WO2018074212A1 - 管用ねじ継手及び管用ねじ継手の製造方法 - Google Patents
管用ねじ継手及び管用ねじ継手の製造方法 Download PDFInfo
- Publication number
- WO2018074212A1 WO2018074212A1 PCT/JP2017/035859 JP2017035859W WO2018074212A1 WO 2018074212 A1 WO2018074212 A1 WO 2018074212A1 JP 2017035859 W JP2017035859 W JP 2017035859W WO 2018074212 A1 WO2018074212 A1 WO 2018074212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plating layer
- alloy plating
- threaded joint
- pipes
- pin
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title description 24
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 157
- 239000000956 alloy Substances 0.000 claims abstract description 157
- 229910007567 Zn-Ni Inorganic materials 0.000 claims abstract description 150
- 229910007614 Zn—Ni Inorganic materials 0.000 claims abstract description 150
- 229910052751 metal Inorganic materials 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims abstract description 31
- 238000007747 plating Methods 0.000 claims description 198
- 239000010949 copper Substances 0.000 claims description 59
- 230000001050 lubricating effect Effects 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 38
- 238000000576 coating method Methods 0.000 claims description 38
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 11
- 229910001431 copper ion Inorganic materials 0.000 claims description 11
- 238000009713 electroplating Methods 0.000 claims description 7
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 claims description 6
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 6
- 229910001453 nickel ion Inorganic materials 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 description 25
- 239000010959 steel Substances 0.000 description 25
- 238000012360 testing method Methods 0.000 description 25
- 230000007797 corrosion Effects 0.000 description 15
- 238000005260 corrosion Methods 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 239000000314 lubricant Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 239000004519 grease Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000003129 oil well Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000011282 treatment Methods 0.000 description 7
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 239000010960 cold rolled steel Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910001385 heavy metal Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000007542 hardness measurement Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 241001596784 Pegasus Species 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000011346 highly viscous material Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/001—Screw-threaded joints; Forms of screw-threads for such joints with conical threads
- F16L15/004—Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/04—Couplings; joints between rod or the like and bit or between rod and rod or the like
- E21B17/042—Threaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/04—Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/08—Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L57/00—Protection of pipes or objects of similar shape against external or internal damage or wear
- F16L57/06—Protection of pipes or objects of similar shape against external or internal damage or wear against wear
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/02—Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
- F16L58/04—Coatings characterised by the materials used
- F16L58/08—Coatings characterised by the materials used by metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L58/00—Protection of pipes or pipe fittings against corrosion or incrustation
- F16L58/18—Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings
- F16L58/182—Protection of pipes or pipe fittings against corrosion or incrustation specially adapted for pipe fittings for screw-threaded joints
Definitions
- Oil well pipes are used for mining oil fields and natural gas fields.
- the oil well pipe is formed by connecting a plurality of steel pipes according to the depth of the well.
- the steel pipes are connected by screwing pipe threaded joints formed at the ends of the steel pipes.
- the oil well pipe is pulled up for inspection or the like, unscrewed, inspected, screwed again, and used again.
- Threaded joints for pipes are provided with pins and boxes.
- the pin includes a male screw portion and an unthreaded metal contact portion formed on the outer peripheral surface of the tip portion of the steel pipe.
- the box includes an internal thread portion and an unthreaded metal contact portion formed on the inner peripheral surface of the distal end portion of the steel pipe.
- Each of the unthreaded metal contact portions includes a metal seal portion and a shoulder portion.
- compound grease containing heavy metal has been used.
- the seizure resistance of the threaded joint for pipes can be improved.
- heavy metals such as Pb contained in the compound grease may affect the environment. For this reason, development of the threaded joint for pipes which does not use compound grease is desired.
- Threaded joints for pipes that use grease that does not contain heavy metals (called green dope) instead of compound grease have been proposed.
- Green dope Japanese Patent Application Laid-Open No. 2008-215473
- Patent Document 2 Japanese Patent Application Laid-Open No. 2003-074763
- a threaded joint for steel pipes described in Japanese Patent Application Laid-Open No. 2008-215473 is a thread for steel pipes composed of a pin and a box each having a contact surface having a threaded portion and an unthreaded metal contact portion. It is a joint.
- This threaded joint for steel pipes is characterized in that at least one contact surface of the pin and the box has a first plating layer made of a Cu—Zn alloy.
- Patent Document 2 The joint for an oil well steel pipe described in Japanese Patent Application Laid-Open No. 2003-074763 (Patent Document 2) is the same as a pin part having a male screw and a metal-metal seal part at one end of a steel pipe containing 9 mass% or more of Cr. It is a joint for an oil well steel pipe made of a material and a coupling having a female screw and a box part having a metal-metal seal part provided at both ends.
- This oil well steel pipe joint is characterized in that a Cu—Sn alloy layer is disposed on the surface of the female thread of the coupling and the metal-metal seal portion.
- Patent Document 2 describes that even when green dope is used, sealing performance is better than before and goling occurring in the joint can be remarkably suppressed.
- the screw joint for pipes is stored without being screwed until it is actually used after being transported to the mining site. That is, the threaded joint for pipes is stored for a predetermined period before use. If the appearance of the plated layer of the threaded joint for pipes is inferior to the appearance of the conventional plated layer, or there is unevenness, the user may be anxious about mixing of different materials or deterioration of performance. For this reason, the threaded joint for pipes may be required to have an appearance equal to or greater than that of conventional plating.
- An object of the present invention is to provide a threaded joint for pipes having excellent seizure resistance and excellent appearance, and a method for producing the same.
- the method for manufacturing a threaded joint for pipes of the present embodiment is a method for manufacturing a threaded joint for pipes including a pin and a box. Each pin and box has a contact surface including a threaded portion, a metal seal portion and a shoulder portion.
- the manufacturing method includes a preparation step and a Zn—Ni alloy plating layer forming step.
- a pin, a box and a plating solution are prepared.
- the plating solution contains zinc ions, nickel ions, and copper ions.
- the concentration of copper ions in the plating solution is 1 g / L or less (not including 0).
- a plating solution is brought into contact with at least one contact surface of the pin and the box to form a Zn—Ni alloy plating layer by electroplating.
- the threaded joint for pipes of the present embodiment has excellent seizure resistance and excellent appearance.
- the present inventors examined seizure resistance and appearance of the threaded joint for pipes. As a result, the following knowledge was obtained.
- the Zn—Ni alloy plating is further excellent in corrosion resistance. Therefore, if the plating layer is formed of a Zn—Ni alloy, the corrosion resistance can be enhanced in addition to the seizure resistance of the threaded joint for pipes.
