WO2018062529A1 - Antimicrobial agent containing polymer having maleimide structure unit - Google Patents
Antimicrobial agent containing polymer having maleimide structure unit Download PDFInfo
- Publication number
- WO2018062529A1 WO2018062529A1 PCT/JP2017/035639 JP2017035639W WO2018062529A1 WO 2018062529 A1 WO2018062529 A1 WO 2018062529A1 JP 2017035639 W JP2017035639 W JP 2017035639W WO 2018062529 A1 WO2018062529 A1 WO 2018062529A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- group
- resin
- structural unit
- antimicrobial agent
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/18—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
- A01N37/32—Cyclic imides of polybasic carboxylic acids or thio analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L35/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N61/00—Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F22/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
- C08F22/36—Amides or imides
- C08F22/40—Imides, e.g. cyclic imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
- C08F8/32—Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
Definitions
- the present invention relates to an antimicrobial agent comprising a polymer having a structural unit in which a secondary amino group is added to a maleimide structure.
- antimicrobial agents against bacteria, molds, and the like have been used in various fields such as resins, molded articles, paints, and the like from the viewpoint of increasing cleanliness and hygiene. Used to impart microbial properties. These antimicrobial agents are required to have safety as well as antimicrobial performance, and polymer-type antimicrobial agents have low volatility and are difficult to elute from the base material in the environment of use. It has been attracting attention as a highly safe antimicrobial agent.
- Polymeric antimicrobial agents are said to act by destroying cell membranes such as bacteria and mold. As described above, it is considered that the method of targeting the cell membrane of a microorganism as a target of attack makes it difficult for the microorganism to acquire resistance as compared with a conventional antimicrobial agent that targets a specific protein as a target of attack.
- Patent Document 1 discloses that a styrene-maleic anhydride copolymer such as styrene-dimethylaminopropylmaleimide is modified with a tertiary amine N, N-dimethyl-1,3-propanediamine. Antibacterial agents are described.
- JP 2013-518964 A (corresponding to US Patent Application Publication No. 2012/0316305)
- Patent Document 1 does not have sufficient antimicrobial performance (antifungal performance and antibacterial performance), and particularly when added to a resin or the like, the antibacterial performance is not exhibited if the addition amount is small. There was a problem.
- the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a polymer-type antimicrobial agent that can exhibit excellent antimicrobial performance (antifungal performance and antimicrobial performance).
- the present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by an antimicrobial agent containing a polymer having a structural unit represented by the following formula (1), and have completed the present invention.
- R 1 is an alkylene group having 3 to 24 carbon atoms
- R 2 is an alkyl group having 2 to 24 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and a carbon number.
- the secondary amino group selected from the group consisting of 6 to 24 aryl groups and represented by —NHR 2 may be a neutralized salt.
- an antimicrobial agent comprising a polymer having a structural unit represented by the above formula (1).
- the antimicrobial performance is high, and in a molded article containing a polymeric antimicrobial agent, the elution of the polymer can be suppressed, and the antimicrobial performance excellent in antimicrobial performance is achieved. It becomes possible to provide an antimicrobial agent. Therefore, the antimicrobial agent of the present invention can be applied to various product forms such as resins, molded articles, paints, pressure-sensitive adhesives, and adhesives.
- an antimicrobial agent comprising a polymer having a structural unit represented by the above formula (1) or a polymer having a structural unit represented by the above formula (1) and a microorganism
- polymer having a structural unit of the above formula (1) in which a secondary amino group is added to a maleimide structure is also simply referred to as “polymer having a maleimide structural unit”.
- the antimicrobial agent according to the present invention contains a polymer having the maleimide structural unit and can exhibit excellent antimicrobial performance.
- Cell membranes such as bacteria and fungi are bilayers composed mainly of phospholipids and are negatively charged.
- the secondary amino group added to the maleimide structural unit is easily positively charged. This is because there is one functional group bonded to the nitrogen of the secondary amino group, so the nitrogen atoms of the amino group in the polymer are different from each other in the tertiary amino group in which two functional groups are bonded. It is likely that the cells are densely packed, and due to the concentration of nitrogen atoms, the positive charge is partially increased, the affinity to the negatively charged cell membrane is improved, and the effect of destroying cell membranes such as bacteria and fungi is further improved.
- the degree of freedom of the secondary amino group is increased in the polymer structure.
- the permeability to the cell wall is increased, and it is considered that the cell membrane can be more effectively destroyed against mold having a thick cell wall.
- R 1 is an alkylene group having 3 or more carbon atoms
- nitrogen atoms of the amino group tend to be densely packed, and due to the denseness of the nitrogen atoms, a positive charge is partially increased, and as described above, negatively charged. It is considered that the affinity for the cell membrane is improved, and the effect of destroying cell membranes of bacteria and molds is further improved.
- the polymer having the maleimide structure of the present invention since the polymer having the maleimide structure of the present invention has an imide ring structure in the polymer main chain, the main chain mobility is suppressed to some extent, and it is important for the polymer chain to be intertwined in a complex manner and exhibit antimicrobial performance. It is possible to prevent an amino group from being buried inside the polymer. Therefore, since the secondary amino group added to the maleimide structure can be effectively exposed on the polymer surface, it is considered that cell membranes such as bacteria and fungi can be more effectively destroyed.
- the antimicrobial agent according to the present invention is characterized by excellent durability of antimicrobial performance.
- the antimicrobial agent according to the present invention can suppress elution of a polymer in a molded article containing the antimicrobial agent by adding a secondary amino group to the maleimide structure. This is considered to be because the secondary amino group is more likely to be densely packed in the polymer than the tertiary amino group, and the molecular entanglement between the polymers causes the elution to be suppressed.
- the above action mechanism is speculation, and the present invention is not limited to the above action mechanism.
- X to Y indicating a range means “X or more and Y or less”.
- operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
- the antimicrobial agent of this invention contains the polymer which has a structural unit of the said Formula (1) which added the secondary amino group to the maleimide structure.
- R 1 is an alkylene group having 3 to 24 carbon atoms.
- R 1 is preferably an alkylene group having 18 or less carbon atoms, more preferably an alkylene group having 12 or less carbon atoms, and particularly preferably an alkylene group having 8 or less carbon atoms, from the viewpoint of easy availability of synthetic raw materials. It is a group.
- the alkylene group may be linear or branched.
- alkylene group having 3 to 24 carbon atoms examples include propylene group, trimethylene group, butylene group, pentylene group, hexylene group (hexamethylene group), heptylene group, octylene group (octamethylene group), nonylene group, and decylene group.
- R 1 may be the same or different between maleimide structural units.
- R 1 is preferably a linear alkylene group having 3 to 8 carbon atoms, more preferably a trimethylene group, a butylene group, a pentylene group, a hexylene group, or a heptylene group, from the viewpoint of exhibiting more antimicrobial performance. Or it is an octylene group, More preferably, it is a trimethylene group, a hexylene group, or an octylene group, Most preferably, it is a trimethylene group.
- R 2 is selected from the group consisting of an alkyl group having 2 to 24 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and an aryl group having 6 to 24 carbon atoms.
- the alkyl group having 2 to 24 carbon atoms may be linear or branched.
- Examples of the alkyl group having 2 to 24 carbon atoms include ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 2 -Ethylhexyl group, hexyl group (normal hexyl group), heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (palmityl group), Examples include heptadecyl group, octadecyl group (stearyl group),
- Examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, dicyclopentanyl group, dicyclopentenyl group, isobornyl group, adamantyl group, A dicyclopentanyl group etc. are mentioned.
- aryl groups having 6 to 24 carbon atoms include phenyl group, benzyl group, phenethyl group, o-, m- or p-tolyl group, 2,3- or 2,4-xylyl group, mesityl group, naphthyl group , Anthryl group, phenanthryl group, biphenylyl group, benzhydryl group, trityl group, pyrenyl group and the like.
- R 2 may be the same or different between maleimide structural units.
- the alkyl group is preferably an alkyl group having 2 to 8 carbon atoms, more preferably an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, from the viewpoint of exhibiting more antimicrobial performance.
- the alkyl group is preferably an alkyl group having 9 to 20 carbon atoms, more preferably an alkyl group having 12 to 18 carbon atoms, from the viewpoint of more exerting antimicrobial performance and durability. And more preferably a dodecyl group, a tridecyl group, a tetradecyl group (myristyl group), a pentadecyl group, a hexadecyl group (palmityl group), a heptadecyl group or an octadecyl group (stearyl group).
- the alkyl group may be a mixture of alkyl groups having different carbon numbers.
- R 2 may be a mixture of the above alkyl groups having different carbon numbers.
- the mixed alkyl group is preferably a tetradecyl group (myristyl group), a hexadecyl group (palmityl group), and an octadecyl group (stearyl group) from the viewpoint of more exerting antimicrobial performance and durability.
- the alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 4 to 10 carbon atoms, more preferably an alicyclic hydrocarbon group having 6 to 10 carbon atoms, from the viewpoint of exhibiting more antimicrobial performance.
- a cyclic hydrocarbon group more preferably a cyclohexyl group, an adamantyl group, a dicyclopentanyl group, a dicyclopentenyl group, an isobornyl group, an adamantyl group and a dicyclopentanyl group, particularly preferably a cyclohexyl group, an isobornyl group.
- the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and more preferably a phenyl group, a benzyl group, a phenethyl group, o-, m- or A p-tolyl group, a 2,3- or 2,4-xylyl group and a mesityl group, more preferably a benzyl group.
- R 2 is preferably an alkyl group having 2 to 24 carbon atoms and an alicyclic hydrocarbon having 3 to 12 carbon atoms from the viewpoint that antimicrobial performance and durability thereof can be further improved. Selected from the group consisting of groups.
- R 2 is selected from the group consisting of an alkyl group having 2 to 24 carbon atoms and an alicyclic hydrocarbon group having 3 to 12 carbon atoms, when the structure of R 2 is invaded into the cell membrane of a microorganism, the cell membrane It is speculated that higher antimicrobial performance can be exerted because large pores are formed in the cell, thereby promoting the outflow of the intracellular fluid.
- R 1 is an alkylene group having 3 to 18 carbon atoms
- R 2 is an alkyl group having 2 to 24 carbon atoms from the viewpoint that the antimicrobial performance and its durability can be further improved. Selected from the group consisting of a group and an alicyclic hydrocarbon group having 3 to 12 carbon atoms.
- R 1 is an alkylene group having 3 to 8 carbon atoms and R 2 is 2 to 24 carbon atoms from the viewpoint that the antimicrobial performance and its durability can be further improved. More preferably, R 1 is an alkylene group having 3 to 8 carbon atoms, and R 2 is a group having 2 carbon atoms.
- R 1 is selected from the group consisting of trimethylene group, hexylene group and octylene group
- 2 is selected from the group consisting of isopropyl, tert-butyl, 2-ethylhexyl, hexyl and cyclohexyl.
- the secondary amino group represented by —NHR 2 may be a neutralized salt with an acid. Since the secondary amino group is a neutralized salt, the polarity is increased, so that it can be applied to products using a polar solvent such as an aqueous emulsion.
- the acid used for neutralization include organic acids such as acetic acid, formic acid, propionic acid, succinic acid, citric acid and malic acid; and inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid and nitric acid.
- the acid used for neutralization may be used alone or in combination of two or more.
- the neutralization of the secondary amino group represented by —NHR 2 can be appropriately performed in consideration of the polar solvent used.
- the addition amount of the acid used for neutralization is 25 mol% or more, preferably 50 mol% or more, based on the secondary amino group contained in the polymer having a maleimide structure.
- the polymer main chain having a maleimide structural unit of the present invention can have a structural unit derived from a monomer copolymerizable with the monomer from which the maleimide structural unit is derived. That is, the polymer main chain having the maleimide structural unit may be a copolymer of a monomer derived from the structural unit of the above formula (1) and a monomer copolymerizable with the monomer. Good.
- the structure of the copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
- the “structural unit derived from a copolymerizable monomer” is a structure having a structure formed by polymerization of a copolymerizable monomer (hereinafter also referred to as “other monomer”).
- a unit typically a structural unit in which at least one carbon-carbon double bond of the other monomer is replaced with a carbon-carbon single bond.
- a structural unit derived from styrene CH 2 ⁇ CH (C 6 H 5 ) can be represented by —CH 2 CH (C 6 H 5 ) —.
- the “structural unit having a structure formed by polymerizing other monomers” is not limited to a structural unit formed by actually polymerizing other monomers, and has the same structure. If present, it means that structural units formed by other methods are also included.
- maleimide As the monomer from which the structural unit of the above formula (1) is derived, maleimide, maleic anhydride, or the like can be used.
- the polymer main chain having a maleimide structural unit of the present invention includes a structural unit derived from a monomer copolymerizable with the monomer from which the maleimide structural unit is derived, the structural unit derived from the copolymerizable monomer
- the proportion is, for example, 1 to 95 mol%, and preferably 1 to 80 mol%, more preferably 1 to 60 mol% from the viewpoint of exhibiting antimicrobial performance with a small addition amount (provided that The total amount of maleimide structural units and the copolymerizable structural units is 100 mol%).
- the monomer that can be copolymerized with the monomer from which the structural unit of the above formula (1) is derived is not particularly limited and can be appropriately selected depending on the intended use.
- the copolymerizable monomer include a styrene monomer, an ⁇ -olefin monomer having 1 to 24 carbon atoms, a vinyl ester, an alkyl vinyl ether, and a (meth) acrylic acid ester.
- styrene monomers include styrene, ⁇ -methyl styrene, vinyl toluene, p-methyl styrene, chloromethyl styrene, ethyl vinyl benzene, and the like.
- Examples of the ⁇ -olefin monomer having 1 to 24 carbon atoms include ethylene, propylene, isobutylene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-hexene Examples include octadecene and 1-eicosene.
- vinyl esters examples include vinyl acetate, vinyl propionate, vinyl formate, vinyl benzoate and the like.
- alkyl vinyl ethers examples include ethyl vinyl ether and methyl vinyl ether.
- (meth) acrylic acid esters include: (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tertiary butyl (meth) acrylate, (meth) Amyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, hydroxyethyl (meth) acrylate, ( Examples thereof include hydroxypropyl methacrylate and polyethylene glycol mono (meth) acrylate.
- (meth) acrylic acid means both “acrylic acid” and “methacrylic acid”.
- (meth) acrylate means both “acrylate” and “methacrylate”.
- the copolymerizable monomer described above is preferably at least one selected from the group consisting of a styrene monomer and an ⁇ -olefin monomer from the viewpoint that durability of antimicrobial performance can be maintained. It is. More preferably, it is at least one selected from the group consisting of styrene, ethylene, isobutylene and 1-octadecene.
- the polymer having a maleimide structural unit is selected from the group consisting of the structural unit represented by the above formula (1), a styrene monomer, and an ⁇ -olefin monomer. And at least one copolymer.
- the polymer having a maleimide structural unit is preferably a copolymer of the structural unit represented by the above formula (1) and at least one selected from the group consisting of styrene, ethylene, isobutylene and 1-octadecene. .
- the weight average molecular weight of the polymer having a maleimide structural unit of the present invention is 1,000 or more, preferably 2,000 or more, more preferably 3,000 or more, and particularly preferably 4,000 or more. .
- the upper limit of the weight average molecular weight is not particularly limited, but from the viewpoint of moldability, it is 1,000,000 or less, preferably 500,000 or less, more preferably 400,000 or less, and still more preferably. 100,000 or less, particularly preferably 60,000 or less.
- the range of the weight average molecular weight of the polymer having a maleimide structural unit of the present invention is preferably 1,000 to 1,000,000, more preferably 2,000 to 500,000, and still more preferably 3,000. To 400,000, more preferably 3,000 to 100,000, and particularly preferably 4,000 to 60,000.
- the weight average molecular weight is measured by gel permeation chromatography (GPC), and is a value measured by the method described in the examples in detail.
- One embodiment of the antimicrobial agent of the present invention is an antimicrobial agent comprising a polymer having the structural unit of the above formula (1).
- the antimicrobial agent may contain other components in addition to the polymer having the structural unit of the above formula (1).
- a solvent, an additive, and the like can be used as other components.
- the solvent is not particularly limited, and for example, amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; ethyl acetate, Esters such as butyl acetate, ethyl butyrate and butyl butyrate; water and the like can be used.
- the solvent may be used alone or in the form of a mixture of two or more.
- Additives are not particularly limited, and for example, film-forming aids, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), lubricants (silica, wax, fatty acid amides, etc.), inorganic fillers (glass fiber oxidation) Titanium, calcium carbide, etc.), flame retardants (bromine compounds, aluminum hydroxide, etc.), dispersants (surfactants, metal soaps, waxes, etc.), dyes, pigments, etc. can be used.
- film-forming aids plasticizers, stabilizers (antioxidants, UV absorbers, etc.), lubricants (silica, wax, fatty acid amides, etc.), inorganic fillers (glass fiber oxidation) Titanium, calcium carbide, etc.), flame retardants (bromine compounds, aluminum hydroxide, etc.), dispersants (surfactants, metal soaps, waxes, etc.), dyes, pigments, etc. can be used.
- the content of the polymer having a maleimide structural unit in the antimicrobial agent of the present invention is not particularly limited, but is 0.1% by weight or more and 100% by weight or less with respect to the whole antimicrobial agent (100% by weight). It is preferable.
- antimicrobial agent refers to an agent having antibacterial and antifungal properties.
- Antibacterial performance and fungicidal performance refer to having at least one of the ability to kill microorganisms and the ability to suppress the growth of microorganisms.
- bacteria examples include Escherichia such as Escherichia coli; Pseudomonas such as Pseudomonas aeruginosa; Salmonella cholera Switzerland such as Salmonella choleraesu; Moraxella x Genus; Gram negative bacteria such as Legionella pneumophila such as Legionella pneumophila, Staphylococcus such as Staphylococcus aureus; Clostridium botulinum, cerfuridum cerf ), And the like Gram-positive bacteria such as Clostridium, such as.
- molds include Aspergillus genus such as Aspergillus niger and Aspergillus penicilloids; Penicillium genus such as Penicillium citrinum; Trichoderma genus such as Trichoderma virens; Ketomium genus such as Chaetomium globosum; Eurotium tonoturum E Europium genus such as Tonophilum; Rhizopus oryzae genus Rhizopus; Cladosporium cladosporioides and other genus Cladosporia ulid Aureobas pulid au les Examples include the genus Obacidium; the genus Milotesium such as Myrothecium verrucaria.
- fungi other than molds examples include the genus Saccharomyces such as Saccharomyces cerevisiae, the genus Candida such as Candida albicans, and the genus Rhodotorula rubura and others. .
- the antimicrobial agent of the present invention can exhibit antimicrobial performance regardless of the type of bacteria, molds, etc., among them, the antimicrobial agent of the present invention can destroy the cell membrane of microorganisms, It can also be suitably used as an antimicrobial agent against gram-negative bacteria, molds such as Aspergillus, Pesilomyces, and Penicillium.
- antibacterial performance can be evaluated according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect).
- JIS Z2801: 2012 the value of the difference in the number of viable cells with the addition of the antimicrobial agent as a logarithm (log 10 ) with respect to the viable cell count of the control (without adding the antimicrobial agent) That is, the value indicating the difference in the logarithmic value of the number of viable bacteria after bacterial inoculation culture is shown as the antibacterial activity value. If the antibacterial activity value is 2.0 or more, it can be evaluated as having antibacterial properties.
- the fungicidal performance can be evaluated with reference to JIS Z2911: 2010 (mold resistance test method).
- JIS Z2911: 2010 mold resistance test method
- a test film containing an antimicrobial agent is placed on the surface of a solid medium, and the mold spore solution is inoculated and cultured on the solid medium and the test film, and the mold surface is exposed to mold.
- Those with no growth (breeding) can be evaluated as having antifungal properties.
- the method for producing a polymer having a maleimide structural unit contained in the antimicrobial agent of the present invention is not particularly limited, and a conventionally known method can be used.
- an acid anhydride group of a maleic anhydride (co) polymer is reacted with a primary amino group of a diamine, ring-opened to form an amide bond, and then subjected to a dehydrating ring-closing imidization reaction.
- a method obtained by imidating maleic anhydride with diamine to synthesize a maleimide monomer, and polymerizing the maleimide monomer alone or with a monomer copolymerizable with the maleimide monomer. Can be mentioned.
- the neutralized salt of a polymer having a maleimide structural unit can be obtained by mixing the produced polymer having a maleimide structural unit and the acid used for the neutralization.
- maleic anhydride (co) polymer examples include styrene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, 1-octadecene-maleic anhydride copolymer, and ethylene-maleic anhydride copolymer. Commercial products may be used or synthesized.
- a maleic anhydride (co) polymer When a maleic anhydride (co) polymer is synthesized, it can be produced by a conventionally known method such as radical (co) polymerization using a suitable initiator. Examples of the production method include a method of copolymerizing maleic anhydride and a monomer copolymerizable with maleic anhydride in a solvent such as benzene and acetone.
- the structure of the copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
- the weight average molecular weight of the maleic anhydride (co) polymer used in the present invention is 1,000 or more, preferably 2,000 or more, and more preferably 3,000 or more.
- the upper limit of the weight average molecular weight is 1,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, and further preferably 50,000 or less.
- a polymer having a maleimide structural unit can be produced by reacting the maleic anhydride (co) polymer with a diamine of the following formula (2) (hereinafter also simply referred to as “diamine”).
- R 1 and R 2 in the formula (1) are applied to R 1 and R 2 .
- the diamine used in the present invention include N-cyclohexyl-1,3-propanediamine and N-linear alkyl-1,3-propanediamine (the linear alkyl includes, for example, those having 14, 16 and 18 carbon atoms.
- a mixture of linear alkyl N-isopropyl-1,3-propanediamine, N-benzyl-1,3-propanediamine, N-propyl-1,3-propanediamine, N-cyclohexyl-1,6-hexanediamine N-cyclohexyl-1,8-octanediamine, N-normalhexyl-1,3-propanediamine, N- (tert-butyl) -1,3-propanediamine, N- (2-ethylhexyl) -1,3 -Propanediamine, N-isobornyl-1,3-propanediamine, N-adamantyl-1,3-propanedia Emissions, such as N- dicyclopentenyl-1,3-propane diamine.
- the reaction between the maleic anhydride (co) polymer and the diamine of the above formula (2) occurs when the acid anhydride group of the maleic anhydride (co) polymer reacts with the primary amino group of the diamine. It can be produced by forming an amide bond by ring-opening, followed by dehydration ring-closing imidization reaction. More specifically, maleic anhydride (co) polymer is added to a solvent and dissolved, and a mixture of the diamine and the solvent or diamine alone is dropped into the solution. The acid anhydride group of the maleic anhydride (co) polymer reacts with the primary amino group of the diamine and opens to form an amide bond, resulting in a precipitate.
- the precipitate is collected by filtration, the solvent is removed from the filter cake by vacuum drying, and then the filter cake is vacuum dried again, whereby an imide, that is, a polymer having a maleimide structural unit can be obtained by a dehydrating ring-closing imidization reaction.
- the polymer having a maleimide structural unit is prepared by dissolving a maleic anhydride (co) polymer and a diamine in a solvent and reacting them at 100 to 150 ° C. to carry out from amidation to imidation in solution. It can also be obtained by a method of performing amidation and imidization by kneading maleic anhydride (co) polymer and diamine in the absence of a solvent in a screw extruder.
- the amounts of maleic anhydride (co) polymer and diamine used as raw materials are not particularly limited.
- diamine is added in an amount of 0.1 to 0.1% with respect to the maleic anhydride residue in the maleic anhydride (co) polymer.
- Three molar equivalents can be used.
- the solvent to be used is not particularly limited, but a solvent that does not hinder the above reaction and can dissolve the maleic anhydride (co) polymer and diamine as raw materials is preferable.
- a solvent that does not hinder the above reaction and can dissolve the maleic anhydride (co) polymer and diamine as raw materials is preferable.
- examples thereof include amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; water and the like.
- the solvent may be used alone or in the form of a mixture of two or more.
- the maleic anhydride (co) polymer and diamine may be dissolved in the same solvent or in different solvents, but are preferably dissolved in the same solvent.
- the amount of the solvent used is not particularly limited as long as the raw material maleic anhydride (co) polymer or diamine can be dissolved.
- the amount of the solvent used is 1 to 40 times (weight) with respect to maleic anhydride and 1 to 15 times (weight) with respect to diamine.
- the conditions for reacting the diamine with the maleic anhydride (co) polymer are not particularly limited.
- the reaction temperature is 20 ° C. to 150 ° C.
- the reaction time is 1 to 9 hours.
- the reaction may be carried out under stirring or standing, but is preferably carried out under stirring.
- the filter cake may be dried before the ring-closing imidization reaction, and examples of the drying method include vacuum drying.
- the vacuum drying conditions are not particularly limited as long as the solvent can be removed.
- the temperature for vacuum drying is 40 to 95 ° C.
- the time for vacuum drying is 2 to 8 hours.
- the conditions for the ring-closing imidization reaction are not particularly limited as long as the conditions for the ring-closing imidization reaction proceed.
- the temperature of the ring-closing imidization reaction is 100 to 250 ° C.
- the time of the ring-closing imidization reaction is 3 to 24 hours.
- the ratio (imidation ratio) of introducing a secondary amino group into the maleic anhydride structural unit of the maleic anhydride (co) polymer to form a maleimide structural unit is not particularly limited, and is, for example, 100% or less. It is.
- the lower limit of the imidization rate is preferably 25 mol% or more, more preferably 50 mol% or more. Within the above range, the effect of cell membrane destruction by the secondary amino group added to the maleimide structural unit is sufficient, and the antibacterial performance and antifungal performance can be enhanced.
- the “imidation ratio” is the ratio of the structural unit having a secondary amino group introduced when the maleic anhydride structural unit contained in the maleic anhydride (co) polymer is 100%.
- the analysis of imidization for example, by the Fourier transform infrared spectroscopy (FT-IR) analysis, the disappearance of absorption peaks derived from acid anhydrides and amides and The determination can be made based on detection of an absorption peak derived from imide.
- FT-IR Fourier transform infrared spectroscopy
- the antimicrobial agent of the present invention contains components other than the polymer having the maleimide structural unit
- the antimicrobial agent of the present invention is produced by mixing other components after the production of the polymer having the maleimide structural unit.
- it may be produced by adding to a raw material before production of a polymer having a maleimide structural unit, a reaction solution or an intermediate during production.
- the manufacturing method of the antimicrobial agent of this invention may include arbitrary processes, such as a refinement
- composition comprising the antimicrobial agent and a resin (excluding the polymer having the maleimide structural unit).
- a resin excluding the polymer having the maleimide structural unit.
- a thermoplastic resin, a thermosetting resin, an elastomer, a photocurable resin, or the like can be used, preferably selected from a thermoplastic resin, an elastomer, and a photocurable resin, and more preferably a thermoplastic resin or It is an elastomer, and a thermoplastic resin is particularly preferable.
- thermoplastic resin used in the present invention is not particularly limited.
- a thermoplastic resin can be used individually or in combination of 2 or more types.
- thermosetting resin used in the present invention is not particularly limited, and examples thereof include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, urethane resin, and thermosetting polyimide resin. .
- the thermosetting resin is not an epoxy resin.
- a thermosetting resin can be used individually or in combination of 2 or more types.
- the elastomer used in the present invention is not particularly limited.
- natural rubber ethylene-propylene rubber, butadiene rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber, fluorine rubber, silicon rubber, urethane rubber, polysulfide rubber, Examples include acrylic rubber, butyl rubber, and epichlorohydrin rubber.
- Elastomers can be used alone or in combination of two or more.
- the photocurable resin used in the present invention is not particularly limited.
- (meth) acrylate resins such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and acrylic (meth) acrylate, Saturated polyester resin, polyene / polythiol resin, epoxy resin, diallyl phthalate resin and the like can be mentioned.
- a photocurable resin can be used individually or in combination of 2 or more types.
- thermoplastic resin, thermosetting resin, elastomer, and photocurable resin may be a synthetic product or a commercially available product.
- thermoplastic resin, thermosetting resin, elastomer and photocurable resin may be a resin emulsion.
- the composition of the present embodiment may include unreacted monomers and oligomers related to the thermosetting resin and the photocurable resin.
- Preferred examples of the resin emulsion include (meth) acrylic resin emulsion (acrylic emulsion), ethylene-vinyl acetate resin emulsion, urethane resin emulsion, and the like.
- Anionic acrylic emulsion, nonionic acrylic emulsion, ethylene-vinyl acetate A resin emulsion, a weak anionic urethane emulsion, and a nonionic urethane emulsion are more preferable, and it is more preferable that these are aqueous emulsions.
- the composition may contain other components, various additives, a solvent, and the like as desired.
- additives include film-forming aids, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), lubricants (silica, wax, fatty acid amides, etc.), inorganic fillers (glass fiber titanium oxide, calcium carbide, etc.) Etc.), flame retardants (bromine compounds, aluminum hydroxide, etc.), dispersants (surfactants, metal soaps, waxes, etc.), dyes, pigments and the like.
- the solvent is not particularly limited, and for example, amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; ethyl acetate, Esters such as butyl acetate, ethyl butyrate and butyl butyrate; water and the like can be used.
- the solvent may be used alone or in the form of a mixture of two or more.
- the content of the antimicrobial agent is 0.5 to 25.0% by weight with respect to the whole composition (100% by weight), and the resin content is 100% by weight. To 99.5 to 75.0% by weight.
- the lower limit of the content of the antimicrobial agent is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin from the viewpoint of antimicrobial performance. More preferably 3 parts by weight or more.
- the upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
- the content of the polymer having the structural unit represented by the above formula (1) is 0.5 to 25.0% by weight with respect to the entire composition (100% by weight),
- the resin content is 99.5 to 75.0% by weight based on the entire composition (100% by weight).
