[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018078715A1 - Liquefied natural gas storage facility - Google Patents

Liquefied natural gas storage facility Download PDF

Info

Publication number
WO2018078715A1
WO2018078715A1 PCT/JP2016/081553 JP2016081553W WO2018078715A1 WO 2018078715 A1 WO2018078715 A1 WO 2018078715A1 JP 2016081553 W JP2016081553 W JP 2016081553W WO 2018078715 A1 WO2018078715 A1 WO 2018078715A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
natural gas
liquefied natural
burner
Prior art date
Application number
PCT/JP2016/081553
Other languages
French (fr)
Japanese (ja)
Inventor
秀二 大橋
安達 修
篤志 神谷
嘉朗 外池
Original Assignee
日揮株式会社
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社, 住友精密工業株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2016/081553 priority Critical patent/WO2018078715A1/en
Publication of WO2018078715A1 publication Critical patent/WO2018078715A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a technique for vaporizing liquefied natural gas using a submerged liquefied natural gas vaporizer.
  • Natural gas produced at the well of the gas field is cooled, liquefied and stored in a storage tank (LNG tank) as liquefied natural gas (LNG), then gasified again and demanded via the pipeline Supplied first.
  • LNG tank storage tank
  • LNG liquefied natural gas
  • Known devices that vaporize LNG sent from LNG tanks include open rack LNG vaporizers that use seawater to vaporize LNG, and submerged liquefied natural gas vaporizers (SMVs). It has been. SMV arranges a heat exchange tube through which LNG flows in a water tank filled with water, introduces burner exhaust gas obtained by burning fuel with a burner into water, and heats the water heated by the burner exhaust gas. LNG is vaporized by heat exchange.
  • SMV has the advantage that it does not require large-scale facilities such as a seawater supply system, and is small in size and low in initial costs, as compared with an open rack type LNG vaporizer. On the other hand, since SMV requires fuel for obtaining burner exhaust gas, there is room for improvement in terms of running cost.
  • Patent Document 1 describes an SMV type LNG vaporizer that includes a small burner and a mechanism that introduces high-temperature exhaust gas obtained from a heat-generating power generation device that generates power using LNG as fuel into a hot water bath chamber. ing.
  • Patent Document 1 does not disclose specific technical contents for utilizing burner exhaust gas and high-temperature exhaust gas in combination in order to realize stable shipment of product gas including vaporized natural gas.
  • the present invention has been made under such a background, and an object thereof is to provide a liquefied natural gas storage facility equipped with an SMV capable of effectively utilizing exhaust heat of a gas engine. .
  • the liquefied natural gas storage facility of the present invention is a liquefied natural gas storage facility that vaporizes liquefied natural gas stored in a storage tank and then discharges it to the outside.
  • a gas engine that drives the generator;
  • a submerged liquefied natural gas vaporizer that vaporizes liquefied natural gas supplied from the storage tank, and
  • the submerged liquefied natural gas vaporizer is A water tank in which water is stored;
  • a liquefied natural gas supply line that is arranged so as to be immersed in water in the water tank and that is supplied with liquefied natural gas from the storage tank, and for discharging the vaporized natural gas obtained by vaporizing the liquefied natural gas
  • a vaporizer for heating and vaporizing the liquefied natural gas flowing through the heat exchange tube by heat exchange with the water in the water tank.
  • engine exhaust gas for introducing engine exhaust gas received through an exhaust gas supply line to which engine exhaust gas is supplied from the gas engine into the water in the water tank and supplying combustion exhaust heat of the gas engine to the water
  • a burner that mixes fuel and air to burn the fuel
  • a fuel supply unit that supplies fuel to the burner
  • a blower unit that supplies air, and a fuel burned by the burner
  • a burner exhaust gas for introducing the burner exhaust gas into the water in the water tank and supplying the heat of combustion of the fuel to the water
  • an engine exhaust gas flow rate adjusting unit for adjusting a supply flow rate of engine exhaust gas from the gas engine to the engine exhaust gas introducing unit
  • a burner load adjuster for adjusting the flow rate of fuel supplied to the burner
  • a pressure measuring unit that is discharged from the discharge line and measures the pressure of the product gas including the vaporized natural gas
  • a liquid feed flow rate adjusting unit that adjusts the flow rate of the liquefied natural gas supplied to the liquefied natural gas vaporizer so that the pressure of the product gas measured by
  • the liquefied natural gas storage facility may have the following characteristics.
  • a natural gas temperature measuring unit that measures the temperature of vaporized natural gas discharged from the liquefied natural gas vaporizer to a discharge line is provided, and the exhaust gas introduction control unit is vaporized measured by the natural gas temperature measuring unit Supplying the amount of heat necessary for the liquefied natural gas vaporizer by adjusting the amount of engine exhaust gas and burner exhaust gas introduced into the water in the water tank so that the temperature of the natural gas approaches a preset target temperature To do.
  • a water temperature measuring unit that measures the temperature of water in the water tank is provided, and the exhaust gas introduction control unit is configured so that the temperature of the water measured by the water temperature measuring unit approaches a preset target temperature.
  • the fuel supply unit includes a fuel cut-off unit that performs supply and stop of fuel to the burner and switches the burner between a stopped state and an operating state
  • the exhaust gas introduction control unit includes the natural gas
  • the engine exhaust gas flow rate adjusting unit is used to adjust the supply flow rate of the engine exhaust gas to the engine exhaust gas introduction unit, and the engine exhaust gas flow rate adjusting unit is used to adjust the engine exhaust gas so that the necessary amount of heat is supplied by the vaporizer.
  • the fuel supply unit is used to supply fuel from the fuel supply unit. And put the burner into operation.
  • the exhaust gas introduction control unit is configured so that an introduction amount of engine exhaust gas and burner exhaust gas corresponding to the amount of heat necessary for the liquefied natural gas vaporizer is introduced into the water in the water tank. Then, when the fuel supply flow rate to the burner becomes a preset minimum flow rate, the fuel supply unit is used to stop the fuel supply from the fuel supply unit, and the burner is stopped. To switch.
  • engine exhaust gas larger than the supply flow rate of engine exhaust gas to the engine exhaust gas introduction part is exhausted from the gas engine and the burner is in a stopped state under the condition of being introduced into the water in the water tank Exhaust excess engine exhaust gas to the outside through the bypass line.
  • the boil-off gas generated in the storage tank is used as the fuel gas of the gas engine.
  • At least one of boil-off gas generated in the storage tank or liquefied petroleum gas is added to the product gas.
  • the present invention adjusts the flow rate of the liquefied natural gas supplied to the SMV based on the measurement result of the pressure of the product gas containing the vaporized natural gas, and the amount of heat necessary for vaporizing the liquefied natural gas at the flow rate is supplied.
  • the introduction amount of the engine exhaust gas and the burner exhaust gas introduced into the water in which the heat exchange tube for vaporizing the liquefied natural gas is immersed is adjusted.
  • the product gas can be stably shipped while the liquefied natural gas is vaporized using the engine exhaust gas of the gas engine.
  • the LNG storage facility is configured, for example, as a receiving base that receives LNG from a liquefied natural gas (LNG) ship, a satellite base that receives LNG from a tank truck, and the like, and includes a storage tank 1 that stores LNG.
  • LNG liquefied natural gas
  • the storage tank 1 is connected to the SMV 2 via the LNG supply lines 501a and 501b, and the LNG in the storage tank 1 is supplied to the SMV 2 using the LNG pump 11 and the delivery pump 12.
  • the SMV 2 vaporizes LNG by heat exchange with the water W stored in the water tank 20, and discharges the obtained gas NG to the discharge line 502.
  • BOG Bit Off Gas
  • the pressure is increased by, for example, the BOG compressor 4 including a plurality of compression stages 401 and 402.
  • the high pressure BOG after the pressure increase is mixed with the NG discharged from the SMV 2 to the discharge line 502.
  • LPG for heat quantity adjustment is added to the NG after BOG mixing by the heat quantity adjustment unit 51, and shipped to the user as product gas.
  • the gas mixed and added to the product gas may be either BOG or LPG.
  • the LNG storage facility of this example includes a gas engine 3 that drives the generator 31 by burning the BOG.
  • the gas engine 3 of this example can be operated with a low pressure BOG having a lower pressure than the high pressure BOG mixed with NG.
  • the low pressure BOG is extracted from the discharge side of the intermediate stage of the BOG compressor 4 and supplied to the gas engine 3.
  • the electric power obtained by driving the generator 31 by the gas engine 3 is supplied to equipment that consumes electric power in the LNG storage facility such as the BOG compressor 4, the LNG pump 11 and the delivery pump 12, and becomes surplus. Electric power may be sold to the outside.
  • high temperature exhaust gas (engine exhaust gas) is generated by burning BOG.
  • the SMV 2 provided in the LNG storage facility of this example has a configuration capable of vaporizing LNG using the heat of the engine exhaust gas.
  • the configuration of the SMV 2 will be described with reference to FIGS.
  • the SMV 2 has a structure in which a plurality of heat exchange tubes 21 made of meandering pipes are immersed in a water tank 20 in which water W is stored.
  • a manifold-like supply header 211 connected to the upstream end of these heat exchange tubes 21 is disposed at the bottom of the water tank 20.
  • the supply header 211 is connected to the above-described LNG supply line 501 b through which the LNG from the storage tank 1 is sent, and the LNG is supplied to each heat exchange tube 21 via the supply header 211.
  • a manifold-like discharge header 212 connected to the downstream end of each heat exchange tube 21 is disposed at the upper position in the water tank 20.
  • the payout header 212 is connected to the vaporized NG payout line 502, and the NG vaporized in each heat exchange tube 21 is collected in the payout header 212 and then discharged to the payout line 502.
  • the plurality of heat exchange tubes 21, the supply header 211, and the payout header 212 constitute a vaporizer of the SMV 2.
  • the water tank 20 is provided with an engine exhaust gas introduction part 22 for introducing high-temperature engine exhaust gas received from the gas engine 3 side into the water W in the water tank 20.
  • the engine exhaust gas introduction unit 22 receives the engine exhaust gas at a position below the heat exchange tube 21 and a downcomer unit 22 a that is a pipe for guiding the engine exhaust gas received from the gas engine 3 to the lower side of the heat exchange tube 21.
  • a distributor 22b for dispersing and introducing into the water in the water tank 20.
  • the distributor 22 b has a plurality of pipes arranged at intervals in the horizontal direction along the bottom surface of the water tank 20, and the wall surfaces of these pipes along the extending direction of the pipes. A large number of discharge holes 221 are provided.
  • the engine exhaust gas acceptance pressure in the engine exhaust gas introduction part 22 is a pressure within a range of approximately 12 to 30 kPaG.
  • the position of the engine exhaust gas introduced from the distributor 22b to the water W (discharge hole 221) and the water surface of the water W in the water tank 20 The height distance between them is preferably set to 1200 mm or more and less than the height of the water column corresponding to the receiving pressure.
  • the engine exhaust gas introduction part 22 having the above-described configuration, the engine exhaust gas is supplied to each pipe of the distributor part 22b through the downcomer part 22a, and then, from each discharge hole 221 to the water W in the water tank 20. Hot engine exhaust is introduced. As a result, the engine exhaust gas becomes bubbles and rises in the water, and heat energy is supplied by heat exchange accompanying contact between the water W and the engine exhaust gas.
