[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018072300A1 - 一种制备氘代咪唑二酮类化合物的方法 - Google Patents

一种制备氘代咪唑二酮类化合物的方法 Download PDF

Info

Publication number
WO2018072300A1
WO2018072300A1 PCT/CN2016/110978 CN2016110978W WO2018072300A1 WO 2018072300 A1 WO2018072300 A1 WO 2018072300A1 CN 2016110978 W CN2016110978 W CN 2016110978W WO 2018072300 A1 WO2018072300 A1 WO 2018072300A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
formula
reaction
group
methyl
Prior art date
Application number
PCT/CN2016/110978
Other languages
English (en)
French (fr)
Inventor
陈元伟
杜武
匡通滔
耿熙
Original Assignee
成都海创药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都海创药业有限公司 filed Critical 成都海创药业有限公司
Priority to CA3040785A priority Critical patent/CA3040785C/en
Priority to PL16919556.7T priority patent/PL3527556T3/pl
Priority to FIEP16919556.7T priority patent/FI3527556T3/fi
Priority to AU2016426847A priority patent/AU2016426847B2/en
Priority to ES16919556T priority patent/ES2943011T3/es
Priority to JP2019520547A priority patent/JP7241682B2/ja
Priority to DK16919556.7T priority patent/DK3527556T3/da
Priority to EP16919556.7A priority patent/EP3527556B1/en
Priority to US16/342,912 priority patent/US20200087261A1/en
Publication of WO2018072300A1 publication Critical patent/WO2018072300A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/86Oxygen and sulfur atoms, e.g. thiohydantoin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the invention relates to the field of pharmaceutical synthesis, and in particular to a method for preparing a deuterated imidazolidinone compound.
  • Prostatic cancer Prostatic cancer, English abbreviated as PCa
  • PCa Prostatic cancer
  • PCa Prostatic cancer
  • the incidence increases with age, and its incidence rate has obvious regional differences, which is higher in Europe and America.
  • it was a small disease in China's tumor spectrum and has not received enough attention.
  • China's society the aging of the society, the urbanization of the population, the westernization of the dietary structure and the advancement of detection technology, the incidence of prostate cancer in China is obvious. Rising momentum.
  • the androgen receptor is a ligand-dependent trans-regulatory protein with a molecular weight of 110,000 Daltons. Androgen plays a very important role in the pathogenesis of prostate cancer and its deterioration, in male hormone-related diseases such as acne, male hair loss and the like.
  • the present invention provides a method for preparing a deuterated imidazolidinone compound, which comprises the following steps:
  • R 1 and R 2 are independently selected from a C 1 -C 4 alkyl group, or R 1 and R 2 are bonded to form a ring;
  • R 3 , R 4 , R 5 are selected from hydrogen or deuterium, and at least One selected from ⁇ ;
  • a compound of the formula (VII) and a compound of the formula (VIII) are used as a raw material to obtain a deuterated imidazolidinone compound represented by the formula (IX) by an amide condensation reaction.
  • R 1 and R 2 are a methyl group.
  • R 3 , R 4 and R 5 are both fluorene.
  • the solvent is a mixed solvent composed of dimethyl sulfoxide and isopropyl acetate.
  • volume ratio of the dimethyl sulfoxide to the isopropyl acetate is 1:2.
  • the reaction is carried out in the presence of a base selected from the group consisting of alkali metal hydroxides.
  • hydroxide of the base is selected from the group consisting of LiOH, KOH or NaOH, preferably LiOH.
  • the amide condensation reaction is carried out in the presence of a condensing agent selected from the group consisting of isopropyl chloroformate, N,N'-carbonyldiimidazole or HATU.
  • the substitution reaction is carried out in the presence of Cu, CuI and N,N-dimethylglycine in an alkaline environment.
  • the reagent for carboxylating the carboxyl group is methyl iodide.
  • the C 1 -C 4 alkyl group means an alkyl group of C 1 , C 2 , C 3 , C 4 , that is, a linear or branched alkyl group having 1 to 4 carbon atoms, such as methyl group, B.
  • Base propyl, isopropyl, butyl, isobutyl, tert-butyl, sec-butyl and the like.
  • the present invention has the following distinct advantages:
  • the process of the present invention can achieve an overall yield of 40%, which is substantially superior to the overall yield of 3.5% of the prior art.
  • the method of the invention is simple and convenient to operate, and the purification of the product can be achieved by simple precipitation or crystallization without column chromatography.
  • the method of the invention avoids the use of the extremely toxic reagent acetone cyanohydrin, which is more green and safe.
  • the present invention also provides a method for preparing a deuterated imidazolidinone compound, which comprises the following steps:
  • R 6 , R 7 , R 8 are selected from hydrogen or hydrazine, and at least one of them is selected from the group consisting of hydrazine;
  • R 9 and R 10 are independently selected from a C 1 -C 4 alkyl group, or R 9 and R 10 are bonded. Form a ring together;
  • R 9 and R 10 are both methyl groups.
  • R 6 , R 7 and R 8 are both ⁇ .
  • R' is a methyl group.
  • the route synthesis step is one step less, but because the deuteration reagent is relatively expensive, the premature introduction of the helium source is lost through several steps of synthesis yield, and the total cost is higher than the last step. .
  • the reactor was filled with nitrogen, and N,N-dimethylformamide (20 L), water (2 L), 4-bromo-2-fluorobenzoic acid (2.0 kg), 2-methylalanine (2.82) were added.