- the lower limit of the content of the antimicrobial agent is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin from the viewpoint of antimicrobial performance. More preferably 3 parts by weight or more.
- the upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
- the composition of the present invention can be obtained by a known method for producing a resin composition using an antimicrobial agent, a resin and, if necessary, other additives and a solvent.
- the mixing conditions are not particularly limited and may be known conditions.
- ⁇ Resin molding> As one embodiment of the present invention, there is provided a resin molded article containing the antimicrobial agent or the composition.
- the molded product containing the antimicrobial agent or composition of the present invention can be obtained using a conventionally known method.
- the method for obtaining the molded body is a method of dissolving the antimicrobial agent or composition of the present invention in an organic solvent and removing the solvent, a method of mixing a UV curable monomer and an antimicrobial agent, and then irradiating with UV.
- Examples include a method of molding an antimicrobial agent and resin pellets or powder with a kneading / extrusion molding machine.
- the composition contains a polymer having a maleimide structural unit and a resin emulsion (preferably an aqueous emulsion)
- the polymer having the maleimide structure and the emulsion are mixed to prepare a coating liquid, and the coating liquid
- a method of forming a coating film by coating the substrate on a substrate is also a preferable method.
- Examples of the shape of the obtained molded body include a block shape, a plate shape, a sheet shape, a film shape, and a thread shape.
- Uses of molded products include, for example, sanitary items such as bathtubs, washstands and toilet seats; household appliances such as refrigerators, washing machines and air conditioners; household items such as washbasins and cutting boards; PVC pipes, wallpaper, flooring, etc.
- Building supplies Fibers and textile products such as polypropylene fibers, polyester fibers, nylon fibers, spandex; Packaging materials such as foamed polystyrene and polyethylene sheets; Sealing materials such as silicone sealants and rubber packings; Medical supplies such as catheters and wound dressings And various uses.
- a polymer having a structural unit represented by the above formula (1) (a polymer having a maleimide structural unit) or an antimicrobial agent containing a polymer having the maleimide structure and a microorganism are provided.
- a method for suppressing the growth of microorganisms comprising: a step of contacting, and (b) at least one step selected from the step of contacting the polymer having the maleimide structure or the antimicrobial agent with a resin or an article.
- “suppressing the growth of microorganisms” includes not only suppressing the growth of microorganisms but also killing microorganisms.
- the contacting is not particularly limited as long as the polymer or the antimicrobial agent having the maleimide structure can be brought into contact with the microorganism.
- a polymer having a maleimide structure or the antimicrobial agent may be applied (applied, mixed, impregnated, coated, etc.) to an article or place that requires suppression of microbial growth.
- the contact means that the polymer having the maleimide structure or the antimicrobial agent is added to a resin or an article (part component) to be controlled for microorganism growth, coating, impregnation, Although spraying etc. are illustrated, it is not limited to this.
- the contact is preferably addition.
- the contacting step preferably includes applying a polymer having a maleimide structure or the antimicrobial agent to the article, more preferably mixing the polymer having the maleimide structure or the antimicrobial agent containing the polymer into the article. Impregnation or coating.
- Examples of the shape of the polymer having the structural unit represented by the above formula (1) or the article to which the antimicrobial agent is applied include a block shape, a plate shape, a sheet shape, a film shape, and a thread shape.
- Uses of goods include sanitary items such as bathtubs, washstands and toilet seats; household appliances such as refrigerators, washing machines and air conditioners; household items such as washbasins and cutting boards; building supplies such as PVC pipes, wallpaper and flooring ; Polypropylene fiber, polyester fiber, nylon fiber, spandex and other fibers and fiber products; Foamed polystyrene, polyethylene sheet and other packaging products; Silicone sealant, rubber packing and other sealing materials; Catheter, wound dressing and other medical products It is done.
- the method of applying the polymer having the structural unit represented by the above formula (1) or the antimicrobial agent to an article is not particularly limited, and a conventionally known method can be used.
- the polymer having the maleimide structural unit or the antimicrobial agent is molded into a block shape, a plate shape, a sheet shape, a film shape, a thread shape or the like to obtain a molded product, and the molded product is used as an article, or the molded article is used as an article. It can be used as a material or part thereof.
- a polymer having the maleimide structural unit or the antimicrobial agent is mixed into a material used for manufacturing an article, or an article or a material used for manufacturing the article is contained in a solution containing the polymer having the maleimide structural unit or the antimicrobial agent.
- a solution containing the polymer having the maleimide structural unit or the antimicrobial agent for example, impregnation or coating of the polymer having the maleimide structural unit or the antimicrobial agent on the surface of the article or the material used for the production thereof may be mentioned.
- one embodiment of the present embodiment is characterized in that an article is mixed, impregnated, or coated with a polymer having the structural unit represented by the formula (1) or the antimicrobial agent.
- the polymer having the maleimide structure or the antimicrobial agent contains a resin (excluding the polymer having the maleimide structural unit). Included in things.
- the resin As the resin, the resin exemplified in the ⁇ Composition> section is exemplified.
- the description of the composition is the same as the description in ⁇ Composition>, and the description is omitted.
- the amount of the polymer having a maleimide structure or the antimicrobial agent of the present invention is not particularly limited, but from the viewpoint of remarkably exhibiting the effect, the polymer having a maleimide structure and
- the polymer having a maleimide structure is used in a preferred form of 0.5% by weight or more, more preferably 1% by weight or more, and even more preferably 3% by weight or more based on the total of the resin or article used for inhibiting the growth of microorganisms.
- the upper limit of the amount used is not particularly limited, but is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably, based on the total of the polymer having a maleimide structure and the resin or article used for inhibiting the growth of microorganisms. Is 10% by weight or less.
- Examples of usage as an antimicrobial agent include, for example, contacting the polymer having the maleimide structural unit or the antimicrobial agent with a resin or an article, but is not limited thereto. This makes it possible to suppress the growth of microorganisms in the interior or surface of the resin or article.
- Examples of the contact include, but are not limited to, addition, coating, impregnation, and spraying. The contact is preferably addition.
- the amount of the polymer having a maleimide structural unit or the antimicrobial agent of the present invention is the same as in the above ⁇ Method for inhibiting the growth of microorganisms>.
- resin used for use of this invention resin illustrated by said ⁇ composition> is illustrated preferably.
- the resin exemplified in the above ⁇ resin molding> is preferably exemplified.
- the aspect exemplified in the above ⁇ Method for inhibiting the growth of microorganisms> is preferably exemplified.
- the polymer having the maleimide structural unit is included in a composition containing a resin (excluding the polymer having the maleimide structural unit).
- the description of the composition is the same as that described in ⁇ Composition>, and thus the description thereof is omitted.
- the content of the polymer having a maleimide structural unit is 0.5 to 25.0% by weight relative to the whole composition (100% by weight), and other than the polymer having a maleimide structural unit.
- the content of the resin is 99.5 to 75.0% by weight based on the entire composition (100% by weight).
- the lower limit of the content of the polymer having a maleimide structural unit is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the resin other than the polymer having a maleimide structural unit from the viewpoint of antimicrobial performance. More preferably, it is 1 part by weight or more, and more preferably 3 parts by weight or more.
- the upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
- the polymer having the maleimide structural unit is contained in a resin molded body.
- the antimicrobial performance was measured by the following method.
- the antibacterial evaluation test was conducted according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect).
- 0.4 ml of E. coli (Escherichia coli, NBRC3982 strain) or Staphylococcus aureus (NBRC15035 strain) prepared according to the method described in JIS Z2801: 2012 was planted on the surface of a test film cut to 5 cm ⁇ 5 cm. Fungus. After covering with a polyethylene film cut to 4 cm ⁇ 4 cm so that the bacterial solution did not dry, it was cultured at 35 ° C. for 24 hours under conditions of relative humidity of 90% or more.
- the bacterial solution was collected from between the films, and the viable cell count was calculated by the agar plate culture method.
- the same operation was performed on an unprocessed film (non-added polyethylene; MZ-PE, manufactured by Maruai Co., Ltd.) not coated with the following polymers 1 to 12.
- the number of viable bacteria after the culture was converted per 1 cm 2 of the film area, and the antibacterial activity value was obtained by subtracting the viable cell number of the test film from the log number of the raw film.
- a test film having an antibacterial activity value of 2.0 or more based on JIS Z2801: 2012 has antibacterial properties (obtained by reducing the number of viable bacteria to 1/100 or less compared to the unprocessed film). Less than the test film was judged as having no antibacterial property (x).
- the antifungal evaluation test was carried out with reference to JIS Z2911: 2010 (mold resistance test method). First, a test film cut to 1 cm ⁇ 1 cm was added to a glucose-added inorganic salt agar medium (glucose 30 g, sodium nitrate 2 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, agar 20 g, pure water 1000 mL, pH 6.0 to 6.5) and placed on the surface.
- a glucose-added inorganic salt agar medium glucose-added inorganic salt agar medium (glucose 30 g, sodium nitrate 2 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, agar 20 g, pure water 1000 mL, pH 6.0 to 6.5) and placed on the surface.
- the cells were cultured at 30 ° C. for 1 week under conditions of relative humidity of 90% or more. Observation of the film surface after culturing with a microscope, the test film with no mold growth is judged to be moldproof ( ⁇ ), and the test film with mold growth is judged to have no mold resistance ( ⁇ ) did.
- 7.5 g and 226.5 g of tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
- the dried cake was vacuum-dried at 150 ° C. for 7 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 1).
- the obtained polymer 1 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- a mixture of 11.52 g and 111.10 g of tetrahydrofuran was added dropwise to the solution.
- C14, C16 and C18 mean straight alkyl groups having 14, 16 and 18 carbon atoms, respectively.
- FT-IR analysis After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis.
- polymer 2 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
- polymer 3 a polymer having a maleimide structure (weight average molecular weight 6,200) (polymer 3).
- the obtained polymer 3 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- polymer 4 The obtained polymer 4 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- polymer 5 The polymer 5 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
- tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd. 229.2 g were charged and stirred to dissolve the copolymer.
- polymer 6 The polymer 6 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide.
- polymer 8 The polymer 8 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- polymer 9 an imide-modified product (weight average molecular weight 5,700) (polymer 9).
- the obtained polymer 9 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- polymer 10 The polymer 10 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- the homogeneous solution prepared while purging the gas phase with nitrogen was heated to 60 ° C., 0.66 g of azobisisobutyronitrile (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4.50 g of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.)
- the solution dissolved in was added to the homogeneous solution to initiate the polymerization reaction. After 10 hours from the start of the reaction, the reaction solution was added dropwise to 720.3 g of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer (styrene-maleic anhydride copolymer).
- the reaction solution was cooled to room temperature and then added dropwise to 500 mL of tetrahydrofuran (Wako Pure Chemical Industries, Ltd.). After completion of the dropwise addition, the precipitate was collected by filtration and dried in vacuo at 120 ° C. overnight to remove the solvent. The total amount of the dried product was dissolved in 100 mL of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.). The solution was dropped into 500 mL of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer, and the precipitate was collected by filtration. The filtered product was dehydrated and cyclized by vacuum drying at 120 ° C.
- polymer 11 was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
- Example 7 The test films prepared in Examples 1, 2, 4 and 5 were evaluated for antifungal properties against Aspergillus niger, Penicillium pinofilm or Aureobasidium pullulans. It was. The results are shown in Table 2.
- Comparative Example 1 has a structural unit in which a tertiary amino group is added to the maleimide structure, and thus it can be seen that the antimicrobial performance is low.
- Example 11 1 g of the polymer 1 obtained in Example 1 and 19 g of low density polyethylene (LDPE) (manufactured by Sigma-Aldrich, MELT INDEX 25 g / 10 min), and Laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C- 150) and kneaded at 200 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 ⁇ m. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark).
- LDPE low density polyethylene
- test film was irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film.
- Sterilized test films were used for antibacterial evaluation and antifungal evaluation.
- the antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
- Example 12 1 g of the polymer 2 obtained in Example 2 and 19 g of polypropylene (PP) (manufactured by Nippon Polypro Co., Ltd., Novatec (registered trademark) PP), Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C-150) ) And kneaded at 210 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 ⁇ m. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark).
- PP polypropylene
- PP polypropylene
- Labo Plast Mill manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C-150
- test film was irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film.
- Sterilized test films were used for antibacterial evaluation and antifungal evaluation.
- the antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
- test film was irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film.
- Sterilized test films were used for antibacterial evaluation and antifungal evaluation.
- the antifungal property was evaluated with respect to Paecilomyces variotii. The results are shown in Table 3.
- the antimicrobial agent of the present invention is a polymer having a structural unit in which a secondary amino group is added to the maleimide structure, or a structural unit in which a tertiary amino group is added to the maleimide structure by including the polymer. It turns out that it has the outstanding antimicrobial performance compared with the imide modified body which has.
- Dissolution evaluation method Dissolution was evaluated using a test film cut to 1 cm ⁇ 1 cm. First, the thickness of the test film (thickness before immersion) was measured. Next, a test film and glucose-added inorganic salt medium (glucose 30.0 g, sodium nitrate 2.0 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, pure water 1000 mL; pH 6.0-6.5) and 5 mL were placed in a vial. The vial was allowed to stand in an incubator set at 35 ° C.
- the test film was taken out of the vial and dried, and the thickness of the test film after drying (thickness after immersion) was measured.
- a digital micrometer MCD130-25 manufactured by Niigata Seiki Co., Ltd. was used for the thickness measurement.
- the measured value of the thickness of the test film before and after immersion which is obtained by subtracting the thickness of the PET film as the base material, is the film thickness before immersion and the film thickness after immersion. %) was calculated.
- the dissolution rate (%) was calculated by ⁇ (film thickness before immersion ⁇ film thickness after immersion) / film thickness before immersion ⁇ ⁇ 100.
- Example 13 to 16 The test films prepared in Examples 1, 2, 4 and 5 were evaluated for elution. The results are shown in Table 4.
- Comparative Examples 7 to 8 have a structural unit in which a tertiary amino group is added to the maleimide structure, so that the elution of the polymer may result in insufficient antimicrobial performance durability. Recognize.
- 5.1 g and 134.9 g of tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
- polymer 15 a polymer having a maleimide structure (weight average molecular weight 6,800) (polymer 15).
- the polymer 15 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- 5.1 g and 134.9 g of tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
- polymer 16 a polymer having a maleimide structure (weight average molecular weight 7,300) (polymer 16).
- the polymer 16 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of amide and the detection of the absorption peak due to the carbonyl group of imide were confirmed.
- a test film was prepared in the same manner as in Example 17 except that the polymer 16 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
- tetrahydrofuran manufactured by Wako Pure Chemical Industries, Ltd.
- polymer 17 a polymer having a maleimide structure (weight average molecular weight 5,600) (polymer 17).
- the polymer 17 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
- a test film was prepared in the same manner as in Example 17 except that the polymer 17 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
- a styrene-maleic anhydride copolymer manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride
- polymer 18 was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
- a test film was prepared in the same manner as in Example 17 except that the polymer 18 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
- a styrene-maleic anhydride copolymer manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride
- polymer 19 a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 19).
- the obtained polymer 19 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- the dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 209,600) (polymer 20).
- the polymer 20 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- a test film was prepared in the same manner as in Example 21 except that the polymer 20 obtained above was used in place of the polymer 19, and an antifungal property was evaluated. The results are shown in Table 5.
- Isoban # 06 Kuraray Co., Ltd., weight average molecular weight 80,000
- the dried cake was vacuum-dried at 150 ° C. for 6 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 151,800) (polymer 21).
- the obtained polymer 21 was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
- a test film was prepared in the same manner as in Example 21 except that the polymer 21 obtained above was used in place of the polymer 19, and the antifungal property was evaluated. The results are shown in Table 5.
- 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer.
- the dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 303,500) (polymer 22).
- the polymer 22 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- a test film was prepared in the same manner as in Example 21 except that the polymer 22 obtained above was used in place of the polymer 19, and an antifungal property was evaluated. The results are shown in Table 5.
- polymer 23 a polymer having a maleimide structure (weight average molecular weight 5,800) (polymer 23).
- the polymer 23 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
- a test film was prepared in the same manner as in Example 21 except that the polymer 23 obtained above was used in place of the polymer 19, and the antifungal property was evaluated. The results are shown in Table 5.
- R 1 is an alkylene group having 3 to 8 carbon atoms, so that excellent antimicrobial performance can be exhibited.
- Comparative Example 9 since R 1 is an ethylene group, it can be seen that there is no antimicrobial.
- Example 25 0.25 g of polymer 17 and 1.75 g of acrylonitrile-styrene (AS) resin (manufactured by Sigma-Aldrich, weight average molecular weight 165,000) and 8 g of tetrahydrofuran were mixed together, and polymer 17 and AS resin were mixed.
- AS acrylonitrile-styrene
- AS resin 12.5: 87.5 (weight ratio)
- the prepared mixed polymer solution was dropped on the surface of a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 ⁇ m) cut to 5 cm ⁇ 5 cm, and coated with a spin coater (Mikasa Co., Ltd.).
- test film coated with a mixture of polymer 17 and AS resin was produced.
- test film was sterilized by irradiating both sides of the test film with an ultraviolet lamp for 5 minutes per side. A sterilized test film was used for evaluation of mold resistance.
- the fungicidal evaluation was performed on Penicillium pinofilm, Pecilomyces variotti and Cladosporium cladosporioides. The results are shown in Table 6.
- the resin molded body containing the polymer having a maleimide structure and a resin according to the present invention can exhibit excellent antimicrobial performance.
- Example 26 5.0 g of the polymer 1 obtained in Example 1, 17.7 g of pure water, and 0.9 g of acetic acid were mixed to prepare a 25 wt% neutralized salt aqueous solution of the polymer 1.
- 1.0 g of an anionic aqueous acrylic emulsion manufactured by Nippon Shokubai Co., Ltd., Acryset EF-165
- 0.5 g of the above neutralized salt aqueous solution 2,2,4-trimethyl-1,3-
- CS-12 pentanediol monoisobutyrate
- a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 ⁇ m) cut to 5 cm ⁇ 10 cm is coated with a coating solution using a bar coater, and naturally dried for 6 hours in a hot air dryer set at 55 ° C.
- the test film was produced by holding for 16 hours to solidify the coating film.
- the content of the neutralized salt of polymer 1 contained in the test film was 20% by weight.
- the test film was cut into 1 cm ⁇ 5 cm.
- the cut test film was immersed in 40 ml of water overnight, then washed with pure water and then naturally dried.
- the test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side.
- the coated surface of the sterilized test film was used for evaluation of mold resistance.
- the antifungal evaluation is aspergillus niger (Penicillium pinophyllum), Paecilomyces variotium (Trichoderma bilomis) It implemented using the liquid mixture. The results are shown in Table 7.
- Example 27 1.0 g of the polymer 1 obtained in Example 1, 1.8 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 40% by weight neutralized salt aqueous solution of the polymer 1. Next, 1.0 g of a nonionic water-based acrylic emulsion (manufactured by Nippon Shokubai Co., Ltd., Acryset ES-970E) and 0.01 g of the above neutralized salt aqueous solution are mixed, and the concentration of the neutralized salt of the polymer 1 is mixed. was prepared to be 0.4% by weight based on the entire coating solution.
- a nonionic water-based acrylic emulsion manufactured by Nippon Shokubai Co., Ltd., Acryset ES-970E
- a test film was prepared in the same manner as in Example 26 except that the prepared coating liquid was used instead of the coating liquid used in Example 26, and the antifungal property was evaluated.
- the content of the neutralized salt of polymer 1 contained in the test film was 1% by weight. The results are shown in Table 7.
- Example 28 1.0 g of the polymer 1 obtained in Example 1, 10.62 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 10% by weight neutralized aqueous salt solution of the polymer 1. Next, 1.0 g of a water-based ethylene-vinyl acetate copolymer emulsion (manufactured by Sumika Chemtex Co., Ltd., Sumikaflex 201HQ) and 0.29 g of the above neutralized salt aqueous solution are mixed, and the neutralized salt of polymer 1 is mixed. A coating solution having a concentration of 2.2% by weight with respect to the entire coating solution was prepared.
- a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 ⁇ m) cut to 5 cm ⁇ 10 cm is coated with a coating solution using a bar coater, and air-dried overnight to solidify the coating.
- a film was prepared. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight.
- the test film was cut into 2 cm ⁇ 5 cm. The cut test film was immersed in 50 ml of warm water at 50 ° C. overnight, then washed with pure water and then naturally dried. The test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side. The coated surface of the sterilized test film was used for evaluation of mold resistance.
- Example 29 1.0 g of water-based ethylene-vinyl acetate copolymer emulsion (Sumikaflex 400HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.2% by weight with respect to the entire coating solution.
- 1.0 g of water-based ethylene-vinyl acetate copolymer emulsion (Sumikaflex 400HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.2% by weight with respect to the entire coating solution.
- a test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated.
- the content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown
- Example 30 1.0 g of an aqueous ethylene-vinyl acetate copolymer emulsion (Sumikaflex 752 manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. And 0.26 g of a 10% by weight neutralized aqueous solution of polymer 1 prepared in Example 28 were mixed to prepare a coating solution.
- a test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
- Example 31 Water-based ethylene-vinyl acetate-vinyl chloride copolymer emulsion (Sumikaflex 808HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution.
- a coating solution was prepared by mixing 1.0 g and 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28.
- a test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated.
- the content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
- Example 32 1.0 g of weak anionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 300) so that the concentration of the neutralized salt of polymer 1 is 1.4% by weight with respect to the entire coating solution, A coating solution was prepared by mixing 0.16 g of the 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
- Example 33 Implementation with 1.0 g of nonionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 500M) so that the concentration of the neutralized salt of polymer 1 is 1.9% by weight with respect to the entire coating solution.
- a coating solution was prepared by mixing 0.24 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28.
- a test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated.
- the content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
- Example 34 1.0 g of nonionic water-based urethane emulsion (Superflex E-2000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution.
- a coating solution was prepared by mixing 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28.
- a test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated.
- the content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
- the polymer having a maleimide structural unit according to the present invention can exert excellent antimicrobial activity even when the secondary amino group is a neutralized salt.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
The purpose of the present invention is to provide a molded article that has high antimicrobial capability (antibacterial capability and anti-mold capability), and that contains a polymer-type antimicrobial agent, wherein elution of the polymer can be suppressed and the polymer-type antimicrobial agent has excellent antibacterial durability. The present invention is an antimicrobial agent containing a polymer having the structure unit represented by formula (1), where: R1 is a C3-24 alkylene group; R2 is selected from the group comprising a C2-24 alkyl group, a C3-12 alicyclic hydrocarbon group, and a C6-24 aryl group; and a secondary amino group represented by -NHR2 may be a neutralized salt.
Description
本発明は、マレイミド構造に2級アミノ基が付加した構造単位を有するポリマーを含む抗微生物剤に関する。
The present invention relates to an antimicrobial agent comprising a polymer having a structural unit in which a secondary amino group is added to a maleimide structure.
近年、細菌、カビなどに対する抗微生物剤は、清潔志向の高まりや衛生上の観点から、樹脂、成形品、塗料など様々な分野で使用され、例えば、成形加工製品に配合されて、表面に抗微生物性を付与するために用いられている。これらの抗微生物剤は、抗微生物性能と共に安全性も求められており、ポリマー型の抗微生物剤は、揮発性が低く、使用環境中で基材から溶出しにくいため、ヒトに対する毒性が低く、安全性の高い抗微生物剤として注目されてきている。
In recent years, antimicrobial agents against bacteria, molds, and the like have been used in various fields such as resins, molded articles, paints, and the like from the viewpoint of increasing cleanliness and hygiene. Used to impart microbial properties. These antimicrobial agents are required to have safety as well as antimicrobial performance, and polymer-type antimicrobial agents have low volatility and are difficult to elute from the base material in the environment of use. It has been attracting attention as a highly safe antimicrobial agent.
ポリマー型の抗微生物剤は、細菌やカビなどの細胞膜を破壊して作用すると言われている。このように微生物の細胞膜を攻撃対象とする方法は、特定のタンパク質を攻撃対象とする従来の抗微生物剤と比較して、微生物が耐性を獲得しにくいと考えられている。
Polymeric antimicrobial agents are said to act by destroying cell membranes such as bacteria and mold. As described above, it is considered that the method of targeting the cell membrane of a microorganism as a target of attack makes it difficult for the microorganism to acquire resistance as compared with a conventional antimicrobial agent that targets a specific protein as a target of attack.
ポリマー型の抗菌剤として、特許文献1には、スチレン-ジメチルアミノプロピルマレイミドなどのスチレン-無水マレイン酸共重合体を3級アミンであるN,N-ジメチル-1,3-プロパンジアミンで変性処理した抗菌剤が記載されている。
As a polymer type antibacterial agent, Patent Document 1 discloses that a styrene-maleic anhydride copolymer such as styrene-dimethylaminopropylmaleimide is modified with a tertiary amine N, N-dimethyl-1,3-propanediamine. Antibacterial agents are described.
しかしながら、特許文献1に記載のポリマー型の抗菌剤は、抗微生物性能(防カビ性能および抗菌性能)が十分ではなく、特に樹脂などに添加する場合、添加量が少ないと抗菌性能が発揮されないという問題があった。
However, the polymer type antibacterial agent described in Patent Document 1 does not have sufficient antimicrobial performance (antifungal performance and antibacterial performance), and particularly when added to a resin or the like, the antibacterial performance is not exhibited if the addition amount is small. There was a problem.
したがって、本発明は、上記の従来技術の問題点に鑑みてなされたものであり、優れた抗微生物性能(防カビ性能および抗菌性能)を発揮できるポリマー型の抗微生物剤を提供することを目的とする。
Accordingly, the present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a polymer-type antimicrobial agent that can exhibit excellent antimicrobial performance (antifungal performance and antimicrobial performance). And
本発明者らは、上記課題を解決するために鋭意検討を行った。その結果、下記式(1)の構造単位を有するポリマーを含む抗微生物剤によって上記課題を解決することを見出し、本発明の完成に至った。
The present inventors have intensively studied to solve the above problems. As a result, the inventors have found that the above problems can be solved by an antimicrobial agent containing a polymer having a structural unit represented by the following formula (1), and have completed the present invention.
ただし、前記式(1)中、R1は炭素数3~24のアルキレン基であり、R2は炭素数2~24のアルキル基、炭素数3~12の脂環式炭化水素基および炭素数6~24のアリール基からなる群から選択され、-NHR2で表される2級アミノ基は中和塩となっていてもよい。
In the formula (1), R 1 is an alkylene group having 3 to 24 carbon atoms, R 2 is an alkyl group having 2 to 24 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and a carbon number. The secondary amino group selected from the group consisting of 6 to 24 aryl groups and represented by —NHR 2 may be a neutralized salt.
本発明の一形態によれば、上記式(1)で表される構造単位を有するポリマーを含む抗微生物剤を提供する。かかる構成により、抗微生物性能(防カビ性能および抗菌性能)が高く、かつポリマー型の抗微生物剤を含む成形体において、ポリマーの溶出を抑制できる、抗微生物性能の耐久性に優れたポリマー型の抗微生物剤の提供が可能になる。したがって、本発明の抗微生物剤は、樹脂、成形品、塗料、粘着剤、接着剤などの種々の製品形態に適用可能である。
According to one aspect of the present invention, there is provided an antimicrobial agent comprising a polymer having a structural unit represented by the above formula (1). With such a structure, the antimicrobial performance (antifungal performance and antibacterial performance) is high, and in a molded article containing a polymeric antimicrobial agent, the elution of the polymer can be suppressed, and the antimicrobial performance excellent in antimicrobial performance is achieved. It becomes possible to provide an antimicrobial agent. Therefore, the antimicrobial agent of the present invention can be applied to various product forms such as resins, molded articles, paints, pressure-sensitive adhesives, and adhesives.
本発明の一形態によれば、(a)上記式(1)で表される構造単位を有するポリマーまたは前記式(1)で表される構造単位を有するポリマーを含む抗微生物剤と微生物とを接触させる工程、および(b)前記式(1)で表される構造単位を有するポリマーまたは前記抗微生物剤と樹脂または物品とを接触させる工程から選択される少なくとも1つの工程を含む、微生物の増殖を抑制する方法を提供する。
According to one embodiment of the present invention, (a) an antimicrobial agent comprising a polymer having a structural unit represented by the above formula (1) or a polymer having a structural unit represented by the above formula (1) and a microorganism And (b) at least one step selected from the step of bringing the polymer having the structural unit represented by the formula (1) or the antimicrobial agent into contact with a resin or an article. Provide a method for suppressing
本発明の一形態によれば、上記式(1)で表される構造単位を有するポリマーの抗微生物剤としての使用を提供する。
According to one aspect of the present invention, there is provided use of a polymer having a structural unit represented by the above formula (1) as an antimicrobial agent.
なお、本明細書において、マレイミド構造に2級アミノ基が付加した上記式(1)の構造単位を有するポリマーを、単に「マレイミド構造単位を有するポリマー」とも称する。
In this specification, a polymer having a structural unit of the above formula (1) in which a secondary amino group is added to a maleimide structure is also simply referred to as “polymer having a maleimide structural unit”.
本発明に係る抗微生物剤は、上記マレイミド構造単位を有するポリマーを含み、優れた抗微生物性能を発揮できる。細菌やカビなどの細胞膜は、リン脂質を中心に構成される二重層であり、負に帯電している。一方、マレイミド構造単位に付加される2級アミノ基は、正に帯電しやすい。これは、2級アミノ基の窒素に結合している官能基が1つであるため、官能基が2つ結合している3級アミノ基と比べて、ポリマー中のアミノ基の窒素原子同士が密集しやすく、この窒素原子の密集によって部分的に正電荷が高まり、負に荷電した細胞膜への親和性が向上し、細菌やカビなどの細胞膜を破壊する効果がより向上するものと考えられる。
The antimicrobial agent according to the present invention contains a polymer having the maleimide structural unit and can exhibit excellent antimicrobial performance. Cell membranes such as bacteria and fungi are bilayers composed mainly of phospholipids and are negatively charged. On the other hand, the secondary amino group added to the maleimide structural unit is easily positively charged. This is because there is one functional group bonded to the nitrogen of the secondary amino group, so the nitrogen atoms of the amino group in the polymer are different from each other in the tertiary amino group in which two functional groups are bonded. It is likely that the cells are densely packed, and due to the concentration of nitrogen atoms, the positive charge is partially increased, the affinity to the negatively charged cell membrane is improved, and the effect of destroying cell membranes such as bacteria and fungi is further improved.
