[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018066478A1 - Damping force control device - Google Patents

Damping force control device Download PDF

Info

Publication number
WO2018066478A1
WO2018066478A1 PCT/JP2017/035561 JP2017035561W WO2018066478A1 WO 2018066478 A1 WO2018066478 A1 WO 2018066478A1 JP 2017035561 W JP2017035561 W JP 2017035561W WO 2018066478 A1 WO2018066478 A1 WO 2018066478A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping force
relative speed
force
damper
estimated
Prior art date
Application number
PCT/JP2017/035561
Other languages
French (fr)
Japanese (ja)
Inventor
彰人 山本
田中 亘
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2018066478A1 publication Critical patent/WO2018066478A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method

Definitions

  • Embodiments of the present invention relate to a damping force control device.
  • a semi-active suspension has been proposed as a suspension provided with a mechanism for suppressing vibration.
  • the semi-active suspension has a variable damping damper that uses vibration energy input from the outside without using an actuator that uses a power source, unlike the full active suspension. And the vibration is suppressed by changing the damping force of the variable damping damper.
  • the control device calculates a command value that gives a damping force suitable for the vibration of the car body, taking into account the relative speed of the wheel to the car body in addition to the acceleration information detected by the acceleration sensor.
  • a technique for changing the damping force with the command value has been proposed.
  • a technique has been proposed for estimating the relative speed from the current vehicle situation without using a speed sensor or the like when determining the relative speed.
  • the estimated relative speed may be deviated from the actual relative speed due to various factors.
  • One of the problems of the present invention is to provide a damping force control device that outputs a damping force suitable for vehicle vibration by improving the estimation accuracy of the relative speed.
  • the damping force control device includes, for example, an estimation unit that estimates a relative speed of a wheel with respect to a vehicle body in a damping force control device for a suspension that controls a damper whose damping force can be changed according to a command signal; A damping force calculation unit that calculates a target damping force indicating a damping force that the damper should output based on acceleration information from an acceleration sensor provided on the vehicle body, and a command signal corresponding to the target damping force, A damping force estimator that calculates an estimated damping force indicating an estimated value of the damping force output from the damper based on an output unit that outputs to the damper, a relative speed, and a command signal corresponding to the target damping force; A friction force calculation unit that calculates the friction force generated by the damper based on the relative speed, and the estimation unit further estimates the relative speed based on the estimated damping force and the friction force. According to this configuration, for example, by estimating the relative speed in consideration of the frictional force, the
  • the frictional force calculation unit varies the frictional force based on the direction of the relative speed. According to this configuration, for example, by calculating the friction force according to the direction of the relative speed, the estimation accuracy of the relative speed is improved, so that the riding comfort of the vehicle can be improved.
  • FIG. 1 is a figure showing an example of a damping force control device of an embodiment.
  • FIG. 2 is a diagram illustrating a model of a semi-active damper that is assumed when the Kalman filter theory is used.
  • FIG. 3 is a diagram illustrating the transition of the estimated relative speed calculated without including the friction term and the actual relative speed.
  • FIG. 4 is a diagram illustrating the frictional force output by the frictional force calculation unit according to the embodiment.
  • FIG. 5 is a diagram illustrating the frictional force output by the frictional force calculation unit of the modification.
  • FIG. 6 is a diagram illustrating the transition of the estimated relative speed calculated including the friction term and the actual relative speed.
  • damping force control device 100 controls the damping force of a semi-active damper that is a component of the suspension of the vehicle body 1.
  • FIG. 1 is a diagram illustrating an example of the damping force control apparatus 100 according to the present embodiment.
  • the damping force control apparatus 100 receives observation information based on acceleration detected by an acceleration sensor 150 provided in the vehicle body 1, and attenuation that the semi-active damper 180 should output from the observation information. After calculating the force, the command current indicating the damping force is output to the semi-active damper 180.
  • the observation information is information representing the motion state of the vehicle body 1. For example, the acceleration of the vehicle body 1, the speed of the vehicle body 1, the vertical displacement amount of the vehicle body 1 (the vertical direction between the vehicle body 1 and the wheel (semi-active damper 180 Displacement amount in the direction along the axis). That is, the speed obtained by integrating the acceleration of the vehicle body 1 and the vertical displacement obtained by integrating the speed are included.
  • the vehicle body 1 of the present embodiment may be, for example, an automobile using an internal combustion engine (not shown) as a drive source, that is, an internal combustion engine automobile, or an automobile using an electric motor (not shown) as a drive source, that is, an electric vehicle or a fuel cell. It may be an automobile or the like. Furthermore, a train etc. may be sufficient.
  • the damping force control device 100 generates the command current P based on the motion state of the vehicle body 1 (for example, the vertical acceleration of the vehicle body 1 and the speed of the vehicle body 1) based on the observation information, Output to a semi-active damper (an example of a damper) 180.
  • a semi-active damper an example of a damper
  • the command current P is a current representing a target damping force for controlling the semi-active damper 180.
  • FIG. 2 is a diagram exemplifying a model of the semi-active damper 180 that is assumed when the Kalman filter theory is used.
  • the semi-active damper 180 includes a spring 201 and a vibration damping device 202 and connects the vehicle body 1 and the wheel 200. That is, the vehicle body 1 is supported by the wheels 200 and the semi-active damper 180.
  • the semi-active damper 180 sets a damping force based on the command current P.
  • the semi-active damper 180 changes the opening degree of the orifice provided in the piston of the vibration damping device 202 based on the command current P, or changes the opening degree between the valve body and the valve seat.
  • the amount of lubricating oil flowing between the two oil chambers partitioned by the piston in the vibration damping device 202 is controlled to adjust the damping force of the semi-active damper 180.
  • a state in which the piston is difficult to move by reducing the opening degree of the orifice (decreasing the opening area) is referred to as a hard state of the semi-active damper 180.
  • a state in which the piston is easily moved by increasing the opening degree of the orifice (increasing the opening area) is referred to as a soft state of the semi-active damper 180.
  • the damping force control apparatus 100 includes an estimation unit 101, a target damping force calculation unit 103, an instruction current output unit 104, a damping force estimation unit 105, and a friction force calculation unit 106. .
  • the target damping force calculation unit 103 calculates the target damping force based on the observation information output from the vehicle body 1 and the estimated relative speed yob output from the estimation unit 101.
  • the observation information includes the acceleration of the vehicle body 1, the speed of the vehicle body 1, and the vertical displacement amount of the vehicle body 1 (displacement between the vehicle body 1 and the wheel).
  • the target damping force calculation unit 103 is constructed based on the skyhook control theory or the H ⁇ control theory.
  • the target damping force indicates the damping force that should be indicated as a target to the semi-active damper 180 according to the current situation of the vehicle body 1.
  • the estimated relative speed yob is an estimated value of the speed of the wheel 200 with respect to the vehicle body 1 calculated by the estimation unit 101.
  • the estimation unit 101 will be described later.
  • the command current output unit 104 calculates the command current P corresponding to the target damping force based on the target damping force input from the target damping force calculation unit 103, and the command current P is estimated using the semi-active damper 180 and the damping force estimation. Output to the unit 105.
  • the command current P is a current indicating the target damping force by a current value or a voltage value.
