[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018079105A1 - Wafer manufacturing method and wafer - Google Patents

Wafer manufacturing method and wafer Download PDF

Info

Publication number
WO2018079105A1
WO2018079105A1 PCT/JP2017/032814 JP2017032814W WO2018079105A1 WO 2018079105 A1 WO2018079105 A1 WO 2018079105A1 JP 2017032814 W JP2017032814 W JP 2017032814W WO 2018079105 A1 WO2018079105 A1 WO 2018079105A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
resin layer
holding
curing
resin
Prior art date
Application number
PCT/JP2017/032814
Other languages
French (fr)
Japanese (ja)
Inventor
田中 利幸
敏 又川
中島 亮
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Publication of WO2018079105A1 publication Critical patent/WO2018079105A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a wafer manufacturing method and a wafer.
  • a curable resin is applied to one surface of the wafer, and the curable resin is processed flat and cured to form a resin layer.
  • the flat surface of the resin layer is held and the other surface of the wafer is ground and flattened, and after the resin layer is removed or not removed, the other flat surface is held and one of the wafers is held. Grind and flatten the surface.
  • the technique may be referred to as “resin pasting”. And further flattening which applied such resin pasting grinding is examined (for example, refer to patent documents 1).
  • the other surface of the wavy wafer is sucked and held by holding means. Further, a curable resin is dropped onto the film on the stage, and one surface of the wafer is pressed against the dropped curable resin to form a pre-curing flat surface on the curable resin following the film. Thereafter, the suction holding of the other surface is released to cure the curable resin, and a resin layer having a flat surface after curing is formed.
  • the flat surface after curing of the resin layer after being separated from the film is not sufficiently flattened, and the nanotopography on the wafer surface after mirror polishing cannot be sufficiently reduced.
  • the device may not be properly manufactured.
  • An object of the present invention is to provide a wafer manufacturing method and a wafer that can be planarized without affecting the manufacture of semiconductor devices.
  • the present inventor can sufficiently flatten the flat surface after curing of the resin layer by appropriately setting the viscosity of the curable resin before curing. I got the knowledge.
  • the present invention has been completed based on the above findings.
  • the method for producing a wafer of the present invention includes a resin layer forming step of forming a resin layer on one surface of a wafer cut from a single crystal ingot or a lapped wafer, and the one surface via the resin layer.
  • a second surface grinding step wherein the resin layer forming step includes a holding step of sucking and holding the other surface of the wafer by a holding means, a flat portion of the flat surface forming means, and one surface of the wafer
  • a flat surface forming step in which a curable resin having a viscosity of 1000 mPa ⁇ s or less is sandwiched between and a pre-curing flat surface following the flat portion is formed on the curable resin, and the holding release for releasing the suction holding of the other surface Craft
  • the resin layer forming step includes a holding step of sucking and holding the other surface of the wafer by a holding means, a flat portion of the flat surface forming means, and one surface of the wafer
  • a flat surface forming step in which a curable resin having a viscosity of 1000 mPa ⁇ s or less is sandwiched between and a pre-curing flat surface following the flat portion is formed on the curable resin, and the holding release for releasing the suction holding of the
  • a sufficiently flattened resin layer having a flat surface after curing can be formed.
  • the waviness of the wafer after the first surface grinding step, the resin layer removal step, and the second surface grinding step can be sufficiently reduced on the wafer provided with the resin layer.
  • the nanotopography of the wafer surface after mirror polishing can be made sufficiently small, and a wafer capable of appropriately manufacturing a semiconductor device can be provided.
  • the resin layer forming step forms the resin layer so as to satisfy the following formula (1).
  • V / T ⁇ 10 (1)
  • V Viscosity before curing of the curable resin (mPa ⁇ s)
  • T Thickness ( ⁇ m) of the thickest portion of the curable resin after the holding release step and before the curing step
  • the present invention by appropriately setting the thickness of the curable resin with respect to the viscosity of the curable resin and setting V / T to 10 or less, deformation of the flat surface after curing of the resin layer can be suppressed,
  • the maximum value of nanotopography on the wafer surface after mirror polishing can be made 5 nm or less.
  • the wafer of the present invention is characterized in that the maximum value of nanotopography measured in a plurality of regions of 10 mm ⁇ 10 mm on the surface is 5 nm or less.
  • FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C.
  • FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C.
  • FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C.
  • FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C.
  • FIG. 6 is an explanatory diagram of the action of using a curable resin having a pre-curing viscosity V of 1000 mPa ⁇ s or less, and shows a state following FIGS. 5A to 5C.
  • FIG. 5A to 5C shows a state following FIGS. 5A to 5C.
  • FIGS. 5A to 5C are explanatory diagrams of the action of using a curable resin having a pre-curing viscosity V of 1000 mPa ⁇ s or less, and shows a state following FIGS. 5A to 5C.
  • a single crystal ingot such as silicon, SiC, GaAs, or sapphire is cut with a wire saw to obtain a plurality of wafers ( Step S1: Slicing step).
  • steps S1: Slicing step both surfaces of the wafer are simultaneously planarized by a lapping apparatus (step S2: lapping process) and chamfered (step S3: chamfering process).
  • step S4 a resin layer forming step in which a curable resin R (see FIG. 2B) is applied to one surface W1 of the wafer W to form a resin layer RH (see FIG. 2B).
  • the coating step (step S11), the holding step (step S12), and the flat surface forming step (step S13). ), A holding release process (step S14), a curing process (step S15), and a separation process (step S16).
  • the curable resin R is applied onto the flat plate 11 as a flat surface forming unit having the flat portion 11A that has been highly flattened.
  • the curable resin R one having a viscosity V before curing (hereinafter simply referred to as “viscosity before curing”) of 1000 mPa ⁇ s or less is used as the curable resin R.
  • the viscosity V before curing is preferably 100 mPa ⁇ s or more.
  • the holding means 12 sucks and holds the other surface W2 of the wafer W with the holding surface 121, as indicated by a solid line in FIG. 2B. At this time, the swell W21 on the other surface W2 of the wafer W is corrected following the holding surface 121, and the swell W11 on the one surface W1 is also reduced.
  • the holding means 12 is lowered, and the curable resin R is sandwiched between the flat portion 11A and one surface W1 of the wafer W, as shown by a two-dot chain line in FIG. By pressing the curable resin R, a pre-curing flat surface R1 that follows the flat portion 11A is formed on the curable resin R.
  • the suction holding of the other surface W2 of the wafer W by the holding unit 12 is released.
  • the curable resin R is cured to form a resin layer RH in which the surface opposite to the surface in contact with the one surface W1 becomes the flat surface RH1 after curing.
  • the flat portion 11A is separated from the resin layer RH.
  • FIGS. 5A to 5C the operation of using the curable resin R having a pre-curing viscosity V of 1000 mPa ⁇ s or less will be described with reference to FIGS. 5A to 5C in which the shapes of the wafer W and the curable resin R are exaggerated and simplified.
  • the holding process is performed on the wafer W as shown in FIG. 5A
  • the waviness W21 of the other surface W2 is corrected following the holding surface 121 as shown in FIG.
  • the swell W11 of the surface W1 is reduced to a swell W111 indicated by a solid line.
  • a pre-curing flat surface R1 that follows the flat portion 11A is formed in the curable resin R.
  • the deformation of the wafer contact surface R2 is difficult to be absorbed by the curable resin R, so that the compression elastic force F1 and the tensile elastic force F2 remain.
  • the cured flat surface RH1 of the resin layer RH is caused by the remaining elastic forces F1 and F2 as shown in FIG. 6A. It will be deformed and its flatness will be reduced.
  • the pre-curing viscosity V is set to 1000 mPa ⁇ s or less, the deformation of the wafer contact surface R2 is easily absorbed by the curable resin R, and the compression elastic force F1 and the tensile elastic force F2 hardly remain.
  • the separation step is performed after the formation of the resin layer RH, as shown in FIG. 6B, the deformation of the flat surface RH1 after the curing of the resin layer RH is suppressed, and the sufficiently flattened flat surface RH1 is flattened.
  • the resin layer RH can be formed.
  • the resin layer RH is preferably formed so as to satisfy the following formula (1).
  • the viscosity V before curing is 1000 mPa ⁇ s or less.
  • the curable resin R is too thin with respect to the pre-curing viscosity V, so that the wafer contact surface R2 is deformed by the holding release process.
  • the elastic forces F1 and F2 may remain in the curable resin R, although the viscosity V before curing is sufficiently smaller than the case where the viscosity V is greater than 1000 mPa ⁇ s.
  • the flatness of the flat surface RH1 after curing of the resin layer RH after the separation step is very small, but the nanotopography on the surface of the wafer W after mirror polishing described later may not be 5 nm or less.
  • the thickness of the curable resin R is appropriate with respect to the pre-curing viscosity V. Even if it is deformed, this deformation can be sufficiently absorbed by the curable resin R, and residual compression elastic force F1 and tensile elastic force F2 can be suppressed. As a result, the flatness of the flat surface RH1 after curing of the resin layer RH after the separation step can be sufficiently maintained, and the nanotopography of the surface of the wafer W after mirror polishing can be reduced to 5 nm or less.
  • the other surface W2 is sucked and held by the holding surface 121 so that the one surface W1 of the wafer W faces upward, and the curable resin is set on the one surface W1.
  • the resin is dripped and the wafer W is rotated to spin the curable resin over the entire surface W1.
  • the spin coating method is used to place the screen plate on one surface W1, and the curable resin is placed on the screen plate and applied with a squeegee.
  • a method in which the highly flattened flat plate 11 is pressed against the curable resin after applying the curable resin by a screen printing method, an electric spray deposition method, or the like by spraying the entire surface of the one surface W1 can be applied.
  • the curable resin is preferably a curable resin such as a photosensitive resin in terms of ease of peeling after processing.
  • the photosensitive resin is preferable in that it is not subjected to heat stress.
  • a UV curable resin is used as the curable resin.
  • Other specific curable resin materials include adhesives (such as wax).
  • the other surface W2 is surface ground using a surface grinding device 20 as shown in FIG. 2C.
  • a surface grinding device 20 As shown in FIG. 2C, the wafer W is placed on the highly flattened holding surface 211 of the vacuum chuck table 21 with the flat surface RH1 after curing facing downward, the vacuum chuck table 21 sucks and holds the wafer W.
  • the surface plate 23 provided with the grindstone 22 on the lower surface is moved above the wafer W.
  • the vacuum chuck table 21 is rotated, and as shown by a two-dot chain line in FIG. 2C, the grindstone 22 and the other surface W2 are brought into contact with each other.
  • Surface grinding When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished.
  • the other surface W2 becomes a flat surface from which the undulation is sufficiently removed.
  • the resin layer RH formed on one surface W1 of the wafer W is peeled off from the wafer W as shown in FIG. 3A.
  • the resin layer RH may be chemically removed using a solvent.
  • one surface W1 is surface ground using the same surface grinding device 20 as in the first surface grinding step.
  • the vacuum chuck table 21 sucks and holds the wafer W, as shown by a solid line in FIG. 3B.
  • the surface plate 23 moved above the wafer W is lowered while being rotated, and the vacuum chuck table 21 is rotated, so that one surface W1 is surface ground as indicated by a two-dot chain line in FIG. 3B.
  • the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished, so that one surface W1 becomes a flat surface from which the undulation is sufficiently removed.
  • etching is performed in order to remove a work-affected layer that occurs during chamfering or resin pasting grinding and remains on the wafer W (step S8: etching process).
  • mirror polishing including a primary polishing step (step S9) for polishing both surfaces of the wafer W using a double-side polishing device and a final polishing step (step S10) for polishing both surfaces of the wafer W using a single-side polishing device.
  • a process is performed and the manufacturing method of a wafer is complete
  • Resin-grinding is performed under conditions satisfying the above formula (1), and the wafer W obtained after this mirror polishing step has a characteristic that the maximum value of nanotopography measured in a plurality of regions of 10 mm ⁇ 10 mm on the surface is 5 nm or less. Have.
  • the resin pasting and grinding step may be performed under the above conditions without performing the lapping step. Even in such a case, the wafer W having the above-described characteristics can be obtained. Further, the removal of the resin layer RH may be performed by grinding in the second surface grinding process as the resin layer removing process instead of peeling off.
  • the thickness A of the thickest portion of the curable resin (hereinafter simply referred to as “resin thickness”) T is 70 ⁇ m after the holding release step and before the curing step using the resin A.
  • the coating process, the holding process, and the flat surface forming process were performed.
  • the resin A was cured by UV irradiation in the curing step to form a resin layer, and a separation step was performed.
  • the value of V / T was 5, as shown in FIG. 7, satisfying the above formula (1).
  • the resins A to C were applied to other wafers in the combinations as shown in FIG. 7 to form a resin layer having the resin thickness shown in FIG.
  • the 1st surface grinding process, the resin layer removal process, and the 2nd surface grinding process were performed with respect to each wafer provided with the resin layer.
  • surface grinding was performed using a grinding machine (DFG8000 series) manufactured by DISCO Corporation with a machining allowance of 20 ⁇ m. Thereafter, an etching process, a mirror polishing process, and a cleaning process were performed.
  • a double-side polishing device was used as the primary polishing step, and polishing was performed in a total of 5 ⁇ m to 20 ⁇ m on both sides.
  • a single-side polishing device was used as the final polishing step to polish less than 1 ⁇ m on only one side.
  • One sample was prepared for each condition.
  • FIG. 7 shows a maximum value of nanotopography, a nanotopography map, and a binarized image in each wafer. Further, the case where a white area exists in the binarized image is described as “with pattern”, and the case where it does not exist is described as “without pattern”.
  • the maximum value of nanotopography was almost the same between Resin A and Resin B having a pre-curing viscosity V of 1000 mPa ⁇ s or less.
  • the maximum value of nanotopography in the resin C having a pre-curing viscosity V larger than 1000 mPa ⁇ s was larger than those in the resin A and the resin B. Also for the binarized image, it was confirmed that the white area of the resin C was larger than the resin A and the resin B.
  • the nanotopography on the wafer surface after mirror polishing can be made sufficiently small by forming the resin layer using a curable resin having a viscosity V before curing of 1000 mPa ⁇ s or less.
  • the above-described flatness measuring device Wafersight 2 was used, and the surface after mirror polishing was measured in the above range. Each measurement was performed in a range passing through the center of the wafer. The measurement results are shown in FIG. As shown in FIG. 8, it was found that the shape of the nanotopography and the flat surface after curing were very similar. From this, it was found that the uneven shape of the flat surface after curing was transferred to the wafer as waviness.
  • the maximum value of nanotopography was 5 nm or less when V / T was 10 or less. From the above, the maximum value of nanotopography after mirror polishing is as high as 5 nm or less by forming a resin layer under conditions where the viscosity V before curing is 1000 mPa ⁇ s or less and V / T is 10 or less. It was confirmed that a quality wafer could be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