本発明のマレイミド構造を有するポリマーにおいて、R1が炭素数3以上のアルキレン基であることにより、ポリマー構造において、2級アミノ基の自由度が高くなる。これによって細胞壁に対する透過性が増し、細胞壁の厚いカビに対しても、より効果的に細胞膜を破壊できるようになるものと考えられる。また、R1が炭素数3以上のアルキレン基であることにより、アミノ基の窒素原子同士が密集しやすく、この窒素原子の密集によって部分的に正電荷が高まり、上述のとおり、負に荷電した細胞膜への親和性が向上し、細菌やカビなどの細胞膜を破壊する効果がより向上するものと考えられる。
In the polymer having a maleimide structure of the present invention, when R 1 is an alkylene group having 3 or more carbon atoms, the degree of freedom of the secondary amino group is increased in the polymer structure. As a result, the permeability to the cell wall is increased, and it is considered that the cell membrane can be more effectively destroyed against mold having a thick cell wall. In addition, when R 1 is an alkylene group having 3 or more carbon atoms, nitrogen atoms of the amino group tend to be densely packed, and due to the denseness of the nitrogen atoms, a positive charge is partially increased, and as described above, negatively charged. It is considered that the affinity for the cell membrane is improved, and the effect of destroying cell membranes of bacteria and molds is further improved.
加えて、本発明のマレイミド構造を有するポリマーは、ポリマー主鎖にイミド環構造を有するため、主鎖の運動性がある程度抑制され、ポリマー鎖が複雑に絡み合って抗微生物性能を発揮するのに重要なアミノ基がポリマー内部に埋もれてしまう事を防ぐことができる。よって、マレイミド構造に付加した2級アミノ基が効果的にポリマー表面に露出しうるため、より効果的に細菌やカビなどの細胞膜を破壊する事が可能となると考えられる。
In addition, since the polymer having the maleimide structure of the present invention has an imide ring structure in the polymer main chain, the main chain mobility is suppressed to some extent, and it is important for the polymer chain to be intertwined in a complex manner and exhibit antimicrobial performance. It is possible to prevent an amino group from being buried inside the polymer. Therefore, since the secondary amino group added to the maleimide structure can be effectively exposed on the polymer surface, it is considered that cell membranes such as bacteria and fungi can be more effectively destroyed.
さらに、本発明に係る抗微生物剤は、抗微生物性能の耐久性に優れることを特徴とする。本発明に係る抗微生物剤は、2級アミノ基をマレイミド構造に付加することにより、前記抗微生物剤を含む成形体において、ポリマーの溶出を抑制できる。これは、3級アミノ基と比べて、2級アミノ基は、ポリマー中でアミノ基が密集しやすく、ポリマー間での分子の絡み合いが生じることにより、溶出が抑えられるためであると考えられる。
Furthermore, the antimicrobial agent according to the present invention is characterized by excellent durability of antimicrobial performance. The antimicrobial agent according to the present invention can suppress elution of a polymer in a molded article containing the antimicrobial agent by adding a secondary amino group to the maleimide structure. This is considered to be because the secondary amino group is more likely to be densely packed in the polymer than the tertiary amino group, and the molecular entanglement between the polymers causes the elution to be suppressed.
上記作用メカニズムは推測であり、本発明は上記作用メカニズムに限定されない。
The above action mechanism is speculation, and the present invention is not limited to the above action mechanism.
以下、本発明を実施するための形態について説明する。しかしながら、本発明はこの実施形態に限定はされない。なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせた形態もまた、本発明の好ましい形態である。
Hereinafter, modes for carrying out the present invention will be described. However, the present invention is not limited to this embodiment. In addition, the form which combined two or more each preferable form of this invention described below is also a preferable form of this invention.
本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。
In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
<抗微生物剤>
[マレイミド構造単位を有するポリマー]
本発明の抗微生物剤は、マレイミド構造に2級アミノ基が付加した上記式(1)の構造単位を有するポリマーを含む。 <Antimicrobial agent>
[Polymer having maleimide structural unit]
The antimicrobial agent of this invention contains the polymer which has a structural unit of the said Formula (1) which added the secondary amino group to the maleimide structure.
[マレイミド構造単位を有するポリマー]
本発明の抗微生物剤は、マレイミド構造に2級アミノ基が付加した上記式(1)の構造単位を有するポリマーを含む。 <Antimicrobial agent>
[Polymer having maleimide structural unit]
The antimicrobial agent of this invention contains the polymer which has a structural unit of the said Formula (1) which added the secondary amino group to the maleimide structure.
上記式(1)において、R1は、炭素数3~24のアルキレン基である。また、R1は、合成原料の入手容易性の観点から、好ましくは炭素数18以下のアルキレン基であり、より好ましくは炭素数12以下のアルキレン基であり、特に好ましくは炭素数8以下のアルキレン基である。前記アルキレン基は、直鎖状であっても、分岐状であってもよい。炭素数3~24のアルキレン基の例としては、プロピレン基、トリメチレン基、ブチレン基、ペンチレン基、ヘキシレン基(ヘキサメチレン基)、へプチレン基、オクチレン基(オクタメチレン基)、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、へプタデシレン基、オクタデシレン基などが挙げられる。
In the above formula (1), R 1 is an alkylene group having 3 to 24 carbon atoms. In addition, R 1 is preferably an alkylene group having 18 or less carbon atoms, more preferably an alkylene group having 12 or less carbon atoms, and particularly preferably an alkylene group having 8 or less carbon atoms, from the viewpoint of easy availability of synthetic raw materials. It is a group. The alkylene group may be linear or branched. Examples of the alkylene group having 3 to 24 carbon atoms include propylene group, trimethylene group, butylene group, pentylene group, hexylene group (hexamethylene group), heptylene group, octylene group (octamethylene group), nonylene group, and decylene group. , Undecylene group, dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, octadecylene group and the like.
R1は、マレイミド構造単位間で同じでもよく、異なっていてもよい。
R 1 may be the same or different between maleimide structural units.
R1は、抗微生物性能をより発揮するとの観点から、好ましくは直鎖状の炭素数3~8のアルキレン基であり、より好ましくはトリメチレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基またはオクチレン基であり、さらに好ましくはトリメチレン基、へキシレン基またはオクチレン基であり、特に好ましくはトリメチレン基である。
R 1 is preferably a linear alkylene group having 3 to 8 carbon atoms, more preferably a trimethylene group, a butylene group, a pentylene group, a hexylene group, or a heptylene group, from the viewpoint of exhibiting more antimicrobial performance. Or it is an octylene group, More preferably, it is a trimethylene group, a hexylene group, or an octylene group, Most preferably, it is a trimethylene group.
上記式(1)において、R2は、炭素数2~24のアルキル基、炭素数3~12の脂環式炭化水素基および炭素数6~24のアリール基からなる群から選択される。
In the above formula (1), R 2 is selected from the group consisting of an alkyl group having 2 to 24 carbon atoms, an alicyclic hydrocarbon group having 3 to 12 carbon atoms, and an aryl group having 6 to 24 carbon atoms.
炭素数2~24のアルキル基は、直鎖状であってもよく、分岐状であってもよい。炭素数2~24のアルキル基の例としては、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、2-エチルヘキシル基、ヘキシル基(ノルマルヘキシル基)、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基などが挙げられる。
The alkyl group having 2 to 24 carbon atoms may be linear or branched. Examples of the alkyl group having 2 to 24 carbon atoms include ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 2 -Ethylhexyl group, hexyl group (normal hexyl group), heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group (palmityl group), Examples include heptadecyl group, octadecyl group (stearyl group), nonadecyl group, icosyl group, heneicosyl group, docosyl group, tricosyl group, tetracosyl group and the like.
炭素数3~12の脂環式炭化水素基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ジシクロペンタニル基、ジシクロペンテニル基、イソボルニル基、アダマンチル基、ジシクロペンタニル基などが挙げられる。
Examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, adamantyl group, dicyclopentanyl group, dicyclopentenyl group, isobornyl group, adamantyl group, A dicyclopentanyl group etc. are mentioned.
炭素数6~24のアリール基の例としては、フェニル基、ベンジル基、フェネチル基、o-、m-またはp-トリル基、2,3-または2,4-キシリル基、メシチル基、ナフチル基、アントリル基、フェナントリル基、ビフェニリル基、ベンズヒドリル基、トリチル基、ピレニル基などが挙げられる。
Examples of aryl groups having 6 to 24 carbon atoms include phenyl group, benzyl group, phenethyl group, o-, m- or p-tolyl group, 2,3- or 2,4-xylyl group, mesityl group, naphthyl group , Anthryl group, phenanthryl group, biphenylyl group, benzhydryl group, trityl group, pyrenyl group and the like.
R2は、マレイミド構造単位間で同じでもよく、異なっていてもよい。
R 2 may be the same or different between maleimide structural units.
R2において、アルキル基は、抗微生物性能をより発揮するとの観点から、好ましくは炭素数2~8のアルキル基であり、より好ましくはエチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、2-エチルヘキシル基、ヘキシル基、ヘプチル基またはオクチル基であり、さらに好ましくはイソプロピル基、tert-ブチル基、2-エチルヘキシル基またはヘキシル基である。
In R 2 , the alkyl group is preferably an alkyl group having 2 to 8 carbon atoms, more preferably an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, from the viewpoint of exhibiting more antimicrobial performance. Group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, 2-ethylhexyl group, hexyl group, heptyl group or octyl group, more preferably isopropyl group, tert-butyl group, 2- An ethylhexyl group or a hexyl group;
またR2において、アルキル基は、抗微生物性能およびその耐久性をより発揮するとの観点から、好ましくは炭素数9~20のアルキル基であり、より好ましくは炭素数12~18のアルキル基であり、さらに好ましくはドデシル基、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基またはオクタデシル基(ステアリル基)である。前記アルキル基は、炭素数が異なるアルキル基の混合物でもよい。
In R 2 , the alkyl group is preferably an alkyl group having 9 to 20 carbon atoms, more preferably an alkyl group having 12 to 18 carbon atoms, from the viewpoint of more exerting antimicrobial performance and durability. And more preferably a dodecyl group, a tridecyl group, a tetradecyl group (myristyl group), a pentadecyl group, a hexadecyl group (palmityl group), a heptadecyl group or an octadecyl group (stearyl group). The alkyl group may be a mixture of alkyl groups having different carbon numbers.
R2は、炭素数が異なる上記アルキル基が混在してもよい。混在するアルキル基としては、抗微生物性能およびその耐久性をより発揮するとの観点から、好ましくはテトラデシル基(ミリスチル基)、ヘキサデシル基(パルミチル基)およびオクタデシル基(ステアリル基)である。
R 2 may be a mixture of the above alkyl groups having different carbon numbers. The mixed alkyl group is preferably a tetradecyl group (myristyl group), a hexadecyl group (palmityl group), and an octadecyl group (stearyl group) from the viewpoint of more exerting antimicrobial performance and durability.
R2において、脂環式炭化水素基は、抗微生物性能をより発揮するとの観点から、好ましくは炭素数4~10の脂環式炭化水素基であり、より好ましくは炭素数6~10の脂環式炭化水素基であり、さらに好ましくはシクロヘキシル基、アダマンチル基、ジシクロペンタニル基、ジシクロペンテニル基、イソボルニル基、アダマンチル基およびジシクロペンタニル基であり、特に好ましくはシクロヘキシル基、イソボルニル基、アダマンチル基またはジシクロペンタニル基であり、最も好ましくはシクロヘキシル基である。
In R 2 , the alicyclic hydrocarbon group is preferably an alicyclic hydrocarbon group having 4 to 10 carbon atoms, more preferably an alicyclic hydrocarbon group having 6 to 10 carbon atoms, from the viewpoint of exhibiting more antimicrobial performance. A cyclic hydrocarbon group, more preferably a cyclohexyl group, an adamantyl group, a dicyclopentanyl group, a dicyclopentenyl group, an isobornyl group, an adamantyl group and a dicyclopentanyl group, particularly preferably a cyclohexyl group, an isobornyl group. , An adamantyl group or a dicyclopentanyl group, and most preferably a cyclohexyl group.
R2において、アリール基は、抗微生物性能をより発揮するとの観点から、好ましくは炭素数6~12のアリール基であり、より好ましくはフェニル基、ベンジル基、フェネチル基、o-、m-またはp-トリル基、2,3-または2,4-キシリル基およびメシチル基であり、さらに好ましくはベンジル基である。
In R 2 , the aryl group is preferably an aryl group having 6 to 12 carbon atoms, and more preferably a phenyl group, a benzyl group, a phenethyl group, o-, m- or A p-tolyl group, a 2,3- or 2,4-xylyl group and a mesityl group, more preferably a benzyl group.
本発明の一実施形態において、R2は、抗微生物性能およびその耐久性をより向上できるとの観点から、好ましくは炭素数2~24のアルキル基および炭素数3~12の脂環式炭化水素基からなる群から選択される。R2が炭素数2~24のアルキル基および炭素数3~12の脂環式炭化水素基からなる群から選択されることで、R2の構造が微生物の細胞膜に陥入した際に、細胞膜に大きな孔が生じ、これにより細胞内液の外部流出を促進することができるため、より高い抗微生物性能を発揮できると推測される。
In one embodiment of the present invention, R 2 is preferably an alkyl group having 2 to 24 carbon atoms and an alicyclic hydrocarbon having 3 to 12 carbon atoms from the viewpoint that antimicrobial performance and durability thereof can be further improved. Selected from the group consisting of groups. When R 2 is selected from the group consisting of an alkyl group having 2 to 24 carbon atoms and an alicyclic hydrocarbon group having 3 to 12 carbon atoms, when the structure of R 2 is invaded into the cell membrane of a microorganism, the cell membrane It is speculated that higher antimicrobial performance can be exerted because large pores are formed in the cell, thereby promoting the outflow of the intracellular fluid.
本発明の好ましい実施形態において、抗微生物性能およびその耐久性をさらに向上できるとの観点から、R1は、炭素数3~18のアルキレン基であり、R2は、炭素数2~24のアルキル基および炭素数3~12の脂環式炭化水素基からなる群から選択される。
In a preferred embodiment of the present invention, R 1 is an alkylene group having 3 to 18 carbon atoms, and R 2 is an alkyl group having 2 to 24 carbon atoms from the viewpoint that the antimicrobial performance and its durability can be further improved. Selected from the group consisting of a group and an alicyclic hydrocarbon group having 3 to 12 carbon atoms.
本発明のより好ましい実施形態において、抗微生物性能およびその耐久性をよりさらに向上できるとの観点から、R1は、炭素数3~8のアルキレン基であり、R2は、炭素数2~24のアルキル基および炭素数3~12の脂環式炭化水素基からなる群から選択され、よりさらに好ましくは、R1は、炭素数3~8のアルキレン基であり、R2は、炭素数2~8のアルキル基および炭素数6~10の脂環式炭化水素基からなる群から選択され、特に好ましくは、R1は、トリメチレン基、へキシレン基およびオクチレン基からなる群から選択され、R2は、イソプロピル基、tert-ブチル基、2-エチルヘキシル基、ヘキシル基およびシクロヘキシル基からなる群から選択される。
In a more preferred embodiment of the present invention, R 1 is an alkylene group having 3 to 8 carbon atoms and R 2 is 2 to 24 carbon atoms from the viewpoint that the antimicrobial performance and its durability can be further improved. More preferably, R 1 is an alkylene group having 3 to 8 carbon atoms, and R 2 is a group having 2 carbon atoms. Selected from the group consisting of alkyl groups of ˜8 and alicyclic hydrocarbon groups of 6 to 10 carbon atoms, particularly preferably R 1 is selected from the group consisting of trimethylene group, hexylene group and octylene group; 2 is selected from the group consisting of isopropyl, tert-butyl, 2-ethylhexyl, hexyl and cyclohexyl.
上記式(1)において、-NHR2で表される2級アミノ基は、酸による中和塩となっていてもよい。前記2級アミノ基が中和塩となっていることにより、極性が高まるので、水系エマルションのように極性溶媒を使用した製品にも適用することができる。中和に使用する酸としては、酢酸、ギ酸、プロピオン酸、コハク酸、クエン酸、リンゴ酸などの有機酸;塩酸、リン酸、硫酸、硝酸などの無機酸が挙げられる。中和に使用する酸は、単独でも、2種以上を混合して使用してもよい。
In the above formula (1), the secondary amino group represented by —NHR 2 may be a neutralized salt with an acid. Since the secondary amino group is a neutralized salt, the polarity is increased, so that it can be applied to products using a polar solvent such as an aqueous emulsion. Examples of the acid used for neutralization include organic acids such as acetic acid, formic acid, propionic acid, succinic acid, citric acid and malic acid; and inorganic acids such as hydrochloric acid, phosphoric acid, sulfuric acid and nitric acid. The acid used for neutralization may be used alone or in combination of two or more.
-NHR2で表される2級アミノ基の中和は、使用する極性溶媒などを考慮して適宜行うことができる。中和に使用する酸の添加量は、マレイミド構造を有するポリマーに含まれる前記2級アミノ基に対して、25モル%以上であり、好ましくは50モル%以上である。
The neutralization of the secondary amino group represented by —NHR 2 can be appropriately performed in consideration of the polar solvent used. The addition amount of the acid used for neutralization is 25 mol% or more, preferably 50 mol% or more, based on the secondary amino group contained in the polymer having a maleimide structure.
本発明のマレイミド構造単位を有するポリマー主鎖は、マレイミド構造単位が由来する単量体と共重合可能な単量体由来の構造単位を有することができる。すなわち、前記マレイミド構造単位を有するポリマー主鎖は、上記式(1)の構造単位が由来する単量体と、当該単量体と共重合可能な単量体との共重合体であってもよい。共重合体の構造も特に制限されず、ランダム共重合体、交互共重合体、周期的共重合体、およびブロック共重合体のいずれであってもよい。
The polymer main chain having a maleimide structural unit of the present invention can have a structural unit derived from a monomer copolymerizable with the monomer from which the maleimide structural unit is derived. That is, the polymer main chain having the maleimide structural unit may be a copolymer of a monomer derived from the structural unit of the above formula (1) and a monomer copolymerizable with the monomer. Good. The structure of the copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
なお、上記「共重合可能な単量体由来の構造単位」とは、共重合可能な単量体(以下、「その他の単量体」とも言う)が重合して形成される構造を有する構造単位を言い、典型的には上記その他の単量体の炭素-炭素二重結合の少なくとも一つが炭素-炭素単結合に置き換わった構造単位を言う。例えば、スチレンCH2=CH(C6H5)に由来する構造単位であれば、-CH2CH(C6H5)-で表すことができる。ここで、「その他の単量体が重合して形成される構造を有する構造単位」とは、その他の単量体が実際に重合して形成される構造単位に限定されず、構造が同じであれば、その他の方法で形成した構造単位も含まれることを意味する。
The “structural unit derived from a copolymerizable monomer” is a structure having a structure formed by polymerization of a copolymerizable monomer (hereinafter also referred to as “other monomer”). A unit, typically a structural unit in which at least one carbon-carbon double bond of the other monomer is replaced with a carbon-carbon single bond. For example, a structural unit derived from styrene CH 2 ═CH (C 6 H 5 ) can be represented by —CH 2 CH (C 6 H 5 ) —. Here, the “structural unit having a structure formed by polymerizing other monomers” is not limited to a structural unit formed by actually polymerizing other monomers, and has the same structure. If present, it means that structural units formed by other methods are also included.
上記式(1)の構造単位が由来する単量体としては、マレイミド、無水マレイン酸などを用いることができる。
As the monomer from which the structural unit of the above formula (1) is derived, maleimide, maleic anhydride, or the like can be used.
本発明のマレイミド構造単位を有するポリマー主鎖がマレイミド構造単位が由来する単量体と共重合可能な単量体由来の構造単位を含む場合、前記共重合可能な単量体由来の構造単位の割合は、例えば、1~95モル%であり、少ない添加量での抗微生物性能を発揮できる観点から、好ましくは1~80モル%であり、より好ましくは1~60モル%である(ただし、マレイミド構造単位と前記共重合可能な構造単位との合計量は100モル%である)。
When the polymer main chain having a maleimide structural unit of the present invention includes a structural unit derived from a monomer copolymerizable with the monomer from which the maleimide structural unit is derived, the structural unit derived from the copolymerizable monomer The proportion is, for example, 1 to 95 mol%, and preferably 1 to 80 mol%, more preferably 1 to 60 mol% from the viewpoint of exhibiting antimicrobial performance with a small addition amount (provided that The total amount of maleimide structural units and the copolymerizable structural units is 100 mol%).
上記式(1)の構造単位が由来する単量体と共重合可能な単量体としては、特に制限されず、用途に合わせて適宜選択できる。前記共重合可能な単量体は、例えば、スチレン系単量体、炭素数1~24のα-オレフィン系単量体、ビニルエステル、アルキルビニルエーテル、(メタ)アクリル酸エステルなどが挙げられる。
The monomer that can be copolymerized with the monomer from which the structural unit of the above formula (1) is derived is not particularly limited and can be appropriately selected depending on the intended use. Examples of the copolymerizable monomer include a styrene monomer, an α-olefin monomer having 1 to 24 carbon atoms, a vinyl ester, an alkyl vinyl ether, and a (meth) acrylic acid ester.
スチレン系単量体の例としては、スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレン、クロロメチルスチレン、エチルビニルベンゼンなどが挙げられる。
Examples of styrene monomers include styrene, α-methyl styrene, vinyl toluene, p-methyl styrene, chloromethyl styrene, ethyl vinyl benzene, and the like.
炭素数1~24のα-オレフィン系単量体の例としては、エチレン、プロピレン、イソブチレン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられる。
Examples of the α-olefin monomer having 1 to 24 carbon atoms include ethylene, propylene, isobutylene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-hexene Examples include octadecene and 1-eicosene.
ビニルエステルの例としては、酢酸ビニル、プロピオン酸ビニル、蟻酸ビニル、安息香酸ビニルなどが挙げられる。
Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl formate, vinyl benzoate and the like.
アルキルビニルエーテルの例としては、エチルビニルエーテル、メチルビニルエーテルなどが挙げられる。
Examples of alkyl vinyl ethers include ethyl vinyl ether and methyl vinyl ether.
(メタ)アクリル酸エステルの例としては、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ターシャリブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸デシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、ポリエチレングリコールモノ(メタ)アクリレートなどが挙げられる。
Examples of (meth) acrylic acid esters include: (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tertiary butyl (meth) acrylate, (meth) Amyl acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, hydroxyethyl (meth) acrylate, ( Examples thereof include hydroxypropyl methacrylate and polyethylene glycol mono (meth) acrylate.
上記単量体は、1種または2種以上を用いることができる。
1 type or 2 types or more can be used for the said monomer.
本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」および「メタクリル酸」の両方を意味する。また、「(メタ)アクリレート」とは、「アクリレート」および「メタクリレート」の両方を意味する。
In this specification, “(meth) acrylic acid” means both “acrylic acid” and “methacrylic acid”. Further, “(meth) acrylate” means both “acrylate” and “methacrylate”.
上述した共重合可能な単量体は、抗微生物性能の耐久性を維持できるとの観点から、好ましくはスチレン系単量体およびα-オレフィン系単量体からなる群から選択される少なくとも一つである。より好ましくはスチレン、エチレン、イソブチレンおよび1-オクタデセンからなる群から選択される少なくとも一つである。
The copolymerizable monomer described above is preferably at least one selected from the group consisting of a styrene monomer and an α-olefin monomer from the viewpoint that durability of antimicrobial performance can be maintained. It is. More preferably, it is at least one selected from the group consisting of styrene, ethylene, isobutylene and 1-octadecene.
すなわち、本発明の一実施形態において、マレイミド構造単位を有するポリマーは、上記式(1)で表される構造単位と、スチレン系単量体およびα-オレフィン系単量体からなる群から選択される少なくとも一つとの共重合体である。また、マレイミド構造単位を有するポリマーは、好ましくは上記式(1)で表される構造単位と、スチレン、エチレン、イソブチレンおよび1-オクタデセンからなる群から選択される少なくとも一つとの共重合体である。
That is, in one embodiment of the present invention, the polymer having a maleimide structural unit is selected from the group consisting of the structural unit represented by the above formula (1), a styrene monomer, and an α-olefin monomer. And at least one copolymer. The polymer having a maleimide structural unit is preferably a copolymer of the structural unit represented by the above formula (1) and at least one selected from the group consisting of styrene, ethylene, isobutylene and 1-octadecene. .
本発明のマレイミド構造単位を有するポリマーの重量平均分子量は、1,000以上であり、好ましくは2,000以上であり、さらに好ましくは3,000以上であり、特に好ましくは4,000以上である。重量平均分子量が1,000以上であると、成形性が良好となることができる。前記重量平均分子量の上限は、特に制限されないが、成形性の観点から、1,000,000以下であり、好ましくは500,000以下であり、より好ましくは400,000以下であり、さらに好ましくは100,000以下であり、特に好ましくは60,000以下である。
The weight average molecular weight of the polymer having a maleimide structural unit of the present invention is 1,000 or more, preferably 2,000 or more, more preferably 3,000 or more, and particularly preferably 4,000 or more. . When the weight average molecular weight is 1,000 or more, moldability can be improved. The upper limit of the weight average molecular weight is not particularly limited, but from the viewpoint of moldability, it is 1,000,000 or less, preferably 500,000 or less, more preferably 400,000 or less, and still more preferably. 100,000 or less, particularly preferably 60,000 or less.
本発明のマレイミド構造単位を有するポリマーの重量平均分子量の範囲は、好ましくは1,000~1,000,000であり、より好ましくは2,000~500,000であり、さらに好ましくは3,000~400,000、よりさらに好ましくは3,000~100,000であり、特に好ましくは4,000~60,000である。
The range of the weight average molecular weight of the polymer having a maleimide structural unit of the present invention is preferably 1,000 to 1,000,000, more preferably 2,000 to 500,000, and still more preferably 3,000. To 400,000, more preferably 3,000 to 100,000, and particularly preferably 4,000 to 60,000.
重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定し、詳細には実施例に記載の方法により測定される値である。
The weight average molecular weight is measured by gel permeation chromatography (GPC), and is a value measured by the method described in the examples in detail.
本発明の抗微生物剤の一実施形態は、上記式(1)の構造単位を有するポリマーを含む抗微生物剤である。
One embodiment of the antimicrobial agent of the present invention is an antimicrobial agent comprising a polymer having the structural unit of the above formula (1).
本発明に係る一実施形態において、抗微生物剤は、上記式(1)の構造単位を有するポリマーに加え、他の成分を含んでもよい。他の成分としては、溶媒、添加剤などを使用することができる。
In one embodiment according to the present invention, the antimicrobial agent may contain other components in addition to the polymer having the structural unit of the above formula (1). As other components, a solvent, an additive, and the like can be used.
溶媒は、特に制限されず、例えばN,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド類;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;メタノール、エタノール、イソプロピルアルコールなどの低級アルコール;酢酸エチル、酢酸ブチル、酪酸エチル、酪酸ブチル等のエステル類;水などが使用できる。溶媒は、単独で使用されてもよいし、または2種以上の混合物の形態で使用されてもよい。
The solvent is not particularly limited, and for example, amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; ethyl acetate, Esters such as butyl acetate, ethyl butyrate and butyl butyrate; water and the like can be used. The solvent may be used alone or in the form of a mixture of two or more.
添加剤は、特に制限されず、例えば、造膜助剤、可塑剤、安定剤(酸化防止剤、紫外線吸収剤など)、滑剤(シリカ、ワックス、脂肪酸アミドなど)、無機充填剤(ガラス繊維酸化チタン、炭化カルシウムなど)、難燃剤(臭素化合物、水酸化アルミニウムなど)、分散剤(界面活性剤、金属石鹸、ワックスなど)、染料、顔料などが使用できる。
Additives are not particularly limited, and for example, film-forming aids, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), lubricants (silica, wax, fatty acid amides, etc.), inorganic fillers (glass fiber oxidation) Titanium, calcium carbide, etc.), flame retardants (bromine compounds, aluminum hydroxide, etc.), dispersants (surfactants, metal soaps, waxes, etc.), dyes, pigments, etc. can be used.
本発明の抗微生物剤における、マレイミド構造単位を有するポリマーの含有量は、特に限定されないが、抗微生物剤全体(100重量%)に対して、0.1重量%以上、100重量%以下であることが好ましい。
The content of the polymer having a maleimide structural unit in the antimicrobial agent of the present invention is not particularly limited, but is 0.1% by weight or more and 100% by weight or less with respect to the whole antimicrobial agent (100% by weight). It is preferable.
[抗菌性および防カビ性]
本発明において、「抗微生物剤」とは抗菌性能および防カビ性能を有する剤のことをいう。抗菌性能および防カビ性能とは、微生物を殺す性能および微生物の繁殖を抑える性能の少なくとも一方の性能を有することをいう。 [Antimicrobial and antifungal properties]
In the present invention, “antimicrobial agent” refers to an agent having antibacterial and antifungal properties. Antibacterial performance and fungicidal performance refer to having at least one of the ability to kill microorganisms and the ability to suppress the growth of microorganisms.