  • Kg N,N-dimethylglycine (474 g), potassium carbonate (6.31 kg), copper powder (116 g) and cuprous iodide (348 g).
  • the mixture was stirred at 110 ° C for 16 hours under a nitrogen atmosphere.
  • the organic phase was concentrated to dryness, then methylene chloride (15L) was added, and then filtered, and dried under vacuum at 40 ° C to give the target compound 1.97 kg, yield 81.7%
  • N,N-dimethylformamide (7 L), 4-(1-carboxy-1-methyl-ethylamino)-2-fluoro-benzoic acid (750 g) and potassium carbonate (973 g) were added to the reaction vessel. .
  • Methyl iodide (945 g) was then added and stirred at 40 ° C overnight.
  • Water (20 L) was added dropwise to the reaction mixture, and the mixture was stirred and crystallized, filtered, and dried under vacuum at 50 ° C for 16 hours to obtain 787 g of the title compound, yield: 93.9%.
  • the reaction kettle was filled with nitrogen, and methyl 2-fluoro-4-[(1-methoxy-2-methyl-1-oxo-2-propyl)amino]benzoate (1.70 kg) was added, 4 -isothiocyanoyl-2-(trifluoromethyl)benzonitrile (2.88 kg), dimethyl sulfoxide (1.7 L) and isopropyl acetate (3.4 L).
  • the reaction was stirred at 83 ° C for 40 hours under a nitrogen atmosphere.
  • reaction solution was concentrated under reduced pressure to a solvent-free solvent, and methanol (8.5 L) was added dropwise, and the mixture was stirred and evaporated at 0 to 5 ° C, filtered, and the filter cake was rinsed with methanol and dried under vacuum at 50 ° C to obtain 2.3 kg of the target compound. 78.2%.
  • the reaction kettle was filled with nitrogen and 4- ⁇ 3-[4-cyano-3-(trifluoromethyl)phenyl]-5,5-dimethyl-4-oxo-2- was added.
  • Methyl thio-1-imidazolidin ⁇ -2-fluorobenzoate (1.70 kg) and tetrahydrofuran (3.4 L) were stirred until dissolved.
  • An aqueous lithium hydroxide solution (lithium hydroxide monohydrate 0.46 kg + water 3.4 L) was added dropwise. Incubate at 40 ° C for 1 h. After cooling to room temperature, water (3.4 L) was added and the pH was adjusted to 1-2 with brine. Extraction with 13.6 L of ethyl acetate was added.
  • potassium carbonate and potassium carbonate have substantially no reaction, and when the base is selected from alkali metal hydroxides, the yield
  • LiOH maintains a high purity while the yield is high, and LiOH is preferred.
  • the reaction solution was washed with a 1N aqueous sodium hydroxide solution (13 L) and 1N hydrochloric acid (13L) and water (6.5L).
  • the organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure to give a solid crystals, and then methyl t-butyl ether (3.9 L) and n-heptane (3.9 L) were added dropwise, and the mixture was stirred for 1 hour and filtered to give a crude product.
  • the crude product was heated and dissolved with absolute ethanol (13 L), stirred at 0-5 ° C for 2 h and filtered. It was dried under vacuum at 50 ° C for 8 hours to obtain a white solid title compound: 1.09 kg, yield: 80.7%, HPLC purity: 99.8%.
  • the reaction yield is high.
  • isopropyl chloroformate needs to be cooled to form a mixed acid anhydride, and the operation requires high equipment.
  • the condensing agent is preferably CDI.
  • the reaction kettle was filled with nitrogen, and 4-cyano-3-(trifluoromethyl)aniline (200 g), n-heptane (450 mL) and water (500 mL). Then, a suspension was formed by stirring, and thiophosgene (148 g) was added dropwise. Stir at 40 ° C for 16 hours. The mixture was separated and the aqueous phase was extracted once with n-heptane (500 mL). The organic phase was combined, and the solvent was evaporated under reduced pressure to give the title compound 220 g.
  • the reaction kettle was filled with nitrogen, and N,N-dimethylformamide (680 mL), water (70 mL), 4-bromo-2-fluoro-N- Triterpene methylbenzamide (150g), 2-methylalanine (199.8g), N,N-dimethylglycine (33.3g), potassium carbonate (446.1g), copper powder (8.3g) And cuprous iodide (24.6 g).
  • the mixture was stirred at 110 ° C for 16 hours under a nitrogen atmosphere.
  • the reaction mixture was cooled to room temperature, water (1.
  • the pH was adjusted to 3-4 with citric acid, and the mixture was crystallized at 5 ° C for 1 hour, filtered, and dried under vacuum to give 100 g of the title compound.
  • the reaction kettle was filled with nitrogen, and methyl 2-(3-fluoro-4-(tridemethylcarbamoyl)phenylamino)-2-methylpropanoate (27.1 g) was added, 4-isosulfur Citronyl-2-(trifluoromethyl)benzonitrile (45.6 g), dimethyl sulfoxide (27.1 mL) and isopropyl acetate (54.2 mL).
  • the reaction was stirred at 83 ° C for 24 hours under a nitrogen atmosphere.
  • the reaction mixture was concentrated under reduced pressure to dryness vacuol.
  • the crude product was dissolved by heating with absolute ethanol (250 mL), and the mixture was stirred for 1 hour at 0 to 5 ° C, filtered, and the filter cake was dried under vacuum at 50 ° C to obtain 34.5 g of the title compound.
  • the method of the present invention is safer than the prior methods, consumes less solvent, minimizes waste, and has an impact on the environment, shortens the production cycle, and increases the throughput and total yield of the method. , has a broad market prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种制备氘代咪唑二酮类化合物的方法,它包括以下步骤:(1)以式(Ⅰ)化合物和式(Ⅱ)化合物为原料,经取代反应得到式(Ⅲ)化合物;(2)将式(Ⅲ)化合物的羧基酯化制备得到式(Ⅳ)化合物;(3)式(Ⅳ)化合物和式(Ⅴ)化合物环合得到式(Ⅵ)化合物;(4)脱去式(Ⅵ)化合物的酯基,反应得到式(Ⅶ)化合物;(5)以式(Ⅶ)化合物和式(Ⅷ)化合物为原料,经酰胺缩合反应得到式(Ⅸ)所示氘代咪唑二酮类化合物。与现有方法相比,本发明方法更为安全,消耗的更少溶剂量、最小化废物以及对环境的影响,缩短了生产周期,并增加了处理量以及方法总收率,具有广阔的市场前景。