A resin layer forming process for forming a resin layer (RH) on one surface (W1) of a wafer (W) includes: a holding step for holding, through suction, the other surface (W2) of the wafer (W) by a holding means; a flat surface forming step for sandwiching a curable resin having a viscosity not greater than 1000 mPa·s between the flat part of a flat plate and one surface (W1) of the wafer (W) so as to form a pre-cured flat surface conforming to the flat part on the curable resin; a hold releasing step for releasing the holding, through suction, of the other surface (W2); a curing step for forming the resin layer (RH) by curing the curable resin; and a separation step for separating the flat part from the resin layer (RH).

Description

ウェーハの製造方法およびウェーハWafer manufacturing method and wafer
 本発明は、ウェーハの製造方法およびウェーハに関する。 The present invention relates to a wafer manufacturing method and a wafer.
 半導体デバイス製造プロセスにおいて、ウェーハ上には、何層ものメタルや絶縁膜の層が形成される。このウェーハ上に形成される各層の膜厚均一性は、デバイスの性能に影響を与えるため、各層の形成直後にCMP(Chemical Mechanical Polishing)により平坦化が行われる。しかし、ウェーハにうねりがあると、CMPの精度が下がり、膜厚が不均一な層が形成されてしまう。従来、うねりがあるウェーハを平坦化する技術として、以下のようなものが知られている。 In the semiconductor device manufacturing process, multiple layers of metal and insulating films are formed on the wafer. Since the film thickness uniformity of each layer formed on the wafer affects the device performance, planarization is performed by CMP (Chemical Mechanical Polishing) immediately after the formation of each layer. However, if the wafer has waviness, the accuracy of CMP decreases and a layer with a non-uniform film thickness is formed. Conventionally, the following is known as a technique for planarizing a wavy wafer.
 まず、ウェーハの一方の面に硬化性樹脂を塗布し、この硬化性樹脂を平坦に加工して硬化させることで樹脂層を形成する。その後、樹脂層の平坦面を保持してウェーハの他方の面を研削して平坦化し、樹脂層を除去した後または除去せずに、平坦化された他方の面を保持してウェーハの一方の面を研削して平坦化する。なお、以下において、上記技術を「樹脂貼り研削」と言う場合がある。
 そして、このような樹脂貼り研削を応用したさらなる平坦化の検討がなされている(例えば、特許文献1参照)。
First, a curable resin is applied to one surface of the wafer, and the curable resin is processed flat and cured to form a resin layer. After that, the flat surface of the resin layer is held and the other surface of the wafer is ground and flattened, and after the resin layer is removed or not removed, the other flat surface is held and one of the wafers is held. Grind and flatten the surface. Hereinafter, the technique may be referred to as “resin pasting”.
And further flattening which applied such resin pasting grinding is examined (for example, refer to patent documents 1).
 特許文献1の方法では、うねりがあるウェーハの他方の面を保持手段で吸引保持する。また、ステージ上のフィルムに硬化性樹脂を滴下し、この滴下された硬化性樹脂にウェーハの一方の面を押圧して、フィルムに倣う硬化前平坦面を硬化性樹脂に形成する。この後、他方の面の吸引保持を解除して硬化性樹脂を硬化させ、硬化後平坦面を有する樹脂層を形成する。 In the method of Patent Document 1, the other surface of the wavy wafer is sucked and held by holding means. Further, a curable resin is dropped onto the film on the stage, and one surface of the wafer is pressed against the dropped curable resin to form a pre-curing flat surface on the curable resin following the film. Thereafter, the suction holding of the other surface is released to cure the curable resin, and a resin layer having a flat surface after curing is formed.
特開2011-249652号公報JP 2011-249652 A
 しかしながら、特許文献1のような方法では、フィルムから離間させた後の樹脂層の硬化後平坦面が十分に平坦化されず、鏡面研磨後におけるウェーハ表面のナノトポグラフィを十分に小さくできなくなり、半導体デバイスを適切に製造できないおそれがある。 However, in the method as disclosed in Patent Document 1, the flat surface after curing of the resin layer after being separated from the film is not sufficiently flattened, and the nanotopography on the wafer surface after mirror polishing cannot be sufficiently reduced. The device may not be properly manufactured.
 本発明の目的は、半導体デバイスの製造に影響を与えないように平坦化可能なウェーハの製造方法およびウェーハを提供することにある。 An object of the present invention is to provide a wafer manufacturing method and a wafer that can be planarized without affecting the manufacture of semiconductor devices.
 本発明者は、上記課題を解決するために、鋭意研究を重ねた結果、硬化前の硬化性樹脂の粘度を適切に設定することで、樹脂層の硬化後平坦面を十分に平坦化できると言う知見を得た。
 本発明は、上述のような知見に基づいて完成したものである。
As a result of intensive studies to solve the above problems, the present inventor can sufficiently flatten the flat surface after curing of the resin layer by appropriately setting the viscosity of the curable resin before curing. I got the knowledge.
The present invention has been completed based on the above findings.
 すなわち、本発明のウェーハの製造方法は、単結晶インゴットから切り出されたウェーハまたはラッピングされたウェーハの一方の面に樹脂層を形成する樹脂層形成工程と、前記樹脂層を介して前記一方の面を保持し、前記ウェーハの他方の面を平面研削する第1の平面研削工程と、前記樹脂層を除去する樹脂層除去工程と、前記他方の面を保持し、前記一方の面を平面研削する第2の平面研削工程とを含み、前記樹脂層形成工程は、前記ウェーハの他方の面を保持手段で吸引保持する保持工程と、平坦面形成手段の平坦部と前記ウェーハの一方の面との間に粘度が1000mPa・s以下の硬化性樹脂を挟み、前記平坦部に倣う硬化前平坦面を前記硬化性樹脂に形成する平坦面形成工程と、前記他方の面の吸引保持を解除する保持解除工程と、前記硬化性樹脂を硬化させて前記樹脂層を形成する硬化工程と、前記平坦部を前記樹脂層から離間させる離間工程とを含んでいることを特徴とする。 That is, the method for producing a wafer of the present invention includes a resin layer forming step of forming a resin layer on one surface of a wafer cut from a single crystal ingot or a lapped wafer, and the one surface via the resin layer. A first surface grinding step of surface grinding the other surface of the wafer, a resin layer removal step of removing the resin layer, and holding the other surface and subjecting the one surface to surface grinding. A second surface grinding step, wherein the resin layer forming step includes a holding step of sucking and holding the other surface of the wafer by a holding means, a flat portion of the flat surface forming means, and one surface of the wafer A flat surface forming step in which a curable resin having a viscosity of 1000 mPa · s or less is sandwiched between and a pre-curing flat surface following the flat portion is formed on the curable resin, and the holding release for releasing the suction holding of the other surface Craft When, characterized in that it includes a hardening step to form the resin layer by curing the curable resin, and a spacing step of separating the flat portion from the resin layer.
 本発明によれば、硬化前の粘度が1000mPa・s以下の硬化性樹脂を用いて樹脂層を形成することで、十分に平坦化された硬化後平坦面を有する樹脂層を形成でき、このような樹脂層が設けられたウェーハに対して第1の平面研削工程、樹脂層除去工程、第2の平面研削工程を行った後のウェーハのうねりを十分に小さくできる。その結果、鏡面研磨後におけるウェーハ表面のナノトポグラフィを十分に小さくでき、半導体デバイスを適切に製造可能なウェーハを提供できる。 According to the present invention, by forming a resin layer using a curable resin having a viscosity before curing of 1000 mPa · s or less, a sufficiently flattened resin layer having a flat surface after curing can be formed. The waviness of the wafer after the first surface grinding step, the resin layer removal step, and the second surface grinding step can be sufficiently reduced on the wafer provided with the resin layer. As a result, the nanotopography of the wafer surface after mirror polishing can be made sufficiently small, and a wafer capable of appropriately manufacturing a semiconductor device can be provided.
 本発明のウェーハの製造方法において、前記樹脂層形成工程は、以下の式(1)を満たすように前記樹脂層を形成することが好ましい。
  V/T≦10 … (1)
   V:前記硬化性樹脂の硬化前の粘度(mPa・s)
   T:前記保持解除工程後、前記硬化工程前における前記硬化性樹脂の最も厚い部分の厚さ(μm)
In the wafer manufacturing method of the present invention, it is preferable that the resin layer forming step forms the resin layer so as to satisfy the following formula (1).
V / T ≦ 10 (1)
V: Viscosity before curing of the curable resin (mPa · s)
T: Thickness (μm) of the thickest portion of the curable resin after the holding release step and before the curing step