本発明において、「抗微生物剤」とは抗菌性能および防カビ性能を有する剤のことをいう。抗菌性能および防カビ性能とは、微生物を殺す性能および微生物の繁殖を抑える性能の少なくとも一方の性能を有することをいう。 [Antimicrobial and antifungal properties]
In the present invention, “antimicrobial agent” refers to an agent having antibacterial and antifungal properties. Antibacterial performance and fungicidal performance refer to having at least one of the ability to kill microorganisms and the ability to suppress the growth of microorganisms.
細菌としては、例えば大腸菌(Escherichia coli)などのエスケリキア属;緑膿菌(Pseudomonas aeruginosa)などのシュードモナス属;サルモネラ・コレラスイス(Salmonella choleraesuis)などのサルモネラ属;モラクセラ・カタラーリス(Moraxella catarrhalis)などのモラクセラ属;レジオネラ・ニューモフィラ(Legionella pneumophila)などのレジオネラ属などのグラム陰性菌、黄色ブドウ球菌(Staphylococcus aureus)などのスタフィロコッカス属;ボツリヌス菌(Clostridium botulinum)、ウェルシュ菌(Clostridium perfringens)などのクロストリジウム属などのグラム陽性菌などが挙げられる。
Examples of the bacteria include Escherichia such as Escherichia coli; Pseudomonas such as Pseudomonas aeruginosa; Salmonella cholera Switzerland such as Salmonella choleraesu; Moraxella x Genus; Gram negative bacteria such as Legionella pneumophila such as Legionella pneumophila, Staphylococcus such as Staphylococcus aureus; Clostridium botulinum, cerfuridum cerf ), And the like Gram-positive bacteria such as Clostridium, such as.
カビ類としては、例えばアスペルギルス・ニゲル(Aspergillus niger)、アスペルギルス・ペニシロイデス(Aspergillus penicilloides)などのアスペルギルス属;ペシロマイセス・バリオッティ(Paecilomyces variotii)などのペシロマイセス属;ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペニシリウム・シトリナム(Penicillium citrinum)などのペニシリウム属;トリコデルマ・ビレンス(Trichoderma virens)などのトリコデルマ属;ケトミウム・グロボスム(Chaetomium globosum)などのケトミウム属;ユーロチウム・トノヒルム(Eurotium tonophilum)などのユーロチウム属;リゾープス・オリゼ(Rhizopus oryzae)などのリゾープス属;クラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)などのクラドスポリウム属;オーレオバシジウム・プルランス(Aureobasidium pullulans)などのオーレオバシジウム属;ミロテシウム・ベルカリア(Myrothecium verrucaria)などのミロテシウム属などが挙げられる。また、カビ類以外の真菌としては、例えばサッカロマイセス・セレヴィシエ(Saccharomyces cerevisiae)などのサッカロマイセス属、カンジダ・アルビカンス(Candida albicans)などのカンジダ属、ロドトルラ・ルブラ(Rhodotorula rubra)などのロドトルラ属などが挙げられる。
Examples of molds include Aspergillus genus such as Aspergillus niger and Aspergillus penicilloids; Penicillium genus such as Penicillium citrinum; Trichoderma genus such as Trichoderma virens; Ketomium genus such as Chaetomium globosum; Eurotium tonoturum E Europium genus such as Tonophilum; Rhizopus oryzae genus Rhizopus; Cladosporium cladosporioides and other genus Cladosporia ulid Aureobas pulid au les Examples include the genus Obacidium; the genus Milotesium such as Myrothecium verrucaria. Examples of fungi other than molds include the genus Saccharomyces such as Saccharomyces cerevisiae, the genus Candida such as Candida albicans, and the genus Rhodotorula rubura and others. .
本発明の抗微生物剤は、細菌やカビなどの種類に関係なく抗微生物性能を発揮できるが、なかでも本発明の抗微生物剤は、微生物の細胞膜を破壊することができるため、エスケリキア属などのグラム陰性菌やアスペルギルス属、ペシロマイセス属、ペニシリウム属などのカビ類に対しても、抗微生物剤として好適に用いることができる。
Although the antimicrobial agent of the present invention can exhibit antimicrobial performance regardless of the type of bacteria, molds, etc., among them, the antimicrobial agent of the present invention can destroy the cell membrane of microorganisms, It can also be suitably used as an antimicrobial agent against gram-negative bacteria, molds such as Aspergillus, Pesilomyces, and Penicillium.
(抗菌性能および防カビ性能の評価方法)
本発明の抗微生物剤において、抗菌性能は、JIS Z2801:2012(抗菌加工製品-抗菌性評価方法・抗菌効果)に準じて評価することができる。JIS Z2801:2012を用いた評価方法では、コントロール(抗微生物剤を添加しない)の生菌数に対して、抗微生物剤を添加したものの生菌数の差を対数(log10)で示した値(すなわち、細菌の接種培養後の生菌数の対数値の差を示す値)が、抗菌活性値として示される。抗菌活性値は、2.0以上であれば、抗菌性があると評価することができる。 (Evaluation method for antibacterial and antifungal properties)
In the antimicrobial agent of the present invention, antibacterial performance can be evaluated according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect). In the evaluation method using JIS Z2801: 2012, the value of the difference in the number of viable cells with the addition of the antimicrobial agent as a logarithm (log 10 ) with respect to the viable cell count of the control (without adding the antimicrobial agent) That is, the value indicating the difference in the logarithmic value of the number of viable bacteria after bacterial inoculation culture is shown as the antibacterial activity value. If the antibacterial activity value is 2.0 or more, it can be evaluated as having antibacterial properties.
本発明の抗微生物剤において、抗菌性能は、JIS Z2801:2012(抗菌加工製品-抗菌性評価方法・抗菌効果)に準じて評価することができる。JIS Z2801:2012を用いた評価方法では、コントロール(抗微生物剤を添加しない)の生菌数に対して、抗微生物剤を添加したものの生菌数の差を対数(log10)で示した値(すなわち、細菌の接種培養後の生菌数の対数値の差を示す値)が、抗菌活性値として示される。抗菌活性値は、2.0以上であれば、抗菌性があると評価することができる。 (Evaluation method for antibacterial and antifungal properties)
In the antimicrobial agent of the present invention, antibacterial performance can be evaluated according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect). In the evaluation method using JIS Z2801: 2012, the value of the difference in the number of viable cells with the addition of the antimicrobial agent as a logarithm (log 10 ) with respect to the viable cell count of the control (without adding the antimicrobial agent) That is, the value indicating the difference in the logarithmic value of the number of viable bacteria after bacterial inoculation culture is shown as the antibacterial activity value. If the antibacterial activity value is 2.0 or more, it can be evaluated as having antibacterial properties.
また、防カビ性能は、JIS Z2911:2010(かび抵抗性試験方法)を参考にして評価することができる。JIS Z2911:2010を用いた評価方法では、固体培地表面に抗微生物剤を含む試験フィルムを置き、カビの胞子液を固体培地および試験フィルムに植菌、培養し、培養後のフィルム表面にカビの生育(繁殖)が見られないものを防カビ性があると評価することができる。
Also, the fungicidal performance can be evaluated with reference to JIS Z2911: 2010 (mold resistance test method). In the evaluation method using JIS Z2911: 2010, a test film containing an antimicrobial agent is placed on the surface of a solid medium, and the mold spore solution is inoculated and cultured on the solid medium and the test film, and the mold surface is exposed to mold. Those with no growth (breeding) can be evaluated as having antifungal properties.
[抗微生物剤の製造方法]
本発明の抗微生物剤の製造方法を説明する。 [Method for producing antimicrobial agent]
The manufacturing method of the antimicrobial agent of this invention is demonstrated.
本発明の抗微生物剤の製造方法を説明する。 [Method for producing antimicrobial agent]
The manufacturing method of the antimicrobial agent of this invention is demonstrated.
本発明の抗微生物剤に含まれるマレイミド構造単位を有するポリマーの製造方法は、特に制限されず、従来公知の方法を用いることができる。前記製造方法は、例えば、無水マレイン酸(共)重合体の酸無水物基とジアミンの1級アミノ基とを反応させ、開環してアミド結合を形成させ、その後脱水閉環イミド化反応させることで得る方法、無水マレイン酸をジアミンでイミド化してマレイミド単量体を合成し、マレイミド単量体単独で、またはマレイミド単量体と共重合可能な単量体と重合させることで得る方法などが挙げられる。
The method for producing a polymer having a maleimide structural unit contained in the antimicrobial agent of the present invention is not particularly limited, and a conventionally known method can be used. In the production method, for example, an acid anhydride group of a maleic anhydride (co) polymer is reacted with a primary amino group of a diamine, ring-opened to form an amide bond, and then subjected to a dehydrating ring-closing imidization reaction. A method obtained by imidating maleic anhydride with diamine to synthesize a maleimide monomer, and polymerizing the maleimide monomer alone or with a monomer copolymerizable with the maleimide monomer. Can be mentioned.
マレイミド構造単位を有するポリマーの中和塩は、作製したマレイミド構造単位を有するポリマーと上記中和に使用する酸とを混合することによって得ることができる。
The neutralized salt of a polymer having a maleimide structural unit can be obtained by mixing the produced polymer having a maleimide structural unit and the acid used for the neutralization.
以下、無水マレイン酸(共)重合体の酸無水物基とジアミンの1級アミノ基とを反応させ、開環してアミド結合を形成させ、その後脱水閉環イミド化反応させることで得る方法について説明するが、下記の形態のみに制限されることはない。
Hereinafter, a method obtained by reacting an acid anhydride group of a maleic anhydride (co) polymer with a primary amino group of a diamine, ring-opening to form an amide bond, and then dehydrating ring-closing imidization reaction will be described. However, it is not limited only to the following forms.
前記無水マレイン酸(共)重合体は、スチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、1-オクタデセン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体などの市販品を用いてもよいし、合成してもよい。
Examples of the maleic anhydride (co) polymer include styrene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, 1-octadecene-maleic anhydride copolymer, and ethylene-maleic anhydride copolymer. Commercial products may be used or synthesized.
無水マレイン酸(共)重合体を合成する場合、好適な開始剤を用いたラジカル(共)重合など、従来公知の方法を用いて製造することができる。製造方法として、例えば、ベンゼンやアセトンなどの溶媒中で無水マレイン酸と、無水マレイン酸と共重合可能な単量体との共重合を行う方法が挙げられる。
When a maleic anhydride (co) polymer is synthesized, it can be produced by a conventionally known method such as radical (co) polymerization using a suitable initiator. Examples of the production method include a method of copolymerizing maleic anhydride and a monomer copolymerizable with maleic anhydride in a solvent such as benzene and acetone.
また、共重合体の構造も特に制限されず、ランダム共重合体、交互共重合体、周期的共重合体、ブロック共重合体のいずれであってもよい。
Further, the structure of the copolymer is not particularly limited, and may be any of a random copolymer, an alternating copolymer, a periodic copolymer, and a block copolymer.
本発明で用いる無水マレイン酸(共)重合体の重量平均分子量としては、1,000以上であり、好ましくは2,000以上であり、さらに好ましくは3,000以上である。前記重量平均分子量の上限は、1,000,000以下であり、好ましくは500,000以下であり、より好ましくは100,000以下であり、さらに好ましくは50,000以下である。
The weight average molecular weight of the maleic anhydride (co) polymer used in the present invention is 1,000 or more, preferably 2,000 or more, and more preferably 3,000 or more. The upper limit of the weight average molecular weight is 1,000,000 or less, preferably 500,000 or less, more preferably 100,000 or less, and further preferably 50,000 or less.
上記無水マレイン酸(共)重合体と下記式(2)のジアミン(以下、単に「ジアミン」とも称する)とを反応させることで、マレイミド構造単位を有するポリマーを製造することができる。
A polymer having a maleimide structural unit can be produced by reacting the maleic anhydride (co) polymer with a diamine of the following formula (2) (hereinafter also simply referred to as “diamine”).
上記式(2)において、R1およびR2については、前記式(1)のR1およびR2が適用される。本発明で用いられるジアミンとしては、例えば、N-シクロヘキシル-1,3-プロパンジアミン、N-直鎖アルキル-1,3-プロパンジアミン(直鎖アルキルとしては、例えば炭素数14、16および18の直鎖アルキルの混合物)、N-イソプロピル-1,3-プロパンジアミン、N-ベンジル-1,3-プロパンジアミン、N-プロピル-1,3-プロパンジアミン、N-シクロヘキシル-1,6-ヘキサンジアミン、N-シクロヘキシル-1,8-オクタンジアミン、N-ノルマルヘキシル-1,3-プロパンジアミン、N-(tert-ブチル)-1,3-プロパンジアミン、N-(2-エチルヘキシル)-1,3-プロパンジアミン、N-イソボルニル-1,3-プロパンジアミン、N-アダマンチル-1,3-プロパンジアミン、N-ジシクロペンテニル-1,3-プロパンジアミンなどが挙げられる。
In the above formula (2), R 1 and R 2 in the formula (1) are applied to R 1 and R 2 . Examples of the diamine used in the present invention include N-cyclohexyl-1,3-propanediamine and N-linear alkyl-1,3-propanediamine (the linear alkyl includes, for example, those having 14, 16 and 18 carbon atoms. A mixture of linear alkyl), N-isopropyl-1,3-propanediamine, N-benzyl-1,3-propanediamine, N-propyl-1,3-propanediamine, N-cyclohexyl-1,6-hexanediamine N-cyclohexyl-1,8-octanediamine, N-normalhexyl-1,3-propanediamine, N- (tert-butyl) -1,3-propanediamine, N- (2-ethylhexyl) -1,3 -Propanediamine, N-isobornyl-1,3-propanediamine, N-adamantyl-1,3-propanedia Emissions, such as N- dicyclopentenyl-1,3-propane diamine.
前記無水マレイン酸(共)重合体と上記式(2)のジアミンとの反応は、上記のとおり、無水マレイン酸(共)重合体の酸無水物基がジアミンの1級アミノ基と反応して、開環することでアミド結合を形成し、その後脱水閉環イミド化反応させることにより製造することができる。より詳細には、無水マレイン酸(共)重合体を溶媒に加えて溶解させ、前記ジアミンと溶媒との混合物またはジアミン単独を溶解液に滴下する。無水マレイン酸(共)重合体の酸無水物基がジアミンの1級アミノ基と反応し、開環してアミド結合を形成することで、析出物が生じる。析出物をろ過回収して、真空乾燥によりろ過ケーキから溶媒を除去後、ろ過ケーキを再び真空乾燥すると、脱水閉環イミド化反応によりイミド体、すなわちマレイミド構造単位を有するポリマーを得ることができる。
As described above, the reaction between the maleic anhydride (co) polymer and the diamine of the above formula (2) occurs when the acid anhydride group of the maleic anhydride (co) polymer reacts with the primary amino group of the diamine. It can be produced by forming an amide bond by ring-opening, followed by dehydration ring-closing imidization reaction. More specifically, maleic anhydride (co) polymer is added to a solvent and dissolved, and a mixture of the diamine and the solvent or diamine alone is dropped into the solution. The acid anhydride group of the maleic anhydride (co) polymer reacts with the primary amino group of the diamine and opens to form an amide bond, resulting in a precipitate. The precipitate is collected by filtration, the solvent is removed from the filter cake by vacuum drying, and then the filter cake is vacuum dried again, whereby an imide, that is, a polymer having a maleimide structural unit can be obtained by a dehydrating ring-closing imidization reaction.
また、マレイミド構造単位を有するポリマーは、溶媒に無水マレイン酸(共)重合体とジアミンとを溶解し、100~150℃で反応させてアミド化からイミド化までを溶液中で実施する方法、二軸スクリュー押出機中で、無水マレイン酸(共)重合体とジアミンとを無溶媒下で混練することで、アミド化とイミド化とを行う方法などを用いても得ることができる。
The polymer having a maleimide structural unit is prepared by dissolving a maleic anhydride (co) polymer and a diamine in a solvent and reacting them at 100 to 150 ° C. to carry out from amidation to imidation in solution. It can also be obtained by a method of performing amidation and imidization by kneading maleic anhydride (co) polymer and diamine in the absence of a solvent in a screw extruder.
原料である無水マレイン酸(共)重合体およびジアミンの使用量は、特に制限されないが、例えば、無水マレイン酸(共)重合体中の無水マレイン酸残基に対して、ジアミンを0.1~3モル当量を用いることができる。
The amounts of maleic anhydride (co) polymer and diamine used as raw materials are not particularly limited. For example, diamine is added in an amount of 0.1 to 0.1% with respect to the maleic anhydride residue in the maleic anhydride (co) polymer. Three molar equivalents can be used.
使用される溶媒は、特に制限されないが、上記の反応に支障がなく、また原料である無水マレイン酸(共)重合体およびジアミンを溶解できるものが好ましい。例えば、N,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド類;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;メタノール、エタノール、イソプロピルアルコールなどの低級アルコール;水などが挙げられる。溶媒は、単独で使用されてもよいし、または2種以上の混合物の形態で使用されてもよい。また、無水マレイン酸(共)重合体およびジアミンは、同じ溶媒で溶解されてもよいし、または異なる溶媒で溶解されてもよいが、同じ溶媒に溶解されることが好ましい。
The solvent to be used is not particularly limited, but a solvent that does not hinder the above reaction and can dissolve the maleic anhydride (co) polymer and diamine as raw materials is preferable. Examples thereof include amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; water and the like. The solvent may be used alone or in the form of a mixture of two or more. The maleic anhydride (co) polymer and diamine may be dissolved in the same solvent or in different solvents, but are preferably dissolved in the same solvent.
溶媒の使用量は、原料である無水マレイン酸(共)重合体またはジアミンが溶解できれば、特に制限されない。例えば、溶媒の使用量は、無水マレイン酸に対して1~40倍(重量)、ジアミンに対して1~15倍(重量)である。
The amount of the solvent used is not particularly limited as long as the raw material maleic anhydride (co) polymer or diamine can be dissolved. For example, the amount of the solvent used is 1 to 40 times (weight) with respect to maleic anhydride and 1 to 15 times (weight) with respect to diamine.
無水マレイン酸(共)重合体にジアミンを反応させる条件は、特に制限されない。例えば、反応温度は、20℃~150℃であり、反応時間は、1~9時間である。また、反応は、撹拌下、静置下のいずれでもよいが、撹拌下で実施することが好ましい。
The conditions for reacting the diamine with the maleic anhydride (co) polymer are not particularly limited. For example, the reaction temperature is 20 ° C. to 150 ° C., and the reaction time is 1 to 9 hours. Further, the reaction may be carried out under stirring or standing, but is preferably carried out under stirring.
前記ろ過ケーキは、閉環イミド化反応の前に乾燥させてもよく、乾燥方法としては、例えば真空乾燥が挙げられる。前記真空乾燥の条件は、特に制限されず、溶媒を除去できればよい。例えば、真空乾燥の温度は、40~95℃であり、真空乾燥の時間は、2~8時間である。
The filter cake may be dried before the ring-closing imidization reaction, and examples of the drying method include vacuum drying. The vacuum drying conditions are not particularly limited as long as the solvent can be removed. For example, the temperature for vacuum drying is 40 to 95 ° C., and the time for vacuum drying is 2 to 8 hours.
上記閉環イミド化反応の条件は、閉環イミド化反応が進行する条件であれば、特に制限されない。例えば、閉環イミド化反応の温度は、100~250℃であり、閉環イミド化反応の時間は、3~24時間である。
The conditions for the ring-closing imidization reaction are not particularly limited as long as the conditions for the ring-closing imidization reaction proceed. For example, the temperature of the ring-closing imidization reaction is 100 to 250 ° C., and the time of the ring-closing imidization reaction is 3 to 24 hours.
本発明において、無水マレイン酸(共)重合体の無水マレイン酸構造単位に2級アミノ基を導入し、マレイミド構造単位を形成する割合(イミド化率)は、特に制限されず、例えば100%以下である。前記イミド化率の下限は、好ましくは25モル%以上であり、より好ましくは50モル%以上である。上記範囲であると、マレイミド構造単位に付加した2級アミノ基による細胞膜破壊の効果が十分であり、抗菌性能および防カビ性能を高くできる。ここで「イミド化率」とは、無水マレイン酸(共)重合体に含まれる無水マレイン酸構造単位を100%としたとき、2級アミノ基が導入された構造単位の割合のことである。
In the present invention, the ratio (imidation ratio) of introducing a secondary amino group into the maleic anhydride structural unit of the maleic anhydride (co) polymer to form a maleimide structural unit is not particularly limited, and is, for example, 100% or less. It is. The lower limit of the imidization rate is preferably 25 mol% or more, more preferably 50 mol% or more. Within the above range, the effect of cell membrane destruction by the secondary amino group added to the maleimide structural unit is sufficient, and the antibacterial performance and antifungal performance can be enhanced. Here, the “imidation ratio” is the ratio of the structural unit having a secondary amino group introduced when the maleic anhydride structural unit contained in the maleic anhydride (co) polymer is 100%.
前記無水マレイン酸構造単位への2級アミノ基の導入、すなわちイミド化の分析については、例えば、フーリエ変換赤外分光(FT-IR)分析により、酸無水物およびアミド由来の吸収ピークの消失ならびにイミド由来の吸収ピークの検出を基に判断できる。
Regarding the introduction of the secondary amino group into the maleic anhydride structural unit, that is, the analysis of imidization, for example, by the Fourier transform infrared spectroscopy (FT-IR) analysis, the disappearance of absorption peaks derived from acid anhydrides and amides and The determination can be made based on detection of an absorption peak derived from imide.
本発明の抗微生物剤が、上記マレイミド構造単位を有するポリマー以外の成分を含む場合、マレイミド構造単位を有するポリマーの製造後にその他の成分を混合する等して本発明の抗微生物剤を製造しても良いし、マレイミド構造単位を有するポリマーの製造前の原料や、製造中の反応液や中間体に添加することにより製造しても良い。本発明の抗微生物剤の製造方法は、精製工程や後処理工程等、任意の工程を含んでいても良い。
When the antimicrobial agent of the present invention contains components other than the polymer having the maleimide structural unit, the antimicrobial agent of the present invention is produced by mixing other components after the production of the polymer having the maleimide structural unit. Alternatively, it may be produced by adding to a raw material before production of a polymer having a maleimide structural unit, a reaction solution or an intermediate during production. The manufacturing method of the antimicrobial agent of this invention may include arbitrary processes, such as a refinement | purification process and a post-processing process.
<組成物>
本発明の一実施形態として、上記抗微生物剤と、樹脂(ただし、上記マレイミド構造単位を有するポリマーを除く)とを含む、組成物が提供される。前記樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマー、光硬化性樹脂などを用いることができ、好ましくは熱可塑性樹脂、エラストマーおよび光硬化性樹脂から選択され、より好ましくは熱可塑性樹脂またはエラストマーであり、特に好ましくは熱可塑性樹脂である。 <Composition>
As one embodiment of the present invention, there is provided a composition comprising the antimicrobial agent and a resin (excluding the polymer having the maleimide structural unit). As the resin, a thermoplastic resin, a thermosetting resin, an elastomer, a photocurable resin, or the like can be used, preferably selected from a thermoplastic resin, an elastomer, and a photocurable resin, and more preferably a thermoplastic resin or It is an elastomer, and a thermoplastic resin is particularly preferable.
本発明の一実施形態として、上記抗微生物剤と、樹脂(ただし、上記マレイミド構造単位を有するポリマーを除く)とを含む、組成物が提供される。前記樹脂としては、熱可塑性樹脂、熱硬化性樹脂、エラストマー、光硬化性樹脂などを用いることができ、好ましくは熱可塑性樹脂、エラストマーおよび光硬化性樹脂から選択され、より好ましくは熱可塑性樹脂またはエラストマーであり、特に好ましくは熱可塑性樹脂である。 <Composition>
As one embodiment of the present invention, there is provided a composition comprising the antimicrobial agent and a resin (excluding the polymer having the maleimide structural unit). As the resin, a thermoplastic resin, a thermosetting resin, an elastomer, a photocurable resin, or the like can be used, preferably selected from a thermoplastic resin, an elastomer, and a photocurable resin, and more preferably a thermoplastic resin or It is an elastomer, and a thermoplastic resin is particularly preferable.
本発明で用いられる熱可塑性樹脂は、特に制限されないが、例えば、(メタ)アクリル樹脂、スチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、オレフィン樹脂(ポリエチレン、低密度ポリエチレン、ポリプロピレンなど;また、環状オレフィン樹脂もまた含む)、ポリアミド樹脂、ハロゲン含有樹脂(ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレンなど)、ポリ酢酸ビニルなどのポリビニルエステル樹脂、エチレン-酢酸ビニル共重合体、エチレン-酢酸ビニル-塩化ビニル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン共重合体(AS樹脂)、ポリアセタール樹脂などが挙げられる。熱可塑性樹脂は、単独でもまたは2種以上組み合わせても使用することができる。
The thermoplastic resin used in the present invention is not particularly limited. For example, (meth) acrylic resin, styrene resin, polyester resin, polycarbonate resin, polyvinyl chloride resin, olefin resin (polyethylene, low density polyethylene, polypropylene, etc .; Cyclic olefin resins), polyamide resins, halogen-containing resins (polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, etc.), polyvinyl ester resins such as polyvinyl acetate, ethylene-vinyl acetate copolymers, ethylene- Examples thereof include vinyl acetate-vinyl chloride copolymer, acrylonitrile-butadiene-styrene copolymer (ABS resin), acrylonitrile-styrene copolymer (AS resin), and polyacetal resin. A thermoplastic resin can be used individually or in combination of 2 or more types.
本発明で用いられる熱硬化性樹脂は、特に制限されないが、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ウレタン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。好ましい実施形態では、熱硬化性樹脂は、エポキシ樹脂ではない。熱硬化性樹脂は、単独でもまたは2種以上組み合わせても使用することができる。
The thermosetting resin used in the present invention is not particularly limited, and examples thereof include phenol resin, epoxy resin, melamine resin, urea resin, unsaturated polyester resin, alkyd resin, urethane resin, and thermosetting polyimide resin. . In a preferred embodiment, the thermosetting resin is not an epoxy resin. A thermosetting resin can be used individually or in combination of 2 or more types.
本発明で用いられるエラストマーは、特に制限されないが、例えば、天然ゴム、エチレン-プロピレンゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、クロロプレンゴム、フッ素ゴム、シリコンゴム、ウレタンゴム、多硫化ゴム、アクリルゴム、ブチルゴム、エピクロルヒドリンゴムなどが挙げられる。エラストマーは、単独でもまたは2種以上組み合わせても使用することができる。
The elastomer used in the present invention is not particularly limited. For example, natural rubber, ethylene-propylene rubber, butadiene rubber, isoprene rubber, styrene-butadiene rubber, chloroprene rubber, fluorine rubber, silicon rubber, urethane rubber, polysulfide rubber, Examples include acrylic rubber, butyl rubber, and epichlorohydrin rubber. Elastomers can be used alone or in combination of two or more.
本発明で用いられる光硬化性樹脂は、特に制限されないが、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、アクリル(メタ)アクリレートなどの(メタ)アクリレート樹脂、不飽和ポリエステル樹脂、ポリエン/ポリチオール樹脂、エポキシ樹脂、ジアリルフタレート樹脂などが挙げられる。光硬化性樹脂は、単独でもまたは2種以上組み合わせても使用することができる。
The photocurable resin used in the present invention is not particularly limited. For example, (meth) acrylate resins such as urethane (meth) acrylate, polyester (meth) acrylate, epoxy (meth) acrylate, and acrylic (meth) acrylate, Saturated polyester resin, polyene / polythiol resin, epoxy resin, diallyl phthalate resin and the like can be mentioned. A photocurable resin can be used individually or in combination of 2 or more types.
上記熱可塑性樹脂、熱硬化性樹脂、エラストマーおよび光硬化性樹脂は、合成品を用いてもよいし市販品を用いてもよい。また、上記熱可塑性樹脂、熱硬化性樹脂、エラストマーおよび光硬化性樹脂は、樹脂エマルションであってもよい。
The above thermoplastic resin, thermosetting resin, elastomer, and photocurable resin may be a synthetic product or a commercially available product. The thermoplastic resin, thermosetting resin, elastomer and photocurable resin may be a resin emulsion.
本形態の組成物では、上記熱硬化性樹脂および光硬化性樹脂に係る未反応のモノマーやオリゴマーを含んでもよい。上記樹脂エマルションとしては、(メタ)アクリル樹脂のエマルション(アクリルエマルション)、エチレン-酢酸ビニル樹脂のエマルション、ウレタン樹脂のエマルション等が好ましく例示され、アニオン性アクリルエマルション、ノニオン性アクリルエマルション、エチレン-酢酸ビニル樹脂のエマルション、弱アニオン性ウレタンエマルション、ノニオン性ウレタンエマルションがより好ましく、これらが水系エマルションであることがさらに好ましい。
The composition of the present embodiment may include unreacted monomers and oligomers related to the thermosetting resin and the photocurable resin. Preferred examples of the resin emulsion include (meth) acrylic resin emulsion (acrylic emulsion), ethylene-vinyl acetate resin emulsion, urethane resin emulsion, and the like. Anionic acrylic emulsion, nonionic acrylic emulsion, ethylene-vinyl acetate A resin emulsion, a weak anionic urethane emulsion, and a nonionic urethane emulsion are more preferable, and it is more preferable that these are aqueous emulsions.
また、前記組成物は、前記抗微生物剤および樹脂に加えて、所望に応じて、その他の成分や種々の添加剤や溶媒等を含有してもよい。添加剤としては、例えば、造膜助剤、可塑剤、安定剤(酸化防止剤、紫外線吸収剤など)、滑剤(シリカ、ワックス、脂肪酸アミドなど)、無機充填剤(ガラス繊維酸化チタン、炭化カルシウムなど)、難燃剤(臭素化合物、水酸化アルミニウムなど)、分散剤(界面活性剤、金属石鹸、ワックスなど)、染料、顔料などが挙げられる。
In addition to the antimicrobial agent and the resin, the composition may contain other components, various additives, a solvent, and the like as desired. Examples of additives include film-forming aids, plasticizers, stabilizers (antioxidants, UV absorbers, etc.), lubricants (silica, wax, fatty acid amides, etc.), inorganic fillers (glass fiber titanium oxide, calcium carbide, etc.) Etc.), flame retardants (bromine compounds, aluminum hydroxide, etc.), dispersants (surfactants, metal soaps, waxes, etc.), dyes, pigments and the like.