  • the SMV 2 of this example is provided with a burner 231 that assists in heating the water W in the water tank 20 by engine exhaust gas.
  • the burner 231 of this example uses, as fuel, the product gas after the calorific value extracted from the discharge line 502 via the fuel supply line 503.
  • the fuel supplied from the fuel supply line 503 is mixed with the air supplied from the blower unit 24 and burned, whereby high-temperature burner exhaust gas is obtained.
  • a configuration is adopted in which a part of the air supplied from the blower 24 is directly introduced into the water W in the water tank 20 without being used for combustion in the burner 231 according to the load of the burner 231. May be.
  • a burner exhaust gas introduction part 234 including a downcomer part 234a and a distributor part 234b for introducing the burner exhaust gas to the water W in the water tank 20 is provided.
  • the configuration of the burner exhaust gas introduction unit 234 and the behavior of the burner exhaust gas introduced into the water from here are almost the same as in the case of the engine exhaust gas introduction unit 22 described above, and thus the description thereof is omitted.
  • the SMV 2 in this example adjusts the discharge flow rate of NG from the SMV 2 so that the pressure of the product gas shipped from the discharge line 502 to the user is maintained at the target pressure.
  • the product gas shipping pressure from the payout 502 line is set so that the user can consume the product gas at the required flow rate. Therefore, if the delivery flow rate of NG is adjusted so that the delivery pressure of the product gas from the delivery line 502 is maintained at the target pressure, a necessary amount of product gas can be supplied to the user.
  • a product gas pressure gauge (pressure) for measuring the shipping pressure of the product gas is provided in the discharge line 502 downstream of the BOG and LPG mixing / addition position and the branch position of the fuel supply line 503.
  • Measurement unit) 522 is provided. From the storage tank 1 side using the LNG supply amount adjusting unit (liquid feed flow rate adjusting unit) 521 so that the product gas shipping pressure measured by the product gas pressure gauge 522 approaches the preset target pressure. LNG supply flow rate is adjusted.
  • the LNG supply amount adjusting unit 521 is provided with an LNG flow meter 522 that measures the supply flow rate of LNG supplied to the SMV 2.
  • a discharge NG thermometer Natural gas temperature measuring unit 531
  • the exhaust gas of the engine and the burner exhaust gas are used so that the temperature of the NG gas measured by the dispensing NG thermometer 531 approaches a preset target temperature. Adjust the amount introduced.
  • the exhaust gas supply line 504 is provided with a supply flow meter 323 for measuring the flow rate of the engine exhaust gas supplied from the gas engine 3 to the SMV 2.
  • An exhaust gas supply line 504 branches off a bypass line 505 that bypasses the engine exhaust gas introduction unit 22 and discharges excess engine exhaust gas to the outside.
  • the bypass line 505 is provided with a bypass valve 321 for increasing or decreasing engine exhaust gas discharged to the bypass line 505 side, and a bypass flow meter 324 for measuring the flow rate of engine exhaust gas discharged to the bypass line 505 side. ing.
  • the bypass line 505 and the bypass valve 321 constitute an engine exhaust gas flow rate adjustment unit.
  • the fuel supply line 503 for supplying fuel to the burner 231 is provided with a fuel gas flow rate adjusting valve 261 for adjusting the fuel supply flow rate to the burner 231.
  • the fuel gas flow rate adjustment valve 261 constitutes a burner load adjustment unit. Further, the fuel gas flow rate adjustment valve 261 also has a function as a fuel supply / cutoff section. In addition to the fuel gas flow rate adjustment valve 261, it is needless to say that a shut-off valve constituting a fuel supply / cutoff section may be provided.
  • the load adjustment unit 532 vaporizes LNG by preferentially using engine exhaust gas, and vaporizes LNG supplied from the LNG supply line 501b side. In such a case, the load is distributed so that the burner 231 is operated.
  • the setting of the regulation of the introduction amount of the engine exhaust gas and the burner exhaust gas via the load adjusting unit 532 is performed using, for example, a computer system that performs overall control of the entire LNG storage facility.
  • the computer system corresponds to the exhaust gas introduction control unit 6 for adjusting the amount of engine exhaust gas or burner exhaust gas introduced into the water W stored in the water tank 20.
  • the load adjusting unit 532 described above also constitutes a part of the exhaust gas introduction control unit.
  • the burner exhaust gas introduction part 234 is provided with a thermometer (not shown) for measuring the temperature of the burner exhaust gas introduced into the water W in the water tank 20.
  • a thermometer (not shown) for measuring the temperature of the burner exhaust gas introduced into the water W in the water tank 20.
  • a flow meter for measuring the flow rate of each fluid may be provided.
  • 4 to 5 show an example of an operation of switching the burner 231 that is normally in a stopped state between the operating state.
  • the engine exhaust gas calorific value discharged from the gas engine 3 is in a surplus balance with the burner 231 stopped.
  • the shipping pressure of the product gas measured by the product gas pressure gauge 522 is a preset target pressure (FIG. 5A), and surplus engine exhaust gas passes through the bypass line 505. Are discharged to the outside.
  • the opening degree of the bypass valve 321 is set in advance by reducing the opening amount of the bypass valve 321 and reducing the exhaust flow amount of the engine exhaust gas to the bypass line 505 as the exhaust amount of the engine exhaust gas decreases.
  • the supply flow rate (supply heat amount) of the engine exhaust gas to the engine exhaust gas introduction unit 22 is kept constant (step S101 in FIG. 4; NO).
  • step S101 in FIG. 4; YES the supply flow rate of the engine exhaust gas to the engine exhaust gas introduction unit 22 is increased. It begins to decline. Even in this case, the water W in the water tank 20 has a large heat capacity, and the temperature decrease of the water W accompanying the decrease in the supply flow rate of the engine exhaust gas, that is, the temperature decrease of the discharge NG proceeds slowly (FIG. 5C).
  • step S102 in FIG. 4 YES
  • the burner 231 is already in the operating state. Check if it is.
  • the burner 231 is in a stopped state (step S103; NO)
  • fuel is supplied from the fuel supply line 503 and air is supplied from the blower 24, and the burner 231 is ignited (step S104).
  • the load of the SMV 2 is in a state where the consumption flow rate of the burner 231 is added to the shipping flow rate required for the product gas (FIG. 5B).
  • the LNG supply amount adjusting unit 521 adjusts the supply flow rate of LNG.
  • the fuel supply flow rate to the burner 231 is increased to increase the introduction amount of the burner exhaust gas and vaporize NG. Ensuring the amount of heat necessary to make it happen.
  • step S103 When the payout NG temperature falls below the allowable range for the target temperature and the burner 231 is already in operation (step S103 in FIG. 4; YES), the capacity of the SMV2 exceeds the capability of the burner 231. The load is increasing. In this case, the payout flow rate underflow countermeasure that is different from the activation of the burner 231 is implemented (step S105).
  • step S106 in FIG. 4; NO ⁇ step S107; YES fuel from the fuel supply line 503 is obtained.
  • Supply is stopped and the burner 231 is stopped (step S108).
  • the load of SMV2 will be in the state corresponding only to the shipment flow rate required to maintain the target pressure of product gas.
  • the introduction of the burner exhaust gas from the burner exhaust gas introduction unit 234 is stopped, and the discharge NG temperature is maintained at the target temperature only by the introduction of the engine exhaust gas from the engine exhaust gas introduction unit 22. If the engine exhaust gas supply flow rate further increases or the LNG supply flow rate to the SMV 2 decreases, the bypass valve 321 is opened to start discharging the engine exhaust gas to the bypass line 505 (step S101; NO). .
  • the LNG storage facility has the following effects. Based on the measurement result of the pressure of the product gas containing vaporized NG, the heat for vaporizing the LNG is adjusted so that the amount of heat necessary to vaporize the LNG is supplied by adjusting the flow rate of the LNG supplied to the SMV 2. The introduction amount of the engine exhaust gas and the burner exhaust gas introduced into the water in which the exchange tube 21 is immersed is adjusted. As a result, stable shipment of the product gas can be realized while LNG is vaporized using the engine exhaust gas of the gas engine 3.
  • the gas engine 3 may be operated using part of the product gas extracted from the discharge line 502 to the fuel supply line 503. Further, both BOG and product gas may be used as fuel for the gas engine 3.
  • the confirmation that the amount of heat necessary for vaporizing the LNG supplied from the LNG supply line 501b side is supplied to the SMV 2 is as follows.
  • the present invention is not limited to the case of using the method of measuring the temperature.
  • a water temperature meter water temperature measurement unit (water temperature measurement unit) (not shown) that measures the temperature of the water W in the water tank 20 is provided, and the temperature of the water W in the water tank 20 measured by the water temperature gauge approaches a preset target temperature.
  • the exhaust gas introduction control unit 6 may employ a configuration in which the introduction amount of the engine exhaust gas or the burner exhaust gas is adjusted using the bypass valve 321 or the fuel gas flow rate adjustment valve 261 described above.
  • the operation of switching the burner 231 between the operating state and the stopped state according to the increase or decrease of the exhaust amount of the engine exhaust gas from the gas engine 3 has been described. This does not deny the case where 231 is always in an operating state.
  • the supply flow rate ratio of the engine exhaust gas and the burner exhaust gas is fixed so that the discharge NG temperature or the temperature of the water W in the water tank 20 approaches the target temperature.
  • a method for increasing or decreasing the amount can be exemplified. As long as the exhaust gas of the gas engine 3 is used as a heat source sharing the amount of heat for vaporizing LNG, the amount of fuel consumed can be reduced as compared with the case where the burner 231 alone vaporizes LNG.
  • FIGS. 1 and 6 show an example in which one SMV 2 is provided.
  • a plurality of SMVs 2 are arranged in parallel between the storage tank 1 and the payout line 502.
  • the SMV 2 and the open rack type LNG vaporizer may be arranged in parallel to vaporize the LNG delivered from the storage tank 1.
  • LNG is distributed and supplied to each SMV 2 so that the shipping pressure of the product gas is maintained at the target pressure.
  • each SMV 2 adjusts the introduction amount of the engine exhaust gas and the burner exhaust gas by paying attention to an index different from the supply flow rate of LNG such as the discharge NG temperature and the temperature of the water W in the water tank 20.
  • LNG such as the discharge NG temperature and the temperature of the water W in the water tank 20.
  • FIGS. 1 and 6 show an example of an LNG storage facility in which only the gas engine 3 is provided.
  • a gas turbine is provided for the purpose of driving a generator 31, a compressor, and the like.
  • the LNG storage facility a configuration in which gas turbine exhaust gas is merged with engine exhaust gas supplied to the SMV 2 may be adopted.
  • the SLNG 2 described with reference to FIGS. 1 to 3 and 6 may be provided in the LNG storage facility provided with only the gas turbine, and a technique of vaporizing LNG using the gas turbine exhaust gas and the burner exhaust gas may be employed.
  • it is not essential to provide the burner 231 and the burner exhaust gas introduction part 234 in the SMV 2 and LNG may be vaporized by the SMV 2 provided with only the engine exhaust gas introduction part 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