Description

一种制备氘代咪唑二酮类化合物的方法 技术领域
本发明涉及药物合成领域,具体涉及一种制备氘代咪唑二酮类化合物的方法。
背景技术
前列腺癌(prostatic carcinoma,prostatic cancer,英文简写为PCa)是男性生殖系最常见的恶性肿瘤,发病随年龄而增长,其发病率有明显的地区差异,欧美地区较高。仅次于肺癌,是男性癌症死亡的第二位。以往,在我国肿瘤谱中属于小病种而未受到足够重视,随着我国社会发展进步的同时,社会老龄化,人口城市化,膳食结构西方化与检测技术进步,我国前列腺癌发病率呈明显上升势头。天津医大第二医院、天津市前列腺癌诊疗协作组在2011年完成的一项外国关于前列腺癌的调查显示,天津市前列腺癌发病率正迅速上升,20年间前列腺癌发病率上升了4倍,前列腺癌患者已占泌尿系肿瘤住院病人的13.4%,由以往的罕见癌症变为常见肿瘤。全国前列腺癌发病率具有同样趋势。
雄性激素(androgen receptor)是一个11万道尔顿分子量的配体依赖性的反式转录调节蛋白。雄性激素在前列腺癌的病原和它的恶化过程中,在男性荷尔蒙相关的疾病如青春痘,男性脱发等等扮演非常重要的作用。
传统治疗前列腺癌方法是通过手术或者雄性激素(androgen receptor)拮抗剂如比卡鲁胺(bicalutamide,Casodex)进行治疗。但是患者在经过2-4年治疗后,会产生抗药性,同时比卡鲁胺还有刺激癌症增生的副作用,患者必须停止使用比卡鲁胺。目前,已开发出具有与卡鲁胺相同结合靶点的化合物以及其它推向市场的转移性前列腺癌药物。例如,专利CN201280052853.9。
其中,下述化合物具有较好的药学性质:
Figure PCTCN2016110978-appb-000001
然而,专利CN201280052853.9公开的合成路线中,使用了偶联异硫氰酸酯与异丁腈。该方法的主要缺陷包括在最终步骤中仅得到11%的希望产物收率。导致该路线中,以商 业可购的原料开始,总收率仅为3.5%。并且,各中间化合物的纯化需要进行耗时耗力的柱层析,总生产时间较长,不利于工业化大生产。
因此,为了提高生产效率,降低生产成本,有必要对合成方法进行改进。
发明内容
为解决上述问题,本发明提供了一种制备氘代咪唑二酮类化合物的方法,它包括以下步骤:
Figure PCTCN2016110978-appb-000002
其中,R1、R2独立地选自C1~C4的烷基,或者R1和R2键合而共同形成环;R3、R4、R5选自氢或氘,且其中至少一个选自氘;
(1)以式(Ⅰ)化合物和式(Ⅱ)化合物为原料,经取代反应得到式(Ⅲ)化合物;
(2)将式(Ⅲ)化合物的羧基酯化制备得到式(Ⅳ)化合物,R选自C1~C6的烷基;
(3)式(Ⅳ)化合物和式(Ⅴ)化合物环合得到式(Ⅵ)化合物;
(4)脱去式(Ⅵ)化合物的酯基,反应得到式(Ⅶ)化合物;
(5)以式(Ⅶ)化合物和式(Ⅷ)化合物为原料,经酰胺缩合反应得到式(Ⅸ)所示氘代咪唑二酮类化合物。
进一步地,R1和R2均为甲基。
进一步地,R 3、R4、R5均为氘。
进一步地,R为甲基。进一步地,所述步骤(3)的环合中,溶剂为二甲基亚砜与乙酸异丙酯组成的混合溶剂。
进一步地,所述二甲基亚砜与乙酸异丙酯的体积比为1:2。
进一步地,步骤(4)中,所述反应是在碱的存在下进行的,所述碱选自碱金属的氢氧化物。
进一步地,所述碱的氢氧化物选自LiOH、KOH或NaOH,优选LiOH。
进一步地,步骤(5)中,所述酰胺缩合反应是在缩合剂的存在下进行的,所述缩合剂选自氯甲酸异丙酯、N,N’-羰基二咪唑或HATU。
进一步地,步骤(1)中,所述取代反应是在碱性环境下,Cu、CuI和N,N-二甲基甘氨酸的存在下进行的。
进一步地,步骤(2)中,所述羧基甲酯化的试剂为碘甲烷。
所述C1~C4的烷基是指C1、C2、C3、C4的烷基,即具有1~4个碳原子的直链或支链的烷基,例如甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、仲丁基等等。
与现有方法相比,本发明具有以下明显的优点:
(1)本发明方法可以达到40%的总收率,大幅优于现有方法3.5%的总收率。
(2)本发明方法操作简便,不需柱层析,通过简单沉淀或结晶手段就可以实现产物的纯化。
(3)本发明方法避免了使用极毒性试剂丙酮合氰化氢,更为绿色安全。
发明人在研发过程中,探索到了另一条合成路线,通过前期引入氘源得到三氘代甲基苯甲酰胺再在铜的催化下与2-甲基丙氨酸缩合得到2-(3-氟-4-(三氘代甲基氨基甲酰基)苯基氨基)-2-甲基丙酸,丙酸经过甲基化,最后与-异硫代氰酰基-2-(三氟甲基)苯甲腈环和得到目标化合物。
即本发明还提供了一种制备氘代咪唑二酮类化合物的方法,它包括以下步骤:
Figure PCTCN2016110978-appb-000003
其中,R6、R7、R8选自氢或氘,且其中至少一个选自氘;R9、R10独立地选自C1~C4的烷基,或者R9和R10键合共同形成环;
(1)以式(A)化合物和式(B)化合物为原料,经酰胺缩合反应得到式(C)所示化合物;
(2)以式(C)化合物和式(D)化合物为原料,经取代反应得到式(E)化合物;
(3)将式(E)化合物的羧基酯化制备得到式(F)化合物,R’选自C1~C6的烷基;
(4)式(F)化合物和式(G)化合物环合得到式(Ⅸ)所示氘代咪唑二酮类化合物。