溶媒は、特に制限されず、例えばN,N-ジメチルホルムアミド、N-メチルピロリドンなどのアミド類;ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類;メタノール、エタノール、イソプロピルアルコールなどの低級アルコール;酢酸エチル、酢酸ブチル、酪酸エチル、酪酸ブチル等のエステル類;水などが使用できる。溶媒は、単独で使用されてもよいし、または2種以上の混合物の形態で使用されてもよい。
The solvent is not particularly limited, and for example, amides such as N, N-dimethylformamide and N-methylpyrrolidone; ethers such as diethyl ether, tetrahydrofuran and dioxane; lower alcohols such as methanol, ethanol and isopropyl alcohol; ethyl acetate, Esters such as butyl acetate, ethyl butyrate and butyl butyrate; water and the like can be used. The solvent may be used alone or in the form of a mixture of two or more.
本発明の組成物において、抗微生物剤の含有量は、組成物全体(100重量%)に対して、0.5~25.0重量%であり、樹脂の含有量は、組成物全体(100重量%)に対して、99.5~75.0重量%である。より好ましい形態としては、抗微生物剤の含有量の下限は、抗微生物性能の観点から、樹脂100重量部に対して、好ましくは0.5重量部以上であり、より好ましくは1重量部以上であり、さらに好ましくは3重量部以上である。前記含有量の上限は、樹脂組成物の機械物性への影響の観点から、樹脂100重量部に対して、30重量部以下であり、好ましくは20重量部以下であり、より好ましくは10重量部以下である。
In the composition of the present invention, the content of the antimicrobial agent is 0.5 to 25.0% by weight with respect to the whole composition (100% by weight), and the resin content is 100% by weight. To 99.5 to 75.0% by weight. As a more preferred form, the lower limit of the content of the antimicrobial agent is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin from the viewpoint of antimicrobial performance. More preferably 3 parts by weight or more. The upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
本発明の組成物において、上記式(1)で表される構造単位を有するポリマーの含有量は、組成物全体(100重量%)に対して、0.5~25.0重量%であり、樹脂の含有量は、組成物全体(100重量%)に対して、99.5~75.0重量%である。より好ましい形態としては、抗微生物剤の含有量の下限は、抗微生物性能の観点から、樹脂100重量部に対して、好ましくは0.5重量部以上であり、より好ましくは1重量部以上であり、さらに好ましくは3重量部以上である。前記含有量の上限は、樹脂組成物の機械物性への影響の観点から、樹脂100重量部に対して、30重量部以下であり、好ましくは20重量部以下であり、より好ましくは10重量部以下である。
In the composition of the present invention, the content of the polymer having the structural unit represented by the above formula (1) is 0.5 to 25.0% by weight with respect to the entire composition (100% by weight), The resin content is 99.5 to 75.0% by weight based on the entire composition (100% by weight). As a more preferred form, the lower limit of the content of the antimicrobial agent is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more with respect to 100 parts by weight of the resin from the viewpoint of antimicrobial performance. More preferably 3 parts by weight or more. The upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
本発明の組成物は、抗微生物剤、樹脂および必要に応じてその他の添加剤および溶剤を用いて、公知の樹脂組成物の製造方法にて得ることができる。混合条件については、特に限定されず、公知の条件であればよい。
The composition of the present invention can be obtained by a known method for producing a resin composition using an antimicrobial agent, a resin and, if necessary, other additives and a solvent. The mixing conditions are not particularly limited and may be known conditions.
<樹脂成形体>
本発明の一実施形態として、上記抗微生物剤、または上記組成物を含む樹脂成形体が提供される。 <Resin molding>
As one embodiment of the present invention, there is provided a resin molded article containing the antimicrobial agent or the composition.
本発明の一実施形態として、上記抗微生物剤、または上記組成物を含む樹脂成形体が提供される。 <Resin molding>
As one embodiment of the present invention, there is provided a resin molded article containing the antimicrobial agent or the composition.
本発明の抗微生物剤または組成物を含む成形体は、従来公知の方法を用いて得ることができる。例えば、前記成形体を得る方法は、有機溶媒に本発明の抗微生物剤または組成物を溶解させ、溶媒を除去する方法、UV硬化性モノマーと抗微生物剤とを混合後、UV照射する方法、抗微生物剤と樹脂ペレットまたは粉末などとを、混錬・押出成形機などにより成形加工する方法などが挙げられる。
The molded product containing the antimicrobial agent or composition of the present invention can be obtained using a conventionally known method. For example, the method for obtaining the molded body is a method of dissolving the antimicrobial agent or composition of the present invention in an organic solvent and removing the solvent, a method of mixing a UV curable monomer and an antimicrobial agent, and then irradiating with UV. Examples include a method of molding an antimicrobial agent and resin pellets or powder with a kneading / extrusion molding machine.
また、前記組成物がマレイミド構造単位を有するポリマーと樹脂のエマルション(好ましくは水系エマルション)とを含む場合、前記マレイミド構造を有するポリマーと前記エマルションとを混合し、コート液を作製し、該コート液を基材(例えば下記の用途にしようされるもの)に塗工するなどして塗膜を形成する方法も、好ましい方法の一つである。
When the composition contains a polymer having a maleimide structural unit and a resin emulsion (preferably an aqueous emulsion), the polymer having the maleimide structure and the emulsion are mixed to prepare a coating liquid, and the coating liquid A method of forming a coating film by coating the substrate on a substrate (for example, one to be used for the following applications) is also a preferable method.
得られた成形体の形状は、例えば、ブロック状、板状、シート状、フィルム状および糸状などが挙げられる。成形体の使用用途としては、例えば、浴槽、洗面台、便座などのサニタリー用品;冷蔵庫、洗濯機、エアコンなどの家電用品;洗面器、まな板などの家庭用品;塩ビパイプ、壁紙、床材などの建築用品;ポリプロピレン繊維、ポリエステル繊維、ナイロン繊維、スパンデックスなどの繊維および繊維製品;発砲スチロール、ポリエチレンシートなどの包装用品;シリコーンシーラント、ゴムパッキンなどのシール材;カテーテル、創傷被覆材などの医療用品など、各種用途が挙げられる。
Examples of the shape of the obtained molded body include a block shape, a plate shape, a sheet shape, a film shape, and a thread shape. Uses of molded products include, for example, sanitary items such as bathtubs, washstands and toilet seats; household appliances such as refrigerators, washing machines and air conditioners; household items such as washbasins and cutting boards; PVC pipes, wallpaper, flooring, etc. Building supplies; Fibers and textile products such as polypropylene fibers, polyester fibers, nylon fibers, spandex; Packaging materials such as foamed polystyrene and polyethylene sheets; Sealing materials such as silicone sealants and rubber packings; Medical supplies such as catheters and wound dressings And various uses.
<微生物の増殖を抑制する方法>
本発明の一形態によれば、(a)上記式(1)で表される構造単位を有するポリマー(マレイミド構造単位を有するポリマー)または前記マレイミド構造を有するポリマーを含む抗微生物剤と微生物とを接触させる工程、および(b)前記マレイミド構造を有するポリマーもしくは前記抗微生物剤と樹脂または物品とを接触させる工程から選択される少なくとも1つの工程を含む、微生物の増殖を抑制する方法を提供する。 <Method for inhibiting the growth of microorganisms>
According to one aspect of the present invention, (a) a polymer having a structural unit represented by the above formula (1) (a polymer having a maleimide structural unit) or an antimicrobial agent containing a polymer having the maleimide structure and a microorganism are provided. There is provided a method for suppressing the growth of microorganisms, comprising: a step of contacting, and (b) at least one step selected from the step of contacting the polymer having the maleimide structure or the antimicrobial agent with a resin or an article.
本発明の一形態によれば、(a)上記式(1)で表される構造単位を有するポリマー(マレイミド構造単位を有するポリマー)または前記マレイミド構造を有するポリマーを含む抗微生物剤と微生物とを接触させる工程、および(b)前記マレイミド構造を有するポリマーもしくは前記抗微生物剤と樹脂または物品とを接触させる工程から選択される少なくとも1つの工程を含む、微生物の増殖を抑制する方法を提供する。 <Method for inhibiting the growth of microorganisms>
According to one aspect of the present invention, (a) a polymer having a structural unit represented by the above formula (1) (a polymer having a maleimide structural unit) or an antimicrobial agent containing a polymer having the maleimide structure and a microorganism are provided. There is provided a method for suppressing the growth of microorganisms, comprising: a step of contacting, and (b) at least one step selected from the step of contacting the polymer having the maleimide structure or the antimicrobial agent with a resin or an article.
本形態における上記式(1)で表される構造単位を有するポリマーの説明については、上記[マレイミド構造単位を有するポリマー]における説明と同様であるため、説明を省略する。
Description of the polymer having the structural unit represented by the above formula (1) in the present embodiment is the same as the description in [Polymer having maleimide structural unit], and thus the description thereof is omitted.
本明細書中、「微生物の増殖を抑制する」には、微生物の繁殖を抑えることだけではなく、微生物を死滅させることを含む。
In this specification, “suppressing the growth of microorganisms” includes not only suppressing the growth of microorganisms but also killing microorganisms.
上記(a)の工程において、接触させるとは、前記マレイミド構造を有するポリマーまたは前記抗微生物剤と微生物との接触が可能な形態であれば、特に制限されない。例えば、マレイミド構造を有するポリマーまたは前記抗微生物剤を微生物の増殖の抑制を必要とする物品や場所に適用(塗布、混入、含浸、被覆など)することが挙げられる。
In the step (a), the contacting is not particularly limited as long as the polymer or the antimicrobial agent having the maleimide structure can be brought into contact with the microorganism. For example, a polymer having a maleimide structure or the antimicrobial agent may be applied (applied, mixed, impregnated, coated, etc.) to an article or place that requires suppression of microbial growth.
上記(b)の工程において、接触させるとは、前記マレイミド構造を有するポリマーまたは前記抗微生物剤の微生物の増殖を抑制する対象の樹脂または物品(部品の部材)への添加、塗工、含浸、噴霧などが例示されるがこれに限定されない。前記接触は、好ましくは添加である。また、当該接触させる工程は、好ましくはマレイミド構造を有するポリマーまたは前記抗微生物剤を物品に適用することを含み、より好ましくはマレイミド構造を有するポリマーまた前記ポリマーを含む抗微生物剤を物品に混入、含浸または被覆することを含む。
In the step (b), the contact means that the polymer having the maleimide structure or the antimicrobial agent is added to a resin or an article (part component) to be controlled for microorganism growth, coating, impregnation, Although spraying etc. are illustrated, it is not limited to this. The contact is preferably addition. Further, the contacting step preferably includes applying a polymer having a maleimide structure or the antimicrobial agent to the article, more preferably mixing the polymer having the maleimide structure or the antimicrobial agent containing the polymer into the article. Impregnation or coating.
上記式(1)で表される構造単位を有するポリマーまたは前記抗微生物剤を適用する物品の形状は、例えば、ブロック状、板状、シート状、フィルム状および糸状などが挙げられる。物品の使用用途としては、例えば浴槽、洗面台、便座などのサニタリー用品;冷蔵庫、洗濯機、エアコンなどの家電用品;洗面器、まな板などの家庭用品;塩ビパイプ、壁紙、床材などの建築用品;ポリプロピレン繊維、ポリエステル繊維、ナイロン繊維、スパンデックスなどの繊維および繊維製品;発砲スチロール、ポリエチレンシートなどの包装用品;シリコーンシーラント、ゴムパッキンなどのシール材;カテーテル、創傷被覆材などの医療用品などが挙げられる。
Examples of the shape of the polymer having the structural unit represented by the above formula (1) or the article to which the antimicrobial agent is applied include a block shape, a plate shape, a sheet shape, a film shape, and a thread shape. Uses of goods include sanitary items such as bathtubs, washstands and toilet seats; household appliances such as refrigerators, washing machines and air conditioners; household items such as washbasins and cutting boards; building supplies such as PVC pipes, wallpaper and flooring ; Polypropylene fiber, polyester fiber, nylon fiber, spandex and other fibers and fiber products; Foamed polystyrene, polyethylene sheet and other packaging products; Silicone sealant, rubber packing and other sealing materials; Catheter, wound dressing and other medical products It is done.
上記式(1)で表される構造単位を有するポリマーまたは前記抗微生物剤を物品に適用する方法としては、特に制限されず、従来公知の方法を用いることができる。例えば、前記マレイミド構造単位を有するポリマーまたは前記抗微生物剤をブロック状、板状、シート状、フィルム状および糸状などに成形して成形品を得、成形品を物品として用いたり、成形品を物品の材料やその一部として使用したりすることなどが挙げられる。また、前記マレイミド構造単位を有するポリマーまたは前記抗微生物剤を物品の製造に用いる材料に混入したり、前記マレイミド構造単位を有するポリマーまたは前記抗微生物剤を含む溶液に物品やその製造に用いる材料を含浸したり、前記マレイミド構造単位を有するポリマーまたは前記抗微生物剤を物品表面やその製造に用いる材料表面に被覆したりすることなどが挙げられる。
The method of applying the polymer having the structural unit represented by the above formula (1) or the antimicrobial agent to an article is not particularly limited, and a conventionally known method can be used. For example, the polymer having the maleimide structural unit or the antimicrobial agent is molded into a block shape, a plate shape, a sheet shape, a film shape, a thread shape or the like to obtain a molded product, and the molded product is used as an article, or the molded article is used as an article. It can be used as a material or part thereof. In addition, a polymer having the maleimide structural unit or the antimicrobial agent is mixed into a material used for manufacturing an article, or an article or a material used for manufacturing the article is contained in a solution containing the polymer having the maleimide structural unit or the antimicrobial agent. For example, impregnation or coating of the polymer having the maleimide structural unit or the antimicrobial agent on the surface of the article or the material used for the production thereof may be mentioned.
よって、本形態の一実施形態では、式(1)で表される構造単位を有するポリマーまたは前記抗微生物剤を物品に混入、含浸または被覆することを特徴とする。
Therefore, one embodiment of the present embodiment is characterized in that an article is mixed, impregnated, or coated with a polymer having the structural unit represented by the formula (1) or the antimicrobial agent.
本形態の一実施形態では、前記(a)および(b)の工程において、前記マレイミド構造を有するポリマーまたは前記抗微生物剤は、樹脂(ただし、前記マレイミド構造単位を有するポリマーを除く)を含む組成物に含まれる。
In one embodiment of the present embodiment, in the steps (a) and (b), the polymer having the maleimide structure or the antimicrobial agent contains a resin (excluding the polymer having the maleimide structural unit). Included in things.
本形態において、樹脂としては、<組成物>の箇所で例示した樹脂が例示される。また、組成物の説明は、前記<組成物>における説明と同様であるため、説明を省略する。
In this embodiment, as the resin, the resin exemplified in the <Composition> section is exemplified. In addition, the description of the composition is the same as the description in <Composition>, and the description is omitted.
本発明の微生物の増殖を抑制する方法において、マレイミド構造を有するポリマーもしくは本発明の抗微生物剤の使用量は、特に限定されないが、効果を顕著に発現させる観点からは、マレイミド構造を有するポリマーと微生物の増殖抑制に供する樹脂または物品との合計に対して、マレイミド構造を有するポリマーを好ましい形態では0.5重量%以上、より好ましくは1重量%以上、さらに好ましくは3重量%以上使用する。使用量の上限も特に限定されないが、マレイミド構造を有するポリマーと微生物の増殖抑制に供する樹脂または物品との合計に対して、好ましい形態では30重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下である。
In the method for suppressing the growth of microorganisms of the present invention, the amount of the polymer having a maleimide structure or the antimicrobial agent of the present invention is not particularly limited, but from the viewpoint of remarkably exhibiting the effect, the polymer having a maleimide structure and In a preferred form, the polymer having a maleimide structure is used in a preferred form of 0.5% by weight or more, more preferably 1% by weight or more, and even more preferably 3% by weight or more based on the total of the resin or article used for inhibiting the growth of microorganisms. The upper limit of the amount used is not particularly limited, but is preferably 30% by weight or less, more preferably 20% by weight or less, and still more preferably, based on the total of the polymer having a maleimide structure and the resin or article used for inhibiting the growth of microorganisms. Is 10% by weight or less.
<マレイミド構造単位を有するポリマーの抗微生物剤としての使用>
本発明の一形態によれば、上記式(1)で表される構造単位を有するポリマー(マレイミド構造単位を有するポリマー)の抗微生物剤としての使用を提供する。 <Use of polymer having maleimide structural unit as antimicrobial agent>
According to one aspect of the present invention, there is provided use of a polymer having a structural unit represented by the above formula (1) (a polymer having a maleimide structural unit) as an antimicrobial agent.
本発明の一形態によれば、上記式(1)で表される構造単位を有するポリマー(マレイミド構造単位を有するポリマー)の抗微生物剤としての使用を提供する。 <Use of polymer having maleimide structural unit as antimicrobial agent>
According to one aspect of the present invention, there is provided use of a polymer having a structural unit represented by the above formula (1) (a polymer having a maleimide structural unit) as an antimicrobial agent.
抗微生物剤としての使用の形態としては、例えば上記マレイミド構造単位を有するポリマーまたは上記抗微生物剤を、樹脂や物品などに接触させることが例示されるが、これに限定されない。これにより、樹脂や物品の内部や表面などで、微生物が増殖することを抑制することが可能となる。上記接触させるとは、添加、塗工、含浸、噴霧などが例示されるがこれに限定されない。前記接触は、好ましくは添加である。
Examples of usage as an antimicrobial agent include, for example, contacting the polymer having the maleimide structural unit or the antimicrobial agent with a resin or an article, but is not limited thereto. This makes it possible to suppress the growth of microorganisms in the interior or surface of the resin or article. Examples of the contact include, but are not limited to, addition, coating, impregnation, and spraying. The contact is preferably addition.
本発明の抗微生物剤としての使用における、マレイミド構造単位を有するポリマーもしくは本発明の抗微生物剤の使用量としては、上記<微生物の増殖を抑制する方法>と同様である。また、本発明の使用に供する樹脂としては、上記<組成物>で例示した樹脂が好ましく例示される。使用に供する物品としては、上記<樹脂成型体>で例示した樹脂が好ましく例示される。また、本発明の抗微生物剤としての使用の態様としては、上記<微生物の増殖を抑制する方法>で例示した態様が好ましく例示される。
In the use as the antimicrobial agent of the present invention, the amount of the polymer having a maleimide structural unit or the antimicrobial agent of the present invention is the same as in the above <Method for inhibiting the growth of microorganisms>. Moreover, as resin used for use of this invention, resin illustrated by said <composition> is illustrated preferably. As the article to be used, the resin exemplified in the above <resin molding> is preferably exemplified. Moreover, as an aspect of the use as an antimicrobial agent of the present invention, the aspect exemplified in the above <Method for inhibiting the growth of microorganisms> is preferably exemplified.
本形態における上記式(1)で表される構造単位を有するポリマーの説明については、上記[マレイミド構造単位を有するポリマー]における説明と同様であるため、説明を省略する。
Description of the polymer having the structural unit represented by the above formula (1) in the present embodiment is the same as the description in [Polymer having maleimide structural unit], and thus the description thereof is omitted.
本形態の一実施形態では、上記マレイミド構造単位を有するポリマーが樹脂(ただし、上記マレイミド構造単位を有するポリマーを除く)を含む組成物に含まれる。上記組成物の説明については、前記<組成物>における説明と同様であるため、説明を省略する。
In one embodiment of the present embodiment, the polymer having the maleimide structural unit is included in a composition containing a resin (excluding the polymer having the maleimide structural unit). The description of the composition is the same as that described in <Composition>, and thus the description thereof is omitted.
本形態に係る組成物において、マレイミド構造単位を有するポリマーの含有量は、組成物全体(100重量%)に対して、0.5~25.0重量%であり、マレイミド構造単位を有するポリマー以外の樹脂の含有量は、組成物全体(100重量%)に対して、99.5~75.0重量%である。より好ましい形態としては、マレイミド構造単位を有するポリマーの含有量の下限は、抗微生物性能の観点から、マレイミド構造単位を有するポリマー以外の樹脂100重量部に対して、好ましくは0.5重量部以上であり、より好ましくは1重量部以上であり、さらに好ましくは3重量部以上である。前記含有量の上限は、樹脂組成物の機械物性への影響の観点から、樹脂100重量部に対して、30重量部以下であり、好ましくは20重量部以下であり、より好ましくは10重量部以下である。
In the composition according to this embodiment, the content of the polymer having a maleimide structural unit is 0.5 to 25.0% by weight relative to the whole composition (100% by weight), and other than the polymer having a maleimide structural unit. The content of the resin is 99.5 to 75.0% by weight based on the entire composition (100% by weight). As a more preferred form, the lower limit of the content of the polymer having a maleimide structural unit is preferably 0.5 parts by weight or more with respect to 100 parts by weight of the resin other than the polymer having a maleimide structural unit from the viewpoint of antimicrobial performance. More preferably, it is 1 part by weight or more, and more preferably 3 parts by weight or more. The upper limit of the content is 30 parts by weight or less, preferably 20 parts by weight or less, more preferably 10 parts by weight with respect to 100 parts by weight of the resin, from the viewpoint of influence on the mechanical properties of the resin composition. It is as follows.
本形態の一実施形態では、上記マレイミド構造単位を有するポリマーは、樹脂成形体に含まれる。
In one embodiment of the present embodiment, the polymer having the maleimide structural unit is contained in a resin molded body.
本形態におけるマレイミド構造単位を有するポリマーを含む樹脂成形体の説明は、上記<樹脂成型体>における説明と同様であるため、説明を省略する。
Description of the resin molded body including a polymer having a maleimide structural unit in the present embodiment is the same as that described in the above <Resin molded body>, and thus the description is omitted.
以下に、実施例および比較例によって本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.
マレイミド構造単位を有するポリマーを含む抗微生物剤において、抗微生物性能(抗菌および防カビ性能)は、以下の方法により測定した。
In the antimicrobial agent containing a polymer having a maleimide structural unit, the antimicrobial performance (antibacterial and antifungal performance) was measured by the following method.
[抗菌性評価方法]
抗菌性評価試験は、JIS Z2801:2012(抗菌加工製品-抗菌性評価方法・抗菌効果)に準じて実施した。まずJIS Z2801:2012に記載の方法に従って調製した大腸菌(Escherichia coli、NBRC3972株)または黄色ブドウ球菌(Staphylococcus aureus、NBRC15035株)の菌液0.4mlを、5cm×5cmにカットした試験フィルム表面に植菌した。菌液が乾かないように、4cm×4cmにカットしたポリエチレンフィルムで被覆後、相対湿度90%以上の条件下、35℃で24時間培養した。培養後、フィルム間から菌液を回収し、寒天平板培養法にて生菌数を算出した。また同時に、下記重合体1~12をコートしていない未加工のフィルム(無添加ポリエチレン;株式会社マルアイ製、MZ-PE)でも同様の操作を実施した。培養後の生菌数をフィルム面積1cm2当たりに換算し、未加工フィルムの生菌数対数値から、試験フィルムの生菌数対数値を減じたものを抗菌活性値とした。JIS Z2801:2012に基づき、抗菌活性値が2.0以上の試験フィルム(未加工フィルムと比較して生菌数が1/100以下に減じたもの)を抗菌性あり(○)、2.0未満の試験フィルムを抗菌性なし(×)と判断した。 [Antimicrobial evaluation method]
The antibacterial evaluation test was conducted according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect). First, 0.4 ml of E. coli (Escherichia coli, NBRC3982 strain) or Staphylococcus aureus (NBRC15035 strain) prepared according to the method described in JIS Z2801: 2012 was planted on the surface of a test film cut to 5 cm × 5 cm. Fungus. After covering with a polyethylene film cut to 4 cm × 4 cm so that the bacterial solution did not dry, it was cultured at 35 ° C. for 24 hours under conditions of relative humidity of 90% or more. After culturing, the bacterial solution was collected from between the films, and the viable cell count was calculated by the agar plate culture method. At the same time, the same operation was performed on an unprocessed film (non-added polyethylene; MZ-PE, manufactured by Maruai Co., Ltd.) not coated with the following polymers 1 to 12. The number of viable bacteria after the culture was converted per 1 cm 2 of the film area, and the antibacterial activity value was obtained by subtracting the viable cell number of the test film from the log number of the raw film. A test film having an antibacterial activity value of 2.0 or more based on JIS Z2801: 2012 has antibacterial properties (obtained by reducing the number of viable bacteria to 1/100 or less compared to the unprocessed film). Less than the test film was judged as having no antibacterial property (x).
抗菌性評価試験は、JIS Z2801:2012(抗菌加工製品-抗菌性評価方法・抗菌効果)に準じて実施した。まずJIS Z2801:2012に記載の方法に従って調製した大腸菌(Escherichia coli、NBRC3972株)または黄色ブドウ球菌(Staphylococcus aureus、NBRC15035株)の菌液0.4mlを、5cm×5cmにカットした試験フィルム表面に植菌した。菌液が乾かないように、4cm×4cmにカットしたポリエチレンフィルムで被覆後、相対湿度90%以上の条件下、35℃で24時間培養した。培養後、フィルム間から菌液を回収し、寒天平板培養法にて生菌数を算出した。また同時に、下記重合体1~12をコートしていない未加工のフィルム(無添加ポリエチレン;株式会社マルアイ製、MZ-PE)でも同様の操作を実施した。培養後の生菌数をフィルム面積1cm2当たりに換算し、未加工フィルムの生菌数対数値から、試験フィルムの生菌数対数値を減じたものを抗菌活性値とした。JIS Z2801:2012に基づき、抗菌活性値が2.0以上の試験フィルム(未加工フィルムと比較して生菌数が1/100以下に減じたもの)を抗菌性あり(○)、2.0未満の試験フィルムを抗菌性なし(×)と判断した。 [Antimicrobial evaluation method]
The antibacterial evaluation test was conducted according to JIS Z2801: 2012 (antibacterial processed product-antibacterial evaluation method / antibacterial effect). First, 0.4 ml of E. coli (Escherichia coli, NBRC3982 strain) or Staphylococcus aureus (NBRC15035 strain) prepared according to the method described in JIS Z2801: 2012 was planted on the surface of a test film cut to 5 cm × 5 cm. Fungus. After covering with a polyethylene film cut to 4 cm × 4 cm so that the bacterial solution did not dry, it was cultured at 35 ° C. for 24 hours under conditions of relative humidity of 90% or more. After culturing, the bacterial solution was collected from between the films, and the viable cell count was calculated by the agar plate culture method. At the same time, the same operation was performed on an unprocessed film (non-added polyethylene; MZ-PE, manufactured by Maruai Co., Ltd.) not coated with the following polymers 1 to 12. The number of viable bacteria after the culture was converted per 1 cm 2 of the film area, and the antibacterial activity value was obtained by subtracting the viable cell number of the test film from the log number of the raw film. A test film having an antibacterial activity value of 2.0 or more based on JIS Z2801: 2012 has antibacterial properties (obtained by reducing the number of viable bacteria to 1/100 or less compared to the unprocessed film). Less than the test film was judged as having no antibacterial property (x).
[防カビ性評価方法]
防カビ性評価試験は、JIS Z2911:2010(かび抵抗性試験方法)を参考にして実施した。まず1cm×1cmにカットした試験フィルムを、グルコース添加無機塩寒天培地(グルコース30g、硝酸ナトリウム2g、リン酸二水素カリウム0.7g、リン酸水素二カリウム0.3g、塩化カリウム0.5g、寒天20g、純水1000mL、pH6.0~6.5)表面にのせて密着させた。JIS Z2911:2010に記載の方法で、ペシロマイセス・バリオッティ(Paecilomyces variotii、NBRC33284株)、アスペルギルス・ニゲル(Aspergillus niger、NBRC105649株)、ペニシリウム・ピノフィルム(Penicillium pinophilum、NBRC33285株)、オーレオバシジウム・プルランス(Aureobasidium pullulans、NBRC6353株)、クラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides、NBRC6348株)、トリコデルマ・ビレンス(Trichoderma virens、NBRC6355株)およびケトミウム・グロボスム(Chaetomium globosum、NBRC6347株)について、それぞれのカビの胞子液または複数のカビ(上記カビから選択されたもの)の胞子の混合液を調製し、胞子液を試験片の上と、周囲の寒天培地上とに植菌した。植菌後、相対湿度90%以上の条件下、30℃で1週間培養を行った。培養後のフィルム表面の様子を顕微鏡で観察し、カビの生育がみられない試験フィルムを防カビ性あり(○)、カビの生育がみられた試験フィルムを防カビ性なし(×)と判断した。 [Method for evaluating antifungal properties]
The antifungal evaluation test was carried out with reference to JIS Z2911: 2010 (mold resistance test method). First, a test film cut to 1 cm × 1 cm was added to a glucose-added inorganic salt agar medium (glucose 30 g, sodium nitrate 2 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, agar 20 g, pure water 1000 mL, pH 6.0 to 6.5) and placed on the surface. In accordance with the method described in JIS Z2911: 2010, Pesilomyces variotti (Paecilomyces variotii, NBRC33284 strain), Aspergillus niger (Aspergillus niger, NBRC105649 strain), Penicillium pinorum 28 (Aureobasidium pullulans, NBRC6353 strain), Cladosporium cladosporioides (Cladosporium cladosporoides, NBRC6348 strain), Trichoderma virens (Trichoderma virens, NBRC6355 strain) um globosum, NBRC6347 strain), preparing a spore solution of each mold or a mixture of spores of a plurality of molds (selected from the above molds), and placing the spore solution on the test piece and the surrounding agar medium And inoculated. After inoculation, the cells were cultured at 30 ° C. for 1 week under conditions of relative humidity of 90% or more. Observation of the film surface after culturing with a microscope, the test film with no mold growth is judged to be moldproof (○), and the test film with mold growth is judged to have no mold resistance (×) did.