- the present inventors examined a method for further improving the seizure resistance of the Zn—Ni alloy plating layer. As a result, the following knowledge was obtained.
- Plating defects are, for example, poor appearance and poor physical properties. Appearance defects include, for example, pits, roughness, cloudiness, color unevenness, and no plating. The physical property failure is, for example, a decrease in hardness, spreadability, adhesion, and corrosion resistance of the plating layer. In the past, attempts have been made to reduce impurities during plating in order to suppress plating defects.
- the present inventors have obtained knowledge that is completely different from the conventional one. It is a finding that the hardness of the Zn—Ni alloy plating layer increases if Cu, which has been considered as an impurity, is contained in the Zn—Ni alloy plating layer under specific conditions.
- FIG. 1 is a graph showing the relationship between the Cu content in the Zn—Ni alloy plating layer (hereinafter also simply referred to as Cu content) and the hardness of the Zn—Ni alloy plating layer.
- Cu content the Cu content in the Zn—Ni alloy plating layer
- FIG. 1 was obtained by the examples described below.
- FIG. 1 represents a change in hardness (Hv) of the Zn—Ni alloy plating layer in Examples described later.
- the hardness of the Zn—Ni alloy plating layer can be obtained by the test method described later. If the hardness of the Zn—Ni alloy plating layer is high, the seizure resistance of the threaded joint for pipes is increased.
- FIG. 2 is an enlarged view of a portion with a Cu content of 0.00 to 0.10 mass% in FIG. Referring to FIG. 2, when the Cu content exceeds 0% by mass, the hardness of the Zn—Ni alloy plating layer is remarkably increased. 1 and 2, when the Cu content is 0.01% by mass or more, the hardness of the Zn—Ni alloy plating layer is 470 Hv or more, and higher seizure resistance is obtained.
- Zn-Ni alloy plating is used for a threaded joint for pipes in order to improve corrosion resistance.
- Zn zinc
- Fe iron
- Cu copper
- Cu copper
- seizure resistance it has been found that copper (Cu) is a rather preferable element.
- the appearance of the Zn—Ni alloy plating layer is improved.
- the quality of the appearance is judged by the color unevenness of the Zn—Ni alloy plating layer.
- the L value of the Zn—Ni alloy plating layer generally tends to be low. Therefore, the appearance of the Zn—Ni alloy plating layer is determined by the L value. If the L value is high, it is determined that the appearance is good.
- FIG. 3 is a graph showing the relationship between the Cu content in the Zn—Ni alloy plating layer, the hardness of the Zn—Ni alloy plating layer, and the L value of the Zn—Ni alloy plating layer.
- FIG. 3 was obtained by an example described later.
- the vertical axis on the left side in FIG. 3 shows the change in hardness of the Zn—Ni alloy plating layer in the examples described later.
- the x marks indicate the hardness of the Zn—Ni alloy plating layer.
- the vertical axis on the right side of FIG. 3 shows the change in the L value of the Zn—Ni alloy plating layer in Examples described later.
- white circles ( ⁇ ) indicate L values.
- the appearance was good when the L value exceeded 50.0.
- the lower the Cu content the higher the L value. That is, if the Cu content is controlled to a certain level or less, the appearance can be kept excellent.
- the threaded joint for pipes of this embodiment completed based on the above knowledge includes a pin and a box. Each pin and box has a contact surface including a threaded portion, a metal seal portion and a shoulder portion.
- the threaded joint for pipes includes a Zn—Ni alloy plating layer on at least one contact surface of the pin and the box.
- the Zn—Ni alloy plating layer contains Cu.
- the Cu content of the Zn—Ni alloy plating layer is 4.5% by mass or less (excluding 0).
- the Zn—Ni alloy plating layer of the threaded joint for pipes of this embodiment contains Cu.
- the Cu content of the Zn—Ni alloy plating layer is 4.5% by mass or less (excluding 0).
- the threaded joint for pipes can achieve both excellent seizure resistance and excellent appearance.
- the Cu content of the Zn—Ni alloy plating layer is 0.05 to 4.5 mass%.
- the thickness of the Zn—Ni alloy plating layer may be 1 to 20 ⁇ m.
- the method for manufacturing a threaded joint for pipes of the present embodiment is a method for manufacturing a threaded joint for pipes including a pin and a box. Each pin and box has a contact surface including a threaded portion, a metal seal portion and a shoulder portion.
- the manufacturing method includes a preparation step and a Zn—Ni alloy plating layer forming step.
- a pin, a box and a plating solution are prepared.
- the plating solution contains zinc ions, nickel ions, and copper ions.
- the concentration of copper ions in the plating solution is 1 g / L or less (not including 0).
- a plating solution is brought into contact with at least one contact surface of the pin and the box to form a Zn—Ni alloy plating layer by electroplating.
- the threaded joint for pipes includes a pin and a box.
- FIG. 4 is a diagram showing the configuration of the threaded joint for pipes according to the present embodiment.
- the pipe threaded joint includes a steel pipe 1 and a coupling 2.
- pins 3 having male thread portions on the outer surface are formed.
- boxes 4 having internal thread portions on the inner surface are formed.
- the coupling 2 is attached to the end of the steel pipe 1 by screwing the pin 3 and the box 4 together.
- FIG. 5 is a cross-sectional view of the threaded joint for pipes according to the present embodiment.
- the pin 3 includes a male screw portion 31, a metal seal portion 32, and a shoulder portion 33.
- the box 4 includes a female screw part 41, a metal seal part 42, and a shoulder part 43. The portions that come into contact when the pin 3 and the box 4 are screwed together are referred to as contact surfaces 34 and 44.
- the screw parts male screw part 31 and female screw part 41
- the metal seal parts metal seal parts 32 and 42
- the shoulder parts shoulder part 33 and 43
- the contact surface 34 includes the screw portion 31, the metal seal portion 32, and the shoulder portion 33.
- the contact surface 44 includes a screw portion 41, a metal seal portion 42, and a shoulder portion 43.
- FIG. 6 is a cross-sectional view of an example of the contact surfaces 34 and 44 of the threaded joint for pipes according to the present embodiment.
- the threaded joint for pipes includes a Zn—Ni alloy plating layer 100 on at least one of the contact surface 34 of the pin 3 and the contact surface 44 of the box 4.
- the threaded joint for pipes includes a Zn—Ni alloy plating layer 100 on the contact surface 34 of the pin 3.
- the threaded joint for pipes may further include a lubricating coating 200 on the Zn—Ni alloy plating layer 100.