  • the damping force estimation unit 105 includes a linear damping force estimation unit 111, a nonlinear damping force estimation unit 112, and a damping force map storage unit 113. Based on the command current P and the estimated relative speed yob, the command current An estimated value of the damping force output from the semi-active damper 180 (hereinafter referred to as an estimated damping force) is calculated according to P.
  • the equation of motion of the vehicle body 1 In order to explain the damping force, first, the equation of motion of the vehicle body 1 will be explained.
  • the equation of motion of the vehicle body 1 can be expressed by the following equation (1).
  • the damping force characteristic indicating the change of the damping force with respect to the relative speed y changes according to the command current P.
  • the damping force “fd (y, P)” of the vibration damping device 202 generally includes not only a linear component with respect to the relative velocity y but also a nonlinear component.
  • a linear damping force estimation unit 111 that calculates a linear component and a nonlinear damping force estimation unit 112 that calculates a nonlinear component are provided.
  • the linear damping force estimation unit 111 calculates a linear component Co ⁇ yob by multiplying the input estimated relative velocity yob by a predetermined coefficient Co.
  • the coefficient Co is a value determined according to the embodiment.
  • the nonlinear damping force estimation unit 112 refers to the damping force map storage unit 113 and calculates a nonlinear component fn (yob, P) based on the estimated relative speed yob and the command current P.
  • the damping force map storage unit 113 stores map information used for calculating the estimated damping force.
  • the nonlinear component fn (yob, P) corresponding to the command current P and the estimated relative speed yob can be specified.
  • the map information is map information that can identify the nonlinear component from the input values (the command current P and the estimated relative speed yob).
  • the present embodiment is not limited to the example specified by the map information.
  • the non-linear component may be calculated by a mathematical formula or algorithm.
  • damping force estimation part 105 can calculate damping force fd (yob, P) from the following formula (2) from linear component Co * yob and nonlinear component fn (yob, P).
  • fd (yob, P) Co ⁇ yob + fn (yob, P) (2)
  • the damping force estimation unit 105 outputs the damping force fd (yob, P) including the linear component Co ⁇ yob and the nonlinear component fn (yob, P) to the estimation unit 101.
  • the damping force fd (yob, P) including the linear component Co ⁇ yob and the nonlinear component fn (yob, P) to the estimation unit 101.
  • the relative speed will be described.
  • FIG. 3 is a diagram illustrating the transition of the estimated relative speed calculated without including the friction term and the actual relative speed. As shown in FIG. 3, there is a deviation between the actual relative speed 301 and the estimated relative speed 302.
  • the piston of the vibration attenuating device 202 stops at a relative speed near zero.
  • the estimated relative speed 302 does not change depending on whether the speed is near zero. Such a difference occurs because the friction force is not considered in the estimated relative speed 302.
  • the frictional force calculation unit 106 that outputs a frictional force according to the relative speed of the vehicle body 1 is provided.
  • the frictional force calculating unit 106 calculates a frictional force ⁇ R corresponding to the input relative speed (for example, the estimated relative speed yob), and outputs the frictional force ⁇ R to the estimating unit 101.
  • FIG. 4 is a diagram showing the frictional force output by the frictional force calculating unit 106 of the present embodiment.
  • the frictional force calculation unit 106 switches the frictional force to be output depending on whether or not the relative speed is positive.
  • the frictional force calculation unit 106 outputs the frictional force R when the relative speed is larger than 0, and outputs the frictional force ⁇ R when the relative speed is smaller than 0.
  • the value of the frictional force R a value corresponding to the type of the vibration damping device 202 is set, and description thereof is omitted.
  • the static friction force may be considered.
  • FIG. 5 is a diagram showing the frictional force output from the frictional force calculating unit 106 according to the modification.
  • the frictional force calculation unit 106 of the modification shown in FIG. 5 outputs the dynamic frictional force ⁇ R1 depending on whether or not the relative speed is positive. Further, when the relative speed is 0, a static frictional force ⁇ R2 is output in accordance with the direction in which the movement is about to occur. As shown in FIG. 5, R2> R1. That is, when the piston in the vibration damping device 202 starts moving, a static friction force R2 higher than the dynamic friction force R1 is applied.
  • the frictional force calculation unit 106 according to the modified example outputs a frictional force according to the state of the piston in the vibration damping device 202 including the time when such movement starts. This makes it possible to estimate the relative speed with high accuracy.
  • Equation (1), Equation (2), and equation of state can be derived as follows.
  • X ′ AX + Gw + Bfn (y, P) (3)
  • X (x1, x2). It is assumed that the state variable x1 means the relative speed y and the state variable x2 means the spring expansion / contraction distance.
  • the matrices A, G, and B are assumed to have predetermined values.
  • X ′ is a derivative of X.
  • w is a coefficient indicating disturbance.
  • Row vectors C, U, D, and F are row vectors each having a predetermined value.
  • the column vector (C, U) is a column vector having C and U as elements.
  • the column vector (D, F) is a column vector having D and F as elements.
  • v observation noise.
  • uob fn (yob, P)
  • Xob ′ AXob + Buub + H (Za ⁇ (UXob + Duob))
  • Uob represents an estimated value of the nonlinear component u (estimated nonlinear component), and yob represents an estimated value of the relative velocity y.
  • Za represents the vehicle body acceleration.
  • fn (yob, P) is a function having the estimated relative speed yob and the command current (a value for controlling the damping force) P as variables.
  • H represents a steady Kalman gain.
  • the estimation unit 101 sets a friction term for the damping force “fd (yob, P)” of the vibration damping device 202, and based on the damping force including the friction force “ ⁇ R”, the estimated relative velocity is calculated.
  • An estimated relative speed yob which is an estimated value of the relative speed after output, is derived.
  • any setting method may be used.
  • a friction term may be set for a nonlinear component
  • a friction term may be set for a linear component
  • a friction term may be set for each of a nonlinear component and a linear component. Also good.
  • the friction term is set for the nonlinear component.
  • the estimation unit 101 adds the frictional force “ ⁇ R” to the nonlinear component uob of the damping force to calculate the frictionally corrected nonlinear component ux.
  • the estimation part 101 performs the process corresponding to the above-mentioned formula (6) and formula (7).
  • the estimation unit 101 of the present embodiment stores in advance column vectors A, B, C, D, H, and U shown in equations (6) and (7).
  • the column vectors A, B, C, D, H, and U are values that are set with reference to theoretical values and adjusted so that the measured value of the relative speed y and the estimated relative speed yob are close to each other. It is a value determined according to.
  • the nonlinear component ux after friction correction is used instead of uob.
  • estimation part 101 outputs the estimated relative speed yob calculated from Formula (6) and Formula (7) using the nonlinear component ux after friction correction.
  • FIG. 6 is a diagram illustrating the transition of the estimated relative speed calculated including the friction term and the actual relative speed. As shown in FIG. 6, the estimated relative speed 602 changes so as to substantially match the actual relative speed 601 by considering the frictional force.
  • the damping force “fd (y, P)” is corrected with the frictional force ⁇ R determined based on the moving direction of the estimated relative speed yob. That is, the frictional force ⁇ R based on the moving direction of the piston in the vibration damping device 202 of the semi-active damper 180 is added to the damping force “fd (y, P)” of the semi-active damper 180 as a friction term. .
  • the relative speed is estimated in consideration of the frictional force, so that the estimation accuracy can be improved.
  • the damping characteristic of the semi-active damper 180 of the suspension is improved. Specifically, the attenuation characteristic is improved over a wide range from the soft state to the hard state. Thereby, the riding comfort of the vehicle provided with the suspension is improved.
  • the technology according to the embodiment and the modification is applied to the suspension of the vehicle.
  • the damping characteristic of the semi-active damper 180 of the suspension is improved, and the accuracy of the estimated relative speed of the semi-active damper 180 is improved over a wide range of damping coefficients, so that the riding comfort of the vehicle is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

