモノマーを、一般式(4)で表される有機テルル化合物とアゾ系重合開始剤との混合物を用いて重合する方法。
(c)ビニルモノマーを、一般式(4)で表される有機テルル化合物と一般式(5)で表される有機ジテルル化合物との混合物を用いて重合する方法。
(d)ビニルモノマーを、一般式(4)で表される有機テルル化合物とアゾ系重合開始剤と一般式(5)で表される有機ジテルル化合物との混合物を用いて重合する方法。 Specific polymerization methods of the TERP method include the following (a) to (d).
(A) A method in which a vinyl monomer is polymerized using an organic tellurium compound represented by the general formula (4).
(B) A method in which a vinyl monomer is polymerized using a mixture of an organic tellurium compound represented by the general formula (4) and an azo polymerization initiator.
(C) A method of polymerizing a vinyl monomer using a mixture of an organic tellurium compound represented by the general formula (4) and an organic ditellurium compound represented by the general formula (5).
(D) A method of polymerizing a vinyl monomer using a mixture of an organic tellurium compound represented by the general formula (4), an azo polymerization initiator, and an organic ditellurium compound represented by the general formula (5).
炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖または分岐鎖アルキル基や、シクロヘキシル基等の環状アルキル基を挙げることができる。好ましくは炭素数1~4の直鎖または分岐鎖アルキル基であり、さらに好ましくはメチル基またはエチル基である。
アリール基としては、フェニル基、ナフチル基等を挙げることができる。
芳香族ヘテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができ
る。 The group represented by R 41 is an alkyl group having 1 to 8 carbon atoms, an aryl group, or an aromatic heterocyclic group, and is specifically as follows.
Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl. And a linear or branched alkyl group such as a octyl group and a cyclic alkyl group such as a cyclohexyl group. A linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
Examples of the aryl group include a phenyl group and a naphthyl group.
Examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖または分岐鎖アルキル基や、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖または分岐鎖アルキル基であり、さらに好ましくはメチル基またはエチル基である。 The groups represented by R 42 and R 43 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and each group is specifically as follows.
Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl. And a linear or branched alkyl group such as a octyl group and a cyclic alkyl group such as a cyclohexyl group. A linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等の直鎖または分岐鎖アルキル基、シクロヘキシル基等の環状アルキル基等を挙げることができる。好ましくは炭素数1~4の直鎖または分岐鎖アルキル基であり、さらに好ましくはメチル基またはエチル基である。
アリール基としては、フェニル基、ナフチル基等を挙げることができる。好ましくはフェニル基である。
置換アリール基としては、置換基を有しているフェニル基、置換基を有しているナフチル基等を挙げることができる。置換基を有しているアリール基の置換基としては、例えば、ハロゲン原子、ヒドロキシ基、アルコキシ基、アミノ基、ニトロ基、シアノ基、-COR441で示されるカルボニル含有基(R441は炭素数1~8のアルキル基、アリール基、炭素数1~8のアルコキシ基またはアリーロキシ基)、スルホニル基、トリフルオロメチル基等を挙げることができる。また、これらの置換基は、1個または2個置換しているのがよい。
芳香族ヘテロ環基としては、ピリジル基、フリル基、チエニル基等を挙げることができる。
アルコキシ基としては、炭素数1~8のアルキル基が酸素原子に結合した基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tet-ブトキシ基、ペンチロキシ基、ヘキシロキシ基、ヘプチロキシ基、オクチロキシ基等を挙げることができる。
アシル基としては、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。
アミド基としては、-CONR4421R4422(R4421、R4422は、それぞれ独立に水素原子、炭素数1~8のアルキル基またはアリール基)を挙げることがきる。
オキシカルボニル基としては、-COOR443(R443は水素原子、炭素数1~8のアルキル基またはアリール基)で表される基が好ましく、例えばカルボキシル基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、ter-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基等を挙げることができる。好ましいオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基が挙げられる。
アリル基としては、-CR4441R4442-CR4443=CR4444R4445(R4441、R4442は、それぞれ独立に水素原子または炭素数1~8のアルキル基、R4443、R4444、R4445は、それぞれ独立に水素原子、炭素数1~8のアルキル基またはアリール基であり、それぞれの置換基が環状構造で繋がっていてもよい)を挙げることができる。
プロパルギル基としては、-CR4451R4452-C≡CR4453(R4451、R4452は、水素原子または炭素数1~8のアルキル基、R4453は、水素原子、炭素数1~8のアルキル基、アリール基またはシリル基)を挙げることができる。 The group represented by R 44 is a C 1-8 alkyl group, aryl group, substituted aryl group, aromatic heterocyclic group, alkoxy group, acyl group, amide group, oxycarbonyl group, cyano group, allyl group or A propargyl group, specifically as follows.
Examples of the alkyl group having 1 to 8 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, and heptyl. And a linear or branched alkyl group such as an octyl group, a cyclic alkyl group such as a cyclohexyl group, and the like. A linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or ethyl group is more preferable.
Examples of the aryl group include a phenyl group and a naphthyl group. A phenyl group is preferred.
Examples of the substituted aryl group include a phenyl group having a substituent and a naphthyl group having a substituent. Examples of the substituent of the aryl group having a substituent include a halogen atom, a hydroxy group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carbonyl-containing group represented by —COR 441 (R 441 is a carbon number) 1-8 alkyl groups, aryl groups, alkoxy groups having 1 to 8 carbon atoms or aryloxy groups), sulfonyl groups, trifluoromethyl groups, and the like. These substituents are preferably substituted by 1 or 2 substituents.
Examples of the aromatic heterocyclic group include a pyridyl group, a furyl group, and a thienyl group.
The alkoxy group is preferably a group in which an alkyl group having 1 to 8 carbon atoms is bonded to an oxygen atom. For example, a methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tet- A butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and the like can be given.
Examples of the acyl group include an acetyl group, a propionyl group, and a benzoyl group.
Examples of the amide group include —CONR 4421 R 4422 (R 4421 and R 4422 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group).
As the oxycarbonyl group, a group represented by —COOR 443 (R 443 is a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferable, and examples thereof include a carboxyl group, a methoxycarbonyl group, an ethoxycarbonyl group, and a propoxycarbonyl group. Group, n-butoxycarbonyl group, sec-butoxycarbonyl group, ter-butoxycarbonyl group, n-pentoxycarbonyl group, phenoxycarbonyl group and the like. Preferred oxycarbonyl groups include methoxycarbonyl group and ethoxycarbonyl group.