- the Zn—Ni alloy plating layer 100 may be provided on the contact surface 44 of the box 4.
- a Zn—Ni alloy plating layer 100 may be provided on both the contact surface 34 of the pin 3 and the contact surface 44 of the box 4.
- the Zn—Ni alloy plating layer 100 is disposed on at least one contact surface 34 or 44 of the pin 3 and the box 4.
- the Zn—Ni alloy plating layer 100 is made of a Zn—Ni alloy, copper (Cu), and impurities.
- the Zn—Ni alloy plating layer 100 has a composition in which the proportion of Ni is 6 to 20 mass% when the entire Zn—Ni alloy plating layer 100 is 100 mass%.
- the minimum of the ratio of preferable Ni is 10 mass%, More preferably, it is 12 mass%.
- a preferable upper limit of the Ni ratio is 16% by mass.
- the Zn—Ni alloy plating layer 100 contains Cu.
- the Cu content in the Zn—Ni alloy plating layer 100 is 4.5 mass% or less (excluding 0) when the entire Zn—Ni alloy plating layer 100 is 100 mass%. If Cu is contained even in a trace amount in the Zn—Ni alloy plating layer 100, the hardness and melting point of the entire Zn—Ni alloy plating layer 100 are increased. That is, the Cu content in the Zn—Ni alloy plating layer 100 is more than 0%. On the other hand, if the Cu content in the Zn—Ni alloy plating layer 100 is 4.5 mass% or less, the appearance of the Zn—Ni alloy plating layer 100 can be maintained in a good state.
- the Cu content in the Zn—Ni alloy plating layer 100 is 4.5% by mass or less (excluding 0).
- the threaded joint for pipes can achieve both excellent seizure resistance and excellent appearance.
- a preferable lower limit of the Cu content in the Zn—Ni alloy plating layer 100 is 0.01% by mass, more preferably 0.05% by mass, still more preferably 0.10% by mass, and further preferably 1%. 0.000% by mass, and more preferably 1.10% by mass.
- a preferable upper limit of the Cu content in the Zn—Ni alloy plating layer 100 is 4.0 mass%.
- the balance of the Zn—Ni alloy plating layer 100 is zinc (Zn) and impurities. That is, the Zn—Ni alloy plating layer 100 contains 6 to 20% by mass of Ni and 4.5% by mass or less (not including 0) of Cu, with the balance being Zn and impurities.
- the impurity is, for example, Fe.
- the total content of impurities other than Cu is less than 0.1 mass%.
- the composition of the Zn—Ni alloy plating layer 100 is measured using EDX (Energy-Dispersive X-ray). Specifically, the test piece is cut out so as to be perpendicular to the surface of the Zn—Ni alloy plating layer 100, embedded in a resin, and polished.
- the elemental composition of the cross section of the Zn—Ni alloy plating layer 100 is analyzed using an SEM (ERA-8900FE) / EDAX EDS apparatus (Pegasus) manufactured by Elionix Corporation. The ratio (mass%) of each element (Ni and Cu) is calculated with the entire detected element as 100 mass%.
- the thickness of the Zn—Ni alloy plating layer 100 is not particularly limited.
- the thickness of the Zn—Ni alloy plating layer 100 is, for example, 1 to 20 ⁇ m. If the thickness of the Zn—Ni alloy plating layer 100 is 1 ⁇ m or more, sufficient seizure resistance can be stably obtained. Even if the thickness of the Zn—Ni alloy plating layer 100 exceeds 20 ⁇ m, the above effect is saturated.
- the thickness of the Zn—Ni alloy plating layer 100 is measured by the following method.
- the thickness of the Zn-Ni alloy plating layer 100 is measured using four eddy current phase film thickness meters PHSCOPE PMP910 made by Helmut Fischer GmbH on the four contact surfaces 34 and 44 on which the Zn-Ni alloy plating layer 100 is formed. Measure the thickness.
- the measurement is performed by a method based on ISO (International Organization for Standardization) 21968 (2005). There are four measurement locations in the pipe circumferential direction of the pipe threaded joint (four locations of 0 °, 90 °, 180 °, and 270 °). The arithmetic average of the four measurement results is taken as the thickness of the Zn—Ni alloy plating layer 100.
- the Zn—Ni alloy plating layer 100 may be disposed on a part of at least one of the contact surfaces 34 and 44 or may be disposed entirely.
- the metal seal portions 32 and 42 have particularly high surface pressure at the final stage of screw tightening. Therefore, when the Zn—Ni alloy plating layer 100 is partially disposed on at least one of the contact surfaces 34 and 44, it is preferably disposed at least on the metal seal portion 32 or 42. On the other hand, if the Zn—Ni alloy plating layer 100 is disposed over at least one of the contact surfaces 34 and 44, the production efficiency of the threaded joint for pipes is increased.
- the hardness and melting point of the Zn—Ni alloy plating layer 100 are higher than the hardness of the Cu plating layer conventionally used as the plating layer of the threaded joint for pipes, and the melting point is as high as that of the Cu plating layer. Therefore, damage to the Zn—Ni alloy plating layer 100 is suppressed even if screw tightening and screw unscrewing are repeated. As a result, seizure resistance is maintained even when screw tightening and screw unscrewing are repeated.
- zinc (Zn) contained in the Zn—Ni alloy plating layer 100 is a base metal compared to iron (Fe) which is the main component of the steel pipe. Therefore, there is an effect of sacrificial corrosion protection, and the corrosion resistance of the threaded joint for pipes is increased.
- the threaded joint for pipes may include a lubricating coating 200 on the Zn—Ni alloy plating layer 100.
- the lubricating coating 200 may be disposed on the Zn—Ni alloy plating layer 100 as shown in FIG. When the Zn—Ni alloy plating layer 100 is disposed only on either the contact surface 34 of the pin 3 or the contact surface 44 of the box 4, the lubricating coating 200 is formed on the contact surface 34 of the pin 3 or the contact surface 44 of the box 4. It may be placed directly on top.
- the lubricating coating 200 may be liquid, semi-solid, or solid.
- the semi-solid state refers to a state in which it can flow while freely deforming on the contact surfaces 34 and 44 in the same manner as a liquid under an external load (such as pressure and heat).
- the liquid or semi-solid state includes a highly viscous material such as grease.
- Lubrication coating 200 contains a known lubricant.
- the lubricant is, for example, SEAL-GUARD (trade name) ECF (trade name) manufactured by JET-LUBE.
- the lubricating coating 200 may be, for example, a well-known lubricating coating containing lubricating particles and a binder.
- the lubricating coating 200 may contain a solvent and other components as necessary.