A damping force control device according to an embodiment, such as a suspension damping force control device for controlling a damper, the damping force of which is changeable according to a command signal, comprises: an estimation unit which estimates the relative speed of wheels with respect to a vehicle body; a damping force calculation unit which calculates a target damping force, showing the damping force to be output by the damper, on the basis of the relative speed and the acceleration information from an acceleration sensor provided in the vehicle body; an output unit which outputs the command signal corresponding to the target damping force to the damper; a damping force estimation unit which calculates an estimated damping force, showing the estimated value of the damping force to be output from the damper, on the basis of the relative speed and the command signal corresponding to the target damping force; and a frictional force calculation unit which calculates the frictional force, generated by the damper, on the basis of the relative speed. The estimation unit further estimates relative speed on the basis of the estimated damping force and the frictional force.

Description

減衰力制御装置Damping force control device
 本発明の実施形態は、減衰力制御装置に関する。 Embodiments of the present invention relate to a damping force control device.
 従来から、振動を抑制する機構が設けられたサスペンションとして、セミアクティブサスペンションが提案されている。 Conventionally, a semi-active suspension has been proposed as a suspension provided with a mechanism for suppressing vibration.
 セミアクティブサスペンションは、フルアクティブサスペンションのように、動力源を利用したアクチュエータを使用せずに、外部から入力する振動エネルギーを利用した可変減衰ダンパーを有する。そして、可変減衰ダンパーの減衰力を変化させることで振動を抑制させている。 The semi-active suspension has a variable damping damper that uses vibration energy input from the outside without using an actuator that uses a power source, unlike the full active suspension. And the vibration is suppressed by changing the damping force of the variable damping damper.
 セミアクティブサスペンションにおいては、制御装置が、加速度センサから検知された加速度情報の他に、車体に対する車輪の相対速度を考慮して、車体の振動に適した減衰力になるような指令値を算出し、当該指令値で減衰力を変化させる技術が提案されている。さらに、相対速度を求める際に、速度センサ等を用いずに、現在の車両の状況から、相対速度を推定する技術が提案されている。 In the semi-active suspension, the control device calculates a command value that gives a damping force suitable for the vibration of the car body, taking into account the relative speed of the wheel to the car body in addition to the acceleration information detected by the acceleration sensor. A technique for changing the damping force with the command value has been proposed. Furthermore, a technique has been proposed for estimating the relative speed from the current vehicle situation without using a speed sensor or the like when determining the relative speed.
特開2016-117326号公報JP 2016-117326 A
 しかしながら、従来技術においては、様々な要因によって、推定された相対速度が、実際の相対速度と比べてずれることがある。 However, in the prior art, the estimated relative speed may be deviated from the actual relative speed due to various factors.
 本発明の課題の一つは、相対速度の推定精度を向上させることで、車両の振動に適した減衰力を出力させる減衰力制御装置を提供する。 One of the problems of the present invention is to provide a damping force control device that outputs a damping force suitable for vehicle vibration by improving the estimation accuracy of the relative speed.
 実施形態の減衰力制御装置は、例えば、指令信号に応じて減衰力を変更可能なダンパーを制御するサスペンションの減衰力制御装置において、車体に対する車輪の相対速度を推定する推定部と、相対速度と、車体に設けられた加速度センサからの加速度情報と、に基づいて、ダンパーが出力すべき減衰力を示した目標減衰力を算出する減衰力算出部と、目標減衰力に対応する指令信号を、ダンパーに出力する出力部と、相対速度と、目標減衰力に対応する指令信号と、に基づいて、ダンパーから出力される減衰力の推定値を示した推定減衰力を算出する減衰力推定部と、相対速度に基づいて、ダンパーで生じる摩擦力を算出する摩擦力算出部と、を備え、推定部は、さらに、推定減衰力と、摩擦力と、に基づいて、相対速度を推定する。この構成によれば、例えば、摩擦力を考慮して相対速度を推定することで、相対速度の推定精度が向上するため、車両の乗り心地を改善できる。 The damping force control device according to the embodiment includes, for example, an estimation unit that estimates a relative speed of a wheel with respect to a vehicle body in a damping force control device for a suspension that controls a damper whose damping force can be changed according to a command signal; A damping force calculation unit that calculates a target damping force indicating a damping force that the damper should output based on acceleration information from an acceleration sensor provided on the vehicle body, and a command signal corresponding to the target damping force, A damping force estimator that calculates an estimated damping force indicating an estimated value of the damping force output from the damper based on an output unit that outputs to the damper, a relative speed, and a command signal corresponding to the target damping force; A friction force calculation unit that calculates the friction force generated by the damper based on the relative speed, and the estimation unit further estimates the relative speed based on the estimated damping force and the friction force. According to this configuration, for example, by estimating the relative speed in consideration of the frictional force, the estimation accuracy of the relative speed is improved, so that the riding comfort of the vehicle can be improved.
 実施形態の減衰力制御装置は、摩擦力算出部は、相対速度の方向に基づいて、摩擦力を異ならせる。この構成によれば、例えば、相対速度の方向に応じて摩擦力を算出することで、相対速度の推定精度が向上するため、車両の乗り心地を改善できる。 In the damping force control device of the embodiment, the frictional force calculation unit varies the frictional force based on the direction of the relative speed. According to this configuration, for example, by calculating the friction force according to the direction of the relative speed, the estimation accuracy of the relative speed is improved, so that the riding comfort of the vehicle can be improved.
図1は、実施形態の減衰力制御装置の一例を示した図である。Drawing 1 is a figure showing an example of a damping force control device of an embodiment. 図2は、カルマンフィルタ理論を用いる上で前提とされるセミアクティブダンパーのモデルを例示した図である。FIG. 2 is a diagram illustrating a model of a semi-active damper that is assumed when the Kalman filter theory is used. 図3は、摩擦項を含まずに算出された推定相対速度、及び実際の相対速度の遷移を例示した図である。FIG. 3 is a diagram illustrating the transition of the estimated relative speed calculated without including the friction term and the actual relative speed. 図4は、実施形態の摩擦力算出部が出力する摩擦力を表した図である。FIG. 4 is a diagram illustrating the frictional force output by the frictional force calculation unit according to the embodiment. 図5は、変形例の摩擦力算出部が出力する摩擦力を表した図である。FIG. 5 is a diagram illustrating the frictional force output by the frictional force calculation unit of the modification. 図6は、摩擦項を含めて算出された推定相対速度、及び実際の相対速度の遷移を例示した図である。FIG. 6 is a diagram illustrating the transition of the estimated relative speed calculated including the friction term and the actual relative speed.
 以下、本発明の例示的な実施形態が開示される。以下に示される実施形態の構成、ならびに当該構成によってもたらされる作用、結果、および効果は、一例である。本発明は、以下の実施形態に開示される構成以外によっても実現可能であるとともに、基本的な構成に基づく種々の効果や、派生的な効果のうち、少なくとも一つを得ることが可能である。 Hereinafter, exemplary embodiments of the present invention will be disclosed. The configuration of the embodiment shown below and the operations, results, and effects brought about by the configuration are examples. The present invention can be realized by configurations other than those disclosed in the following embodiments, and at least one of various effects based on the basic configuration and derivative effects can be obtained. .
 本実施形態において、サスペンション減衰力制御装置の一例を説明する。サスペンション減衰力制御装置(以下、減衰力制御装置100と称する)は、車体1のサスペンションの構成要素であるセミアクティブダンパーの減衰力を制御する。 In this embodiment, an example of a suspension damping force control device will be described. The suspension damping force control device (hereinafter referred to as damping force control device 100) controls the damping force of a semi-active damper that is a component of the suspension of the vehicle body 1.