[Problem] To provide a liquefied natural gas storage facility provided with a submerged liquefied natural gas vaporizer (SMV) that can make efficient use of waste heat from a gas engine. [Solution] A natural gas storage facility is provided with a gas engine 3 for driving a power generator 31 and uses an SMV 2 to vaporize liquefied natural gas. In the SMV 2, when engine exhaust gas from the gas engine 3 and burner exhaust gas from a burner 231 are used to vaporize the liquefied natural gas, the amounts of engine exhaust gas and burner exhaust gas to be introduced to water W in a water tank 20 of the SMV 2 are adjusted in a manner corresponding to the flow rate of liquefied natural gas determined on the basis of a pressure measurement result for a product gas containing vaporized natural gas.

Description

液化天然ガス貯蔵設備Liquefied natural gas storage equipment
 本発明は、サブマージド式の液化天然ガス気化装置を用いて液化天然ガスを気化する技術に関する。 The present invention relates to a technique for vaporizing liquefied natural gas using a submerged liquefied natural gas vaporizer.
 ガス田の井戸元にて産出した天然ガスは、冷却、液化され液化天然ガス(LNG:Liquefied Natural Gas)として貯蔵タンク(LNGタンク)に貯蔵された後、再びガス化してパイプラインを介して需要先に供給される。 Natural gas produced at the well of the gas field is cooled, liquefied and stored in a storage tank (LNG tank) as liquefied natural gas (LNG), then gasified again and demanded via the pipeline Supplied first.
 LNGタンクから送り出されたLNGを気化する装置として、海水を利用してLNGを気化させるオープンラック式のLNG気化装置や、サブマージド式の液化天然ガス気化装置(Submerged-combustion type Vaporizer、SMV)が知られている。 
 SMVは、水を満たした水槽内にLNGが通流する熱交換チューブを配置すると共に、バーナーで燃料を燃焼させて得られたバーナー排ガスを水中に導入し、バーナー排ガスで温められた水との熱交換によりLNGを気化させる。
Known devices that vaporize LNG sent from LNG tanks include open rack LNG vaporizers that use seawater to vaporize LNG, and submerged liquefied natural gas vaporizers (SMVs). It has been.
SMV arranges a heat exchange tube through which LNG flows in a water tank filled with water, introduces burner exhaust gas obtained by burning fuel with a burner into water, and heats the water heated by the burner exhaust gas. LNG is vaporized by heat exchange.
 SMVは、オープンラック式のLNG気化装置と比較して、海水供給システムなどの大規模設備が不要であり、小型で初期費用が低いというメリットがある。一方でSMVは、バーナー排ガスを得るための燃料を必要とするため、ランニングコストの観点で改善の余地がある。 SMV has the advantage that it does not require large-scale facilities such as a seawater supply system, and is small in size and low in initial costs, as compared with an open rack type LNG vaporizer. On the other hand, since SMV requires fuel for obtaining burner exhaust gas, there is room for improvement in terms of running cost.
 ここで特許文献1には、小型バーナーを備えると共に、LNGを燃料として発電を行う発熱発電装置から得られた高温排ガスを温水バス室に導入する機構を備えたSMV式のLNG気化器が記載されている。しかしながら特許文献1には、気化させた天然ガスを含む製品ガスの安定出荷を実現するにあたって、バーナー排ガスと高温排ガスを組み合わせて活用する具体的な技術内容は開示されていない。 Here, Patent Document 1 describes an SMV type LNG vaporizer that includes a small burner and a mechanism that introduces high-temperature exhaust gas obtained from a heat-generating power generation device that generates power using LNG as fuel into a hot water bath chamber. ing. However, Patent Document 1 does not disclose specific technical contents for utilizing burner exhaust gas and high-temperature exhaust gas in combination in order to realize stable shipment of product gas including vaporized natural gas.
特開2002-168149号公報JP 2002-168149 A
 本発明は、このような背景の下になされたものであり、その目的は、ガスエンジンの排熱を有効に活用することが可能なSMVを備えた液化天然ガス貯蔵設備を提供することにある。 The present invention has been made under such a background, and an object thereof is to provide a liquefied natural gas storage facility equipped with an SMV capable of effectively utilizing exhaust heat of a gas engine. .
 本発明の液化天然ガス貯蔵設備は、貯蔵タンクに貯蔵された液化天然ガスを気化させた後、外部へ払い出す液化天然ガス貯蔵設備において、
 発電機を駆動するガスエンジンと、
 前記貯蔵タンクから供給された液化天然ガスを気化するサブマージド式の液化天然ガス気化装置と、を備え、
 前記サブマージド式の液化天然ガス気化装置は、
 水が貯留された水槽と、
 前記水槽内の水中に浸漬されるように配置され、前記貯蔵タンクから液化天然ガスが供給される液化天然ガス供給ライン、及び前記液化天然ガスを気化させて得られた気化天然ガスを払い出すための払い出しラインと接続された熱交換チューブを備え、前記水槽内の水との熱交換により、前記熱交換チューブ内を通流する液化天然ガスを加熱して気化させるための気化器と、
 前記ガスエンジンよりエンジン排ガスが供給される排ガス供給ラインを介して受け入れたエンジン排ガスを、前記水槽内の水中に導入し、当該水に前記ガスエンジンンの燃焼排熱を供給するためのエンジン排ガス導入部と、
 燃料と空気とを混合して前記燃料を燃焼させるバーナーと、前記バーナーに対し、燃料を供給する燃料供給部、及び空気を供給する送風部と、前記バーナーにて燃料を燃焼させて得られたバーナー排ガスを、前記水槽内の水中に導入し、当該水に前記燃料の燃焼熱を供給するためのバーナー排ガス導入部と、を備え、
 さらに、前記ガスエンジンからエンジン排ガス導入部へのエンジン排ガスの供給流量を調節するエンジン排ガス流量調節部と、
 前記バーナーへの燃料の供給流量を調節するバーナー負荷調節部と、
 前記払い出しラインより払い出され、前記気化天然ガスを含む製品ガスの圧力を測定する圧力測定部と、
 前記圧力測定部にて測定された製品ガスの圧力が、予め設定された目標圧力に近づくように、前記液化天然ガス気化装置に供給される液化天然ガスの流量を調節する送液流量調節部と、
 前記送液流量調節部にて調節された流量の液化天然ガスを気化させるために必要な熱量が前記液化天然ガス気化装置に供給されるように、前記エンジン排ガス流量調節部及びバーナー負荷調節部を用いて、前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節する排ガス導入制御部と、を備えたことを特徴とする。
The liquefied natural gas storage facility of the present invention is a liquefied natural gas storage facility that vaporizes liquefied natural gas stored in a storage tank and then discharges it to the outside.
A gas engine that drives the generator;
A submerged liquefied natural gas vaporizer that vaporizes liquefied natural gas supplied from the storage tank, and
The submerged liquefied natural gas vaporizer is
A water tank in which water is stored;
A liquefied natural gas supply line that is arranged so as to be immersed in water in the water tank and that is supplied with liquefied natural gas from the storage tank, and for discharging the vaporized natural gas obtained by vaporizing the liquefied natural gas A vaporizer for heating and vaporizing the liquefied natural gas flowing through the heat exchange tube by heat exchange with the water in the water tank.
Introduction of engine exhaust gas for introducing engine exhaust gas received through an exhaust gas supply line to which engine exhaust gas is supplied from the gas engine into the water in the water tank and supplying combustion exhaust heat of the gas engine to the water And
A burner that mixes fuel and air to burn the fuel, a fuel supply unit that supplies fuel to the burner, a blower unit that supplies air, and a fuel burned by the burner A burner exhaust gas for introducing the burner exhaust gas into the water in the water tank and supplying the heat of combustion of the fuel to the water, and
Furthermore, an engine exhaust gas flow rate adjusting unit for adjusting a supply flow rate of engine exhaust gas from the gas engine to the engine exhaust gas introducing unit,
A burner load adjuster for adjusting the flow rate of fuel supplied to the burner;
A pressure measuring unit that is discharged from the discharge line and measures the pressure of the product gas including the vaporized natural gas;
A liquid feed flow rate adjusting unit that adjusts the flow rate of the liquefied natural gas supplied to the liquefied natural gas vaporizer so that the pressure of the product gas measured by the pressure measuring unit approaches a preset target pressure; ,
The engine exhaust gas flow rate adjusting unit and the burner load adjusting unit are arranged so that the amount of heat necessary for vaporizing the liquefied natural gas at the flow rate adjusted by the liquid supply flow rate adjusting unit is supplied to the liquefied natural gas vaporizer. And an exhaust gas introduction control unit for adjusting an introduction amount of the engine exhaust gas and the burner exhaust gas into the water in the water tank.
 前記液化天然ガス貯蔵設備は以下の特徴を備えていてもよい。
(a)前記液化天然ガス気化装置から払い出しラインに払い出される気化天然ガスの温度を測定する天然ガス温度測定部を備え、前記排ガス導入制御部は、前記天然ガス温度測定部にて測定された気化天然ガスの温度が、予め設定された目標温度に近づくように前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節することにより、前記液化天然ガス気化装置にて必要な熱量の供給を行うこと。または、前記水槽内の水の温度を測定する水温測定部を備え、前記排ガス導入制御部は、前記水温測定部にて測定された水の温度が、予め設定された目標温度に近づくように前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節することにより、前記液化天然ガス気化装置にて必要な熱量の供給を行うこと。 
(b)前記燃料供給部からバーナーへの燃料の供給、停止を実行し、当該バーナーを停止状態と稼働状態とで切り替えるための燃料給断部を備え、前記排ガス導入制御部は、前記天然ガス気化装置にて必要な熱量が供給されるように、前記エンジン排ガス流量調節部を用いてエンジン排ガス導入部へのエンジン排ガスの供給流量を調節すると共に、前記エンジン排ガス流量調節部によるエンジン排ガスの調節能力を超えて前記液化天然ガス気化装置にて熱量が必要な状態となり、且つ、前記バーナーが停止状態である場合には、前記燃料給断部を用いて燃料供給部からの燃料の供給を実行して前記バーナーを稼働状態とすること。 
(c)(b)において、前記排ガス導入制御部は、前記液化天然ガス気化装置にて必要な熱量に対応する導入量のエンジン排ガス及びバーナー排ガスが前記水槽内の水へ導入されている条件下で、前記バーナーへの燃料の供給流量が予め設定された最低流量となった場合には、前記燃料給断部を用いて燃料供給部からの燃料の供給を停止して前記バーナーを停止状態に切り替えること。また、前記エンジン排ガス導入部をバイパスしてエンジン排ガスを外部へ排出するバイパスラインを備え、前記排ガス導入制御部は、前記液化天然ガス気化装置にて必要な熱量に対応する導入量のエンジン排ガスが前記水槽内の水へ導入されている条件下で、前記エンジン排ガス導入部へのエンジン排ガスの供給流量よりも多いエンジン排ガスが前記ガスエンジンから排気され、且つ、前記バーナーが停止状態である場合には、前記バイパスラインを介して余剰分のエンジン排ガスを外部へ排出すること。 
(d)前記ガスエンジンの燃料ガスとして、前記貯蔵タンク内で発生したボイルオフガスを利用すること。 
(e)前記製品ガスには、前記貯蔵タンク内で発生したボイルオフガス、または液化石油ガスの少なくとも一方が添加されること。
The liquefied natural gas storage facility may have the following characteristics.
(A) A natural gas temperature measuring unit that measures the temperature of vaporized natural gas discharged from the liquefied natural gas vaporizer to a discharge line is provided, and the exhaust gas introduction control unit is vaporized measured by the natural gas temperature measuring unit Supplying the amount of heat necessary for the liquefied natural gas vaporizer by adjusting the amount of engine exhaust gas and burner exhaust gas introduced into the water in the water tank so that the temperature of the natural gas approaches a preset target temperature To do. Alternatively, a water temperature measuring unit that measures the temperature of water in the water tank is provided, and the exhaust gas introduction control unit is configured so that the temperature of the water measured by the water temperature measuring unit approaches a preset target temperature. Supplying the amount of heat required for the liquefied natural gas vaporizer by adjusting the amount of engine exhaust gas and burner exhaust gas introduced into the water in the tank.