- the lubricating coating 200 is, for example, a lubricant containing rosin, metal soap, wax, and lubricating powder.
- the lubricating powder is, for example, earthy graphite.
- the chemical composition of the lubricating coating 200 disposed on the pin 3 and the chemical composition of the lubricating coating 200 disposed on the box 4 may be the same or different.
- the thickness of the lubricating coating 200 is not particularly limited.
- the thickness of the lubricating coating 200 is, for example, 30 to 300 ⁇ m. If the thickness of the lubricating coating 200 is 30 ⁇ m or more, the effect of reducing the shouldering torque is further enhanced. Even if the thickness of the lubricating coating 200 exceeds 300 ⁇ m, the above effect is saturated because the excessive lubricating coating 200 is removed from the contact surfaces 34 and 44 during screw tightening.
- the thickness of the lubricating coating 200 is measured by the following method.
- the pin 3 or the box 4 provided with the lubricating coating 200 is prepared.
- the pin 3 or box 4 is cut perpendicular to the axial direction of the tube.
- Microscopic observation is performed on the cross section including the lubricating coating 200.
- the magnification for microscopic observation is 500 times. Thereby, the film thickness of the lubricating coating 200 is obtained.
- the thickness of the lubricating coating 200 is measured by the following method.
- An arbitrary measurement location (area: 5 mm ⁇ 20 mm) of the metal seal portion 32 or 42 of the threaded joint for pipes is wiped off with absorbent cotton soaked with ethanol.
- the amount of lubricant applied is calculated from the difference between the weight of the absorbent cotton before wiping and the weight of the absorbent cotton after wiping.
- the average film thickness of the lubricating coating 200 is calculated from the amount of lubricant applied, the density of the lubricant, and the area of the measurement location.
- the lubricating coating 200 may be liquid or solid.
- the torque (shouldering torque) when the shoulder portion 33 and the shoulder portion 43 come into contact with each other can be reduced. In this case, it is easy to adjust the torque at the time of screw tightening.
- a Zn—Ni alloy plating layer 100 is disposed on at least one contact surface 34 or 44 of the pin 3 and the box 4, and on at least one contact surface 34 or 44 of the pin 3 and the box 4 or a Zn—Ni alloy plating layer.
- the lubricating coating 200 is disposed on 100, the combination is not particularly limited.
- a case where only the Zn—Ni alloy plating layer 100 is provided is referred to as a pattern 1.
- a case where the Zn—Ni alloy plating layer 100 is provided and the lubricating coating 200 is provided thereon is referred to as a pattern 2.
- a case where only the lubricating coating 200 is provided is referred to as a pattern 3.
- the pattern 4 is a case where neither the Zn—Ni alloy plating layer 100 nor the lubricating coating 200 is provided. If the above conditions are satisfied, the contact surface 34 of the pin 3 and the contact surface 44 of the box 4 can be any of the patterns 1 to 4. Specifically, when the contact surface 34 of the pin 3 is the pattern 1 or the pattern 2, the contact surface 44 of the box 4 may be any of the patterns 1 to 4. When the contact surface 34 of the pin 3 is the pattern 3 or the pattern 4, the contact surface 44 of the box 4 is either the pattern 1 or the pattern 2. On the contrary, when the contact surface 44 of the box 4 is the pattern 1 or the pattern 2, the contact surface 34 of the pin 3 may be any one of the patterns 1 to 4. When the contact surface 44 of the box 4 is the pattern 3 or the pattern 4, the contact surface 34 of the pin 3 is either the pattern 1 or the pattern 2.
- the chemical composition of the base material of the threaded joint for pipes is not particularly limited.
- the base material include carbon steel, stainless steel, and alloy steel.
- alloy steels duplex stainless steels containing alloy elements such as Cr, Ni and Mo and high alloy steels such as Ni alloys have high corrosion resistance. Therefore, if these high alloy steels are used as the base material, the corrosion resistance of the threaded joint for pipes is increased.
- the manufacturing method of the threaded joint for pipes of this embodiment is a manufacturing method of the above-mentioned threaded joint for pipes.
- the manufacturing method includes a preparation step and a Zn—Ni alloy plating layer 100 formation step.
- the plating solution contains zinc ions, nickel ions, and copper ions.
- the plating solution preferably contains zinc ions: 1 to 100 g / L and nickel ions: 1 to 50 g / L.
- the plating solution further contains copper ions.
- the content of copper ions in the plating solution is 1 g / L or less (not including 0).
- the lower limit of the copper ion content in the plating solution is 10 ppm, more preferably 50 ppm, and even more preferably 100 ppm.
- the Zn—Ni alloy plating layer 100 made of a Zn—Ni alloy is formed on at least one contact surface of the pin 3 and the box 4.
- the Zn—Ni alloy plating layer 100 is formed by plating.
- Plating is performed by electroplating by bringing at least one contact surface of the pin 3 and the box 4 into contact with the plating solution containing zinc ions, nickel ions, and copper ions.
- the conditions for electroplating can be set as appropriate.
- the electroplating conditions are, for example, plating solution pH: 1 to 10, plating solution temperature: 10 to 60 ° C., current density: 1 to 100 A / dm 2 , and processing time: 0.1 to 30 minutes.
- a film forming process may be performed.
- the lubricating film 200 is formed on at least one contact surface 34 or 44 of the pin 3 and the box 4 or on the Zn—Ni alloy plating layer 100.
- the lubricating coating 200 can be formed by applying the above-described lubricant.
- the application method is not particularly limited. Application methods are, for example, spray application, brush application and immersion. When employing spray coating, the lubricant may be heated and sprayed in a state where the fluidity is enhanced.
- Lubricant coating 200 includes contact surface 34 of pin 3, contact surface 44 of box 4, Zn—Ni alloy plating layer 100 on contact surface 34 of pin 3, and Zn—Ni alloy plating on contact surface 44 of box 4. It may be partially disposed on at least one selected from the group consisting of layers 100.
- the lubricating coating 200 is on the contact surface 34 of the pin 3, on the contact surface 44 of the box 4, on the Zn—Ni alloy plating layer 100 on the contact surface 34 of the pin 3, and on the contact surface 44 of the box 4. It is preferable to dispose at least one selected from the group consisting of the Zn—Ni alloy plating layer 100.
- the film forming process may be performed on both the pin 3 and the box 4 or only on one side.
- the manufacturing method may include a base treatment step before the Zn—Ni alloy plating layer 100 forming step, if necessary.
- the ground treatment process is, for example, pickling and alkali degreasing. In the ground treatment process, oil or the like adhering to the contact surface 34 or 44 is washed.
