[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018076932A1 - 反射式显示器及其制备方法 - Google Patents

反射式显示器及其制备方法 Download PDF

Info

Publication number
WO2018076932A1
WO2018076932A1 PCT/CN2017/100635 CN2017100635W WO2018076932A1 WO 2018076932 A1 WO2018076932 A1 WO 2018076932A1 CN 2017100635 W CN2017100635 W CN 2017100635W WO 2018076932 A1 WO2018076932 A1 WO 2018076932A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
refractive index
electrode
dielectric layer
Prior art date
Application number
PCT/CN2017/100635
Other languages
English (en)
French (fr)
Inventor
梁蓬霞
张笑
谷新
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/764,563 priority Critical patent/US10690983B2/en
Publication of WO2018076932A1 publication Critical patent/WO2018076932A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • Embodiments of the present disclosure relate to a reflective display and a method of fabricating the same.
  • the liquid crystal display panel is generally formed by a pair of upper and lower substrates, and a liquid crystal is enclosed in a space between the two substrates. Since the liquid crystal molecules do not emit light by themselves, the display requires a light source for displaying an image, and the liquid crystal display can be classified into a transmissive type, a reflective type, and a transflective type depending on the type of the light source used.
  • the reflective liquid crystal display mainly uses ambient light or light emitted from a light-emitting element as a light source, and a reflective layer made of a metal electrode that reflects light or other material having good reflection characteristics is formed on the lower substrate. Reflective liquid crystal displays can use ambient light as a light source and consume relatively low power.
  • At least one embodiment of the present disclosure provides a reflective display including: a first substrate and a second substrate disposed oppositely, a first electrode disposed on the first substrate, disposed on the first substrate a transparent medium layer facing one side of the second substrate, a second electrode disposed on the second substrate, and a liquid crystal between the first substrate and the second substrate, wherein a refractive index of the liquid crystal is changed by an electric field formed by the first electrode and the second electrode such that a refractive index of the liquid crystal is the same as or substantially the same as a refractive index of the transparent dielectric layer, or is smaller than The refractive index of the transparent dielectric layer.
  • the transparent dielectric layer is disposed on a side of the first electrode adjacent to the liquid crystal.
  • the reflective display when the refractive index of the liquid crystal is smaller than the refractive index of the transparent medium layer, and when the incident angle of the light is greater than or equal to the light in the liquid crystal and the When a minimum angle of total reflection occurs between the transparent dielectric layers, the light is totally reflected at the interface between the transparent dielectric layer and the liquid crystal to achieve a bright state display when the incident angle of the light is smaller than the light in the liquid crystal and the The minimum angle at which total reflection occurs between transparent dielectric layers
  • the light is incident into the liquid crystal; when the refractive index of the liquid crystal is the same or substantially the same as the refractive index of the transparent dielectric layer, light passes through the transparent dielectric layer and the liquid crystal to achieve a dark state .
  • the material of the transparent dielectric layer is a transparent inorganic material or an organic material, and the organic material is polystyrene or acrylic resin; the inorganic material is dioxide. Silicon, silicon oxynitride or silicon nitride.
  • the transparent dielectric layer has a curved structure, and the curved structure is disposed on a side of the transparent dielectric layer facing the liquid crystal.
  • the curved surface structure is a semi-microsphere structure.
  • the liquid crystal is a cholesteric liquid crystal, a nematic liquid crystal, or a smectic liquid crystal.
  • a reflective display may further include a light absorbing layer and/or a color filter layer disposed on the second substrate, wherein the light absorbing layer is formed of a black material, the filter
  • the color layer includes a plurality of color block blocks arranged in an array.
  • a reflective display provided by an embodiment of the present disclosure may further include a driving circuit, wherein the driving circuit controls a magnitude of an electric field strength between the first electrode and the second electrode.
  • an orientation layer is disposed on a side of the second substrate adjacent to the liquid crystal.
  • At least one embodiment of the present disclosure further provides a method of fabricating a reflective display, comprising: providing a first substrate and a second substrate; forming a first electrode and a transparent dielectric layer on the first substrate; and the second substrate Forming a second electrode thereon; forming a liquid crystal on one of the first substrate and the second substrate on the first substrate and the second substrate; wherein a refractive index of the liquid crystal is in the The electric field formed by the one electrode and the second electrode is changed such that the refractive index of the liquid crystal is the same as or substantially the same as the refractive index of the transparent medium layer, or is smaller than the refractive index of the transparent medium layer.
  • the transparent medium layer has a curved structure, and the curved surface structure is disposed on a side of the transparent medium layer facing the liquid crystal.
  • the curved surface structure is formed by nanoimprint or photolithography.
  • the preparation method provided by the embodiment of the present disclosure further includes forming a light absorbing layer and/or a color filter layer on the second substrate, wherein the light absorbing layer is formed of a black material, and the color filter layer includes A plurality of color block blocks arranged in an array.
  • the preparation method provided by the embodiment of the present disclosure further includes forming an alignment layer on a side of the second substrate close to the liquid crystal.
  • 1 is a schematic structural view of a reflective display
  • FIG. 2 is a schematic structural diagram of a reflective display according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of light propagation of a reflective display in a bright state according to an embodiment of the present disclosure
  • FIG. 3b is a schematic diagram of light propagation of a reflective display in a dark state according to an embodiment of the present disclosure
  • FIG. 3c is a schematic diagram of light propagation of a reflective display in color display according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of still another reflective display according to an embodiment of the present disclosure.
  • FIG. 5 is a flow chart of preparing a reflective display according to an embodiment of the present disclosure.
  • a reflective display operates on the principle that when a voltage is applied to an electrode in a reflective display, black particles in the ink move to the opposite side of the display side, in which case the high refractive index of the dielectric layer and the electronic ink are utilized.
  • the total reflection achieved by the low refractive index achieves a bright state display; when a voltage is applied to the electrodes in the reflective display, the black particles in the ink move to the surface of the dielectric layer on the display side, so that the light is directly absorbed to achieve Dark state.
  • FIG. 1 is a schematic structural view of a reflective display.
  • the reflective display 100 includes a first substrate 101 and a second substrate 102, a first electrode 103 disposed on the first substrate 101, and a dielectric layer 104 disposed on a side of the first substrate 101 opposite to the second substrate 102.
  • a second electrode 105 disposed on the second substrate 102, an ink 109 (including black particles) between the first substrate 101 and the second substrate 102, and between the first substrate 101 and the second substrate 102 is further disposed Retaining wall 108.
  • the dielectric layer 104 is transparent, has a refractive index greater than that of the ink 109, and the first electrode 103 is also transparent.
  • the refractive index of the first electrode 103 is the same as or substantially the same as the refractive index of the dielectric layer 104, so that at least from the reflective The light incident on the front side of the display can be totally reflected at the interface between the first electrode 103 and the ink 109, so that the bright display of the reflective display can be realized.
  • the current reflective display changes the total reflection intensity of the dielectric layer by adjusting the position of the black particles in the electronic ink. Controlling the movement of the particles may result in uneven particle distribution and light leakage, and it is necessary to make a retaining wall to reduce the agglomeration of the particles. Phenomenon, the structure of the reflective display is relatively complicated.
  • At least one embodiment of the present disclosure provides a reflective display and a method of fabricating the same, the reflective display comprising: a first substrate and a second substrate, and a first electrode disposed on the first substrate, a transparent dielectric layer on a side of the first substrate facing the second substrate, a second electrode disposed on the second substrate, a liquid crystal between the first substrate and the second substrate, the refractive index of the liquid crystal being at the first electrode and The electric field formed by the second electrode is changed so that the refractive index of the liquid crystal is the same as or substantially the same as the refractive index of the transparent dielectric layer, or the refractive index of the liquid crystal is smaller than the refractive index of the transparent dielectric layer.