(B) The fuel supply unit includes a fuel cut-off unit that performs supply and stop of fuel to the burner and switches the burner between a stopped state and an operating state, and the exhaust gas introduction control unit includes the natural gas The engine exhaust gas flow rate adjusting unit is used to adjust the supply flow rate of the engine exhaust gas to the engine exhaust gas introduction unit, and the engine exhaust gas flow rate adjusting unit is used to adjust the engine exhaust gas so that the necessary amount of heat is supplied by the vaporizer. If the liquefied natural gas vaporizer exceeds the capacity and needs heat, and the burner is stopped, the fuel supply unit is used to supply fuel from the fuel supply unit. And put the burner into operation.
(C) In (b), the exhaust gas introduction control unit is configured so that an introduction amount of engine exhaust gas and burner exhaust gas corresponding to the amount of heat necessary for the liquefied natural gas vaporizer is introduced into the water in the water tank. Then, when the fuel supply flow rate to the burner becomes a preset minimum flow rate, the fuel supply unit is used to stop the fuel supply from the fuel supply unit, and the burner is stopped. To switch. A bypass line that bypasses the engine exhaust gas introduction unit and exhausts the engine exhaust gas to the outside, and the exhaust gas introduction control unit has an introduction amount of engine exhaust gas corresponding to a heat amount required for the liquefied natural gas vaporizer. When engine exhaust gas larger than the supply flow rate of engine exhaust gas to the engine exhaust gas introduction part is exhausted from the gas engine and the burner is in a stopped state under the condition of being introduced into the water in the water tank Exhaust excess engine exhaust gas to the outside through the bypass line.
(D) The boil-off gas generated in the storage tank is used as the fuel gas of the gas engine.
(E) At least one of boil-off gas generated in the storage tank or liquefied petroleum gas is added to the product gas.
 本発明は、気化天然ガスを含む製品ガスの圧力の測定結果に基づき、SMVに供給される液化天然ガスの流量を調節し、当該流量の液化天然ガスを気化させるために必要な熱量が供給されるように、液化天然ガスを気化させるための熱交換チューブが浸漬された水中に導入されるエンジン排ガス及びバーナー排ガスの導入量が調節される。この結果、ガスエンジンのエンジン排ガスを利用して液化天然ガスを気化させつつ、安定した製品ガスの出荷が実現できる。 The present invention adjusts the flow rate of the liquefied natural gas supplied to the SMV based on the measurement result of the pressure of the product gas containing the vaporized natural gas, and the amount of heat necessary for vaporizing the liquefied natural gas at the flow rate is supplied. Thus, the introduction amount of the engine exhaust gas and the burner exhaust gas introduced into the water in which the heat exchange tube for vaporizing the liquefied natural gas is immersed is adjusted. As a result, the product gas can be stably shipped while the liquefied natural gas is vaporized using the engine exhaust gas of the gas engine.
本発明の実施の形態に係るLNG貯蔵設備の構成図である。It is a lineblock diagram of the LNG storage equipment concerning an embodiment of the invention. 前記LNG貯蔵設備に設けられたSMVの縦断側面図及びその周辺機器の説明図である。It is the vertical side view of SMV provided in the said LNG storage facility, and explanatory drawing of the peripheral device. 前記SMVの横断平面図である。It is a cross-sectional plan view of the SMV. 前記SMVに係る動作の流れを示すフロー図である。It is a flowchart which shows the flow of the operation | movement which concerns on the said SMV. バーナー点火の前後における製品ガスの出荷圧力の変化などを示す作用図である。It is an effect | action figure which shows the change of the delivery pressure of product gas, etc. before and after burner ignition. 他の実施形態に係るLNG貯蔵設備の構成図である。It is a block diagram of the LNG storage facility which concerns on other embodiment.
 はじめに、本実施の形態に係るLNG貯蔵設備の全体構成について図1を参照しながら説明する。 
 LNG貯蔵設備は、例えば液化天然ガス(LNG)船からLNGを受け入れる受入基地や、タンクローリーからLNGを受け入れるサテライト基地などとして構成され、LNGを貯蔵する貯蔵タンク1を備える。
First, the overall configuration of the LNG storage facility according to the present embodiment will be described with reference to FIG.
The LNG storage facility is configured, for example, as a receiving base that receives LNG from a liquefied natural gas (LNG) ship, a satellite base that receives LNG from a tank truck, and the like, and includes a storage tank 1 that stores LNG.
 この貯蔵タンク1には、LNG供給ライン501a、501bを介してSMV2が接続され、LNGポンプ11、送出ポンプ12を用いて貯蔵タンク1内のLNGがSMV2に供給される。SMV2は、水槽20内に貯留された水Wとの熱交換により、LNGを気化させ、得られた気体のNGを払い出しライン502へと払い出す。 The storage tank 1 is connected to the SMV 2 via the LNG supply lines 501a and 501b, and the LNG in the storage tank 1 is supplied to the SMV 2 using the LNG pump 11 and the delivery pump 12. The SMV 2 vaporizes LNG by heat exchange with the water W stored in the water tank 20, and discharges the obtained gas NG to the discharge line 502.
 また貯蔵タンク1内においては、外壁からの入熱やLNG受け入れ時の入熱、LNGタンク内の液面変化になどに起因してBOG(Boil Off Gas)が発生する。このBOGは、LNGタンクから抜き出された後、例えば複数段の圧縮段401、402を備えたBOG圧縮機4によって昇圧される。昇圧後の高圧BOGは、SMV2から払い出しライン502へと払い出されたNGに混合される。さらにBOG混合後のNGに対しては、熱量調整部51にて熱量調整用のLPGが添加され、製品ガスとしてユーザーへと出荷される。なお、製品ガスに混合、添加するガスは、BOGまたはLPGのいずれか一方であってもよい。 Also, in the storage tank 1, BOG (Boil Off Gas) is generated due to heat input from the outer wall, heat input at the time of LNG reception, liquid level change in the LNG tank, and the like. After this BOG is extracted from the LNG tank, the pressure is increased by, for example, the BOG compressor 4 including a plurality of compression stages 401 and 402. The high pressure BOG after the pressure increase is mixed with the NG discharged from the SMV 2 to the discharge line 502. Furthermore, LPG for heat quantity adjustment is added to the NG after BOG mixing by the heat quantity adjustment unit 51, and shipped to the user as product gas. The gas mixed and added to the product gas may be either BOG or LPG.
 さらに本例のLNG貯蔵設備は、貯蔵タンク1で発生したBOGをNGに混合することに加え、BOGを燃焼させて発電機31を駆動するガスエンジン3を備えている。本例のガスエンジン3は、NGに混合される高圧BOGよりも低い圧力の低圧BOGにて稼働させることができる。例えば低圧BOGは、BOG圧縮機4の中間段の吐出側から抽気されてガスエンジン3へと供給される。ガスエンジン3により発電機31を駆動して得られた電力は、BOG圧縮機4、LNGポンプ11や送出ポンプ12などLNG貯蔵設備内にて電力を消費する機器に供給される他、余剰となった電力は外部へ販売してもよい。 Furthermore, in addition to mixing the BOG generated in the storage tank 1 with NG, the LNG storage facility of this example includes a gas engine 3 that drives the generator 31 by burning the BOG. The gas engine 3 of this example can be operated with a low pressure BOG having a lower pressure than the high pressure BOG mixed with NG. For example, the low pressure BOG is extracted from the discharge side of the intermediate stage of the BOG compressor 4 and supplied to the gas engine 3. The electric power obtained by driving the generator 31 by the gas engine 3 is supplied to equipment that consumes electric power in the LNG storage facility such as the BOG compressor 4, the LNG pump 11 and the delivery pump 12, and becomes surplus. Electric power may be sold to the outside.
 またこのガスエンジン3においては、BOGを燃焼させることによって高温の排ガス(エンジン排ガス)が発生する。本例のLNG貯蔵設備に設けられているSMV2は、このエンジン排ガスの熱を利用してLNGを気化させることが可能な構成を備えている。 
 以下、図2、3を用いて当該SMV2の構成について説明する。
In the gas engine 3, high temperature exhaust gas (engine exhaust gas) is generated by burning BOG. The SMV 2 provided in the LNG storage facility of this example has a configuration capable of vaporizing LNG using the heat of the engine exhaust gas.
Hereinafter, the configuration of the SMV 2 will be described with reference to FIGS.
 図2、3に示すように、SMV2は水Wを貯溜した水槽20内に、蛇行配管からなる複数本の熱交換チューブ21を浸漬配置した構造となっている。水槽20の底部には、これら熱交換チューブ21の上流端と接続されたマニホールド状の供給ヘッダー211が配置されている。この供給ヘッダー211は、貯蔵タンク1からのLNGが送出される既述のLNG供給ライン501bに接続され、各熱交換チューブ21に対しては、この供給ヘッダー211を介してLNGが供給される。 As shown in FIGS. 2 and 3, the SMV 2 has a structure in which a plurality of heat exchange tubes 21 made of meandering pipes are immersed in a water tank 20 in which water W is stored. A manifold-like supply header 211 connected to the upstream end of these heat exchange tubes 21 is disposed at the bottom of the water tank 20. The supply header 211 is connected to the above-described LNG supply line 501 b through which the LNG from the storage tank 1 is sent, and the LNG is supplied to each heat exchange tube 21 via the supply header 211.
 水槽20内の上部位置には、各熱交換チューブ21の下流端と接続されたマニホールド状の払い出しヘッダー212が配置されている。この払い出しヘッダー212は、気化したNGの払い出しライン502に接続されており、各熱交換チューブ21内にて気化したNGは、当該払い出しヘッダー212に集められた後、当該払い出しライン502へ払い出される。ここで、複数の熱交換チューブ21や供給ヘッダー211、払い出しヘッダー212は、本SMV2の気化器を構成している。 A manifold-like discharge header 212 connected to the downstream end of each heat exchange tube 21 is disposed at the upper position in the water tank 20. The payout header 212 is connected to the vaporized NG payout line 502, and the NG vaporized in each heat exchange tube 21 is collected in the payout header 212 and then discharged to the payout line 502. Here, the plurality of heat exchange tubes 21, the supply header 211, and the payout header 212 constitute a vaporizer of the SMV 2.
 さらに前記水槽20には、ガスエンジン3側から受け入れた高温のエンジン排ガスを水槽20内の水Wに導入するためのエンジン排ガス導入部22が設けられている。 