- the ground treatment step may further include grinding such as sand blasting and mechanical grinding. Only one type of these base treatments may be performed, or a plurality of base treatments may be combined.
- a commercially available cold-rolled steel sheet was used assuming a base material for a threaded joint.
- the cold-rolled steel sheet was 150 mm long ⁇ 100 mm wide (plated surface was 100 mm long ⁇ 100 mm wide).
- the steel type was very low carbon steel.
- the chemical composition of the steel sheet is as follows: C: 0.19%, Si: 0.25%, Mn: 0.8%, P: 0.02%, S: 0.01%, Cu: 0.04%, Ni: 0.1%, Cr: 13%, Mo: 0.04%, balance: Fe and impurities.
- [Zn-Ni alloy plating layer forming step] A plating layer was formed on the cold-rolled steel plate of each test number. The formation of the Zn—Ni alloy plating layer was performed by electroplating. The details of the manufacturing conditions of the Zn—Ni alloy plating layer of each test number are as shown in Table 1.
- As the plating solution trade name Dyne Jin Alloy N-PL manufactured by Daiwa Kasei Co., Ltd. was used. The Cu concentration in the plating solution was changed by changing the amount of copper sulfate (pentahydrate) reagent added to the plating solution.
- the value of “Cu concentration in plating solution” in Table 1 is a target value, and the value of “Cu concentration in plating solution” is 0 ppm when the above-mentioned copper sulfate reagent is not added to the plating solution. It means that.
- “Liquid flow rate” is the stirring speed of the plating solution, and is a value indicating the amount of circulation when the plating solution is circulated with a pump, as the linear velocity of the plating solution.
- the hardness of the Zn—Ni alloy plating layer was measured by a Vickers hardness measurement test. Specifically, the cold-rolled steel sheets having the respective test numbers on which the Zn—Ni alloy plating layer was formed were cut perpendicular to the steel sheet surface. Vickers hardness was measured by a method based on JIS Z2244 (2009) with respect to arbitrary five points in the cross section of the Zn—Ni alloy plating layer that appeared. For the measurement, a micro hardness tester Fischer scope HM2000 manufactured by Fischer Instruments was used. The test temperature was room temperature (25 ° C.), and the test force (F) was 0.01N. Of the five measurement results obtained, the arithmetic average of three points excluding the maximum and minimum values was taken as the hardness of the Zn—Ni alloy plating layer (Vickers hardness Hv (Hv0.001)). The results are shown in Table 1.
- the cold-rolled steel sheets of test numbers 4 to 15 and test number 17 were provided with a Zn—Ni alloy plating layer.
- the Zn—Ni alloy plating layer contained Cu.
- the Cu content of the Zn—Ni alloy plating layer was 4.5% by mass or less (excluding 0). Therefore, hardness Hv was 470 or more, L value was 50.0 or more, and excellent seizure resistance and appearance were obtained.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemically Coating (AREA)
Abstract
Description
管用ねじ継手は、ピン及びボックスを備える。図4は、本実施形態による管用ねじ継手の構成を示す図である。図4を参照して、管用ねじ継手は、鋼管1とカップリング2とを備える。鋼管1の両端には、外面に雄ねじ部を有するピン3が形成される。カップリング2の両端には、内面に雌ねじ部を有するボックス4が形成される。ピン3とボックス4とをねじ締めすることによって、鋼管1の端に、カップリング2が取り付けられる。一方で、カップリング2を使用せず、鋼管1の一方の端をピン3とし、鋼管1の他方の端をボックス4とした、インテグラル形式の油井管用ねじ継手もある。本実施形態の管用ねじ継手は、カップリング方式及びインテグラル形式の両方の管用ねじ継手に使用できる。
Zn-Ni合金めっき層100は、ピン3及びボックス4の少なくとも一方の接触表面34又は44上に配置される。Zn-Ni合金めっき層100は、Zn-Ni合金と、銅(Cu)と、不純物とからなる。Zn-Ni合金めっき層100は、Zn-Ni合金めっき層100全体を100質量%とした場合に、Niの割合が6~20質量%の組成を備える。好ましいNiの割合の下限は10質量%であり、さらに好ましくは12質量%である。好ましいNiの割合の上限は16質量%である。
Zn-Ni合金めっき層100の組成は、EDX(Energy-Dispersive X-ray;エネルギー分散X線)を用いて測定する。具体的には、Zn-Ni合金めっき層100の表面に対して垂直になるよう、試験片を切り出し、樹脂に埋め込んで研磨する。Zn-Ni合金めっき層100の断面に対して、株式会社エリオニクス製SEM(ERA-8900FE)/EDAX製EDS装置(Pegasus)を用いて、元素組成を分析する。検出された元素全体を100質量%として、各元素(Ni及びCu)の割合(質量%)を算出する。
管用ねじ継手は、Zn-Ni合金めっき層100上に潤滑被膜200を備えてもよい。潤滑被膜200は、図6のように、Zn-Ni合金めっき層100上に配置されてもよい。Zn-Ni合金めっき層100をピン3の接触表面34又はボックス4の接触表面44のいずれか一方にしか配置しない場合、潤滑被膜200は、ピン3の接触表面34上又はボックス4の接触表面44上に直接配置されてもよい。