 図1は、本実施形態の減衰力制御装置100の一例を示した図である。図1に示されるように、減衰力制御装置100は、車体1に設けられた加速度センサ150で検出された加速度に基づいた観測情報を受信し、観測情報からセミアクティブダンパー180が出力すべき減衰力を算出した後、当該減衰力が示された指示電流をセミアクティブダンパー180に出力する。観測情報は、車体1の運動状態を表す情報であって、例えば、車体1の加速度、車体1の速度、車体1の上下変位量(車体1と車輪との間の上下方向(セミアクティブダンパー180軸に沿う方向)の変位量)を含むものとする。つまり、車体1の加速度を積分して得られた速度や、当該速度を積分して得られる上下変位量が含まれている。 FIG. 1 is a diagram illustrating an example of the damping force control apparatus 100 according to the present embodiment. As shown in FIG. 1, the damping force control apparatus 100 receives observation information based on acceleration detected by an acceleration sensor 150 provided in the vehicle body 1, and attenuation that the semi-active damper 180 should output from the observation information. After calculating the force, the command current indicating the damping force is output to the semi-active damper 180. The observation information is information representing the motion state of the vehicle body 1. For example, the acceleration of the vehicle body 1, the speed of the vehicle body 1, the vertical displacement amount of the vehicle body 1 (the vertical direction between the vehicle body 1 and the wheel (semi-active damper 180 Displacement amount in the direction along the axis). That is, the speed obtained by integrating the acceleration of the vehicle body 1 and the vertical displacement obtained by integrating the speed are included.
 本実施形態の車体1は、例えば、不図示の内燃機関を駆動源とする自動車、すなわち内燃機関自動車であってもよいし、不図示の電動機を駆動源とする自動車、すなわち電気自動車や燃料電池自動車等であってもよい。さらには、列車等であっても良い。 The vehicle body 1 of the present embodiment may be, for example, an automobile using an internal combustion engine (not shown) as a drive source, that is, an internal combustion engine automobile, or an automobile using an electric motor (not shown) as a drive source, that is, an electric vehicle or a fuel cell. It may be an automobile or the like. Furthermore, a train etc. may be sufficient.
 図1に示されるように、減衰力制御装置100は、観測情報による車体1の運動状態(例えば、車体1の上下方向の加速度、車体1の速度)に基づいて、指示電流Pを生成し、セミアクティブダンパー(ダンパーの一例)180に出力する。 As shown in FIG. 1, the damping force control device 100 generates the command current P based on the motion state of the vehicle body 1 (for example, the vertical acceleration of the vehicle body 1 and the speed of the vehicle body 1) based on the observation information, Output to a semi-active damper (an example of a damper) 180.
 指示電流Pは、セミアクティブダンパー180を制御する目標減衰力を表した電流とする。 The command current P is a current representing a target damping force for controlling the semi-active damper 180.
 図2は、カルマンフィルタ理論を用いる上で前提とされるセミアクティブダンパー180のモデルを例示した図である。図2に示されるように、セミアクティブダンパー180は、バネ201と、振動減衰装置202と、で構成されると共に、車体1と車輪200との間を接続している。すなわち、車体1は、車輪200及びセミアクティブダンパー180により支持される。 FIG. 2 is a diagram exemplifying a model of the semi-active damper 180 that is assumed when the Kalman filter theory is used. As shown in FIG. 2, the semi-active damper 180 includes a spring 201 and a vibration damping device 202 and connects the vehicle body 1 and the wheel 200. That is, the vehicle body 1 is supported by the wheels 200 and the semi-active damper 180.
 セミアクティブダンパー180は、指示電流Pに基づいて減衰力を設定する。例えば、セミアクティブダンパー180は、指示電流Pに基づいて、振動減衰装置202のピストンに設けられるオリフィスの開口度を変更したり、弁体と弁座との間の開口度を変更したりする。これにより、振動減衰装置202内でピストンにより仕切られた2つの油室の間を流通する潤滑油の流通量を制御して、セミアクティブダンパー180の減衰力を調整する。なお、オリフィスの開口度を小さくする(開口面積を小さくする)ことでピストンが移動し難くした状態をセミアクティブダンパー180のハード状態と称する。また、オリフィスの開口度を大きくする(開口面積を大きくする)ことで、ピストンが移動し易くした状態をセミアクティブダンパー180のソフト状態と称する。 The semi-active damper 180 sets a damping force based on the command current P. For example, the semi-active damper 180 changes the opening degree of the orifice provided in the piston of the vibration damping device 202 based on the command current P, or changes the opening degree between the valve body and the valve seat. As a result, the amount of lubricating oil flowing between the two oil chambers partitioned by the piston in the vibration damping device 202 is controlled to adjust the damping force of the semi-active damper 180. A state in which the piston is difficult to move by reducing the opening degree of the orifice (decreasing the opening area) is referred to as a hard state of the semi-active damper 180. Further, a state in which the piston is easily moved by increasing the opening degree of the orifice (increasing the opening area) is referred to as a soft state of the semi-active damper 180.
 図1に戻り、減衰力制御装置100は、推定部101と、目標減衰力算出部103と、指示電流出力部104と、減衰力推定部105と、摩擦力算出部106と、を備えている。 Returning to FIG. 1, the damping force control apparatus 100 includes an estimation unit 101, a target damping force calculation unit 103, an instruction current output unit 104, a damping force estimation unit 105, and a friction force calculation unit 106. .
 目標減衰力算出部103は、車体1から出力された観測情報と、推定部101から出力された推定相対速度yobと、に基づいて、目標減衰力を算出する。観測情報は、上述したように、車体1の加速度、車体1の速度、車体1の上下変位量(車体1と車輪との変位)が含まれている。目標減衰力算出部103は、スカイフック制御理論またはH∞制御理論に基づいて構築される。 The target damping force calculation unit 103 calculates the target damping force based on the observation information output from the vehicle body 1 and the estimated relative speed yob output from the estimation unit 101. As described above, the observation information includes the acceleration of the vehicle body 1, the speed of the vehicle body 1, and the vertical displacement amount of the vehicle body 1 (displacement between the vehicle body 1 and the wheel). The target damping force calculation unit 103 is constructed based on the skyhook control theory or the H∞ control theory.
 目標減衰力は、車体1の現在の状況に応じて、セミアクティブダンパー180に目標として指示すべき減衰力を示している。推定相対速度yobは、推定部101により算出される、車体1に対する車輪200の速度の推定値とする。なお、推定部101については後述する。 The target damping force indicates the damping force that should be indicated as a target to the semi-active damper 180 according to the current situation of the vehicle body 1. The estimated relative speed yob is an estimated value of the speed of the wheel 200 with respect to the vehicle body 1 calculated by the estimation unit 101. The estimation unit 101 will be described later.
 指示電流出力部104は、目標減衰力算出部103から入力された目標減衰力に基づいて、目標減衰力に対応する指示電流Pを算出し、当該指示電流Pをセミアクティブダンパー180及び減衰力推定部105に出力する。指示電流Pは、目標減衰力を電流値又は電圧値で示した電流とする。 The command current output unit 104 calculates the command current P corresponding to the target damping force based on the target damping force input from the target damping force calculation unit 103, and the command current P is estimated using the semi-active damper 180 and the damping force estimation. Output to the unit 105. The command current P is a current indicating the target damping force by a current value or a voltage value.
 減衰力推定部105は、線形減衰力推定部111と、非線形減衰力推定部112と、減衰力マップ記憶部113と、を備え、指示電流P、及び推定相対速度yobに基づいて、当該指示電流Pに応じてセミアクティブダンパー180から出力される減衰力の推定値(以下、推定減衰力と称す)を算出する。 The damping force estimation unit 105 includes a linear damping force estimation unit 111, a nonlinear damping force estimation unit 112, and a damping force map storage unit 113. Based on the command current P and the estimated relative speed yob, the command current An estimated value of the damping force output from the semi-active damper 180 (hereinafter referred to as an estimated damping force) is calculated according to P.
 減衰力を説明するために、まず、車体1の運動方程式について説明する。本実施形態において、車体1の運動方程式は、下記の式(1)で表すことができる。 In order to explain the damping force, first, the equation of motion of the vehicle body 1 will be explained. In the present embodiment, the equation of motion of the vehicle body 1 can be expressed by the following equation (1).
 M・Za=K・xs+fd(y,P)……(1)
 なお、車体1の質量M、車体加速度Za、ばね係数K、ばね伸縮距離xs、振動減衰装置202の減衰力fd(y,P)、セミアクティブダンパー180の指示電流P、車体1に対する車輪200の相対速度yとする。
M · Za = K · xs + fd (y, P) (1)