进一步地,R9和R10均为甲基。
进一步地,R 6、R7、R8均为氘。
进一步地,R’为甲基。
相比于前述路线,该条路线合成步骤少一步,但是由于氘代试剂比较昂贵,过早的引入氘源经过几步合成收率损失下来,最后总成本比最后一步引入氘源生产成本要高。
在本发明中,英文缩写对应的中文全称如下表所示:
DMSO 二甲基亚砜
IPAc 乙酸异丙酯
DMF N,N-二甲基甲酰胺
EA 乙酸乙酯
THF 四氢呋喃
DMAA N,N-二甲基甘氨酸
HATU 2-(7-氧化苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
CDI N,N’-羰基二咪唑
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。
具体实施方式
实施例1制备4-(1-羧基-1-甲基-乙基氨基)-2-氟-苯甲酸
Figure PCTCN2016110978-appb-000004
往反应釜中充入氮气,加入N,N-二甲基甲酰胺(20L),水(2L),4-溴-2-氟苯甲酸(2.0kg),2-甲基丙氨酸(2.82kg),N,N-二甲基甘氨酸(474g),碳酸钾(6.31kg),铜粉(116g)和碘化亚铜(348g)。氮气保护下,110℃搅拌16小时。将反应混合液降温至室温,加入冰水(30L),滴加6N冰盐酸调节pH=4-5,用乙酸乙酯萃取2次(20L*2),合并有机相,水(5L)洗一次。有机相浓缩至干,加入二氯甲烷(15L)打浆,过滤,40℃下真空干燥,得到目标化合物1.797kg,收率81.7%
实施例2制备2-氟-4-[(1-甲氧基-2-甲基-1-氧代-2-丙基)氨基]苯甲酸甲酯
Figure PCTCN2016110978-appb-000005
往反应釜中加入N,N-二甲基甲酰胺(7L),4-(1-羧基-1-甲基-乙基氨基)-2-氟-苯甲酸(750g)和碳酸钾(973g)。然后加入碘甲烷(945g),40℃搅拌过夜。向反应液中滴加水(20L),搅拌析晶,过滤,50℃真空干燥16小时,得到目标化合物787g,收率:93.9%。
1HNMR(DMSO,400MHz):1.49(6H,s),3.64(3H,s),3.75(3H,s),6.16(1H,dd,J2.1,14.5),6.31(1H,dd,J2.1,8.8),7.16(1H,s),7.63(1H,t,J8.8)
实施例3制备4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基}-2-氟苯甲酸甲酯
Figure PCTCN2016110978-appb-000006
往反应釜中充入氮气,加入2-氟-4-[(1-甲氧基-2-甲基-1-氧代-2-丙基)氨基]苯甲酸甲酯(1.70kg),4-异硫代氰酰基-2-(三氟甲基)苯甲腈(2.88kg),二甲基亚砜(1.7L)和乙酸异丙酯(3.4L)。氮气保护下,83℃搅拌反应40小时。反应液减压浓缩至无溶剂蒸出,滴加甲醇(8.5L),0-5℃搅拌析晶,过滤,滤饼用甲醇淋洗,50℃真空干燥,得到目标化合物2.3kg,收率:78.2%。
1HNMR(DMSO,400MHz):1.57(6H,s),3.91(3H,s),7.43(1H,dd,J1.8,8.3),7.53(1H,dd,J1.8,11.2),8.08-8.12(2H,m),8.30(1H,d,J1.5),8.42(1H,d,J8.2)。.
按照上述方法,发明人对反应溶剂进行了筛选,结果如下表1所示:
表1反应溶剂筛选
Figure PCTCN2016110978-appb-000007
可以看出,当溶剂为二甲基亚砜与乙酸异丙酯的混合溶剂时,收率较高。
实施例4制备4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基}-2-氟苯甲酸
Figure PCTCN2016110978-appb-000008
往反应釜中充入氮气,加入4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2- 硫代-1-咪唑烷基}-2-氟苯甲酸甲酯(1.70kg)和四氢呋喃(3.4L),搅拌至溶解澄清。滴加氢氧化锂水溶液(一水合氢氧化锂0.46kg+水3.4L)。40℃下,保温1h。降温至室温,加入水(3.4L),用盐水调节pH=1-2。加入乙酸乙酯13.6L萃取。有机相用水洗一次,无水硫酸钠干燥,过滤,减压浓缩至约剩余3.4L溶剂,滴加正庚烷(10.2L),搅拌析晶1h,过滤,真空干燥得到目标化合物1.31kg,收率79.4%。
1HNMR(DMSO,400MHz):1.57(6H,s),7.39(1H,dd,J1.6,8.3),7.48(1H,dd,J1.6,11.0),8.06-8.12(2H,m),8.32(1H,d,J1.2),8.42(1H,d,J8.2),13.58(1H,brd)。
按照上述方法,发明人对碱进行了筛选,结果如下表2所示:
表2碱的筛选
Figure PCTCN2016110978-appb-000009
可以看出,碳酸钾和碳酸钾基本没有反应,当碱选自碱金属的氢氧化物时,收率
均较高。其中,LiOH在收率较高的同时,还保持了较高的纯度,优选LiOH。
实施例5制备4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基}-2-氟-N-三氘代甲基苯酰胺