ピン3及びボックス4の少なくとも一方の接触表面34又は44上にZn-Ni合金めっき層100が配置され、ピン3及びボックス4の少なくとも一方の接触表面34又は44上、又はZn-Ni合金めっき層100上に潤滑被膜200が配置されれば、その組み合わせは特に限定されない。Zn-Ni合金めっき層100のみを備える場合をパターン1とする。Zn-Ni合金めっき層100を備えさらにその上に潤滑被膜200を備える場合をパターン2とする。潤滑被膜200のみを備える場合をパターン3とする。Zn-Ni合金めっき層100も、潤滑被膜200も備えない場合をパターン4とする。上記条件を満たせば、ピン3の接触表面34及びボックス4の接触表面44はパターン1~パターン4のいずれの場合も有り得る。具体的には、ピン3の接触表面34が、パターン1又はパターン2の場合、ボックス4の接触表面44はパターン1~パターン4のいずれでもよい。また、ピン3の接触表面34が、パターン3又はパターン4の場合、ボックス4の接触表面44はパターン1又はパターン2のいずれかである。反対に、ボックス4の接触表面44が、パターン1又はパターン2の場合、ピン3の接触表面34はパターン1~パターン4のいずれでもよい。また、ボックス4の接触表面44が、パターン3又はパターン4の場合、ピン3の接触表面34はパターン1又はパターン2のいずれかである。
管用ねじ継手の母材の化学組成は、特に限定されない。母材はたとえば、炭素鋼、ステンレス鋼及び合金鋼等である。合金鋼の中でも、Cr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼及びNi合金等の高合金鋼は耐食性が高い。そのため、これらの高合金鋼を母材に使用すれば、管用ねじ継手の耐食性が高まる。
本実施形態の管用ねじ継手の製造方法は、上述の管用ねじ継手の製造方法である。製造方法は、準備工程及びZn-Ni合金めっき層100形成工程を備える。
準備工程では、ピン3、ボックス4及びめっき液を準備する。めっき液は、亜鉛イオン、ニッケルイオン及び銅イオンを含有する。めっき液には、好ましくは、亜鉛イオン:1~100g/L、ニッケルイオン:1~50g/Lが含有される。めっき液にはさらに、銅イオンが含有される。めっき液中の銅イオンの含有量は、1g/L以下(0を含まない)である。好ましくは、めっき液中の銅イオンの含有量の下限は10ppmであり、さらに好ましくは、50ppm、さらに好ましくは100ppmである。
Zn-Ni合金めっき層100形成工程では、ピン3及びボックス4の少なくとも一方の接触表面上に、Zn-Ni合金からなるZn-Ni合金めっき層100を形成する。Zn-Ni合金めっき層100は、めっきにより形成される。めっきは、亜鉛イオン、ニッケルイオン、及び銅イオンを含有する上記めっき液に、ピン3及びボックス4の少なくとも一方の接触表面を接触させ電気めっきにより行う。電気めっきの条件は適宜設定できる。電気めっきの条件はたとえば、めっき液pH:1~10、めっき液温度:10~60℃、電流密度:1~100A/dm2、及び、処理時間:0.1~30分である。
上述のZn-Ni合金めっき層100をピン3及びボックス4の少なくとも一方の接触表面34又は44上に形成した後に、成膜工程を実施してもよい。成膜工程では、ピン3及びボックス4の少なくとも一方の接触表面34又は44上、又はZn-Ni合金めっき層100上に、潤滑被膜200を形成する。
製造方法は、必要に応じて、Zn-Ni合金めっき層100形成工程の前に下地処理工程を備えてもよい。下地処理工程はたとえば、酸洗及びアルカリ脱脂である。下地処理工程では、接触表面34又は44上に付着した油分等を洗浄する。下地処理工程はさらに、サンドブラスト及び機械研削仕上げ等の研削加工を備えてもよい。これらの下地処理は、1種のみ実施してもよく、複数の下地処理を組み合わせて実施してもよい。
各試験番号の冷延鋼板にめっき層を形成した。Zn-Ni合金めっき層の形成は、電気めっきにより実施した。各試験番号のZn-Ni合金めっき層の製造条件の詳細は、表1に示すとおりであった。めっき液は、大和化成株式会社製、商品名ダインジンアロイ N-PLを使用した。めっき液中Cu濃度は、硫酸銅(五水塩)試薬のめっき液への添加量を変化させることにより、変化させた。なお、表1中の「めっき液中Cu濃度」の数値は狙い値であり、「めっき液中Cu濃度」の値が0ppmとは、めっき液中に前述の硫酸銅試薬を添加しなかった場合であることを意味する。表1中、「液流速」は、めっき液の攪拌速度であり、めっき液をポンプで循環させた場合の循環量を、めっき液の線速で示した値である。
Zn-Ni合金めっき層中のCu含有率は、EDX(Energy-Dispersive X-ray;エネルギー分散X線)を用いて測定した。具体的には、Zn-Ni合金めっき層の表面に対して垂直になるよう、試験片を切り出し、樹脂に埋め込んで研磨した。試験片の断面に対して、EDXを用いて、元素組成を分析した。得られた各元素の組成のうち、Cu量の割合(質量%)を算出し、Zn-Ni合金めっき層中のCu含有率とした。なお、その他の元素の含有率も同様に算出した。本実施例においては、Ni含有率も同様に算出した。本実施例においては、Zn-Ni合金めっき層中の不純物量は0.1質量%未満であり、残部はZnであった。結果を表1に示す。
上述の測定方法により、Zn-Ni合金めっき層の厚さを測定した。結果を表1に示す。
JIS Z8730(2009)に準じて、外観評価試験を行った。具体的には、コニカミノルタ社製のCR-300を用いて、n数2回の平均値を算出した。測定面積はφ10mmとした。数値はL*a*b*表色系を用い、輝度を表すL値を指標として用いた。結果を表1に示す。表1において、L値が50.0以上の場合、外観に優れると判断し、「外観性」の「良否」欄でOKとした。表1において、L値が50.0未満の場合、外観が悪いと判断し、「外観性」の「良否」欄でNGとした。
ビッカース硬さ測定試験により、Zn-Ni合金めっき層の硬度を測定した。具体的には、Zn-Ni合金めっき層を形成した各試験番号の冷延鋼板を鋼板表面に対して垂直に切断した。現れたZn-Ni合金めっき層の断面の任意の5点に対して、JIS Z2244(2009)に準拠した方法でビッカース硬さを測定した。測定には、株式会社フィッシャー・インストルメンツ製微小硬度計Fischer scope HM2000を用いた。試験温度は常温(25℃)、試験力(F)は0.01Nであった。得られた測定結果5点の内、最大値及び最小値を除いた3点の算術平均を、Zn-Ni合金めっき層の硬度(ビッカース硬さHv(Hv0.001))とした。結果を表1に示す。
表1を参照して、試験番号4~試験番号15及び試験番号17の冷延鋼板は、Zn-Ni合金めっき層を備えた。Zn-Ni合金めっき層はCuを含有した。Zn-Ni合金めっき層のCu含有率は4.5質量%以下(0を含まない)であった。そのため、硬度Hvが470以上、L値が50.0以上となり、優れた耐焼付き性及び外観を有した。
4 ボックス
31、41 ねじ部
32、42 金属シール部
33、43 ショルダー部
34、44 接触表面
100 Zn-Ni合金めっき層
200 潤滑被膜
Claims (5)
- 各々が、ねじ部、金属シール部及びショルダー部を含む接触表面を有するピン及びボックスを備える管用ねじ継手であって、
前記ピン及び前記ボックスの少なくとも一方の前記接触表面上にZn-Ni合金めっき層を備え、
前記Zn-Ni合金めっき層は、4.5質量%以下(0を含まない)のCuを含有する、管用ねじ継手。 - 請求項1に記載の管用ねじ継手であって、
前記Zn-Ni合金めっき層は、0.05~4.5質量%のCuを含有する、管用ねじ継手。 - 請求項1又は請求項2に記載の管用ねじ継手であって、
前記Zn-Ni合金めっき層の厚さは1~20μmである、管用ねじ継手。 - 請求項1~請求項3のいずれか1項に記載の管用ねじ継手であって、
前記ピン及び前記ボックスの少なくとも一方の前記接触表面上、又は前記Zn-Ni合金めっき層上に潤滑被膜を備える、管用ねじ継手。 - 各々が、ねじ部、金属シール部及びショルダー部を含む接触表面を有するピン及びボックスを備える管用ねじ継手の製造方法であって、
前記ピン、前記ボックス、及び、亜鉛イオン、ニッケルイオン及び銅イオンを含有し、前記銅イオンの濃度が1g/L以下(0を含まない)であるめっき液を準備する工程と、
前記ピン及び前記ボックスの少なくとも一方の前記接触表面上に、前記めっき液を接触させて電気めっきによりZn-Ni合金めっき層を形成する工程とを備える、管用ねじ継手の製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018546229A JPWO2018074212A1 (ja) | 2016-10-18 | 2017-10-02 | 管用ねじ継手及び管用ねじ継手の製造方法 |
EP17861334.5A EP3531001A4 (en) | 2016-10-18 | 2017-10-02 | SCREW CONNECTION FOR A PIPE AND METHOD FOR PRODUCING A SCREW CONNECTION FOR A PIPE |
BR112019005441A BR112019005441A2 (pt) | 2016-10-18 | 2017-10-02 | conexão roscada para tubo e método para produzir a conexão roscada para tubo |
US16/341,104 US20200190683A1 (en) | 2016-10-18 | 2017-10-02 | Threaded Connection for Pipe and Method for Producing Threaded Connection for Pipe |
EA201990956A EA201990956A1 (ru) | 2016-10-18 | 2017-10-02 | Резьбовое соединение для трубы и способ изготовления резьбового соединения для трубы |