The mass M of the vehicle body 1, the vehicle body acceleration Za, the spring coefficient K, the spring expansion / contraction distance xs, the damping force fd (y, P) of the vibration damping device 202, the command current P of the semi-active damper 180, the wheel 200 with respect to the vehicle body 1. Let relative speed y.
 相対速度yに対する減衰力の変化を示す減衰力特性は、指示電流Pに応じて変化する。具体的には、振動減衰装置202の減衰力“fd(y,P)”は、一般に、相対速度yに対する線形成分だけで無く、非線形成分を含むことになる。 The damping force characteristic indicating the change of the damping force with respect to the relative speed y changes according to the command current P. Specifically, the damping force “fd (y, P)” of the vibration damping device 202 generally includes not only a linear component with respect to the relative velocity y but also a nonlinear component.
 そこで、本実施形態では、線形成分を算出する線形減衰力推定部111と、非線形成分を算出する非線形減衰力推定部112と、を備えることとした。 Therefore, in this embodiment, a linear damping force estimation unit 111 that calculates a linear component and a nonlinear damping force estimation unit 112 that calculates a nonlinear component are provided.
 線形減衰力推定部111は、入力される推定相対速度yobに所定の係数Coを乗算することで、線形成分Co・yobを算出する。なお、係数Coは、実施態様に応じて定められる値とする。 The linear damping force estimation unit 111 calculates a linear component Co · yob by multiplying the input estimated relative velocity yob by a predetermined coefficient Co. The coefficient Co is a value determined according to the embodiment.
 非線形減衰力推定部112は、減衰力マップ記憶部113を参照した上で、推定相対速度yob及び指示電流Pに基づいて、非線形成分fn(yob,P)を算出する。 The nonlinear damping force estimation unit 112 refers to the damping force map storage unit 113 and calculates a nonlinear component fn (yob, P) based on the estimated relative speed yob and the command current P.
 減衰力マップ記憶部113は、推定減衰力を算出するために用いるマップ情報を記憶する。本実施形態では、減衰力マップ記憶部113に記憶されたマップ情報を用いることで、指示電流P及び推定相対速度yobに対応する、非線形成分fn(yob,P)を特定できる。このように、マップ情報は、入力値(指示電流P及び推定相対速度yob)から、非線形成分を特定できるマップ情報とするが、本実施形態は、マップ情報で特定する例に制限するものではなく、数式やアルゴリズムで非線形成分を算出しても良い。 The damping force map storage unit 113 stores map information used for calculating the estimated damping force. In the present embodiment, by using the map information stored in the damping force map storage unit 113, the nonlinear component fn (yob, P) corresponding to the command current P and the estimated relative speed yob can be specified. As described above, the map information is map information that can identify the nonlinear component from the input values (the command current P and the estimated relative speed yob). However, the present embodiment is not limited to the example specified by the map information. Alternatively, the non-linear component may be calculated by a mathematical formula or algorithm.
 そして、減衰力推定部105は、線形成分Co・yobと、非線形成分fn(yob,P)と、から、下記の式(2)より、減衰力fd(yob,P)を算出できる。
 fd(yob,P)=Co・yob+fn(yob,P)……(2)
And the damping force estimation part 105 can calculate damping force fd (yob, P) from the following formula (2) from linear component Co * yob and nonlinear component fn (yob, P).
fd (yob, P) = Co · yob + fn (yob, P) (2)
 そして、減衰力推定部105は、線形成分Co・yobと、非線形成分fn(yob,P)と、を含んだ減衰力fd(yob,P)を、推定部101に出力する。次に相対速度について説明する。 Then, the damping force estimation unit 105 outputs the damping force fd (yob, P) including the linear component Co · yob and the nonlinear component fn (yob, P) to the estimation unit 101. Next, the relative speed will be described.
 図3は、摩擦項を含まずに算出された推定相対速度、及び実際の相対速度の遷移を例示した図である。図3に示されるように、実際の相対速度301と、推定相対速度302と、の間にずれが生じている。 FIG. 3 is a diagram illustrating the transition of the estimated relative speed calculated without including the friction term and the actual relative speed. As shown in FIG. 3, there is a deviation between the actual relative speed 301 and the estimated relative speed 302.
 例えば、実際の相対速度301は、ヒステリシス・ロスのため、相対速度0近傍で振動減衰装置202のピストンが静止する。これに対して、推定相対速度302は、速度0近傍であるか否かに応じた変化は生じない。このような違いは、推定相対速度302において摩擦力を考慮していないために生じている。 For example, because the actual relative speed 301 is a hysteresis loss, the piston of the vibration attenuating device 202 stops at a relative speed near zero. On the other hand, the estimated relative speed 302 does not change depending on whether the speed is near zero. Such a difference occurs because the friction force is not considered in the estimated relative speed 302.
 例えば、オフロード走行している場合には、減衰力が摩擦力と比べて大きいため、摩擦力については考慮する必要が無かった。しかしながら、オンロード走行などの減衰力が小さい状況においては、減衰力と比べて摩擦力が相対的に大きくなる。そこで、本実施形態においては、車体1の相対速度に応じた摩擦力を出力する摩擦力算出部106を備えることとした。 For example, when driving off-road, there is no need to consider the frictional force because the damping force is larger than the frictional force. However, in a situation where the damping force is small, such as on-road running, the frictional force is relatively large compared to the damping force. Therefore, in this embodiment, the frictional force calculation unit 106 that outputs a frictional force according to the relative speed of the vehicle body 1 is provided.
 摩擦力算出部106は、入力された相対速度(例えば、推定相対速度yob)に対応する摩擦力±Rを算出し、当該摩擦力±Rを推定部101に出力する。 The frictional force calculating unit 106 calculates a frictional force ± R corresponding to the input relative speed (for example, the estimated relative speed yob), and outputs the frictional force ± R to the estimating unit 101.
 図4は、本実施形態の摩擦力算出部106が出力する摩擦力を表した図である。図4に示されるように、摩擦力算出部106は、相対速度が正であるか否かに応じて、出力する摩擦力を切り替える。図4に示されるように、摩擦力算出部106は、相対速度が0より大きい場合には、摩擦力Rを出力し、相対速度が0より小さい場合には、摩擦力-Rを出力する。摩擦力Rの値は、振動減衰装置202の種類に応じた値が設定されるものとして、説明を省略する。なお、本実施形態においては、図4に示されるように、静止摩擦力を考慮しない場合について説明したが、静止摩擦力を考慮しても良い。 FIG. 4 is a diagram showing the frictional force output by the frictional force calculating unit 106 of the present embodiment. As shown in FIG. 4, the frictional force calculation unit 106 switches the frictional force to be output depending on whether or not the relative speed is positive. As shown in FIG. 4, the frictional force calculation unit 106 outputs the frictional force R when the relative speed is larger than 0, and outputs the frictional force −R when the relative speed is smaller than 0. As the value of the frictional force R, a value corresponding to the type of the vibration damping device 202 is set, and description thereof is omitted. In the present embodiment, as illustrated in FIG. 4, the case where the static friction force is not considered has been described, but the static friction force may be considered.
 図5は、変形例の摩擦力算出部106が出力する摩擦力を表した図である。図5に示される変形例の摩擦力算出部106は、相対速度が正であるか否かに応じて、動摩擦力±R1を出力する。さらに、相対速度0の場合には、移動しようとしている方向に応じて、静止摩擦力±R2を出力する。図5に示されるように、R2>R1とする。つまり、振動減衰装置202内のピストンが移動開始する際には、動摩擦力R1より高い静止摩擦力R2がかかる。変形例の摩擦力算出部106は、このような移動開始する際等を含めて、振動減衰装置202内のピストンの状況に応じた摩擦力を出力する。これにより精度の高い相対速度の推定が可能となる。 FIG. 5 is a diagram showing the frictional force output from the frictional force calculating unit 106 according to the modification. The frictional force calculation unit 106 of the modification shown in FIG. 5 outputs the dynamic frictional force ± R1 depending on whether or not the relative speed is positive. Further, when the relative speed is 0, a static frictional force ± R2 is output in accordance with the direction in which the movement is about to occur. As shown in FIG. 5, R2> R1. That is, when the piston in the vibration damping device 202 starts moving, a static friction force R2 higher than the dynamic friction force R1 is applied. The frictional force calculation unit 106 according to the modified example outputs a frictional force according to the state of the piston in the vibration damping device 202 including the time when such movement starts. This makes it possible to estimate the relative speed with high accuracy.
