[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018076172A1 - 一种图像显示方法及终端 - Google Patents

一种图像显示方法及终端 Download PDF

Info

Publication number
WO2018076172A1
WO2018076172A1 PCT/CN2016/103223 CN2016103223W WO2018076172A1 WO 2018076172 A1 WO2018076172 A1 WO 2018076172A1 CN 2016103223 W CN2016103223 W CN 2016103223W WO 2018076172 A1 WO2018076172 A1 WO 2018076172A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
user
terminal
sensitivity
terminal screen
Prior art date
Application number
PCT/CN2016/103223
Other languages
English (en)
French (fr)
Inventor
杨帆
郑成林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/103223 priority Critical patent/WO2018076172A1/zh
Priority to CN201680086444.9A priority patent/CN109313797B/zh
Publication of WO2018076172A1 publication Critical patent/WO2018076172A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4053Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution

Definitions

  • the present invention relates to the field of image display technologies, and in particular, to an image display method and a terminal.
  • the screen resolution of the terminal is getting higher and higher, and a screen of 2K (2560 ⁇ 1440) or even 4K (3840 ⁇ 2160) appears.
  • a high-resolution image can be stored in the terminal, and then the stored high-resolution image is processed and finally output to the screen display, but the power consumption of the terminal is also increased.
  • High Resolution (HR) image or video therefore, all content stored in the terminal can be low resolution (720p or 1080p, etc.), and then the low resolution content is enlarged to 2K or 4K by super resolution technology.
  • this can reduce the power consumption of the terminal, and at the same time ensure the display of the high-resolution screen, but in the process of use, it is found that due to the variety of super-resolution algorithms, the image obtained by different super-resolution algorithms The quality of the fineness, the amount of calculation required, and the power consumption of the terminal are also different. Therefore, what kind of super-resolution algorithm is used to ensure high-resolution screen display and meet the user's requirements for fineness of image quality. It can reduce the power consumption of the terminal, which is an urgent problem to be solved in the industry.
  • the embodiment of the invention provides an image display method and a terminal, which can adjust the screen display effect according to the sensitivity of the user to the image quality of the terminal screen display image, and can balance the user visual experience with the terminal power consumption, thereby Reduce the power consumption of the terminal to a certain extent.
  • the first aspect of the embodiments of the present invention discloses an image display method, including: determining a sensitivity level, which is used to represent a user's ability to perceive the image quality of the displayed image on the screen of the terminal; the selection and the sensitivity a target super-resolution algorithm corresponding to the degree, wherein the higher the sensitivity, the better the image quality fineness obtained by the target super-resolution algorithm corresponding to the sensitivity; using the target
  • the super-resolution algorithm processes the input original image to obtain a target image, and displays the target image to the terminal screen.
  • the screen display effect is adjusted according to the user's sensitivity to the image quality of the display image of the terminal screen, and the user's visual experience and the power consumption of the terminal can be balanced, thereby reducing the power consumption of the terminal to a certain extent. .
  • determining the sensitivity level includes: obtaining a distance between the user's eyes and the camera, obtaining relative stability of the camera and the user's eyes, and obtaining an ambient light intensity value and location of the terminal. Determining a difference between luminance values of the terminal screen; determining, according to the distance, a first sensitivity level value of the user for the image quality of the displayed image in the terminal screen, determining, according to the relative stability, the user to the terminal a second sensitivity level value of the image quality of the image displayed in the screen and a third sensitivity level value determining the user's image quality of the image displayed in the terminal screen according to the difference; the first sensitivity level The value, the second sensitivity level value, and the sum of the third sensitivity level value and the corresponding weight coefficient product are used as the target sensitivity level value.
  • the sensitivity of the user to the image quality of the displayed image in the terminal screen can be determined by collecting the state information of the user or the environmental state information of the terminal.
  • the relative stability of the acquiring camera and the user's eyes includes: acquiring a distance between the user's eyes and the camera, and/or acquiring between the user's eyes and the camera. An angle of calculating a first change amount of a distance between the user's eyes and the camera in a first preset time and/or calculating an angle between the user's eyes and the camera in a second preset time a second amount of change; determining a relative stability of the camera and the user's eyes according to the first amount of change and/or the second amount of change, the first amount of change being greater and/or the second amount of change The larger the, the lower the relative stability.
  • the relative stability of the camera to the user's eyes can be determined by the amount of change in the distance and/or angle between the user's eyes and the camera.
  • the relative stability of the acquiring camera and the user's eyes includes: acquiring an acceleration of the terminal; calculating a third change amount of the acceleration in a third preset time; according to the third The amount of change determines the relative stability of the camera to the user's eyes, the greater the third amount of change, the lower the relative stability.
  • the camera and the user's eyes can be determined by the amount of change in the acceleration of the terminal. Relative stability.
  • the method before the determining a sensitivity level, further includes: detecting whether the virtual reality application in the terminal is in an activated state; and determining that the user is in the activated state The image quality of the image displayed on the terminal screen is most sensitive; if it is not in the startup state, the determination is performed with a sensitivity level.
  • the beneficial effect of this embodiment is to determine the sensitivity of the user to the image quality of the displayed image in the terminal screen by detecting whether the virtual reality application in the terminal is in an activated state.
  • the method further includes: if not in the startup state, And acquiring a target image in a field of view of the camera; identifying whether the target image includes a face image; and determining the sensitivity level includes: if the face image is not included, determining that the user is in the terminal screen The image quality of the display image is the least sensitive; if the face image is included, the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen is determined.
  • the beneficial effect of this embodiment is to detect whether a potential user is within the field of view of the front camera of the terminal, that is, whether there is a potential user within the range of the screen of the viewable terminal.
  • the method further includes:
  • the face image is included, acquiring an angle between a head orientation of the user corresponding to each face image included in the target image and the terminal screen; calculating a number N of the users whose angle is greater than a preset angle threshold; Determining the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen includes: if the number N of the user is zero, determining that the user displays an image on the screen of the terminal The image quality is the least sensitive; if the number N of the user is greater than zero, determining that the user corresponding to the face image with the angle greater than the preset angle threshold has fine image quality for the image displayed on the terminal screen Degree of sensitivity.
  • An advantage of this embodiment is that it is determined whether the user is likely to be looking at the terminal screen by the angle of the user's head toward the terminal screen.
  • the method further includes:
  • the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen includes: if the number of users M is zero, determining the image quality of the image displayed by the user on the screen of the terminal The sensitivity is the lowest; if the number of users M is greater than zero, determining that the line of sight direction does not deviate from the image of the face image of the display screen of the terminal screen is sensitive to the image quality of the displayed image in the terminal screen. degree.
  • An advantage of this embodiment is that it is determined whether the user is likely to be looking at the terminal screen by the relative position of the user's eyes relative to the terminal screen and the direction of the user's line of sight.
  • the method before the selecting a target super-resolution algorithm corresponding to the sensitivity level, the method further includes: acquiring image quality fineness of a plurality of users on an image displayed on the terminal screen The maximum sensitivity level value of the sensitivity level; the selecting a target super-resolution algorithm corresponding to the sensitivity level comprises: selecting a target super-resolution algorithm corresponding to the maximum sensitivity level value.
  • the beneficial effect of this embodiment is that when a plurality of users look at the terminal screen, the target super-resolution algorithm corresponding to the maximum sensitivity of each user to the image quality of the display image of the terminal screen is determined.
  • a second aspect of the embodiments of the present invention discloses a terminal, including: a processor and a memory, wherein the memory stores executable program code, an original image, and a target obtained by processing the original image.
  • An image the processor is configured to: determine a degree of sensitivity for characterizing a user's perception of the image quality of the displayed image in the terminal screen; and selecting a target super-resolution corresponding to the sensitivity level a rate algorithm, the higher the sensitivity is, the better the image quality is obtained by the target super-resolution algorithm corresponding to the sensitivity; the target super-resolution algorithm is used to process the input original image to obtain the target image, Displaying the target image to the terminal screen.
  • the determining, by the processor, a degree of sensitivity includes: acquiring a distance between the user's eyes and the camera, obtaining relative stability of the camera and the user's eyes, and obtaining an ambient light intensity value of the terminal. a difference from a brightness value of the terminal screen; according to the distance Determining, by the user, a first sensitivity level value of the image quality fineness of the displayed image in the terminal screen, determining a second sensitivity level value of the user for the image quality fineness of the displayed image in the terminal screen according to the relative stability, and Determining, according to the difference, a third sensitivity level value of the user for the image quality of the displayed image in the terminal screen; and the first sensitivity level value, the second sensitivity level value, and the third sensitivity level The sum of the value and the corresponding weight coefficient product is used as the target sensitivity value.
  • the processor acquires relative stability of the camera and the user's eyes, specifically for performing the following operations: acquiring a distance between the user's eyes and the camera and/or acquiring the user An angle between the eye and the camera; calculating a first amount of change in the distance between the user's eye and the camera in a first predetermined time and/or calculating the user's eye and the second predetermined time a second amount of change in the angle between the cameras; determining a relative stability of the camera and the user's eyes based on the first amount of change and/or the second amount of change, the first amount of change being greater / or the greater the second amount of change, the lower the relative stability.
  • the processor acquires relative stability of the camera and the user's eyes, and is specifically configured to: acquire an acceleration of the terminal; and calculate a third acceleration of the third preset time a variation amount; determining a relative stability of the camera and the user's eyes according to the third variation, the greater the third variation, the lower the relative stability.
  • the processor before determining the sensitivity level, is further configured to: detect whether the virtual reality application in the terminal is in an activated state; if in the startup state, It is determined that the user is most sensitive to the image quality of the displayed image in the terminal screen; if not in the activated state, the determination is performed to determine a sensitivity level.
  • the processor is further configured to perform the following operations after detecting whether the virtual reality application in the terminal is in an activated state, and before determining the sensitivity level:
  • the virtual reality application is not in an activated state, acquiring a target image within a field of view of the camera; identifying whether the target image includes a face image; and the processor determining a sensitivity level includes: if not included The face image determines that the user is least sensitive to the image quality of the displayed image in the terminal screen; if the face image is included, determining that the user corresponding to the face image displays an image on the terminal screen The sensitivity of the fineness of the picture quality.
  • the processor identifies whether the target image includes a face image, and the user corresponding to the face image determines the terminal screen Before the sensitivity of the image quality of the image is displayed, the following operations are also performed: if the face image is included, acquiring the head orientation of the user corresponding to each face image included in the target image and the terminal An angle of the screen; calculating a number N of the users whose angle is greater than a preset angle threshold; the processor determining, by the processor, the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen includes: If the number N of the users is zero, it is determined that the user is least sensitive to the image quality of the displayed image in the terminal screen; if the number N of the user is greater than zero, determining that the angle is greater than the pre- The degree of sensitivity of the user corresponding to the face image of the angle threshold to the image quality of the displayed image in the terminal screen.
  • the processor after the identifying the target image includes a face image, and displaying the user corresponding to the face image on the terminal screen Before the sensitivity of the image quality of the image is used, the following operations are also performed: if the face image is included, the line of sight direction of the user corresponding to each face image included in the target image is acquired; Deviating from the number of users of the display area of the terminal screen; the processor determining the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen includes: if the number of users M If it is zero, it is determined that the user is least sensitive to the image quality fineness of the displayed image in the terminal screen; if the number of users M is greater than zero, it is determined that the line of sight direction does not deviate from the display area of the terminal screen The sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen.
  • the processor before the selecting the target super-resolution algorithm corresponding to the sensitivity level, is further configured to: acquire a plurality of users to display an image on the terminal screen The maximum sensitivity value in the sensitivity of the image quality fineness; the processor selecting the target super-resolution algorithm corresponding to the sensitivity level comprises: selecting a target super-resolution algorithm corresponding to the maximum sensitivity level value.
  • a third aspect of the embodiments of the present invention discloses a terminal, including: a first determining unit, configured to determine a sensitivity level, where the sensitivity level is used to represent a user's ability to perceive the image quality of the displayed image on the terminal screen; a selection unit, configured to select a target super-resolution algorithm corresponding to the sensitivity level, wherein the higher the sensitivity degree, the better the image quality fineness obtained by the target super-resolution algorithm corresponding to the sensitivity degree; the image processing unit , the original map for input using the target super-resolution algorithm For example, processing is performed to obtain a target image; and a display unit is configured to display the target image to the terminal screen.
  • the first determining unit includes: a first acquiring unit, configured to acquire a distance between the user's eyes and the camera; and a second acquiring unit, configured to acquire relative stability of the camera and the user's eyes. a third obtaining unit, configured to acquire a difference between an ambient light intensity value of the terminal and a brightness value of the terminal screen; and a first determining subunit, configured to determine, according to the distance, the user a first sensitivity level value of the image quality of the image displayed in the terminal screen, determining a second sensitivity level value of the user for the image quality of the image displayed in the terminal screen according to the relative stability, and determining the difference according to the difference Determining, by the user, a third sensitivity level value of the image quality of the image displayed in the terminal screen; the first determining subunit is further configured to use the first sensitivity level value, the second sensitivity level value, and The sum of the product of the third sensitivity level and the corresponding weight coefficient is used as the target sensitivity level value.