Figure PCTCN2016110978-appb-000010
往反应釜中,加入4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基}-2-氟苯甲酸(1.30kg)和二氯甲烷(13L),搅拌溶解。分批加入N,N-羰基二咪唑 (0.7kg),搅拌2h。加入三乙胺(1.2L)和氘代甲胺盐酸盐(302g),室温搅拌4小时。反应液依次用1N氢氧化钠水溶液(13L)和1N盐酸(13L),水(6.5L)萃洗。有机相用无水硫酸钠干燥,减压浓缩至刚好有固体析出,依次滴加甲基叔丁基醚(3.9L)和正庚烷(3.9L),搅拌析晶1h,过滤,得到粗品。将粗品用无水乙醇(13L)加热溶清,0-5℃下,搅拌析晶2h,过滤。50℃下,真空干燥8小时,得到白色固体目标化合物1.09kg,收率:80.7%,HPLC纯度为99.8%。
1HNMR(DMSO,400MHz):1.57(6H,s),7.36(1H,dd,J1.2,8.2),7.46(1H,dd,J1.2,10.7),7.82(1H,t,J8.2),8.11(1H,d,J8.2),8.32(1H,s),8.42(1H,d,J8.2),8.46(1H,s)。
按照上述方法,发明人对缩合剂进行了筛选,结果如下表3所示:
表3缩合剂的筛选
Figure PCTCN2016110978-appb-000011
可以看出,以氯甲酸异丙酯或CDI为缩合剂时,反应收率较高。其中,氯甲酸异丙酯需要降温成混合酸酐,操作对设备要求高,综合考虑,缩合剂优选CDI。
实施例6
Figure PCTCN2016110978-appb-000012
(1)制备4-异硫代氰酰基-2-(三氟甲基)苯甲腈
Figure PCTCN2016110978-appb-000013
往反应釜中充入氮气,加入4-氰基-3-(三氟甲基)苯胺(200g),正庚烷(450mL)和水(500mL)。随后搅拌形成悬浊液,滴加硫光气(148g)。40℃搅拌16小时。静置分液,水相用正庚烷(500mL)萃取一次,合并有机相,减压浓缩去除溶剂,减压蒸馏,得到目标化合物220g,收率:89.8%。
1HNMR(DMSO,400MHz):7.52(1H,dd,J1.7,8.3),7.60(1H,d,J1.7),7.87(1H,d,J8.3)
(2)制备4-溴-2-氟-N-三氘代甲基苯甲酰胺
Figure PCTCN2016110978-appb-000014
往反应釜中,加入4-溴-2-氟苯甲酸(50g)和二氯甲烷(500mL),开启搅拌。分批加入N,N-羰基二咪唑(73.9g),搅拌2h。加入三乙胺(95.5mL)和氘代甲胺盐酸盐(30.8g),搅拌4小时。反应液依次用1N氢氧化钠水溶液(500mL)和1N盐酸(500mL),水(250mL)萃洗。有机相用无水硫酸钠干燥,过滤,减压浓缩得到类白色固体,真空干燥8小时,得到白色固体目标化合物44.0g,收率:82.2%。
(3)制备2-(3-氟-4-(三氘代甲基氨基甲酰基)苯基氨基)-2-甲基丙酸。
Figure PCTCN2016110978-appb-000015
往反应釜中充入氮气,加入N,N-二甲基甲酰胺(680mL),水(70mL),4-溴-2-氟-N- 三氘代甲基苯甲酰胺(150g),2-甲基丙氨酸(199.8g),N,N-二甲基甘氨酸(33.3g),碳酸钾(446.1g),铜粉(8.3g)和碘化亚铜(24.6g)。氮气保护下,110℃搅拌16小时。将反应混合液降温至室温,加入水(1.8L),用乙酸乙酯萃取杂质。用柠檬酸调节pH=3-4,5℃析晶1小时,过滤,真空烘干得到目标化合物100g,收率60.9%。
(4)2-(3-氟-4-(三氘代甲基氨基甲酰基)苯基氨基)-2-甲基丙酸甲酯
Figure PCTCN2016110978-appb-000016
往反应釜中加入N,N-二甲基甲酰胺(630mL),2-(3-氟-4-(三氘代甲基氨基甲酰基)苯基氨基)-2-甲基丙酸(90g),水(2.2mL)和碳酸钾(58.7g)。然后加入碘甲烷(26.5mL),40℃搅拌3小时。向反应液中加入醋酸(6.4mL),60℃搅拌1小时,滴加水(1.35L),降至室温,搅拌析晶,过滤,真空烘干,得到目标化合物91g,收率:95.2%。
(5)4-{3-[4-氰基-3-(三氟甲基)苯基]-5,5-二甲基-4-氧代-2-硫代-1-咪唑烷基}-2-氟-N-三氘代甲基苯酰胺
Figure PCTCN2016110978-appb-000017
往反应釜中充入氮气,加入2-(3-氟-4-(三氘代甲基氨基甲酰基)苯基氨基)-2-甲基丙酸甲酯(27.1g),4-异硫代氰酰基-2-(三氟甲基)苯甲腈(45.6g),二甲基亚砜(27.1mL)和乙酸异丙酯(54.2mL)。氮气保护下,83℃搅拌反应24小时。反应液减压浓缩至无溶剂蒸出,滴加甲醇(135.5mL),0-5℃搅拌析晶1小时,过滤得到粗品。粗品用无水乙醇(250mL)加热溶解,0-5℃搅拌析晶1小时,过滤,滤饼50℃真空干燥,得到目标化合物34.5g,收率:73.9%。
综上所述,与现有方法相比,本发明方法更为安全,消耗的更少溶剂量、最小化废物以及对环境的影响,缩短了生产周期,并增加了处理量以及方法总收率,具有广阔的市场前景。