 本発明によれば、硬化性樹脂の粘度に対して硬化性樹脂の厚さを適切に設定し、V/Tを10以下にすることで、樹脂層の硬化後平坦面の変形を抑制でき、鏡面研磨後におけるウェーハ表面のナノトポグラフィの最大値を5nm以下にできる。 According to the present invention, by appropriately setting the thickness of the curable resin with respect to the viscosity of the curable resin and setting V / T to 10 or less, deformation of the flat surface after curing of the resin layer can be suppressed, The maximum value of nanotopography on the wafer surface after mirror polishing can be made 5 nm or less.
 本発明のウェーハは、表面における10mm×10mmの複数領域で測定したナノトポグラフィの最大値が5nm以下であることを特徴とする。 The wafer of the present invention is characterized in that the maximum value of nanotopography measured in a plurality of regions of 10 mm × 10 mm on the surface is 5 nm or less.
本発明の一実施形態に係るウェーハの製造方法のフローチャート。The flowchart of the manufacturing method of the wafer which concerns on one Embodiment of this invention. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図。Explanatory drawing of the manufacturing method of the said wafer. 前記ウェーハの製造方法の説明図であり、図2A~図2Cに続く状態を示す。FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C. 前記ウェーハの製造方法の説明図であり、図2A~図2Cに続く状態を示す。FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C. 前記ウェーハの製造方法の説明図であり、図2A~図2Cに続く状態を示す。FIG. 2 is an explanatory diagram of the wafer manufacturing method, showing a state following FIGS. 2A to 2C. 前記ウェーハの製造方法における樹脂層形成工程のフローチャート。The flowchart of the resin layer formation process in the manufacturing method of the said wafer. 硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いることの作用の説明図。Explanatory drawing of the effect | action of using curable resin whose viscosity V before hardening is 1000 mPa * s or less. 硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いることの作用の説明図。Explanatory drawing of the effect | action of using curable resin whose viscosity V before hardening is 1000 mPa * s or less. 硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いることの作用の説明図。Explanatory drawing of the effect | action of using curable resin whose viscosity V before hardening is 1000 mPa * s or less. 硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いることの作用の説明図であり、図5A~図5Cに続く状態を示す。FIG. 6 is an explanatory diagram of the action of using a curable resin having a pre-curing viscosity V of 1000 mPa · s or less, and shows a state following FIGS. 5A to 5C. 硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いることの作用の説明図であり、図5A~図5Cに続く状態を示す。FIG. 6 is an explanatory diagram of the action of using a curable resin having a pre-curing viscosity V of 1000 mPa · s or less, and shows a state following FIGS. 5A to 5C. 本発明の実施例における実験1の結果を示す図。The figure which shows the result of the experiment 1 in the Example of this invention. 前記実施例における実験2の結果を示すグラフ。The graph which shows the result of the experiment 2 in the said Example. 前記実施例における実験3の結果を示すグラフ。The graph which shows the result of the experiment 3 in the said Example.
 本発明の一実施形態を、図面を参照して説明する。
[ウェーハの製造方法]
 図1に示すように、ウェーハの製造方法は、まず、シリコン、SiC、GaAs、サファイアなどの単結晶インゴット(以下、単に「インゴット」と言う)をワイヤソーで切断して、複数のウェーハを得る(ステップS1:スライス工程)。
 次に、ラッピング装置によって、ウェーハの両面を同時に平坦化加工し(ステップS2:ラッピング工程)、面取りを行う(ステップS3:面取り工程)。
 このとき、ラッピング工程だけではウェーハの十分な平坦化を図ることが困難なため、図2Aに示すように、一方の面W1および他方の面W2にうねりW11,W21が発生しているウェーハWが得られる。
 この後、図1に示すように、ウェーハWの一方の面W1に硬化性樹脂R(図2B参照)を塗布して樹脂層RH(図2B参照)を形成する樹脂層形成工程(ステップS4)と、樹脂層RHを介して一方の面W1を保持し、ウェーハWの他方の面W2を平面研削する第1の平面研削工程(ステップS5)と、樹脂層RHを除去する樹脂層除去工程(ステップS6)と、他方の面W2を保持し、一方の面W1を平面研削する第2の平面研削工程(ステップS7)とを含む樹脂貼り研削工程を行う。
An embodiment of the present invention will be described with reference to the drawings.
[Wafer manufacturing method]
As shown in FIG. 1, in the wafer manufacturing method, first, a single crystal ingot (hereinafter simply referred to as “ingot”) such as silicon, SiC, GaAs, or sapphire is cut with a wire saw to obtain a plurality of wafers ( Step S1: Slicing step).
Next, both surfaces of the wafer are simultaneously planarized by a lapping apparatus (step S2: lapping process) and chamfered (step S3: chamfering process).
At this time, since it is difficult to achieve sufficient planarization of the wafer only by the lapping process, the wafer W in which the undulations W11 and W21 are generated on one surface W1 and the other surface W2, as shown in FIG. can get.
Thereafter, as shown in FIG. 1, a resin layer forming step (step S4) in which a curable resin R (see FIG. 2B) is applied to one surface W1 of the wafer W to form a resin layer RH (see FIG. 2B). A first surface grinding step (step S5) for holding one surface W1 via the resin layer RH and surface grinding the other surface W2 of the wafer W, and a resin layer removal step (step S5) for removing the resin layer RH ( A resin pasting and grinding step including step S6) and a second surface grinding step (step S7) for holding the other surface W2 and surface grinding one surface W1 is performed.
 樹脂層形成工程では、図2Bに示すような保持押圧装置10を用いて、図4に示すように、塗布工程(ステップS11)と、保持工程(ステップS12)と、平坦面形成工程(ステップS13)と、保持解除工程(ステップS14)と、硬化工程(ステップS15)と、離間工程(ステップS16)とを行う。
 塗布工程は、高平坦化された平坦部11Aを有する平坦面形成手段としての平板11上に、硬化性樹脂Rを塗布する。この際、硬化性樹脂Rとして、硬化前の粘度V(以下、単に「硬化前粘度」と言う)が1000mPa・s以下のものを用いる。ここで、硬化前粘度Vは、100mPa・s以上が好ましい。
In the resin layer forming step, as shown in FIG. 4, using the holding and pressing device 10 as shown in FIG. 2B, the coating step (step S11), the holding step (step S12), and the flat surface forming step (step S13). ), A holding release process (step S14), a curing process (step S15), and a separation process (step S16).
In the applying step, the curable resin R is applied onto the flat plate 11 as a flat surface forming unit having the flat portion 11A that has been highly flattened. At this time, as the curable resin R, one having a viscosity V before curing (hereinafter simply referred to as “viscosity before curing”) of 1000 mPa · s or less is used. Here, the viscosity V before curing is preferably 100 mPa · s or more.
 保持工程は、図2Bに実線で示すように、保持手段12が保持面121でウェーハWの他方の面W2を吸引保持する。このとき、ウェーハWにおける他方の面W2のうねりW21が保持面121に倣って矯正され、一方の面W1のうねりW11も小さくなる。
 平坦面形成工程は、保持手段12を下降させ、図2Bに二点鎖線で示すように、平坦部11AとウェーハWの一方の面W1との間に硬化性樹脂Rを挟み、ウェーハWを硬化性樹脂Rに押圧して、平坦部11Aに倣う硬化前平坦面R1を硬化性樹脂Rに形成する。
 保持解除工程は、保持手段12によるウェーハWの他方の面W2の吸引保持を解除する。
 硬化工程は、硬化性樹脂Rを硬化させ、一方の面W1に接触している面の反対側の面が硬化後平坦面RH1となる樹脂層RHを形成する。
 離間工程は、樹脂層RHから平坦部11Aを離間させる。
In the holding step, the holding means 12 sucks and holds the other surface W2 of the wafer W with the holding surface 121, as indicated by a solid line in FIG. 2B. At this time, the swell W21 on the other surface W2 of the wafer W is corrected following the holding surface 121, and the swell W11 on the one surface W1 is also reduced.
In the flat surface forming step, the holding means 12 is lowered, and the curable resin R is sandwiched between the flat portion 11A and one surface W1 of the wafer W, as shown by a two-dot chain line in FIG. By pressing the curable resin R, a pre-curing flat surface R1 that follows the flat portion 11A is formed on the curable resin R.
In the holding release process, the suction holding of the other surface W2 of the wafer W by the holding unit 12 is released.
In the curing step, the curable resin R is cured to form a resin layer RH in which the surface opposite to the surface in contact with the one surface W1 becomes the flat surface RH1 after curing.
In the separation step, the flat portion 11A is separated from the resin layer RH.
 ここで、硬化前粘度Vが1000mPa・s以下の硬化性樹脂Rを用いることの作用について、ウェーハW、硬化性樹脂Rの形状を誇張かつ単純化した図5A~図5Cを用いて説明する。
 図5Aに示すようなウェーハWに対して保持工程を行うと、図5Bに示すように、他方の面W2のうねりW21が保持面121に倣って矯正されるとともに、二点鎖線で示す一方の面W1のうねりW11が小さくなり、実線で示すうねりW111になる。次に、平坦面形成工程を行うと、平坦部11Aに倣う硬化前平坦面R1が硬化性樹脂Rに形成される。