  • the second acquiring unit includes: a second acquiring subunit, configured to acquire a distance between the user's eyes and the camera, and/or acquire the user's eyes and the camera An angle between the first calculation unit for calculating a first change amount of a distance between the user's eyes and the camera in a first preset time and/or calculating the user's eyes in a second preset time a second variation of an angle with the camera; a second determining subunit, configured to determine a relative stability of the camera and the user's eyes according to the first amount of change and/or the second amount of change The greater the first amount of change and/or the greater the second amount of change, the lower the relative stability.
  • the second acquiring unit includes: a second acquiring subunit, configured to acquire acceleration of the terminal; and a first calculating unit, configured to calculate the acceleration in the third preset time a third determining unit, configured to determine a relative stability of the camera and the user's eyes according to the third amount of change, the greater the third amount of change, the lower the relative stability .
  • the terminal further includes: a detecting unit, configured to detect whether the virtual reality application in the terminal is in an activated state; and the first determining unit is further configured to be in an activated state Determining that the user is most sensitive to the image quality of the displayed image in the terminal screen; when not in the activated state, performing the determination of a sensitivity level.
  • the terminal further includes: a fourth acquiring unit, configured to acquire a target in a field of view of the camera when the virtual reality application is not in an activated state
  • An image recognition unit configured to identify whether a face image is included in the target image
  • the first determining unit is further configured to: when the face image is not included, determine, by the user, the image displayed on the terminal screen The image quality fineness is the least sensitive; when the face image is included, the sensitivity of the user corresponding to the face image to the image quality of the displayed image in the terminal screen is determined.
  • the terminal further includes: a fifth acquiring unit, configured to acquire a head orientation of the user corresponding to each face image included in the target image when the face image is included
  • the second computing unit is configured to calculate the number N of users whose angle is greater than a preset angle threshold
  • the first determining unit is further configured to determine when the number of users N is zero
  • the user is least sensitive to the image quality of the displayed image in the terminal screen; when the number N of the user is greater than zero, determining the user pair corresponding to the face image whose angle is greater than the preset angle threshold The sensitivity of the image quality of the image displayed on the terminal screen.
  • the terminal further includes: a sixth acquiring unit, configured to acquire a line of sight direction of the user corresponding to each face image included in the target image when the face image is included; a calculating unit, configured to calculate a number M of users whose direction of the line of sight does not deviate from the display area of the terminal screen; the first determining unit is further configured to: when the number of users M is zero, determine the user to the terminal The image quality of the image displayed in the screen is the least sensitive; when the number of users M is greater than zero, the user corresponding to the face image whose direction of the line of sight does not deviate from the display area of the terminal screen is determined to be the terminal screen.
  • the degree of sensitivity of the image quality displayed in the image is the degree of sensitivity of the image quality displayed in the image.
  • the terminal further includes: a seventh acquiring unit, configured to acquire a maximum sensitivity level value of a plurality of users in sensitivity to the image quality of the displayed image in the terminal screen;
  • the selecting unit is specifically configured to select a target super-resolution algorithm corresponding to the maximum sensitivity level value.
  • a fourth aspect of the embodiments of the present invention discloses a computer storage medium for storing the computer software instructions of the above first aspect, comprising a program designed to execute the above aspects.
  • the sensitivity of the image quality is shown, and the target super-resolution algorithm corresponding to the above sensitivity is selected.
  • the input original image is processed using the above-described target super-resolution algorithm to obtain a target image, and the target image is displayed on the terminal screen. Therefore, the screen display effect can be adjusted according to the sensitivity of the user to the image quality of the display image of the terminal screen, and the user visual experience and the power consumption of the terminal can be balanced, thereby reducing the power consumption of the terminal to a certain extent.
  • FIG. 1 is an exemplary implementation scenario of an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an image display method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart diagram of another image display method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of another image display method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart diagram of another image display method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another terminal according to an embodiment of the present invention.
  • the embodiment of the invention discloses an image display method and a terminal, which can adjust the screen display effect according to the sensitivity of the user to the image quality of the terminal screen display image, and can balance the user visual experience and the terminal power consumption, thereby Reduce the power consumption of the terminal to a certain extent.
  • FIG. 1 exemplarily shows a user usage scenario of the present invention.
  • the sensitivity is high. Selecting a super-resolution algorithm that displays a relatively high image quality, and generating a display image.
  • FIG. 2 is a schematic flowchart diagram of an image display method according to an embodiment of the present invention.
  • the image display method shown in FIG. 2 may include the following steps:
  • the terminal may include a terminal such as a smart phone, a tablet computer, a personal digital assistant (PDA), and a mobile Internet device (MID).
  • the terminal may include at least one processor, and the terminal may operate under the control of the at least one processor.
  • a sensitivity level is determined, where the sensitivity level is used to represent the user's ability to perceive the image quality of the displayed image in the terminal screen, that is, the user displays the image on the terminal screen.
  • the sensitivity of the quality of the image quality can include the following operations:
  • the sum of the first sensitivity level value, the second sensitivity level value, and the third sensitivity level value and the corresponding weight coefficient product is used as the target sensitivity level value.
  • the distance between the user's eyes and the camera can be obtained by the distance measuring component such as the infrared sensor, the depth of field camera or the distance sensor in the terminal, and the angle between the two cameras and the two cameras according to the human eye by the double front camera and two
  • the distance between the cameras calculates the distance between the user's eyes and the camera.
  • the face image captured by the single front camera can also be used to estimate the distance between the user's eyes and the camera according to the pupil distance of the pupil.
  • the image size estimates the distance between the user's eyes and the camera.
  • the first sensitivity level of the user's image quality in the terminal screen is determined. Different distance ranges can be set. Each distance range corresponds to a sensitivity level value, and a functional relationship between the distance and the sensitivity level value can be established by trial calibration, wherein the greater the distance between the user's eyes and the camera, the lower the first sensitivity level value.
  • obtaining the relative stability of the camera to the user's eyes may include the following:
  • the relative stability of the camera and the user's eyes is determined according to the first change amount and/or the second change amount, and the greater the first change amount and/or the second change amount is, the lower the relative stability is.
  • determining the relative stability of the camera and the user's eyes can also indicate the relative stability of the user's eyes and the terminal screen.
  • the user when the user views the screen of the terminal, the user is mainly facing the terminal screen. Therefore, it is necessary to obtain relative stability between the front camera and the user's eyes.
  • the angle between the user's eyes and the camera may be calculated by the deviation of the image area of the user's eyes in the image acquired by the front camera relative to the center point of the entire image, wherein the angle between the user's eyes and the camera is specifically The angle between the line of the eye to the camera and the central axis of the camera (the central axis is perpendicular to the terminal screen), specifically indicating the horizontal direction of the camera center axis Angle and angle in the vertical direction to the camera's central axis.
  • the first preset time and the second preset time may be determined by an experiment or determined by an empirical value.
  • the relative stability of the camera and the user's eyes may be determined according to the amount of change between the distance between the user's eyes and the camera, or may be determined according to the amount of change between the angle between the user's eyes and the camera, and may also be based on the distance and the angle. The amount of change is determined at the same time, and the specific embodiment of the present invention is not limited.
  • the second sensitivity level of the user's image quality on the screen of the terminal may be determined based on the relative stability of the camera and the user's eyes. Different relative stability ranges can be set, each range corresponds to a sensitivity value, and a functional relationship between the relative stability and the sensitivity value can be established by experimental calibration, wherein the lower the relative stability, the second The lower the sensitivity value.
  • obtaining the relative stability of the camera and the user's eyes may further include the following manners:
  • the relative stability of the camera to the user's eyes is determined according to the third variation described above, and the greater the third amount of change, the lower the relative stability.
  • the acceleration of the terminal can be determined by the amount of change of the value obtained by the sensor related to the terminal position, such as an acceleration sensor, a gravity sensor, a gyroscope, or the like in the terminal.
  • the value obtained by the sensor is derived according to time, and if In the case of acceleration, the acceleration direction is a fixed direction, and the acceleration value is a fixed value, the user can maintain the relative stability between the camera and the user's eyes, and when the direction of the acceleration or the value of the acceleration changes greatly, the camera and the camera The relative stability between the eyes of the user is reduced.
  • the relative stability between the camera and the user's eyes by the sum of the accelerations of the three components of the X direction, the Y direction, and the Z direction of the terminal acquired by the acceleration sensor and the gyroscope, for example, if the acceleration of the above three components is And less than a certain threshold, it can indicate that the terminal is in a uniform or fixed state, and the camera and the user's eyes can maintain a relatively stable state. If the sum of the accelerations of the above three components is large, the camera is indicated. Relative stability to the user's eyes is low.
  • the ambient light intensity value of the terminal can be obtained by the photosensitive component such as the photosensitive chip, the camera or the light sensor in the terminal, and the brightness value of the terminal screen can be obtained, if the ambient light intensity value is greater than the terminal
  • the brightness value of the screen acquires the difference between the ambient light intensity value of the terminal and the brightness value of the terminal screen, and the sensitivity of the user to the image quality of the image displayed on the terminal screen when the difference is larger Will decrease accordingly.
  • the third sensitivity level of the user to the image quality of the displayed image in the terminal screen may be determined based on the difference between the ambient light intensity value of the terminal and the brightness value of the terminal screen, and different difference intervals may be set. Range, each range corresponds to a sensitivity value, and a functional relationship between the light intensity difference and the sensitivity value may be established by trial calibration, wherein the larger the difference is, the lower the third sensitivity value is.
  • a weight may be determined for each manner of obtaining the sensitivity.
  • the final sensitivity value is the result of multiplying the sensitivity value obtained by each method by the corresponding weight value. .
  • interpolation-based SR the simplest method is to interpolate based on the spatial mean and convolution of image pixel values, such as bilinear interpolation, bicubic interpolation, and multi-phase interpolation; such interpolation algorithms require only a few multiply-accumulate operations.
  • the resource area is very small (about 100,000 logic gates), and the corresponding power consumption will be very low.
  • the effect of this kind of algorithm is also poor, and it is prone to edge aliasing and image blurring. Therefore, the image obtained by this type of super-resolution algorithm has a poor display effect.
  • interpolation-based SR there are some content-adaptive-based methods, such as NEDI (New Edge-Directed interpolation), SAI (Soft-Decision Adaptive Interpolation), Double Interpolation, etc., which are adaptively interpolated according to image content.
  • Edge aliasing and image sharpness have some improvement over the previously mentioned simple difference algorithm, but such algorithms are prone to side effects (such as black and white edges, ringing, etc.) and the details are difficult to further improve.
  • the calculation operation of this kind of algorithm is relatively complicated, the resource area is also large (about 500,000 logic gates), and the corresponding power consumption will be larger.
  • the image obtained by this type of super-resolution algorithm has a relatively large display effect. Species The effect is better.
  • an image training set is generally used to generate a learning model, which is used to create more high frequency information for the input low resolution image. Therefore, this type of algorithm can recover more high-frequency details, while the image is fresher and can provide effects close to true high-definition images.
  • this kind of algorithm requires a large-scale storage database (corresponding to the dictionary or weight library of the image), and the operation of the database is frequent, the resource area is larger than the first two categories (about 150 to 2 million logic gates). The power consumption will be relatively large, however, the display effect of the image obtained by using this type of super-resolution algorithm is better than the second effect.
  • the image quality of the SR algorithm based on the learning class is better than the content-based adaptive algorithm based on the interpolation-based SR algorithm, and the image based on the content adaptive algorithm in the interpolation-based SR algorithm.
  • the image quality is better than the interpolation-based SR algorithm based on the spatial average of the pixel values of the image and the convolution.
  • the super-resolution algorithm used in the embodiment of the present invention is not limited to the above-mentioned learning-based SR algorithm and the interpolation-based SR algorithm. .
  • the input original image is processed by using the target super-resolution algorithm to obtain a target image, and the target image is displayed on the terminal screen.
  • the processed target image is displayed on the terminal screen, and the sensitivity of the user may be determined according to the image quality of the image displayed on the terminal screen. Adjusting the screen display balances the user's visual experience with the power consumption of the terminal.
  • the screen display effect can be adjusted according to the user's sensitivity to the image quality of the terminal screen display image, and the user visual experience and the terminal power consumption can be balanced, thereby Reduce the power consumption of the terminal to a certain extent.
  • FIG. 3 is a schematic flowchart diagram of another image display method according to an embodiment of the present invention. In the image display method described in FIG. 3, the following steps may be included:
  • the sensitivity is determined to be the highest.
  • the camera is specifically a front camera in the terminal.
  • the face recognition mode may be used to determine whether the target image includes a face image, that is, whether a potential user is within the range of the viewable terminal screen.
  • Most of the current terminals have a front camera, so face recognition can be performed based on the image taken by the front camera.
  • the face recognition technology used may include but is not limited to the following:
  • the reference template method is to pre-design a template of one or more standard faces, and then calculate the degree of matching between the picture taken by the front camera and the template of the standard face, and if the matching degree exceeds the preset threshold, it is determined that the person is identified. face.
  • the face rule method that is, using the structural distribution features of the face to generate corresponding rules, matches the picture taken by the front camera with the rule for face recognition.
  • the sample learning method that is, using the artificial neural network method, learns and trains the classifier through the face image sample set and the non-face image sample set, and inputs the picture taken by the front camera into the classifier to obtain whether the picture contains the classification result of the face. .
  • the skin color model method that is, according to the law that the facial skin color is relatively concentrated in the color space, detects whether the picture taken by the front camera includes a human face.