Claims (20)

  1. 一种制备氘代咪唑二酮类化合物的方法,其特征在于:它包括以下步骤:
    Figure PCTCN2016110978-appb-100001
    其中R1、R2独立地选自C1~C4的烷基,或者R1和R2键合而共同形成环;
    R3、R4、R5选自氢或氘,且其中至少一个选自氘;(1)以式(Ⅰ)化合物和式(Ⅱ)化合物为原料,经取代反应得到式(Ⅲ)化合物;
    (2)将式(Ⅲ)化合物的羧基酯化制备得到式(Ⅳ)化合物,R选自C1~C6的烷基;
    (3)式(Ⅳ)化合物和式(Ⅴ)化合物环合得到式(Ⅵ)化合物;
    (4)脱去式(Ⅵ)化合物的酯基,反应得到式(Ⅶ)化合物;
    (5)以式(Ⅶ)化合物和式(Ⅷ)化合物为原料,经酰胺缩合反应得到式(Ⅸ)所示氘代咪唑二酮类化合物。
  2. 根据权利要求1所述的方法,其特征在于:R1和R2均为甲基。
  3. 根据权利要求1或2所述的方法,其特征在于:R3、R4、R5均为氘。
  4. 根据权利要求1-3任一项所述的方法,其特征在于:R为甲基。
  5. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(1)中,反应的温度为40~120℃。
  6. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(2)中,反应的温度为-10~60℃。
  7. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(3)中,反应的温度为40~90℃
  8. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(4)中,反应的温度为-10~70℃
  9. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(5)中,反应的温度为-10~40℃
  10. 根据权利要求1-4任一项所述的方法,其特征在于:所述步骤(3)的环合中,溶剂为二甲基亚砜或者二甲基亚砜与乙酸异丙酯组成的混合溶剂,其中二甲基亚砜与乙酸异丙酯的体积比为50:1~1:10。
  11. 根据权利要求10所述的方法,其特征在于:所述二甲基亚砜与乙酸异丙酯的体积比为1:2。
  12. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(4)中,所述反应是在碱的存在下进行的,所述碱选自碱金属的氢氧化物。
  13. 根据权利要求12所述的方法,其特征在于:所述碱的氢氧化物选自LiOH、KOH或NaOH,优选LiOH。
  14. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(5)中,所述酰胺缩合反应是在缩合剂的存在下进行的,所述缩合剂选自氯甲酸异丙酯、N,N’-羰基二咪唑或HATU。
  15. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(1)中,所述取代反应是在碱性环境下,以Cu、CuI和N,N-二甲基甘氨酸为催化剂进行的。
  16. 根据权利要求1-4任一项所述的方法,其特征在于:步骤(2)中,所述羧基甲酯化的试剂为碘甲烷。
  17. 一种制备氘代咪唑二酮类化合物的方法,其特征在于:它包括以下步骤:
    Figure PCTCN2016110978-appb-100002
    其中,R6、R7、R8选自氢或氘,且其中至少一个选自氘;R9、R10独立地选自C1~C4的烷基,或者R9和R10键合而共同形成环;
    (1)以式(A)化合物和式(B)化合物为原料,经酰胺缩合反应得到式(C)所示化合物;
    (2)以式(C)化合物和式(D)化合物为原料,经取代反应得到式(E)化合物;
    (3)将式(E)化合物的羧基酯化制备得到式(F)化合物,R’选自C1~C6的烷基;
    (4)式(F)化合物和式(G)化合物环合得到式(Ⅸ)所示氘代咪唑二酮类化合物。
  18. 根据权利要求17所述的方法,其特征在于:R9和R10均为甲基。
  19. 根据权利要求17或18所述的方法,其特征在于:R6、R7、R8均为氘。
  20. 根据权利要求17-19任一项所述的方法,其特征在于:R’为甲基。
PCT/CN2016/110978 2016-10-17 2016-12-20 一种制备氘代咪唑二酮类化合物的方法 WO2018072300A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3040785A CA3040785C (en) 2016-10-17 2016-12-20 A method for the preparation of deuterated imidazole diketone compounds
PL16919556.7T PL3527556T3 (pl) 2016-10-17 2016-12-20 Sposób wytwarzania deuterowanych związków imidazolodiketonowych
FIEP16919556.7T FI3527556T3 (fi) 2016-10-17 2016-12-20 Menetelmä deuteroidun imidatsolidiketoniyhdisteen valmistamiseksi
AU2016426847A AU2016426847B2 (en) 2016-10-17 2016-12-20 Method for preparing deuterated imidazole diketone compound
ES16919556T ES2943011T3 (es) 2016-10-17 2016-12-20 Procedimiento de preparación del compuesto imidazol dicetona deuterado
JP2019520547A JP7241682B2 (ja) 2016-10-17 2016-12-20 重水素化イミダゾリジンジオン系化合物を調製する方法
DK16919556.7T DK3527556T3 (da) 2016-10-17 2016-12-20 Fremgangsmåde til fremstilling af deutereret imidazoldiketonforbindelse
EP16919556.7A EP3527556B1 (en) 2016-10-17 2016-12-20 Method for preparing deuterated imidazole diketone compound
US16/342,912 US20200087261A1 (en) 2016-10-17 2016-12-20 Method for preparing deuterated imidazole diketone compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610901502.0A CN107954936B (zh) 2016-10-17 2016-10-17 一种制备氘代咪唑二酮类化合物的方法
CN201610901502.0 2016-10-17

Publications (1)

Publication Number Publication Date
WO2018072300A1 true WO2018072300A1 (zh) 2018-04-26

Family

ID=61954120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110978 WO2018072300A1 (zh) 2016-10-17 2016-12-20 一种制备氘代咪唑二酮类化合物的方法

Country Status (14)

Country Link
US (1) US20200087261A1 (zh)
EP (1) EP3527556B1 (zh)
JP (1) JP7241682B2 (zh)
CN (1) CN107954936B (zh)
AU (1) AU2016426847B2 (zh)
CA (1) CA3040785C (zh)
DK (1) DK3527556T3 (zh)
ES (1) ES2943011T3 (zh)
FI (1) FI3527556T3 (zh)
HU (1) HUE061557T2 (zh)
PL (1) PL3527556T3 (zh)
PT (1) PT3527556T (zh)
TW (1) TWI728077B (zh)
WO (1) WO2018072300A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180511A (zh) * 2018-08-22 2019-01-11 辽宁东科药业有限公司 一种盐酸丁卡因的制备方法
CN114621109B (zh) * 2020-12-14 2024-04-26 成都苑东生物制药股份有限公司 一种阿帕他胺的合成方法及其中间体
CN113698310B (zh) * 2021-08-20 2023-03-17 江西金丰药业有限公司 一种恩杂鲁胺双酯中间体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817787A (zh) * 2009-02-26 2010-09-01 童友之 抗前列腺癌的雄性激素受体拮抗剂
CN103159680A (zh) * 2011-12-14 2013-06-19 爱美尼迪药物有限公司 咪唑二酮类化合物及其用途
EP2656841A1 (en) * 2006-03-27 2013-10-30 The Regents of The University of California Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2753425A1 (en) * 2009-02-24 2010-09-02 Medivation Prostate Therapeutics, Inc. Specific diarylhydantoin and diarylthiohydantoin compounds
SI3329775T1 (sl) * 2010-02-24 2021-09-30 Medivation Prostate Therapeutics Llc Procesi za sintezo spojin diariltiohidantoina in diarilhidantoina
JP6469092B2 (ja) * 2013-05-29 2019-02-13 ヒノバ ファーマシューティカルズ インコーポレイテッド イミダゾリジンジオン化合物及び薬物組成物
CN104341352A (zh) 2013-08-09 2015-02-11 南京衡杰生物科技有限公司 作为雄激素受体拮抗剂的二芳基乙内酰脲化合物及其应用
CN104803918B (zh) * 2014-01-26 2017-11-10 上海医药工业研究院 恩杂鲁胺的制备方法
CN104016924B (zh) * 2014-06-16 2016-04-13 上海鼎雅药物化学科技有限公司 一种“一锅法”合成恩杂鲁胺的方法
RU2557235C1 (ru) * 2014-07-08 2015-07-20 Александр Васильевич Иващенко Замещенные 2-тиоксо-имидазолидин-4-оны и их спироаналоги, противораковый активный компонент, фармацевтическая композиция, лекарственный препарат, способ лечения рака простаты

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2656841A1 (en) * 2006-03-27 2013-10-30 The Regents of The University of California Androgen receptor modulator for the treatment of prostate cancer and androgen receptor-associated diseases
CN101817787A (zh) * 2009-02-26 2010-09-01 童友之 抗前列腺癌的雄性激素受体拮抗剂
CN103159680A (zh) * 2011-12-14 2013-06-19 爱美尼迪药物有限公司 咪唑二酮类化合物及其用途

Also Published As

Publication number Publication date
ES2943011T3 (es) 2023-06-08
JP2019532075A (ja) 2019-11-07
PT3527556T (pt) 2023-05-02
DK3527556T3 (da) 2023-05-01
EP3527556A1 (en) 2019-08-21
AU2016426847A1 (en) 2019-06-06
US20200087261A1 (en) 2020-03-19
TWI728077B (zh) 2021-05-21
CN107954936A (zh) 2018-04-24
CA3040785A1 (en) 2018-04-26
CA3040785C (en) 2021-06-15
JP7241682B2 (ja) 2023-03-17
HUE061557T2 (hu) 2023-07-28
EP3527556B1 (en) 2023-01-25
FI3527556T3 (fi) 2023-04-25
PL3527556T3 (pl) 2023-08-14
TW201815768A (zh) 2018-05-01
CN107954936B (zh) 2021-03-19
EP3527556A4 (en) 2020-04-29
AU2016426847B2 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
CN107501237B (zh) 一种Apalutamide的合成方法
SK285429B6 (sk) Polymorfná kryštalická modifikácia B telmisartanu, spôsob jej prípravy a jej použitie
CN103772384A (zh) 一种制备他达拉非的方法
CN114031543A (zh) 一种帕罗韦德中间体的制备方法
WO2018072300A1 (zh) 一种制备氘代咪唑二酮类化合物的方法
RU2650110C2 (ru) Способы синтеза 2-амино-4,6-диметоксибензамида и других бензамидных соединений
CN102690223A (zh) 1-乙酰基-7-氰基-5-(2-氨基丙基)吲哚啉的制备方法
CN111320552A (zh) 一种恩扎卢胺中间体的制备方法
CN112979544B (zh) 一种卡博替尼或其盐的制备方法
CN108191858A (zh) 一种制备吡咯喹啉醌的中间体及制备方法
CN110526813B (zh) 异喹啉化合物的制备方法及其中间体
CN110759870A (zh) 噁拉戈利中间体的合成方法
CN117603081A (zh) N-(2-((2-(3-甲氧基苯氧基)苯基)氨基)-2-乙酰氧基)-1-萘胺的制备方法
CN113861097A (zh) 一种多构型1-Boc-N-Fmoc色氨酸类化合物的合成方法
WO2018032555A1 (zh) 二氢异吲哚衍生物及其类似物的制备方法
CN113336703A (zh) 1,3,4,5-四取代1h-吡唑衍生物的合成
CN110563721A (zh) 一种新的盐酸阿扎司琼的制备方法
CN114560845B (zh) 喹啉化合物的晶型ɑ及其制备方法和应用
EP1758872A1 (en) Process for the preparation of anastrozole
JP2003212861A (ja) ピリミジニルアルコール誘導体の製造方法及びその合成中間体
CN110669031B (zh) 天然产物异猴头菌酮j的全合成方法
CN111303001B (zh) 吲哚单取代的2-羟基-3-(1h-吲哚-3-基)丙酸类化合物的合成方法
CN108484495B (zh) 一种3-溴-7-羟基喹啉的合成方法
CN110903245B (zh) 一种合成1-烷基-2-三氟甲基-5-氨基-1h-咪唑的关键中间体及其制备方法
CN117209437A (zh) 一种胺基喹唑啉酮衍生物的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919556

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3040785

Country of ref document: CA

Ref document number: 2019520547

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016919556

Country of ref document: EP

Effective date: 20190517

ENP Entry into the national phase

Ref document number: 2016426847

Country of ref document: AU

Date of ref document: 20161220

Kind code of ref document: A