防カビ性評価試験は、JIS Z2911:2010(かび抵抗性試験方法)を参考にして実施した。まず1cm×1cmにカットした試験フィルムを、グルコース添加無機塩寒天培地(グルコース30g、硝酸ナトリウム2g、リン酸二水素カリウム0.7g、リン酸水素二カリウム0.3g、塩化カリウム0.5g、寒天20g、純水1000mL、pH6.0~6.5)表面にのせて密着させた。JIS Z2911:2010に記載の方法で、ペシロマイセス・バリオッティ(Paecilomyces variotii、NBRC33284株)、アスペルギルス・ニゲル(Aspergillus niger、NBRC105649株)、ペニシリウム・ピノフィルム(Penicillium pinophilum、NBRC33285株)、オーレオバシジウム・プルランス(Aureobasidium pullulans、NBRC6353株)、クラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides、NBRC6348株)、トリコデルマ・ビレンス(Trichoderma virens、NBRC6355株)およびケトミウム・グロボスム(Chaetomium globosum、NBRC6347株)について、それぞれのカビの胞子液または複数のカビ(上記カビから選択されたもの)の胞子の混合液を調製し、胞子液を試験片の上と、周囲の寒天培地上とに植菌した。植菌後、相対湿度90%以上の条件下、30℃で1週間培養を行った。培養後のフィルム表面の様子を顕微鏡で観察し、カビの生育がみられない試験フィルムを防カビ性あり(○)、カビの生育がみられた試験フィルムを防カビ性なし(×)と判断した。 [Method for evaluating antifungal properties]
The antifungal evaluation test was carried out with reference to JIS Z2911: 2010 (mold resistance test method). First, a test film cut to 1 cm × 1 cm was added to a glucose-added inorganic salt agar medium (glucose 30 g, sodium nitrate 2 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, agar 20 g, pure water 1000 mL, pH 6.0 to 6.5) and placed on the surface. In accordance with the method described in JIS Z2911: 2010, Pesilomyces variotti (Paecilomyces variotii, NBRC33284 strain), Aspergillus niger (Aspergillus niger, NBRC105649 strain), Penicillium pinorum 28 (Aureobasidium pullulans, NBRC6353 strain), Cladosporium cladosporioides (Cladosporium cladosporoides, NBRC6348 strain), Trichoderma virens (Trichoderma virens, NBRC6355 strain) um globosum, NBRC6347 strain), preparing a spore solution of each mold or a mixture of spores of a plurality of molds (selected from the above molds), and placing the spore solution on the test piece and the surrounding agar medium And inoculated. After inoculation, the cells were cultured at 30 ° C. for 1 week under conditions of relative humidity of 90% or more. Observation of the film surface after culturing with a microscope, the test film with no mold growth is judged to be moldproof (○), and the test film with mold growth is judged to have no mold resistance (×) did.
無水マレイン酸のイミド化および下記重合体1~23の重量平均分子量は、以下の方法にて分析をした。
The imidization of maleic anhydride and the weight average molecular weights of the following polymers 1 to 23 were analyzed by the following method.
[イミド化の分析]
下記重合体1~23において、イミド化の分析は、パーキンエルマー社のフーリエ変換赤外分光(FT-IR)分析装置(製品名:Spectrum one)で得られたスペクトルにおける、酸無水物のカルボニル基の吸収ピーク(1775cm-1)およびアミドのカルボニル基の吸収ピーク(1550cm-1)の消失と、イミドのカルボニル基の吸収ピーク(1700cm-1)の検出を基に判断した。 [Imidation analysis]
In the following polymers 1 to 23, imidation was analyzed by analyzing the carbonyl group of the acid anhydride in the spectrum obtained with a Fourier transform infrared spectroscopy (FT-IR) analyzer (product name: Spectrum one) manufactured by PerkinElmer. and disappearance of the absorption peak (1775 cm -1) and the absorption peak of the carbonyl group of the amide (1550 cm -1) of was determined based on the detection of the absorption peak (1700 cm -1) of carbonyl group of the imide.
下記重合体1~23において、イミド化の分析は、パーキンエルマー社のフーリエ変換赤外分光(FT-IR)分析装置(製品名:Spectrum one)で得られたスペクトルにおける、酸無水物のカルボニル基の吸収ピーク(1775cm-1)およびアミドのカルボニル基の吸収ピーク(1550cm-1)の消失と、イミドのカルボニル基の吸収ピーク(1700cm-1)の検出を基に判断した。 [Imidation analysis]
In the following polymers 1 to 23, imidation was analyzed by analyzing the carbonyl group of the acid anhydride in the spectrum obtained with a Fourier transform infrared spectroscopy (FT-IR) analyzer (product name: Spectrum one) manufactured by PerkinElmer. and disappearance of the absorption peak (1775 cm -1) and the absorption peak of the carbonyl group of the amide (1550 cm -1) of was determined based on the detection of the absorption peak (1700 cm -1) of carbonyl group of the imide.
[重量平均分子量の分析]
東ソー株式会社製のゲル浸透クロマトグラフィー(GPC)装置(製品名:HLC-8320GPC EcoSEC、カラム:TSKgel superHM-M、分子量スタンダード:PSt Quick MP-M)を用いて、ジアミン変性前の無水マレイン酸共重合体の重量平均分子量を測定し、測定値に換算係数を乗じる事によって、重合体1~23の重量平均分子量を算出した。換算係数は、[(ジアミン変性後の共重合体単位の分子量)/(ジアミン変性前の共重合体単位の分子量)×100]により算出した。 [Analysis of weight average molecular weight]
Using a gel permeation chromatography (GPC) apparatus (product name: HLC-8320GPC EcoSEC, column: TSKgel superHM-M, molecular weight standard: PSt Quick MP MP-M) manufactured by Tosoh Corporation, maleic anhydride before diamine modification The weight average molecular weight of the polymers 1 to 23 was calculated by measuring the weight average molecular weight of the polymer and multiplying the measured value by the conversion factor. The conversion coefficient was calculated by [(molecular weight of copolymer unit after diamine modification) / (molecular weight of copolymer unit before diamine modification) × 100].
東ソー株式会社製のゲル浸透クロマトグラフィー(GPC)装置(製品名:HLC-8320GPC EcoSEC、カラム:TSKgel superHM-M、分子量スタンダード:PSt Quick MP-M)を用いて、ジアミン変性前の無水マレイン酸共重合体の重量平均分子量を測定し、測定値に換算係数を乗じる事によって、重合体1~23の重量平均分子量を算出した。換算係数は、[(ジアミン変性後の共重合体単位の分子量)/(ジアミン変性前の共重合体単位の分子量)×100]により算出した。 [Analysis of weight average molecular weight]
Using a gel permeation chromatography (GPC) apparatus (product name: HLC-8320GPC EcoSEC, column: TSKgel superHM-M, molecular weight standard: PSt Quick MP MP-M) manufactured by Tosoh Corporation, maleic anhydride before diamine modification The weight average molecular weight of the polymers 1 to 23 was calculated by measuring the weight average molecular weight of the polymer and multiplying the measured value by the conversion factor. The conversion coefficient was calculated by [(molecular weight of copolymer unit after diamine modification) / (molecular weight of copolymer unit before diamine modification) × 100].
<抗微生物性の評価>
(実施例1)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)226.5gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)5.84gとテトラヒドロフラン40.70gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,100)を得た(重合体1)。得られた重合体1のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 <Evaluation of antimicrobial properties>
(Example 1)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 226.5 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.84 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.70 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 1). The obtained polymer 1 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
(実施例1)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)226.5gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)5.84gとテトラヒドロフラン40.70gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,100)を得た(重合体1)。得られた重合体1のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 <Evaluation of antimicrobial properties>
(Example 1)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 226.5 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.84 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.70 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 1). The obtained polymer 1 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体1を2gとエタノールを18gとを混合して、10重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体1をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 1 and 18 g of ethanol were mixed to prepare a 10 wt% polymer solution. A test in which a polymer film was coated with polymer 1 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(実施例2)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)212.5gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-直鎖アルキル-1,3-プロパンジアミン(製品名:ジアミンR-86、花王株式会社製、直鎖アルキルとしてC14:C16:C18=5:50:45(重量比)の混合物)11.52gとテトラヒドロフラン111.10gとの混合物を溶液に滴下した。C14、C16およびC18は、それぞれ炭素数14、16および18の直鎖アルキル基を意味する。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量8,800)を得た(重合体2)。得られた重合体2のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 2)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) 212.5 g were charged and stirred to dissolve the copolymer. While stirring the solution, N-linear alkyl-1,3-propanediamine (Product name: Diamine R-86, manufactured by Kao Corporation, C14: C16: C18 = 5: 50: (Mixture of 45 (weight ratio)) A mixture of 11.52 g and 111.10 g of tetrahydrofuran was added dropwise to the solution. C14, C16 and C18 mean straight alkyl groups having 14, 16 and 18 carbon atoms, respectively. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 8,800) (polymer 2). The obtained polymer 2 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)212.5gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-直鎖アルキル-1,3-プロパンジアミン(製品名:ジアミンR-86、花王株式会社製、直鎖アルキルとしてC14:C16:C18=5:50:45(重量比)の混合物)11.52gとテトラヒドロフラン111.10gとの混合物を溶液に滴下した。C14、C16およびC18は、それぞれ炭素数14、16および18の直鎖アルキル基を意味する。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量8,800)を得た(重合体2)。得られた重合体2のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 2)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (Wako Pure Chemical Industries, Ltd.) 212.5 g were charged and stirred to dissolve the copolymer. While stirring the solution, N-linear alkyl-1,3-propanediamine (Product name: Diamine R-86, manufactured by Kao Corporation, C14: C16: C18 = 5: 50: (Mixture of 45 (weight ratio)) A mixture of 11.52 g and 111.10 g of tetrahydrofuran was added dropwise to the solution. C14, C16 and C18 mean straight alkyl groups having 14, 16 and 18 carbon atoms, respectively. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 8,800) (polymer 2). The obtained polymer 2 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体2を2gとn-ヘキサンを18gとを混合して、10重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体2をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 2 and 18 g of n-hexane were mixed to prepare a 10% by weight polymer solution. A test in which a polymer film was coated with polymer 2 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, and then air-dried overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(実施例3)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ベンジル-1,3-プロパンジアミン(東京化成工業株式会社製)6.07gとテトラヒドロフラン40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し脱水環化させ、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥して、マレイミド構造を有するポリマー(重量平均分子量6,200)を得た(重合体3)。得られた重合体3のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 3)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.07 g of N-benzyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to be dehydrated and cyclized to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to obtain a polymer having a maleimide structure (weight average molecular weight 6,200) (polymer 3). The obtained polymer 3 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ベンジル-1,3-プロパンジアミン(東京化成工業株式会社製)6.07gとテトラヒドロフラン40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6.5時間真空乾燥し脱水環化させ、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥して、マレイミド構造を有するポリマー(重量平均分子量6,200)を得た(重合体3)。得られた重合体3のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 3)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.07 g of N-benzyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6.5 hours to be dehydrated and cyclized to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to obtain a polymer having a maleimide structure (weight average molecular weight 6,200) (polymer 3). The obtained polymer 3 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体3を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体3をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表1に示す。
2 g of the obtained polymer 3 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm was dipped on the polymer solution, and then air-dried overnight to remove the solvent and coat the polymer 3 A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated with respect to Paecilomyces variotii. The results are shown in Table 1.
(実施例4)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))7.5gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)147.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-イソプロピル-1,3-プロパンジアミン(東京化成工業株式会社製)6.23gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)19.76gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを85℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量9,800)を得た(重合体4)。得られた重合体4のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 Example 4
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 7.5 g and 147.1 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 6.23 g of N-isopropyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 19.76 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 85 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 9,800) (polymer 4). The obtained polymer 4 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))7.5gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)147.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-イソプロピル-1,3-プロパンジアミン(東京化成工業株式会社製)6.23gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)19.76gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを85℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量9,800)を得た(重合体4)。得られた重合体4のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 Example 4
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 7.5 g and 147.1 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 6.23 g of N-isopropyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 19.76 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 85 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 9,800) (polymer 4). The obtained polymer 4 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体4を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体4をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 4 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a polymer film was coated with a polymer 4 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(実施例5)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))7.5gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)151.4gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)8.40gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)21.69gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを85℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量11,400)を得た(重合体5)。得られた重合体5のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 5)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 7.5 g and 151.4 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 8.40 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 21.69 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 85 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 11,400) (polymer 5). The polymer 5 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))7.5gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)151.4gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)8.40gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)21.69gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを85℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量11,400)を得た(重合体5)。得られた重合体5のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 5)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 7.5 g and 151.4 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 8.40 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 21.69 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 85 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 11,400) (polymer 5). The polymer 5 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
得られた重合体5を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体5をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 5 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a polymer film was coated with polymer 5 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(実施例6)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、1-オクタデセン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量40,000、1-オクタデセン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)229.2gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)4.03gとテトラヒドロフラン(和光純薬工業株式会社製)37.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で3時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量55,800)を得た(重合体6)。得られた重合体6のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 6)
In a 500 ml four-necked flask equipped with a thermometer and a stirrer, 1-octadecene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 40,000, 1-octadecene: maleic anhydride = 1: 1 (molar ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 229.2 g were charged and stirred to dissolve the copolymer. While stirring the solution, a solution of 4.03 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 37.90 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. as a solution It was dripped in. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 3 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours and dehydrated and cyclized to obtain a polymer having a maleimide structure (weight average molecular weight 55,800) (polymer 6). The polymer 6 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、1-オクタデセン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量40,000、1-オクタデセン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)229.2gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)4.03gとテトラヒドロフラン(和光純薬工業株式会社製)37.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で3時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量55,800)を得た(重合体6)。得られた重合体6のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 6)
In a 500 ml four-necked flask equipped with a thermometer and a stirrer, 1-octadecene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 40,000, 1-octadecene: maleic anhydride = 1: 1 (molar ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 229.2 g were charged and stirred to dissolve the copolymer. While stirring the solution, a solution of 4.03 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 37.90 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. as a solution It was dripped in. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 3 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours and dehydrated and cyclized to obtain a polymer having a maleimide structure (weight average molecular weight 55,800) (polymer 6). The polymer 6 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide.
得られた重合体6を1g、PTFEシート(東京硝子器械株式会社製、2016年度カタログの479ページの商品コード0638179711、厚さ50μm)二枚の間に挟み、さらにステンレス板2枚で挟み込み、熱プレス機(アズワン株式会社製AH-2003)でプレス(200℃、20MPa、2分間)して、試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表1に示す。
1 g of the obtained polymer 6 is sandwiched between two PTFE sheets (manufactured by Tokyo Glass Instrument Co., Ltd., product code 0638817711, thickness of 50 μm on page 479 in the 2016 catalog), and further sandwiched between two stainless steel plates. A test film was produced by pressing (200 ° C., 20 MPa, 2 minutes) with a press machine (AH-2003, manufactured by ASONE CORPORATION). The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated with respect to Paecilomyces variotii. The results are shown in Table 1.
(比較例1)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジブチル-1,3-プロパンジアミン(東京化成工業株式会社製)6.95gとテトラヒドロフラン(和光純薬工業株式会社製)50.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量をn-ヘキサンに滴下してポリマーを析出させた後、減圧ろ過器でろ過回収し、ろ過ケーキを80℃で2.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量6,600)を得た(重合体7)。得られた重合体7のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 1)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.95 g of N, N-dibutyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 50.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was dropped into n-hexane to precipitate a polymer, which was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 80 ° C. for 2.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 6,600) (polymer 7). The obtained polymer 7 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジブチル-1,3-プロパンジアミン(東京化成工業株式会社製)6.95gとテトラヒドロフラン(和光純薬工業株式会社製)50.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量をn-ヘキサンに滴下してポリマーを析出させた後、減圧ろ過器でろ過回収し、ろ過ケーキを80℃で2.5時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量6,600)を得た(重合体7)。得られた重合体7のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 1)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.95 g of N, N-dibutyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 50.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was dropped into n-hexane to precipitate a polymer, which was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 80 ° C. for 2.5 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 6,600) (polymer 7). The obtained polymer 7 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体7を2gとn-ヘキサンを8gとを混合して、10重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体7をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 7 and 8 g of n-hexane were mixed to prepare a 10 wt% polymer solution. A test in which a polymer film was coated with a polymer 7 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution and then air-dried overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(比較例2)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジイソプロピルエチレンジアミン(東京化成工業株式会社製)6.41gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,900)を得た(重合体8)。得られた重合体8のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 2)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.41 g of N, N-diisopropylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,900) (polymer 8). The polymer 8 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジイソプロピルエチレンジアミン(東京化成工業株式会社製)6.41gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,900)を得た(重合体8)。得られた重合体8のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 2)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.41 g of N, N-diisopropylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,900) (polymer 8). The polymer 8 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体8を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体8をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 8 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a polymer film was coated with a polymer 8 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(比較例3)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-フェニルエチレンジアミン(東京化成工業株式会社製)6.05gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,700)を得た(重合体9)。得られた重合体9のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 3)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.05 g of N-phenylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to cause dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,700) (polymer 9). The obtained polymer 9 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-フェニルエチレンジアミン(東京化成工業株式会社製)6.05gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,700)を得た(重合体9)。得られた重合体9のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 3)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.05 g of N-phenylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was dropped into the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to cause dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,700) (polymer 9). The obtained polymer 9 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体9を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体9をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 9 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a polymer film was coated with a polymer 9 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(比較例4)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ベンジルエチレンジアミン(東京化成工業株式会社製)6.67gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量6,000)を得た(重合体10)。得られた重合体10のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 4)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.67 g of N-benzylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to cause dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 6,000) (polymer 10). The polymer 10 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ベンジルエチレンジアミン(東京化成工業株式会社製)6.67gとテトラヒドロフラン(和光純薬工業株式会社製)40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量6,000)を得た(重合体10)。得られた重合体10のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 4)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.67 g of N-benzylethylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 40.00 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to cause dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 6,000) (polymer 10). The polymer 10 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体10を2gとアセトンを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体10をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the obtained polymer 10 and 8 g of acetone were mixed to prepare a 20 wt% polymer solution. A test in which a polymer film was coated with a polymer 10 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 7 cm with respect to the polymer solution, followed by air drying overnight. A film was prepared. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(比較例5)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、無水マレイン酸(和光純薬工業株式会社製)18.77gと、スチレン(和光純薬工業株式会社製)20.03gと、メチルエチルケトン(和光純薬工業株式会社製)202.90gとを仕込み、撹拌して均一溶液とした。気相を窒素パージしながら作製した均一溶液を60℃に加温し、アゾビスイソブチロニトリル(東京化成工業株式会社製)0.66gをメチルエチルケトン(和光純薬工業株式会社製)4.50gに溶解させた溶液を均一溶液に加えて、重合反応を開始した。反応開始から10時間経過後、反応液をイソプロピルアルコール(和光純薬工業株式会社製)720.3gに滴下して、ポリマー(スチレン-無水マレイン酸共重合体)を析出させた。析出したポリマーをろ過回収した後、100℃の真空乾燥機で溶媒を除去し、乾燥したスチレン-無水マレイン酸共重合体33.7gを得た。得られたスチレン-無水マレイン酸共重合体の重量平均分子量は、GPC分析により450,000と算出された。合成したスチレン-無水マレイン酸共重合体7.48gを、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)50.26gに溶解させ、溶液1を作製した。別途p-アミノフェノール(関東化学株式会社製)6.03gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)49.62gとを混合して溶解させ、溶液2を作製した。57.74gの溶液1と55.65gの溶液2とを、300mL容の丸底フラスコ中で混合した後、トリエチルアミン(関東化学株式会社製)7.5gを添加した。気相を窒素パージしながら90℃に昇温し、合計13時間、反応を行った。反応液を室温に冷却した後、テトラヒドロフラン(和光純薬工業株式会社)500mLに滴下した。滴下終了後、析出物をろ過回収し、120℃で一晩真空乾燥して溶媒を除去した。乾燥物全量をN,N-ジメチルホルムアミド(和光純薬工業株式会社)100mLに溶解させた。溶解液をイソプロピルアルコール(和光純薬工業株式会社製)500mLに滴下して、ポリマーを析出させた後、析出物をろ過回収した。ろ過回収物を120℃で72時間真空乾燥処理により脱水環化させ、イミド変性体を得た(重合体11)。得られた重合体11のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 5)
In a 500 ml four-necked flask equipped with a thermometer and a stirrer, maleic anhydride (Wako Pure Chemical Industries, Ltd.) 18.77 g, styrene (Wako Pure Chemical Industries, Ltd.) 20.03 g, methyl ethyl ketone 202.90 g (manufactured by Wako Pure Chemical Industries, Ltd.) was charged and stirred to obtain a uniform solution. The homogeneous solution prepared while purging the gas phase with nitrogen was heated to 60 ° C., 0.66 g of azobisisobutyronitrile (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4.50 g of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) The solution dissolved in was added to the homogeneous solution to initiate the polymerization reaction. After 10 hours from the start of the reaction, the reaction solution was added dropwise to 720.3 g of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer (styrene-maleic anhydride copolymer). After the collected polymer was collected by filtration, the solvent was removed with a vacuum dryer at 100 ° C. to obtain 33.7 g of a dried styrene-maleic anhydride copolymer. The weight average molecular weight of the obtained styrene-maleic anhydride copolymer was calculated to be 450,000 by GPC analysis. 7.48 g of the synthesized styrene-maleic anhydride copolymer was dissolved in 50.26 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) to prepare Solution 1. Separately, 6.03 g of p-aminophenol (manufactured by Kanto Chemical Co., Inc.) and 49.62 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and dissolved to prepare Solution 2. 57.74 g of Solution 1 and 55.65 g of Solution 2 were mixed in a 300 mL round bottom flask, and 7.5 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added. The temperature was raised to 90 ° C. while purging the gas phase with nitrogen, and the reaction was carried out for a total of 13 hours. The reaction solution was cooled to room temperature and then added dropwise to 500 mL of tetrahydrofuran (Wako Pure Chemical Industries, Ltd.). After completion of the dropwise addition, the precipitate was collected by filtration and dried in vacuo at 120 ° C. overnight to remove the solvent. The total amount of the dried product was dissolved in 100 mL of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.). The solution was dropped into 500 mL of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer, and the precipitate was collected by filtration. The filtered product was dehydrated and cyclized by vacuum drying at 120 ° C. for 72 hours to obtain an imide-modified product (polymer 11). The polymer 11 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、無水マレイン酸(和光純薬工業株式会社製)18.77gと、スチレン(和光純薬工業株式会社製)20.03gと、メチルエチルケトン(和光純薬工業株式会社製)202.90gとを仕込み、撹拌して均一溶液とした。気相を窒素パージしながら作製した均一溶液を60℃に加温し、アゾビスイソブチロニトリル(東京化成工業株式会社製)0.66gをメチルエチルケトン(和光純薬工業株式会社製)4.50gに溶解させた溶液を均一溶液に加えて、重合反応を開始した。反応開始から10時間経過後、反応液をイソプロピルアルコール(和光純薬工業株式会社製)720.3gに滴下して、ポリマー(スチレン-無水マレイン酸共重合体)を析出させた。析出したポリマーをろ過回収した後、100℃の真空乾燥機で溶媒を除去し、乾燥したスチレン-無水マレイン酸共重合体33.7gを得た。得られたスチレン-無水マレイン酸共重合体の重量平均分子量は、GPC分析により450,000と算出された。合成したスチレン-無水マレイン酸共重合体7.48gを、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)50.26gに溶解させ、溶液1を作製した。別途p-アミノフェノール(関東化学株式会社製)6.03gとN,N-ジメチルホルムアミド(和光純薬工業株式会社製)49.62gとを混合して溶解させ、溶液2を作製した。57.74gの溶液1と55.65gの溶液2とを、300mL容の丸底フラスコ中で混合した後、トリエチルアミン(関東化学株式会社製)7.5gを添加した。気相を窒素パージしながら90℃に昇温し、合計13時間、反応を行った。反応液を室温に冷却した後、テトラヒドロフラン(和光純薬工業株式会社)500mLに滴下した。滴下終了後、析出物をろ過回収し、120℃で一晩真空乾燥して溶媒を除去した。乾燥物全量をN,N-ジメチルホルムアミド(和光純薬工業株式会社)100mLに溶解させた。溶解液をイソプロピルアルコール(和光純薬工業株式会社製)500mLに滴下して、ポリマーを析出させた後、析出物をろ過回収した。ろ過回収物を120℃で72時間真空乾燥処理により脱水環化させ、イミド変性体を得た(重合体11)。得られた重合体11のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 5)
In a 500 ml four-necked flask equipped with a thermometer and a stirrer, maleic anhydride (Wako Pure Chemical Industries, Ltd.) 18.77 g, styrene (Wako Pure Chemical Industries, Ltd.) 20.03 g, methyl ethyl ketone 202.90 g (manufactured by Wako Pure Chemical Industries, Ltd.) was charged and stirred to obtain a uniform solution. The homogeneous solution prepared while purging the gas phase with nitrogen was heated to 60 ° C., 0.66 g of azobisisobutyronitrile (manufactured by Tokyo Chemical Industry Co., Ltd.) and 4.50 g of methyl ethyl ketone (manufactured by Wako Pure Chemical Industries, Ltd.) The solution dissolved in was added to the homogeneous solution to initiate the polymerization reaction. After 10 hours from the start of the reaction, the reaction solution was added dropwise to 720.3 g of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer (styrene-maleic anhydride copolymer). After the collected polymer was collected by filtration, the solvent was removed with a vacuum dryer at 100 ° C. to obtain 33.7 g of a dried styrene-maleic anhydride copolymer. The weight average molecular weight of the obtained styrene-maleic anhydride copolymer was calculated to be 450,000 by GPC analysis. 7.48 g of the synthesized styrene-maleic anhydride copolymer was dissolved in 50.26 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) to prepare Solution 1. Separately, 6.03 g of p-aminophenol (manufactured by Kanto Chemical Co., Inc.) and 49.62 g of N, N-dimethylformamide (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed and dissolved to prepare Solution 2. 57.74 g of Solution 1 and 55.65 g of Solution 2 were mixed in a 300 mL round bottom flask, and 7.5 g of triethylamine (manufactured by Kanto Chemical Co., Inc.) was added. The temperature was raised to 90 ° C. while purging the gas phase with nitrogen, and the reaction was carried out for a total of 13 hours. The reaction solution was cooled to room temperature and then added dropwise to 500 mL of tetrahydrofuran (Wako Pure Chemical Industries, Ltd.). After completion of the dropwise addition, the precipitate was collected by filtration and dried in vacuo at 120 ° C. overnight to remove the solvent. The total amount of the dried product was dissolved in 100 mL of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.). The solution was dropped into 500 mL of isopropyl alcohol (manufactured by Wako Pure Chemical Industries, Ltd.) to precipitate a polymer, and the precipitate was collected by filtration. The filtered product was dehydrated and cyclized by vacuum drying at 120 ° C. for 72 hours to obtain an imide-modified product (polymer 11). The polymer 11 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
重合体11を2gとN,N-ジメチルホルムアミドを8gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、5cm×7cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100)をディップした後、一晩風乾させて溶媒を除去し、重合体11をコートした試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表1に示す。
2 g of the polymer 11 and 8 g of N, N-dimethylformamide were mixed to prepare a 20% by weight polymer solution. After dipping a PET film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) cut to 5 cm × 7 cm with respect to the polymer solution, the solvent was removed by air drying overnight to prepare a test film coated with polymer 11. . The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Pecilomyces variotii and Cladosporium cladosporioides. The results are shown in Table 1.
(実施例7~10)
上記実施例1、2、4および5で作製した試験フィルムについて、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)またはオーレオバシジウム・プルランス(Aureobasidium pullulans)に対する防カビ性評価を行った。結果を表2に示す。 (Examples 7 to 10)
The test films prepared in Examples 1, 2, 4 and 5 were evaluated for antifungal properties against Aspergillus niger, Penicillium pinofilm or Aureobasidium pullulans. It was. The results are shown in Table 2.
上記実施例1、2、4および5で作製した試験フィルムについて、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)またはオーレオバシジウム・プルランス(Aureobasidium pullulans)に対する防カビ性評価を行った。結果を表2に示す。 (Examples 7 to 10)
The test films prepared in Examples 1, 2, 4 and 5 were evaluated for antifungal properties against Aspergillus niger, Penicillium pinofilm or Aureobasidium pullulans. It was. The results are shown in Table 2.
表1および2に示されるように、実施例1~10の場合、R1がトリメチレン基であるため、優れた抗微生物性能を発揮できることがわかる。これに対し、比較例2~4の場合、R1がエチレン基であるため、抗微生物性能がほとんどないことがわかる。
As shown in Tables 1 and 2, in Examples 1 to 10, it can be seen that since R 1 is a trimethylene group, excellent antimicrobial performance can be exhibited. On the other hand, in Comparative Examples 2 to 4, it can be seen that since R 1 is an ethylene group, there is almost no antimicrobial performance.
また、表1および2に示されるように、実施例1~10の場合、マレイミド構造に2級アミノ基が付加した構造単位を有するため、優れた抗微生物性能を発揮できることがわかる。これに対し、比較例1では、マレイミド構造に3級アミノ基が付加した構造単位を有するため、抗微生物性能が低いことがわかる。
Further, as shown in Tables 1 and 2, in Examples 1 to 10, it has a structural unit in which a secondary amino group is added to the maleimide structure, and thus it can be seen that excellent antimicrobial performance can be exhibited. On the other hand, Comparative Example 1 has a structural unit in which a tertiary amino group is added to the maleimide structure, and thus it can be seen that the antimicrobial performance is low.