  • the feature sub-face method is to treat all the face image sets as one face image subspace, and determine whether the picture taken by the front camera contains a human face based on the distance between the picture taken by the front camera and the projection of the face image subspace.
  • the target image captured by the front camera does not include the face image, it means that no user is looking at the terminal screen, in order to save the power consumption of the terminal, the quality of the image displayed by the user on the screen of the terminal is determined.
  • the sensitivity is the lowest, and the target super-resolution algorithm corresponding to the lowest sensitivity is selected.
  • the image obtained by the target super-resolution algorithm has the lowest image quality.
  • 205 If a face image is included, acquiring an angle between a head orientation of the user corresponding to each face image included in the target image and a screen of the terminal;
  • the user when the angle between the head of the user and the screen of the terminal is only within a suitable range, the user can see the content displayed on the screen of the terminal.
  • Obtaining the angle between the user's head orientation and the terminal screen can be performed by using a statistical classifier (such as support vector machine, artificial neural network, stealth Markov model, etc.), using known images to train different head orientations corresponding to the image.
  • a series of classifiers classify the user's head image currently captured by the terminal front camera according to a series of classifiers completed by the training, and the head orientation angle corresponding to the classifier that obtains the highest trust value is the head orientation of the user.
  • the angle with the terminal screen is performed by using a statistical classifier (such as support vector machine, artificial neural network, stealth Markov model, etc.), using known images to train different head orientations corresponding to the image.
  • a series of classifiers classify the user's head image currently captured by the terminal front camera according to a series of classifiers completed by the training,
  • the angle between the user head orientation and the terminal screen is greater than a certain angle threshold, the user can see the content displayed on the terminal screen, for example, when the user's head is facing the terminal screen, the clip is clipped.
  • the angle is 90 degrees and the angle threshold can be determined experimentally.
  • the number of users N is zero, it means that no user is looking at the content displayed on the screen of the terminal.
  • the user is least sensitive to the fineness of the image displayed on the screen of the terminal, and the sensitivity is selected.
  • the image obtained by the target super-resolution algorithm has the lowest image quality.
  • the sensitivity of the user corresponding to the face image with the angle greater than the preset angle threshold to the image quality of the displayed image in the terminal screen can be referred to the description of step 101 in the method embodiment 1, and the embodiment of the present invention will not be performed. repeat.
  • the number of users N is greater than zero, it means that there is a user who can see the content displayed on the screen of the terminal, and therefore, a person who can obtain an angle between all the heads of the target image and the screen of the terminal is greater than a preset angle threshold.
  • the maximum sensitivity level value determined by the step 208 can be used as the basis for selecting the target super-resolution algorithm, so that the image quality of all the users on the display screen of the terminal screen can be satisfied. Claim.
  • each user who can see the display content of the terminal screen is determined by identifying the target image captured by the terminal front camera.
  • the target super-resolution algorithm corresponding to the maximum sensitivity value of the above sensitivity is selected to adjust the screen display effect, and the user visual experience and the terminal power consumption can be balanced. Therefore, the power consumption of the terminal can be reduced to some extent.
  • FIG. 4 is a schematic flowchart diagram of another image display method according to an embodiment of the present invention. In the image display method described in FIG. 4, the following steps may be included:
  • the camera is specifically a front camera in the terminal.
  • the face recognition method may be used to determine whether the target image includes a human face.
  • Image ie detecting if a potential user is within range of the viewable terminal screen.
  • Most of the current terminals have a front camera, so face recognition can be performed based on the image taken by the front camera.
  • the face recognition technology used may refer to the implementation manner of step 203, and details are not described herein.
  • the target image captured by the front camera does not include the face image, it means that no user is looking at the terminal screen, in order to save the power consumption of the terminal, the quality of the image displayed by the user on the screen of the terminal is determined.
  • the sensitivity is the lowest, and the target super-resolution algorithm corresponding to the lowest sensitivity is selected.
  • the image obtained by the target super-resolution algorithm has the lowest image quality.
  • the user will not be able to see the content displayed on the screen of the terminal.
  • whether the user's line of sight deviates from the display area of the terminal screen may be determined by: obtaining a horizontal distance between the pupil center and the center of the eye, and obtaining a vertical distance between the center of the pupil and the center of the eye, wherein the horizontal distance indicates strabismus
  • the vertical distance represents a pitched view. If the horizontal distance exceeds the horizontal distance threshold or the vertical distance exceeds the vertical distance threshold, it may be determined that the user's line of sight direction deviates from the display area of the terminal screen.
  • the human eye image can be determined by image processing through the captured face image, and the binarized eye window is re-binarized by the partition dynamic threshold method, and the center position of the eye is determined by the rectangular frame matching method, and then the template is used.
  • the matching method or the mountain algorithm determines the center position of the pupil, and then the horizontal distance between the center of the pupil and the center of the eye and the vertical distance between the center of the pupil and the center of the eye can be calculated.
  • the following manner may also be used to determine whether the user's line of sight deviates from the display area of the terminal screen: establishing a three-dimensional coordinate system, first finding the eye by the angle of the eye and the front camera and the distance between the eye and the front camera In the relative spatial position of the front camera, the horizontal and vertical distances of the pupil center and the center of the eye are used to calculate the approximate field of view coverage of the line of sight, and then the mapping area of the field of view on the plane of the screen is calculated. Coincident, if there is a coincident area, the user is watching the terminal screen, otherwise the user does not watch the terminal screen.
  • the angle between the eye and the front camera can be obtained by establishing a reference coordinate system, setting the position where the front camera is located as the origin, and determining the plane determined by the terminal screen as the XY plane, which is determined by the front camera.
  • the center line of the field of view in the field of view is set to the Z axis, and the target point observed from the camera along the Z axis is the center point of the image acquired by the front camera.
  • Performing human eye recognition on the image acquired by the front camera to determine the human eye area thereby calculating the distance between the eye position and the center point of the image acquired by the front camera, that is, determining the horizontal and vertical offset of the eye relative to the center point of the image. ( ⁇ X, ⁇ Y), and then the angle of the eye position from the center line of the front camera field of view can be calculated by the following formula:
  • ⁇ x and ⁇ y respectively represent the horizontal angle and the vertical angle of the eye from the center line of the field of view
  • ⁇ L and ⁇ H respectively represent the horizontal maximum angle and the vertical maximum angle of the field of view of the front camera of the terminal
  • L and H represent The horizontal and vertical pixels of the image acquired by the terminal front camera.
  • the distance between the eye and the front camera can be estimated by the size of the eye in the image acquired by the front camera, or can be approximated by the distance between the face and the front camera.
  • the number of users is zero, it means that no user is watching the content displayed on the screen of the terminal.
  • the image obtained by the target super-resolution algorithm has the lowest image quality.
  • determining the sensitivity of the user corresponding to the face image of the display area that does not deviate from the display area of the terminal screen to the image quality of the displayed image in the terminal screen may refer to the method in the first embodiment.
  • the description of step 101 will not be repeated in the embodiment of the present invention.
  • the number of users M is greater than zero, it means that there is a user who can see the content displayed on the screen of the terminal. Therefore, the user-to-terminal corresponding to the face image in which the direction of the line of sight in the target image does not deviate from the display area of the terminal screen can be acquired.
  • the sensitivity of the image quality of the image displayed on the screen is not limited.
  • the maximum sensitivity level value determined by the step 308 can be used as the basis for selecting the target super-resolution algorithm, so that the image quality of all the users on the display image of the terminal screen can be satisfied. Claim.
  • the input original image is processed by using the target super-resolution algorithm to obtain a target image, and the target image is displayed on the terminal screen.
  • each user who can see the display content of the terminal screen is determined by identifying the target image captured by the terminal front camera.
  • the target super-resolution algorithm corresponding to the maximum sensitivity value of the above sensitivity is selected to adjust the screen display effect, and the user visual experience and the terminal power consumption can be balanced. Therefore, the power consumption of the terminal can be reduced to some extent.
  • FIG. 5 is a schematic flowchart diagram of another image display method according to an embodiment of the present invention. In the image display method described in FIG. 5, the following steps may be included:
  • the camera is specifically a front camera in the terminal.
  • the user when the angle between the head of the user and the screen of the terminal is greater than the preset angle threshold, the user may see the content displayed on the screen of the terminal, and the user may face the screen while looking at the screen, or the user may The face is facing the screen, but the eyes are looking at other directions, so it is impossible to confirm whether the user is viewing the screen according to the head orientation, and the head orientation can be combined with the user's line of sight to more accurately determine whether the user is watching the screen.
  • step 101 the specific implementation manner of determining the sensitivity of the user corresponding to the face image of the display area of the terminal screen to the image quality of the display image in the terminal screen may be referred to in step 101 in Embodiment 1
  • the description of the present invention will not be repeated.
  • the input original image is processed by using the target super-resolution algorithm to obtain a target image, and the target image is displayed on the terminal screen.
  • the virtual reality application in the terminal is performed by using the image display method described in FIG.
  • the target image captured by the terminal front camera is identified to determine the sensitivity of each user who can see the display content of the terminal screen to the image quality of the terminal screen display image, and the maximum sensitivity is selected.
  • the target super-resolution algorithm corresponding to the sensitivity value adjusts the screen display effect, and can balance the user visual experience with the terminal power consumption, thereby reducing the power consumption of the terminal to a certain extent.
  • FIG. 6 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal includes: at least one processor 501, memory 502, camera 503, sensor 504, input and output module 505, and user interface 506; in some embodiments of the invention, these components may be through a bus or other Way to connect.
  • the processor 501 may be a general-purpose processor, such as a central processing unit (CPU), or may be a digital signal processor (DSP), an application specific integrated circuit (ASIC), or One or more integrated circuits configured to implement embodiments of the present invention.
  • the processor 501 can process data received by the camera 503 and the sensor 504.
  • the processor 501 can also display the most processed result through the input and output module 505.
  • the camera 503 can include a front camera or a rear camera.
  • the camera 503 can be used as a captured image.
  • the camera 503 is composed of a lens, an image sensor, a digital signal processing chip, a photosensitive element, and the like.
  • the image sensor includes a photosensitive pixel array and is disposed at the camera. A filter on the photosensitive pixel array.
  • the image sensor may be a Charged Coupled Device (CCD) image sensor or a Complementary Metal Oxide Semiconductor (CMOS) sensor.
  • CCD Charged Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may acquire a light intensity value of an environment in which the terminal is located.
  • the accelerometer sensor can detect the acceleration of each direction (usually three axes), which can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, magnetometer attitude calibration), vibration recognition related Function (such as pedometer, tapping), etc.; gravity sensor as a kind of motion sensor can also be used to detect the acceleration of the terminal.
  • the gravity sensor is used to sense the gravity generated by the terminal during the shaking process;
  • Processor 501 converts the gravity sensed by the gravity sensor into an acceleration value with a direction; as for other sensors such as a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., which are also configurable by the terminal, no further description is provided here.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the memory 502 is configured to store the program code, the original image, and the target image obtained by processing the original image, and the memory 502 transmits the stored program code to the CPU.
  • the memory 502 may include a volatile memory (Volatile Memory), such as a random access memory (RAM); the memory 502 may also include a non-volatile memory (Non-Volatile Memory), such as a read-only memory (Read- Only Memory, ROM), Flash Memory, Hard Disk Drive (HDD), or Solid-State Drive (SSD); the memory 502 may also include a combination of the above types of memories.
  • the memory 502 is coupled to the processor 501 via a bus.
  • the input and output module 505 is mainly used to implement an interaction function between the terminal and the user/external environment, and mainly includes an audio input and output module, a key input module, a display, and the like. In a specific implementation, the input and output module 505 may further include: a camera, a touch screen, a sensor, and the like. The input/output module 505 communicates with the processor 501 through the user interface 506.
  • the processor 501 is configured to perform the following operations by calling program code stored in the memory 502:
  • the input original image is processed using the above-described target super-resolution algorithm to obtain a target image, and the target image is displayed on the terminal screen.
  • the screen display effect can be adjusted according to the sensitivity of the user to the resolution of the image displayed on the terminal screen, and the user visual experience and the power consumption of the terminal can be balanced, thereby The power consumption of the terminal can be reduced to some extent.
  • FIG. 7 is a schematic structural diagram of another terminal according to an embodiment of the present invention. As shown in FIG. 7, the terminal may include:
  • a first determining unit 601 configured to determine a sensitivity level, where the sensitivity level is used to represent a user's ability to perceive the image quality of the displayed image in the terminal screen;
  • the selecting unit 602 is configured to select a target super-resolution algorithm corresponding to the sensitivity level, and the higher the sensitivity, the better the image quality fineness obtained by the target super-resolution algorithm corresponding to the sensitivity level;
  • An image processing unit 603, configured to process the input original image by using the target super-resolution algorithm to obtain a target image
  • the display unit 604 is configured to display the target image described above to the terminal screen.
  • the terminal is presented in the form of a functional unit.
  • a "unit” herein may refer to an ASIC circuit, a processor and memory that executes one or more software or firmware programs, and/or other devices that can provide the functions described above.
  • the terminal can take the form shown in FIG. 6.
  • the determining unit 601 can be implemented by the processor 501, the camera 503, and the sensor 504 in FIG. 6.
  • the selecting unit 602 and the image processing unit 603 can be implemented by the processor 501 of FIG. 6, and the display unit 604 can pass the input of FIG.
  • the output module 505 is implemented.
  • the screen display effect can be adjusted according to the sensitivity of the user to the image quality of the display image of the terminal screen, and the user visual experience and the power consumption of the terminal can be balanced, thereby reducing the power consumption of the terminal to a certain extent. .
  • the embodiment of the present invention can adjust the screen display effect according to the sensitivity of the user to the image quality of the display image of the terminal screen, and can balance the user's visual experience with the power consumption of the terminal, thereby being able to Reduce the power consumption of the terminal.
  • the storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