As the allyl group, —CR 4441 R 4442 —CR 4443 = CR 4444 R 4445 (R 4441 and R 4442 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 4443 , R 4444 and R 4445 are Each independently represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group, and each substituent may be linked by a cyclic structure.
As the propargyl group, —CR 4451 R 4452 —C≡CR 4453 (R 4451 and R 4452 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, R 4453 is a hydrogen atom or an alkyl group having 1 to 8 carbon atoms) , Aryl group or silyl group).
重合物中の一般式(2)で表される構造単位の一部の3級アミン構造を4級化する方法としては、重合物と4級化剤とを接触させる方法が挙げられる。具体的には、一般式(2)で表される構造単位を形成し得るビニルモノマーを含有するモノマー組成物を重合した後、この反応液に4級化剤を添加し、撹拌する方法が挙げられる。 (4.1.5 Quaternization)
As a method of quaternizing a tertiary amine structure of a part of the structural unit represented by the general formula (2) in the polymer, a method of bringing the polymer into contact with a quaternizing agent can be mentioned. Specifically, after polymerizing a monomer composition containing a vinyl monomer that can form the structural unit represented by the general formula (2), a quaternizing agent is added to the reaction solution, followed by stirring. It is done.
前記ブロック共重合体の前駆体の分子量は、GPC法により測定される。前記ブロック共重合体の前駆体の重量平均分子量(Mw)は5000以上が好ましく、より好ましくは6000以上、さらに好ましくは7000以上であり、15000以下が好ましく、より好ましくは12000以下、さらに好ましくは10000以下である。 (4.1.6 Block copolymer precursor)
The molecular weight of the block copolymer precursor is measured by the GPC method. The weight average molecular weight (Mw) of the block copolymer precursor is preferably 5000 or more, more preferably 6000 or more, further preferably 7000 or more, preferably 15000 or less, more preferably 12000 or less, and still more preferably 10,000. It is as follows.
工程(B)では、前記工程(A)終了後、得られたブロック共重合体の前駆体に芳香族ジカルボン酸イミド、芳香族スルホン酸、芳香族ホスホン酸および芳香族カルボン酸よりなる群から選択される少なくとも1種のアルカリ金属塩を作用させ、ブロック共重合体を得る。工程(B)により、一般式(3)で表される構造単位が有するハロゲンアニオンを、芳香族ジカルボン酸イミドアニオン、芳香族スルホン酸アニオン、芳香族ホスホニウムイオンまたは芳香族カルボン酸アニオンに交換(アニオン交換)することができる。 (4.2 Step (B))
In the step (B), after completion of the step (A), the precursor of the obtained block copolymer is selected from the group consisting of aromatic dicarboxylic imide, aromatic sulfonic acid, aromatic phosphonic acid and aromatic carboxylic acid. At least one alkali metal salt is allowed to act to obtain a block copolymer. By the step (B), the halogen anion of the structural unit represented by the general formula (3) is exchanged for an aromatic dicarboxylic acid imide anion, an aromatic sulfonic acid anion, an aromatic phosphonium ion, or an aromatic carboxylate anion (anion). Exchange).
前記ブロック共重合体の製造方法は、前記工程(B)で得られたブロック共重合体を、水洗する工程(C)を備えていることが好ましい。前記水洗方法としては、公知の洗浄方法を用いることができるが、分液洗浄が好ましい。分液洗浄は、工程(B)終了後の溶液に対して行ってもよいし、前記工程(B)終了後の溶液からブロック共重合体の第一組成物を単離し、得られた第一組成物を適当な溶媒に溶解させた溶液に対して行ってもよい。 (4.3 Step (C))
The method for producing the block copolymer preferably includes a step (C) of washing the block copolymer obtained in the step (B) with water. As the water washing method, a known washing method can be used, but liquid separation washing is preferable. Separation washing may be performed on the solution after completion of the step (B), or the first composition obtained by isolating the first composition of the block copolymer from the solution after completion of the step (B). You may perform with respect to the solution which melt | dissolved the composition in the appropriate solvent.
本発明の分散剤は、前記ブロック共重合体、第一組成物または第二組成物を主成分として含有するものである。なお前記分散剤は、実質的に本発明のブロック共重合体、第一組成物または第二組成物のみからなるものであることが好ましい。本発明の顔料分散組成物は、前記分散剤と、顔料と、分散媒体とを含有してなる。この場合に使用する顔料の種類および粒子径は、その用途によっても異なり、特に限定されない。前記顔料分散組成物は、カラーフィルタ用に使用できる。本発明を特徴づけるブロック共重合体は、その構造中(Bブロック)の3級アミノ基および4級アンモニウム塩基が、酸性顔料または酸性基含有色素誘導体で処理された顔料の酸性基と強固に結合し、このBブロックが顔料に吸着することで、または4級アンモニウム塩基の対イオンである芳香族ジカルボン酸イミドアニオンの芳香族部位が顔料の色素骨格部位と吸着することで、顔料分散性を高める作用を発揮すると考えられる。すなわち、本発明の分散剤は、この作用によって顔料の良好に分散させる成分であるので、分散させる顔料の種類については特に限定されない。 <5 Dispersant, pigment dispersion composition>
The dispersant of the present invention contains the block copolymer, the first composition or the second composition as a main component. In addition, it is preferable that the said dispersing agent consists only of the block copolymer of this invention, a 1st composition, or a 2nd composition. The pigment dispersion composition of the present invention contains the dispersant, a pigment, and a dispersion medium. In this case, the type and particle size of the pigment used are different depending on the application and are not particularly limited. The pigment dispersion composition can be used for a color filter. In the block copolymer characterizing the present invention, the tertiary amino group and quaternary ammonium base in the structure (B block) are strongly bonded to the acidic group of the pigment treated with the acidic pigment or the acidic group-containing dye derivative. The B block adsorbs to the pigment, or the aromatic part of the aromatic dicarboxylic acid imide anion which is a counter ion of the quaternary ammonium base adsorbs to the pigment skeleton part of the pigment, thereby improving the pigment dispersibility. It is thought to exert its effect. That is, since the dispersant of the present invention is a component that favorably disperses the pigment by this action, the type of pigment to be dispersed is not particularly limited.
BTEE:エチル-2-メチル-2-n-ブチルテラニル-プロピオネート
DBDT:ジブチルジテルリド
AIBN:2,2’-アゾビス(イソブチロニトリル)
MMA:メタクリル酸メチル
BMA:メタクリル酸ブチル
EHMA:メタクリル酸2-エチルヘキシル
BzMA:メタクリル酸ベンジル
M4EGM:メトキシポリエチレングリコールモノメタクリレート(商品名:ブレンマーPME-200、日油社製)
HEMA:メタクリル酸2-ヒドロキシエチル
THFMA:メタクリル酸テトラヒドロフルフリル
PCL5:2-ヒドロキシエチルメタクリレートの5molカプロラクトン付加物(ダイセル化学社製、プラクセル(登録商標)FM5)
MAA:メタクリル酸
DMAEMA:メタクリル酸ジメチルアミノエチル
BzCl:塩化ベンジル
PIK:フタルイミドカリウム
NaSS:p-スチレンスルホン酸ナトリウム
NaTS:p-トルエンスルホン酸ナトリウム
NaBA:安息香酸ナトリウム
NaHPPA:フェニルホスホン酸一ナトリウム
PMA:プロピレングリコールモノメチルエーテルアセテート
MP:1-メトキシ-2-プロパノール
AcOEt:酢酸エチル EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these specific examples. Various physical properties were measured with the following equipment. The abbreviations have the following meanings.
BTEE: ethyl-2-methyl-2-n-butylterranyl-propionate DBDT: dibutylditelluride AIBN: 2,2′-azobis (isobutyronitrile)
MMA: Methyl methacrylate BMA: Butyl methacrylate EHMA: 2-ethylhexyl methacrylate BzMA: Benzyl methacrylate M4EGM: Methoxypolyethylene glycol monomethacrylate (trade name: Blenmer PME-200, manufactured by NOF Corporation)
HEMA: 2-hydroxyethyl methacrylate THFMA: tetrahydrofurfuryl methacrylate methacrylate PCL5: 5 mol caprolactone adduct of 2-hydroxyethyl methacrylate (Daicel Chemical Industries, Plaxel (registered trademark) FM5)
MAA: DMAEMA methacrylate: dimethylaminoethyl methacrylate BzCl: benzyl PIK: potassium phthalimide NaSS: p-sodium styrenesulfonate NaTS: sodium p-toluenesulfonate NaBA: sodium benzoate NaHPPA: monosodium phenylphosphonate PMA: propylene Glycol monomethyl ether acetate MP: 1-methoxy-2-propanol AcOEt: ethyl acetate
核磁気共鳴(NMR)測定装置(Bruker社製、型式:AVANCE500(周波数500MHz))を用いて、1H-NMRを測定(溶媒:重水素化クロロホルム、内部標準:テトラメチルシラン)した。得られたNMRスペクトルについて、モノマー由来のビニル基と、ポリマー由来のエステル側鎖のピークの積分比を求め、モノマーの重合率を算出した。 (Polymerization rate)
1 H-NMR was measured (solvent: deuterated chloroform, internal standard: tetramethylsilane) using a nuclear magnetic resonance (NMR) measuring apparatus (manufactured by Bruker, model: AVANCE500 (frequency: 500 MHz)). About the obtained NMR spectrum, the integration ratio of the monomer-derived vinyl group and the peak of the polymer-derived ester side chain was determined, and the polymerization rate of the monomer was calculated.
高速液体クロマトグラフ(東ソー製、型式:HLC8320)を用いて、ゲル浸透クロマトグラフィー(GPC)により求めた。カラムはSHODEX KF-603(Φ6.0mm×150mm)(SHODEX社製)を1本、移動相に30mmol/L臭化リチウム-30mmol/L酢酸-N-メチルピロリドン、検出器に示差屈折率検出器を使用した。測定条件は、カラム温度を40℃、試料濃度を100mg/mL、試料注入量を10μL、流速を0.6mL/minとした。標準物質としてポリスチレン(東ソー社製、TSK Standard)を使用して検量線(校正曲線)を作成し、重量平均分子量(Mw)、数平均分子量(Mn)を測定した。これらの測定値から分子量分布(PDI)を算出した。 (Weight average molecular weight (Mw) and molecular weight distribution (PDI))
It calculated | required by the gel permeation chromatography (GPC) using the high performance liquid chromatograph (The Tosoh make, model: HLC8320). One column is SHODEX KF-603 (Φ6.0 mm × 150 mm) (manufactured by SHODEX), 30 mmol / L lithium bromide-30 mmol / L acetic acid-N-methylpyrrolidone is used as a mobile phase, and a differential refractive index detector is used as a detector. It was used. The measurement conditions were a column temperature of 40 ° C., a sample concentration of 100 mg / mL, a sample injection amount of 10 μL, and a flow rate of 0.6 mL / min. A calibration curve (calibration curve) was prepared using polystyrene (manufactured by Tosoh Corporation, TSK Standard) as a standard substance, and a weight average molecular weight (Mw) and a number average molecular weight (Mn) were measured. Molecular weight distribution (PDI) was calculated from these measured values.
アミン価は、固形分1gあたりの塩基性成分と当量の水酸化カリウム(KOH)の質量で表したものである。測定試料をテトラヒドロフランに溶解し、電位差滴定装置(商品名:915 KF Ti-touch、Metrohm社製)を用いて、得られた溶液を0.1mol/L塩酸/2-プロパノール溶液で中和滴定した。滴定pH曲線の変曲点を滴定終点として次式によりアミン価(B)を算出した。
B=56.11×Vs×0.1×f/w
B:アミン価(mgKOH/g)
Vs:滴定に要した0.1mol/L塩酸/2-プロパノール溶液の使用量(mL)
f:0.1mol/L塩酸/2-プロパノール溶液の力価
w:測定試料の質量(g)(固形分換算) (Amine number)
The amine value is expressed by the mass of potassium hydroxide (KOH) equivalent to the basic component per gram of the solid content. The measurement sample was dissolved in tetrahydrofuran, and the obtained solution was neutralized with 0.1 mol / L hydrochloric acid / 2-propanol solution using a potentiometric titrator (trade name: 915 KF Ti-touch, manufactured by Metrohm). . The amine value (B) was calculated by the following formula using the inflection point of the titration pH curve as the titration end point.
B = 56.11 × Vs × 0.1 × f / w
B: Amine value (mgKOH / g)
Vs: Amount of 0.1 mol / L hydrochloric acid / 2-propanol solution required for titration (mL)
f: Potency of 0.1 mol / L hydrochloric acid / 2-propanol solution w: Mass of measurement sample (g) (converted to solid content)
酸価は、固形分1gあたりの酸性成分を中和するのに要する水酸化カリウムの質量を表したものである。測定試料をテトラヒドロフロンに溶解し、得られた溶液を0.5mol/L水酸化カリウム/エタノール溶液で中和滴定した。次式により酸価(A)を算出した。
A=56.11×Vs×0.5×f/w
A:酸価(mgKOH/g)
Vs:滴定に要した0.5mol/L水酸化カリウム/エタノール溶液の使用量 (mL)
f:0.5mol/L水酸化カリウム/エタノール溶液の力価
w:測定試料の質量(g)(固形分換算) (Acid value)
The acid value represents the mass of potassium hydroxide required to neutralize acidic components per gram of solid content. The measurement sample was dissolved in tetrahydrofuron, and the resulting solution was subjected to neutralization titration with a 0.5 mol / L potassium hydroxide / ethanol solution. The acid value (A) was calculated by the following formula.
A = 56.11 × Vs × 0.5 × f / w
A: Acid value (mgKOH / g)
Vs: Amount of 0.5 mol / L potassium hydroxide / ethanol solution required for titration (mL)
f: Potency of 0.5 mol / L potassium hydroxide / ethanol solution w: Mass (g) of measurement sample (converted to solid content)
E型粘度計(商品名:TVE-22L、東機産業社製)を用い、コーンローター(1°34’×R24)のを使用して、25℃下、ローター回転数100rpmで粘度を測定した。 (viscosity)
Using an E-type viscometer (trade name: TVE-22L, manufactured by Toki Sangyo Co., Ltd.), using a cone rotor (1 ° 34 ′ × R24), the viscosity was measured at 25 ° C. and a rotor rotation speed of 100 rpm. .
熱重量・示差熱同時測定装置(TG-DTA)(SIIナノテクノロジー社製、TG-DTA6300)を用いて測定した。測定試料は、測定前に温度130℃で2時間減圧乾燥した。測定条件は、試料質量約10mg、空気流入量200ml/min、昇温速度10℃/min、測定温度範囲40℃~600℃とした。得られたTG曲線から試料質量が10%減少した温度を読み取り、これを加熱重量減少温度とした。 (Heating weight reduction temperature)
The measurement was performed using a thermogravimetric / differential thermal simultaneous measurement apparatus (TG-DTA) (TG-DTA6300, manufactured by SII Nanotechnology). The measurement sample was dried under reduced pressure at 130 ° C. for 2 hours before measurement. The measurement conditions were a sample mass of about 10 mg, an air inflow rate of 200 ml / min, a heating rate of 10 ° C./min, and a measurement temperature range of 40 ° C. to 600 ° C. The temperature at which the sample mass decreased by 10% was read from the obtained TG curve, and this was taken as the heating weight decrease temperature.
試料調整は、次のようにして行った。第二組成物質量約10mgを燃焼炉(商品名:AQF-2100H、三菱化学アナリテック製)に投入した。燃焼炉のヒーターは900℃(内側)、ガス流量をアルゴン200mL/min、酸素400mL/min、加湿用アルゴン100mL/min、燃焼炉滞在時間を15分とした。排気ガスを捕集器(商品名:AU-250、三菱化学アナリテック製)で捕捉した。吸収液に超純水を使用し、得られた吸水液35mLを、超純水を用いて50mLに希釈し試料溶液を調整した。
ハロゲンアニオンの含有量は、イオンクロマトグラフィー(商品名:DIONEX ICS-1600、Thermo Scientific製)を用いて測定した。カラムはIon Pac AS-14A(DIONEX製)、溶離液は陰イオン分析用溶離液(商品名:AS12A,DIONEX製)を使用した。測定条件は、試料注入量を25μL、流速を1.5mL/minとした。標準物質として塩素アニオン濃度1ppm、2ppmの標準液を使用して検量線(校正曲線)を作成し、塩素アニオン濃度を算出した。 (Halogen anion content)
Sample preparation was performed as follows. About 10 mg of the second composition substance was put into a combustion furnace (trade name: AQF-2100H, manufactured by Mitsubishi Chemical Analytech). The heater of the combustion furnace was 900 ° C. (inside), the gas flow rate was 200 mL / min of argon, 400 mL / min of oxygen, 100 mL / min of argon for humidification, and the residence time of the combustion furnace was 15 minutes. The exhaust gas was captured by a collector (trade name: AU-250, manufactured by Mitsubishi Chemical Analytech). The sample solution was prepared by using ultrapure water as the absorbing solution and diluting 35 mL of the obtained water absorbing solution to 50 mL using ultrapure water.
The content of the halogen anion was measured using ion chromatography (trade name: DIONEX ICS-1600, manufactured by Thermo Scientific). The column used was Ion Pac AS-14A (manufactured by DIONEX), and the eluent used was an eluent for anion analysis (trade name: AS12A, manufactured by DIONEX). The measurement conditions were a sample injection volume of 25 μL and a flow rate of 1.5 mL / min. A calibration curve (calibration curve) was prepared using a standard solution having a chlorine anion concentration of 1 ppm and 2 ppm as a standard substance, and the chlorine anion concentration was calculated.
(ブロック共重合体の前駆体No.1)
アルゴンガス導入管、撹拌機を備えたフラスコにMMA 46.1g、BMA 22.2g、EHMA 20.9g、BzMA 15.4g、M4EGM 8.1g、MAA 8.1g、AIBN 0.82g、PMA 80.5gを仕込み、アルゴン置換後、BTEE 7.49g、DBDT 4.61gを加え、60℃で15時間反応させAブロックを重合した。重合率は99%であった。 <Manufacture of copolymer>
(Precursor No. 1 of block copolymer)
In a flask equipped with an argon gas introduction tube and a stirrer, MMA 46.1 g, BMA 22.2 g, EHMA 20.9 g, BzMA 15.4 g, M4EGM 8.1 g, MAA 8.1 g, AIBN 0.82 g, PMA 80. After charging 5 g and substituting with argon, 7.49 g of BTEE and 4.61 g of DBDT were added and reacted at 60 ° C. for 15 hours to polymerize the A block. The polymerization rate was 99%.
ブロック共重合体の前駆体No.1の作製方法と同様にしてブロック共重合体の前駆体No.2~12を作製した。表1、2に、使用した原料モノマー、有機テルル化合物、有機ジテルル化合物、アゾ系重合開始剤、溶媒、4級化剤、反応条件、重合率を示した。また、表3、4に、各ブロック共重合体の前駆体の組成、Mw、PDI、酸価、アミン価、加熱重量減少温度を示した。 (Block copolymer precursor Nos. 2 to 12)
Block copolymer precursor no. The block copolymer precursor No. 1 was prepared in the same manner as in the preparation method of No. 1. 2 to 12 were produced. Tables 1 and 2 show the raw material monomers, organic tellurium compounds, organic ditellurium compounds, azo polymerization initiators, solvents, quaternizing agents, reaction conditions, and polymerization rates used. Tables 3 and 4 show the composition of precursors of each block copolymer, Mw, PDI, acid value, amine value, and heating weight reduction temperature.
上記で得られたブロック共重合体の前駆体No.1 87.5gに、PMA 110g、MP 110gを加え溶解させた。得られた溶液にPIK 11.2gを加え、60℃で20時間反応させることでアニオン交換した。反応液を濾過した後、濾液から溶媒を除去し、ブロック共重合体の第一組成物No.31を得た。得られた第一組成物No.31は、含まれるブロック共重合体のMwが7479、PDIが1.23であり、第一組成物No.31の酸価が31mgKOH/g、アミン価が101mgKOH/g、加熱重量減少温度が273℃であった。 (First composition No. 31 of block copolymer)
The block copolymer precursor No. obtained above. 1 PMA 110g and MP 110g were added to 87.5g and dissolved. Anion exchange was performed by adding 11.2 g of PIK to the obtained solution and reacting at 60 ° C. for 20 hours. After the reaction solution was filtered, the solvent was removed from the filtrate, and the first composition No. 1 of the block copolymer was removed. 31 was obtained. The obtained first composition No. No. 31 has a block copolymer Mw of 7479 and PDI of 1.23. The acid value of 31 was 31 mgKOH / g, the amine value was 101 mgKOH / g, and the heating weight loss temperature was 273 ° C.
ブロック共重合体の第一組成物No.31の作製方法と同様にして第一組成物No.32~46を作製した。表5、6に、使用した原料共重合体、アニオン交換剤、溶媒、反応条件を示した。また、表7、8に、第一組成物に含まれるブロック共重合体の組成、Mw、PDI、および、第一組成物の酸価、アミン価、加熱重量減少温度を示した。 (First composition No. 32-46 of block copolymer)
First composition No. of block copolymer In the same manner as the production method of No. 31, the first composition No. 32-46 were produced. Tables 5 and 6 show the raw material copolymers, anion exchangers, solvents and reaction conditions used. Tables 7 and 8 show the composition of the block copolymer contained in the first composition, Mw, PDI, and the acid value, amine value, and heating weight reduction temperature of the first composition.
上記で得られたブロック共重合体の前駆体No.1 87.5gに、PMA 110g、MP 110gを加え溶解させた。得られた溶液にPIK 11.2gを加え、60℃で20時間反応させることでアニオン交換した。得られた反応液を冷却後、酢酸エチル、水を加え40℃で1時間撹拌した。分液を行い、有機層を獲得した。得られた有機層を減圧濃縮し、乾燥することでブロック共重合体の第二組成物No.51を得た。得られたブロック共重合体の第二組成物No.51は、含まれるブロック共重合体のMwが7852、PDIが1.21であった。また、第二組成物の酸価が32mgKOH/g、アミン価が89mgKOH/g、加熱重量減少温度が291℃、塩素アニオン含有量が3501ppm(固形分換算)であった。 (Block copolymer second composition No. 51)
The block copolymer precursor No. obtained above. 1 PMA 110g and MP 110g were added to 87.5g and dissolved. Anion exchange was performed by adding 11.2 g of PIK to the obtained solution and reacting at 60 ° C. for 20 hours. The obtained reaction solution was cooled, ethyl acetate and water were added, and the mixture was stirred at 40 ° C. for 1 hour. Liquid separation was performed to obtain an organic layer. The obtained organic layer was concentrated under reduced pressure and dried to obtain a second composition No. 2 of the block copolymer. 51 was obtained. The second composition No. of the obtained block copolymer. 51, Mw of the block copolymer contained was 7852, and PDI was 1.21. Further, the acid value of the second composition was 32 mg KOH / g, the amine value was 89 mg KOH / g, the heating weight reduction temperature was 291 ° C., and the chlorine anion content was 3501 ppm (solid content conversion).
ブロック共重合体の第二組成物No.51の作製方法と同様にして第二組成物No.53~65を作製した。表9、10に、第二組成物に含まれるブロック共重合体の組成、Mw、PDI、および、第二組成物の酸価、アミン価、加熱重量減少温度を示した。得られた第二組成物No.59の塩素アニオン含有量は6615ppm(固形分換算)であった。 (Second composition No. 52 to 65 of block copolymer)
The second composition No. of the block copolymer. In the same manner as the production method of No. 51, the second composition No. 53 to 65 were produced. Tables 9 and 10 show the composition of the block copolymer contained in the second composition, Mw, PDI, and the acid value, amine value, and heating weight reduction temperature of the second composition. The obtained second composition No. The chlorine anion content of 59 was 6615 ppm (in terms of solid content).
(顔料分散組成物1)
C.I.Pigment Red254(商品名:BKCF、チバ・スペシャリティ・ケミカルズ社製) 10質量部、ブロック共重合体の前駆体No.1 3質量部、バインダー樹脂(メタクリル酸ベンジル/メタクル酸=80/20の質量比で重合させたもの、Mw=12024、PDI=1.83、酸価130mgKOH/g、固形分39質量%のPMA溶液) 3質量部、MP 3質量部、PMA 81質量部となるように配合を調製し、遊星ボールミル(0.3mmジルコニアビーズ)で2時間攪拌することで顔料分散組成物を製造した。得られた顔料分散組成物の粘度は4.0mPa・sであった。 <Production of pigment dispersion composition>
(Pigment dispersion composition 1)
C. I. Pigment Red254 (trade name: BKCF, manufactured by Ciba Specialty Chemicals) 10 parts by mass, precursor No. of block copolymer. 13 parts by mass, binder resin (polymerized at a mass ratio of benzyl methacrylate / methacrylic acid = 80/20, Mw = 1024, PDI = 1.83, acid value 130 mgKOH / g, PMA having a solid content of 39% by mass Solution) A blended composition was prepared by preparing 3 parts by mass, 3 parts by mass of MP, and 81 parts by mass of PMA, and stirring for 2 hours with a planetary ball mill (0.3 mm zirconia beads). The viscosity of the obtained pigment dispersion composition was 4.0 mPa · s.
C.I.Pigment Red254(商品名:BKCF、チバ・スペシャリティ・ケミカルズ社製) 10質量部、ブロック共重合体の第二組成物No.51 3質量部、バインダー樹脂(メタクリル酸ベンジル/メタクル酸=80/20の質量比で重合させたもの、Mw=12024、PDI=1.83、酸価130mgKOH/g、固形分39質量%のPMA溶液) 3質量部、MP 3質量部、PMA 81質量部となるように配合を調製し、遊星ボールミル(0.3mmジルコニアビーズ)で2時間攪拌することで顔料分散組成物を製造した。得られた顔料分散組成物の粘度は3.0mPa・sであった。 (Pigment dispersion composition 2)
C. I. Pigment Red254 (trade name: BKCF, manufactured by Ciba Specialty Chemicals) 10 parts by mass, the second composition No. of the block copolymer. 51 3 parts by mass, binder resin (polymerized at a mass ratio of benzyl methacrylate / methacrylic acid = 80/20, Mw = 1024, PDI = 1.83, acid value 130 mgKOH / g, PMA having a solid content of 39% by mass Solution) A blended composition was prepared by preparing 3 parts by mass, 3 parts by mass of MP, and 81 parts by mass of PMA, and stirring for 2 hours with a planetary ball mill (0.3 mm zirconia beads). The viscosity of the obtained pigment dispersion composition was 3.0 mPa · s.
(実施態様1)
酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、下記一般式(1)で表される構造単位および下記一般式(2)で表される構造単位を含むBブロックとを有することを特徴とするブロック共重合体。 The present invention includes the following embodiments.
(Embodiment 1)
It has an A block containing a structural unit derived from a vinyl monomer having an acidic group, and a B block containing a structural unit represented by the following general formula (1) and a structural unit represented by the following general formula (2). A block copolymer characterized by
A-B型ブロック共重合体である実施態様1に記載のブロック共重合体。 (Embodiment 2)
The block copolymer according to embodiment 1, which is an AB type block copolymer.
前記酸性基を有するビニルモノマーに由来する構造単位の含有率が、前記Aブロック100質量%中において2質量%~20質量%である実施態様1または2に記載のブロック共重合体。 (Embodiment 3)
The block copolymer according to embodiment 1 or 2, wherein the content of the structural unit derived from the vinyl monomer having an acidic group is 2% by mass to 20% by mass in 100% by mass of the A block.
前記一般式(1)で表される構造単位の含有率が、前記Bブロック100質量%中において30質量%~85質量%である実施態様1~3のいずれか一項に記載のブロック共重合体。 (Embodiment 4)
The block co-polymerization according to any one of embodiments 1 to 3, wherein the content of the structural unit represented by the general formula (1) is 30% by mass to 85% by mass in 100% by mass of the B block. Coalescence.
前記Aブロックの含有率が、ブロック共重合体100質量%中において35質量%~85質量%である実施態様1~4のいずれか一項に記載のブロック共重合体。 (Embodiment 5)
The block copolymer according to any one of embodiments 1 to 4, wherein the content of the A block is 35% by mass to 85% by mass in 100% by mass of the block copolymer.
実施態様1~5のいずれか一項に記載のブロック共重合体を含有する第一組成物。 (Embodiment 6)
A first composition comprising the block copolymer according to any one of embodiments 1 to 5.
前記ブロック共重合体の分子量分布(PDI)が2.0以下である実施態様6に記載の第一組成物。 (Embodiment 7)
The 1st composition of Embodiment 6 whose molecular weight distribution (PDI) of the said block copolymer is 2.0 or less.
実施態様7の第一組成物を、水洗し、乾燥して得られる第二組成物。 (Embodiment 8)
A second composition obtained by washing the first composition of Embodiment 7 with water and drying.
実施態様1~6のいずれか一つに記載のブロック共重合体、実施態様7に記載の第一組成物または実施態様8に記載の第二組成物を含有する分散剤。 (Embodiment 9)
A dispersant comprising the block copolymer according to any one of Embodiments 1 to 6, the first composition according to Embodiment 7, or the second composition according to Embodiment 8.
実施態様9に記載の分散剤と顔料と分散媒体を含有する顔料分散組成物。 (Embodiment 10)
A pigment dispersion composition comprising the dispersant according to embodiment 9, a pigment, and a dispersion medium.
カラーフィルタ用である実施態様10に記載の顔料分散組成物。 (Embodiment 11)
The pigment dispersion composition according to embodiment 10, which is for a color filter.
酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、下記一般式(2)で表される構造単位および下記一般式(3)で表される構造単位を含むBブロックとを有するブロック共重合体の前駆体を準備する工程(A)と、
前記工程(A)で得られたブロック共重合体の前駆体に、芳香族ジカルボン酸イミド、芳香族スルホン酸、芳香族ホスホン酸および芳香族カルボン酸よりなる群から選択される少なくとも1種のアルカリ金属塩を作用させ、ブロック共重合体を得る工程(B)とを備えることを特徴とするブロック共重合体の製造方法。 (Embodiment 12)
A block having an A block containing a structural unit derived from a vinyl monomer having an acidic group, and a B block containing a structural unit represented by the following general formula (2) and a structural unit represented by the following general formula (3) Preparing a copolymer precursor (A);
The precursor of the block copolymer obtained in the step (A) is at least one alkali selected from the group consisting of aromatic dicarboxylic imides, aromatic sulfonic acids, aromatic phosphonic acids and aromatic carboxylic acids. And a step (B) of obtaining a block copolymer by allowing a metal salt to act, and a method for producing a block copolymer.
前記工程(A)において、リビングラジカル重合を用いて前記第一ブロック共重合体の前駆体を準備する実施態様12に記載のブロック共重合体の製造方法。 (Embodiment 13)
The method for producing a block copolymer according to embodiment 12, wherein in the step (A), a precursor of the first block copolymer is prepared using living radical polymerization.
前記工程(B)で得られたブロック共重合体を、水洗する工程(C)を備える実施態様12または13に記載のブロック共重合体の製造方法。 (Embodiment 14)
The manufacturing method of the block copolymer of Embodiment 12 or 13 provided with the process (C) which wash | cleans the block copolymer obtained at the said process (B) with water.
Claims (14)
- 酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、下記一般式(1)で表される構造単位および下記一般式(2)で表される構造単位を含むBブロックとを有することを特徴とするブロック共重合体。
- A-B型ブロック共重合体である請求項1に記載のブロック共重合体。 The block copolymer according to claim 1, which is an AB type block copolymer.
- 前記酸性基を有するビニルモノマーに由来する構造単位の含有率が、前記Aブロック100質量%中において2質量%~20質量%である請求項1または2に記載のブロック共重合体。 3. The block copolymer according to claim 1, wherein the content of the structural unit derived from the vinyl monomer having an acidic group is 2% by mass to 20% by mass in 100% by mass of the A block.
- 前記一般式(1)で表される構造単位の含有率が、前記Bブロック100質量%中において30質量%~85質量%である請求項1~3のいずれか一項に記載のブロック共重合体。 The block co-polymerization weight according to any one of claims 1 to 3, wherein the content of the structural unit represented by the general formula (1) is 30% by mass to 85% by mass in 100% by mass of the B block. Coalescence.
- 前記Aブロックの含有率が、ブロック共重合体100質量%中において35質量%~85質量%である請求項1~4のいずれか一項に記載のブロック共重合体。 The block copolymer according to any one of claims 1 to 4, wherein the content of the A block is 35% by mass to 85% by mass in 100% by mass of the block copolymer.
- 請求項1~5のいずれか一項に記載のブロック共重合体を含有する第一組成物。 A first composition comprising the block copolymer according to any one of claims 1 to 5.
- 前記ブロック共重合体の分子量分布(PDI)が2.0以下である請求項6に記載の第一組成物。 The first composition according to claim 6, wherein the block copolymer has a molecular weight distribution (PDI) of 2.0 or less.
- 請求項7に記載の第一組成物を、水洗し、乾燥して得られる第二組成物。 A second composition obtained by washing the first composition according to claim 7 with water and drying.
- 請求項1~6のいずれか一項に記載のブロック共重合体、請求項7に記載の第一組成物または請求項8に記載の第二組成物を含有する分散剤。 A dispersant containing the block copolymer according to any one of claims 1 to 6, the first composition according to claim 7, or the second composition according to claim 8.
- 請求項9に記載の分散剤と顔料と分散媒体を含有する顔料分散組成物。 A pigment dispersion composition comprising the dispersant according to claim 9, a pigment, and a dispersion medium.
- カラーフィルタ用である請求項10に記載の顔料分散組成物。 The pigment dispersion composition according to claim 10, which is used for a color filter.
- 酸性基を有するビニルモノマーに由来する構造単位を含むAブロックと、下記一般式(2)で表される構造単位および下記一般式(3)で表される構造単位を含むBブロックとを有するブロック共重合体の前駆体を準備する工程(A)と、
前記工程(A)で得られたブロック共重合体の前駆体に、芳香族ジカルボン酸イミド、芳香族スルホン酸、芳香族ホスホン酸および芳香族カルボン酸よりなる群から選択される少なくとも1種のアルカリ金属塩を作用させ、ブロック共重合体を得る工程(B)とを備えることを特徴とするブロック共重合体の製造方法。
The precursor of the block copolymer obtained in the step (A) is at least one alkali selected from the group consisting of aromatic dicarboxylic imides, aromatic sulfonic acids, aromatic phosphonic acids and aromatic carboxylic acids. And a step (B) of obtaining a block copolymer by allowing a metal salt to act, and a method for producing a block copolymer.
- 前記工程(A)において、リビングラジカル重合を用いて前記ブロック共重合体の前駆体を準備する請求項12に記載のブロック共重合体の製造方法。 The method for producing a block copolymer according to claim 12, wherein in the step (A), a precursor of the block copolymer is prepared using living radical polymerization.
- 前記工程(B)で得られたブロック共重合体を、水洗する工程(C)を備える請求項12または13に記載のブロック共重合体の製造方法。 The method for producing a block copolymer according to claim 12 or 13, comprising a step (C) of washing the block copolymer obtained in the step (B) with water.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020187012560A KR102032076B1 (en) | 2016-10-31 | 2017-10-26 | Block Copolymers, Dispersants, and Pigment Dispersion Compositions |
CN201780004006.8A CN108431064B (en) | 2016-10-31 | 2017-10-26 | Block copolymer, dispersant and pigment dispersion composition |
JP2018505485A JP6316531B1 (en) | 2016-10-31 | 2017-10-26 | Block copolymer, dispersant and pigment dispersion composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-213522 | 2016-10-31 | ||
JP2016213522 | 2016-10-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018079659A1 true WO2018079659A1 (en) | 2018-05-03 |
Family
ID=62025027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/038717 WO2018079659A1 (en) | 2016-10-31 | 2017-10-26 | Block copolymer, dispersing agent, and pigment dispersion composition |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6316531B1 (en) |
KR (1) | KR102032076B1 (en) |
CN (1) | CN108431064B (en) |
TW (1) | TWI670286B (en) |
WO (1) | WO2018079659A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039787A1 (en) * | 2019-08-26 | 2021-03-04 | 国立大学法人富山大学 | Fine particle adsorption-preventing polymer |
KR20210043707A (en) | 2019-09-06 | 2021-04-21 | 미쯔비시 케미컬 주식회사 | Photosensitive coloring composition, cured product, image display device, and pigment dispersion for image display device |
JP2021063180A (en) * | 2019-10-15 | 2021-04-22 | 大塚化学株式会社 | Dispersant composition, coloring composition, and color filter |
JP2021075660A (en) * | 2019-11-12 | 2021-05-20 | 大日精化工業株式会社 | Pigment dispersion |
JP2022003133A (en) * | 2019-08-26 | 2022-01-11 | 国立大学法人富山大学 | Fine particle adsorption prevention polymer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7235474B2 (en) * | 2018-10-25 | 2023-03-08 | 大塚化学株式会社 | Coloring composition and color filter |
JP7235475B2 (en) * | 2018-10-25 | 2023-03-08 | 大塚化学株式会社 | Coloring composition and color filter |
EP4325599A4 (en) * | 2022-07-08 | 2024-07-31 | Contemporary Amperex Technology Co Ltd | Dispersing agent and preparation method therefor, slurry composition and preparation method therefor, and electrode sheet and device comprising same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010079244A (en) * | 2008-08-26 | 2010-04-08 | Dainippon Printing Co Ltd | Negative resist composition for color filter, color filter, and liquid crystal display |
WO2012001945A1 (en) * | 2010-06-30 | 2012-01-05 | 日本曹達株式会社 | Novel copolymer |
WO2015198422A1 (en) * | 2014-06-25 | 2015-12-30 | 大日精化工業株式会社 | A-b block co-polymer, a-b block co-polymer production method, resin treatment pigment composition, resin treatment pigment composition production method, pigment dispersion, and pigment dispersion solution |
JP2017082198A (en) * | 2015-09-23 | 2017-05-18 | ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング | Coloring agent composition containing wetting agent and/or dispersant with low amine value |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4133267B2 (en) * | 2002-11-29 | 2008-08-13 | 三菱化学株式会社 | Pigment dispersion composition and color filter using the same |
CN102027029B (en) * | 2008-05-15 | 2014-05-28 | 帝斯曼知识产权资产管理有限公司 | Block copolymers obtained using RAFT |
JP2012068559A (en) | 2010-09-27 | 2012-04-05 | Toyo Ink Sc Holdings Co Ltd | Coloring composition for color filter and color filter |
JP5892510B2 (en) | 2012-03-28 | 2016-03-23 | 大日精化工業株式会社 | Method for producing polymer dispersant |
-
2017
- 2017-10-26 JP JP2018505485A patent/JP6316531B1/en active Active
- 2017-10-26 CN CN201780004006.8A patent/CN108431064B/en active Active
- 2017-10-26 WO PCT/JP2017/038717 patent/WO2018079659A1/en active Application Filing
- 2017-10-26 KR KR1020187012560A patent/KR102032076B1/en active IP Right Grant
- 2017-10-30 TW TW106137279A patent/TWI670286B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010079244A (en) * | 2008-08-26 | 2010-04-08 | Dainippon Printing Co Ltd | Negative resist composition for color filter, color filter, and liquid crystal display |
WO2012001945A1 (en) * | 2010-06-30 | 2012-01-05 | 日本曹達株式会社 | Novel copolymer |
WO2015198422A1 (en) * | 2014-06-25 | 2015-12-30 | 大日精化工業株式会社 | A-b block co-polymer, a-b block co-polymer production method, resin treatment pigment composition, resin treatment pigment composition production method, pigment dispersion, and pigment dispersion solution |
JP2017082198A (en) * | 2015-09-23 | 2017-05-18 | ベーイプシロンカー ヘミー ゲゼルシャフト ミット ベシュレンクター ハフトゥング | Coloring agent composition containing wetting agent and/or dispersant with low amine value |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7186409B2 (en) | 2019-08-26 | 2022-12-09 | 国立大学法人富山大学 | Fine particle adsorption prevention polymer |
JPWO2021039787A1 (en) * | 2019-08-26 | 2021-03-04 | ||
WO2021039787A1 (en) * | 2019-08-26 | 2021-03-04 | 国立大学法人富山大学 | Fine particle adsorption-preventing polymer |
CN114402004B (en) * | 2019-08-26 | 2023-10-24 | 国立大学法人富山大学 | Anti-particulate adsorption polymers |
JP2022003133A (en) * | 2019-08-26 | 2022-01-11 | 国立大学法人富山大学 | Fine particle adsorption prevention polymer |
CN114402004A (en) * | 2019-08-26 | 2022-04-26 | 国立大学法人富山大学 | Particulate adsorption preventing polymer |
JP7083467B2 (en) | 2019-08-26 | 2022-06-13 | 国立大学法人富山大学 | Fine particle adsorption prevention polymer |
KR20210043707A (en) | 2019-09-06 | 2021-04-21 | 미쯔비시 케미컬 주식회사 | Photosensitive coloring composition, cured product, image display device, and pigment dispersion for image display device |
KR20220027257A (en) | 2019-09-06 | 2022-03-07 | 미쯔비시 케미컬 주식회사 | Pigment dispersion liquid for image display devices |
JP2021063180A (en) * | 2019-10-15 | 2021-04-22 | 大塚化学株式会社 | Dispersant composition, coloring composition, and color filter |
JP7348804B2 (en) | 2019-10-15 | 2023-09-21 | 大塚化学株式会社 | Dispersant compositions, coloring compositions and color filters |
JP7126169B2 (en) | 2019-11-12 | 2022-08-26 | 大日精化工業株式会社 | pigment dispersion |
JP2021075660A (en) * | 2019-11-12 | 2021-05-20 | 大日精化工業株式会社 | Pigment dispersion |
Also Published As
Publication number | Publication date |
---|---|
KR102032076B1 (en) | 2019-10-14 |
CN108431064A (en) | 2018-08-21 |
KR20180067567A (en) | 2018-06-20 |
JP6316531B1 (en) | 2018-04-25 |
JPWO2018079659A1 (en) | 2018-10-25 |
TW201829504A (en) | 2018-08-16 |
CN108431064B (en) | 2021-03-12 |
TWI670286B (en) | 2019-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6316531B1 (en) | Block copolymer, dispersant and pigment dispersion composition | |
JP5734821B2 (en) | Block copolymer, dispersant and pigment dispersion composition | |
JP6567905B2 (en) | Block copolymer, dispersant and pigment dispersion composition | |
TWI788555B (en) | Dispersant composition, coloring composition and color filter | |
JP7235474B2 (en) | Coloring composition and color filter | |
JP7348998B2 (en) | Polymerization products containing block copolymers | |
JP7235475B2 (en) | Coloring composition and color filter | |
JP7217680B2 (en) | Block copolymers, dispersants, coloring compositions and color filters | |
JP7299894B2 (en) | Dispersant composition, coloring composition, and color filter | |
JP6758166B2 (en) | Colored Radiation Composition and Color Filter | |
JP7299895B2 (en) | Dispersant composition, coloring composition, and color filter | |
JP7324623B2 (en) | Block copolymer, dispersant, coloring composition, and color filter | |
JP7038493B2 (en) | Block copolymers, dispersants, coloring compositions and color filters | |
JP6797483B2 (en) | Block copolymers, dispersants, coloring compositions and color filters | |
WO2024116876A1 (en) | Block copolymer, dispersant, and coloring composition | |
TW202407065A (en) | Coloring composition containing dioxazine pigment, and color filter | |
WO2024116875A1 (en) | Block copolymer, dispersing agent, and colored composition | |
JP2024024585A (en) | Dioxazine-based pigment-containing coloring composition, and color filter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018505485 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20187012560 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17864413 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17864413 Country of ref document: EP Kind code of ref document: A1 |