 エンジン排ガス導入部22は、ガスエンジン3から受け入れたエンジン排ガスを熱交換チューブ21の下方側へと案内する配管であるダウンカマー部22aと、熱交換チューブ21の下方側の位置にてエンジン排ガスを水槽20内の水中に分散導入するディストリビューター部22bとを備える。
Further, the water tank 20 is provided with an engine exhaust gas introduction part 22 for introducing high-temperature engine exhaust gas received from the gas engine 3 side into the water W in the water tank 20.
The engine exhaust gas introduction unit 22 receives the engine exhaust gas at a position below the heat exchange tube 21 and a downcomer unit 22 a that is a pipe for guiding the engine exhaust gas received from the gas engine 3 to the lower side of the heat exchange tube 21. And a distributor 22b for dispersing and introducing into the water in the water tank 20.
 図3に示すように、例えばディストリビューター部22bは、水槽20の底面に沿って複数本の配管が横方向に間隔を開けて配置され、これらの配管の壁面に、配管の延伸方向に沿って多数個の吐出孔221が設けられた構造となっている。 As shown in FIG. 3, for example, the distributor 22 b has a plurality of pipes arranged at intervals in the horizontal direction along the bottom surface of the water tank 20, and the wall surfaces of these pipes along the extending direction of the pipes. A large number of discharge holes 221 are provided.
 ガスエンジン3を用いる場合、エンジン排ガス導入部22におけるエンジン排ガスの受け入れ圧力は、およそ12~30kPaGの範囲内の圧力である。このとき、エンジン排ガスと水Wとの接触時間を十分に確保するため、ディストリビューター部22bから水Wへのエンジン排ガスの導入位置(吐出孔221)と、水槽20内の水Wの水面との間の高さ距離は、1200mm以上、受入圧力に対応する水柱の高さ未満に設定することが好ましい。 When the gas engine 3 is used, the engine exhaust gas acceptance pressure in the engine exhaust gas introduction part 22 is a pressure within a range of approximately 12 to 30 kPaG. At this time, in order to ensure sufficient contact time between the engine exhaust gas and the water W, the position of the engine exhaust gas introduced from the distributor 22b to the water W (discharge hole 221) and the water surface of the water W in the water tank 20 The height distance between them is preferably set to 1200 mm or more and less than the height of the water column corresponding to the receiving pressure.
 上述の構成を備えるエンジン排ガス導入部22において、ダウンカマー部22aを介してディストリビューター部22bの各配管へとエンジン排ガスが供給され、しかる後、各吐出孔221から水槽20内の水Wへと高温のエンジン排ガスが導入される。この結果、エンジン排ガスは気泡となって水中を上昇し、これら水Wとエンジン排ガスとの接触に伴う熱交換により、熱エネルギーが供給される。 In the engine exhaust gas introduction part 22 having the above-described configuration, the engine exhaust gas is supplied to each pipe of the distributor part 22b through the downcomer part 22a, and then, from each discharge hole 221 to the water W in the water tank 20. Hot engine exhaust is introduced. As a result, the engine exhaust gas becomes bubbles and rises in the water, and heat energy is supplied by heat exchange accompanying contact between the water W and the engine exhaust gas.
 熱交換チューブ21内を流れるLNGが気化すると、気化熱により水槽20内の水Wから熱が奪われるので、高温のエンジン排ガスの導入により、LNGの気化に必要な熱を補給することができる。 
 水中を上昇したエンジン排ガスの気泡は、水面から放出された後、水槽20の上面側に設けられた排気部201を介して外部へ排気される。
When the LNG flowing in the heat exchange tube 21 is vaporized, heat is removed from the water W in the water tank 20 by the heat of vaporization, so that heat necessary for vaporizing LNG can be replenished by introducing high-temperature engine exhaust gas.
The bubbles of the engine exhaust gas that has risen in the water are discharged from the water surface and then exhausted to the outside through the exhaust unit 201 provided on the upper surface side of the water tank 20.
 さらに図2、3に示すように、本例のSMV2には、エンジン排ガスによる水槽20内の水Wの加熱を補助するバーナー231が設けられている。本例のバーナー231は、燃料として、燃料供給ライン503を介して払い出しライン502から抜き出された熱量調整後の製品ガスを用いる。当該バーナー231においては、燃料供給ライン503から供給された燃料が、送風部24から供給された空気と混合されて燃焼することにより、高温のバーナー排ガスが得られる。なおこのとき、バーナー231の負荷に応じて、送風部24から供給された空気の一部を、バーナー231における燃焼に利用せずに、直接、水槽20内の水Wに導入する構成を採用してもよい。 Further, as shown in FIGS. 2 and 3, the SMV 2 of this example is provided with a burner 231 that assists in heating the water W in the water tank 20 by engine exhaust gas. The burner 231 of this example uses, as fuel, the product gas after the calorific value extracted from the discharge line 502 via the fuel supply line 503. In the burner 231, the fuel supplied from the fuel supply line 503 is mixed with the air supplied from the blower unit 24 and burned, whereby high-temperature burner exhaust gas is obtained. At this time, a configuration is adopted in which a part of the air supplied from the blower 24 is directly introduced into the water W in the water tank 20 without being used for combustion in the burner 231 according to the load of the burner 231. May be.
 このバーナー231の出口側には、水槽20内の水Wに対してバーナー排ガスを導入するためのダウンカマー部234aとディストリビューター部234bとを備えたバーナー排ガス導入部234が設けられている。バーナー排ガス導入部234の構成やここから水中に導入されたバーナー排ガスの挙動は、既述のエンジン排ガス導入部22の場合とほぼ同様なので、再度の説明を省略する。 On the outlet side of the burner 231, a burner exhaust gas introduction part 234 including a downcomer part 234a and a distributor part 234b for introducing the burner exhaust gas to the water W in the water tank 20 is provided. The configuration of the burner exhaust gas introduction unit 234 and the behavior of the burner exhaust gas introduced into the water from here are almost the same as in the case of the engine exhaust gas introduction unit 22 described above, and thus the description thereof is omitted.
 次いで、SMV2の制御機構の構成例について説明する。 
 本例のSMV2は、払い出しライン502からユーザーへと出荷される製品ガスの圧力が目標圧力に維持されるように、SMV2からのNGの払い出し流量を調節する。
Next, a configuration example of the control mechanism of SMV2 will be described.
The SMV 2 in this example adjusts the discharge flow rate of NG from the SMV 2 so that the pressure of the product gas shipped from the discharge line 502 to the user is maintained at the target pressure.
 パイプラインを介した製品ガスの輸送においては、ユーザーが必要な流量の製品ガスを消費できるように、払い出し502ラインからの製品ガスの出荷圧力が設定されている。従って、払い出しライン502からの製品ガスの出荷圧力が目標圧力に維持されるようにNGの払い出し流量を調節すれば、ユーザーに対して必要量の製品ガスを供給することができる。 In the transport of the product gas through the pipeline, the product gas shipping pressure from the payout 502 line is set so that the user can consume the product gas at the required flow rate. Therefore, if the delivery flow rate of NG is adjusted so that the delivery pressure of the product gas from the delivery line 502 is maintained at the target pressure, a necessary amount of product gas can be supplied to the user.
 そこで図2に示すように、BOGやLPGの混合、添加位置、及び燃料供給ライン503の分岐位置よりも下流側の払い出しライン502には、製品ガスの出荷圧力を測定する製品ガス圧力計(圧力測定部)522が設けられている。この製品ガス圧力計522にて測定された製品ガスの出荷圧力が、予め設定された目標圧力に近づくように、LNG供給量調節部(送液流量調節部)521を用いて貯蔵タンク1側からのLNGの供給流量を調節する。LNG供給量調節部521には、SMV2に供給されるLNGの供給流量を測定するLNG流量計522が併設されている。 Therefore, as shown in FIG. 2, a product gas pressure gauge (pressure) for measuring the shipping pressure of the product gas is provided in the discharge line 502 downstream of the BOG and LPG mixing / addition position and the branch position of the fuel supply line 503. Measurement unit) 522 is provided. From the storage tank 1 side using the LNG supply amount adjusting unit (liquid feed flow rate adjusting unit) 521 so that the product gas shipping pressure measured by the product gas pressure gauge 522 approaches the preset target pressure. LNG supply flow rate is adjusted. The LNG supply amount adjusting unit 521 is provided with an LNG flow meter 522 that measures the supply flow rate of LNG supplied to the SMV 2.
 上述の手法により、SMV2に対してLNGが供給されるとき、水槽20内の水Wに導入されるエンジン排ガスやバーナー排ガスの導入量が少なかったり、成分変化などの理由でLNGの比熱や蒸発潜熱が大きくなったりすると、払い出しライン502へ払い出されるNGの温度が低下する。そして、BOG及びLPGの添加量が一定であれば、やがて払い出しライン502からユーザーへと出荷される製品ガスの温度の低下に至る。 When the LNG is supplied to the SMV 2 by the above-described method, the specific amount of LNG or the latent heat of vaporization of the LNG due to a small amount of introduction of engine exhaust gas or burner exhaust gas introduced into the water W in the water tank 20 or component change Or the temperature of NG discharged to the payout line 502 decreases. If the addition amounts of BOG and LPG are constant, the temperature of the product gas shipped from the payout line 502 to the user is eventually lowered.
 また、水槽20内の水Wが、LNG供給ライン501bから供給されたLNGを気化させて所定の温度まで上昇させる十分な熱量を有していないと、払い出しライン502へと払い出されるNGの圧力低下を招くおそれもある。 Further, if the water W in the water tank 20 does not have a sufficient amount of heat to vaporize the LNG supplied from the LNG supply line 501b and raise it to a predetermined temperature, the pressure drop of NG discharged to the discharge line 502 There is also a risk of incurring.
 そこでエンジン排ガスやバーナー排ガスにより、SMV2に供給されたLNGを気化させるために必要な熱量が供給されていることを確認するため、例えばSMV2の出口側の払い出しライン502には、払い出しNG温度計(天然ガス温度測定部)531が設けられている。そして、払い出しNG温度計531にて測定されたNGガスの温度が予め設定された目標温度に近づくように、後述のバイパス弁321や燃料ガス流量調節弁261を用いて、エンジン排ガスやバーナー排ガスの導入量を調節する。 Therefore, in order to confirm that the amount of heat necessary for vaporizing the LNG supplied to the SMV 2 is supplied from the engine exhaust gas or the burner exhaust gas, for example, a discharge NG thermometer ( Natural gas temperature measuring unit) 531 is provided. Then, by using a bypass valve 321 and a fuel gas flow rate control valve 261 described later, the exhaust gas of the engine and the burner exhaust gas are used so that the temperature of the NG gas measured by the dispensing NG thermometer 531 approaches a preset target temperature. Adjust the amount introduced.