(実施例11)
実施例1で得られた重合体1を1gと低密度ポリエチレン(LDPE)(シグマ-アルドリッチ社製、MELT INDEX 25g/10min)を19gとを、ラボプラストミル(株式会社東洋精機製作所製、4C-150)を用いて、200℃で5分間混錬した。混錬物を、200℃、2MPaで2分間プレスして、厚さ約100μmの試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表3に示す。 (Example 11)
1 g of the polymer 1 obtained in Example 1 and 19 g of low density polyethylene (LDPE) (manufactured by Sigma-Aldrich, MELT INDEX 25 g / 10 min), and Laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C- 150) and kneaded at 200 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 μm. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
実施例1で得られた重合体1を1gと低密度ポリエチレン(LDPE)(シグマ-アルドリッチ社製、MELT INDEX 25g/10min)を19gとを、ラボプラストミル(株式会社東洋精機製作所製、4C-150)を用いて、200℃で5分間混錬した。混錬物を、200℃、2MPaで2分間プレスして、厚さ約100μmの試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表3に示す。 (Example 11)
1 g of the polymer 1 obtained in Example 1 and 19 g of low density polyethylene (LDPE) (manufactured by Sigma-Aldrich, MELT INDEX 25 g / 10 min), and Laboplast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C- 150) and kneaded at 200 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 μm. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
(実施例12)
実施例2で得られた重合体2を1gとポリプロピレン(PP)(日本ポリプロ株式会社製、ノバテック(登録商標)PP)を19gとを、ラボプラストミル(株式会社東洋精機製作所製、4C-150)を用いて、210℃で5分間混錬した。混錬物を、200℃、2MPaで2分間プレスして、厚さ約100μmの試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表3に示す。 (Example 12)
1 g of the polymer 2 obtained in Example 2 and 19 g of polypropylene (PP) (manufactured by Nippon Polypro Co., Ltd., Novatec (registered trademark) PP), Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C-150) ) And kneaded at 210 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 μm. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
実施例2で得られた重合体2を1gとポリプロピレン(PP)(日本ポリプロ株式会社製、ノバテック(登録商標)PP)を19gとを、ラボプラストミル(株式会社東洋精機製作所製、4C-150)を用いて、210℃で5分間混錬した。混錬物を、200℃、2MPaで2分間プレスして、厚さ約100μmの試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表3に示す。 (Example 12)
1 g of the polymer 2 obtained in Example 2 and 19 g of polypropylene (PP) (manufactured by Nippon Polypro Co., Ltd., Novatec (registered trademark) PP), Labo Plast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd., 4C-150) ) And kneaded at 210 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 μm. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Paecilomyces variotii. The results are shown in Table 3.
(比較例6)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)253.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)3.31gとテトラヒドロフラン(和光純薬工業株式会社製)31.10gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,600)を得た(重合体12)。得られた重合体12のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 6)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 253.1 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 3.31 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 31.10 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. The mixture was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,600) (polymer 12). The polymer 12 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)253.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)3.31gとテトラヒドロフラン(和光純薬工業株式会社製)31.10gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水環化させて、イミド変性体(重量平均分子量5,600)を得た(重合体12)。得られた重合体12のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 6)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 253.1 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, 3.31 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 31.10 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. The mixture was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours for dehydration and cyclization to obtain an imide-modified product (weight average molecular weight 5,600) (polymer 12). The polymer 12 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体12を1gとポリプロピレン(PP)(日本ポリプロ株式会社製、ノバテック(登録商標)PP)を19gとを、ラボプラストミル(株式会社東洋精機製作所製、4C-150)を用いて、210℃で5分間混錬した。混錬物を、200℃、2MPaで2分間プレスして、厚さ約100μmの試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、ペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表3に示す。
1 g of the obtained polymer 12 and 19 g of polypropylene (PP) (Nippon Polypro Co., Ltd., Novatec (registered trademark) PP) were used, using a lab plast mill (Toyo Seiki Seisakusho Co., Ltd., 4C-150). And kneaded at 210 ° C. for 5 minutes. The kneaded material was pressed at 200 ° C. and 2 MPa for 2 minutes to prepare a test film having a thickness of about 100 μm. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated with respect to Paecilomyces variotii. The results are shown in Table 3.
表3に示されるように、実施例11~12の場合、本発明に係るマレイミド構造単位を有するポリマーの含有量が、樹脂に対して、5重量%であっても、優れた抗微生物性能を発揮できることが分かる。これに対し、比較例6の場合、マレイミド構造に3級アミノ基が付加した構造単位を有するため、抗微生物剤の含有量が、樹脂に対して、5重量%であると、抗微生物性能がないことが分かる。
As shown in Table 3, in Examples 11 to 12, excellent antimicrobial performance was obtained even when the content of the polymer having a maleimide structural unit according to the present invention was 5% by weight based on the resin. It can be seen that it can be demonstrated. On the other hand, in the case of Comparative Example 6, since it has a structural unit in which a tertiary amino group is added to the maleimide structure, when the content of the antimicrobial agent is 5% by weight with respect to the resin, the antimicrobial performance is I understand that there is no.
以上より、本願発明の抗微生物剤は、マレイミド構造に2級アミノ基が付加した構造単位を有するポリマーであるまたは当該重合体を含むことにより、マレイミド構造に3級アミノ基が付加した構造単位を有するイミド変性体と比べて、優れた抗微生物性能を有することがわかる。
From the above, the antimicrobial agent of the present invention is a polymer having a structural unit in which a secondary amino group is added to the maleimide structure, or a structural unit in which a tertiary amino group is added to the maleimide structure by including the polymer. It turns out that it has the outstanding antimicrobial performance compared with the imide modified body which has.
<溶出性の評価>
[溶出性評価方法]
1cm×1cmにカットした試験フィルムを用いて、溶出性を評価した。まず、試験フィルムの厚さ(浸漬前の厚さ)を測定した。次に、試験フィルムと、グルコース添加無機塩培地(グルコース30.0g、硝酸ナトリウム2.0g、リン酸二水素カリウム0.7g、リン酸水素二カリウム0.3g、塩化カリウム0.5g、純水1000mL;pH6.0~6.5)5mLとをバイアル瓶に入れた。バイアル瓶を35℃に設定したインキュベーター内に6時間静置した後、バイアル瓶から試験フィルムを取り出して乾燥させ、乾燥後の試験フィルムの厚さ(浸漬後の厚さ)を測定した。厚さの測定には、新潟精機株式会社製のデジタルマイクロメータMCD130-25を用いた。浸漬前および浸漬後の試験フィルムの厚さの測定値から基材であるPETフィルムの厚さを減じたものを浸漬前の膜厚および浸漬後の膜厚として、これらの膜厚から溶出率(%)を算出した。溶出率(%)は、{(浸漬前の膜厚-浸漬後の膜厚)/浸漬前の膜厚}×100により算出した。 <Evaluation of dissolution>
[Dissolution evaluation method]
Dissolution was evaluated using a test film cut to 1 cm × 1 cm. First, the thickness of the test film (thickness before immersion) was measured. Next, a test film and glucose-added inorganic salt medium (glucose 30.0 g, sodium nitrate 2.0 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, pure water 1000 mL; pH 6.0-6.5) and 5 mL were placed in a vial. The vial was allowed to stand in an incubator set at 35 ° C. for 6 hours, and then the test film was taken out of the vial and dried, and the thickness of the test film after drying (thickness after immersion) was measured. For the thickness measurement, a digital micrometer MCD130-25 manufactured by Niigata Seiki Co., Ltd. was used. The measured value of the thickness of the test film before and after immersion, which is obtained by subtracting the thickness of the PET film as the base material, is the film thickness before immersion and the film thickness after immersion. %) Was calculated. The dissolution rate (%) was calculated by {(film thickness before immersion−film thickness after immersion) / film thickness before immersion} × 100.
[溶出性評価方法]
1cm×1cmにカットした試験フィルムを用いて、溶出性を評価した。まず、試験フィルムの厚さ(浸漬前の厚さ)を測定した。次に、試験フィルムと、グルコース添加無機塩培地(グルコース30.0g、硝酸ナトリウム2.0g、リン酸二水素カリウム0.7g、リン酸水素二カリウム0.3g、塩化カリウム0.5g、純水1000mL;pH6.0~6.5)5mLとをバイアル瓶に入れた。バイアル瓶を35℃に設定したインキュベーター内に6時間静置した後、バイアル瓶から試験フィルムを取り出して乾燥させ、乾燥後の試験フィルムの厚さ(浸漬後の厚さ)を測定した。厚さの測定には、新潟精機株式会社製のデジタルマイクロメータMCD130-25を用いた。浸漬前および浸漬後の試験フィルムの厚さの測定値から基材であるPETフィルムの厚さを減じたものを浸漬前の膜厚および浸漬後の膜厚として、これらの膜厚から溶出率(%)を算出した。溶出率(%)は、{(浸漬前の膜厚-浸漬後の膜厚)/浸漬前の膜厚}×100により算出した。 <Evaluation of dissolution>
[Dissolution evaluation method]
Dissolution was evaluated using a test film cut to 1 cm × 1 cm. First, the thickness of the test film (thickness before immersion) was measured. Next, a test film and glucose-added inorganic salt medium (glucose 30.0 g, sodium nitrate 2.0 g, potassium dihydrogen phosphate 0.7 g, dipotassium hydrogen phosphate 0.3 g, potassium chloride 0.5 g, pure water 1000 mL; pH 6.0-6.5) and 5 mL were placed in a vial. The vial was allowed to stand in an incubator set at 35 ° C. for 6 hours, and then the test film was taken out of the vial and dried, and the thickness of the test film after drying (thickness after immersion) was measured. For the thickness measurement, a digital micrometer MCD130-25 manufactured by Niigata Seiki Co., Ltd. was used. The measured value of the thickness of the test film before and after immersion, which is obtained by subtracting the thickness of the PET film as the base material, is the film thickness before immersion and the film thickness after immersion. %) Was calculated. The dissolution rate (%) was calculated by {(film thickness before immersion−film thickness after immersion) / film thickness before immersion} × 100.
(実施例13~16)
実施例1、2、4および5で作製した試験フィルムについて、溶出性の評価を行った。結果を表4に示す。 (Examples 13 to 16)
The test films prepared in Examples 1, 2, 4 and 5 were evaluated for elution. The results are shown in Table 4.
実施例1、2、4および5で作製した試験フィルムについて、溶出性の評価を行った。結果を表4に示す。 (Examples 13 to 16)
The test films prepared in Examples 1, 2, 4 and 5 were evaluated for elution. The results are shown in Table 4.
(比較例7)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)253.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)3.31gとテトラヒドロフラン(和光純薬工業株式会社製)31.10gの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水感化させて、イミド変性体(重量平均分子量5,600)を得た(重合体13)。得られた重合体13のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 7)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 253.1 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 3.31 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 31.10 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to effect dehydration to obtain an imide-modified product (weight average molecular weight 5,600) (polymer 13). The polymer 13 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)253.1gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)3.31gとテトラヒドロフラン(和光純薬工業株式会社製)31.10gの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で7時間真空乾燥し脱水感化させて、イミド変性体(重量平均分子量5,600)を得た(重合体13)。得られた重合体13のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 7)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and 253.1 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 3.31 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 31.10 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) at 25 ° C. Was added dropwise to the solution. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 7 hours to effect dehydration to obtain an imide-modified product (weight average molecular weight 5,600) (polymer 13). The polymer 13 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
得られた重合体13を1gとアセトン4gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、1cm×3cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体13をコートしたフィルムを作製した。重合体13をコートしたフィルムを1cm×1cmにカットして試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、溶出性の評価に用いた。結果を表4に示す。
1 g of the obtained polymer 13 and 4 g of acetone were mixed to prepare a 20 wt% polymer solution. A film coated with polymer 13 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 1 cm × 3 cm with respect to the polymer solution, and then air-dried overnight to remove the solvent. Was made. A film coated with the polymer 13 was cut into 1 cm × 1 cm to prepare a test film. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for elution evaluation. The results are shown in Table 4.
(比較例8)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)190gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)8.5gを溶液に滴下した。滴下終了後、反応液の一部をアセトンに滴下して反応物を析出させ、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量をアセトン438.5gに滴下して反応物を析出させたものを減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で16時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量10,400)を得た(重合体14)。得られた重合体14のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 8)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 10.0 g and N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) 190 g were charged and stirred to dissolve the copolymer. While stirring the solution, 8.5 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropwise addition, a part of the reaction solution was dropped into acetone to precipitate the reaction product, and a part of the precipitate was recovered and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the total amount of the solution was added dropwise to 438.5 g of acetone to precipitate a reaction product, which was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 16 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 10,400) (polymer 14). The obtained polymer 14 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(シグマ-アルドリッチ製、重量平均分子量6,000、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)190gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN,N-ジエチル-1,3-プロパンジアミン(和光純薬工業株式会社製)8.5gを溶液に滴下した。滴下終了後、反応液の一部をアセトンに滴下して反応物を析出させ、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量をアセトン438.5gに滴下して反応物を析出させたものを減圧ろ過器でろ過回収し、ろ過ケーキを50℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で16時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量10,400)を得た(重合体14)。得られた重合体14のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 8)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 6,000, isobutylene: maleic anhydride = 1: 1 (molar ratio) )) 10.0 g and N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) 190 g were charged and stirred to dissolve the copolymer. While stirring the solution, 8.5 g of N, N-diethyl-1,3-propanediamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise to the solution at 25 ° C. After completion of the dropwise addition, a part of the reaction solution was dropped into acetone to precipitate the reaction product, and a part of the precipitate was recovered and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the total amount of the solution was added dropwise to 438.5 g of acetone to precipitate a reaction product, which was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 50 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 16 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 10,400) (polymer 14). The obtained polymer 14 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体14を1gとアセトン4gとを混合して、20重量%のポリマー溶液を作製した。ポリマー溶液に対して、1cm×3cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)をディップした後、一晩風乾させて溶媒を除去し、重合体14をコートしたフィルムを作製した。重合体14をコートしたフィルムを1cm×1cmにカットして試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、溶出性の評価に用いた。結果を表4に示す。
1 g of the obtained polymer 14 and 4 g of acetone were mixed to prepare a 20 wt% polymer solution. A film coated with polymer 14 after dipping a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 1 cm × 3 cm with respect to the polymer solution, and then air-dried overnight to remove the solvent. Was made. A film coated with the polymer 14 was cut into 1 cm × 1 cm to prepare a test film. The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for elution evaluation. The results are shown in Table 4.
表4に示されるように、実施例13~16の場合、マレイミド構造に2級アミノ基が付加した構造単位を有するため、ポリマーの溶出を抑制でき、抗微生物性能の耐久性に優れるとがわかる。これに対し、比較例7~8の場合、マレイミド構造に3級アミノ基が付加した構造単位を有するため、ポリマーが溶出してしまうことで、抗微生物性能の耐久性が不十分であることがわかる。
As shown in Table 4, in Examples 13 to 16, it has a structural unit in which a secondary amino group is added to the maleimide structure, so that elution of the polymer can be suppressed and the durability of antimicrobial performance is excellent. . On the other hand, Comparative Examples 7 to 8 have a structural unit in which a tertiary amino group is added to the maleimide structure, so that the elution of the polymer may result in insufficient antimicrobial performance durability. Recognize.
(実施例17)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,6-ヘキサンジアミン5.97gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で20時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,800)を得た(重合体15)。得られた重合体15のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 17)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.97 g of N-cyclohexyl-1,6-hexanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 20 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,800) (polymer 15). The polymer 15 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,6-ヘキサンジアミン5.97gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で20時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,800)を得た(重合体15)。得られた重合体15のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 17)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.97 g of N-cyclohexyl-1,6-hexanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 20 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,800) (polymer 15). The polymer 15 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体15を1gとテトラヒドロフラン4gとを混合して、20重量%のポリマー溶液を作製した。5cm×5cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)表面に、作製したポリマー溶液を滴下し、スピンコーター(ミカサ株式会社製)を用いてコートした後、一晩風乾させて溶媒を除去し、重合体15をコートした試験フィルムを作製した。クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)およびペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表5に示す。
1 g of the resulting polymer 15 and 4 g of tetrahydrofuran were mixed to prepare a 20 wt% polymer solution. The prepared polymer solution was dropped onto the surface of a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 5 cm, and coated with a spin coater (Mikasa Co., Ltd.) overnight. The solvent was removed by air drying, and a test film coated with polymer 15 was produced. In a clean bench, the test film was sterilized by irradiating both sides of the test film with an ultraviolet lamp for 5 minutes per side. A sterilized test film was used for evaluation of mold resistance. The antifungal property was evaluated for Aspergillus niger, Penicillium pinofilm, and Paecilomyces variotii. The results are shown in Table 5.
(実施例18)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,8-オクタンジアミン6.82gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で20時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量7,300)を得た(重合体16)。得られた重合体16のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 18)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.82 g of N-cyclohexyl-1,8-octanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 20 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 7,300) (polymer 16). The polymer 16 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of amide and the detection of the absorption peak due to the carbonyl group of imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,8-オクタンジアミン6.82gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で20時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量7,300)を得た(重合体16)。得られた重合体16のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 18)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 6.82 g of N-cyclohexyl-1,8-octanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 20 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 7,300) (polymer 16). The polymer 16 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of amide and the detection of the absorption peak due to the carbonyl group of imide were confirmed.
重合体15に代えて上記で得られた重合体16を用いたこと以外は、実施例17と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 17 except that the polymer 16 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
(実施例19)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-(tert-ブチル)-1,3-プロパンジアミン5.86gとテトラヒドロフラン40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量5,600)を得た(重合体17)。得られた重合体17のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 19)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.86 g of N- (tert-butyl) -1,3-propanediamine and 40.00 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 5,600) (polymer 17). The polymer 17 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))7.5gと、テトラヒドロフラン(和光純薬工業株式会社製)200.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-(tert-ブチル)-1,3-プロパンジアミン5.86gとテトラヒドロフラン40.00gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量5,600)を得た(重合体17)。得られた重合体17のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 19)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 7.5 g and tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) 200.0 g were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.86 g of N- (tert-butyl) -1,3-propanediamine and 40.00 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 5,600) (polymer 17). The polymer 17 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
重合体15に代えて上記で得られた重合体17を用いたこと以外は、実施例17と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 17 except that the polymer 17 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
(実施例20)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-(2-エチルヘキシル)-1,3-プロパンジアミン5.69gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,600)を得た(重合体18)。得られた重合体18のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 20)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.69 g of N- (2-ethylhexyl) -1,3-propanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,600) (polymer 18). The polymer 18 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-(2-エチルヘキシル)-1,3-プロパンジアミン5.69gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,600)を得た(重合体18)。得られた重合体18のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 20)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.69 g of N- (2-ethylhexyl) -1,3-propanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,600) (polymer 18). The polymer 18 thus obtained was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group and the detection of the absorption peak due to the carbonyl group of the imide.
重合体15に代えて上記で得られた重合体18を用いたこと以外は、実施例17と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 17 except that the polymer 18 obtained above was used in place of the polymer 15, and an antifungal property was evaluated. The results are shown in Table 5.
(実施例21)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ノルマルヘキシル-1,3-プロパンジアミン5.00gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,100)を得た(重合体19)。得られた重合体19のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 21)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.00 g of N-normalhexyl-1,3-propanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 19). The obtained polymer 19 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-ノルマルヘキシル-1,3-プロパンジアミン5.00gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量6,100)を得た(重合体19)。得られた重合体19のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 21)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 5.00 g of N-normalhexyl-1,3-propanediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 6,100) (polymer 19). The obtained polymer 19 was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
得られた重合体19を1.5g、PTFEシート(東京硝子器械株式会社製、2016年度カタログの479ページの商品コード0638179711、厚さ50μm)二枚の間に挟み、さらにステンレス板2枚で挟み込み、熱プレス機(アズワン株式会社製AH-2003)でプレス(220℃、20MPa、15分間)して、試験フィルムを作製した。試験フィルムを、キムワイプ(登録商標)で水拭きした後、キムワイプ(登録商標)で乾拭きした。その後、クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを、抗菌性評価および防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)およびペシロマイセス・バリオッティ(Paecilomyces variotii)について行った。結果を表5に示す。
1.5 g of the obtained polymer 19 is sandwiched between two PTFE sheets (manufactured by Tokyo Glass Instrument Co., Ltd., product code 0638817711, thickness of 50 μm on page 479 of the 2016 catalog), and further sandwiched between two stainless plates Then, a test film was produced by pressing (220 ° C., 20 MPa, 15 minutes) with a hot press machine (AH-2003, manufactured by ASONE CORPORATION). The test film was wiped with Kimwipe (registered trademark) and then wiped dry with Kimwipe (registered trademark). Thereafter, in the clean bench, both sides of the test film were irradiated with an ultraviolet lamp for 5 minutes per side to sterilize the test film. Sterilized test films were used for antibacterial evaluation and antifungal evaluation. The antifungal property was evaluated for Aspergillus niger, Penicillium pinofilm, and Paecilomyces variotii. The results are shown in Table 5.
(実施例22)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、エチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量10万、エチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)13.9gとN,N-ジメチルホルムアミド86.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量209,600)を得た(重合体20)。得られた重合体20のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 22)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an ethylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 100,000, ethylene: maleic anhydride = 1: 1 (molar ratio) )) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 13.9 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 86.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 209,600) (polymer 20). The polymer 20 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、エチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量10万、エチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)13.9gとN,N-ジメチルホルムアミド86.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量209,600)を得た(重合体20)。得られた重合体20のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 22)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, an ethylene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 100,000, ethylene: maleic anhydride = 1: 1 (molar ratio) )) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 13.9 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 86.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration and cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 209,600) (polymer 20). The polymer 20 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide carbonyl group and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
重合体19に代えて上記で得られた重合体20を用いたこと以外は、実施例21と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 21 except that the polymer 20 obtained above was used in place of the polymer 19, and an antifungal property was evaluated. The results are shown in Table 5.
(実施例23)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(クラレ株式会社製イソバン#06、重量平均分子量8万、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)11.4gとN,N-ジメチルホルムアミド70.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量151,800)を得た(重合体21)。得られた重合体21のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 23)
To a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (Isoban # 06, Kuraray Co., Ltd., weight average molecular weight 80,000, isobutylene: maleic anhydride = 1: 1 ( Mole ratio)) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 11.4 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 70.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 151,800) (polymer 21). The obtained polymer 21 was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(クラレ株式会社製イソバン#06、重量平均分子量8万、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)11.4gとN,N-ジメチルホルムアミド70.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量151,800)を得た(重合体21)。得られた重合体21のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 23)
To a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (Isoban # 06, Kuraray Co., Ltd., weight average molecular weight 80,000, isobutylene: maleic anhydride = 1: 1 ( Mole ratio)) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 11.4 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 70.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 151,800) (polymer 21). The obtained polymer 21 was subjected to FT-IR analysis to confirm the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide.
重合体19に代えて上記で得られた重合体21を用いたこと以外は、実施例21と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 21 except that the polymer 21 obtained above was used in place of the polymer 19, and the antifungal property was evaluated. The results are shown in Table 5.
(実施例24)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(クラレ株式会社製イソバン#10、重量平均分子量16万、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)11.4gとN,N-ジメチルホルムアミド70.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量303,500)を得た(重合体22)。得られた重合体22のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 24)
To a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (Isoban # 10 manufactured by Kuraray Co., Ltd., weight average molecular weight 160,000, isobutylene: maleic anhydride = 1: 1 ( Mole ratio)) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 11.4 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 70.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 303,500) (polymer 22). The polymer 22 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、イソブチレン-無水マレイン酸共重合体(クラレ株式会社製イソバン#10、重量平均分子量16万、イソブチレン:無水マレイン酸=1:1(モル比))10.0gと、N,N-ジメチルホルムアミド(和光純薬工業株式会社製)270.0gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシル-1,3-プロパンジアミン(東京化成工業株式会社製)11.4gとN,N-ジメチルホルムアミド70.0gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを100℃で6時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で6時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量303,500)を得た(重合体22)。得られた重合体22のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Example 24)
To a 500 ml four-necked flask equipped with a thermometer and a stirrer, an isobutylene-maleic anhydride copolymer (Isoban # 10 manufactured by Kuraray Co., Ltd., weight average molecular weight 160,000, isobutylene: maleic anhydride = 1: 1 ( Mole ratio)) 10.0 g and 27,0 g of N, N-dimethylformamide (Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 11.4 g of N-cyclohexyl-1,3-propanediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 70.0 g of N, N-dimethylformamide was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was collected by filtration with a vacuum filter, and the filter cake was vacuum-dried at 100 ° C. for 6 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 6 hours for dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 303,500) (polymer 22). The polymer 22 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
重合体19に代えて上記で得られた重合体22を用いたこと以外は、実施例21と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 21 except that the polymer 22 obtained above was used in place of the polymer 19, and an antifungal property was evaluated. The results are shown in Table 5.
(比較例9)
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシルエチレンジアミン4.33gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量5,800)を得た(重合体23)。得られた重合体23のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 9)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 4.33 g of N-cyclohexylethylenediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 5,800) (polymer 23). The polymer 23 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
温度計および撹拌装置を備えた500ml容の四つ口フラスコに、スチレン-無水マレイン酸共重合体(シグマ-アルドリッチ社製、重量平均分子量3,600、スチレン:無水マレイン酸=1:1(モル比))5.1gと、テトラヒドロフラン(和光純薬工業株式会社製)134.9gとを仕込み、撹拌して共重合体を溶解させた。溶液を撹拌しながら、25℃にてN-シクロヘキシルエチレンジアミン4.33gとテトラヒドロフラン26.90gとの混合物を溶液に滴下した。滴下終了後、析出物の一部を回収してFT-IR分析を実施した。FT-IR分析により、酸無水物のカルボニル基の吸収ピークの消失と、アミドのカルボニル基の吸収ピークの検出とを確認した。その後、溶液全量を減圧ろ過器でろ過回収し、ろ過ケーキを50℃で4時間真空乾燥し、溶媒を除去した。乾燥ケーキを150℃で10時間真空乾燥し脱水環化させて、マレイミド構造を有するポリマー(重量平均分子量5,800)を得た(重合体23)。得られた重合体23のFT-IR分析を実施し、アミドのカルボニル基の吸収ピーク消失と、イミドのカルボニル基に起因する吸収ピーク検出を確認した。 (Comparative Example 9)
Into a 500 ml four-necked flask equipped with a thermometer and a stirrer, a styrene-maleic anhydride copolymer (manufactured by Sigma-Aldrich, weight average molecular weight 3,600, styrene: maleic anhydride = 1: 1 (mol) Ratio)) 5.1 g and 134.9 g of tetrahydrofuran (manufactured by Wako Pure Chemical Industries, Ltd.) were charged and stirred to dissolve the copolymer. While stirring the solution, a mixture of 4.33 g of N-cyclohexylethylenediamine and 26.90 g of tetrahydrofuran was added dropwise to the solution at 25 ° C. After completion of the dropping, a part of the precipitate was collected and subjected to FT-IR analysis. The disappearance of the absorption peak of the carbonyl group of the acid anhydride and the detection of the absorption peak of the carbonyl group of the amide were confirmed by FT-IR analysis. Thereafter, the entire amount of the solution was recovered by filtration with a vacuum filter, and the filter cake was vacuum dried at 50 ° C. for 4 hours to remove the solvent. The dried cake was vacuum-dried at 150 ° C. for 10 hours and subjected to dehydration cyclization to obtain a polymer having a maleimide structure (weight average molecular weight 5,800) (polymer 23). The polymer 23 thus obtained was subjected to FT-IR analysis, and the disappearance of the absorption peak of the amide group of the amide and the detection of the absorption peak due to the carbonyl group of the imide were confirmed.
重合体19に代えて上記で得られた重合体23を用いたこと以外は、実施例21と同様にして試験フィルムを作製し、防カビ性評価を実施した。結果を表5に示す。
A test film was prepared in the same manner as in Example 21 except that the polymer 23 obtained above was used in place of the polymer 19, and the antifungal property was evaluated. The results are shown in Table 5.
表5に示されるように、実施例17~24の場合、R1が炭素数3~8のアルキレン基であるため、優れた抗微生物性能を発揮できることが分かる。これに対し、比較例9の場合、R1がエチレン基であるため、抗微生物性がないことが分かる。
As can be seen from Table 5, in Examples 17 to 24, R 1 is an alkylene group having 3 to 8 carbon atoms, so that excellent antimicrobial performance can be exhibited. In contrast, in Comparative Example 9, since R 1 is an ethylene group, it can be seen that there is no antimicrobial.
(実施例25)
重合体17を0.25gとアクリロニトリル-スチレン(AS)樹脂(シグマ-アルドリッチ社製、重量平均分子量165,000)を1.75gとテトラヒドロフランを8gとを混合して、重合体17とAS樹脂との20重量%混合ポリマー溶液(重合体17:AS樹脂=12.5:87.5(重量比))を作製した。作製した混合ポリマー溶液を、5cm×5cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)表面に滴下し、スピンコーター(ミカサ株式会社製)を用いてコートした後、一晩風乾させて溶媒を除去し、重合体17とAS樹脂との混合品をコートした試験フィルムを作製した。クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを防カビ性評価に用いた。防カビ性評価は、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表6に示す。 (Example 25)
0.25 g of polymer 17 and 1.75 g of acrylonitrile-styrene (AS) resin (manufactured by Sigma-Aldrich, weight average molecular weight 165,000) and 8 g of tetrahydrofuran were mixed together, and polymer 17 and AS resin were mixed. A 20% by weight mixed polymer solution (polymer 17: AS resin = 12.5: 87.5 (weight ratio)) was prepared. The prepared mixed polymer solution was dropped on the surface of a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 5 cm, and coated with a spin coater (Mikasa Co., Ltd.). The solvent was removed by air drying overnight, and a test film coated with a mixture of polymer 17 and AS resin was produced. In a clean bench, the test film was sterilized by irradiating both sides of the test film with an ultraviolet lamp for 5 minutes per side. A sterilized test film was used for evaluation of mold resistance. The fungicidal evaluation was performed on Penicillium pinofilm, Pecilomyces variotti and Cladosporium cladosporioides. The results are shown in Table 6.