  • the reflective display regulates the refractive index of the liquid crystal by an electric field, and the liquid crystal cooperates with the transparent medium layer of high refractive index to realize a bright state display and a dark state, thereby eliminating the retaining wall, simplifying the structure, and reducing the production cost and the process difficulty.
  • FIG. 2 is a schematic structural diagram of a reflective display according to an embodiment of the present disclosure.
  • the reflective display 200 includes a first substrate 201 and a second substrate 202 , a first electrode 203 disposed on the first substrate 201 , and a first substrate 201 disposed toward the second substrate 202 .
  • a transparent dielectric layer 204 on the side a second electrode 205 disposed on the second substrate 202, a liquid crystal 206 between the first substrate 201 and the second substrate 202, the refractive index of the liquid crystal 206 being at the first electrode 203 and the second
  • the electric field formed by the electrode 205 is changed so that the refractive index of the liquid crystal 206 is the same as or substantially the same as the refractive index of the transparent dielectric layer 204, or smaller than the refractive index of the transparent dielectric layer 204.
  • the refractive index of the liquid crystal 206 is the same as or substantially the same as the refractive index of the transparent dielectric layer 204
  • the light may directly or substantially directly pass through the transparent dielectric layer 204 and the liquid crystal 206. In the process, the light is transparent.
  • the dielectric layer 204 is incident on the interface between the liquid crystal 206 and the transparent dielectric layer 204, the incident angle of the light does not substantially change.
  • the light incident from the front surface of the reflective display 200 may be ambient light, and the ambient light functions as a light source for display; when the brightness of the ambient light is low, the first light may be used.
  • a light-emitting element is additionally disposed on the substrate 201, and light incident from the front surface of the reflective display 200 may be light emitted by the light-emitting element.
  • the first substrate 201 and the second substrate 202 may be an opposite substrate and an array substrate, respectively.
  • the opposite substrate may be a color filter substrate.
  • the array substrate includes driving circuits arranged in an array, each driving circuit for driving one pixel, for example, to control a voltage difference between the first electrode 203 and the second electrode 205 in the corresponding pixel, thereby realizing display.
  • the first substrate 201 is a transparent substrate, for example, a glass substrate.
  • the first electrode 203 may be disposed on the first substrate 201 adjacent to the second substrate 202.
  • One side may also be disposed on a side of the first substrate 201 that is away from the second substrate 202.
  • the first electrode 203 is disposed on the side of the first substrate 201 close to the second substrate 202 as an example.
  • a large amount of anisotropic molecules exist in the liquid crystal 206, and the arrangement of a large number of anisotropic molecules causes the liquid crystal to have birefringence, and the refractive index of the liquid crystal changes as the voltage applied to the liquid crystal changes. This makes it possible to control the refractive index of the liquid crystal by adjusting the magnitude of the voltage applied to the liquid crystal.
  • the refractive index of the liquid crystal 206 is smaller than the refractive index of the transparent medium layer 204, when the light is emitted from the optically dense medium (ie, the transparent medium layer) to the interface of the light-diffusing medium (ie, liquid crystal), if the incident angle is greater than the critical angle (ie, When the light is transmitted from the light source to the minimum angle at which total reflection occurs when the light is transmitted to the medium, total reflection occurs.
  • the incident angle when the incident angle is greater than the critical angle, the light is totally reflected at the interface between the transparent dielectric layer 204 and the liquid crystal 206 to achieve a bright state display; when the refractive index of the liquid crystal 206 is the same as or substantially the same as the refractive index of the transparent dielectric layer 204, the light is The transparent dielectric layer 204 and the liquid crystal 206 are passed through to achieve a dark state (or color display).
  • the liquid crystal 206 includes, but is not limited to, cholesteric liquid crystal, nematic liquid crystal, or smectic liquid crystal.
  • the liquid crystal is a cholesteric liquid crystal
  • the cholesteric liquid crystal since the cholesteric liquid crystal has a bistable state, energy consumption can be further reduced.
  • the average refractive index of a liquid crystal is calculated as follows: The liquid crystal can be deflected in an electric field, and the refractive index is controllable.
  • n e is the refractive index of extraordinary light
  • n o is the refractive index of ordinary light
  • is the deflection angle of liquid crystal.
  • the liquid crystal when the pixel needs to be lit (white state), at this time, under the control of the electric field, the liquid crystal has a low refractive index, when the refractive index of the liquid crystal is smaller than the refractive index of the transparent dielectric layer, and when the incident angle of the light is greater than or equal to the light
  • the liquid crystal 206 and the transparent dielectric layer 204 When a minimum angle of total reflection occurs between the liquid crystal 206 and the transparent dielectric layer 204, the light is totally reflected at the interface between the transparent dielectric layer and the liquid crystal to achieve a bright state display when the incident angle of the light is smaller than the light in the liquid crystal and the transparent medium.
  • the light is incident on the liquid crystal.
  • the liquid crystal when a pixel needs to realize a black state (or color), the liquid crystal exhibits a high refractive index, and at this time, the liquid crystal 206 has a refractive index equivalent to that of the transparent dielectric layer 204, that is, when the refractive index of the liquid crystal 206 is the same as that of the transparent dielectric layer 204. Or substantially the same, light passes through the transparent dielectric layer 204 and the liquid crystal 206, to achieve a dark state, showing black or color.
  • the critical angle of total reflection occurs (the angle of incidence of the light when the angle of incidence is equal to 90° when the light is incident from the optically dense medium to the light-diffusing medium) is proportional to the refractive index.
  • the incident angle, the reflection angle, and the refraction angle refer to an angle formed by the light and the normal of the interface.
  • the transparent dielectric layer 204 is disposed on a side of the first electrode 203 remote from the first substrate 201, and the transparent dielectric layer 204 has a curved structure with a undulating surface on a side facing the liquid crystal 206.
  • the curved structure refers to a structure having a certain curvature in the periphery of the transparent dielectric layer 204, such as a semi-microsphere structure, and may also be other irregular surfaces as long as at least light incident from the front surface of the reflective display can be realized in the transparent dielectric layer 204. It is sufficient to be totally reflected at the interface with the liquid crystal 206.
  • These semi-microsphere structures are, for example, the spherical crown of a sphere or the spherical crown of an ellipsoid.
  • the curved surface structure is prepared by a nanoimprint process, a photolithography process, or the like.
  • the material of the transparent dielectric layer 204 is a transparent inorganic material or an organic material.
  • the organic material forming the transparent dielectric layer 204 includes at least one of polystyrene and an acrylic resin
  • the inorganic material forming the transparent dielectric layer 204 includes at least one of silicon dioxide, silicon oxynitride, and silicon nitride.
  • the transparent dielectric layer 204 can also be formed from a titanium dioxide material.
  • the material for forming the transparent dielectric layer is not limited to the materials given above, as long as the refractive index thereof is greater than the refractive index of the liquid crystal or the same or substantially the same as the refractive index of the liquid crystal, and has a transparent property and a certain hardness. Just fine.
  • the transparent dielectric layer 204 has a thickness of 10 ⁇ m to 20 ⁇ m, for example, 10 ⁇ m, 15 ⁇ m, or 20 ⁇ m. It should be noted that the thickness of the transparent dielectric layer 204 is the maximum thickness in a direction perpendicular to the first substrate.
  • the first electrode 203 is formed of a transparent conductive material, and for example, the transparent conductive material may be indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the first electrode 203 has a thickness of 100 nm to 300 nm, for example, 100 nm, 200 nm, 250 nm, or 300 nm.
  • the second electrode 205 may be formed of a metal material or may be formed of a transparent conductive material.
  • the light may be reflected without additionally providing a reflective layer; when the second electrode 205 is formed of a transparent conductive material, by providing a reflective layer, the same Color display can be realized; or, for example, the red color filter layer directly absorbs blue light and green light, and can reflect red light, so that the second electrode 205 can be formed of a transparent conductive material.