 本実施形態に戻り、オブザーバについて説明する。 Returning to the present embodiment, the observer will be described.
 式(1)、式(2)、状態方程式を次のように導出することができる。 Equation (1), Equation (2), and equation of state can be derived as follows.
 X´=AX+Gw+Bfn(y,P)……(3)
 列ベクトルX=(x1,x2)とする。相対速度yを意味する状態変数x1とし、ばね伸縮距離を意味する状態変数x2とする。また、行列A,G,Bは、所定の値をもつ行列とする。また、X´はXの微分である。wは外乱を示す係数である。
X ′ = AX + Gw + Bfn (y, P) (3)
Let column vector X = (x1, x2). It is assumed that the state variable x1 means the relative speed y and the state variable x2 means the spring expansion / contraction distance. The matrices A, G, and B are assumed to have predetermined values. X ′ is a derivative of X. w is a coefficient indicating disturbance.
 一方、相対速度yと車体加速度Zaとの関係から次の出力方程式が得られる。
 Y=(C,U)X+v+(D,F)fn(y,P)……(4)
On the other hand, the following output equation is obtained from the relationship between the relative speed y and the vehicle body acceleration Za.
Y = (C, U) X + v + (D, F) fn (y, P) (4)
 列ベクトルY=(y1,y2)とする。y1=相対速度yであり、y2=車体加速度Zaを示す。行ベクトルC,U,D,Fはそれぞれ所定の値をもつ行ベクトルである。列ベクトル(C,U)は、C,Uを要素とする列ベクトルである。列ベクトル(D,F)は、D,Fを要素とする列ベクトルである。vは、観測ノイズである。 Let column vector Y = (y1, y2). y1 = relative speed y, and y2 = vehicle acceleration Za. Row vectors C, U, D, and F are row vectors each having a predetermined value. The column vector (C, U) is a column vector having C and U as elements. The column vector (D, F) is a column vector having D and F as elements. v is observation noise.
 カルマンフィルタ理論を用いれば、上記式(3)、及び式(4)に基づいてy1(相対速度y)を推定するためのオブザーバを得ることができる。次に示す式(5)~式(7)が相対速度yのオブザーバである。 If Kalman filter theory is used, an observer for estimating y1 (relative velocity y) can be obtained based on the above equations (3) and (4). The following formulas (5) to (7) are observers of the relative speed y.
 uob=fn(yob,P)……(5)
 Xob´=AXob+Buob+H(Za-(UXob+Duob))……(6)
 y1=y=CXob……(7)
uob = fn (yob, P) (5)
Xob ′ = AXob + Buub + H (Za− (UXob + Duob)) (6)
y1 = y = CXob (7)
 uobは、非線形成分uの推定値(推定非線形成分)を示し、yobは、相対速度yの推定値を示している。Zaは、車体加速度を示す。fn(yob,P)は、推定相対速度yobと指示電流(減衰力を制御する値)Pとを変数とする関数である。Hは、定常カルマンゲインを示す。Xobは、列ベクトルX=(x1,x2)の推定値とする。 Uob represents an estimated value of the nonlinear component u (estimated nonlinear component), and yob represents an estimated value of the relative velocity y. Za represents the vehicle body acceleration. fn (yob, P) is a function having the estimated relative speed yob and the command current (a value for controlling the damping force) P as variables. H represents a steady Kalman gain. Xob is an estimated value of the column vector X = (x1, x2).
 そして、本実施形態の推定部101は、振動減衰装置202の減衰力“fd(yob,P)=Co・yob+fn(yob,P)”、及び摩擦力“±R”に基づいて、推定相対速度yobを導出する。 Then, the estimation unit 101 of the present embodiment uses the estimated relative speed based on the damping force “fd (yob, P) = Co · yob + fn (yob, P)” of the vibration damping device 202 and the frictional force “± R”. Derive yob.
 推定部101は、振動減衰装置202の減衰力“fd(yob,P)”に対して、摩擦項を設定し、摩擦力“±R”を含んだ減衰力に基づいて、前回推定相対速度を出力した後の相対速度の推定値である推定相対速度yobを導出する。摩擦項“±R”の設定手法としては、どのような設定手法を用いても良い。例えば、非線形成分に対して摩擦項を設定しても良いし、線形成分に対して摩擦項を設定しても良い、さらには、非線形成分及び線形成分の各々に対して摩擦項を設定しても良い。 The estimation unit 101 sets a friction term for the damping force “fd (yob, P)” of the vibration damping device 202, and based on the damping force including the friction force “± R”, the estimated relative velocity is calculated. An estimated relative speed yob, which is an estimated value of the relative speed after output, is derived. As a method for setting the friction term “± R”, any setting method may be used. For example, a friction term may be set for a nonlinear component, a friction term may be set for a linear component, and a friction term may be set for each of a nonlinear component and a linear component. Also good.
 本実施形態では、非線形成分に対して摩擦項を設定する例とする。推定部101は、減衰力の非線形成分uobに対して、摩擦力“±R”を加算して、摩擦補正後非線形成分uxを算出する。 In this embodiment, the friction term is set for the nonlinear component. The estimation unit 101 adds the frictional force “± R” to the nonlinear component uob of the damping force to calculate the frictionally corrected nonlinear component ux.
 推定部101は、上述の式(6)及び式(7)に対応する処理を行う。本実施形態の推定部101は、式(6)及び式(7)に示された列ベクトルA,B,C,D,H,Uを予め記憶しておく。列ベクトルA,B,C,D、H,Uは、理論値を参考に設定されてかつ相対速度yの実測値と推定相対速度yobとが近づくように調整された値であって、実施形態に応じて定められる値とする。但し、式(6)及び式(7)に対応する処理を行う際に、uobの代わりに、摩擦補正後非線形成分uxを用いることとする。 The estimation part 101 performs the process corresponding to the above-mentioned formula (6) and formula (7). The estimation unit 101 of the present embodiment stores in advance column vectors A, B, C, D, H, and U shown in equations (6) and (7). The column vectors A, B, C, D, H, and U are values that are set with reference to theoretical values and adjusted so that the measured value of the relative speed y and the estimated relative speed yob are close to each other. It is a value determined according to. However, when the processing corresponding to the equations (6) and (7) is performed, the nonlinear component ux after friction correction is used instead of uob.
 そして、推定部101は、摩擦補正後非線形成分uxを用いて式(6)及び式(7)から、算出された推定相対速度yobを出力する。 And the estimation part 101 outputs the estimated relative speed yob calculated from Formula (6) and Formula (7) using the nonlinear component ux after friction correction.
 図6は、摩擦項を含めて算出された推定相対速度、及び実際の相対速度の遷移を例示した図である。図6に示されるように、摩擦力を考慮することで、推定相対速度602は、実際の相対速度601にほぼ一致するように遷移する。 FIG. 6 is a diagram illustrating the transition of the estimated relative speed calculated including the friction term and the actual relative speed. As shown in FIG. 6, the estimated relative speed 602 changes so as to substantially match the actual relative speed 601 by considering the frictional force.
 本実施形態では、推定相対速度yobの移動方向に基づいて定められた摩擦力±Rで、減衰力“fd(y,P)”を補正する。つまり、セミアクティブダンパー180の振動減衰装置202内のピストンの移動方向に基づいた摩擦力±Rを、セミアクティブダンパー180の減衰力“fd(y,P)”に摩擦項として加算することとした。これにより、摩擦力を考慮して、相対速度を推定することになるため、推定精度を向上させることができる。 In the present embodiment, the damping force “fd (y, P)” is corrected with the frictional force ± R determined based on the moving direction of the estimated relative speed yob. That is, the frictional force ± R based on the moving direction of the piston in the vibration damping device 202 of the semi-active damper 180 is added to the damping force “fd (y, P)” of the semi-active damper 180 as a friction term. . As a result, the relative speed is estimated in consideration of the frictional force, so that the estimation accuracy can be improved.
 さらに、減衰力制御装置100によれば、推定相対速度yobの推定精度が向上するため、サスペンションのセミアクティブダンパー180の減衰特性が向上する。具体的には、ソフト状態からハード状態における広範囲に亘って減衰特性が向上する。これにより、サスペンションを備える車両の乗り心地が向上する。 Furthermore, according to the damping force control apparatus 100, since the estimation accuracy of the estimated relative speed yob is improved, the damping characteristic of the semi-active damper 180 of the suspension is improved. Specifically, the attenuation characteristic is improved over a wide range from the soft state to the hard state. Thereby, the riding comfort of the vehicle provided with the suspension is improved.
 上記実施形態及び変形例にかかる技術は、車両のサスペンションに適用される。これにより、サスペンションのセミアクティブダンパー180の減衰特性が向上し、広範囲の減衰係数にわたってセミアクティブダンパー180の推定相対速度の精度が向上するため、車両の乗り心地が改善する。 The technology according to the embodiment and the modification is applied to the suspension of the vehicle. Thereby, the damping characteristic of the semi-active damper 180 of the suspension is improved, and the accuracy of the estimated relative speed of the semi-active damper 180 is improved over a wide range of damping coefficients, so that the riding comfort of the vehicle is improved.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (2)