重合体17を0.25gとアクリロニトリル-スチレン(AS)樹脂(シグマ-アルドリッチ社製、重量平均分子量165,000)を1.75gとテトラヒドロフランを8gとを混合して、重合体17とAS樹脂との20重量%混合ポリマー溶液(重合体17:AS樹脂=12.5:87.5(重量比))を作製した。作製した混合ポリマー溶液を、5cm×5cmにカットしたPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)表面に滴下し、スピンコーター(ミカサ株式会社製)を用いてコートした後、一晩風乾させて溶媒を除去し、重合体17とAS樹脂との混合品をコートした試験フィルムを作製した。クリーンベンチ内で、試験フィルム両面を、片面あたり5分間、紫外線ランプで照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムを防カビ性評価に用いた。防カビ性評価は、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)およびクラドスポリウム・クラドスポリオイデス(Cladosporium cladosporioides)について行った。結果を表6に示す。 (Example 25)
0.25 g of polymer 17 and 1.75 g of acrylonitrile-styrene (AS) resin (manufactured by Sigma-Aldrich, weight average molecular weight 165,000) and 8 g of tetrahydrofuran were mixed together, and polymer 17 and AS resin were mixed. A 20% by weight mixed polymer solution (polymer 17: AS resin = 12.5: 87.5 (weight ratio)) was prepared. The prepared mixed polymer solution was dropped on the surface of a PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 5 cm, and coated with a spin coater (Mikasa Co., Ltd.). The solvent was removed by air drying overnight, and a test film coated with a mixture of polymer 17 and AS resin was produced. In a clean bench, the test film was sterilized by irradiating both sides of the test film with an ultraviolet lamp for 5 minutes per side. A sterilized test film was used for evaluation of mold resistance. The fungicidal evaluation was performed on Penicillium pinofilm, Pecilomyces variotti and Cladosporium cladosporioides. The results are shown in Table 6.
表6に示されるように、本発明に係るマレイミド構造を有するポリマーと樹脂とを含む樹脂成形体は、優れた抗微生物性能を発揮できることが分かる。
As shown in Table 6, it can be seen that the resin molded body containing the polymer having a maleimide structure and a resin according to the present invention can exhibit excellent antimicrobial performance.
(実施例26)
実施例1で得られた重合体1を5.0gと純水17.7gと酢酸0.9gとを混合し、25重量%重合体1の中和塩水溶液を調製した。次いでアニオン性の水系アクリルエマルション(株式会社日本触媒製、アクリセットEF-165)を1.0gと、上記の中和塩水溶液を0.5gと、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(CS-12、JNC株式会社製)を0.08gとを混合し、重合体1の中和塩の濃度がコート液全体に対して7.9重量%となるコート液を調製した。5cm×10cmに裁断したPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)上に、バーコーターを用いてコート液をコートし、自然乾燥を6時間、55℃設定の熱風乾燥機内で16時間保持して塗膜を固化させて、試験フィルムを作製した。試験フィルムに含まれる重合体1の中和塩の含有量は、20重量%であった。試験フィルムを1cm×5cmに裁断した。裁断した試験フィルムを40mlの水に一晩浸漬し、その後純水でかけ洗いを実施した後、自然乾燥させた。フィルム両面を、片面あたり5分間、紫外線ランプを照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムのコート面を、防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)、トリコデルマ・ビレンス(Trichoderma virens)およびケトミウム・グロボサム(Chaetomium globosum)の胞子の混合液を用いて実施した。結果を表7に示す。 (Example 26)
5.0 g of the polymer 1 obtained in Example 1, 17.7 g of pure water, and 0.9 g of acetic acid were mixed to prepare a 25 wt% neutralized salt aqueous solution of the polymer 1. Next, 1.0 g of an anionic aqueous acrylic emulsion (manufactured by Nippon Shokubai Co., Ltd., Acryset EF-165), 0.5 g of the above neutralized salt aqueous solution, 2,2,4-trimethyl-1,3- A coating solution in which 0.08 g of pentanediol monoisobutyrate (CS-12, manufactured by JNC Corporation) is mixed and the concentration of the neutralized salt of polymer 1 is 7.9% by weight with respect to the entire coating solution. Was prepared. A PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 10 cm is coated with a coating solution using a bar coater, and naturally dried for 6 hours in a hot air dryer set at 55 ° C. The test film was produced by holding for 16 hours to solidify the coating film. The content of the neutralized salt of polymer 1 contained in the test film was 20% by weight. The test film was cut into 1 cm × 5 cm. The cut test film was immersed in 40 ml of water overnight, then washed with pure water and then naturally dried. The test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side. The coated surface of the sterilized test film was used for evaluation of mold resistance. The antifungal evaluation is aspergillus niger (Penicillium pinophyllum), Paecilomyces variotium (Trichoderma bilomis) It implemented using the liquid mixture. The results are shown in Table 7.
実施例1で得られた重合体1を5.0gと純水17.7gと酢酸0.9gとを混合し、25重量%重合体1の中和塩水溶液を調製した。次いでアニオン性の水系アクリルエマルション(株式会社日本触媒製、アクリセットEF-165)を1.0gと、上記の中和塩水溶液を0.5gと、2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレート(CS-12、JNC株式会社製)を0.08gとを混合し、重合体1の中和塩の濃度がコート液全体に対して7.9重量%となるコート液を調製した。5cm×10cmに裁断したPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)上に、バーコーターを用いてコート液をコートし、自然乾燥を6時間、55℃設定の熱風乾燥機内で16時間保持して塗膜を固化させて、試験フィルムを作製した。試験フィルムに含まれる重合体1の中和塩の含有量は、20重量%であった。試験フィルムを1cm×5cmに裁断した。裁断した試験フィルムを40mlの水に一晩浸漬し、その後純水でかけ洗いを実施した後、自然乾燥させた。フィルム両面を、片面あたり5分間、紫外線ランプを照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムのコート面を、防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)、トリコデルマ・ビレンス(Trichoderma virens)およびケトミウム・グロボサム(Chaetomium globosum)の胞子の混合液を用いて実施した。結果を表7に示す。 (Example 26)
5.0 g of the polymer 1 obtained in Example 1, 17.7 g of pure water, and 0.9 g of acetic acid were mixed to prepare a 25 wt% neutralized salt aqueous solution of the polymer 1. Next, 1.0 g of an anionic aqueous acrylic emulsion (manufactured by Nippon Shokubai Co., Ltd., Acryset EF-165), 0.5 g of the above neutralized salt aqueous solution, 2,2,4-trimethyl-1,3- A coating solution in which 0.08 g of pentanediol monoisobutyrate (CS-12, manufactured by JNC Corporation) is mixed and the concentration of the neutralized salt of polymer 1 is 7.9% by weight with respect to the entire coating solution. Was prepared. A PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 10 cm is coated with a coating solution using a bar coater, and naturally dried for 6 hours in a hot air dryer set at 55 ° C. The test film was produced by holding for 16 hours to solidify the coating film. The content of the neutralized salt of polymer 1 contained in the test film was 20% by weight. The test film was cut into 1 cm × 5 cm. The cut test film was immersed in 40 ml of water overnight, then washed with pure water and then naturally dried. The test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side. The coated surface of the sterilized test film was used for evaluation of mold resistance. The antifungal evaluation is aspergillus niger (Penicillium pinophyllum), Paecilomyces variotium (Trichoderma bilomis) It implemented using the liquid mixture. The results are shown in Table 7.
(実施例27)
実施例1で得られた重合体1を1.0gと純水1.8gと酢酸0.18gとを混合し、40重量%重合体1の中和塩水溶液を調製した。次いでノニオン性の水系アクリルエマルション(株式会社日本触媒製、アクリセットES-970E)を1.0gと、上記の中和塩水溶液を0.01gとを混合し、重合体1の中和塩の濃度がコート液全体に対して0.4重量%となるコート液を調製した。実施例26で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例26と同様にして試験フィルムを作製して、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、1重量%であった。結果を表7に示す。 (Example 27)
1.0 g of the polymer 1 obtained in Example 1, 1.8 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 40% by weight neutralized salt aqueous solution of the polymer 1. Next, 1.0 g of a nonionic water-based acrylic emulsion (manufactured by Nippon Shokubai Co., Ltd., Acryset ES-970E) and 0.01 g of the above neutralized salt aqueous solution are mixed, and the concentration of the neutralized salt of the polymer 1 is mixed. Was prepared to be 0.4% by weight based on the entire coating solution. A test film was prepared in the same manner as in Example 26 except that the prepared coating liquid was used instead of the coating liquid used in Example 26, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 1% by weight. The results are shown in Table 7.
実施例1で得られた重合体1を1.0gと純水1.8gと酢酸0.18gとを混合し、40重量%重合体1の中和塩水溶液を調製した。次いでノニオン性の水系アクリルエマルション(株式会社日本触媒製、アクリセットES-970E)を1.0gと、上記の中和塩水溶液を0.01gとを混合し、重合体1の中和塩の濃度がコート液全体に対して0.4重量%となるコート液を調製した。実施例26で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例26と同様にして試験フィルムを作製して、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、1重量%であった。結果を表7に示す。 (Example 27)
1.0 g of the polymer 1 obtained in Example 1, 1.8 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 40% by weight neutralized salt aqueous solution of the polymer 1. Next, 1.0 g of a nonionic water-based acrylic emulsion (manufactured by Nippon Shokubai Co., Ltd., Acryset ES-970E) and 0.01 g of the above neutralized salt aqueous solution are mixed, and the concentration of the neutralized salt of the polymer 1 is mixed. Was prepared to be 0.4% by weight based on the entire coating solution. A test film was prepared in the same manner as in Example 26 except that the prepared coating liquid was used instead of the coating liquid used in Example 26, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 1% by weight. The results are shown in Table 7.
(実施例28)
実施例1で得られた重合体1を1.0gと純水10.62gと酢酸0.18gとを混合し、10重量%重合体1の中和塩水溶液を調製した。次いで水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス201HQ)を1.0gと、上記の中和塩水溶液を0.29gとを混合し、重合体1の中和塩の濃度がコート液全体に対して2.2重量%となるコート液を調製した。5cm×10cmに裁断したPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)上に、バーコーターを用いてコート液をコートし、一晩自然乾燥させて塗膜を固化させて、試験フィルムを作製した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。試験フィルムを2cm×5cmに裁断した。裁断した試験フィルムを50℃の温水50mlに一晩浸漬し、その後純水でかけ洗いを実施した後、自然乾燥させた。フィルム両面を、片面あたり5分間、紫外線ランプを照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムのコート面を、防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)、トリコデルマ・ビレンス(Trichoderma virens)およびケトミウム・グロボスム(Chaetomium globosum)の胞子の混合液を用いて実施した。結果を表7に示す。 (Example 28)
1.0 g of the polymer 1 obtained in Example 1, 10.62 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 10% by weight neutralized aqueous salt solution of the polymer 1. Next, 1.0 g of a water-based ethylene-vinyl acetate copolymer emulsion (manufactured by Sumika Chemtex Co., Ltd., Sumikaflex 201HQ) and 0.29 g of the above neutralized salt aqueous solution are mixed, and the neutralized salt of polymer 1 is mixed. A coating solution having a concentration of 2.2% by weight with respect to the entire coating solution was prepared. A PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 10 cm is coated with a coating solution using a bar coater, and air-dried overnight to solidify the coating. A film was prepared. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The test film was cut into 2 cm × 5 cm. The cut test film was immersed in 50 ml of warm water at 50 ° C. overnight, then washed with pure water and then naturally dried. The test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side. The coated surface of the sterilized test film was used for evaluation of mold resistance. Aspergillus niger (Aspergillus niger), Penicillium pinofilm (Pecilomyces variotium), Trichoderma bilomis (Trichoderma bilomis) It implemented using the liquid mixture. The results are shown in Table 7.
実施例1で得られた重合体1を1.0gと純水10.62gと酢酸0.18gとを混合し、10重量%重合体1の中和塩水溶液を調製した。次いで水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス201HQ)を1.0gと、上記の中和塩水溶液を0.29gとを混合し、重合体1の中和塩の濃度がコート液全体に対して2.2重量%となるコート液を調製した。5cm×10cmに裁断したPETフィルム(東洋紡株式会社製、コスモシャインA4100、厚さ100μm)上に、バーコーターを用いてコート液をコートし、一晩自然乾燥させて塗膜を固化させて、試験フィルムを作製した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。試験フィルムを2cm×5cmに裁断した。裁断した試験フィルムを50℃の温水50mlに一晩浸漬し、その後純水でかけ洗いを実施した後、自然乾燥させた。フィルム両面を、片面あたり5分間、紫外線ランプを照射して、試験フィルムを滅菌した。滅菌済みの試験フィルムのコート面を、防カビ性評価に用いた。防カビ性評価は、アスペルギルス・ニゲル(Aspergillus niger)、ペニシリウム・ピノフィルム(Penicillium pinophilum)、ペシロマイセス・バリオッティ(Paecilomyces variotii)、トリコデルマ・ビレンス(Trichoderma virens)およびケトミウム・グロボスム(Chaetomium globosum)の胞子の混合液を用いて実施した。結果を表7に示す。 (Example 28)
1.0 g of the polymer 1 obtained in Example 1, 10.62 g of pure water, and 0.18 g of acetic acid were mixed to prepare a 10% by weight neutralized aqueous salt solution of the polymer 1. Next, 1.0 g of a water-based ethylene-vinyl acetate copolymer emulsion (manufactured by Sumika Chemtex Co., Ltd., Sumikaflex 201HQ) and 0.29 g of the above neutralized salt aqueous solution are mixed, and the neutralized salt of polymer 1 is mixed. A coating solution having a concentration of 2.2% by weight with respect to the entire coating solution was prepared. A PET film (Toyobo Co., Ltd., Cosmo Shine A4100, thickness 100 μm) cut to 5 cm × 10 cm is coated with a coating solution using a bar coater, and air-dried overnight to solidify the coating. A film was prepared. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The test film was cut into 2 cm × 5 cm. The cut test film was immersed in 50 ml of warm water at 50 ° C. overnight, then washed with pure water and then naturally dried. The test film was sterilized by irradiating both sides of the film with an ultraviolet lamp for 5 minutes per side. The coated surface of the sterilized test film was used for evaluation of mold resistance. Aspergillus niger (Aspergillus niger), Penicillium pinofilm (Pecilomyces variotium), Trichoderma bilomis (Trichoderma bilomis) It implemented using the liquid mixture. The results are shown in Table 7.
(実施例29)
重合体1の中和塩の濃度がコート液全体に対して2.2重量%となるように、水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス400HQ)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.29gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 29)
1.0 g of water-based ethylene-vinyl acetate copolymer emulsion (Sumikaflex 400HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.2% by weight with respect to the entire coating solution. Was mixed with 0.29 g of a 10% by weight neutralized salt aqueous solution of polymer 1 prepared in Example 28 to prepare a coating solution. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して2.2重量%となるように、水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス400HQ)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.29gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 29)
1.0 g of water-based ethylene-vinyl acetate copolymer emulsion (Sumikaflex 400HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.2% by weight with respect to the entire coating solution. Was mixed with 0.29 g of a 10% by weight neutralized salt aqueous solution of polymer 1 prepared in Example 28 to prepare a coating solution. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
(実施例30)
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス752)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.26gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 30)
1.0 g of an aqueous ethylene-vinyl acetate copolymer emulsion (Sumikaflex 752 manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. And 0.26 g of a 10% by weight neutralized aqueous solution of polymer 1 prepared in Example 28 were mixed to prepare a coating solution. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、水系エチレン-酢酸ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス752)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.26gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 30)
1.0 g of an aqueous ethylene-vinyl acetate copolymer emulsion (Sumikaflex 752 manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. And 0.26 g of a 10% by weight neutralized aqueous solution of polymer 1 prepared in Example 28 were mixed to prepare a coating solution. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
(実施例31)
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、水系エチレン-酢酸ビニル-塩化ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス808HQ)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.27gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 31)
Water-based ethylene-vinyl acetate-vinyl chloride copolymer emulsion (Sumikaflex 808HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 1.0 g and 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、水系エチレン-酢酸ビニル-塩化ビニル共重合体エマルション(住化ケムテックス株式会社製、スミカフレックス808HQ)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.27gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 31)
Water-based ethylene-vinyl acetate-vinyl chloride copolymer emulsion (Sumikaflex 808HQ, manufactured by Sumika Chemtex Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 1.0 g and 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
(実施例32)
重合体1の中和塩の濃度がコート液全体に対して1.4重量%となるように、弱アニオン性水系ウレタンエマルション(第一工業製薬株式会社製、スーパーフレックス300)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.16gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 32)
1.0 g of weak anionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 300) so that the concentration of the neutralized salt of polymer 1 is 1.4% by weight with respect to the entire coating solution, A coating solution was prepared by mixing 0.16 g of the 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して1.4重量%となるように、弱アニオン性水系ウレタンエマルション(第一工業製薬株式会社製、スーパーフレックス300)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.16gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 32)
1.0 g of weak anionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 300) so that the concentration of the neutralized salt of polymer 1 is 1.4% by weight with respect to the entire coating solution, A coating solution was prepared by mixing 0.16 g of the 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
(実施例33)
重合体1の中和塩の濃度がコート液全体に対して1.9重量%となるように、ノニオン性水系ウレタンエマルション(第一工業製薬株式会社製、スーパーフレックス500M)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.24gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 33)
Implementation with 1.0 g of nonionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 500M) so that the concentration of the neutralized salt of polymer 1 is 1.9% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 0.24 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して1.9重量%となるように、ノニオン性水系ウレタンエマルション(第一工業製薬株式会社製、スーパーフレックス500M)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.24gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 33)
Implementation with 1.0 g of nonionic aqueous urethane emulsion (Daiichi Kogyo Seiyaku Co., Ltd., Superflex 500M) so that the concentration of the neutralized salt of polymer 1 is 1.9% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 0.24 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
(実施例34)
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、ノニオン性水系ウレタンエマルション(第一工業製薬株式会社製のスーパーフレックスE-2000)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.27gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 34)
1.0 g of nonionic water-based urethane emulsion (Superflex E-2000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
重合体1の中和塩の濃度がコート液全体に対して2.1重量%となるように、ノニオン性水系ウレタンエマルション(第一工業製薬株式会社製のスーパーフレックスE-2000)1.0gと、実施例28で調製した10重量%重合体1の中和塩水溶液0.27gとを混合して、コート液を調製した。実施例28で使用したコート液に代えて、調製した前記コート液を用いたこと以外は、実施例28と同様にして試験フィルムを作製し、防カビ性評価を実施した。試験フィルムに含まれる重合体1の中和塩の含有量は、5重量%であった。結果を表7に示す。 (Example 34)
1.0 g of nonionic water-based urethane emulsion (Superflex E-2000 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) so that the concentration of the neutralized salt of polymer 1 is 2.1% by weight with respect to the entire coating solution. A coating solution was prepared by mixing 0.27 g of a 10 wt% polymer 1 neutralized salt aqueous solution prepared in Example 28. A test film was produced in the same manner as in Example 28 except that the prepared coating liquid was used instead of the coating liquid used in Example 28, and the antifungal property was evaluated. The content of the neutralized salt of polymer 1 contained in the test film was 5% by weight. The results are shown in Table 7.
表7に示されるように、本発明に係るマレイミド構造単位を有するポリマーは、2級アミノ基が中和塩となっていても、優れた抗微生物を発揮できることが分かる。
As shown in Table 7, it can be seen that the polymer having a maleimide structural unit according to the present invention can exert excellent antimicrobial activity even when the secondary amino group is a neutralized salt.
本出願は、2016年9月29日に出願された日本特許出願番号2016-191846号に基づいており、その開示内容は、参照され、全体として、組み入れられている。
This application is based on Japanese Patent Application No. 2016-191846 filed on Sep. 29, 2016, the disclosure of which is incorporated by reference in its entirety.
Claims (11)
- 下記式(1):
で表される構造単位を有するポリマーを含む、抗微生物剤。 Following formula (1):
The antimicrobial agent containing the polymer which has a structural unit represented by these. - 請求項1に記載の抗微生物剤、および樹脂を含む組成物。 A composition comprising the antimicrobial agent according to claim 1 and a resin.
- 請求項1に記載の抗微生物剤、または請求項2に記載の組成物を含む、樹脂成形体。 A resin molded article comprising the antimicrobial agent according to claim 1 or the composition according to claim 2.
- (a)下記式(1):
で表される構造単位を有するポリマーまたは前記式(1)で表される構造単位を有するポリマーを含む抗微生物剤と微生物とを接触させる工程、および(b)前記式(1)で表される構造単位を有するポリマーまたは前記抗微生物剤と樹脂または物品とを接触させる工程から選択される少なくとも1つの工程を含む、微生物の増殖を抑制する方法。 (A) The following formula (1):
A step of contacting a microorganism with an antimicrobial agent comprising a polymer having a structural unit represented by formula (1) or a polymer having a structural unit represented by formula (1), and (b) represented by formula (1) A method for inhibiting microbial growth, comprising at least one step selected from a step of bringing a polymer having a structural unit or the antimicrobial agent into contact with a resin or an article. - 前記(a)および(b)の工程において、前記式(1)で表されるポリマーが樹脂を含む組成物に含まれる、請求項4に記載の方法。 The method according to claim 4, wherein in the steps (a) and (b), the polymer represented by the formula (1) is contained in a composition containing a resin.
- 前記樹脂が熱可塑性樹脂、エラストマーおよび光硬化性樹脂から選択される、請求項5に記載の方法。 6. The method of claim 5, wherein the resin is selected from a thermoplastic resin, an elastomer, and a photocurable resin.
- 下記式(1):
で表される構造単位を有するポリマーの抗微生物剤としての使用。 Following formula (1):
Use of a polymer having a structural unit represented by the formula: - 前記式(1)で表されるポリマーが樹脂を含む組成物に含まれる、請求項7に記載の使用。 The use according to claim 7, wherein the polymer represented by the formula (1) is contained in a composition containing a resin.
- 前記樹脂が熱可塑性樹脂、エラストマーおよび光硬化性樹脂から選択される、請求項8に記載の使用。 Use according to claim 8, wherein the resin is selected from thermoplastic resins, elastomers and photo-curable resins.
- 前記式(1)で表されるポリマーが樹脂成形体に含まれる、請求項7に記載の使用。 The use according to claim 7, wherein the polymer represented by the formula (1) is contained in a resin molded body.
- 前記樹脂成形体が熱可塑性樹脂、エラストマーおよび光硬化性樹脂からなる群から選択される樹脂を含む、請求項10に記載の使用。 The use according to claim 10, wherein the resin molding includes a resin selected from the group consisting of a thermoplastic resin, an elastomer, and a photocurable resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018542960A JP6730439B2 (en) | 2016-09-29 | 2017-09-29 | Antimicrobial Agent Containing Polymer Having Maleimide Structural Unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-191846 | 2016-09-29 | ||
JP2016191846 | 2016-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018062529A1 true WO2018062529A1 (en) | 2018-04-05 |
Family
ID=61759914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035639 WO2018062529A1 (en) | 2016-09-29 | 2017-09-29 | Antimicrobial agent containing polymer having maleimide structure unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6730439B2 (en) |
WO (1) | WO2018062529A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023183954A1 (en) * | 2022-03-24 | 2023-09-28 | Stellenbosch University | An aqueous antimicrobial polymer dispersion |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4416668A (en) * | 1978-10-25 | 1983-11-22 | Petrolite Corporation | Antistatic agents for organic liquids |
JPH06322259A (en) * | 1993-05-14 | 1994-11-22 | Dai Ichi Kogyo Seiyaku Co Ltd | Thermoplastic resin composition |
JPH0841262A (en) * | 1994-08-01 | 1996-02-13 | Tonen Chem Corp | Thermoplastic resin composition |
JPH09255843A (en) * | 1996-03-26 | 1997-09-30 | Dai Ichi Kogyo Seiyaku Co Ltd | Antimicrobial resin composition |
JP2002510341A (en) * | 1997-04-25 | 2002-04-02 | アイエスピー インヴェストメンツ インコーポレイテッド | Method for producing maleic anhydride polymer containing maleamic acid and / or cyclic imide repeating unit thereof |
JP2002517786A (en) * | 1998-06-03 | 2002-06-18 | コダック ポリクロム グラフィックス カンパニー リミテッド | Lithographic printing plate precursor |
JP2006124592A (en) * | 2004-10-29 | 2006-05-18 | Kaneka Corp | Imide resin and resin composition thereof |
JP2013518964A (en) * | 2010-02-04 | 2013-05-23 | ステレンボッシュ ユニバーシティ | Antimicrobial polymer compound and fiber thereof |
JP2016014794A (en) * | 2014-07-02 | 2016-01-28 | 株式会社日本触媒 | Optical film, polarizing plate including the same, and image display device |
-
2017
- 2017-09-29 WO PCT/JP2017/035639 patent/WO2018062529A1/en active Application Filing
- 2017-09-29 JP JP2018542960A patent/JP6730439B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4416668A (en) * | 1978-10-25 | 1983-11-22 | Petrolite Corporation | Antistatic agents for organic liquids |
JPH06322259A (en) * | 1993-05-14 | 1994-11-22 | Dai Ichi Kogyo Seiyaku Co Ltd | Thermoplastic resin composition |
JPH0841262A (en) * | 1994-08-01 | 1996-02-13 | Tonen Chem Corp | Thermoplastic resin composition |
JPH09255843A (en) * | 1996-03-26 | 1997-09-30 | Dai Ichi Kogyo Seiyaku Co Ltd | Antimicrobial resin composition |
JP2002510341A (en) * | 1997-04-25 | 2002-04-02 | アイエスピー インヴェストメンツ インコーポレイテッド | Method for producing maleic anhydride polymer containing maleamic acid and / or cyclic imide repeating unit thereof |
JP2002517786A (en) * | 1998-06-03 | 2002-06-18 | コダック ポリクロム グラフィックス カンパニー リミテッド | Lithographic printing plate precursor |
JP2006124592A (en) * | 2004-10-29 | 2006-05-18 | Kaneka Corp | Imide resin and resin composition thereof |
JP2013518964A (en) * | 2010-02-04 | 2013-05-23 | ステレンボッシュ ユニバーシティ | Antimicrobial polymer compound and fiber thereof |
JP2016014794A (en) * | 2014-07-02 | 2016-01-28 | 株式会社日本触媒 | Optical film, polarizing plate including the same, and image display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023183954A1 (en) * | 2022-03-24 | 2023-09-28 | Stellenbosch University | An aqueous antimicrobial polymer dispersion |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018062529A1 (en) | 2019-06-24 |
JP6730439B2 (en) | 2020-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Tunable pH and temperature response of weak polyelectrolyte brushes: role of hydrogen bonding and monomer hydrophobicity | |
Gratzl et al. | Antimicrobial activity of poly (acrylic acid) block copolymers | |
Chen et al. | Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group | |
Bastarrachea et al. | Antimicrobial coatings with dual cationic and N-halamine character: characterization and biocidal efficacy | |
US11459445B2 (en) | Composition and molded body | |
Shekh et al. | Electrospun nanofibers of poly (NPEMA-co.-CMPMA): used as heavy metal ion remover and water sanitizer | |
Lepoittevin et al. | Antibacterial surfaces obtained through dopamine and fluorination functionalizations | |
KR20040002694A (en) | Polymer resin formulation having anti-microbial or anti-cogulability and preparation method thereof | |
JP2017206441A (en) | Bactericidal composition | |
Muhamad et al. | Characterization and evaluation of antibacterial properties of polyacrylamide based hydrogel containing magnesium oxide nanoparticles | |
CN111944233A (en) | Antibacterial thermoplastic resin composition and preparation method and application thereof | |
JP6730439B2 (en) | Antimicrobial Agent Containing Polymer Having Maleimide Structural Unit | |
Chen et al. | Cooperative enhancement of fungal repelling performance by surface photografting of stereochemical bi-molecules | |
JP2000506154A (en) | Use of polymers as insecticides | |
CN1361796A (en) | Method for producing inherently microbicidal polymer surfaces | |
EP3927762A1 (en) | Contact-active antibacterial polymeric materials | |
JP2003509546A (en) | Copolymer of acryloylaminoalkyl compound | |
DE19921895A1 (en) | Antimicrobial copolymer for medical and hygiene articles, varnishes, paints and coatings comprises monomers with an ester group(s) and a tert. amino group(s) and monomers having an amino group(s) | |
Sisti et al. | Antibacterial coatings on poly (fluoroethylenepropylene) films via grafting of 3-hexadecyl-1-vinylimidazolium bromide | |
US20040076674A1 (en) | Method for thermally assisted antimicrobial surface treatment | |
Sadeghi et al. | One-step UV-curable ligand copolymer coatings as non-migratory antioxidant packaging | |
Sadeghi et al. | Ultraviolet-cured p-phenylenediamine functionalized polypropylene film as a non-migratory antioxidant | |
JPH10101746A (en) | Production of grafted polyolefin | |
EP1183288A1 (en) | Microbicidal copolymers | |
Jayanthi et al. | BSA ADSORPTION, ANTIBIOFILM, AND ANTIBIOFOULING BEHAVIOR OF POLY (N-TERT-AMYLACRYLAMIDE-CO-ACRYLAMIDE/AMPSNa) HYDROGELS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17856476 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018542960 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17856476 Country of ref document: EP Kind code of ref document: A1 |