 さらに図2に示すように、排ガス供給ライン504にはガスエンジン3からSMV2へと供給するエンジン排ガスの流量を測定する供給流量計323が設けられている。また排ガス供給ライン504からは、エンジン排ガス導入部22をバイパスして余剰分のエンジン排ガスを外部へ排出するバイパスライン505が分岐している。 Further, as shown in FIG. 2, the exhaust gas supply line 504 is provided with a supply flow meter 323 for measuring the flow rate of the engine exhaust gas supplied from the gas engine 3 to the SMV 2. An exhaust gas supply line 504 branches off a bypass line 505 that bypasses the engine exhaust gas introduction unit 22 and discharges excess engine exhaust gas to the outside.
 このバイパスライン505には、バイパスライン505側へ排出されるエンジン排ガスを増減するためのバイパス弁321と、バイパスライン505側へ排出されるエンジン排ガスの流量を測定するバイパス流量計324とが設けられている。バイパスライン505とバイパス弁321とは、エンジン排ガス流量調節部を構成する。 The bypass line 505 is provided with a bypass valve 321 for increasing or decreasing engine exhaust gas discharged to the bypass line 505 side, and a bypass flow meter 324 for measuring the flow rate of engine exhaust gas discharged to the bypass line 505 side. ing. The bypass line 505 and the bypass valve 321 constitute an engine exhaust gas flow rate adjustment unit.
 さらに図2に示すように、バーナー231に燃料を供給する燃料供給ライン503には、バーナー231への燃料の供給流量を調節する燃料ガス流量調節弁261が設けられている。燃料ガス流量調節弁261はバーナー負荷調節部を構成する。また、燃料ガス流量調節弁261は燃料給断部としての機能も兼ね備えている。なお、燃料ガス流量調節弁261とは別に、燃料給断部を構成する遮断弁を設けてもよいことは勿論である。 Further, as shown in FIG. 2, the fuel supply line 503 for supplying fuel to the burner 231 is provided with a fuel gas flow rate adjusting valve 261 for adjusting the fuel supply flow rate to the burner 231. The fuel gas flow rate adjustment valve 261 constitutes a burner load adjustment unit. Further, the fuel gas flow rate adjustment valve 261 also has a function as a fuel supply / cutoff section. In addition to the fuel gas flow rate adjustment valve 261, it is needless to say that a shut-off valve constituting a fuel supply / cutoff section may be provided.
 図2に示す負荷調節部532は、エンジン排ガスやバーナー排ガスの少なくとも一方の導入量を調節することにより、NGガスの温度を調節するように、各排ガスの負荷を振り分ける。本例のLNG貯蔵設備において、負荷調節部532は、エンジン排ガスを優先的に利用してLNGの気化を行い、LNG供給ライン501b側から供給されたLNGを気化させるうえで、エンジン排ガスだけでは熱量が不足する場合に、バーナー231を稼働させるように負荷の振り分けを行う構成となっている。 2 adjusts the load of each exhaust gas so as to adjust the temperature of NG gas by adjusting the introduction amount of at least one of engine exhaust gas and burner exhaust gas. In the LNG storage facility of this example, the load adjustment unit 532 vaporizes LNG by preferentially using engine exhaust gas, and vaporizes LNG supplied from the LNG supply line 501b side. In such a case, the load is distributed so that the burner 231 is operated.
 負荷調節部532を介したエンジン排ガスやバーナー排ガスの導入量調節の規則の設定などは、例えばLNG貯蔵設備全体の統括制御を行うコンピューターシステムを利用して行われる。この観点において、当該コンピューターシステムは、水槽20内に貯留された水Wに対するエンジン排ガスまたはバーナー排ガスの導入量を調節するための排ガス導入制御部6に相当する。また、既述の負荷調節部532も排ガス導入制御部の一部を構成している。 The setting of the regulation of the introduction amount of the engine exhaust gas and the burner exhaust gas via the load adjusting unit 532 is performed using, for example, a computer system that performs overall control of the entire LNG storage facility. In this respect, the computer system corresponds to the exhaust gas introduction control unit 6 for adjusting the amount of engine exhaust gas or burner exhaust gas introduced into the water W stored in the water tank 20. Further, the load adjusting unit 532 described above also constitutes a part of the exhaust gas introduction control unit.
 さらには、バーナー排ガス導入部234には、水槽20内の水Wに導入されるバーナー排ガスの温度を測定する不図示の温度計が設けられている。この他、NGに混合、添加されるBOGやLPG、これらBOGやLPGが混合、添加された後の製品ガスについても、各々の流体の流量を測定する不図示の流量計を設けてもよい。 Furthermore, the burner exhaust gas introduction part 234 is provided with a thermometer (not shown) for measuring the temperature of the burner exhaust gas introduced into the water W in the water tank 20. In addition, for the BOG and LPG mixed and added to NG and the product gas after these BOG and LPG are mixed and added, a flow meter (not shown) for measuring the flow rate of each fluid may be provided.
 以上に説明したSMV2を用いてLNGを気化させる動作の作用について説明する。 
 図4~5は、通常は停止状態となっているバーナー231を稼働状態との間で切り替える動作の例を示している。このとき、ガスエンジン3から排出されるエンジン排ガス熱量は、バーナー231を停止した状態で余剰バランスにあるとする。この場合は、製品ガス圧力計522にて測定される製品ガスの出荷圧力は、予め設定された目標圧力となっており(図5(a))、余剰分のエンジン排ガスはバイパスライン505を介して外部へ排出されている。
The operation of the operation of vaporizing LNG using the SMV 2 described above will be described.
4 to 5 show an example of an operation of switching the burner 231 that is normally in a stopped state between the operating state. At this time, it is assumed that the engine exhaust gas calorific value discharged from the gas engine 3 is in a surplus balance with the burner 231 stopped. In this case, the shipping pressure of the product gas measured by the product gas pressure gauge 522 is a preset target pressure (FIG. 5A), and surplus engine exhaust gas passes through the bypass line 505. Are discharged to the outside.
 この状態からガスエンジン3の負荷低下に伴い、次第にエンジン排ガスの排出量(エンジン排ガス熱量)が低下する場合を考える。 
 この場合には、エンジン排ガスの排出量が少なくなるに連れ、バイパス弁321の開度を小さくしてバイパスライン505へのエンジン排ガスの排出流量を絞ることにより、バイパス弁321の開度が予め設定された下限値(例えば「全閉」)に達しない限り、エンジン排ガス導入部22へのエンジン排ガスの供給流量(供給熱量)が一定に保たれる(図4のステップS101;NO)。
Consider a case where the exhaust amount of engine exhaust gas (heat amount of engine exhaust gas) gradually decreases as the load of the gas engine 3 decreases from this state.
In this case, the opening degree of the bypass valve 321 is set in advance by reducing the opening amount of the bypass valve 321 and reducing the exhaust flow amount of the engine exhaust gas to the bypass line 505 as the exhaust amount of the engine exhaust gas decreases. Unless the lower limit value (for example, “fully closed”) is reached, the supply flow rate (supply heat amount) of the engine exhaust gas to the engine exhaust gas introduction unit 22 is kept constant (step S101 in FIG. 4; NO).
 さらにエンジン排ガスの排出量の低下が続き、バイパス弁321の開度が予め設定された下限値に到達すると(図4のステップS101;YES)、エンジン排ガス導入部22へのエンジン排ガスの供給流量が低下し始める。この場合であっても、水槽20内の水Wは熱容量が大きく、エンジン排ガスの供給流量低下に伴う水Wの温度低下、即ち払い出しNGの温度低下はゆっくりと進む(図5(c))。 Further, when the exhaust amount of the engine exhaust gas continues to decrease and the opening degree of the bypass valve 321 reaches a preset lower limit value (step S101 in FIG. 4; YES), the supply flow rate of the engine exhaust gas to the engine exhaust gas introduction unit 22 is increased. It begins to decline. Even in this case, the water W in the water tank 20 has a large heat capacity, and the temperature decrease of the water W accompanying the decrease in the supply flow rate of the engine exhaust gas, that is, the temperature decrease of the discharge NG proceeds slowly (FIG. 5C).
 このため、SMV2から払い出されるNGの払い出し流量は急激には低下せず、当面の間は、製品ガス圧力計522にて測定される製品ガスの出荷圧力は目標圧力付近に維持される(図5(a))。従って、払い出しNG温度計531にて測定された払い出しNG温度が予め設定された目標温度の下限値よりも高い温度であり、バーナー231が停止状態である場合にはそのままの運転状態を継続する(図4のステップS102;NO→ステップS106;YES)。 For this reason, the discharge flow rate of NG discharged from the SMV 2 does not rapidly decrease, and the product gas shipment pressure measured by the product gas pressure gauge 522 is maintained near the target pressure for the time being (FIG. 5). (A)). Accordingly, when the payout NG temperature measured by the payout NG thermometer 531 is higher than the preset lower limit value of the target temperature, and the burner 231 is in the stopped state, the operation state is continued as it is ( Step S102 in FIG. 4; NO → Step S106; YES).
 そして、エンジン排ガスの排出量がさらに低下したことにより、払い出しNG温度が目標温度に対する許容範囲を超えて低下し始める状態となったら(図4のステップS102;YES)、既にバーナー231が稼働状態となっているか否かを確認する。そしてバーナー231が停止状態の場合には(ステップS103;NO)、燃料供給ライン503からの燃料供給、送風部24からの空気の供給を行い、バーナー231を点火する(ステップS104)。バーナー231の点火に対応して、SMV2の負荷は、製品ガスに必要な出荷流量に、バーナー231の消費流量が加算された状態となる(図5(b))。 When the exhaust gas emission amount further decreases and the discharge NG temperature starts to decrease beyond the allowable range with respect to the target temperature (step S102 in FIG. 4; YES), the burner 231 is already in the operating state. Check if it is. When the burner 231 is in a stopped state (step S103; NO), fuel is supplied from the fuel supply line 503 and air is supplied from the blower 24, and the burner 231 is ignited (step S104). Corresponding to the ignition of the burner 231, the load of the SMV 2 is in a state where the consumption flow rate of the burner 231 is added to the shipping flow rate required for the product gas (FIG. 5B).
 上述の動作の結果、バーナー排ガス導入部234からのバーナー排ガスの供給が開始され、エンジン排ガスの供給流量の低下分が補われると共に、製品ガスの出荷圧力が目標圧力に維持されるように(図5(a))、LNG供給量調節部521にて、LNGの供給流量の調整が行われる。 
 そして、さらにエンジン排ガスの供給流量が低下したり、SMV2へのLNGの供給流量が増加したりすると、バーナー231への燃料の供給流量を増加させてバーナー排ガスの導入量を増加させ、NGを気化させるのに必要な熱量を確保する。
As a result of the above-described operation, supply of the burner exhaust gas from the burner exhaust gas introduction unit 234 is started, so that a decrease in the supply flow rate of the engine exhaust gas is compensated for and the product gas shipping pressure is maintained at the target pressure (FIG. 5 (a)), the LNG supply amount adjusting unit 521 adjusts the supply flow rate of LNG.
When the engine exhaust gas supply flow rate further decreases or the LNG supply flow rate to the SMV 2 increases, the fuel supply flow rate to the burner 231 is increased to increase the introduction amount of the burner exhaust gas and vaporize NG. Ensuring the amount of heat necessary to make it happen.
 なお、払い出しNG温度が目標温度に対する許容範囲を超えて低下したとき、バーナー231が既に稼働状態となっている場合には(図4のステップS103;YES)、バーナー231の能力を超えてSMV2の負荷が増大していることになる。この場合には、バーナー231の起動とは別の払出し流量過小対応を実施する(ステップS105)。 When the payout NG temperature falls below the allowable range for the target temperature and the burner 231 is already in operation (step S103 in FIG. 4; YES), the capacity of the SMV2 exceeds the capability of the burner 231. The load is increasing. In this case, the payout flow rate underflow countermeasure that is different from the activation of the burner 231 is implemented (step S105).