Here, the operation of using the curable resin R having a pre-curing viscosity V of 1000 mPa · s or less will be described with reference to FIGS. 5A to 5C in which the shapes of the wafer W and the curable resin R are exaggerated and simplified.
When the holding process is performed on the wafer W as shown in FIG. 5A, the waviness W21 of the other surface W2 is corrected following the holding surface 121 as shown in FIG. The swell W11 of the surface W1 is reduced to a swell W111 indicated by a solid line. Next, when a flat surface forming step is performed, a pre-curing flat surface R1 that follows the flat portion 11A is formed in the curable resin R.
 この後、保持解除工程を行うと、ウェーハWのうねりが元に戻るが、図5Cに示すように、二点鎖線で示す一方の面W1のうねりW111が、実線で示すうねりW11に戻るときに、この戻りに追従して硬化性樹脂Rのウェーハ接触面R2が変形する。しかし、硬化前平坦面R1は、平坦部11Aに密着したまま離れない。このため、硬化性樹脂Rにおけるウェーハ接触面R2が硬化前平坦面R1から離れるように変形している部分では、圧縮方向の弾性力(以下、単に「圧縮弾性力」と言う)F1が発生し、硬化前平坦面R1に近づくように変形している部分では、引張方向の弾性力(以下、単に「引張弾性力」と言う)F2が発生する。 Thereafter, when the holding release process is performed, the waviness of the wafer W returns to the original state. However, as shown in FIG. 5C, when the waviness W111 of one surface W1 indicated by a two-dot chain line returns to the waviness W11 indicated by a solid line. Following this return, the wafer contact surface R2 of the curable resin R is deformed. However, the pre-curing flat surface R1 remains in close contact with the flat portion 11A. For this reason, in the portion of the curable resin R where the wafer contact surface R2 is deformed so as to be separated from the pre-curing flat surface R1, an elastic force (hereinafter simply referred to as “compressive elastic force”) F1 in the compression direction is generated. In a portion that is deformed so as to approach the flat surface R1 before curing, an elastic force (hereinafter simply referred to as “tensile elastic force”) F2 in the tensile direction is generated.
 硬化前粘度Vが1000mPa・sより大きい場合、ウェーハ接触面R2の変形が硬化性樹脂Rで吸収され難いため、圧縮弾性力F1や引張弾性力F2が残留する。この状態で硬化工程を行い樹脂層RHを形成した後、離間工程を行うと、残留している各弾性力F1,F2によって、図6Aに示すように、樹脂層RHの硬化後平坦面RH1が変形してしまい、その平坦度が下がってしまう。
 本実施形態では、硬化前粘度Vを1000mPa・s以下にしているため、ウェーハ接触面R2の変形が硬化性樹脂Rで吸収され易く、圧縮弾性力F1や引張弾性力F2が残留し難くなる。その結果、樹脂層RHの形成後、離間工程を行うと、図6Bに示すように、樹脂層RHの硬化後平坦面RH1の変形が抑制され、十分に平坦化された硬化後平坦面RH1を有する樹脂層RHを形成できる。
When the pre-curing viscosity V is greater than 1000 mPa · s, the deformation of the wafer contact surface R2 is difficult to be absorbed by the curable resin R, so that the compression elastic force F1 and the tensile elastic force F2 remain. In this state, after the curing process is performed and the resin layer RH is formed, when the separation process is performed, the cured flat surface RH1 of the resin layer RH is caused by the remaining elastic forces F1 and F2 as shown in FIG. 6A. It will be deformed and its flatness will be reduced.
In this embodiment, since the pre-curing viscosity V is set to 1000 mPa · s or less, the deformation of the wafer contact surface R2 is easily absorbed by the curable resin R, and the compression elastic force F1 and the tensile elastic force F2 hardly remain. As a result, when the separation step is performed after the formation of the resin layer RH, as shown in FIG. 6B, the deformation of the flat surface RH1 after the curing of the resin layer RH is suppressed, and the sufficiently flattened flat surface RH1 is flattened. The resin layer RH can be formed.
 また、樹脂層形成工程は、以下の式(1)を満たすように樹脂層RHを形成することが好ましい。ただし、硬化前粘度Vは、1000mPa・s以下である。
  V/T≦10 … (1)
   V:硬化性樹脂Rの硬化前粘度(mPa・s)
   T:保持解除工程後、硬化工程前における硬化性樹脂Rの最も厚い部分の厚さ(μm)(図5C参照)
In the resin layer forming step, the resin layer RH is preferably formed so as to satisfy the following formula (1). However, the viscosity V before curing is 1000 mPa · s or less.
V / T ≦ 10 (1)
V: Viscosity before curing of curable resin R (mPa · s)
T: Thickness (μm) of the thickest part of the curable resin R after the holding release process and before the curing process (see FIG. 5C)
 V/Tが10を超える(式(1)を満たさない)場合、硬化前粘度Vに対して硬化性樹脂Rが薄すぎるため、保持解除工程の実施によりウェーハ接触面R2がウェーハWの変形に追従して変形すると、硬化前粘度Vが1000mPa・sより大きい場合と比べて十分に小さいものの、硬化性樹脂Rに各弾性力F1,F2が残留するおそれがある。その結果、離間工程後における樹脂層RHの硬化後平坦面RH1の平坦度もごく僅かであるが下がってしまい、後述する鏡面研磨後におけるウェーハW表面のナノトポグラフィを5nm以下にできないおそれがある。
 これに対し、V/Tが10以下(式(1)を満たす)場合、硬化前粘度Vに対して硬化性樹脂Rの厚さが適切なため、保持解除工程の実施によりウェーハ接触面R2が変形しても、この変形を硬化性樹脂Rで十分に吸収でき、圧縮弾性力F1や引張弾性力F2の残留を抑制できる。その結果、離間工程後における樹脂層RHの硬化後平坦面RH1の平坦度を十分に維持でき、鏡面研磨後におけるウェーハW表面のナノトポグラフィを5nm以下にすることができる。
When V / T exceeds 10 (the expression (1) is not satisfied), the curable resin R is too thin with respect to the pre-curing viscosity V, so that the wafer contact surface R2 is deformed by the holding release process. When deformed following the movement, the elastic forces F1 and F2 may remain in the curable resin R, although the viscosity V before curing is sufficiently smaller than the case where the viscosity V is greater than 1000 mPa · s. As a result, the flatness of the flat surface RH1 after curing of the resin layer RH after the separation step is very small, but the nanotopography on the surface of the wafer W after mirror polishing described later may not be 5 nm or less.
On the other hand, when V / T is 10 or less (the expression (1) is satisfied), the thickness of the curable resin R is appropriate with respect to the pre-curing viscosity V. Even if it is deformed, this deformation can be sufficiently absorbed by the curable resin R, and residual compression elastic force F1 and tensile elastic force F2 can be suppressed. As a result, the flatness of the flat surface RH1 after curing of the resin layer RH after the separation step can be sufficiently maintained, and the nanotopography of the surface of the wafer W after mirror polishing can be reduced to 5 nm or less.
 なお、ウェーハWに硬化性樹脂を塗布する方法としては、ウェーハWの一方の面W1が上に向くように他方の面W2を保持面121で吸引保持して、一方の面W1上に硬化性樹脂を滴下し、ウェーハWを回転させることで硬化性樹脂を一方の面W1全面に広げるスピンコート法、一方の面W1にスクリーン版を配置し、スクリーン版に硬化性樹脂を載せ、スキージで塗布するスクリーン印刷法、エレクトリックスプレーデポジション法により一方の面W1全面にスプレーする方法などによって硬化性樹脂を塗布した後に、高平坦化された平板11を硬化性樹脂に押圧する方法を適用できる。硬化性樹脂は、感光性樹脂などの硬化性樹脂が、加工後の剥離のしやすさの点で好ましい。特に、感光性樹脂は熱によるストレスが加わらない点でも好適である。本実施形態では、硬化性樹脂として、UV硬化樹脂を使用した。また、他の具体的な硬化性樹脂の材質として、接着剤(ワックスなど)などが挙げられる。 As a method for applying the curable resin to the wafer W, the other surface W2 is sucked and held by the holding surface 121 so that the one surface W1 of the wafer W faces upward, and the curable resin is set on the one surface W1. The resin is dripped and the wafer W is rotated to spin the curable resin over the entire surface W1. The spin coating method is used to place the screen plate on one surface W1, and the curable resin is placed on the screen plate and applied with a squeegee. A method in which the highly flattened flat plate 11 is pressed against the curable resin after applying the curable resin by a screen printing method, an electric spray deposition method, or the like by spraying the entire surface of the one surface W1 can be applied. The curable resin is preferably a curable resin such as a photosensitive resin in terms of ease of peeling after processing. In particular, the photosensitive resin is preferable in that it is not subjected to heat stress. In the present embodiment, a UV curable resin is used as the curable resin. Other specific curable resin materials include adhesives (such as wax).
 第1の平面研削工程は、図2Cに示すような平面研削装置20を用いて、他方の面W2を平面研削する。
 まず、真空チャックテーブル21の高平坦化された保持面211に、硬化後平坦面RH1が下を向く状態でウェーハWが載置されると、真空チャックテーブル21がウェーハWを吸引保持する。