  • the first electrode may be a plate electrode, the second electrode is a strip electrode, or the first electrode is a strip electrode, and the second electrode is a plate electrode.
  • FIG. 3a, FIG. 3b, and FIG. 3c are respectively schematic diagrams of light propagation of a reflective display in a bright state display, a dark state display, and a color display according to an embodiment of the present disclosure.
  • the second electrode 205 has a function of reflecting light.
  • the second electrode 205 is formed of a metal material and has a function of reflecting light.
  • the reflective display may further include a light absorbing layer 207 disposed on the second substrate 202.
  • the light absorbing layer 207 is formed of a black material, for example, the black material is a black matrix material, for example, Black metal material or black resin material.
  • the magnitude of the electric field strength between the first electrode 203 and the second electrode 205 is controlled by the driving circuit, so that the liquid crystal 206 has a low refractive index, and the light is totally reflected at the interface between the transparent dielectric layer 204 and the liquid crystal 206. Thereby a bright state display can be achieved.
  • the magnitude of the electric field strength between the first electrode 203 and the second electrode 205 is controlled by the driving circuit to cause the liquid crystal 206 to exhibit a high refractive index, such that the refractive index of the liquid crystal 206 is the same as the refractive index of the transparent dielectric layer 204 or Substantially the same, light can pass directly through the transparent dielectric layer 204 and the liquid crystal 206, and then absorbed by the light absorbing layer 207 disposed on the second substrate 202, thereby exhibiting a black state.
  • the reflective display further includes a color filter layer 207' disposed on the second substrate 202.
  • the color filter layer 207' includes a plurality of color filter blocks arranged in an array, such as the color.
  • the blocking block includes a red color blocking block that allows only red light to pass through, and only allows at least one of a green color blocking block through which green light passes and a blue color blocking block that allows only blue light to pass.
  • the color block is a red color block
  • the green light and the blue light are absorbed by the red color block
  • the red light is directly reflected by the color resist layer, or the red light passes through the color resist layer and reaches the second electrode.
  • 205 is then reflected by the second electrode 205.
  • the green color block and the blue color block function similarly, so that the color blocks of different colors work together to realize color display.
  • FIG. 4 is a schematic structural diagram of still another reflective display according to an embodiment of the present disclosure.
  • the reflective display further includes an alignment layer 210 disposed on a side of the second substrate 202 adjacent to the liquid crystal 206.
  • the alignment layer 210 has an effect of controlling the alignment direction of the liquid crystal.
  • the orientation mechanism is caused by the liquid crystal induction, which causes the liquid crystals in the entire liquid crystal cell to be aligned.
  • the material of the alignment layer 210 may include polystyrene and its derivatives, polyvinyl alcohol, polyester, epoxy resin, polyurethane, and polyimide.
  • the structure of the reflective display shown in FIGS. 3a, 3b, 3c, and 4 may further include a spacer 208 disposed between the first substrate 201 and the second substrate 202, the spacer 208 having The role of supporting the first substrate 201, for example, the spacer may be a column spacer or a spherical spacer.
  • agglomeration does not occur between liquid crystal molecules, and the preparation of the retaining wall can be omitted as compared with the current electronic ink reflective display. This simplifies the structure and saves process flow.
  • FIG. 5 is a flow chart of preparing a reflective display according to an embodiment of the present disclosure.
  • the preparation method comprises the following steps:
  • Step 1 Providing a first substrate and a second substrate.
  • the first substrate and the second substrate may be an opposite substrate and an array substrate, respectively, and for example, the opposite substrate may be a color filter substrate.
  • the first substrate is a transparent substrate, such as a glass substrate.
  • Step 2 forming a first electrode and a transparent dielectric layer on the first substrate.
  • a first electrode is formed on the first substrate to form a transparent dielectric layer, and the first electrode is disposed on a side of the transparent dielectric layer adjacent to the first substrate, and the first electrode is a planar structure, which can reduce the process difficulty and reduce Cost of production.
  • the structure of the formed reflective display can be seen in Figure 2.
  • Step 3 forming a second electrode on the second substrate.
  • one of the first electrode and the second electrode may be a common electrode and the other is a pixel electrode.
  • the first electrode is formed of a transparent conductive material
  • the transparent conductive material may be indium tin oxide (ITO), indium zinc oxide (IZO), or the like.
  • the second electrode may be formed of a metal material or may be formed of a transparent conductive material.
  • the reflective layer can be used to reflect the light without additional reflection; when the second electrode is formed of a transparent conductive material, by further providing a reflective layer, the same can be realized.
  • step 3 can be performed simultaneously with step 1 or step 2.
  • Step 4 forming a liquid crystal on one of the first substrate and the second substrate on the first substrate and the second substrate of the cartridge.
  • step 4 includes: firstly, between the first substrate and the second substrate, and then filling the liquid crystal between the first substrate and the second substrate; or, on one of the first substrate and the second substrate.
  • the liquid crystal is dropped, and then the first substrate and the second substrate are bonded to the cartridge.
  • the refractive index of the liquid crystal changes under the action of the electric field formed by the first electrode and the second electrode such that the refractive index of the liquid crystal is the same as or substantially the same as the refractive index of the transparent dielectric layer, or smaller than the refractive index of the transparent dielectric layer.
  • the transparent dielectric layer has a curved structure which is disposed on a side of the transparent dielectric layer facing the liquid crystal.
  • the curved structure refers to a structure having a certain curvature in the periphery of the transparent dielectric layer, such as a semi-microsphere structure.
  • semi-microsphere structures are, for example, the spherical crown of a sphere or the spherical crown of an ellipsoid.
  • the curved surface structure is prepared by a nanoimprint process or a photolithography process.
  • the material of the transparent dielectric layer is a transparent inorganic material or an organic material.
  • the preparation method provided by the embodiment further includes forming a light absorbing layer and/or a color filter layer on the second substrate.
  • the light absorbing layer is formed of a black material, for example, a black matrix material such as a ferrous material or a black resin material.
  • the color filter layer includes a plurality of color block blocks arranged in an array.
  • the color block includes a red color block that allows only red light to pass through, a green color block that allows only green light to pass, and at least one of blue color blocks that only allow blue light to pass.
  • the color block is a red color block
  • the green light and the blue light are absorbed by the red color block
  • the red light is directly reflected by the color resist layer, or the red light passes through the color resist layer and reaches the second electrode. And then reflected by the second electrode.
  • the green color block and the blue color block function similarly, so that the color blocks of different colors work together to realize color display.
  • the preparation method provided in this embodiment further includes forming an alignment layer on a side of the second substrate close to the liquid crystal.
  • the alignment layer has a function of controlling the alignment direction of the liquid crystal.
  • the orientation mechanism is caused by the liquid crystal induction, which causes the liquid crystals in the entire liquid crystal cell to be aligned.
  • the material of the alignment layer includes polystyrene and its derivatives, polyvinyl alcohol, polyester, epoxy resin, polyurethane, and polyimide.
  • the reflective display provided by the embodiment of the present disclosure and the preparation method thereof have at least one of the following effects: the reflective display can control the change of the refractive index of the liquid crystal by an electric field, and the liquid crystal cooperates with the transparent medium layer of high refractive index to Achieving a bright display and a dark state, the reflective display eliminates the retaining wall, simplifies the structure, and reduces production costs and process difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种反射式显示器(200)及其制备方法,该反射式显示器(200)包括:第一基板(201)和第二基板(202),设置在第一基板(201)上的第一电极(203),设置在第一基板(201)的朝向第二基板(202)的一侧的透明介质层(204),设置在第二基板(202)上的第二电极(205),位于第一基板(201)和第二基板(202)之间的液晶(206),其中,液晶(206)的折射率在第一电极(203)和第二电极(205)形成的电场的作用下发生变化,以使液晶(206)的折射率与透明介质层(204)的折射率相同或基本相同,或者小于透明介质层(204)的折射率。该反射式显示器(200)通过电场调控液晶的折射率,液晶与高折射率的透明介质层相配合以实现亮态显示和暗态,省去了挡墙,简化了结构,降低了生产成本和工艺难度。

Description

反射式显示器及其制备方法 技术领域
本公开的实施例涉及一种反射式显示器及其制备方法。
背景技术
液晶显示面板一般由上基板和下基板对盒形成,两个基板之间的空间中封装有液晶。由于液晶分子自身不发光,所以显示器需要光源以便显示图像,根据采用光源类型的不同,液晶显示器可分为透射式、反射式和透反式。
反射式液晶显示器主要是以环境光或者发光元件发出的光作为光源,其下基板上制作有对光具有反射作用的金属电极或者其他具有良好反射特性的材料制作的反射层。反射式液晶显示器能利用环境光作为光源,且功耗相对较低。
发明内容
本公开至少一实施例提供一种反射式显示器,该反射式显示器包括:相对设置的第一基板和第二基板,设置在所述第一基板上的第一电极,设置在所述第一基板的朝向所述第二基板的一侧的透明介质层,设置在所述第二基板上的第二电极,以及位于所述第一基板和所述第二基板之间的液晶,其中,所述液晶的折射率在所述第一电极和所述第二电极形成的电场的作用下发生变化,以使所述液晶的折射率与所述透明介质层的折射率相同或基本相同,或者小于所述透明介质层的折射率。
例如,在本公开的实施例提供的反射式显示器中,所述透明介质层设置在所述第一电极的靠近所述液晶的一侧。
例如,在本公开的实施例提供的反射式显示器中,当所述液晶的折射率小于所述透明介质层的折射率时,且当光线的入射角大于或等于光线在所述液晶和所述透明介质层之间发生全反射的最小角度时,该光线在所述透明介质层和所述液晶的界面发生全反射,以实现亮态显示,当光线的入射角小于光线在所述液晶和所述透明介质层之间发生全反射的最小角度 时,该光线射入所述液晶中;当所述液晶的折射率与所述透明介质层的折射率相同或基本相同时,光线穿过所述透明介质层和所述液晶,以实现暗态。
例如,在本公开的实施例提供的反射式显示器中,所述透明介质层的材料为透明的无机材料或有机材料,所述有机材料为聚苯乙烯或丙烯酸树脂;所述无机材料为二氧化硅、氮氧化硅或氮化硅。
例如,在本公开的实施例提供的反射式显示器中,所述透明介质层具有曲面结构,所述曲面结构设置在所述透明介质层的朝向所述液晶的一侧。
例如,在本公开的实施例提供的反射式显示器中,所述曲面结构为半微球结构。
例如,在本公开的实施例提供的反射式显示器中,所述液晶为胆甾相液晶、向列相液晶或近晶相液晶。
例如,本公开的实施例提供的反射式显示器,还可以包括设置在所述第二基板上的光吸收层和/或滤色层,其中,所述光吸收层由黑色材料形成,所述滤色层包括多个呈阵列排布的色阻块。
例如,本公开的实施例提供的反射式显示器,还可以包括驱动电路,其中,所述驱动电路控制所述第一电极和所述第二电极之间电场强度的大小。
例如,在本公开的实施例提供的反射式显示器中,所述第二基板的靠近所述液晶的一侧设置有取向层。
本公开至少一实施例还提供一种反射式显示器的制备方法,包括:提供第一基板和第二基板;在所述第一基板上形成第一电极和透明介质层;在所述第二基板上形成第二电极;对盒所述第一基板和所述第二基板,在所述第一基板和所述第二基板之一上形成液晶;其中,所述液晶的折射率在所述第一电极和所述第二电极形成的电场的作用下发生变化,以使所述液晶的折射率与所述透明介质层的折射率相同或基本相同,或者小于所述透明介质层的折射率。
例如,在本公开的实施例提供的制备方法中,所述透明介质层具有曲面结构,所述曲面结构设置在所述透明介质层的朝向所述液晶的一侧。
例如,在本公开的实施例提供的制备方法中,采用纳米压印或光刻的方法形成所述曲面结构。
例如,本公开的实施例提供的制备方法,还包括在所述第二基板上形成光吸收层和/或滤色层,其中,所述光吸收层由黑色材料形成,所述滤色层包括多个呈阵列排布的色阻块。
例如,本公开的实施例提供的制备方法,还包括在所述第二基板的靠近所述液晶的一侧形成取向层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种反射式显示器的结构示意图;
图2为本公开一实施例提供的一种反射式显示器的结构示意图;
图3a为本公开一实施例提供的反射式显示器在亮态显示时的光线传播示意图;
图3b为本公开一实施例提供的反射式显示器在暗态显示时的光线传播示意图;
图3c为本公开一实施例提供的反射式显示器在彩色显示时的光线传播示意图;
图4为本公开一实施例提供的又一种反射式显示器的结构示意图;以及
图5为本公开一实施例提供的一种反射式显示器的制备流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来 区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
一种反射式显示器的工作原理为:当给反射式显示器中的电极施加电压时,墨水中的黑色粒子会移动到与显示侧相反的一侧,此时利用介质层的高折射率与电子墨水的低折射率实现的全反射实现亮态显示;当给反射式显示器中的电极施加电压时,墨水中的黑色粒子会移动到位于显示侧的介质层的表面,这样光会直接被吸收以实现暗态。
例如,图1为一种反射式显示器的结构示意图。该反射式显示器100包括:第一基板101和第二基板102,设置在第一基板101上的第一电极103,设置在第一基板101的与第二基板102相对的一侧的介质层104,设置在第二基板102上的第二电极105,位于第一基板101和第二基板102之间的墨水109(包括黑色粒子),在第一基板101和第二基板102之间还设置有挡墙108。介质层104是透明的,其折射率大于墨水109的折射率,第一电极103也是透明的,第一电极103的折射率与介质层104的折射率相同或基本相同,使得至少从该反射式显示器正面入射的光在第一电极103与墨水109之间的界面上能被全反射,这样就可以实现反射式显示器的亮态显示。
当在第一电极103和第二电极105之间形成电场时,墨水109中的黑色粒子会吸附到第一电极103的表面,这样在第一电极103的表面的全反射条件被破坏,从而入射光可以穿过介质层,黑色粒子会直接吸收入射光,以实现暗态。
但是,目前的反射式显示器是通过调节电子墨水中黑色粒子的位置来改变介质层的全反射强度的,控制粒子的运动会出现粒子分布不均匀及漏光现象,且需要制作挡墙来减轻粒子的团聚现象,这样反射式显示器的结构比较复杂。
本公开至少一实施例提供一种反射式显示器及其制备方法,该反射式显示器包括:第一基板和第二基板,设置在第一基板上的第一电极,设置 在第一基板的朝向第二基板的一侧的透明介质层,设置在第二基板上的第二电极,位于第一基板和第二基板之间的液晶,液晶的折射率在第一电极和第二电极形成的电场的作用下发生变化,以使液晶的折射率与透明介质层的折射率相同或基本相同,或者使液晶的折射率小于透明介质层的折射率。
该反射式显示器通过电场调控液晶的折射率,液晶与高折射率的透明介质层相配合以实现亮态显示和暗态,省去了挡墙,简化了结构,降低了生产成本和工艺难度。
本公开的实施例提供一种反射式显示器,例如,图2为本公开一实施例提供的一种反射式显示器的结构示意图。
如图2所示,该反射式显示器200包括:第一基板201和第二基板202,设置在第一基板201上的第一电极203,设置在第一基板201的朝向第二基板202的一侧的透明介质层204,设置在第二基板202上的第二电极205,位于第一基板201和第二基板202之间的液晶206,该液晶206的折射率在第一电极203和第二电极205形成的电场的作用下发生变化,以使液晶206的折射率与透明介质层204的折射率相同或基本相同,或者小于透明介质层204的折射率。
需要说明的是,当液晶206的折射率与透明介质层204的折射率相同或基本相同时,光线可以直接或基本上直接穿过透明介质层204和液晶206,在此过程中,光线从透明介质层204入射至液晶206与透明介质层204的界面时,光线的入射角度基本不会发生变化。
例如,当环境光的亮度较大时,从反射式显示器200正面入射的光可以是环境光,此时环境光起到显示用光源的作用;当环境光的亮度较低时,可以在第一基板201上额外设置发光元件,从反射式显示器200正面入射的光可以是发光元件发射的光线。
例如,第一基板201和第二基板202可以分别为对置基板和阵列基板,例如,对置基板可以是彩膜基板。阵列基板包括按阵列排布的驱动电路,每个驱动电路例如用于驱动一个像素,以控制相应像素中第一电极203和第二电极205之间的电压差,从而实现显示。光从反射式显示器的正面入射,则第一基板201为透明基板,例如为玻璃基板。
例如,第一电极203可以设置在第一基板201的靠近第二基板202的 一侧,也可以设置在第一基板201的远离第二基板202的一侧。在下面的描述中,均以第一电极203设置在第一基板201的靠近第二基板202的一侧为例加以说明。
例如,液晶206中存在大量各向异性的分子,大量各向异性分子的排列使液晶具有双折射性,且液晶的折射率会随着施加于液晶上的电压的变化而变化。这样可以通过调整施加在液晶上的电压的大小来控制液晶的折射率。
例如,当液晶206的折射率小于透明介质层204的折射率时,光由光密介质(即透明介质层)射到光疏介质(即液晶)的界面时,若入射角度大于临界角(即光由光密介质射入光疏介质时发生全反射的最小角度)时,便可发生全反射。即入射角度大于临界角时,光线在透明介质层204和液晶206的界面发生全反射,以实现亮态显示;当液晶206的折射率与透明介质层204的折射率相同或基本相同时,光线穿过透明介质层204和液晶206,以实现暗态(或彩色显示)。
例如,该液晶206包括但不限于胆甾相液晶、向列相液晶或近晶相液晶。例如,当液晶为胆甾相液晶时,因胆甾相液晶具有双稳态,可以进一步降低能耗。例如,液晶平均折射率计算公式如下:液晶可在电场中发生偏转,而折射率可控。
Figure PCTCN2017100635-appb-000001
在上式(1)中,ne为非寻常光的折射率,no为寻常光的折射率,θ为液晶的偏转角度,对液晶施加不同的电场强度时,液晶的偏转角度会发生变化。从而导致液晶的折射率发生变化。
例如,当像素需要点亮时(白态),此时在电场控制下,液晶呈低折射率,当液晶的折射率小于透明介质层的折射率时,且当光线的入射角大于或等于光线在液晶206和透明介质层204之间发生全反射的最小角度时,该光线在透明介质层和液晶的界面发生全反射,以实现亮态显示,当光线的入射角小于光线在液晶和透明介质层之间发生全反射的最小角度时,该光线射入液晶中。
例如,当像素需要实现黑态(或彩色)时,液晶呈现高折射率,此时液晶206与透明介质层204的折射率相当,即当液晶206的折射率与透明介质层204的折射率相同或基本相同时,光线穿过透明介质层204和液晶 206,以实现暗态,呈现黑色或者彩色。
当光线从高折射率材料进入低折射率材料时,发生全反射的临界角(光线从光密介质入射至光疏介质时,折射角等于90°时光线的入射角)与折射率的比值呈线性关系为:sinθ=n/n,当液晶的折射率变化时,由于发生全反射的临界角也变化,光线的反射率会变化。所以,通过控制液晶206折射率的变化,导致临界角发生变化,从而根据各光线入射角度的不同,实现全反射的光线的量也不同,进而可以实现反射显示的灰阶。需要说明的是,入射角、反射角和折射角均是指光线与界面的法线形成的夹角。
例如,透明介质层204设置在第一电极203的远离第一基板201的一侧,且该透明介质层204具有曲面结构,在面向液晶206的一侧具有凹凸起伏的表面。
例如,曲面结构是指透明介质层204的周边具有一定弧度的结构,例如半微球结构,还可以为其他不规则的表面,只要能够实现至少从反射式显示器正面入射的光在透明介质层204与液晶206之间的界面上被全反射即可。这些半微球结构例如为圆球的球冠或椭球的球冠。例如,该曲面结构采用纳米压印工艺、光刻工艺等制备而成。
例如,该透明介质层204的材料为透明的无机材料或有机材料。
例如,形成该透明介质层204有机材料包括聚苯乙烯和丙烯酸树脂中的至少之一,形成该透明介质层204的无机材料包括二氧化硅、氮氧化硅和氮化硅中的至少之一,该透明介质层204还可以由二氧化钛材料形成。
需要说明的是,形成透明介质层的材料不限于上述给出的材料,只要满足其折射率能够大于液晶的折射率或者与液晶的折射率相同或者基本相同,具有透明的特点,具有一定的硬度即可。
例如,该透明介质层204的厚度为10μm-20μm,例如为10μm、15μm或20μm。需要说明的是,透明介质层204的厚度为沿垂直于第一基板的方向上的最大厚度。
例如,第一电极203由透明导电材料形成,例如,透明导电材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)等。
例如,第一电极203的厚度为100nm-300nm,例如为100nm、200nm,250nm或300nm。
例如,第二电极205可以由金属材料形成,也可以由透明导电材料形成。当第二电极205由金属材料形成时,如果需要实现彩色显示时,可以不用额外设置反射层对光线进行反射;当第二电极205由透明导电材料形成时,通过再设置一层反射层,同样可以实现彩色显示;或者,例如,红色滤色层直接有吸收蓝色光和绿色光,同时可以将红色光进行反射的作用,这样第二电极205可以由透明导电材料形成。
需要说明的是,第一电极可以板状电极,第二电极为条状电极,或者,第一电极为条状电极,第二电极为板状电极。
例如,图3a、图3b和图3c分别为本公开一实施例提供的反射式显示器在亮态显示、暗态显示和彩色显示时的光线传播示意图。在图3a、图3b所示的结构中,对第二电极205是否具有反射光线的作用没有限制。在图3c所示的结构中,第二电极205由金属材料形成,具有反射光线的作用。
如图3a和图3b所示,该反射式显示器还可以包括设置在第二基板202上的光吸收层207,光吸收层207由黑色材料形成,例如,该黑色材料为黑色矩阵材料,例如为黑色金属材料或者黑色树脂材料。
如图3a所示,通过驱动电路控制第一电极203和第二电极205之间电场强度的大小,使液晶206呈低折射率,光线在透明介质层204和液晶206的界面发生了全反射,从而可以实现亮态显示。
如图3b所示,通过驱动电路控制第一电极203和第二电极205之间电场强度的大小,使液晶206呈现高折射率,这样液晶206的折射率与透明介质层204的折射率相同或者基本相同,光线可以直接穿过透明介质层204和液晶206,然后被设置在第二基板202上的光吸收层207吸收,从而呈现黑态。
如图3c所示,该反射式显示器还包括设置在第二基板202上的滤色层207’,滤色层207’包括多个呈阵列排布的色阻(color filter)块,例如该色阻块包括只允许红光通过的红色色阻块,只允许绿光通过的绿色色阻块和只允许蓝光通过的蓝色色阻块中的至少之一。例如,当色阻块为红色色阻块时,绿光和蓝光被该红色色阻块吸收,红光直接被该色阻层反射,或者,红色光线穿过该色阻层后到达第二电极205,然后被第二电极205反射。绿色色阻块和蓝色色阻块的作用类似,这样不同颜色的色阻块共同作用,可以实现彩色显示。
图4为本公开一实施例提供的又一种反射式显示器的结构示意图。例如,该反射式显示器还包括设置在第二基板202的靠近液晶206的一侧的取向层210。取向层210具有控制液晶排列方向的作用。取向机理是通过对液晶诱导,促使整个液晶盒内液晶发生排列。
例如,该取向层210的材料可以包括聚苯乙烯及其衍生物、聚乙烯醇、聚酯、环氧树脂、聚氨酯和聚酰亚胺。
例如,图3a、图3b、图3c以及图4所示的反射式显示器的结构,还可以包括设置在第一基板201和第二基板202之间的隔垫物208,该隔垫物208具有支撑第一基板201的作用,例如,该隔垫物可以是柱状隔垫物或球状隔垫物。
在本实施例中,液晶分子之间不会发生团聚现象,相对于目前的电子墨水反射显示器,可以省去挡墙的制备。这样可以简化结构,节省工艺流程。
本公开至少一实施例还提供一种反射式显示器的制备方法,例如,图5为本公开的实施例提供的一种反射式显示器的制备流程图。该制备方法包括如下步骤:
步骤1:提供第一基板和第二基板。
例如,第一基板和第二基板可以分别为对置基板和阵列基板,例如,对置基板可以是彩膜基板。光从反射式显示器的正面入射,则第一基板为透明基板,例如为玻璃基板。
步骤2:在第一基板上形成第一电极和透明介质层。
例如,在第一基板上先形成第一电极再形成透明介质层,第一电极设置在透明介质层的靠近第一基板的一侧,且第一电极为平面结构,这样可以降低工艺难度,降低生产成本。形成的反射式显示器的结构可以参见图2。
步骤3:在所述第二基板上形成第二电极。
例如,第一电极和第二电极中的一个可以为公共电极,另一个为像素电极。
例如,第一电极由透明导电材料形成,例如,透明导电材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)等。
例如,第二电极可以由金属材料形成,也可以由透明导电材料形成。 当第二电极由金属材料形成时,如果需要实现彩色显示时,可以不用额外设置反射层对光线进行反射;当第二电极由透明导电材料形成时,通过再设置一层反射层,同样可以实现彩色显示;或者,例如,红色滤色层直接有吸收蓝色光和绿色光,同时可以将红色光进行反射的作用,这样第二电极可以由透明导电材料形成。
需要说明的是,步骤3与步骤1、步骤2之间没有先后关系,步骤3可以与步骤1或步骤2同时进行。
步骤4:对盒第一基板和第二基板,在第一基板和第二基板之一上形成液晶。
需要说明的是,步骤4中的过程包括:先对盒第一基板和第二基板,再在第一基板和第二基板之间填充液晶;或者,在第一基板和第二基板之一上滴加液晶,然后对盒第一基板和第二基板。
例如,液晶的折射率在第一电极和第二电极形成的电场的作用下发生变化,以使液晶的折射率与透明介质层的折射率相同或基本相同,或者小于透明介质层的折射率。
例如,在本实施例中,透明介质层具有曲面结构,该曲面结构设置在透明介质层的朝向液晶的一侧。
例如,该曲面结构是指透明介质层的周边具有一定弧度的结构,例如半微球结构。这些半微球结构例如为圆球的球冠或椭球的球冠。
例如,该曲面结构采用纳米压印工艺或光刻工艺制备而成。
例如,该透明介质层的材料为透明的无机材料或有机材料。
例如,本实施例提供的制备方法还包括在第二基板上形成光吸收层和/或滤色层。
该光吸收层由黑色材料形成,例如,该黑色材料为黑色矩阵材料,例如为黑色金属材料或者黑色树脂材料。
该滤色层包括多个呈阵列排布的色阻块。例如该色阻块包括只允许红光通过的红色色阻块,只允许绿光通过的绿色色阻块和只允许蓝光通过的蓝色色阻块中的至少之一。例如,当色阻块为红色色阻块时,绿光和蓝光被该红色色阻块吸收,红光直接被该色阻层反射,或者,红色光线穿过该色阻层后到达第二电极,然后被第二电极反射。绿色色阻块和蓝色色阻块的作用类似,这样不同颜色的色阻块共同作用,可以实现彩色显示。
例如,本实施例提供的制备方法还包括在第二基板的靠近液晶的一侧形成取向层。该取向层具有控制液晶排列方向的作用。其取向机理是通过对液晶诱导,促使整个液晶盒内液晶发生排列。
例如,该取向层的材料包括聚苯乙烯及其衍生物、聚乙烯醇、聚酯、环氧树脂、聚氨酯和聚酰亚胺。
本公开的实施例提供的反射式显示器及其制备方法,具有以下至少一项有益效果:该反射式显示器可以通过电场调控液晶的折射率的变化,液晶与高折射率的透明介质层相配合以实现亮态显示和暗态,该反射式显示器省去了挡墙,简化了结构,降低了生产成本和工艺难度。
有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。
本申请要求于2016年10月28日递交的中国专利申请第201610967206.0号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种反射式显示器,包括:
    第一基板和第二基板,
    设置在所述第一基板上的第一电极,
    设置在所述第一基板的朝向所述第二基板的一侧的透明介质层,
    设置在所述第二基板上的第二电极,以及
    位于所述第一基板和所述第二基板之间的液晶,
    其中,所述液晶的折射率在所述第一电极和所述第二电极形成的电场的作用下发生变化,以使所述液晶的折射率与所述透明介质层的折射率相同或基本相同,或者小于所述透明介质层的折射率。
  2. 根据权利要求1所述的反射式显示器,其中,所述透明介质层设置在所述第一电极的靠近所述液晶的一侧。
  3. 根据权利要求2所述的反射式显示器,其中,当所述液晶的折射率小于所述透明介质层的折射率时,且当光线的入射角大于或等于光线在所述液晶和所述透明介质层之间发生全反射的最小角度时,该光线在所述透明介质层和所述液晶的界面发生全反射,以实现亮态显示,当光线的入射角小于光线在所述液晶和所述透明介质层之间发生全反射的最小角度时,该光线射入所述液晶中;当所述液晶的折射率与所述透明介质层的折射率相同或基本相同时,光线穿过所述透明介质层和所述液晶,以实现暗态。
  4. 根据权利要求1-3中任一项所述的反射式显示器,其中,所述透明介质层的材料为透明的无机材料或有机材料,所述有机材料为聚苯乙烯或丙烯酸树脂;所述无机材料为二氧化硅、氮氧化硅或氮化硅。
  5. 根据权利要求4所述的反射式显示器,其中,所述透明介质层具有曲面结构,所述曲面结构设置在所述透明介质层的朝向所述液晶的一侧。
  6. 根据权利要求5所述的反射式显示器,其中,所述曲面结构为半微球结构。
  7. 根据权利要求1-6中任一项所述的反射式显示器,其中,所述液晶为胆甾相液晶、向列相液晶或近晶相液晶。
  8. 根据权利要求1-7中任一项所述的反射式显示器,还包括设置在所 述第二基板上的光吸收层和/或滤色层,其中,所述光吸收层由黑色材料形成,所述滤色层包括多个呈阵列排布的色阻块。
  9. 根据权利要求1-8中任一项所述的反射式显示器,还包括驱动电路,其中,所述驱动电路控制所述第一电极和所述第二电极之间电场强度的大小。
  10. 根据权利要求1-9中任一项所述的反射式显示器,其中,所述第二基板的靠近所述液晶的一侧设置有取向层。
  11. 一种反射式显示器的制备方法,包括:
    提供第一基板和第二基板;
    在所述第一基板上形成第一电极和透明介质层;
    在所述第二基板上形成第二电极;
    对盒所述第一基板和所述第二基板,在所述第一基板和所述第二基板之一上形成液晶;其中,
    所述液晶的折射率在所述第一电极和所述第二电极形成的电场的作用下发生变化,以使所述液晶的折射率与所述透明介质层的折射率相同或基本相同,或者小于所述透明介质层的折射率。
  12. 根据权利要求11所述的制备方法,其中,所述透明介质层具有曲面结构,所述曲面结构设置在所述透明介质层的朝向所述液晶的一侧。
  13. 根据权利要求12所述的制备方法,其中,采用纳米压印或光刻的方法形成所述曲面结构。
  14. 根据权利要求11-13中任一项所述的制备方法,还包括:在所述第二基板上形成光吸收层和/或滤色层,其中,所述光吸收层由黑色材料形成,所述滤色层包括多个呈阵列排布的色阻块。
  15. 根据权利要求11-14中任一项所述的制备方法,还包括在所述第二基板的靠近所述液晶的一侧形成取向层。
PCT/CN2017/100635 2016-10-28 2017-09-06 反射式显示器及其制备方法 WO2018076932A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/764,563 US10690983B2 (en) 2016-10-28 2017-09-06 Reflective display and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610967206.0A CN106569365B (zh) 2016-10-28 2016-10-28 反射式显示器及其制备方法
CN201610967206.0 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018076932A1 true WO2018076932A1 (zh) 2018-05-03

Family

ID=58539873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100635 WO2018076932A1 (zh) 2016-10-28 2017-09-06 反射式显示器及其制备方法

Country Status (3)

Country Link
US (1) US10690983B2 (zh)
CN (1) CN106569365B (zh)
WO (1) WO2018076932A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089576A (zh) * 2021-08-13 2022-02-25 友达光电股份有限公司 全反射显示器

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569365B (zh) 2016-10-28 2019-02-22 京东方科技集团股份有限公司 反射式显示器及其制备方法
CN107577067A (zh) * 2017-08-18 2018-01-12 深圳市国华光电科技有限公司 一种调光器件及其光调节方法
CN108427225B (zh) * 2018-03-28 2020-06-16 京东方科技集团股份有限公司 液晶显示面板、显示装置及其工作方法
CN110632786B (zh) * 2019-09-26 2022-08-09 京东方科技集团股份有限公司 显示面板及显示装置
CN111158195B (zh) * 2020-01-02 2022-09-09 京东方科技集团股份有限公司 一种显示装置及其制备方法、驱动方法
CN111427193B (zh) * 2020-04-14 2021-09-24 深圳市华星光电半导体显示技术有限公司 液晶显示装置
CN113138491A (zh) 2021-04-27 2021-07-20 武汉华星光电技术有限公司 显示面板及显示装置
CN115877613A (zh) * 2021-09-28 2023-03-31 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN117242397A (zh) * 2022-03-31 2023-12-15 京东方科技集团股份有限公司 显示装置
WO2023249837A1 (en) * 2022-06-24 2023-12-28 Corning Incorporated Reflective displays including reflectors
CN115718385B (zh) * 2022-11-16 2024-04-09 昆山龙腾光电股份有限公司 反射式显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072553A (en) * 1997-02-26 2000-06-06 Sharp Kabushiki Kaisha Reflection-type liquid crystal display with layer comprising liquid crystal compound and liquid crystal polymer being twist-aligned at same angle
US6512559B1 (en) * 1999-10-28 2003-01-28 Sharp Kabushiki Kaisha Reflection-type liquid crystal display device with very efficient reflectance
CN2735385Y (zh) * 2004-08-31 2005-10-19 鸿富锦精密工业(深圳)有限公司 液晶显示装置
CN101852942A (zh) * 2009-04-02 2010-10-06 北京京东方光电科技有限公司 全反射式液晶显示器
CN106569365A (zh) * 2016-10-28 2017-04-19 京东方科技集团股份有限公司 反射式显示器及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6108064A (en) * 1997-11-06 2000-08-22 Sharp Kabushiki Kaisha Reflective-type liquid crystal display device including a single polarizer plate
US6380558B1 (en) * 1998-12-29 2002-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of fabricating the same
CN105589228B (zh) * 2016-03-08 2018-03-13 武汉华星光电技术有限公司 一种视角调节器及液晶显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6072553A (en) * 1997-02-26 2000-06-06 Sharp Kabushiki Kaisha Reflection-type liquid crystal display with layer comprising liquid crystal compound and liquid crystal polymer being twist-aligned at same angle
US6512559B1 (en) * 1999-10-28 2003-01-28 Sharp Kabushiki Kaisha Reflection-type liquid crystal display device with very efficient reflectance
CN2735385Y (zh) * 2004-08-31 2005-10-19 鸿富锦精密工业(深圳)有限公司 液晶显示装置
CN101852942A (zh) * 2009-04-02 2010-10-06 北京京东方光电科技有限公司 全反射式液晶显示器
CN106569365A (zh) * 2016-10-28 2017-04-19 京东方科技集团股份有限公司 反射式显示器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114089576A (zh) * 2021-08-13 2022-02-25 友达光电股份有限公司 全反射显示器
CN114089576B (zh) * 2021-08-13 2023-07-04 友达光电股份有限公司 全反射显示器

Also Published As

Publication number Publication date
CN106569365B (zh) 2019-02-22
US20190265521A1 (en) 2019-08-29
CN106569365A (zh) 2017-04-19
US10690983B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2018076932A1 (zh) 反射式显示器及其制备方法
US10302986B2 (en) Display device
US8610845B2 (en) Display device having color filter and polymer-dispersed liquid crystal (PDLC) layer
JP2003015133A (ja) 液晶表示装置
US10663798B2 (en) Liquid crystal display panel comprising a liquid crystal prism and a reflective prism disposed between first and second substrates and driving method thereof, and display device
WO2018076669A1 (zh) 显示面板及其驱动和制作方法以及显示装置
US20140016052A1 (en) Liquid crystal panel, driving method thereof, and liquid crystal display device containing the same
CN110673411B (zh) 显示面板及显示装置
WO2015002072A1 (ja) 光拡散部材及び表示装置
CN206515585U (zh) 反射式显示器
US9541787B2 (en) Light control film including light control layer with reflection surface and display device including same
CN105259708A (zh) 透明显示器
US9904094B2 (en) Liquid crystal display
US8139186B2 (en) Liquid crystal display device
JP5114853B2 (ja) 表示装置
JP5836847B2 (ja) 液晶表示装置
US10591777B2 (en) Display device with polarizer
WO2020168560A1 (zh) 阵列基板以及显示装置
CN216210335U (zh) 显示装置
CN113589583A (zh) 显示装置
CN112925126A (zh) 黑白显示面板、双层液晶显示基板及双层液晶显示面板
JP2015161926A (ja) 液晶表示装置及び電子装置
KR102111485B1 (ko) 나노캡슐 액정층을 포함하는 반사형 액정표시장치
JP2013182225A (ja) 反射型表示装置
TWI312894B (en) Bi-stable optical states lcd device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865548

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17865548

Country of ref document: EP

Kind code of ref document: A1