  1.  指令信号に応じて減衰力を変更可能なダンパーを制御するサスペンションの減衰力制御装置において、
     車体に対する車輪の相対速度を推定する推定部と、
     前記相対速度と、前記車体に設けられた加速度センサからの加速度情報と、に基づいて、前記ダンパーが出力すべき前記減衰力を示した目標減衰力を算出する減衰力算出部と、
     前記目標減衰力に対応する指令信号を、前記ダンパーに出力する出力部と、
     前記相対速度と、前記目標減衰力に対応する前記指令信号と、に基づいて、前記ダンパーから出力される減衰力の推定値を示した推定減衰力を算出する減衰力推定部と、
     前記相対速度に基づいて、前記ダンパーで生じる摩擦力を算出する摩擦力算出部と、を備え、
     前記推定部は、さらに、前記推定減衰力と、前記摩擦力と、に基づいて、前記相対速度を推定する、
     減衰力制御装置。
    In the suspension damping force control device for controlling the damper whose damping force can be changed according to the command signal,
    An estimation unit for estimating the relative speed of the wheel to the vehicle body;
    A damping force calculation unit that calculates a target damping force indicating the damping force to be output by the damper based on the relative speed and acceleration information from an acceleration sensor provided on the vehicle body;
    An output unit that outputs a command signal corresponding to the target damping force to the damper;
    A damping force estimation unit that calculates an estimated damping force indicating an estimated value of the damping force output from the damper based on the relative speed and the command signal corresponding to the target damping force;
    A friction force calculation unit that calculates a friction force generated by the damper based on the relative speed, and
    The estimation unit further estimates the relative speed based on the estimated damping force and the friction force.
    Damping force control device.
  2.  前記摩擦力算出部は、前記相対速度の方向に基づいて、前記摩擦力を異ならせる、
     請求項1に記載の減衰力制御装置。
    The frictional force calculation unit varies the frictional force based on the direction of the relative speed.
    The damping force control apparatus according to claim 1.
PCT/JP2017/035561 2016-10-04 2017-09-29 Damping force control device WO2018066478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-196637 2016-10-04
JP2016196637A JP2018058463A (en) 2016-10-04 2016-10-04 Attenuation force control device