MX2019004361A MX2019004361A (es) | 2016-10-18 | 2017-10-02 | Conexion roscada para tubo y metodo para producir conexion roscada para tubo. |
CA3039723A CA3039723A1 (en) | 2016-10-18 | 2017-10-02 | Threaded connection for pipe and method for producing threaded connection for pipe |
AU2017346799A AU2017346799B2 (en) | 2016-10-18 | 2017-10-02 | Threaded connection for pipe and method for producing threaded connection for pipe |
CN201780063899.3A CN109863341A (zh) | 2016-10-18 | 2017-10-02 | 管用螺纹接头以及管用螺纹接头的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-204709 | 2016-10-18 | ||
JP2016204709 | 2016-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074212A1 true WO2018074212A1 (ja) | 2018-04-26 |
Family
ID=62018441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035859 WO2018074212A1 (ja) | 2016-10-18 | 2017-10-02 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Country Status (11)
Country | Link |
---|---|
US (1) | US20200190683A1 (ja) |
EP (1) | EP3531001A4 (ja) |
JP (1) | JPWO2018074212A1 (ja) |
CN (1) | CN109863341A (ja) |
AR (1) | AR109903A1 (ja) |
AU (1) | AU2017346799B2 (ja) |
BR (1) | BR112019005441A2 (ja) |
CA (1) | CA3039723A1 (ja) |
EA (1) | EA201990956A1 (ja) |
MX (1) | MX2019004361A (ja) |
WO (1) | WO2018074212A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021028535A (ja) * | 2019-08-09 | 2021-02-25 | 三桜工業株式会社 | 管継手及び管継手付きチューブ |
FR3105341B1 (fr) * | 2019-12-23 | 2022-06-24 | Vallourec Oil & Gas France | Tube revêtu résistant à l’usure de cuvelage |
WO2023037910A1 (ja) * | 2021-09-07 | 2023-03-16 | 日本製鉄株式会社 | 油井用金属管 |
CN114318450A (zh) * | 2022-02-15 | 2022-04-12 | 山东胜利通兴石油装备科技有限公司 | 一种镍基钨合金耐磨防腐镀层油管及其制备方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817285A (ja) * | 1981-07-23 | 1983-02-01 | 住友金属工業株式会社 | 油井管継手 |
JPS5836070B2 (ja) * | 1981-02-20 | 1983-08-06 | 住友金属工業株式会社 | 合金メツキ鋼板 |
JPS5925996A (ja) * | 1982-08-03 | 1984-02-10 | Nippon Steel Corp | シ−ム溶接性の優れた溶接缶用表面処理鋼板 |
JPS63243299A (ja) * | 1987-03-30 | 1988-10-11 | Nippon Steel Corp | 複合メッキ鋼板の製造方法 |
JPH05500842A (ja) * | 1989-07-28 | 1993-02-18 | エキヴァラン ソシエテ アノニム | ねじ付き筒状連結部 |
JP2002327874A (ja) * | 2001-05-01 | 2002-11-15 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2003074763A (ja) | 2001-08-31 | 2003-03-12 | Kawasaki Steel Corp | 油井鋼管用継手 |
JP2008215473A (ja) | 2007-03-02 | 2008-09-18 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2013108556A (ja) * | 2011-11-18 | 2013-06-06 | Nippon Steel & Sumitomo Metal Corp | 高トルク締結性能に優れた管状ねじ継手 |
JP2016511807A (ja) * | 2013-01-11 | 2016-04-21 | テナリス・コネクシヨンズ・リミテツドTenaris Connections Limited | 耐ゴーリング性ドリルパイプツールジョイントおよび対応するドリルパイプ |
WO2016170031A1 (en) | 2015-04-23 | 2016-10-27 | Vallourec Oil And Gas France | Threaded tubular element provided with a metallic anti-corrosion and anti-galling coating |
WO2017110685A1 (ja) * | 2015-12-25 | 2017-06-29 | 新日鐵住金株式会社 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2975275B2 (ja) * | 1994-10-20 | 1999-11-10 | 株式会社日鉱マテリアルズ | 液中集電法によるプリント回路用銅箔表面処理方法 |
JP3476997B2 (ja) * | 1995-12-18 | 2003-12-10 | 新日本製鐵株式会社 | 樹脂クロメート処理金属板 |
JP3433612B2 (ja) * | 1996-05-29 | 2003-08-04 | Jfeスチール株式会社 | Zn−Ni系合金電気めっき鋼板の製造方法 |
CN101614306B (zh) * | 2002-05-31 | 2011-02-16 | 住友金属工业株式会社 | 钢管用螺纹接头 |
JP5145684B2 (ja) * | 2006-10-13 | 2013-02-20 | 新日鐵住金株式会社 | 鋼管用ねじ継手に適した潤滑被膜形成用組成物 |
DE202011104255U1 (de) * | 2011-08-11 | 2011-11-15 | Voswinkel Entwicklungs- Und Verwaltungs-Gmbh & Co. Kg | Schraubkupplung zum lösbaren Verbinden von Hochdruckhydraulikleitungen |
IN2014DN09878A (ja) * | 2012-05-23 | 2015-08-07 | Nippon Steel & Sumitomo Metal Corp | |
DE202013001731U1 (de) * | 2013-02-22 | 2013-03-11 | Dr.-Ing. Max Schlötter Gmbh & Co. Kg | Hochkorrosionsfeste Stahlteile |
JP2016084533A (ja) * | 2014-10-22 | 2016-05-19 | Jx金属株式会社 | 表面処理金属材、キャリア付金属箔、コネクタ、端子、積層体、シールドテープ、シールド材、プリント配線板、金属加工部材、電子機器の製造方法、及び、プリント配線板の製造方法 |
-
2017
- 2017-10-02 CA CA3039723A patent/CA3039723A1/en not_active Abandoned
- 2017-10-02 AU AU2017346799A patent/AU2017346799B2/en not_active Expired - Fee Related
- 2017-10-02 EA EA201990956A patent/EA201990956A1/ru unknown
- 2017-10-02 CN CN201780063899.3A patent/CN109863341A/zh active Pending
- 2017-10-02 WO PCT/JP2017/035859 patent/WO2018074212A1/ja active Application Filing
- 2017-10-02 MX MX2019004361A patent/MX2019004361A/es unknown
- 2017-10-02 BR BR112019005441A patent/BR112019005441A2/pt not_active IP Right Cessation
- 2017-10-02 US US16/341,104 patent/US20200190683A1/en not_active Abandoned
- 2017-10-02 EP EP17861334.5A patent/EP3531001A4/en not_active Withdrawn
- 2017-10-02 JP JP2018546229A patent/JPWO2018074212A1/ja active Pending
- 2017-10-09 AR ARP170102808A patent/AR109903A1/es unknown
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5836070B2 (ja) * | 1981-02-20 | 1983-08-06 | 住友金属工業株式会社 | 合金メツキ鋼板 |
JPS5817285A (ja) * | 1981-07-23 | 1983-02-01 | 住友金属工業株式会社 | 油井管継手 |
JPS5925996A (ja) * | 1982-08-03 | 1984-02-10 | Nippon Steel Corp | シ−ム溶接性の優れた溶接缶用表面処理鋼板 |
JPS63243299A (ja) * | 1987-03-30 | 1988-10-11 | Nippon Steel Corp | 複合メッキ鋼板の製造方法 |
JPH05500842A (ja) * | 1989-07-28 | 1993-02-18 | エキヴァラン ソシエテ アノニム | ねじ付き筒状連結部 |
JP2002327874A (ja) * | 2001-05-01 | 2002-11-15 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2003074763A (ja) | 2001-08-31 | 2003-03-12 | Kawasaki Steel Corp | 油井鋼管用継手 |
JP2008215473A (ja) | 2007-03-02 | 2008-09-18 | Sumitomo Metal Ind Ltd | 鋼管用ねじ継手 |
JP2013108556A (ja) * | 2011-11-18 | 2013-06-06 | Nippon Steel & Sumitomo Metal Corp | 高トルク締結性能に優れた管状ねじ継手 |
JP2016511807A (ja) * | 2013-01-11 | 2016-04-21 | テナリス・コネクシヨンズ・リミテツドTenaris Connections Limited | 耐ゴーリング性ドリルパイプツールジョイントおよび対応するドリルパイプ |
WO2016170031A1 (en) | 2015-04-23 | 2016-10-27 | Vallourec Oil And Gas France | Threaded tubular element provided with a metallic anti-corrosion and anti-galling coating |
WO2017110685A1 (ja) * | 2015-12-25 | 2017-06-29 | 新日鐵住金株式会社 | 管用ねじ継手及び管用ねじ継手の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3531001A4 * |
Also Published As
Publication number | Publication date |
---|---|
EA201990956A1 (ru) | 2019-10-31 |
AR109903A1 (es) | 2019-02-06 |
AU2017346799A1 (en) | 2019-04-04 |
CN109863341A (zh) | 2019-06-07 |
AU2017346799B2 (en) | 2020-04-02 |
MX2019004361A (es) | 2019-06-12 |
EP3531001A1 (en) | 2019-08-28 |
BR112019005441A2 (pt) | 2019-06-18 |
US20200190683A1 (en) | 2020-06-18 |
CA3039723A1 (en) | 2018-04-26 |
JPWO2018074212A1 (ja) | 2019-08-08 |
EP3531001A4 (en) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6893978B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
CA3009607C (en) | Threaded connection for pipe or tube and method of producing the threaded connection for pipe or tube | |
CA3028938C (en) | Threaded connection for pipe and method for producing threaded connection for pipe | |
WO2018074212A1 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
AU2023266308B2 (en) | Threaded connection for oil country tubular goods and method for producing threaded connection for oil country tubular goods | |
JP7301891B2 (ja) | 管用ねじ継手 | |
JP6949968B2 (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
JP2018123831A (ja) | 管用ねじ継手及び管用ねじ継手の製造方法 | |
WO2024185640A1 (ja) | 油井用金属管 | |
OA19285A (en) | Threaded joint for pipe and method for manufacturing threaded joint for pipe. | |
WO2024180941A1 (ja) | 油井用金属管及びその油井用金属管の潤滑被膜層を形成するための組成物 | |
OA19359A (en) | Oil-well-pipe screw joint and method for manufacturing oil-well-pipe screw joint | |
OA18972A (en) | Screw joint for pipe and manufacturing method for screw joint for pipe | |
EA040447B1 (ru) | Резьбовое соединение для трубных изделий, применяемых в нефтяной промышленности, и способ производства резьбового соединения для трубных изделий, применяемых в нефтяной промышленности | |
OA18803A (en) | Threaded joint for pipe, and manufacturing method of threaded joint for pipe. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17861334 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018546229 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: DZP2019000144 Country of ref document: DZ |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019005441 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017346799 Country of ref document: AU Date of ref document: 20171002 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3039723 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017861334 Country of ref document: EP Effective date: 20190520 |
|
ENP | Entry into the national phase |
Ref document number: 112019005441 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190320 |