一种图像显示方法及终端,其中,图像显示方法包括:确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;选择与该敏感程度对应的目标超分辨率算法,其中,该敏感程度越高则该敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;使用目标超分辨率算法对输入的原始图像进行处理得到目标图像,将目标图像显示到终端屏幕。可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。

Description

一种图像显示方法及终端 技术领域
本发明涉及图像显示技术领域,尤其涉及一种图像显示方法及终端。
背景技术
随着人们对于终端上高质量、高清晰的图像信息要求的逐渐提高,终端的屏幕分辨率越来越高,出现了2K(2560×1440),甚至4K(3840×2160)的屏幕。为了适应高分辨率屏幕内容的输出,可以在终端中存储高分辨率图像,然后通过对存储的高分辨率图像进行处理,最后输出至屏幕显示,但是同时也增加了终端的功耗。
因此,为了减少终端的功耗同时也可以适应高分辨率图像内容的输出,目前主要通过采用超分辨率(Super Resolution,SR)技术从低分辨率(Low Resolution,LR)图像或者视频生成高分辨率(High Resolution,HR)图像或视频,因此,在终端中存储的所有内容可以是低分辨率(720p或1080p等),然后通过超分辨率技术将这些低分辨率的内容放大到2K或者4K来适应屏幕显示,这样就能减少终端的功耗,同时又可以保证高分辨率屏幕的显示,但是在使用过程中发现,由于超分辨率算法种类众多,不同的超分辨率算法得到的图像画质精细度、需要的计算量以及带来的终端功耗也各不相同,因此,采用何种超分辨率算法,在既能保证高分辨率屏幕显示并且满足用户对画质精细度要求的同时,又可以降低终端的功耗,是业界亟需解决的难题。
发明内容
本发明实施例提供了一种图像显示方法及终端,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
本发明实施例第一方面公开了一种图像显示方法,包括:确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;选择与所述敏感程度对应的目标超分辨率算法,所述敏感程度越高则所述敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;使用所述目标 超分辨率算法对输入的原始图像进行处理得到目标图像,将所述目标图像显示到所述终端屏幕。
在该实施方式中,根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
作为一种可选的实施方式,所述确定一个敏感程度包括:获取用户眼睛与摄像头之间的距离、获取摄像头与用户眼睛的相对稳定性以及获取所述终端所处的环境光强度值与所述终端屏幕的亮度值之间的差值;根据所述距离确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据所述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据所述差值确定用户对所述终端屏幕中显示图像的画质精细度的第三敏感程度值;将所述第一敏感程度值、所述第二敏感程度值以及所述第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
在该实施方式中,通过采集用户的状态信息或者终端所处的环境状态信息可以确定用户对终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述获取摄像头与用户眼睛的相对稳定性包括:获取所述用户眼睛与所述摄像头之间的距离和/或获取所述用户眼睛与所述摄像头之间的角度;计算第一预设时间内所述用户眼睛与所述摄像头之间的距离的第一变化量和/或计算第二预设时间内所述用户眼睛与所述摄像头之间的角度的第二变化量;根据所述第一变化量和/或所述第二变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第一变化量越大和/或所述第二变化量越大,则所述相对稳定性越低。
在该实施方式中,通过用户眼睛与摄像头之间的距离和/或角度的变化量可以确定摄像头与用户眼睛的相对稳定性。
作为一种可选的实施方式,所述获取摄像头与用户眼睛的相对稳定性包括:获取所述终端的加速度;计算第三预设时间内所述加速度的第三变化量;根据所述第三变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第三变化量越大,则所述相对稳定性越低。
在该实施方式中,通过终端的加速度的变化量可以确定摄像头与用户眼睛 的相对稳定性。
作为一种可选的实施方式,在所述确定一个敏感程度之前,所述方法还包括:检测所述终端中的虚拟现实应用程序是否处于启动状态;若处于启动状态,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最高;若不是处于启动状态,则执行所述确定一个敏感程度。
该实施方式的有益效果为,通过检测终端中的虚拟现实应用程序是否处于启动状态,确定用户对终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,在所述检测所述终端中的虚拟现实应用程序是否处于启动状态之后,以及在所述确定一个敏感程度之前,所述方法还包括:若不是处于启动状态,则获取所述摄像头的视场范围内的目标图像;识别所述目标图像中是否包含人脸图像;所述确定一个敏感程度包括:若不包含人脸图像,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若包含人脸图像,则确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
该实施方式的有益效果为,检测是否有潜在用户处在终端前置摄像头的视场范围内,即是否有潜在用户处在可观看终端屏幕的范围内。
作为一种可选的实施方式,在所述识别所述目标图像中是否包含人脸图像之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度之前,所述方法还包括:
若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的头部朝向与所述终端屏幕的夹角;计算所述夹角大于预设角度阈值的用户数量N;所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度包括:若所述用户数量N为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若所述用户数量N大于零,则确定所述夹角大于所述预设角度阈值的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
该实施方式的有益效果为,通过用户的头部朝向与终端屏幕的夹角,确定用户是否有可能在注视终端屏幕。
作为一种可选的实施方式,在所述识别所述目标图像中是否包含人脸图像 之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度之前,所述方法还包括:
若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的视线方向;计算所述视线方向没有偏离所述终端屏幕的显示区域的用户数量M;所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度包括:若所述用户数量M为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若所述用户数量M大于零,则确定所述视线方向没有偏离所述终端屏幕的显示区域的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
该实施方式的有益效果为,通过用户眼睛相对于终端屏幕的相对位置以及用户视线方向,确定用户是否有可能在注视终端屏幕。
作为一种可选的实施方式,在所述选择与所述敏感程度对应的目标超分辨率算法之前,所述方法还包括:获取多个用户对所述终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;所述选择与所述敏感程度对应的目标超分辨率算法包括:选择与所述最大敏感程度值对应的目标超分辨率算法。
该实施方式的有益效果为,在多个用户注视终端屏幕时,确定各用户对终端屏幕显示图像的画质精细度的最大敏感程度对应的目标超分辨率算法。
本发明实施例第二方面公开了一种终端,其特征在于,包括:处理器和存储器,其中,所述存储器存储有可执行程序代码、原始图像以及对所述原始图像进行处理后得到的目标图像;所述处理器用于执行以下操作:确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;选择与所述敏感程度对应的目标超分辨率算法,所述敏感程度越高则所述敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;使用所述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将所述目标图像显示到所述终端屏幕。
作为一种可选的实施方式,所述处理器确定一个敏感程度包括:获取用户眼睛与摄像头之间的距离、获取摄像头与用户眼睛的相对稳定性以及获取所述终端所处的环境光强度值与所述终端屏幕的亮度值之间的差值;根据所述距离 确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据所述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据所述差值确定用户对所述终端屏幕中显示图像的画质精细度的第三敏感程度值;将所述第一敏感程度值、所述第二敏感程度值以及所述第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
作为一种可选的实施方式,所述处理器获取摄像头与用户眼睛的相对稳定性,具体用于执行以下操作:获取所述用户眼睛与所述摄像头之间的距离和/或获取所述用户眼睛与所述摄像头之间的角度;计算第一预设时间内所述用户眼睛与所述摄像头之间的距离的第一变化量和/或计算第二预设时间内所述用户眼睛与所述摄像头之间的角度的第二变化量;根据所述第一变化量和/或所述第二变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第一变化量越大和/或所述第二变化量越大,则所述相对稳定性越低。
作为一种可选的实施方式,所述处理器获取摄像头与用户眼睛的相对稳定性,具体用于执行以下操作:获取所述终端的加速度;计算第三预设时间内所述加速度的第三变化量;根据所述第三变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第三变化量越大,则所述相对稳定性越低。
作为一种可选的实施方式,所述处理器在所述确定一个敏感程度之前,还用于执行以下操作:检测所述终端中的虚拟现实应用程序是否处于启动状态;若处于启动状态,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最高;若不是处于启动状态,则执行所述确定一个敏感程度。
作为一种可选的实施方式,所述处理器在所述检测所述终端中的虚拟现实应用程序是否处于启动状态之后,以及在所述确定一个敏感程度之前,还用于执行以下操作:若所述虚拟现实应用程序不是处于启动状态,则获取所述摄像头的视场范围内的目标图像;识别所述目标图像中是否包含人脸图像;所述处理器确定一个敏感程度包括:若不包含人脸图像,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若包含人脸图像,则确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述处理器在所述识别所述目标图像中是否包含人脸图像之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕 中显示图像的画质精细度的敏感程度之前,还用于执行以下操作:若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的头部朝向与所述终端屏幕的夹角;计算所述夹角大于预设角度阈值的用户数量N;所述处理器确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度包括:若所述用户数量N为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若所述用户数量N大于零,则确定所述夹角大于所述预设角度阈值的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述处理器在所述识别所述目标图像中是否包含人脸图像之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度之前,还用于执行以下操作:若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的视线方向;计算所述视线方向没有偏离所述终端屏幕的显示区域的用户数量M;所述处理器确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度包括:若所述用户数量M为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;若所述用户数量M大于零,则确定所述视线方向没有偏离所述终端屏幕的显示区域的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述处理器在所述选择与所述敏感程度对应的目标超分辨率算法之前,还用于执行以下操作:获取多个用户对所述终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;所述处理器选择与所述敏感程度对应的目标超分辨率算法包括:选择与所述最大敏感程度值对应的目标超分辨率算法。
本发明实施例第三方面公开了一种终端,包括:第一确定单元,用于确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;选择单元,用于选择与所述敏感程度对应的目标超分辨率算法,所述敏感程度越高则所述敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;图像处理单元,用于使用所述目标超分辨率算法对输入的原始图 像进行处理得到目标图像;显示单元,用于将所述目标图像显示到所述终端屏幕。
作为一种可选的实施方式,所述第一确定单元包括:第一获取单元,用于获取用户眼睛与摄像头之间的距离;第二获取单元,用于获取摄像头与用户眼睛的相对稳定性;第三获取单元,用于获取所述终端所处的环境光强度值与所述终端屏幕的亮度值之间的差值;第一确定子单元,用于根据所述距离确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据所述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据所述差值确定用户对所述终端屏幕中显示图像的画质精细度的第三敏感程度值;所述第一确定子单元,还用于将所述第一敏感程度值、所述第二敏感程度值以及所述第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
作为一种可选的实施方式,所述第二获取单元包括:第二获取子单元,用于获取所述用户眼睛与所述摄像头之间的距离和/或获取所述用户眼睛与所述摄像头之间的角度;第一计算单元,用于计算第一预设时间内所述用户眼睛与所述摄像头之间的距离的第一变化量和/或计算第二预设时间内所述用户眼睛与所述摄像头之间的角度的第二变化量;第二确定子单元,用于根据所述第一变化量和/或所述第二变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第一变化量越大和/或所述第二变化量越大,则所述相对稳定性越低。
作为一种可选的实施方式,所述第二获取单元包括:第二获取子单元,用于获取所述终端的加速度;第一计算单元,用于计算第三预设时间内所述加速度的第三变化量;第二确定单元,用于根据所述第三变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第三变化量越大,则所述相对稳定性越低。
作为一种可选的实施方式,所述终端还包括:检测单元,用于检测所述终端中的虚拟现实应用程序是否处于启动状态;所述第一确定单元,还用于在处于启动状态时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最高;在不是处于启动状态时,执行所述确定一个敏感程度。
作为一种可选的实施方式,所述终端还包括:第四获取单元,用于在所述虚拟现实应用程序不是处于启动状态时,获取所述摄像头的视场范围内的目标 图像;人脸识别单元,用于识别所述目标图像中是否包含人脸图像;所述第一确定单元,还用于在不包含人脸图像时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在包含人脸图像时,确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述终端还包括:第五获取单元,用于在包含人脸图像时,获取所述目标图像中包含的各人脸图像对应的用户的头部朝向与所述终端屏幕的夹角;第二计算单元,用于计算所述夹角大于预设角度阈值的用户数量N;所述第一确定单元,还用于在所述用户数量N为零时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在所述用户数量N大于零时,确定所述夹角大于所述预设角度阈值的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述终端还包括:第六获取单元,用于在包含人脸图像时,获取所述目标图像中包含的各人脸图像对应的用户的视线方向;第三计算单元,用于计算所述视线方向没有偏离所述终端屏幕的显示区域的用户数量M;所述第一确定单元,还用于在所述用户数量M为零时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在所述用户数量M大于零时,确定所述视线方向没有偏离所述终端屏幕的显示区域的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,所述终端还包括:第七获取单元,用于获取多个用户对所述终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;所述选择单元,具体用于选择与所述最大敏感程度值对应的目标超分辨率算法。
本发明实施例第四方面公开了一种计算机存储介质,用于储存为上述第一方面所述计算机软件指令,其包含用于执行上述方面所设计的程序。
应理解,本发明实施例第二至四方面与本发明实施例第一方面的技术方案一致,所取得的有益效果相似,不再赘述。
相较于现有技术,本发明实施例的方案中,通过确定用户对终端屏幕中显 示图像的画质精细度的敏感程度,选择与上述敏感程度对应的目标超分辨率算法,上述敏感程度越高该敏感程度对应的目标超分辨率算法得到的图像画质精细度越优,然后使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。从而可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例公开的一个示例性的实施场景;
图2为本发明实施例公开的一种图像显示方法的流程示意图;
图3为本发明实施例公开的另一种图像显示方法的流程示意图;
图4为本发明实施例公开的另一种图像显示方法的流程示意图;
图5为本发明实施例公开的另一种图像显示方法的流程示意图;
图6为本发明实施例公开的一种终端的结构示意图;
图7为本发明实施例公开的另一种终端的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤 或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法或设备固有的其他步骤或单元。
本发明实施例公开了一种图像显示方法及终端,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。请参阅图1,图1示例性地展示了本发明的一个用户使用场景,当用户关注终端屏幕时,如左图所示,即用户对终端屏幕显示图像的画质精细度的敏感程度高时,选择显示图像画质精细度相对较高的超分辨率算法,生成显示图像,反之,当用户关注度下降时,如右图所示,即用户对终端屏幕显示图像的画质精细度的敏感程度低时,选择显示图像画质精细度相对较低的超分辨率算法,生成显示图像。以下分别进行详细说明。
请参阅图2,图2是本发明实施例公开的一种图像显示方法的流程示意图。其中,图2所示的图像显示方法可以包括以下步骤:
101:确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;
本发明实施例中,终端可以包括智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)以及移动互联网设备(Mobile Internet Devices,MID)等终端,本发明实施例后续不作复述。其中,终端可以包括至少一个处理器,终端可以在这至少一个处理器的控制下工作。
作为一种可选的实施方式,上述步骤101中,确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力,即用户对终端屏幕中显示图像的画质精细度的敏感程度,可以包括以下操作:
获取用户眼睛与摄像头之间的距离、获取摄像头与用户眼睛的相对稳定性以及获取终端所处的环境光强度值与终端屏幕的亮度值之间的差值;
根据上述距离确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据上述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据上述差值确定用户对所述终端屏幕中显示 图像的画质精细度的第三敏感程度值;
将第一敏感程度值、第二敏感程度值以及第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
其中,可以通过终端中的红外传感器、景深摄像头或者距离传感器等距离测量组件获取用户眼睛与摄像头之间的距离,还可以通过双前置摄像头根据人眼分别与两个摄像头之间的角度以及两个摄像头之间的距离计算出用户眼睛与摄像头之间的距离,还可以通过单前置摄像头拍摄的人脸图像根据瞳孔的瞳距进行用户眼睛与摄像头之间距离的估算,还可以通过人脸图像大小对用户眼睛与摄像头之间的距离进行估算,基于用户眼睛与摄像头之间的距离确定用户对终端屏幕中显示图像的画质精细度的第一敏感程度值,可以设定不同的距离范围,每个距离范围对应一个敏感程度值,还可以通过试验标定建立距离与敏感程度值之间的函数关系等,其中,用户眼睛与摄像头之间的距离越大,第一敏感程度值越低。
可选地,获取摄像头与用户眼睛的相对稳定性可以包括以下方式:
获取用户眼睛与摄像头之间的距离和/或获取用户眼睛与摄像头之间的角度;
计算第一预设时间内用户眼睛与摄像头之间的距离的第一变化量和/或计算第二预设时间内用户眼睛与摄像头之间的角度的第二变化量;
根据上述第一变化量和/或上述第二变化量确定摄像头与用户眼睛的相对稳定性,上述第一变化量越大和/或上述第二变化量越大,则该相对稳定性越低。
其中,由于终端上摄像头和终端屏幕之间的空间位置是固定的,确定摄像头与用户眼睛的相对稳定性也可以表示用户眼睛与终端屏幕的相对稳定性。
其中,在本发明实施例中,用户在观看终端屏幕时,主要是正面面向终端屏幕,因此,需要获取前置摄像头与用户眼睛之间的相对稳定性。
其中,可以通过前置摄像头获取的图像中用户眼睛所在的图像区域相对于整幅图像中心点的偏离量,计算出用户眼睛与摄像头之间的角度,其中用户眼睛与摄像头之间的角度具体为眼睛到摄像头的直线与摄像头中心轴线(该中心轴线垂直于终端屏幕)之间的角度,具体表示与摄像头中心轴线在水平方向的 角度以及与摄像头中心轴线在垂直方向的角度。
其中,第一预设时间与第二预设时间可以由试验进行确定或者由经验值进行确定。
其中,获取摄像头与用户眼睛的相对稳定性可以根据用户眼睛与摄像头之间的距离的变化量确定,也可以根据用户眼睛与摄像头之间的角度的变化量进行确定,还可以根据距离与角度的变化量同时进行确定,具体采用何种方式本发明实施例不作唯一性限定,基于摄像头与用户眼睛的相对稳定性可以确定用户对终端屏幕中显示图像的画质精细度的第二敏感程度值,可以设定不同的相对稳定性范围,每个范围对应一个敏感程度值,还可以通过试验标定建立相对稳定性与敏感程度值之间的函数关系等,其中,相对稳定性越低,则第二敏感程度值越低。
可选地,获取摄像头与用户眼睛的相对稳定性还可以包括以下方式:
获取终端的加速度;
计算第三预设时间内上述加速度的第三变化量;
根据上述第三变化量确定摄像头与用户眼睛的相对稳定性,上述第三变化量越大,则该相对稳定性越低。
其中,可以通过终端中的加速度传感器、重力传感器、陀螺仪等与终端位置相关的传感器获取的数值的变化量来确定终端的加速度,例如,将传感器获取的的数值根据时间求导数,若在匀加速情况下,则加速度方向为固定方向,加速度值为固定值的情况下,用户可以保持摄像头与用户眼睛之间的相对稳定,而当加速度的方向或者加速度的数值变化较大时,则摄像头与用户眼睛之间的相对稳定性会随之降低。还可以通过加速度传感器、陀螺仪获取的终端的X方向、Y方向、Z方向三个分量的加速度的和来确定摄像头与用户眼睛之间的相对稳定性,例如,若上述三个分量的加速度的和小于某一个阈值,则可以表示终端处于匀速或者固定的状态,此时摄像头与用户眼睛之间可以保持相对稳定的状态,若上述三个分量的加速度的和的变化量较大,则表示摄像头与用户眼睛之间的相对稳定性较低。
其中,可以通过终端中的感光芯片、摄像头或者光传感器等感光部件获取终端所处的环境光强度值、获取终端屏幕的亮度值,若环境光强度值大于终端 屏幕的亮度值,则获取终端所处的环境光强度值与终端屏幕的亮度值之间的差值,当差值越大时,用户对终端屏幕中显示的图像的画质精细度的敏感程度会随之降低。基于终端所处的环境光强度值与终端屏幕的亮度值之间的差值可以确定用户对终端屏幕中显示图像的画质精细度的第三敏感程度值,可以设定不同的差值的区间范围,每个范围对应一个敏感程度值,还可以通过试验标定建立光强度差值与敏感程度值之间的函数关系等,其中,上述差值越大,则第三敏感程度值越低。
作为一种可选的实施方式,可以为每一种获取敏感程度的方式确定一个权值,最后的敏感程度值为各个方式获取的敏感程度值与对应的权值相乘之后再相加的结果。
102:选择与上述敏感程度对应的目标超分辨率算法,上述敏感程度越高则上述敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;
其中,敏感程度越高表示用户对终端屏幕显示图像的细节注意力越高,则需要目标超分辨率算法得到的图像画质精细度越优。
其中,目标超分辨率算法越优表示由该超分辨率算法得到的图像画质精细度越优,也即输出的图像显示的细节越精细,且清晰度越高。
例如,目前常用的超分辨率算法一般分为基于插值的算法和基于学习的超分辨率算法。基于插值的SR中,最简单的方法是基于图像像素值的空间平均值和卷积来插值,例如双线性插值、双三次插值以及多相位插值;这类插值算法只需少数的乘加操作,资源面积很少(10万逻辑门左右),相应的功耗也会很低。这类算法效果也较差,容易出现边缘锯齿,图像模糊等现象,因此采用该类超分辨率算法得到的图像的显示效果较差。
基于插值的SR中,还有一些基于内容自适应的方法,例如NEDI(New Edge-Directed interpolation)、SAI(Soft-DecisionAdaptive Interpolation)、Double Interpolation等,这些算法会根据图像内容自适应的插值,图像边缘的锯齿以及图像清晰度相比之前提到的简单差值算法会有一些的改善,但是这类算法容易出现副作用(如黑白边、振铃现象等),同时细节很难进一步提升。这类算法的计算操作相对较复杂,资源面积也会较大(50万逻辑门左右),相应的功耗会大一些,然而采用该类超分辨率算法得到的图像的显示效果相对与第一种 效果较好。
基于学习类的SR算法,一般会使用一个图像训练集来产生一个学习模型,运用该模型为输入的低分辨率图像创建更多高频信息。因此,该类算法能恢复更多高频细节信息,同时图像清新度较好,能提供接近真正高清晰图像的效果。但是由于该类算法需要一个较大规模的存储数据库(对应图像的字典库或者权重库等),并且对数据库的操作比较频繁,资源面积相对于前两类大(150~200万逻辑门左右),功耗也会比较大,然而采用该类超分辨率算法得到的图像的显示效果相对于第二种效果较好。
从上述分析可知,基于学习类的SR算法得到的图像画质精细度优于基于插值的SR算法中的基于内容自适应的算法,基于插值的SR算法中的基于内容自适应的算法得到的图像画质精细度优于基于插值的SR中基于图像像素值的空间平均值和卷积来插值的算法。
需要说明的是,上述仅表示各超分辨率算法之间的区别的一种举例,本发明实施例中所使用的超分辨率算法不局限于上述基于学习类的SR算法、基于插值的SR算法。
103:使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。
本发明实施例中,通过目标超分辨率算法对输入的原始图像进行处理之后,将经过处理得到的目标图像显示到终端屏幕中,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡。
由此可见,利用图2所描述的图像显示方法,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
请参阅图3,图3是本发明实施例公开的另一种图像显示方法的流程示意图。在图3所描述的图像显示方法中,可以包括以下步骤:
200:检测终端中的虚拟现实应用程序是否处于启动状态;
201:若处于启动状态,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最高,并执行步骤210-步骤211;
其中,若终端正在运行虚拟现实应用程序,此时终端与用户之间的距离很小,并且在用户进行虚拟现实体验时即使不规则的移动头部,仍然可以保持终端与头部的相对位置,因此在虚拟现实模式下,确定敏感程度最高。
202:若不是处于启动状态,则获取摄像头的视场范围内的目标图像;
其中,该摄像头具体是终端中的前置摄像头。
203:识别该目标图像中是否包含人脸图像;
本发明实施例中,可以采用人脸识别的方式判断目标图像中是否包含人脸图像,即检测是否有潜在用户处在可观看终端屏幕的范围内。目前的终端大多存在前置摄像头,因此可以根据前置摄像头拍摄的图像进行人脸识别。
作为一种可选的实施方式,采用的人脸识别技术可以包括但不限于以下几种:
参考模板法,即预先设计一个或多个标准人脸的模板,然后计算前置摄像头拍摄的图片与标准人脸的模板之间的匹配程度,如果匹配程度超过预设阈值,则确定识别出人脸。
人脸规则法,即利用人脸的结构分布特征生成相应的规则,将前置摄像头拍摄的图片与该规则进行匹配以进行人脸识别。
样品学习法,即采用人工神经网络的方法,通过对面像样品集和非面像样品集进行学习并训练分类器,将前置摄像头拍摄的图片输入分类器得到该图片是否包含人脸的分类结果。
肤色模型法,即依据面部肤色在色彩空间中相对集中的规律来检测前置摄像头拍摄的图片是否包含人脸。
特征子脸法,即将所有面像集合视为一个面像子空间,基于前置摄像头拍摄的图片与在面像子空间的投影之间的距离判断前置摄像头拍摄的图片是否包含人脸。
鉴于人脸识别技术为现有较成熟的技术,在此不做具体描述。
204:若不包含人脸图像,则确定用户对终端屏幕中显示图像的画质精细 度的敏感程度最低,并执行步骤210~步骤211;
本发明实施例中,若前置摄像头拍摄的目标图像中不包含人脸图像,则表示没有用户在注视终端屏幕,则为了节省终端功耗,确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,同时选择敏感程度最低时对应的目标超分辨率算法,采用该目标超分辨率算法得到的图像的画质精细度最低。
205:若包含人脸图像,则获取目标图像中包含的各人脸图像对应的用户的头部朝向与终端屏幕的夹角;
本发明实施例中,用户的头部朝向与终端屏幕的夹角只有在一个合适的范围内时,用户才能够看见终端屏幕上面所显示的内容。获取用户的头部朝向与终端屏幕的夹角可以采用统计学分类器(如支持向量机、人工神经网络、隐形马尔科夫模型等)的方法,采用已知图像训练不同头部朝向图像对应的一系列分类器,根据训练完成的一系列分类器对终端前置摄像头当前拍摄的的用户头部图像进行分类,得出最高信任值的分类器对应的头部朝向角度即为用户的头部朝向与终端屏幕的夹角。
206:计算夹角大于预设角度阈值的用户数量N;
本发明实施例中,用户头部朝向与终端屏幕之间的夹角大于某一角度阈值时,用户才能够看见终端屏幕上面所显示的内容,例如,当用户头部正对终端屏幕时,夹角为90度,该角度阈值可以通过试验进行确定。
207:若用户数量N为零,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤210~步骤211;
其中,若用户数量N为零,则表示没有用户正在注视终端屏幕中显示的内容,为了节省终端功耗,确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,同时选择敏感程度最低时对应的目标超分辨率算法,采用该目标超分辨率算法得到的图像的画质精细度最低。
208:若用户数量N大于零,则确定夹角大于预设角度阈值的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度;
其中,确定夹角大于预设角度阈值的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度可以参照方法实施例1中步骤101的描述,本发明实施例将不做复述。
209:获取多个用户对终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;
210:选择与最大敏感程度值对应的目标超分辨率算法;
本发明实施例中,若用户数量N大于零,则表示存在能够看见终端屏幕显示内容的用户,因此可以获取目标图像中所有头部朝向与终端屏幕之间的夹角大于预设角度阈值的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,可以将通过步骤208确定的敏感程度中的最大敏感程度值作为选取目标超分辨率算法的依据,从而可以满足所有用户对终端屏幕显示图像的画质精细度的要求。
211:使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。
由此可见,利用图3所描述的图像显示方法,在终端中的虚拟现实应用程序不是处于启动状态时,通过对终端前置摄像头拍摄的目标图像进行识别确定能够看见终端屏幕显示内容的各个用户对终端屏幕显示图像的画质精细度的敏感程度,选取与上述敏感程度中最大敏感程度值对应的目标超分辨率算法来调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
请参阅图4,图4是本发明实施例公开的另一种图像显示方法的流程示意图。在图4所描述的图像显示方法中,可以包括以下步骤:
300:检测终端中的虚拟现实应用程序是否处于启动状态;
301:若处于启动状态,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最高,并执行步骤310-步骤311;
302:若不是处于启动状态,则获取摄像头的视场范围内的目标图像;
其中,该摄像头具体是终端中的前置摄像头。
303:识别该目标图像中是否包含人脸图像;
本发明实施例中,可以采用人脸识别的方式判断目标图像中是否包含人脸 图像,即检测是否有潜在用户处在可观看终端屏幕的范围内。目前的终端大多存在前置摄像头,因此可以根据前置摄像头拍摄的图像进行人脸识别。
作为一种可选的实施方式,采用的人脸识别技术可以参考步骤203的实施方式,在此不做赘述。
304:若不包含人脸图像,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤310~步骤311;
本发明实施例中,若前置摄像头拍摄的目标图像中不包含人脸图像,则表示没有用户在注视终端屏幕,则为了节省终端功耗,确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,同时选择敏感程度最低时对应的目标超分辨率算法,采用该目标超分辨率算法得到的图像的画质精细度最低。
305:若包含人脸图像,则获取目标图像中包含的各人脸图像对应的用户的视线方向;
本发明实施例中,若用户的视线方向偏离终端屏幕的显示区域时,用户将不能够看见终端屏幕上面所显示的内容。
作为一种可选的实施方式,可以采用以下方式确定用户视线是否偏离终端屏幕的显示区域:获取瞳孔中心与眼睛中心的水平距离以及获取瞳孔中心与眼睛中心的竖直距离,其中水平距离表示斜视,竖直距离表示俯仰视,若水平距离超过水平距离阈值或者竖直距离超过竖直距离阈值,则可以确定用户的视线方向偏离终端屏幕的显示区域。
其中,可以通过拍摄的人脸图像通过图像处理确定出人眼图像,通过对分割出的眼睛窗口采用分区动态阈值法重新进行二值化,用矩形框匹配法确定眼睛的中心位置,再用模板匹配法或山峰算法确定瞳孔中心位置,进而可以计算出瞳孔中心与眼睛中心的水平距离以及瞳孔中心与眼睛中心的竖直距离。
作为一种可选的实施方式,还可以采用以下方式确定用户视线是否偏离终端屏幕的显示区域:建立三维坐标系,首先通过眼睛与前置摄像头的角度以及眼睛与前置摄像头的距离找到眼睛相对于前置摄像头的相对空间位置,再使用瞳孔中心与眼睛中心的水平和竖直距离来计算视线覆盖的大致视场范围,然后计算该视场范围在屏幕所在平面上的映射区域是否与屏幕区域重合,若有重合区域,则代表用户在观看终端屏幕,否则用户没有观看终端屏幕。
其中,眼睛与前置摄像头之间的角度可以通过以下方式获得:建立参考坐标系,将前置摄像头所处的位置设置为原点,终端屏幕所确定的平面为XY平面,将前置摄像头所确定的视场范围中的视场中线设置为Z轴,从摄像头沿Z轴视线观察到的目标点即为前置摄像头获取的图像的中心点。对前置摄像头获取的图像进行人眼识别确定出人眼区域,从而计算出眼睛位置与前置摄像头获取的图像的中心点的距离,即确定出眼睛相对于图像中心点的横纵偏移量(ΔX,ΔY),进而可以通过以下公式计算出眼睛位置偏离前置摄像头视场中线的角度:
Figure PCTCN2016103223-appb-000001
其中,αx、αy分别表示眼睛偏离视场中线的水平角度和竖直角度,αL、αH分别表示终端前置摄像头视场范围的水平最大角度以及竖直最大角度,L、H表示终端前置摄像头获取的图像的水平像素和竖直像素。
其中,眼睛与前置摄像头的距离可以通过前置摄像头获取的图像中的眼睛大小进行估算,也可以近似于面部与前置摄像头之间的距离。
306:计算上述视线方向没有偏离终端屏幕的显示区域的用户数量M;
307:若用户数量M为零,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤310~步骤311;
其中,若用户数量M为零,则表示没有用户正在观看终端屏幕中显示的内容,为了节省终端功耗,确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,同时选择敏感程度最低时对应的目标超分辨率算法,采用该目标超分辨率算法得到的图像的画质精细度最低。
308:若用户数量M大于零,则确定上述视线方向没有偏离终端屏幕的显示区域的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度;
其中,确定视线方向没有偏离终端屏幕的显示区域的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度可以参照方法实施例1中步 骤101的描述,本发明实施例将不做复述。
309:获取多个用户对终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;
310:选择与最大敏感程度值对应的目标超分辨率算法;
本发明实施例中,若用户数量M大于零,则表示存在能够看见终端屏幕显示内容的用户,因此可以获取目标图像中所有视线方向没有偏离终端屏幕的显示区域的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度。
作为一种可选的实施方式,可以将通过步骤308确定的敏感程度中的最大敏感程度值作为选取目标超分辨率算法的依据,从而可以满足所有用户对终端屏幕显示图像的画质精细度的要求。
311:使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。
由此可见,利用图4所描述的图像显示方法,在终端中的虚拟现实应用程序不是处于启动状态时,通过对终端前置摄像头拍摄的目标图像进行识别确定能够看见终端屏幕显示内容的各个用户对终端屏幕显示图像的画质精细度的敏感程度,选取与上述敏感程度中最大敏感程度值对应的目标超分辨率算法来调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
请参阅图5,图5是本发明实施例公开的另一种图像显示方法的流程示意图。在图5所描述的图像显示方法中,可以包括以下步骤:
400:检测终端中的虚拟现实应用程序是否处于启动状态;
401:若处于启动状态,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最高,并执行步骤413-步骤414;
402:若不是处于启动状态,则获取摄像头的视场范围内的目标图像;
其中,该摄像头具体是终端中的前置摄像头。
403:识别该目标图像中是否包含人脸图像;
404:若不包含人脸图像,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤413~步骤414;
405:若包含人脸图像,则获取目标图像中包含的各人脸图像对应的用户的头部朝向与终端屏幕的夹角;
406:计算夹角大于预设角度阈值的用户数量N;
407:若用户数量N为零,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤413~步骤414;
408:若用户数量N大于零,则确定夹角大于预设角度阈值的人脸图像对应的用户的视线方向;
409:计算上述视线方向没有偏离终端屏幕的显示区域的用户数量M;
410:若用户数量M为零,则确定用户对终端屏幕中显示图像的画质精细度的敏感程度最低,并执行步骤413~步骤414;
411:若用户数量M大于零,则确定上述视线方向没有偏离终端屏幕的显示区域的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度;
本发明实施例中,在用户的头部朝向与终端屏幕的夹角大于预设角度阈值时,表示用户可以看到终端屏幕中显示的内容,由于用户可能侧着脸在看屏幕,也可能用户面部朝着屏幕,但是眼睛在看其他方向,因此只根据头部朝向无法确认用户是否在观看屏幕,可以将头部朝向与用户视线进行结合可以更加精确的确定用户是否在观看屏幕。
本发明实施例中,确定视线方向没有偏离终端屏幕的显示区域的人脸图像对应的用户对终端屏幕中显示图像的画质精细度的敏感程度的具体实现方式可以参照实施例1中步骤101中的描述,本发明实施例将不做复述。
412:获取多个用户对终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;
413:选择与最大敏感程度值对应的目标超分辨率算法;
414:使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。
由此可见,利用图5所描述的图像显示方法,在终端中的虚拟现实应用程 序不是处于启动状态时,通过对终端前置摄像头拍摄的目标图像进行识别确定能够看见终端屏幕显示内容的各个用户对终端屏幕显示图像的画质精细度的敏感程度,选取与上述敏感程度中最大敏感程度值对应的目标超分辨率算法来调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
请参阅图6,图6是本发明实施例公开的一种终端的结构示意图。如图6所示,该终端包括:至少一个处理器501、存储器502、摄像头503、传感器504、输入输出模块505以及用户接口506;在本发明的一些实施例中,这些部件可通过总线或者其它方式连接。
处理器501可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路。处理器501可处理通过摄像头503以及传感器504接收到的数据。处理器501还可以将处理的最结果通过输入输出模块505进行显示。
摄像头503可以包括前置摄像头或者后置摄像头,摄像头503可以作为拍摄图像使用,其中,摄像头503由镜头、图像传感器、数字信号处理芯片、感光元件等组成,图像传感器包括感光像素阵列以及设置于所述感光像素阵列上的滤光片。图像传感器可以是电荷耦合器件(Charged Coupled Device,CCD)图像传感器、互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)传感器。
传感器504可以包括光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可以获取终端所处环境的光强度值。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,可用于识别终端姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;重力传感器作为运动传感器的一种,也可以用来检测终端的加速度,例如,重力传感器用于感应终端在摇动过程中产生的重力;并通过终端中的处理器 501对重力传感器感应到的重力转换成带有方向的加速度值;至于终端还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。
存储器502,用于存储程序代码、原始图像以及对该原始图像进行处理后得到的目标图像,存储器502将存储的程序代码传输给CPU。存储器502可以包括易失性存储器(Volatile Memory),例如随机存取存储器(Random Access Memory,RAM);存储器502也可以包括非易失性存储器(Non-Volatile Memory),例如只读存储器(Read-Only Memory,ROM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器502还可以包括上述种类的存储器的组合。存储器502通过总线与处理器501相连接。
输入输出模块505主要用于实现终端和用户/外部环境之间的交互功能,主要包括音频输入输出模块、按键输入模块以及显示器等。具体实现中,输入输出模块505还可包括:摄像头、触摸屏以及传感器等等。其中,输入输出模块505通过用户接口506与处理器501进行通信。
在本发明实施例中,处理器501通过调用存储于存储器502中的程序代码,用于执行以下操作:
确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;
选择与上述敏感程度对应的目标超分辨率算法,该敏感程度越高则该敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;
使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将上述目标图像显示到终端屏幕。
利用图6所描述的终端,可以根据用户对终端屏幕显示图像的分辨率的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而 可以在一定程度上降低终端的功耗。
请参阅图7,图7是本发明实施例公开的另一种终端的结构示意图。如图7所示,该终端可以包括:
第一确定单元601,用于确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;
选择单元602,用于选择与上述敏感程度对应的目标超分辨率算法,该敏感程度越高则该敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;
图像处理单元603,用于使用上述目标超分辨率算法对输入的原始图像进行处理得到目标图像;
显示单元604,用于将上述目标图像显示到终端屏幕。
在本发明实施例中,终端是以功能单元的形式来呈现。这里的“单元”可以指ASIC电路,执行一个或多个软件或固件程序的处理器和存储器,和/或其他可以提供上述功能的器件。终端可以采用图6所示的形式。例如,确定单元601可以通过图6中的处理器501、摄像头503以及传感器504实现,选择单元602以及图像处理单元603可以通过图6的处理器501来实现,显示单元604可以通过图6的输入输出模块505来实现。
需要说明的是,上述实施例中所描述的终端中各功能单元的功能可根据上述图2、图3、图4及图5所示方法实施例中的方法具体实现,此处不再赘述。
通过运行上述单元,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
综上所述,实施本发明实施例,可以根据用户对终端屏幕显示图像的画质精细度的敏感程度调整屏幕显示效果,可以在用户视觉体验与终端功耗间进行平衡,从而可以在一定程度上降低终端的功耗。
值得注意的是,上述终端只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
另外,本领域普通技术人员可以理解实现上述各方法实施例中的全部或部分步骤是可以通过程序来指令相关的硬件完成,相应的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种图像显示方法,其特征在于,包括:
    确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;
    选择与所述敏感程度对应的目标超分辨率算法,所述敏感程度越高则所述敏感程度对应的目标超分辨率算法得到的图像画质精细度越优;
    使用所述目标超分辨率算法对输入的原始图像进行处理得到目标图像,将所述目标图像显示到所述终端屏幕。
  2. 根据权利要求1所述方法,其特征在于,所述确定一个敏感程度,包括:
    获取用户眼睛与摄像头之间的距离、获取摄像头与用户眼睛的相对稳定性以及获取所述终端所处的环境光强度值与所述终端屏幕的亮度值之间的差值;
    根据所述距离确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据所述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据所述差值确定用户对所述终端屏幕中显示图像的画质精细度的第三敏感程度值;
    将所述第一敏感程度值、所述第二敏感程度值以及所述第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
  3. 根据权利要求2所述方法,其特征在于,所述获取摄像头与用户眼睛的相对稳定性包括:
    获取所述用户眼睛与所述摄像头之间的距离和/或获取所述用户眼睛与所述摄像头之间的角度;
    计算第一预设时间内所述用户眼睛与所述摄像头之间的距离的第一变化量和/或计算第二预设时间内所述用户眼睛与所述摄像头之间的角度的第二变化量;
    根据所述第一变化量和/或所述第二变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第一变化量越大和/或所述第二变化量越大,则所述相对稳定性越低。
  4. 根据权利要求2所述方法,其特征在于,所述获取摄像头与用户眼睛 的相对稳定性包括:
    获取所述终端的加速度;
    计算第三预设时间内所述加速度的第三变化量;
    根据所述第三变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第三变化量越大,则所述相对稳定性越低。
  5. 根据权利要求1至4任意一项所述方法,其特征在于,在所述确定一个敏感程度之前,所述方法还包括:
    检测所述终端中的虚拟现实应用程序是否处于启动状态;
    若处于启动状态,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最高;
    若不是处于启动状态,则执行所述确定一个敏感程度。
  6. 根据权利要求5所述方法,其特征在于,在所述检测所述终端中的虚拟现实应用程序是否处于启动状态之后,以及在所述确定一个敏感程度之前,所述方法还包括:
    若所述虚拟现实应用程序不是处于启动状态,则获取所述摄像头的视场范围内的目标图像;
    识别所述目标图像中是否包含人脸图像;
    所述确定一个敏感程度,包括:
    若不包含人脸图像,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;
    若包含人脸图像,则确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  7. 根据权利要求6所述方法,其特征在于,在所述识别所述目标图像中是否包含人脸图像之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度之前,所述方法还包括:
    若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的头部朝向与所述终端屏幕的夹角;
    计算所述夹角大于预设角度阈值的用户数量N;
    所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精 细度的敏感程度包括:
    若所述用户数量N为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;
    若所述用户数量N大于零,则确定所述夹角大于所述预设角度阈值的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  8. 根据权利要求6所述方法,其特征在于,在所述识别所述目标图像中是否包含人脸图像之后,以及,在所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度之前,所述方法还包括:
    若包含人脸图像,则获取所述目标图像中包含的各人脸图像对应的用户的视线方向;
    计算所述视线方向没有偏离所述终端屏幕的显示区域的用户数量M;
    所述确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度包括:
    若所述用户数量M为零,则确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;
    若所述用户数量M大于零,则确定所述视线方向没有偏离所述终端屏幕的显示区域的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  9. 根据权利要求7或8所述方法,其特征在于,在所述选择与所述敏感程度对应的目标超分辨率算法之前,所述方法还包括:
    获取多个用户对所述终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;
    所述选择与所述敏感程度对应的目标超分辨率算法包括:
    选择与所述最大敏感程度值对应的目标超分辨率算法。
  10. 一种终端,其特征在于,包括:
    第一确定单元,用于确定一个敏感程度,所述敏感程度用于表征用户对终端屏幕中显示图像的画质精细度的感知能力;
    选择单元,用于选择与所述敏感程度对应的目标超分辨率算法,所述敏感程度越高则所述敏感程度对应的目标超分辨率算法得到的图像画质精细度越 优;
    图像处理单元,用于使用所述目标超分辨率算法对输入的原始图像进行处理得到目标图像;
    显示单元,用于将所述目标图像显示到所述终端屏幕。
  11. 根据权利要求10所述的终端,其特征在于,所述第一确定单元包括:
    第一获取单元,用于获取用户眼睛与摄像头之间的距离;
    第二获取单元,用于获取摄像头与用户眼睛的相对稳定性;
    第三获取单元,用于获取所述终端所处的环境光强度值与所述终端屏幕的亮度值之间的差值;
    第一确定子单元,用于根据所述距离确定用户对所述终端屏幕中显示图像的画质精细度的第一敏感程度值、根据所述相对稳定性确定用户对所述终端屏幕中显示图像的画质精细度的第二敏感程度值以及根据所述差值确定用户对所述终端屏幕中显示图像的画质精细度的第三敏感程度值;
    所述第一确定子单元,还用于将所述第一敏感程度值、所述第二敏感程度值以及所述第三敏感程度值与对应的权系数乘积的和作为目标敏感程度值。
  12. 根据权利要求11所述的终端,其特征在于,所述第二获取单元包括:
    第二获取子单元,用于获取所述用户眼睛与所述摄像头之间的距离和/或获取所述用户眼睛与所述摄像头之间的角度;
    第一计算单元,用于计算第一预设时间内所述用户眼睛与所述摄像头之间的距离的第一变化量和/或计算第二预设时间内所述用户眼睛与所述摄像头之间的角度的第二变化量;
    第二确定单元,用于根据所述第一变化量和/或所述第二变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第一变化量越大和/或所述第二变化量越大,则所述相对稳定性越低。
  13. 根据权利要求11所述的终端,其特征在于,所述第二获取单元包括:
    第二获取子单元,用于获取所述终端的加速度;
    第一计算单元,用于计算第三预设时间内所述加速度的第三变化量;
    第二确定单元,用于根据所述第三变化量确定所述摄像头与所述用户眼睛的相对稳定性,所述第三变化量越大,则所述相对稳定性越低。
  14. 根据权利要求10至13任意一项所述的终端,其特征在于,所述终端还包括:
    检测单元,用于检测所述终端中的虚拟现实应用程序是否处于启动状态;
    所述第一确定单元,还用于在处于启动状态时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最高;在不是处于启动状态时,执行所述确定一个敏感程度。
  15. 根据权利要求14所述的终端,其特征在于,所述终端还包括:
    第四获取单元,用于在所述虚拟现实应用程序不是处于启动状态时,获取所述摄像头的视场范围内的目标图像;
    人脸识别单元,用于识别所述目标图像中是否包含人脸图像;
    所述第一确定单元,还用于在不包含人脸图像时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在包含人脸图像时,确定所述人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  16. 根据权利要求15所述的终端,其特征在于,所述终端还包括:
    第五获取单元,用于在包含人脸图像时,获取所述目标图像中包含的各人脸图像对应的用户的头部朝向与所述终端屏幕的夹角;
    第二计算单元,用于计算所述夹角大于预设角度阈值的用户数量N;
    所述第一确定单元,还用于在所述用户数量N为零时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在所述用户数量N大于零时,确定所述夹角大于所述预设角度阈值的人脸图像对应的用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  17. 根据权利要求15所述的终端,其特征在于,所述终端还包括:
    第六获取单元,用于在包含人脸图像时,获取所述目标图像中包含的各人脸图像对应的用户的视线方向;
    第三计算单元,用于计算所述视线方向没有偏离所述终端屏幕的显示区域的用户数量M;
    所述第一确定单元,还用于在所述用户数量M为零时,确定用户对所述终端屏幕中显示图像的画质精细度的敏感程度最低;在所述用户数量M大于零时,确定所述视线方向没有偏离所述终端屏幕的显示区域的人脸图像对应的 用户对所述终端屏幕中显示图像的画质精细度的敏感程度。
  18. 根据权利要求16或17任意一项所述的终端,其特征在于,所述终端还包括:
    第七获取单元,用于获取多个用户对所述终端屏幕中显示图像的画质精细度的敏感程度中的最大敏感程度值;
    所述选择单元,具体用于选择与所述最大敏感程度值对应的目标超分辨率算法。
PCT/CN2016/103223 2016-10-25 2016-10-25 一种图像显示方法及终端 WO2018076172A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/103223 WO2018076172A1 (zh) 2016-10-25 2016-10-25 一种图像显示方法及终端
CN201680086444.9A CN109313797B (zh) 2016-10-25 2016-10-25 一种图像显示方法及终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103223 WO2018076172A1 (zh) 2016-10-25 2016-10-25 一种图像显示方法及终端

Publications (1)

Publication Number Publication Date
WO2018076172A1 true WO2018076172A1 (zh) 2018-05-03

Family

ID=62024222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103223 WO2018076172A1 (zh) 2016-10-25 2016-10-25 一种图像显示方法及终端

Country Status (2)

Country Link
CN (1) CN109313797B (zh)
WO (1) WO2018076172A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111126568A (zh) * 2019-12-09 2020-05-08 Oppo广东移动通信有限公司 图像处理方法及装置、电子设备及计算机可读存储介质
CN111246116A (zh) * 2020-03-20 2020-06-05 谌春亮 一种用于屏幕上智能取景显示的方法及移动终端
CN112188289A (zh) * 2020-09-04 2021-01-05 青岛海尔科技有限公司 用于控制电视的方法及装置、设备
CN112732497A (zh) * 2020-12-29 2021-04-30 深圳微步信息股份有限公司 一种终端设备和基于终端设备的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379803A (zh) * 2020-11-12 2021-02-19 深圳市沃特沃德股份有限公司 屏幕亮度的调整方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722875A (zh) * 2012-05-29 2012-10-10 杭州电子科技大学 一种基于视觉注意和质量可变的图像超分辨率重建方法
CN103544687A (zh) * 2012-07-11 2014-01-29 刘书 图像超分辨率重建高效方法
US20150093015A1 (en) * 2013-09-26 2015-04-02 Hong Kong Applied Science & Technology Research Institute Company Limited Visual-Experience-Optimized Super-Resolution Frame Generator
CN105653032A (zh) * 2015-12-29 2016-06-08 小米科技有限责任公司 显示调整方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2493613C2 (ru) * 2008-08-22 2013-09-20 Сони Корпорейшн Устройство воспроизведения изображений и способ управления
CN104021036B (zh) * 2013-03-01 2018-12-14 联想(北京)有限公司 一种电子设备及电子设备状态切换方法
KR102305578B1 (ko) * 2013-08-23 2021-09-27 삼성전자 주식회사 단말의 모드 변경 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722875A (zh) * 2012-05-29 2012-10-10 杭州电子科技大学 一种基于视觉注意和质量可变的图像超分辨率重建方法
CN103544687A (zh) * 2012-07-11 2014-01-29 刘书 图像超分辨率重建高效方法
US20150093015A1 (en) * 2013-09-26 2015-04-02 Hong Kong Applied Science & Technology Research Institute Company Limited Visual-Experience-Optimized Super-Resolution Frame Generator
CN105653032A (zh) * 2015-12-29 2016-06-08 小米科技有限责任公司 显示调整方法及装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111126568A (zh) * 2019-12-09 2020-05-08 Oppo广东移动通信有限公司 图像处理方法及装置、电子设备及计算机可读存储介质
CN111126568B (zh) * 2019-12-09 2023-08-08 Oppo广东移动通信有限公司 图像处理方法及装置、电子设备及计算机可读存储介质
CN111246116A (zh) * 2020-03-20 2020-06-05 谌春亮 一种用于屏幕上智能取景显示的方法及移动终端
CN112188289A (zh) * 2020-09-04 2021-01-05 青岛海尔科技有限公司 用于控制电视的方法及装置、设备
CN112732497A (zh) * 2020-12-29 2021-04-30 深圳微步信息股份有限公司 一种终端设备和基于终端设备的检测方法
CN112732497B (zh) * 2020-12-29 2023-02-10 深圳微步信息股份有限公司 一种终端设备和基于终端设备的检测方法

Also Published As

Publication number Publication date
CN109313797B (zh) 2022-04-05
CN109313797A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
EP3454250B1 (en) Facial image processing method and apparatus and storage medium
WO2019137038A1 (zh) 注视点确定方法、对比度调节方法及对比度调节装置、虚拟现实设备及存储介质
US10304164B2 (en) Image processing apparatus, image processing method, and storage medium for performing lighting processing for image data
WO2018076172A1 (zh) 一种图像显示方法及终端
WO2019237745A1 (zh) 人脸图像处理方法、装置、电子设备及计算机可读存储介质
KR102383129B1 (ko) 이미지에 포함된 오브젝트의 카테고리 및 인식률에 기반하여 이미지를 보정하는 방법 및 이를 구현한 전자 장치
KR20040107890A (ko) 휴대폰의 영상 기울기 제어 방법
US9613404B2 (en) Image processing method, image processing apparatus and electronic device
CN112183200B (zh) 一种基于视频图像的眼动追踪方法和系统
US20220360707A1 (en) Photographing method, photographing device, storage medium and electronic device
CN112016469A (zh) 图像处理方法及装置、终端及可读存储介质
WO2021093534A1 (zh) 主体检测方法和装置、电子设备、计算机可读存储介质
CN110858316A (zh) 对时间序列图像数据进行分类
US11682183B2 (en) Augmented reality system and anchor display method thereof
CN110706283B (zh) 用于视线追踪的标定方法、装置、移动终端及存储介质
US20210174062A1 (en) Image processing device, image processing method, and recording medium
US9323981B2 (en) Face component extraction apparatus, face component extraction method and recording medium in which program for face component extraction method is stored
JP2012068948A (ja) 顔属性推定装置およびその方法
US9536133B2 (en) Display apparatus and control method for adjusting the eyes of a photographed user
CN114390186B (zh) 视频拍摄方法及电子设备
WO2024055531A1 (zh) 照度计数值识别方法、电子设备及存储介质
JP2017173455A (ja) 情報処理装置、情報処理方法及びプログラム
KR102605451B1 (ko) 이미지 내에 포함된 복수의 외부 객체들 각각에 대응하는 복수의 서비스들을 제공하는 전자 장치 및 방법
CN111353929A (zh) 图像处理方法、装置和电子设备
JP6717769B2 (ja) 情報処理装置及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920195

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920195

Country of ref document: EP

Kind code of ref document: A1