Publications (1)

Publication Number Publication Date
WO2018066478A1 true WO2018066478A1 (en) 2018-04-12

Family

ID=61830970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035561 WO2018066478A1 (en) 2016-10-04 2017-09-29 Damping force control device

Country Status (2)

Country Link
JP (1) JP2018058463A (en)
WO (1) WO2018066478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109080402A (en) * 2018-07-11 2018-12-25 江苏大学 A kind of precision is adjustable road roughness identification system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7327345B2 (en) * 2020-10-16 2023-08-16 トヨタ自動車株式会社 SUSPENSION STROKE RELATED VALUE ESTIMATING APPARATUS AND METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309315A (en) * 1996-05-22 1997-12-02 Toyota Central Res & Dev Lab Inc Sprung, unstrung relative speed computing device of vehicle
JP2008298609A (en) * 2007-05-31 2008-12-11 Honda Motor Co Ltd Device for estimating vehicular state
JP2010126044A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Suspension control device, and suspension control method
JP2016117326A (en) * 2014-12-18 2016-06-30 アイシン精機株式会社 Damping force control device for suspension

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09309315A (en) * 1996-05-22 1997-12-02 Toyota Central Res & Dev Lab Inc Sprung, unstrung relative speed computing device of vehicle
JP2008298609A (en) * 2007-05-31 2008-12-11 Honda Motor Co Ltd Device for estimating vehicular state
JP2010126044A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Suspension control device, and suspension control method
JP2016117326A (en) * 2014-12-18 2016-06-30 アイシン精機株式会社 Damping force control device for suspension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109080402A (en) * 2018-07-11 2018-12-25 江苏大学 A kind of precision is adjustable road roughness identification system and method
CN109080402B (en) * 2018-07-11 2021-09-10 江苏大学 System and method for identifying road surface unevenness with adjustable precision

Also Published As

Publication number Publication date
JP2018058463A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
JP5168567B2 (en) State estimation device, suspension control device, and suspension system
JP5093490B2 (en) Suspension control device
JP3787038B2 (en) Elastic support device, vehicle elastic support device, and control device for vehicle suspension device
US8560171B2 (en) Damping force controller
JP2010126044A (en) Suspension control device, and suspension control method
JP6375930B2 (en) Suspension damping force control device
CN110597064B (en) Active suspension output feedback control method based on nonlinear and uncertain models
CN109203903B (en) Suspension control system
US10625558B2 (en) Damping force control apparatus for suspension
CN114326399B (en) Broadband inertia reference unit finite time anti-interference control method
WO2018066478A1 (en) Damping force control device
KR20200069450A (en) Control unit of active suspension and control method of active suspension
van Casteren et al. Non-linear full-car modeling and sky-hook control for a direct-drive active suspension system
Krauze et al. FxLMS algorithm with preview for vibration control of a half-car model with magnetorheological dampers
Fallah et al. A novel robust optimal active control of vehicle suspension systems
JP6822338B2 (en) Suspension control system
Mousavi et al. Disturbance observer and tube-based model reference adaptive control for active suspension systems with non-ideal actuators
Strohm et al. A fast convergence FxLMS algorithm for vibration damping of a quarter car
Alhelou et al. The handling-comfort trade-off in a quarter-car system: automatic adaptive management via active disturbance rejection control
Sezgin et al. Sliding mode control for active suspension system with actuator delay
JP2009078757A (en) Road surface displacement inferring device for vehicle
WO2024150595A1 (en) Suspension system
Huang et al. Kalman Filtering for Sprung Mass Velocity Estimation of Magnetorheological Suspension for All-Terrain Vehicle
JP2000052985A (en) Rolling stock vibration control method and its device
Jung et al. Adaptive control for trailing arm suspension with hydraulic cylinder spring under practical constraints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17858316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17858316

Country of ref document: EP

Kind code of ref document: A1