 次いで、稼働しているバーナー231を停止するシーケンスを説明する。例えばバーナー231を稼働した後の定常状態(バイパス弁321は閉状態、バーナー231は稼働)から、次第にエンジン排ガスの排出量が増大する場合を考える。 
 この場合には、エンジン排ガスの排出量が増大するに連れ、バーナー231に供給する燃料ガスの量を絞っていく(図4のステップS106;NO→ステップS107;NO)。
Next, a sequence for stopping the operating burner 231 will be described. For example, consider a case where the exhaust amount of engine exhaust gas gradually increases from a steady state after the burner 231 is operated (the bypass valve 321 is closed and the burner 231 is operated).
In this case, as the exhaust amount of the engine exhaust gas increases, the amount of fuel gas supplied to the burner 231 is reduced (step S106 in FIG. 4; NO → step S107; NO).
 そして、バーナー231に供給する燃料ガスの量が予め設定された下限値(最低流量)に到達した場合には(図4のステップS106;NO→ステップS107;YES)、燃料供給ライン503からの燃料供給を止め、バーナー231を停止する(ステップS108)。バーナー231の停止に対応して、SMV2の負荷は、製品ガスの目標圧力を維持するのに必要な出荷流量のみに対応する状態となる。 When the amount of fuel gas supplied to the burner 231 reaches a preset lower limit value (minimum flow rate) (step S106 in FIG. 4; NO → step S107; YES), fuel from the fuel supply line 503 is obtained. Supply is stopped and the burner 231 is stopped (step S108). Corresponding to the stop of the burner 231, the load of SMV2 will be in the state corresponding only to the shipment flow rate required to maintain the target pressure of product gas.
 上述の動作の結果、バーナー排ガス導入部234からのバーナー排ガスの導入が停止され、エンジン排ガス導入部22からのエンジン排ガス導入のみによって払い出しNG温度が目標温度に維持される。 
 そして、さらにエンジン排ガスの供給流量が増大したり、SMV2へのLNGの供給流量が低下したりしたら、バイパス弁321を開いてバイパスライン505へのエンジン排ガスの排出を開始する(ステップS101;NO)。
As a result of the above-described operation, the introduction of the burner exhaust gas from the burner exhaust gas introduction unit 234 is stopped, and the discharge NG temperature is maintained at the target temperature only by the introduction of the engine exhaust gas from the engine exhaust gas introduction unit 22.
If the engine exhaust gas supply flow rate further increases or the LNG supply flow rate to the SMV 2 decreases, the bypass valve 321 is opened to start discharging the engine exhaust gas to the bypass line 505 (step S101; NO). .
 本実施の形態に係るLNG貯蔵設備によれば以下の効果がある。気化NGを含む製品ガスの圧力の測定結果に基づき、SMV2に供給されるLNGの流量を調節し、当該LNGを気化させるために必要な熱量が供給されるように、LNGを気化させるための熱交換チューブ21が浸漬された水中に導入されるエンジン排ガス及びバーナー排ガスの導入量が調節される。この結果、ガスエンジン3のエンジン排ガスを利用してLNGを気化させつつ、安定した製品ガスの出荷が実現できる。 The LNG storage facility according to the present embodiment has the following effects. Based on the measurement result of the pressure of the product gas containing vaporized NG, the heat for vaporizing the LNG is adjusted so that the amount of heat necessary to vaporize the LNG is supplied by adjusting the flow rate of the LNG supplied to the SMV 2. The introduction amount of the engine exhaust gas and the burner exhaust gas introduced into the water in which the exchange tube 21 is immersed is adjusted. As a result, stable shipment of the product gas can be realized while LNG is vaporized using the engine exhaust gas of the gas engine 3.
 ここで上述の実施の形態に係るSMV2が設けられたLNG貯蔵設備において、ガスエンジン3の燃料としてBOGを用いることは必須ではない。例えば図6に示すように、払い出しライン502から燃料供給ライン503へ抜き出された製品ガスの一部を用いてガスエンジン3を稼働してもよい。さらに、BOGおよび製品ガスの両方をガスエンジン3の燃料としてもよい。 Here, in the LNG storage facility provided with the SMV 2 according to the above-described embodiment, it is not essential to use BOG as fuel for the gas engine 3. For example, as shown in FIG. 6, the gas engine 3 may be operated using part of the product gas extracted from the discharge line 502 to the fuel supply line 503. Further, both BOG and product gas may be used as fuel for the gas engine 3.
 この他、LNG供給ライン501b側から供給されたLNGを気化させるために必要な熱量が、SMV2に対して供給されていることの確認は、既述のように払い出しライン502に払い出されたNGの温度を測定する手法を用いる場合に限定されない。 
 例えば、水槽20内の水Wの温度を測定する不図示の水温計(水温測定部)を設け、水温計にて測定された水槽20内の水Wの温度が予め設定された目標温度に近づくように、排ガス導入制御部6により、既述のバイパス弁321や燃料ガス流量調節弁261を用いてエンジン排ガスやバーナー排ガスの導入量を調節する構成を採用してもよい。
In addition, the confirmation that the amount of heat necessary for vaporizing the LNG supplied from the LNG supply line 501b side is supplied to the SMV 2 is as follows. However, the present invention is not limited to the case of using the method of measuring the temperature.
For example, a water temperature meter (water temperature measurement unit) (not shown) that measures the temperature of the water W in the water tank 20 is provided, and the temperature of the water W in the water tank 20 measured by the water temperature gauge approaches a preset target temperature. As described above, the exhaust gas introduction control unit 6 may employ a configuration in which the introduction amount of the engine exhaust gas or the burner exhaust gas is adjusted using the bypass valve 321 or the fuel gas flow rate adjustment valve 261 described above.
 また、図4のフロー図ではガスエンジン3からのエンジン排ガスの排出量の増減に応じて、バーナー231を稼働状態と停止状態との間で切り替える動作について説明したが、SMV2の運転期間中、バーナー231を常時稼働状態とする場合を否定するものではない。この場合には、例えばエンジン排ガスとバーナー排ガスの供給流量比が一定になるように固定し、払い出しNG温度や水槽20内の水Wの温度が目標温度に近づくように、これらの排ガスの総導入量を増減する手法などを例示することができる。 
 LNGを気化させるための熱量を共有する熱源としてガスエンジン3の排ガスを利用する限り、バーナー231単独でLNGを気化させる場合に比べて燃料の消費量を低減することができる。
Further, in the flowchart of FIG. 4, the operation of switching the burner 231 between the operating state and the stopped state according to the increase or decrease of the exhaust amount of the engine exhaust gas from the gas engine 3 has been described. This does not deny the case where 231 is always in an operating state. In this case, for example, the supply flow rate ratio of the engine exhaust gas and the burner exhaust gas is fixed so that the discharge NG temperature or the temperature of the water W in the water tank 20 approaches the target temperature. A method for increasing or decreasing the amount can be exemplified.
As long as the exhaust gas of the gas engine 3 is used as a heat source sharing the amount of heat for vaporizing LNG, the amount of fuel consumed can be reduced as compared with the case where the burner 231 alone vaporizes LNG.
 ここで図示の便宜上、図1、6には、1台のSMV2を設けた例を記載してあるが、貯蔵タンク1と払い出しライン502との間に、複数台のSMV2を並列に配置し、またはSMV2とオープンラック式のLNG気化装置とを並列に配置し、貯蔵タンク1から送り出されたLNGを気化させてもよいことは勿論である。この場合においても、製品ガスの出荷圧力が目標圧力に維持されるように、各SMV2にLNGが分配供給される。 For convenience of illustration, FIGS. 1 and 6 show an example in which one SMV 2 is provided. However, a plurality of SMVs 2 are arranged in parallel between the storage tank 1 and the payout line 502. Or, of course, the SMV 2 and the open rack type LNG vaporizer may be arranged in parallel to vaporize the LNG delivered from the storage tank 1. Even in this case, LNG is distributed and supplied to each SMV 2 so that the shipping pressure of the product gas is maintained at the target pressure.
 このとき、各SMV2は、払い出しNG温度や水槽20内の水Wの温度のように、LNGの供給流量とは別の指標に着目してエンジン排ガスやバーナー排ガスの導入量を調節する。この結果、他のSMV2の稼働状態を把握する必要がなく、SMV2の稼働台数や、複数台のSMV2に分配されるLNGの分配比などが変化しても、それぞれのSMV2において独自に各排ガスの導入量調節が実行され、その結果として製品ガスの出荷圧力を目標圧力に維持することができる。 At this time, each SMV 2 adjusts the introduction amount of the engine exhaust gas and the burner exhaust gas by paying attention to an index different from the supply flow rate of LNG such as the discharge NG temperature and the temperature of the water W in the water tank 20. As a result, it is not necessary to grasp the operating state of other SMVs 2, and even if the operating number of SMVs 2 or the distribution ratio of LNG distributed to a plurality of SMVs 2 change, each SMV 2 has its own exhaust gas. The introduction amount adjustment is performed, and as a result, the shipping pressure of the product gas can be maintained at the target pressure.
 なお、図1、6にはガスエンジン3のみが設けられたLNG貯蔵設備の例を示しているが、例えばガスエンジン3に加え、発電機31やコンプレッサーなどを駆動する目的でガスタービンが併設されたLNG貯蔵設備において、SMV2に供給されるエンジン排ガスに、ガスタービン排ガスを合流させる構成を採用してもよい。
 また、ガスタービンのみを備えたLNG貯蔵設備に、図1~3、6を用いて説明したSMV2を設け、ガスタービン排ガスとバーナー排ガスとを用いてLNGを気化する技術を採用することもできる。
 これらに加え、SMV2にバーナー231やバーナー排ガス導入部234を設けることは必須ではなく、エンジン排ガス導入部22のみを設けたSMV2によりLNGを気化させてもよい。
1 and 6 show an example of an LNG storage facility in which only the gas engine 3 is provided. For example, in addition to the gas engine 3, a gas turbine is provided for the purpose of driving a generator 31, a compressor, and the like. In the LNG storage facility, a configuration in which gas turbine exhaust gas is merged with engine exhaust gas supplied to the SMV 2 may be adopted.
In addition, the SLNG 2 described with reference to FIGS. 1 to 3 and 6 may be provided in the LNG storage facility provided with only the gas turbine, and a technique of vaporizing LNG using the gas turbine exhaust gas and the burner exhaust gas may be employed.
In addition to these, it is not essential to provide the burner 231 and the burner exhaust gas introduction part 234 in the SMV 2, and LNG may be vaporized by the SMV 2 provided with only the engine exhaust gas introduction part 22.
W     水
1     貯蔵タンク
2     SMV
20    水槽
21    熱交換チューブ
22    エンジン排ガス導入部
231   バーナー
234   バーナー排ガス導入部
24    送風機
261   燃料ガス流量調節弁
3     ガスエンジン
31    発電機
322   圧力計
4     BOG圧縮機
41    ガスホルダー
501a、501b
      LNG供給ライン
502   払い出しライン
503   燃料供給ライン
504   排ガス供給ライン
505   バイパスライン
521   LNG供給量調節部
522   製品ガス圧力計
531   払い出しNG温度計
532   負荷調節部
6     排ガス導入制御部