 次に、図2Cに実線で示すように、砥石22が下面に設けられた定盤23を、ウェーハWの上方に移動させる。その後、定盤23を回転させながら下降させるとともに、真空チャックテーブル21を回転させ、図2Cに二点鎖線で示すように、砥石22と他方の面W2とを接触させることで、他方の面W2を平面研削する。そして、取代が取代最小値P以上になったら、平面研削を終了する。以上の工程により、他方の面W2は、うねりが十分に除去された平坦面になる。
In the first surface grinding step, the other surface W2 is surface ground using a surface grinding device 20 as shown in FIG. 2C.
First, when the wafer W is placed on the highly flattened holding surface 211 of the vacuum chuck table 21 with the flat surface RH1 after curing facing downward, the vacuum chuck table 21 sucks and holds the wafer W.
Next, as shown by a solid line in FIG. 2C, the surface plate 23 provided with the grindstone 22 on the lower surface is moved above the wafer W. Then, while rotating the surface plate 23, the vacuum chuck table 21 is rotated, and as shown by a two-dot chain line in FIG. 2C, the grindstone 22 and the other surface W2 are brought into contact with each other. Surface grinding. When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished. By the above process, the other surface W2 becomes a flat surface from which the undulation is sufficiently removed.
 樹脂層除去工程は、図3Aに示すように、ウェーハWの一方の面W1に形成された樹脂層RHをウェーハWから引き剥がす。この際、溶剤を用いて化学的に樹脂層RHを除去してもよい。 In the resin layer removing step, the resin layer RH formed on one surface W1 of the wafer W is peeled off from the wafer W as shown in FIG. 3A. At this time, the resin layer RH may be chemically removed using a solvent.
 第2の平面研削工程は、図3Bに示すように、第1の平面研削工程と同様の平面研削装置20を用いて、一方の面W1を平面研削する。
 まず、保持面211に、高平坦化された他方の面W2が下を向く状態でウェーハWが載置されると、真空チャックテーブル21がウェーハWを吸引保持し、図3Bに実線で示すように、ウェーハWの上方に移動させた定盤23を回転させながら下降させるとともに、真空チャックテーブル21を回転させ、図3Bに二点鎖線で示すように、一方の面W1を平面研削する。そして、取代が取代最小値P以上になったら、平面研削を終了することで、一方の面W1は、うねりが十分に除去された平坦面になる。
In the second surface grinding step, as shown in FIG. 3B, one surface W1 is surface ground using the same surface grinding device 20 as in the first surface grinding step.
First, when the wafer W is placed on the holding surface 211 with the other flat surface W2 facing down, the vacuum chuck table 21 sucks and holds the wafer W, as shown by a solid line in FIG. 3B. In addition, the surface plate 23 moved above the wafer W is lowered while being rotated, and the vacuum chuck table 21 is rotated, so that one surface W1 is surface ground as indicated by a two-dot chain line in FIG. 3B. When the machining allowance is equal to or greater than the machining allowance minimum value P, the surface grinding is finished, so that one surface W1 becomes a flat surface from which the undulation is sufficiently removed.
 以上の樹脂貼り研削工程により、うねりW11,W21が十分に除去され、図3Cに示すように、一方の面W1および他方の面W2が高平坦化されたウェーハWが得られる。 Through the above resin pasting grinding process, the undulations W11 and W21 are sufficiently removed, and as shown in FIG. 3C, a wafer W in which one surface W1 and the other surface W2 are highly planarized is obtained.
 次に、図1に示すように、面取り時や樹脂貼り研削時に発生し、ウェーハWに残留する加工変質層などを除去するために、エッチングを行う(ステップS8:エッチング工程)。
 この後、両面研磨装置を用いてウェーハWの両面を研磨する一次研磨工程(ステップS9)と、片面研磨装置を用いてウェーハWの両面を研磨する最終研磨工程(ステップS10)とを含む鏡面研磨工程を行い、ウェーハの製造方法が終了する。
 上記式(1)を満たす条件で樹脂貼り研削が行われ、この鏡面研磨工程後に得られたウェーハWは、表面における10mm×10mmの複数領域で測定したナノトポグラフィの最大値が5nm以下という特性を有する。
Next, as shown in FIG. 1, etching is performed in order to remove a work-affected layer that occurs during chamfering or resin pasting grinding and remains on the wafer W (step S8: etching process).
Thereafter, mirror polishing including a primary polishing step (step S9) for polishing both surfaces of the wafer W using a double-side polishing device and a final polishing step (step S10) for polishing both surfaces of the wafer W using a single-side polishing device. A process is performed and the manufacturing method of a wafer is complete | finished.
Resin-grinding is performed under conditions satisfying the above formula (1), and the wafer W obtained after this mirror polishing step has a characteristic that the maximum value of nanotopography measured in a plurality of regions of 10 mm × 10 mm on the surface is 5 nm or less. Have.
[実施形態の作用効果]
 上述したように、硬化前粘度Vが1000mPa・s以下の硬化性樹脂Rを用いて樹脂層RHを形成することで、十分に平坦化された硬化後平坦面RH1を有する樹脂層RHを形成できる。したがって、鏡面研磨後におけるウェーハW表面のナノトポグラフィを十分に小さくでき、半導体デバイスを適切に製造可能なウェーハを提供できる。
[Effects of Embodiment]
As described above, by forming the resin layer RH using the curable resin R having a pre-curing viscosity V of 1000 mPa · s or less, the resin layer RH having the sufficiently flattened post-curing flat surface RH1 can be formed. . Therefore, the nanotopography on the surface of the wafer W after mirror polishing can be made sufficiently small, and a wafer capable of appropriately manufacturing a semiconductor device can be provided.
[変形例]
 なお、本発明は上記実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の改良ならびに設計の変更などが可能であり、その他、本発明の実施の際の具体的な手順、及び構造などは本発明の目的を達成できる範囲で他の構造などとしてもよい。
[Modification]
It should be noted that the present invention is not limited to the above-described embodiment, and various improvements and design changes can be made without departing from the scope of the present invention. The general procedure and structure may be other structures as long as the object of the present invention can be achieved.
 例えば、ラッピング工程を行わずに、上記条件で樹脂貼り研削工程を行ってもよい。このような場合でも、上述の特性を有するウェーハWを得ることができる。
 また、樹脂層RHの除去は、引き剥がしではなく、樹脂層除去工程としての第2の平面研削工程における研削により行ってもよい。
For example, the resin pasting and grinding step may be performed under the above conditions without performing the lapping step. Even in such a case, the wafer W having the above-described characteristics can be obtained.
Further, the removal of the resin layer RH may be performed by grinding in the second surface grinding process as the resin layer removing process instead of peeling off.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[実験1:硬化性樹脂の粘度とナノトポグラフィとの関係]
〔サンプルの作成〕
 まず、UV硬化性の樹脂A~Cを準備した。樹脂A~Cの硬化前粘度Vは、図7に示すように、350mPa・s、700mPa・s、1050mPa・sであった。
 また、図1に示すスライス工程を行い、直径300mm、厚さ約900μmのウェーハを準備した。
 次に、これらのウェーハに対し、面取り工程、樹脂貼り研削工程を行った。
[Experiment 1: Relationship between viscosity of curable resin and nanotopography]
[Create sample]
First, UV curable resins A to C were prepared. The pre-curing viscosities V of the resins A to C were 350 mPa · s, 700 mPa · s, and 1050 mPa · s as shown in FIG.
Moreover, the slice process shown in FIG. 1 was performed, and a wafer having a diameter of 300 mm and a thickness of about 900 μm was prepared.
Next, a chamfering process and a resin pasting grinding process were performed on these wafers.
 樹脂層形成工程では、樹脂Aを用いて、保持解除工程後、硬化工程前における硬化性樹脂の最も厚い部分の厚さ(以下、単に「樹脂厚さ」と言う)Tが70μmとなるように、塗布工程、保持工程、平坦面形成工程を行った。保持解除工程後、硬化工程におけるUV照射により樹脂Aを硬化させて樹脂層を形成し、離間工程を行った。V/Tの値は、図7に示すように、5であり上記式(1)を満たした。
 また、他のウェーハに対しても図7に示すような組み合わせで樹脂A~Cを塗布し、同図に示す樹脂厚さの樹脂層を形成した。
In the resin layer forming step, the thickness A of the thickest portion of the curable resin (hereinafter simply referred to as “resin thickness”) T is 70 μm after the holding release step and before the curing step using the resin A. The coating process, the holding process, and the flat surface forming process were performed. After the holding release step, the resin A was cured by UV irradiation in the curing step to form a resin layer, and a separation step was performed. The value of V / T was 5, as shown in FIG. 7, satisfying the above formula (1).
Also, the resins A to C were applied to other wafers in the combinations as shown in FIG. 7 to form a resin layer having the resin thickness shown in FIG.
 そして、樹脂層が設けられた各ウェーハに対し、第1の平面研削工程、樹脂層除去工程、第2の平面研削工程を行った。第1,第2の平面研削工程では、株式会社ディスコ製の研削装置(DFG8000シリーズ)を用い、それぞれ取代20μmで平面研削を行った。
 その後、エッチング工程、鏡面研磨工程、洗浄工程を行った。鏡面研磨工程では、一次研磨工程として、両面研磨装置を用い、両面合計で5μm以上20μm以下の研磨を行い、最終研磨工程として、片面研磨装置を用い、片面のみ1μm未満の研磨を行った。
 なお、サンプルは各条件で1枚ずつ作成した。
And the 1st surface grinding process, the resin layer removal process, and the 2nd surface grinding process were performed with respect to each wafer provided with the resin layer. In the first and second surface grinding steps, surface grinding was performed using a grinding machine (DFG8000 series) manufactured by DISCO Corporation with a machining allowance of 20 μm.
Thereafter, an etching process, a mirror polishing process, and a cleaning process were performed. In the mirror polishing step, a double-side polishing device was used as the primary polishing step, and polishing was performed in a total of 5 μm to 20 μm on both sides. A single-side polishing device was used as the final polishing step to polish less than 1 μm on only one side.
One sample was prepared for each condition.
〔評価〕
 光学干渉式の平坦度測定器Wafersight2(KLA-Tencor社製)を用いて、各ウェーハ表面における10mm×10mmの複数領域の高さ分布(高低差)を測定し、ナノトポグラフィマップを得た。
 ナノトポグラフィマップは、ウェーハの測定結果をフィルタリング処理して20mm以上の波長成分を除去した後、ナノトポグラフィの測定結果を濃淡色で図示化したものである。ナノトポグラフィマップは、ウェーハの非吸着状態における表面の高低差を表している。
 また、ナノトポグラフィマップに対し、閾値を5nmにした二値化処理を行い、ナノトポグラフィが閾値以上であって高低差が大きい領域が白色で表される二値化画像を生成した。
 図7に、各ウェーハにおけるナノトポグラフィの最大値、ナノトポグラフィマップ、二値化画像を示す。また、二値化画像に白領域が存在する場合を「パターン有り」、存在しない場合を「パターン無し」と表記した。
[Evaluation]
Using an optical interference type flatness measuring device Wafersight 2 (manufactured by KLA-Tencor), the height distribution (height difference) of a plurality of 10 mm × 10 mm regions on each wafer surface was measured to obtain a nanotopography map.
The nanotopography map is obtained by filtering the measurement result of the wafer to remove a wavelength component of 20 mm or more, and then illustrating the measurement result of the nanotopography in shades of color. The nanotopography map represents the height difference of the surface in the non-adsorption state of the wafer.
In addition, binarization processing with a threshold of 5 nm was performed on the nanotopography map to generate a binarized image in which the area where the nanotopography is equal to or greater than the threshold and the height difference is large is expressed in white.
FIG. 7 shows a maximum value of nanotopography, a nanotopography map, and a binarized image in each wafer. Further, the case where a white area exists in the binarized image is described as “with pattern”, and the case where it does not exist is described as “without pattern”.
 図7に示すように、ナノトポグラフィの最大値は、硬化前粘度Vが1000mPa・s以下の樹脂Aと樹脂Bとではほぼ同じであった。一方、硬化前粘度Vが1000mPa・sより大きい樹脂Cにおけるナノトポグラフィの最大値は、樹脂Aと樹脂Bよりも大きかった。二値化画像についても、樹脂Cの白領域が樹脂Aと樹脂Bよりも大きいことが確認できた。 As shown in FIG. 7, the maximum value of nanotopography was almost the same between Resin A and Resin B having a pre-curing viscosity V of 1000 mPa · s or less. On the other hand, the maximum value of nanotopography in the resin C having a pre-curing viscosity V larger than 1000 mPa · s was larger than those in the resin A and the resin B. Also for the binarized image, it was confirmed that the white area of the resin C was larger than the resin A and the resin B.
 以上のことから、硬化前粘度Vが1000mPa・s以下の硬化性樹脂を用いて樹脂層を形成することで、鏡面研磨後におけるウェーハ表面のナノトポグラフィを十分に小さくできることが確認できた。 From the above, it was confirmed that the nanotopography on the wafer surface after mirror polishing can be made sufficiently small by forming the resin layer using a curable resin having a viscosity V before curing of 1000 mPa · s or less.
[実験2:ウェーハのナノトポグラフィと樹脂層の硬化後平坦面の凹凸との関係]
 実験1における樹脂Aを用いて樹脂厚さTが25μm(V/T=14)の樹脂層を形成したサンプルについて、ウェーハの径方向におけるナノトポグラフィと硬化後平坦面の凹凸との関係を調べた。
 硬化後平坦面の凹凸測定には、リニアゲージ(株式会社ミツトヨ社製、型式LGF)を用い、当該硬化後平坦面の凹凸を直線状の範囲で測定した。ナノトポグラフィのプロファイル測定には、上述の平坦度測定器Wafersight2を用い、鏡面研磨後の表面を上記範囲で測定した。なお、各測定は、ウェーハの中心を通る範囲で行った。
 これらの測定結果を図8に示す。
 図8に示すように、ナノトポグラフィと硬化後平坦面の形状が非常に似ていることがわかった。このことから、硬化後平坦面の凹凸形状がウェーハにうねりとして転写されていることがわかった。
[Experiment 2: Relationship between nanotopography of wafer and unevenness of flat surface after curing of resin layer]
Regarding the sample in which the resin layer having the resin thickness T of 25 μm (V / T = 14) was formed using the resin A in Experiment 1, the relationship between the nanotopography in the radial direction of the wafer and the unevenness of the flat surface after curing was examined. .
For measurement of unevenness on the flat surface after curing, a linear gauge (manufactured by Mitutoyo Corporation, model LGF) was used, and the unevenness on the flat surface after curing was measured in a linear range. For the measurement of the nanotopography profile, the above-described flatness measuring device Wafersight 2 was used, and the surface after mirror polishing was measured in the above range. Each measurement was performed in a range passing through the center of the wafer.
The measurement results are shown in FIG.
As shown in FIG. 8, it was found that the shape of the nanotopography and the flat surface after curing were very similar. From this, it was found that the uneven shape of the flat surface after curing was transferred to the wafer as waviness.
[実験3:V/Tとナノトポグラフィとの関係]
 図7に示すように、硬化前粘度Vが1000mPa・s以下であっても、V/Tの値によっては、二値化画像にパターンが発生する場合があった。
 そこで、V/Tとナノトポグラフィとの関係を調べた。
[Experiment 3: Relationship between V / T and nanotopography]
As shown in FIG. 7, even when the pre-curing viscosity V is 1000 mPa · s or less, a pattern may be generated in the binarized image depending on the value of V / T.
Therefore, the relationship between V / T and nanotopography was examined.
 まず、実験1で用いたものと同様のUV硬化性の樹脂A,Bと、ウェーハとを準備した。そして、以下の表1に示すように、樹脂A,Bと樹脂厚さTとを組み合わせて樹脂層を形成したこと以外は、実験1と同じ条件でサンプルを3枚ずつ作成した。各ウェーハにおけるV/Tを表1に示す。
 その後、実験1と同様に、各ウェーハのナノトポグラフィの測定結果をした。V/Tとナノトポグラフィの最大値との関係を図9に示す。
First, the same UV curable resins A and B as used in Experiment 1 and a wafer were prepared. As shown in Table 1 below, three samples were prepared under the same conditions as in Experiment 1 except that the resin layers were formed by combining the resins A and B and the resin thickness T. Table 1 shows V / T for each wafer.
Thereafter, as in Experiment 1, the measurement results of nanotopography of each wafer were obtained. The relationship between V / T and the maximum value of nanotopography is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図9に示すように、樹脂A,Bのいずれの場合にも、V/Tが10以下であれば、ナノトポグラフィの最大値が5nm以下になることが確認できた。
 以上のことから、硬化前粘度Vが1000mPa・s以下であり、かつ、V/Tが10以下の条件で樹脂層を形成することで、鏡面研磨後におけるナノトポグラフィの最大値が5nm以下という高品質のウェーハを得られることが確認できた。
As shown in FIG. 9, it was confirmed that in both cases of resins A and B, the maximum value of nanotopography was 5 nm or less when V / T was 10 or less.
From the above, the maximum value of nanotopography after mirror polishing is as high as 5 nm or less by forming a resin layer under conditions where the viscosity V before curing is 1000 mPa · s or less and V / T is 10 or less. It was confirmed that a quality wafer could be obtained.
 11…平板(平坦面形成手段)、11A…平坦部、12…保持手段、R…硬化性樹脂、R1…硬化前平坦面、RH…樹脂層、W…ウェーハ、W1…一方の面、W2…他方の面。 DESCRIPTION OF SYMBOLS 11 ... Flat plate (flat surface formation means), 11A ... Flat part, 12 ... Holding means, R ... Curable resin, R1 ... Flat surface before hardening, RH ... Resin layer, W ... Wafer, W1 ... One side, W2 ... The other side.

Claims (3)

  1.  単結晶インゴットから切り出されたウェーハまたはラッピングされたウェーハの一方の面に樹脂層を形成する樹脂層形成工程と、
     前記樹脂層を介して前記一方の面を保持し、前記ウェーハの他方の面を平面研削する第1の平面研削工程と、
     前記樹脂層を除去する樹脂層除去工程と、
     前記他方の面を保持し、前記一方の面を平面研削する第2の平面研削工程とを含み、
     前記樹脂層形成工程は、
     前記ウェーハの他方の面を保持手段で吸引保持する保持工程と、
     平坦面形成手段の平坦部と前記ウェーハの一方の面との間に粘度が1000mPa・s以下の硬化性樹脂を挟み、前記平坦部に倣う硬化前平坦面を前記硬化性樹脂に形成する平坦面形成工程と、
     前記他方の面の吸引保持を解除する保持解除工程と、
     前記硬化性樹脂を硬化させて前記樹脂層を形成する硬化工程と、
     前記平坦部を前記樹脂層から離間させる離間工程とを含んでいることを特徴とするウェーハの製造方法。
    A resin layer forming step of forming a resin layer on one surface of a wafer cut from a single crystal ingot or a lapped wafer;
    A first surface grinding step of holding the one surface via the resin layer and surface grinding the other surface of the wafer;
    A resin layer removing step of removing the resin layer;
    A second surface grinding step of holding the other surface and surface grinding the one surface;
    The resin layer forming step includes
    A holding step of sucking and holding the other surface of the wafer by a holding means;
    A flat surface in which a curable resin having a viscosity of 1000 mPa · s or less is sandwiched between a flat portion of the flat surface forming means and one surface of the wafer, and a pre-cured flat surface that follows the flat portion is formed on the curable resin. Forming process;
    A holding release step for releasing suction holding of the other surface;
    A curing step of curing the curable resin to form the resin layer;
    And a separation step of separating the flat portion from the resin layer.
  2.  請求項1に記載のウェーハの製造方法において、
     前記樹脂層形成工程は、以下の式(1)を満たすように前記樹脂層を形成することを特徴とするウェーハの製造方法。
      V/T≦10 … (1)
       V:前記硬化性樹脂の硬化前の粘度(mPa・s)
       T:前記保持解除工程後、前記硬化工程前における前記硬化性樹脂の最も厚い部分の厚さ(μm)
    In the manufacturing method of the wafer according to claim 1,
    The said resin layer formation process forms the said resin layer so that the following formula | equation (1) may be satisfy | filled, The manufacturing method of the wafer characterized by the above-mentioned.
    V / T ≦ 10 (1)
    V: Viscosity before curing of the curable resin (mPa · s)
    T: Thickness (μm) of the thickest portion of the curable resin after the holding release step and before the curing step
  3.  表面における10mm×10mmの複数領域で測定したナノトポグラフィの最大値が5nm以下であることを特徴とするウェーハ。 A wafer characterized in that the maximum value of nanotopography measured in a plurality of regions of 10 mm × 10 mm on the surface is 5 nm or less.
PCT/JP2017/032814 2016-10-31 2017-09-12 Wafer manufacturing method and wafer WO2018079105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016212774A JP2018074018A (en) 2016-10-31 2016-10-31 Wafer manufacturing method and wafer
JP2016-212774 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079105A1 true WO2018079105A1 (en) 2018-05-03

Family

ID=62024597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032814 WO2018079105A1 (en) 2016-10-31 2017-09-12 Wafer manufacturing method and wafer

Country Status (3)

Country Link
JP (1) JP2018074018A (en)
TW (1) TW201826367A (en)
WO (1) WO2018079105A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018221922A1 (en) * 2018-12-17 2020-06-18 Siltronic Ag Method for producing semiconductor wafers using a wire saw, wire saw and semiconductor wafer made of single-crystal silicon
JP7349784B2 (en) * 2018-12-26 2023-09-25 東京エレクトロン株式会社 Substrate processing system and substrate processing method
JP6844733B1 (en) * 2020-05-21 2021-03-17 信越半導体株式会社 Substrate wafer manufacturing method and substrate wafer
JP7511977B2 (en) 2020-06-16 2024-07-08 株式会社ディスコ Method for grinding a workpiece

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111653A (en) * 1997-10-07 1999-04-23 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer
JP2002134581A (en) * 2000-10-25 2002-05-10 Speedfam Co Ltd Reference wafer for evaluating nano-topography, method for fabricating the same, and wafer evaluating method by using the wafer
JP2010155298A (en) * 2008-12-26 2010-07-15 Disco Abrasive Syst Ltd Method and apparatus for coating with resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111653A (en) * 1997-10-07 1999-04-23 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer
JP2002134581A (en) * 2000-10-25 2002-05-10 Speedfam Co Ltd Reference wafer for evaluating nano-topography, method for fabricating the same, and wafer evaluating method by using the wafer
JP2010155298A (en) * 2008-12-26 2010-07-15 Disco Abrasive Syst Ltd Method and apparatus for coating with resin

Also Published As

Publication number Publication date
TW201826367A (en) 2018-07-16
JP2018074018A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6187579B2 (en) Semiconductor wafer processing method
JP6418130B2 (en) Semiconductor wafer processing method
JP6111893B2 (en) Semiconductor wafer processing process
JP6878676B2 (en) Wafer manufacturing method
WO2018079105A1 (en) Wafer manufacturing method and wafer
JP4728023B2 (en) Wafer manufacturing method
KR101645634B1 (en) Bonded wafer production method
WO2017134925A1 (en) Manufacturing method of wafer and wafer
JP2011103379A (en) Flat processing method of wafer
WO2018079222A1 (en) Wafer manufacturing method and wafer
US20170040285A1 (en) Wafer planarization method
JP2024118347A (en) Manufacturing method of wafer
JP2022172822A (en) Wafer manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863538

Country of ref document: EP

Kind code of ref document: A1