 
W Water 1 Storage tank 2 SMV
20 Water tank 21 Heat exchange tube 22 Engine exhaust gas introduction part 231 Burner 234 Burner exhaust gas introduction part 24 Blower 261 Fuel gas flow control valve 3 Gas engine 31 Generator 322 Pressure gauge 4 BOG compressor 41 Gas holder 501a, 501b
LNG supply line 502 Discharge line 503 Fuel supply line 504 Exhaust gas supply line 505 Bypass line 521 LNG supply amount adjustment unit 522 Product gas pressure gauge 531 Discharge NG thermometer 532 Load adjustment unit 6 Exhaust gas introduction control unit

Claims (8)

  1.  貯蔵タンクに貯蔵された液化天然ガスを気化させた後、外部へ払い出す液化天然ガス貯蔵設備において、
     発電機を駆動するガスエンジンと、
     前記貯蔵タンクから供給された液化天然ガスを気化するサブマージド式の液化天然ガス気化装置と、を備え、
     前記サブマージド式の液化天然ガス気化装置は、
     水が貯留された水槽と、
     前記水槽内の水中に浸漬されるように配置され、前記貯蔵タンクから液化天然ガスが供給される液化天然ガス供給ライン、及び前記液化天然ガスを気化させて得られた気化天然ガスを払い出すための払い出しラインと接続された熱交換チューブを備え、前記水槽内の水との熱交換により、前記熱交換チューブ内を通流する液化天然ガスを加熱して気化させるための気化器と、
     前記ガスエンジンよりエンジン排ガスが供給される排ガス供給ラインを介して受け入れたエンジン排ガスを、前記水槽内の水中に導入し、当該水に前記ガスエンジンンの燃焼排熱を供給するためのエンジン排ガス導入部と、
     燃料と空気とを混合して前記燃料を燃焼させるバーナーと、前記バーナーに対し、燃料を供給する燃料供給部、及び空気を供給する送風部と、前記バーナーにて燃料を燃焼させて得られたバーナー排ガスを、前記水槽内の水中に導入し、当該水に前記燃料の燃焼熱を供給するためのバーナー排ガス導入部と、を備え、
     さらに、前記ガスエンジンからエンジン排ガス導入部へのエンジン排ガスの供給流量を調節するエンジン排ガス流量調節部と、
     前記バーナーへの燃料の供給流量を調節するバーナー負荷調節部と、
     前記払い出しラインより払い出され、前記気化天然ガスを含む製品ガスの圧力を測定する圧力測定部と、
     前記圧力測定部にて測定された製品ガスの圧力が、予め設定された目標圧力に近づくように、前記液化天然ガス気化装置に供給される液化天然ガスの流量を調節する送液流量調節部と、
     前記送液流量調節部にて調節された流量の液化天然ガスを気化させるために必要な熱量が前記液化天然ガス気化装置に供給されるように、前記エンジン排ガス流量調節部及びバーナー負荷調節部を用いて、前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節する排ガス導入制御部と、を備えたことを特徴とする液化天然ガス貯蔵設備。
    In the liquefied natural gas storage facility that vaporizes the liquefied natural gas stored in the storage tank and then delivers it to the outside,
    A gas engine that drives the generator;
    A submerged liquefied natural gas vaporizer that vaporizes liquefied natural gas supplied from the storage tank, and
    The submerged liquefied natural gas vaporizer is
    A water tank in which water is stored;
    A liquefied natural gas supply line that is arranged so as to be immersed in water in the water tank and that is supplied with liquefied natural gas from the storage tank, and for discharging the vaporized natural gas obtained by vaporizing the liquefied natural gas A vaporizer for heating and vaporizing the liquefied natural gas flowing through the heat exchange tube by heat exchange with the water in the water tank.
    Introduction of engine exhaust gas for introducing engine exhaust gas received through an exhaust gas supply line to which engine exhaust gas is supplied from the gas engine into the water in the water tank and supplying combustion exhaust heat of the gas engine to the water And
    A burner that mixes fuel and air to burn the fuel, a fuel supply unit that supplies fuel to the burner, a blower unit that supplies air, and a fuel burned by the burner A burner exhaust gas for introducing the burner exhaust gas into the water in the water tank and supplying the heat of combustion of the fuel to the water, and
    Furthermore, an engine exhaust gas flow rate adjusting unit for adjusting a supply flow rate of engine exhaust gas from the gas engine to the engine exhaust gas introducing unit,
    A burner load adjuster for adjusting the flow rate of fuel supplied to the burner;
    A pressure measuring unit that is discharged from the discharge line and measures the pressure of the product gas including the vaporized natural gas;
    A liquid feed flow rate adjusting unit that adjusts the flow rate of the liquefied natural gas supplied to the liquefied natural gas vaporizer so that the pressure of the product gas measured by the pressure measuring unit approaches a preset target pressure; ,
    The engine exhaust gas flow rate adjusting unit and the burner load adjusting unit are arranged so that the amount of heat necessary for vaporizing the liquefied natural gas at the flow rate adjusted by the liquid supply flow rate adjusting unit is supplied to the liquefied natural gas vaporizer. A liquefied natural gas storage facility, comprising: an exhaust gas introduction control unit that adjusts an introduction amount of engine exhaust gas and burner exhaust gas into water in the water tank.
  2.  前記液化天然ガス気化装置から払い出しラインに払い出される気化天然ガスの温度を測定する天然ガス温度測定部を備え、
     前記排ガス導入制御部は、前記天然ガス温度測定部にて測定された気化天然ガスの温度が、予め設定された目標温度に近づくように前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節することにより、前記液化天然ガス気化装置にて必要な熱量の供給を行うことを特徴とする請求項1に記載の液化天然ガス貯蔵設備。
    A natural gas temperature measuring unit for measuring the temperature of vaporized natural gas discharged from the liquefied natural gas vaporizer to a discharge line;
    The exhaust gas introduction control unit is configured to introduce the engine exhaust gas and the burner exhaust gas into the water in the water tank so that the temperature of the vaporized natural gas measured by the natural gas temperature measurement unit approaches a preset target temperature. The liquefied natural gas storage facility according to claim 1, wherein a necessary amount of heat is supplied by the liquefied natural gas vaporizer by adjusting the amount of gas.
  3.  前記水槽内の水の温度を測定する水温測定部を備え、
     前記排ガス導入制御部は、前記水温測定部にて測定された水の温度が、予め設定された目標温度に近づくように前記水槽内の水へのエンジン排ガス及びバーナー排ガスの導入量を調節することにより、前記液化天然ガス気化装置にて必要な熱量の供給を行うことを特徴とする請求項1に記載の液化天然ガス貯蔵設備。
    A water temperature measuring unit for measuring the temperature of water in the aquarium,
    The exhaust gas introduction control unit adjusts the introduction amount of the engine exhaust gas and the burner exhaust gas into the water in the water tank so that the temperature of the water measured by the water temperature measurement unit approaches a preset target temperature. The liquefied natural gas storage facility according to claim 1, wherein a necessary amount of heat is supplied by the liquefied natural gas vaporizer.
  4.  前記燃料供給部からバーナーへの燃料の供給、停止を実行し、当該バーナーを停止状態と稼働状態とで切り替えるための燃料給断部を備え、
     前記排ガス導入制御部は、前記天然ガス気化装置にて必要な熱量が供給されるように、前記エンジン排ガス流量調節部を用いてエンジン排ガス導入部へのエンジン排ガスの供給流量を調節すると共に、前記エンジン排ガス流量調節部によるエンジン排ガスの調節能力を超えて前記液化天然ガス気化装置にて熱量が必要な状態となり、且つ、前記バーナーが停止状態である場合には、前記燃料給断部を用いて燃料供給部からの燃料の供給を実行して前記バーナーを稼働状態とすることを特徴とする請求項1に記載の液化天然ガス貯蔵設備。
    Supplying fuel from the fuel supply unit to the burner, stopping, and including a fuel cutting unit for switching the burner between a stopped state and an operating state,
    The exhaust gas introduction control unit adjusts the supply flow rate of the engine exhaust gas to the engine exhaust gas introduction unit using the engine exhaust gas flow rate adjustment unit so that a necessary amount of heat is supplied by the natural gas vaporizer, and When the engine exhaust gas flow rate adjustment unit exceeds the engine exhaust gas adjustment capability and the liquefied natural gas vaporizer needs heat, and the burner is in a stopped state, the fuel cut-off unit is used. 2. The liquefied natural gas storage facility according to claim 1, wherein fuel is supplied from a fuel supply unit to place the burner in an operating state.
  5.  前記排ガス導入制御部は、前記液化天然ガス気化装置にて必要な熱量に対応する導入量のエンジン排ガス及びバーナー排ガスが前記水槽内の水へ導入されている条件下で、前記バーナーへの燃料の供給流量が予め設定された最低流量となった場合には、前記燃料給断部を用いて燃料供給部からの燃料の供給を停止して前記バーナーを停止状態に切り替えることを特徴とする請求項4に記載の液化天然ガス貯蔵設備。 The exhaust gas introduction control unit is configured to supply fuel to the burner under a condition in which an introduction amount of engine exhaust gas and burner exhaust gas corresponding to the amount of heat necessary for the liquefied natural gas vaporizer is introduced into the water in the water tank. When the supply flow rate becomes a preset minimum flow rate, the fuel supply unit stops the fuel supply from the fuel supply unit and switches the burner to a stop state. 4. The liquefied natural gas storage facility according to 4.
  6.  前記エンジン排ガス導入部をバイパスしてエンジン排ガスを外部へ排出するバイパスラインを備え、
     前記排ガス導入制御部は、前記液化天然ガス気化装置にて必要な熱量に対応する導入量のエンジン排ガスが前記水槽内の水へ導入されている条件下で、前記エンジン排ガス導入部へのエンジン排ガスの供給流量よりも多いエンジン排ガスが前記ガスエンジンから排気され、且つ、前記バーナーが停止状態である場合には、前記バイパスラインを介して余剰分のエンジン排ガスを外部へ排出することを特徴とする請求項4に記載の液化天然ガス貯蔵設備。
    A bypass line for bypassing the engine exhaust gas introduction part and exhausting the engine exhaust gas to the outside;
    The exhaust gas introduction control unit is configured to provide an engine exhaust gas to the engine exhaust gas introduction unit under a condition that an introduction amount of engine exhaust gas corresponding to a heat amount necessary for the liquefied natural gas vaporizer is introduced into water in the water tank. When the engine exhaust gas larger than the supply flow rate is exhausted from the gas engine and the burner is in a stopped state, excess engine exhaust gas is discharged to the outside through the bypass line. The liquefied natural gas storage facility according to claim 4.
  7.  前記ガスエンジンの燃料ガスとして、前記貯蔵タンク内で発生したボイルオフガスを利用することを特徴とする請求項1に記載の液化天然ガス貯蔵設備。 The liquefied natural gas storage facility according to claim 1, wherein boil-off gas generated in the storage tank is used as fuel gas of the gas engine.
  8.  前記製品ガスには、前記貯蔵タンク内で発生したボイルオフガス、または液化石油ガスの少なくとも一方が添加されることを特徴とする請求項1に記載の液化天然ガス貯蔵設備。 The liquefied natural gas storage facility according to claim 1, wherein at least one of boil-off gas generated in the storage tank or liquefied petroleum gas is added to the product gas.
PCT/JP2016/081553 2016-10-25 2016-10-25 Liquefied natural gas storage facility WO2018078715A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081553 WO2018078715A1 (en) 2016-10-25 2016-10-25 Liquefied natural gas storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/081553 WO2018078715A1 (en) 2016-10-25 2016-10-25 Liquefied natural gas storage facility

Publications (1)

Publication Number Publication Date
WO2018078715A1 true WO2018078715A1 (en) 2018-05-03

Family

ID=62023219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081553 WO2018078715A1 (en) 2016-10-25 2016-10-25 Liquefied natural gas storage facility

Country Status (1)

Country Link
WO (1) WO2018078715A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115564A (en) * 2000-10-04 2002-04-19 Osaka Gas Co Ltd Power generating method using fractional distillation equipment
JP2002168149A (en) * 2000-12-04 2002-06-14 Tokyo Gas Co Ltd Lng gasification system
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP2010031904A (en) * 2008-07-25 2010-02-12 Tokyo Electric Power Co Inc:The Vaporized gas supply system of low-temperature liquid
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115564A (en) * 2000-10-04 2002-04-19 Osaka Gas Co Ltd Power generating method using fractional distillation equipment
JP2002168149A (en) * 2000-12-04 2002-06-14 Tokyo Gas Co Ltd Lng gasification system
JP2006045327A (en) * 2004-08-04 2006-02-16 Jfe Engineering Kk Method and apparatus for controlling dilution of calorific value of natural gas
JP2010031904A (en) * 2008-07-25 2010-02-12 Tokyo Electric Power Co Inc:The Vaporized gas supply system of low-temperature liquid
JP2016105022A (en) * 2016-03-01 2016-06-09 日揮株式会社 Liquefied natural gas receiving facility

Similar Documents

Publication Publication Date Title
US20210041066A1 (en) Multi-Vessel Fluid Storage and Delivery System
JP5190315B2 (en) Low temperature liquid gas supply equipment
KR101346235B1 (en) Sea water heating apparatus and it used lng regasification system
KR20140114051A (en) Gas supply device
CN103026040B (en) Fuel supply device
JPWO2015128903A1 (en) Facility for receiving liquefied natural gas
JP6670299B2 (en) Multi-reformable fuel supply system and method for fuel cells
WO2018078715A1 (en) Liquefied natural gas storage facility
KR20220068208A (en) Liquefied gas re-gasification system
CN106555677A (en) For the LP gas fuel regulating system of gas-turbine unit
JP2004315566A (en) Method for odorizing gas and apparatus therefor
JP6770898B2 (en) BOG compressor load control device for LNG storage facility
JP2009216334A (en) Fuel gas feeder for thermal power plant
KR20210058819A (en) How to operate liquefied natural gas import facility
KR102088950B1 (en) Liquid natural gas combustion apparatus using exhaust heat
JP5617641B2 (en) LNG vaporization equipment
US10718266B2 (en) Vaporization system for combustion system
JP2020133871A (en) Fuel gas supply system and fuel gas supply method
JP2023105853A (en) Ammonia storage and supply base
KR102573545B1 (en) System for supplying gas and electric power
JP2023028827A (en) Fuel supply device, and method for controlling fuel supply device
JP2004360712A (en) Apparatus and method for supplying liquefied gas fuel
JP2011252534A (en) Lng receiving terminal
JP2004331948A (en) Method for adjusting calorific value of sending fuel gas, method for stabilizing calorific value and device therefor
CN208123900U (en) A kind of independently supplying system of light-hydrocarbon gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP