WO2018061259A1 - Can forming device - Google Patents
Can forming device Download PDFInfo
- Publication number
- WO2018061259A1 WO2018061259A1 PCT/JP2017/011791 JP2017011791W WO2018061259A1 WO 2018061259 A1 WO2018061259 A1 WO 2018061259A1 JP 2017011791 W JP2017011791 W JP 2017011791W WO 2018061259 A1 WO2018061259 A1 WO 2018061259A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shaft
- bearing
- sub
- main shaft
- turntable
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/20—Deep-drawing
- B21D22/28—Deep-drawing of cylindrical articles using consecutive dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D51/00—Making hollow objects
- B21D51/16—Making hollow objects characterised by the use of the objects
- B21D51/26—Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B13/00—Methods of pressing not special to the use of presses of any one of the preceding main groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/04—Frames; Guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B15/00—Details of, or accessories for, presses; Auxiliary measures in connection with pressing
- B30B15/28—Arrangements for preventing distortion of, or damage to, presses or parts thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
Definitions
- the present invention relates to prevention of rotation of a die table in a can forming apparatus.
- This application claims priority based on Japanese Patent Application No. 2016-193317 for which it applied to Japan on September 30, 2016, and uses the content here.
- a bottomed cylindrical can having a can body (wall) and a bottom (bottom), and a screw cap is screwed onto the open end of the can Bottled cans are known.
- the can body of such a bottle can is squeezed obliquely so that the upper part is constricted, and a screw groove for screwing a screw cap is provided on the opening side.
- a bottle can for example, the side wall of a metal plate made of aluminum or an aluminum alloy (drawing) into a cup shape (can base material) is re-used using a can molding device. Stretching and drawing by several stages of ironing. After adjusting the height of the can body thus obtained by trimming, printing is performed on the peripheral surface of the can body. Then, a bottle can is manufactured through the necking process which performs the drawing process of the opening end side of a can body.
- the bottle necker which is a can molding device used in the necking process, intermittently has a turntable in which a large number of can body holding parts supporting the bottom side of the can body are arranged in an annular shape. Rotate. Then, a number of necking dies arranged in an annular shape on the die table so as to face a large number of can body holding portions are sequentially pressed against the opening end side of the can body held by the can body holding portion, Thus, drawing is performed (see, for example, Patent Document 1).
- the main shaft that supports the die table that reciprocates passes through the center of the turntable that rotates intermittently.
- the rotational force of one main motor is branched into two systems, one power system is used for turning the turntable, and the other power system is used for reciprocating movement of the main shaft that supports the die table.
- the main shaft that passes through the rotating turntable is subject to stress that rotates around the central axis.
- the die table that performs only reciprocating motion may rotate in the circumferential direction, which may cause defective molding of the can body.
- the shaft (main shaft) is fixed to the slide mechanism, the rotation of the shaft is suppressed, and only the reciprocation of the shaft is allowed.
- a slide mechanism is formed at the end of the tool support board, and is slidably engaged with the guide rail.
- the tool support board is fixed to the shaft, the guide rail is arranged parallel to the central axis of the shaft. Bearing. Thereby, the rotation around the central axis of the shaft can be suppressed while allowing the shaft to reciprocate along the central axis of the shaft.
- the present invention has been made in view of the above-described circumstances, and provides a can forming apparatus capable of improving the speed of reciprocation of a shaft while suppressing the rotation of the shaft that supports the die table. For the purpose.
- a first aspect of the present invention includes a main frame, a turntable that is rotatably supported by the main frame, and in which a plurality of can body holding portions that removably hold the can body are arranged in an annular shape, and a table shaft
- the connecting member fixed to the main shaft and the sub shaft are slidably engaged with each other by the fluid bearing. Therefore, the coupling member and the sub shaft are indirectly bearing through the fluid.
- a fluid bearing having a bearing body, a bearing hole formed in the bearing body and through which a sub shaft passes, and a bearing surface having a pocket that opens to an inner surface of the bearing hole and supplies bearing fluid.
- a can forming apparatus according to a first aspect.
- the sub shaft has a rectangular bar shape with a rectangular cross section, and the bearing surface is formed so as to face two parallel surfaces of the outer surface of the sub shaft. It is a can shaping
- the fourth aspect of the present invention is the can forming apparatus according to the third aspect, wherein the bearing surface is formed so as to extend substantially at right angles to a tangent of a virtual circle centering on the table axis.
- FIG. 1 is a flowchart showing an example of a bottle can manufacturing process step by step.
- FIG. 2 is a schematic diagram showing changes in the can shape in each step.
- the plate material punching step S1 the cupping step (drawing step) S2, the drawing and ironing step S3, the trimming step S4, the printing / painting (can outer surface) step S5, the painting (can inner surface) step S6, the necking step S7, the screw molding It manufactures through step S8 in this order.
- the plate material punching step S1 for example, a rolled material made of an Al alloy material is punched, and a disk-shaped plate material (blank) W as shown in FIG. 2 (a) is formed (punched).
- the cupping step (drawing step) S2 as shown in FIG. 2B, the plate material W is drawn (capping) by a cupping press to form a cup-shaped body (can base material) W1.
- the cup body W1 is redrawn and ironed by a drawing and ironing device, and the can body 11 and the can bottom 14 are integrally bottomed.
- a cylindrical can body W2 is formed.
- the trimming device is used to trim the opening end portion 11a, as shown in FIG. A can body W3 after trimming is formed in which the heights of the open end portions 11a of the can body 11 are evenly aligned over the entire circumference.
- the can body W3 is washed to remove lubricating oil and the like, and then the can body W3 is subjected to surface treatment to dry the can body W3.
- the printing / painting (can outer surface) step S5 printing and coating are performed on the outer surface side 11b of the can body W3, and then in the coating (can inner surface) step S6, the can The inner surface 11c of the body W3 is painted.
- the necking step S7 as shown in FIG. 2 (f), using a die processing tool (neck forming mold), the neck of the can body 11 is smoothly inclined toward the open end 11a side.
- a neck portion 12 having a round shape is formed, and a can body (bottle can) 10 having the neck portion 12 is manufactured.
- a screw groove 13 matching the shape of the cap is provided at the opening end of the neck portion 12 by using a rotary processing tool (forming tool).
- the can body (bottle can) 10 having the thread groove 13 is manufactured.
- the can forming apparatus according to the present embodiment is a can necking apparatus (bottle necker) used in the necking step S7 and the screw forming step S8.
- the can body (bottle can) 10 obtained through the above steps is then filled with contents such as beverages inside the can body (bottle can) 10, and can body (bottle can)
- contents such as beverages inside the can body (bottle can) 10
- can body (bottle can) A cap that fits the screw groove 13 and covers the opening of the neck portion 12 is attached to the opening end of the neck portion 12 of the ten, and the inside of the can body 10 is sealed.
- FIG. 3 is an external perspective view showing the can molding apparatus (bottle necker) of the present embodiment.
- 4 and 5 are schematic cross-sectional views showing a can forming apparatus (bottle necker), FIG. 4 shows a state where the die table is in the separated position, and FIG. 5 shows a state where the die table is in the approaching position.
- the can molding device (bottle necker) 20 is used, for example, in the necking step S7 and the screw molding step S8 described above, and a main frame (main body portion) 21, a die table 22 that can reciprocate along the table axis TA, And a turntable 23 rotatably provided around the table axis TA.
- the die table 22 is supported by the main frame 21 via a main shaft (shaft) 36 formed along the table axis TA.
- the die table 22 has a disk shape or a circular ring shape.
- the die table 22 is provided with a plurality of processing tools 26 for processing the can held by the turntable 23 in an annular shape along the circumferential direction of the table.
- the plurality of processing tools 26 are arranged along the table circumferential direction on the outer peripheral portion of the surface of the die table 22 facing the turntable 23. Further, each of the plurality of processing tools 26 is disposed to face each of the plurality of cans held by the turntable 23 in the direction of the table axis TA.
- the machining tool axis of the machining tool 26 of the die table 22 (the central axis of the machining tool 26) and the can axis of the can body facing the machining tool 26 on the turntable 23 (the central axis of the can body, that is, the holding member 27). are arranged coaxially with each other. Then, in a state where the can axis and the processing tool axis coincide with each other, the can body is processed by the processing tool 26.
- a plurality of mounting holes 22h (see FIG. 6) penetrating in the table axis TA direction are formed in the die table 22 so as to be arranged in the table circumferential direction.
- the plurality of processing tools 26 are attached to the plurality of attachment holes 22h in the order of processing into the can.
- the plurality of processing tools 26 include a die processing tool and a rotation processing tool.
- a plurality of die processing tools and a plurality of rotation processing tools are detachably disposed in the plurality of mounting holes 22h of the die table 22 in the order of processing to the can body.
- some of the attachment holes 22h may be empty spaces where the processing tool 26 is not attached.
- An oiling tool is disposed in some of the plurality of mounting holes 22h.
- the die processing tool moves in the can axis direction (direction parallel to the table axis TA) with respect to the can body, drawing processing to reduce the diameter of the peripheral wall (can body) of the can, and diameter expansion processing to expand the peripheral wall of the can. It is a mold for performing die processing such as. One type of die processing is performed on the can by one die processing tool.
- the rotary tool moves around the can axis with respect to the can body, and by rotating around the can axis, the peripheral wall (can body) of the can body is trimmed, threaded, embossed, curled, and throttled (curled). Rotating processing such as caulking) is performed. One kind of rotational processing is applied to the can by one rotational processing tool.
- the main shaft 36 is slidably penetrated through the center of the turntable 23.
- a plurality of holding members (can chucks) 27 that detachably hold the bottom of the can body to be formed are arranged in an annular shape along the circumferential direction of the table on the surface of the turntable 23 that faces the die table 22. Is formed. The opening ends of the cans held by these holding members 27 open toward the die table 22.
- the center axis (table axis TA) of each of the die table 22 and the turntable 23 extends in the horizontal direction and is arranged coaxially with each other.
- the can molding device 20 includes a drive device (reciprocating device) 25 that reciprocates the die table 22 in the direction of the table axis TA with respect to the turntable 23.
- the drive device 25 is preferably capable of adjusting the stroke amount of the reciprocating motion.
- the can molding apparatus 20 includes a rod 28 that connects the die table 22 and the driving device 25 and extends along the table axis TA, and is capable of adjusting a relative position of the table axis TA with respect to the die table 22;
- An index (rotating device) 29 for intermittently rotating the turntable 23 with respect to the table 22 in the table circumferential direction around the table axis TA, and a motor for relatively moving the die table 22 and the rod 28 along the table axis TA Including a moving device 31.
- the direction along the table axis TA (the direction in which the table axis TA extends) may be referred to as the table axis TA direction.
- a direction orthogonal to the table axis TA may be referred to as a table radial direction.
- a direction away from the table axis TA may be referred to as an outer side in the table radial direction, and a direction approaching the table axis TA may be referred to as an inner side in the table radial direction.
- a direction that circulates around the table axis TA is referred to as a table circumferential direction.
- the direction in which the turntable 23 is intermittently rotated with respect to the die table 22 is referred to as the turntable rotation direction, and the rotation opposite to the direction in which the turntable 23 is intermittently rotated with respect to the die table 22.
- the direction is called the opposite direction of the turntable rotation direction.
- the turntable rotation direction is the same as the direction in which a plurality of processing tools 26 are arranged in the table circumferential direction in the order of processing into cans in the die table 22. Therefore, the turntable rotation direction is the downstream side of the processing order to the can (or the direction from the upstream side to the downstream side, the processing forward direction), and the side opposite to the turntable rotation direction is the processing order to the can.
- the upstream side (or the direction from the downstream side to the upstream side).
- the drive device 25 provided on the main frame 21 causes the die table 22 and the turntable 23 to repeat the approaching and separating movements in the table axis TA direction. Further, the die table 22 and the turntable 23 are intermittently relatively rotated in the circumferential direction of the table by an index 29 provided on the main frame 21.
- the die table 22 moves between a separation position separated from the turntable 23 (see FIG. 4) and an approach position approaching the turntable 23 (see FIG. 5). Then, during one stroke (reciprocating motion) in which the die table 22 and the turntable 23 are separated and approached, the turntable 23 rotates and moves by a predetermined amount (intermittent rotation) in the turntable rotation direction in the table circumferential direction. .
- the can body held by the holding member 27 of the turntable 23 is processed by the processing tool 26 provided on the die table 22.
- the turntable 23 moves the processed can body toward the next (another) processing position by the next (another) processing tool 26 toward the downstream side (turntable rotation direction) in the processing order.
- the can body held by the holding member 27 of the turntable 23 is sequentially processed by a plurality of processing tools 26 provided on the die table 22.
- a series of processing is completed, a bottle can having a desired shape (see FIG. 2G) is formed.
- the driving device (reciprocating device) 25 includes a driving motor (not shown), a driving shaft 32 to which a rotational driving force is transmitted from the driving motor, and a rotational motion around the central axis DA of the driving shaft 32 in a straight line in the table axis TA direction.
- a crank mechanism 33 for converting into motion, and a variable stroke mechanism (stroke adjustment mechanism) 34 capable of adjusting the reciprocation (stroke amount) of the rod 28 coupled to the crank mechanism 33 in the direction of the table axis TA are provided. .
- the driving device 25 reciprocates the die table 22 connected to the rod 28 in the direction of the table axis TA with respect to the turntable 23 by stroke (reciprocating) the rod 28 in the direction of the table axis TA.
- the drive device 25 can adjust the stroke amount of the reciprocating movement of the die table 22 in the direction of the table axis TA with respect to the turntable 23.
- the rod 28 is disposed between the connecting rod 35 of the crank mechanism 33 and the die table 22, and connects the connecting rod 35 and the die table 22.
- a cylindrical main shaft (shaft) 36 that is provided integrally with the die table 22 and extends on the table axis TA penetrates the turntable 23 in the direction of the table axis TA, and the inside of the main frame 21.
- the rod 28 is accommodated in the main shaft 36.
- a cylinder 39 is disposed inside the main shaft 36.
- the cylindrical body 39 is disposed so that the central axis thereof is coaxial with the table axis TA, and is provided on the outer side in the radial direction of the rod 28.
- the cylindrical body 39 is rotatable in the table circumferential direction with respect to the main shaft 36 and the rod 28.
- the outer peripheral surface of the cylindrical body 39 slides in the table circumferential direction with respect to the inner peripheral surface of the main shaft 36.
- a female screw portion 38 is formed on the inner peripheral surface of the cylindrical body 39. Further, the movement of the cylindrical body 39 in the direction of the table axis TA with respect to the main shaft 36 is restricted.
- a male screw portion 37 is formed in a region corresponding to at least the cylindrical body 39 along the table axis TA direction in the outer peripheral surface of the rod 28.
- the male thread part 37 of the rod 28 is screwed into the female thread part 38 of the cylinder 39. Therefore, the cylindrical body 39 is moved in the table axis TA direction with respect to the rod 28 in accordance with the screwing amount of the male screw portion 37 and the female screw portion 38.
- the moving device 31 is provided on the surface of the die table 22 facing the side opposite to the side where the turntable 23 is located.
- the moving device 31 can rotate the cylindrical body 39 around the table axis TA and relatively move the rod 28 and the die table 22 in the direction of the table axis TA.
- the moving device 31 has a gear mechanism that meshes with a gear provided in the cylinder 39 and a motor that rotates the gear mechanism.
- the motor is, for example, a servo motor or a stepping motor.
- the moving device 31 transmits the rotational force of the motor to the cylinder 39 through the gear mechanism. Accordingly, the die body 22 is moved forward and backward in the direction of the table axis TA with respect to the rod 28 by rotating the cylindrical body 39 around the table axis TA.
- the moving device 31 can also use, for example, a manual rotation handle that rotates a gear mechanism.
- the main shaft 36 and the rod 28 are inserted through the center of the index (rotating device) 29 provided on the main frame 21.
- the index 29 rotates the turntable 23 intermittently relative to the die table 22 in the table circumferential direction.
- FIG. 6 is a schematic perspective view showing a die table supported by the main shaft and a main shaft rotation preventing device.
- An anti-rotation device 40 for preventing the main shaft 36 from rotating is formed inside the main frame 21.
- the rotation preventing device 40 includes a sub shaft 41, a connecting member 42, and a fluid bearing 43 that is an engaging device formed on the connecting member 42.
- the sub-shaft 41 is a rod-shaped (rectangular) member having a rectangular (quadrangle) cross section, and is disposed so as to be separated from the outer peripheral surface of the main shaft 36 and extend in parallel with the table axis TA.
- the sub shaft 41 is fixed to the main frame 21 by rod-like support members 41a and 41b at one end and the other end thereof.
- the support members 41 a and 41 b are members that connect the sub shaft 41 and the main frame 21. In the present embodiment, the support members 41a and 41b are rod-shaped members, but are not limited thereto.
- the support members 41a and 41b only need to have a length between the sub shaft 41 and the main frame 21 so that the end portion on the one end 42b side in the major axis direction of the connecting member 42 described later can be disposed.
- the lengths of the support members 41a and 41b can be appropriately changed according to the design of the endmost portion on the one end 42b side in the major axis direction of the connecting member 42.
- Each of the support members 41a and 41b includes an adjustment screw 41s. By rotating the adjustment screw 41s, the support members 41a and 41b can finely adjust the separation position of the sub shaft 41 with respect to the main shaft 36 (that is, the distance between the main shaft 36 and the sub shaft 41). it can.
- the connecting member 42 is a substantially elliptical plate-like member, and is fixed to one end portion of the main shaft 36 by, for example, a screw on the one end 42a side in the long axis direction. Further, a through hole 42h through which the rod 28 is slidably penetrated is formed on the one end 42a side of the connecting member 42. The connecting member 42 is formed so that the other end 42 b side in the major axis direction extends toward the sub shaft 41. Further, a fluid bearing (engagement device) 43 that slidably engages the connecting member 42 and the sub shaft 41 is formed on the other end 42 b side of the connecting member 42.
- FIG. 7 is an external perspective view showing a fluid dynamic bearing (engagement device).
- FIG. 8 is an enlarged perspective view of a main part showing an engaged state between the fluid dynamic bearing and the sub shaft.
- the fluid bearing (engagement device) 43 is a non-contact bearing called a hydrostatic bearing or a hydrostatic bearing in which members (sub-shaft 41 and connecting member 42) that slide with each other do not contact each other.
- the fluid bearing (engagement device) 43 includes a bearing body 52 incorporated on the other end 42b side of the coupling member 42, and a bearing hole 53 formed in the bearing body 52 through which the sub shaft 41 is movably penetrated. I have.
- bearing surfaces 54a and 54b facing each other are formed in the bearing hole 53.
- the bearing surfaces 54 a and 54 b are formed so as to face two outer surfaces 41 f 1 and 41 f 2 parallel to each other among the four outer surfaces along the longitudinal direction of the sub shaft 41.
- the gaps (gap) between the bearing surfaces 54a and 54b and the outer surfaces 41f1 and 41f2 of the sub shaft 41 are, for example, about 30 ⁇ m to 50 ⁇ m.
- the bearing surfaces 54a and 54b are formed so as to extend in a direction substantially perpendicular to the tangent L of the virtual circle Q with the table axis TA (see FIGS. 4 and 6) as the center. .
- the direction of the tangent L of the virtual circle Q is along the direction of the stress in which the rotational stress applied to the main shaft 36 is transmitted to the bearing body 52 via the connecting member 42.
- the pockets 55 are formed in the bearing surfaces 54a and 54b, respectively.
- the pocket 55 is a groove having a concave cross section that opens to the surfaces of the bearing surfaces 54a and 54b.
- two grooves are formed in a substantially X shape along the surfaces of the bearing surfaces 54a and 54b.
- Such pockets 55 allow the bearing fluid to ooze out onto the surfaces of the bearing surfaces 54a and 54b, respectively, between the outer surface 41f1 of the sub shaft 41 and the bearing surface 54a, and between the outer surface 41f2 and the bearing surface 54b, respectively.
- the film is formed.
- the pockets 55 formed on the bearing surfaces 54a and 54b are connected to supply pipes 56a and 56b connected to a bearing fluid supply source (not shown).
- the supply pipes 56a and 56b are composed of a flexible pipe that can follow the reciprocating motion of the fluid dynamic bearing 43, several connection fittings, and the like.
- a bearing fluid is supplied to the pocket 55 formed on the bearing surface 54a via the supply pipe 56a, and a bearing fluid is supplied to the pocket 55 formed on the bearing surface 54b via the supply pipe 56b. .
- a general lubricating oil is used as the bearing fluid.
- Such lubricating oil is continuously supplied to the pocket 55 through the supply pipes 56a and 56b, and between the outer surface 41f1 and the bearing surface 54a of the sub shaft 41 and between the outer surface 41f2 and the bearing surface 54b, respectively. While forming an oil film, it flows down as it is.
- the can molding apparatus 20 including the rotation preventing apparatus 40 including the fluid bearing (engagement apparatus) 43 having the above-described configuration will be described.
- the bottom of the can body is held by a holding member (can chuck) 27 formed on the turntable 23 to drive the drive body.
- the reciprocating device 25 reciprocates the die table 22 between the separation position (see FIG. 4) and the approach position (see FIG. 5), and presses the processing tool 26 against the open end of the can body.
- the neck part 12 and the thread groove 13 are shape
- the rotation preventing device 40 is separated from the outer peripheral surface of the main shaft 36 and extends in parallel with the table axis TA.
- the sub shaft 41 is fixed to the main frame 21, and the sub shaft 41 and the main shaft 36 are engaged with each other through the connecting member 42. Thereby, rotation of the main shaft 36 is suppressed.
- the connecting member 42 and the sub shaft 41 are slidably engaged via a fluid bearing (engagement device) 43, and follow the movement of the die table 22 along the table axis TA to follow the main shaft 36.
- the connecting member 42 fixed to one end of the sub-shaft 41 is movable along the central axis of the sub-shaft 41.
- a fluid bearing 43 is used as a bearing for slidably engaging the connecting member 42 whose one end side in the major axis direction is fixed to the main shaft 36 and the sub shaft 41.
- the coupling member 42 fixed to the main shaft 36 and the sub shaft 41 constituting the rotation preventing device 40 are slidably engaged by the fluid bearing 43.
- the connection member 42 and the sub shaft 41 are indirectly bearing through the fluid (bearing oil).
- the main shaft 36 can be reciprocated at high speed by the drive device (reciprocating device) 25.
- the maximum speed of the connecting member 42 with respect to the sub-shaft 41 is limited to about 1.55 m / s when a conventional bearing using a ball bearing is used.
- the maximum speed of the connecting member 42 with respect to the sub-shaft 41 is, for example, about 1.9 m / s to 2.2 m / s. It is possible to increase the speed to 1.3 to 1.4 times as compared with the case of using a bearing using.
- the processing speed of the can by the processing tool 26 formed on the die table 22 is increased. Therefore, the can forming apparatus 20 that can form the can at high speed while suppressing the rotation of the main shaft 36 that supports the die table 22 can be realized.
- the direction of rotational stress applied to the main shaft 36 includes a bearing surface 54a that forms an oil film with the outer surface 41f1 of the sub shaft 41 and a bearing surface 54b that forms an oil film with the outer surface 41f2 of the sub shaft 41. It is formed so as to spread in a direction that intersects at a substantially right angle to.
- the fluid bearing 43 finely moves in a direction in which one of the gaps between the outer surfaces 41f1 and 41f2 of the sub shaft 41 and the bearing surfaces 54a and 54b is contracted, the other is caused by the repulsive force of the oil film.
- the hydrodynamic bearing 43 is finely moved in the direction in which the gap is reduced (reverse direction).
- the clearance between the bearing surface 54a and the outer surface 41f1 of the sub shaft 41 and the clearance between the bearing surface 54b and the outer surface 41f2 of the sub shaft 41 are always kept constant.
- the outer surfaces 41f1 and 41f2 of the sub-shaft 41 do not come into contact with the bearing surfaces 54a and 54b. It becomes possible to suppress movement.
- a rectangular bar-shaped member having a rectangular cross section is used as the sub shaft 41, but the present invention is not limited to this.
- sub-shafts of various shapes such as a round bar having a circular cross section and a hexagonal bar having a cross section can be applied.
- the shape of the bearing hole 53 of the fluid dynamic bearing (engagement device) 43 may be matched with the shape of the sub shaft 41 to be penetrated.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
- Press Drives And Press Lines (AREA)
Abstract
The present invention relates to a can forming device (20) having: a main frame (21); a turntable (23) rotatably supported on the main frame (21); a main shaft (36) passing through the turntable (23) along a table axis (TA); a die table (22) supported by the main frame (21) via the main shaft (36); a reciprocating device (25) which reciprocates the die table (22) along the table axis (TA); and a rotating device (29) that intermittently rotates the turntable (23) around the table axis (TA). The can forming device (20) is provided with a rotation prevention device (46) for the main shaft (36), the rotation prevention device (46) including: a sub shaft (41) which is spaced apart from the outer peripheral surface of the main shaft (36), extends parallel to the table axis (TA), and has both end portions fixed to the main frame (21); a connection member (42) having one end portion fixed to the main shaft (36) and the other end portion extending toward the sub shaft (41); and an engagement device (43) provided on the other end portion of the connection member (42) and configured to slidably engage the connection member (42) with the sub shaft (41) along the central axis of the sub shaft (41), wherein the engagement device (43) is a fluid bearing which supports the sub shaft (41) by means of a fluid.
Description
本発明は、缶成形装置におけるダイテーブルの回転防止に関するものである。本願は、2016年9月30日に日本に出願された特願2016-193317号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to prevention of rotation of a die table in a can forming apparatus. This application claims priority based on Japanese Patent Application No. 2016-193317 for which it applied to Japan on September 30, 2016, and uses the content here.
飲料等の内容物が充填されて密封される缶体として、缶胴(ウォール)と缶底(ボトム)を有する有底筒状の缶体と、缶体の開口端部にネジキャップが螺着されたボトル缶が知られている。こうしたボトル缶の缶体は、上部がくびれるように斜めに絞られており、開口部側にネジキャップを螺着するためのネジ溝が設けられている。
As a can that is filled with beverages and other contents and sealed, a bottomed cylindrical can having a can body (wall) and a bottom (bottom), and a screw cap is screwed onto the open end of the can Bottled cans are known. The can body of such a bottle can is squeezed obliquely so that the upper part is constricted, and a screw groove for screwing a screw cap is provided on the opening side.
このようなボトル缶を製造する際には、例えば、アルミニウムやアルミニウム合金製の金属板をカップ形状に絞り加工(Drawing)したもの(缶基材)の側壁を、缶成形装置を用いて、再絞りと数段階のしごき加工(Ironing)で引き伸ばす。こうして得られた缶体の高さをトリミング加工により整えた後、缶体の周面にプリントを行う。その後、缶体の開口端側の絞り加工を行うネッキング工程を経て、ボトル缶が製造される。
When manufacturing such a bottle can, for example, the side wall of a metal plate made of aluminum or an aluminum alloy (drawing) into a cup shape (can base material) is re-used using a can molding device. Stretching and drawing by several stages of ironing. After adjusting the height of the can body thus obtained by trimming, printing is performed on the peripheral surface of the can body. Then, a bottle can is manufactured through the necking process which performs the drawing process of the opening end side of a can body.
こうしたボトル缶の製造において、ネッキング工程に用いられる缶成形装置であるボトルネッカーは、缶体の底部側を支持する多数の缶体保持部を、円環状に配列させたターンテーブルを、間欠的に回転させる。そして、多数の缶体保持部に対向するようにダイテーブルに円環状に配列された多数のネッキング金型を、缶体保持部に保持された缶体の開口端側に順番に押し付けて、段階的に絞り加工を行う(例えば、特許文献1を参照)。
In the manufacture of such bottle cans, the bottle necker, which is a can molding device used in the necking process, intermittently has a turntable in which a large number of can body holding parts supporting the bottom side of the can body are arranged in an annular shape. Rotate. Then, a number of necking dies arranged in an annular shape on the die table so as to face a large number of can body holding portions are sequentially pressed against the opening end side of the can body held by the can body holding portion, Thus, drawing is performed (see, for example, Patent Document 1).
このようなボトルネッカーでは、間欠的に回動されるターンテーブルの中心を、往復動を行うダイテーブルを支持するメインシャフトが貫通している。そして、1つのメインモータの回転力を2系統に分岐させ、一方の動力系統をターンテーブルの回動に用い、他方の動力系統を、ダイテーブルを支持するメインシャフトの往復動に用いている。
In such a bottle necker, the main shaft that supports the die table that reciprocates passes through the center of the turntable that rotates intermittently. The rotational force of one main motor is branched into two systems, one power system is used for turning the turntable, and the other power system is used for reciprocating movement of the main shaft that supports the die table.
こうしたボトルネッカーの構造上、回動するターンテーブルを貫通しているメインシャフトに、中心軸周りで回動する応力が加わりやすい。メインシャフトが中心軸周りで回動すると、往復動だけを行うダイテーブルが円周方向に回転し、缶体の成形不良を引き起こす可能性がある。
Because of the bottle necker structure, the main shaft that passes through the rotating turntable is subject to stress that rotates around the central axis. When the main shaft rotates around the central axis, the die table that performs only reciprocating motion may rotate in the circumferential direction, which may cause defective molding of the can body.
このため、例えば、特許文献2に開示されたボトル缶の製造装置では、シャフト(主軸)をスライド機構に固定して、シャフトの回転を抑止し、シャフトの往復動だけを許容する。こうしたスライド機構は、シャフトに固着されたツール支持盤と、シャフトの中心軸に対して平行に配されたガイドレールと、ツール支持盤の端部に形成され、ガイドレールに摺動可能に係合するベアリングとを備えている。これにより、シャフトの中心軸に沿ったシャフトの往復動を許容しつつ、シャフトの中心軸回りの回転を抑止可能にしている。
For this reason, for example, in the bottle can manufacturing apparatus disclosed in Patent Document 2, the shaft (main shaft) is fixed to the slide mechanism, the rotation of the shaft is suppressed, and only the reciprocation of the shaft is allowed. Such a slide mechanism is formed at the end of the tool support board, and is slidably engaged with the guide rail. The tool support board is fixed to the shaft, the guide rail is arranged parallel to the central axis of the shaft. Bearing. Thereby, the rotation around the central axis of the shaft can be suppressed while allowing the shaft to reciprocate along the central axis of the shaft.
しかしながら、特許文献2に示すボトル缶の製造装置(ボトルネッカー)では、成形速度を高めることが困難である。即ち、ボトルネッカーを用いて、より短時間で多数の缶体を成形するためには、ダイテーブルの単位時間当たりの往復動の回数を高める必要がある。一方、特許文献2に示すボトルネッカーでは、ダイテーブルを支持するシャフトの回転を抑制するスライド機構において、ツール支持盤をガイドレールに沿って摺動可能に係合させるためにベアリングを用いている。こうした固体どうしの物理的な接触を伴うベアリングのような摺動機構は、円滑な動作のために油膜を必要とする。加えて、ベアリングによる摺動機構は、ベアリングの往復動によって油切れを生じやすく、摩擦による焼付きなどを生じる可能性がある。即ち、ベアリングによる摺動機構は、高速な摺動に対応できない。このため、ダイテーブルの往復動の速度を高めて、缶体の成形速度を向上させることが難しい。
However, in the bottle can manufacturing apparatus (bottle necker) shown in Patent Document 2, it is difficult to increase the molding speed. That is, in order to form a large number of cans in a shorter time using a bottle necker, it is necessary to increase the number of reciprocations per unit time of the die table. On the other hand, in the bottle necker shown in Patent Document 2, in a slide mechanism that suppresses the rotation of the shaft that supports the die table, a bearing is used to slidably engage the tool support board along the guide rail. Such a sliding mechanism such as a bearing with physical contact between solids requires an oil film for smooth operation. In addition, the sliding mechanism using the bearing is likely to cause oil shortage due to the reciprocating motion of the bearing, and may cause seizure due to friction. That is, the sliding mechanism using the bearing cannot cope with high-speed sliding. For this reason, it is difficult to increase the speed of reciprocation of the die table and improve the molding speed of the can body.
本発明は、前述した事情に鑑みてなされたものであって、ダイテーブルを支持するシャフトの回動を抑止しつつ、シャフトの往復動の速度を向上させることが可能な缶成形装置を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and provides a can forming apparatus capable of improving the speed of reciprocation of a shaft while suppressing the rotation of the shaft that supports the die table. For the purpose.
本発明は、上記課題を解決するために、以下に示す構成を採用する。本発明の第1の態様は、メインフレームと、メインフレームに回動可能に支持され、缶体を着脱可能に保持する複数の缶体保持部が円環状に配列されたターンテーブルと、テーブル軸に沿ってターンテーブルを貫通するメインシャフトと、メインシャフトを介してメインフレームに支持され、缶体を成形する複数の加工ツールが円環状に配列されたダイテーブルと、ダイテーブルをテーブル軸に沿って往復動させる往復動装置と、ターンテーブルをテーブル軸回りで間欠的に回転させる回転装置と、を有する缶成形装置であって、メインシャフトの外周面から離間し、かつ、前記テーブル軸と平行に延び、両端部がメインフレームに固定されたサブシャフトと、一端側がメインシャフトに固定され、他端側がサブシャフトに向けて延びる連結部材と、連結部材の他端側に形成され、サブシャフトの中心軸に沿って、連結部材を前記サブシャフトに対して摺動可能に係合させる係合装置と、を含む、メインシャフトの回転防止装置を備え、係合装置は、流体を介してサブシャフトを支持する流体軸受である缶成形装置である。
The present invention adopts the following configuration in order to solve the above problems. A first aspect of the present invention includes a main frame, a turntable that is rotatably supported by the main frame, and in which a plurality of can body holding portions that removably hold the can body are arranged in an annular shape, and a table shaft A main shaft that penetrates the turntable along the main shaft, a die table that is supported by the main frame via the main shaft, and in which a plurality of processing tools for forming the can body are arranged in an annular shape, and the die table along the table axis A reciprocating device for reciprocating and a rotating device for intermittently rotating the turntable around a table axis, the can forming apparatus being spaced apart from the outer peripheral surface of the main shaft and parallel to the table axis A sub-shaft with both ends fixed to the main frame and one end fixed to the main shaft and the other end extending toward the sub-shaft Rotation of the main shaft including a member and an engagement device formed on the other end side of the connecting member and slidably engaging the connecting member with the sub shaft along the central axis of the sub shaft The engagement device is a can forming device that is a fluid bearing that supports the sub-shaft via a fluid.
本発明の第1の態様の缶成形装置によれば、回転防止装置により、メインシャフトに固定された連結部材と、サブシャフトとを、流体軸受によって摺動可能に係合させる。よって、連結部材と、サブシャフトとは、流体を介して間接的に軸受される。
According to the can forming apparatus of the first aspect of the present invention, the connecting member fixed to the main shaft and the sub shaft are slidably engaged with each other by the fluid bearing. Therefore, the coupling member and the sub shaft are indirectly bearing through the fluid.
これによって、往復動装置でメインシャフトを高速に往復動させることが可能になる。メインシャフトを高速に往復動させることによって、ダイテーブルに形成された加工ツールによる缶体の加工速度が高められる。よって、ダイテーブルを支持するメインシャフトの回動を抑止しつつ、缶体を高速成形することが可能な缶成形装置を実現することができる。
This makes it possible to reciprocate the main shaft at high speed with a reciprocating device. By reciprocating the main shaft at a high speed, the processing speed of the can body by the processing tool formed on the die table can be increased. Therefore, it is possible to realize a can forming apparatus that can form a can body at high speed while suppressing the rotation of the main shaft that supports the die table.
本発明の第2の態様は、流体軸受は、軸受本体と、軸受本体に形成されサブシャフトが貫通する軸受孔と、軸受孔の内面に開口し、軸受流体を供給するポケットを備えた軸受面と、を備えている第1の態様の缶成形装置である。
According to a second aspect of the present invention, there is provided a fluid bearing having a bearing body, a bearing hole formed in the bearing body and through which a sub shaft passes, and a bearing surface having a pocket that opens to an inner surface of the bearing hole and supplies bearing fluid. And a can forming apparatus according to a first aspect.
本発明の第3の態様は、サブシャフトは、断面矩形の四角棒状を成し、軸受面は、サブシャフトの外面のうち互いに平行な2面にそれぞれ対向するように形成されている第2の態様の缶成形装置である。
In the third aspect of the present invention, the sub shaft has a rectangular bar shape with a rectangular cross section, and the bearing surface is formed so as to face two parallel surfaces of the outer surface of the sub shaft. It is a can shaping | molding apparatus of an aspect.
本発明の第4の態様は、軸受面は、テーブル軸を中心とした仮想円の接線に対して略直角に広がるように形成されている第3の態様の缶成形装置である。
The fourth aspect of the present invention is the can forming apparatus according to the third aspect, wherein the bearing surface is formed so as to extend substantially at right angles to a tangent of a virtual circle centering on the table axis.
本発明によれば、ダイテーブルを支持するシャフトの回動を抑止しつつ、シャフトの往復動の速度を向上させることが可能な缶成形装置を提供することができる。
According to the present invention, it is possible to provide a can forming apparatus capable of improving the speed of reciprocation of the shaft while suppressing the rotation of the shaft supporting the die table.
以下、図面を参照して、本発明の一実施形態の缶成形装置について説明する。なお、以下に示す各実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、以下の説明で用いる図面は、本発明の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, a can forming apparatus according to an embodiment of the present invention will be described with reference to the drawings. Each embodiment described below is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified. In addition, in the drawings used in the following description, in order to make the features of the present invention easier to understand, there is a case where a main part is shown in an enlarged manner for convenience, and the dimensional ratio of each component is the same as the actual one. Not necessarily.
最初に、缶体の一例であるボトル缶の製造工程の一連の流れを説明する。図1は、ボトル缶の製造工程の一例を段階的に示したフローチャートである。図2は、各工程における缶体形状の変化を示す模式図である。ボトル缶は、板材打ち抜き工程S1、カッピング工程(絞り工程)S2、絞りしごき工程S3、トリミング工程S4、印刷・塗装(缶外面)工程S5、塗装(缶内面)工程S6、ネッキング工程S7、ネジ成形工程S8をこの順に経て、製造される。
First, a series of steps for manufacturing a bottle can which is an example of a can body will be described. FIG. 1 is a flowchart showing an example of a bottle can manufacturing process step by step. FIG. 2 is a schematic diagram showing changes in the can shape in each step. For the bottle can, the plate material punching step S1, the cupping step (drawing step) S2, the drawing and ironing step S3, the trimming step S4, the printing / painting (can outer surface) step S5, the painting (can inner surface) step S6, the necking step S7, the screw molding It manufactures through step S8 in this order.
板材打ち抜き工程S1では、例えば、Al合金材料からなる圧延材を打ち抜いて、図2の(a)に示されるような、円板状の板材(ブランク)Wを成形(打ち抜き加工)する。カッピング工程(絞り工程)S2では、図2の(b)に示されるように、板材Wをカッピングプレスによって絞り加工(カッピング加工)して、カップ状体(缶基材)W1に成形する。絞りしごき工程S3では、絞りしごき加工装置によって、図2の(c)に示されるように、カップ状体W1に再絞りしごき加工を施して、缶胴11と缶底14とが一体の有底筒状の缶体W2を成形する。
In the plate material punching step S1, for example, a rolled material made of an Al alloy material is punched, and a disk-shaped plate material (blank) W as shown in FIG. 2 (a) is formed (punched). In the cupping step (drawing step) S2, as shown in FIG. 2B, the plate material W is drawn (capping) by a cupping press to form a cup-shaped body (can base material) W1. In the drawing and ironing step S3, as shown in FIG. 2 (c), the cup body W1 is redrawn and ironed by a drawing and ironing device, and the can body 11 and the can bottom 14 are integrally bottomed. A cylindrical can body W2 is formed.
トリミング工程S4では、缶体W2の開口端部11aの高さが不均一であるため、トリミング装置を用いて開口端部11aのトリミング加工を施して、図2の(d)に示すような、缶胴11の開口端部11aの高さが全周にわたって均等に揃えられた、トリミング加工後の缶体W3を成形する。
In the trimming step S4, since the height of the opening end portion 11a of the can body W2 is not uniform, the trimming device is used to trim the opening end portion 11a, as shown in FIG. A can body W3 after trimming is formed in which the heights of the open end portions 11a of the can body 11 are evenly aligned over the entire circumference.
この後、缶体W3を洗浄して潤滑油等を除去した後に、缶体W3に表面処理を施して、缶体W3を乾燥させる。次いで、図2の(e)に示すように、印刷・塗装(缶外面)工程S5では、缶体W3の外面側11bに印刷および塗装を施し、その後、塗装(缶内面)工程S6では、缶体W3の内面側11cに塗装を施す。
Thereafter, the can body W3 is washed to remove lubricating oil and the like, and then the can body W3 is subjected to surface treatment to dry the can body W3. Next, as shown in FIG. 2E, in the printing / painting (can outer surface) step S5, printing and coating are performed on the outer surface side 11b of the can body W3, and then in the coating (can inner surface) step S6, the can The inner surface 11c of the body W3 is painted.
次に、ネッキング工程S7では、図2の(f)に示すように、ダイ加工ツール(ネック形成金型)を用いて、缶胴11の開口端部11a側に、滑らかに傾斜するようにくびれた形状をなすネック部12を成形し、ネック部12を有する缶体(ボトル缶)10が製造する。更に、ネジ成形工程S8では、図2の(g)に示すように、回転加工ツール(成形具)を用いて、ネック部12の開口端部に、キャップの形状に合わせたネジ溝13を設け、ネジ溝13を有する缶体(ボトル缶)10を製造する。本実施形態である缶成形装置は、こうしたネッキング工程S7やネジ成形工程S8で用いられる、缶体のネッキング加工装置(ボトルネッカー)である。
Next, in the necking step S7, as shown in FIG. 2 (f), using a die processing tool (neck forming mold), the neck of the can body 11 is smoothly inclined toward the open end 11a side. A neck portion 12 having a round shape is formed, and a can body (bottle can) 10 having the neck portion 12 is manufactured. Further, in the screw forming step S8, as shown in FIG. 2 (g), a screw groove 13 matching the shape of the cap is provided at the opening end of the neck portion 12 by using a rotary processing tool (forming tool). The can body (bottle can) 10 having the thread groove 13 is manufactured. The can forming apparatus according to the present embodiment is a can necking apparatus (bottle necker) used in the necking step S7 and the screw forming step S8.
以上のような各工程を経て得られた缶体(ボトル缶)10は、その後、缶体(ボトル缶)10の内部に、飲料等の内容物が充填され、更に、缶体(ボトル缶)10のネック部12の開口端部に、ネジ溝13と嵌合してネック部12の開口を覆うキャップが取り付けられ、缶体10の内部が密封される。
The can body (bottle can) 10 obtained through the above steps is then filled with contents such as beverages inside the can body (bottle can) 10, and can body (bottle can) A cap that fits the screw groove 13 and covers the opening of the neck portion 12 is attached to the opening end of the neck portion 12 of the ten, and the inside of the can body 10 is sealed.
図3は、本実施形態の缶成形装置(ボトルネッカー)を示す外観斜視図である。図4及び図5は、缶成形装置(ボトルネッカー)を示す概略断面図であり、図4は、ダイテーブルが離間位置にある状態を示し、図5は、ダイテーブルが接近位置にある状態を示している。缶成形装置(ボトルネッカー)20は、例えば、前述したネッキング工程S7やネジ成形工程S8に用いられ、メインフレーム(本体部)21と、テーブル軸TAに沿って往復動可能なダイテーブル22と、テーブル軸TA回りで回動可能に設けられたターンテーブル23とを備えている。
FIG. 3 is an external perspective view showing the can molding apparatus (bottle necker) of the present embodiment. 4 and 5 are schematic cross-sectional views showing a can forming apparatus (bottle necker), FIG. 4 shows a state where the die table is in the separated position, and FIG. 5 shows a state where the die table is in the approaching position. Show. The can molding device (bottle necker) 20 is used, for example, in the necking step S7 and the screw molding step S8 described above, and a main frame (main body portion) 21, a die table 22 that can reciprocate along the table axis TA, And a turntable 23 rotatably provided around the table axis TA.
ダイテーブル22は、テーブル軸TAに沿って形成されたメインシャフト(シャフト)36を介してメインフレーム21に支持される。ダイテーブル22は、円板状又は円形リング状をなしている。ダイテーブル22には、ターンテーブル23が保持する缶に加工を施す複数の加工ツール26が、テーブル周方向に沿って円環状に配設される。複数の加工ツール26は、ダイテーブル22のターンテーブル23と対向する面の外周部に、テーブル周方向に沿って配列されている。また、複数の加工ツール26のそれぞれは、ターンテーブル23が保持する複数の缶体のそれぞれと、テーブル軸TA方向で対向配置される。
The die table 22 is supported by the main frame 21 via a main shaft (shaft) 36 formed along the table axis TA. The die table 22 has a disk shape or a circular ring shape. The die table 22 is provided with a plurality of processing tools 26 for processing the can held by the turntable 23 in an annular shape along the circumferential direction of the table. The plurality of processing tools 26 are arranged along the table circumferential direction on the outer peripheral portion of the surface of the die table 22 facing the turntable 23. Further, each of the plurality of processing tools 26 is disposed to face each of the plurality of cans held by the turntable 23 in the direction of the table axis TA.
また、ダイテーブル22の加工ツール26の加工ツール軸(加工ツール26の中心軸)と、ターンテーブル23において加工ツール26に対向する缶体の缶軸(缶体の中心軸、つまり、保持部材27の中心軸)とは、互いに同軸に配置される。そして、缶軸と加工ツール軸とが一致した状態で、缶体に対して加工ツール26による加工が施される。
Further, the machining tool axis of the machining tool 26 of the die table 22 (the central axis of the machining tool 26) and the can axis of the can body facing the machining tool 26 on the turntable 23 (the central axis of the can body, that is, the holding member 27). Are arranged coaxially with each other. Then, in a state where the can axis and the processing tool axis coincide with each other, the can body is processed by the processing tool 26.
ダイテーブル22には、テーブル軸TA方向に貫通する複数の取付孔22h(図6を参照)が、テーブル周方向に配列して形成されている。複数の加工ツール26は、缶体への加工順に複数の取付孔22hに取り付けられている。
A plurality of mounting holes 22h (see FIG. 6) penetrating in the table axis TA direction are formed in the die table 22 so as to be arranged in the table circumferential direction. The plurality of processing tools 26 are attached to the plurality of attachment holes 22h in the order of processing into the can.
複数の加工ツール26には、ダイ加工ツールと、回転加工ツールとが含まれている。本実施形態では、ダイテーブル22の複数の取付孔22hに、複数のダイ加工ツールと、複数の回転加工ツールとが、缶体への加工順に着脱可能に配設されている。なお、複数の取付孔22hのうち、いくつかの取付孔22hは、加工ツール26が取り付けられない空きスペースとされていてもよい。また、複数の取付孔22hのうち、いくつかの取付孔22hには、油付けツールが配設される。
The plurality of processing tools 26 include a die processing tool and a rotation processing tool. In the present embodiment, a plurality of die processing tools and a plurality of rotation processing tools are detachably disposed in the plurality of mounting holes 22h of the die table 22 in the order of processing to the can body. Of the plurality of attachment holes 22h, some of the attachment holes 22h may be empty spaces where the processing tool 26 is not attached. An oiling tool is disposed in some of the plurality of mounting holes 22h.
ダイ加工ツールは、缶体に対して缶軸方向(テーブル軸TAに平行な方向)に移動し、缶の周壁(缶胴)を縮径する絞り加工や缶の周壁を拡径する拡径加工等のダイ加工を施す金型である。1つのダイ加工ツールによって、1種類のダイ加工が缶に施される。
The die processing tool moves in the can axis direction (direction parallel to the table axis TA) with respect to the can body, drawing processing to reduce the diameter of the peripheral wall (can body) of the can, and diameter expansion processing to expand the peripheral wall of the can. It is a mold for performing die processing such as. One type of die processing is performed on the can by one die processing tool.
回転加工ツールは、缶体に対して缶軸回りに移動し、缶軸回りの回転動作により缶体の周壁(缶胴)に、トリミング加工、ねじ成形加工、エンボス加工、カール加工、スロットル(カールかしめ)加工等の回転加工を施すものである。1つの回転加工ツールによって、1種類の回転加工が缶に施される。
The rotary tool moves around the can axis with respect to the can body, and by rotating around the can axis, the peripheral wall (can body) of the can body is trimmed, threaded, embossed, curled, and throttled (curled). Rotating processing such as caulking) is performed. One kind of rotational processing is applied to the can by one rotational processing tool.
ターンテーブル23の中心には、メインシャフト36が摺動自在に貫通している。ターンテーブル23のダイテーブル22と対向する面には、成形対象の缶体の底部を着脱自在に保持する複数の保持部材(缶チャック)27が、テーブル周方向に沿って円環状に配列されて形成されている。これらの保持部材27に保持された缶体の開口端部は、ダイテーブル22に向けて開口する。これらダイテーブル22及びターンテーブル23のそれぞれの中心軸(テーブル軸TA)が、水平方向に延びており、互いに同軸に配置されている。
The main shaft 36 is slidably penetrated through the center of the turntable 23. A plurality of holding members (can chucks) 27 that detachably hold the bottom of the can body to be formed are arranged in an annular shape along the circumferential direction of the table on the surface of the turntable 23 that faces the die table 22. Is formed. The opening ends of the cans held by these holding members 27 open toward the die table 22. The center axis (table axis TA) of each of the die table 22 and the turntable 23 extends in the horizontal direction and is arranged coaxially with each other.
缶成形装置20は、ターンテーブル23に対してダイテーブル22をテーブル軸TA方向に往復動させる駆動装置(往復動装置)25を備えている。この駆動装置25は、往復動のストローク量を調整可能であることが好ましい。また、缶成形装置20は、ダイテーブル22と駆動装置25とを連結してテーブル軸TAに沿って延び、ダイテーブル22とのテーブル軸TAの相対位置を調整可能とされたロッド28と、ダイテーブル22に対してターンテーブル23をテーブル軸TA回りのテーブル周方向に間欠的に回転させるインデックス(回転装置)29と、ダイテーブル22とロッド28とをテーブル軸TAに沿って相対移動させる、モータを含む移動装置31と、を備えている。
The can molding device 20 includes a drive device (reciprocating device) 25 that reciprocates the die table 22 in the direction of the table axis TA with respect to the turntable 23. The drive device 25 is preferably capable of adjusting the stroke amount of the reciprocating motion. Further, the can molding apparatus 20 includes a rod 28 that connects the die table 22 and the driving device 25 and extends along the table axis TA, and is capable of adjusting a relative position of the table axis TA with respect to the die table 22; An index (rotating device) 29 for intermittently rotating the turntable 23 with respect to the table 22 in the table circumferential direction around the table axis TA, and a motor for relatively moving the die table 22 and the rod 28 along the table axis TA Including a moving device 31.
なお、本実施形態では、テーブル軸TAに沿った方向(テーブル軸TAが延在する方向)をテーブル軸TA方向という場合がある。また、テーブル軸TAに直交する方向をテーブル径方向という場合がある。更に、テーブル径方向のうち、テーブル軸TAから離間する方向をテーブル径方向の外方といい、テーブル軸TAに接近する方向をテーブル径方向の内方という場合がある。また、テーブル軸TA回りに周回する方向をテーブル周方向という。テーブル周方向のうち、ダイテーブル22に対してターンテーブル23が間欠回転させられる方向を、ターンテーブル回転方向といい、ダイテーブル22に対してターンテーブル23が間欠回転させられる方向とは反対の回転方向を、ターンテーブル回転方向の反対方向という。
In this embodiment, the direction along the table axis TA (the direction in which the table axis TA extends) may be referred to as the table axis TA direction. In addition, a direction orthogonal to the table axis TA may be referred to as a table radial direction. Further, in the table radial direction, a direction away from the table axis TA may be referred to as an outer side in the table radial direction, and a direction approaching the table axis TA may be referred to as an inner side in the table radial direction. In addition, a direction that circulates around the table axis TA is referred to as a table circumferential direction. Of the table circumferential directions, the direction in which the turntable 23 is intermittently rotated with respect to the die table 22 is referred to as the turntable rotation direction, and the rotation opposite to the direction in which the turntable 23 is intermittently rotated with respect to the die table 22. The direction is called the opposite direction of the turntable rotation direction.
なお、ターンテーブル回転方向は、ダイテーブル22において複数の加工ツール26が、缶への加工順にテーブル周方向に配列されている向きと、同一の方向である。このため、ターンテーブル回転方向は、缶への加工順の下流側(又は、上流側から下流側に向かう方向、加工順方向)となり、ターンテーブル回転方向とは反対側は、缶への加工順の上流側(又は、下流側から上流側に向かう方向)となる。
The turntable rotation direction is the same as the direction in which a plurality of processing tools 26 are arranged in the table circumferential direction in the order of processing into cans in the die table 22. Therefore, the turntable rotation direction is the downstream side of the processing order to the can (or the direction from the upstream side to the downstream side, the processing forward direction), and the side opposite to the turntable rotation direction is the processing order to the can. The upstream side (or the direction from the downstream side to the upstream side).
メインフレーム21に設けられた駆動装置25により、ダイテーブル22とターンテーブル23とは、テーブル軸TA方向に互いに接近移動と離間移動とを繰り返す。また、メインフレーム21に設けられたインデックス29により、ダイテーブル22とターンテーブル23とは、テーブル周方向に間欠的に相対回転させられる。
The drive device 25 provided on the main frame 21 causes the die table 22 and the turntable 23 to repeat the approaching and separating movements in the table axis TA direction. Further, the die table 22 and the turntable 23 are intermittently relatively rotated in the circumferential direction of the table by an index 29 provided on the main frame 21.
具体的には、ダイテーブル22は、ターンテーブル23から離間した離間位置(図4を参照)と、ターンテーブル23に接近した接近位置(図5を参照)との間で、移動する。そして、ダイテーブル22とターンテーブル23とが離間及び接近する1ストローク(往復動)の間に、ターンテーブル23が、テーブル周方向のうちターンテーブル回転方向に所定量だけ回転移動(間欠回転)する。
Specifically, the die table 22 moves between a separation position separated from the turntable 23 (see FIG. 4) and an approach position approaching the turntable 23 (see FIG. 5). Then, during one stroke (reciprocating motion) in which the die table 22 and the turntable 23 are separated and approached, the turntable 23 rotates and moves by a predetermined amount (intermittent rotation) in the turntable rotation direction in the table circumferential direction. .
そして、ダイテーブル22とターンテーブル23とが接近及び離間する1ストローク毎に、ターンテーブル23の保持部材27が保持する缶体に、ダイテーブル22に設けられた加工ツール26による加工が施され、ターンテーブル23は、加工が施された缶体を次の(別の)加工ツール26による次の(別の)加工位置まで加工順の下流側(ターンテーブル回転方向)へ向けて移動させる。
Then, for each stroke in which the die table 22 and the turntable 23 approach and separate, the can body held by the holding member 27 of the turntable 23 is processed by the processing tool 26 provided on the die table 22, The turntable 23 moves the processed can body toward the next (another) processing position by the next (another) processing tool 26 toward the downstream side (turntable rotation direction) in the processing order.
以上のような動作が繰り返されることにより、ターンテーブル23の保持部材27によって保持された缶体に、ダイテーブル22に設けられた複数の加工ツール26によって順次加工が施されていく。一連の加工が終了した時点で、所望の形状を有するボトル缶(図2の(g)を参照)が成形される。
By repeating the above operation, the can body held by the holding member 27 of the turntable 23 is sequentially processed by a plurality of processing tools 26 provided on the die table 22. When a series of processing is completed, a bottle can having a desired shape (see FIG. 2G) is formed.
駆動装置(往復動装置)25は、図示しない駆動モータと、駆動モータからの回転駆動力が伝達される駆動軸32と、駆動軸32の中心軸DA回りの回転運動をテーブル軸TA方向の直線運動に変換するクランク機構33と、クランク機構33に連結されたロッド28のテーブル軸TA方向の往復移動量(ストローク量)を調整可能な可変ストローク機構(ストローク調節機構)34と、を備えている。
The driving device (reciprocating device) 25 includes a driving motor (not shown), a driving shaft 32 to which a rotational driving force is transmitted from the driving motor, and a rotational motion around the central axis DA of the driving shaft 32 in a straight line in the table axis TA direction. A crank mechanism 33 for converting into motion, and a variable stroke mechanism (stroke adjustment mechanism) 34 capable of adjusting the reciprocation (stroke amount) of the rod 28 coupled to the crank mechanism 33 in the direction of the table axis TA are provided. .
駆動装置25は、テーブル軸TA方向にロッド28をストローク(往復移動)させることにより、ロッド28に接続されたダイテーブル22を、ターンテーブル23に対してテーブル軸TA方向に往復移動させる。そして、駆動装置25は、ターンテーブル23に対するダイテーブル22のテーブル軸TA方向への往復移動のストローク量を、調整可能である。
The driving device 25 reciprocates the die table 22 connected to the rod 28 in the direction of the table axis TA with respect to the turntable 23 by stroke (reciprocating) the rod 28 in the direction of the table axis TA. The drive device 25 can adjust the stroke amount of the reciprocating movement of the die table 22 in the direction of the table axis TA with respect to the turntable 23.
なお、駆動装置25としては、例えば、特許文献3や特許文献4に記載の公知の構成を用いることができる。
In addition, as the drive device 25, the well-known structure of patent document 3 or patent document 4 can be used, for example.
ロッド28は、クランク機構33が有するコンロッド35と、ダイテーブル22との間に配設されて、コンロッド35とダイテーブル22とを連結している。本実施形態の例では、ダイテーブル22に一体に設けられてテーブル軸TA上を延びる筒状のメインシャフト(シャフト)36が、ターンテーブル23をテーブル軸TA方向に貫通してメインフレーム21の内部にまで延びており、ロッド28は、メインシャフト36内に収容されている。
The rod 28 is disposed between the connecting rod 35 of the crank mechanism 33 and the die table 22, and connects the connecting rod 35 and the die table 22. In the example of the present embodiment, a cylindrical main shaft (shaft) 36 that is provided integrally with the die table 22 and extends on the table axis TA penetrates the turntable 23 in the direction of the table axis TA, and the inside of the main frame 21. The rod 28 is accommodated in the main shaft 36.
メインシャフト36の内部には、筒体39が配設されている。筒体39は、その中心軸がテーブル軸TAと同軸になるように配置されており、ロッド28の径方向の外側に設けられている。筒体39は、メインシャフト36及びロッド28に対してテーブル周方向に回転可能である。筒体39の外周面は、メインシャフト36の内周面に対して、テーブル周方向に摺動する。筒体39の内周面には、雌ねじ部38が形成されている。また、筒体39のメインシャフト36に対するテーブル軸TA方向への移動が、規制されている。
A cylinder 39 is disposed inside the main shaft 36. The cylindrical body 39 is disposed so that the central axis thereof is coaxial with the table axis TA, and is provided on the outer side in the radial direction of the rod 28. The cylindrical body 39 is rotatable in the table circumferential direction with respect to the main shaft 36 and the rod 28. The outer peripheral surface of the cylindrical body 39 slides in the table circumferential direction with respect to the inner peripheral surface of the main shaft 36. A female screw portion 38 is formed on the inner peripheral surface of the cylindrical body 39. Further, the movement of the cylindrical body 39 in the direction of the table axis TA with respect to the main shaft 36 is restricted.
ロッド28の外周面のうち、テーブル軸TA方向に沿う少なくとも筒体39に対応する領域には、雄ねじ部37が形成されている。ロッド28の雄ねじ部37は、筒体39の雌ねじ部38に螺合している。よって、筒体39は、雄ねじ部37と雌ねじ部38とのねじ込み量に応じて、ロッド28に対してテーブル軸TA方向に移動させられる。
A male screw portion 37 is formed in a region corresponding to at least the cylindrical body 39 along the table axis TA direction in the outer peripheral surface of the rod 28. The male thread part 37 of the rod 28 is screwed into the female thread part 38 of the cylinder 39. Therefore, the cylindrical body 39 is moved in the table axis TA direction with respect to the rod 28 in accordance with the screwing amount of the male screw portion 37 and the female screw portion 38.
このような構造により、メインシャフト36及びロッド28に対して、筒体39をテーブル軸TA回りに回転させると、ロッド28に対して、筒体39及びメインシャフト36がテーブル軸TA方向に移動する。そして、ロッド28に対するダイテーブル22のテーブル軸TA方向の位置を調整することができる。
With this structure, when the cylinder 39 is rotated around the table axis TA with respect to the main shaft 36 and the rod 28, the cylinder 39 and the main shaft 36 move in the direction of the table axis TA with respect to the rod 28. . The position of the die table 22 in the table axis TA direction with respect to the rod 28 can be adjusted.
具体的に、本実施形態の例では、ダイテーブル22の、ターンテーブル23が位置する側とは反対側を向く面に、移動装置31が設けられている。この移動装置31が、筒体39をテーブル軸TA回りに回転可能であるとともに、ロッド28とダイテーブル22とをテーブル軸TA方向に相対移動させる。
Specifically, in the example of the present embodiment, the moving device 31 is provided on the surface of the die table 22 facing the side opposite to the side where the turntable 23 is located. The moving device 31 can rotate the cylindrical body 39 around the table axis TA and relatively move the rod 28 and the die table 22 in the direction of the table axis TA.
移動装置31は、筒体39に設けられたギヤに噛合するギヤ機構と、ギヤ機構を回転させるモータと、を有している。モータは、例えば、サーボモータやステッピングモータ等である。移動装置31は、ギヤ機構を介してモータの回転力を筒体39に伝達する。これにより、筒体39をテーブル軸TA回りに回転させることで、ロッド28に対してダイテーブル22をテーブル軸TA方向に進退移動させる。なお、移動装置31は、モータを用いる以外にも、例えば、ギヤ機構を回転させる手動の回転ハンドルを用いることもできる。
The moving device 31 has a gear mechanism that meshes with a gear provided in the cylinder 39 and a motor that rotates the gear mechanism. The motor is, for example, a servo motor or a stepping motor. The moving device 31 transmits the rotational force of the motor to the cylinder 39 through the gear mechanism. Accordingly, the die body 22 is moved forward and backward in the direction of the table axis TA with respect to the rod 28 by rotating the cylindrical body 39 around the table axis TA. In addition to using a motor, the moving device 31 can also use, for example, a manual rotation handle that rotates a gear mechanism.
メインフレーム21に設けられたインデックス(回転装置)29の中心には、メインシャフト36及びロッド28が挿通している。インデックス29は、ダイテーブル22に対してターンテーブル23をテーブル周方向に間欠的に相対回転させる。
The main shaft 36 and the rod 28 are inserted through the center of the index (rotating device) 29 provided on the main frame 21. The index 29 rotates the turntable 23 intermittently relative to the die table 22 in the table circumferential direction.
図6は、メインシャフトに支持されたダイテーブルと、メインシャフトの回転防止装置とを示す概略斜視図である。メインフレーム21の内部には、メインシャフト36の回転を防止するための回転防止装置40が形成されている。回転防止装置40は、サブシャフト41と、連結部材42と、連結部材42に形成された係合装置である流体軸受43とを備えている。
FIG. 6 is a schematic perspective view showing a die table supported by the main shaft and a main shaft rotation preventing device. An anti-rotation device 40 for preventing the main shaft 36 from rotating is formed inside the main frame 21. The rotation preventing device 40 includes a sub shaft 41, a connecting member 42, and a fluid bearing 43 that is an engaging device formed on the connecting member 42.
サブシャフト41は、断面が矩形(四角形)の棒状(長方体形状)の部材であり、メインシャフト36の外周面から離間し、かつ、テーブル軸TAと平行に延びるように配置されている。サブシャフト41は、その一端部および他端部で、棒状の支持部材41a、41bによってメインフレーム21に固定されている。支持部材41a、41bは、サブシャフト41とメインフレーム21を連結する部材である。本実施形態では、支持部材41a、41bの形状は棒状の部材であるが、これに限定されない。支持部材41a、41bは、サブシャフト41とメインフレーム21との間に、後述する連結部材42の長軸方向の一端42b側の最端部を配置可能な長さを備えていればよい。すなわち,支持部材41a、41bの長さは、連結部材42の長軸方向の一端42b側の最端部の設計に応じて適宜変更可能である。また、支持部材41a、41bは、それぞれ、調整ネジ41sを備える。この調整ネジ41sを回動させることによって、支持部材41a、41bは、メインシャフト36に対するサブシャフト41の離間位置(つまり、メインシャフト36とサブシャフト41との間の距離)を微調整することができる。
The sub-shaft 41 is a rod-shaped (rectangular) member having a rectangular (quadrangle) cross section, and is disposed so as to be separated from the outer peripheral surface of the main shaft 36 and extend in parallel with the table axis TA. The sub shaft 41 is fixed to the main frame 21 by rod- like support members 41a and 41b at one end and the other end thereof. The support members 41 a and 41 b are members that connect the sub shaft 41 and the main frame 21. In the present embodiment, the support members 41a and 41b are rod-shaped members, but are not limited thereto. The support members 41a and 41b only need to have a length between the sub shaft 41 and the main frame 21 so that the end portion on the one end 42b side in the major axis direction of the connecting member 42 described later can be disposed. In other words, the lengths of the support members 41a and 41b can be appropriately changed according to the design of the endmost portion on the one end 42b side in the major axis direction of the connecting member 42. Each of the support members 41a and 41b includes an adjustment screw 41s. By rotating the adjustment screw 41s, the support members 41a and 41b can finely adjust the separation position of the sub shaft 41 with respect to the main shaft 36 (that is, the distance between the main shaft 36 and the sub shaft 41). it can.
連結部材42は、略楕円形の板状部材であり、長軸方向の一端42a側でメインシャフト36の一端部に例えばネジによって固着されている。また、連結部材42の一端42a側には、ロッド28を摺動可能に貫通させる貫通穴42hが形成されている。連結部材42は、長軸方向の他端42b側がサブシャフト41に向けて延びるように形成されている。また、連結部材42の他端42b側には、連結部材42とサブシャフト41とを摺動可能に係合させる流体軸受(係合装置)43が形成されている。
The connecting member 42 is a substantially elliptical plate-like member, and is fixed to one end portion of the main shaft 36 by, for example, a screw on the one end 42a side in the long axis direction. Further, a through hole 42h through which the rod 28 is slidably penetrated is formed on the one end 42a side of the connecting member 42. The connecting member 42 is formed so that the other end 42 b side in the major axis direction extends toward the sub shaft 41. Further, a fluid bearing (engagement device) 43 that slidably engages the connecting member 42 and the sub shaft 41 is formed on the other end 42 b side of the connecting member 42.
図7は、流体軸受(係合装置)を示す外観斜視図である。図8は、流体軸受とサブシャフトとの係合状態を示す要部拡大斜視図である。流体軸受(係合装置)43は、ハイドロスタティック軸受あるいは静圧軸受等と呼ばれる、互いに摺動する部材(サブシャフト41および連結部材42)同士が接触しない、非接触の軸受である。
FIG. 7 is an external perspective view showing a fluid dynamic bearing (engagement device). FIG. 8 is an enlarged perspective view of a main part showing an engaged state between the fluid dynamic bearing and the sub shaft. The fluid bearing (engagement device) 43 is a non-contact bearing called a hydrostatic bearing or a hydrostatic bearing in which members (sub-shaft 41 and connecting member 42) that slide with each other do not contact each other.
例えば、流体軸受(係合装置)43は、連結部材42の他端42b側に組み込まれる軸受本体52と、軸受本体52に形成され、サブシャフト41が移動自在に貫通する軸受孔53と、を備えている。
For example, the fluid bearing (engagement device) 43 includes a bearing body 52 incorporated on the other end 42b side of the coupling member 42, and a bearing hole 53 formed in the bearing body 52 through which the sub shaft 41 is movably penetrated. I have.
軸受孔53には、互いに対向する軸受面54a、54bが形成されている。軸受面54a、54bは、サブシャフト41の長手方向に沿った4つの外面のうち、互いに平行な2つの外面41f1、41f2にそれぞれ対向するように形成されている。これら軸受面54a、54bとサブシャフト41の外面41f1、41f2との隙間(ギャップ)は、例えば、30μm~50μm程度である。
In the bearing hole 53, bearing surfaces 54a and 54b facing each other are formed. The bearing surfaces 54 a and 54 b are formed so as to face two outer surfaces 41 f 1 and 41 f 2 parallel to each other among the four outer surfaces along the longitudinal direction of the sub shaft 41. The gaps (gap) between the bearing surfaces 54a and 54b and the outer surfaces 41f1 and 41f2 of the sub shaft 41 are, for example, about 30 μm to 50 μm.
本実施形態では、軸受面54a、54bは、テーブル軸TA(図4及ぶ図6を参照)を中心とした仮想円Qの接線Lに対して略直角に交わる方向に広がるように形成されている。図7に示されるように、こうした仮想円Qの接線Lの方向は、メインシャフト36に加わる回転方向の応力が、連結部材42を介して軸受本体52に伝わる応力の方向に沿っている。
In the present embodiment, the bearing surfaces 54a and 54b are formed so as to extend in a direction substantially perpendicular to the tangent L of the virtual circle Q with the table axis TA (see FIGS. 4 and 6) as the center. . As shown in FIG. 7, the direction of the tangent L of the virtual circle Q is along the direction of the stress in which the rotational stress applied to the main shaft 36 is transmitted to the bearing body 52 via the connecting member 42.
軸受面54a、54bには、それぞれ、ポケット55が形成されている。ポケット55は、軸受面54a、54bの表面に開口する断面が凹状を成す溝である。本実施形態では、軸受面54a、54bの表面に沿って、2本の溝がクロスした略X字状に形成されている。こうしたポケット55は、軸受流体を軸受面54a、54bの表面に滲出させ、サブシャフト41の外面41f1と軸受面54aとの間、および、外面41f2と軸受面54bとの間に、それぞれ、軸受流体の膜を形成する。
The pockets 55 are formed in the bearing surfaces 54a and 54b, respectively. The pocket 55 is a groove having a concave cross section that opens to the surfaces of the bearing surfaces 54a and 54b. In the present embodiment, two grooves are formed in a substantially X shape along the surfaces of the bearing surfaces 54a and 54b. Such pockets 55 allow the bearing fluid to ooze out onto the surfaces of the bearing surfaces 54a and 54b, respectively, between the outer surface 41f1 of the sub shaft 41 and the bearing surface 54a, and between the outer surface 41f2 and the bearing surface 54b, respectively. The film is formed.
軸受面54a,54bのそれぞれに形成されたポケット55は、軸受流体の供給源(図示略)に繋がる供給管56a、56bに接続されている。供給管56a、56bは、流体軸受43の往復動に追従可能なフレキシブルパイプ、いくつかの接続金具、などから構成されている。そして、軸受面54aに形成されたポケット55には、供給管56aを介して軸受流体が供給され、軸受面54bに形成されたポケット55には、供給管56bを介して軸受流体が供給される。
The pockets 55 formed on the bearing surfaces 54a and 54b are connected to supply pipes 56a and 56b connected to a bearing fluid supply source (not shown). The supply pipes 56a and 56b are composed of a flexible pipe that can follow the reciprocating motion of the fluid dynamic bearing 43, several connection fittings, and the like. A bearing fluid is supplied to the pocket 55 formed on the bearing surface 54a via the supply pipe 56a, and a bearing fluid is supplied to the pocket 55 formed on the bearing surface 54b via the supply pipe 56b. .
軸受流体は、例えば、一般的な潤滑油が用いられる。こうした潤滑油は、供給管56a、56bを介してポケット55に連続的に供給され、サブシャフト41の外面41f1と軸受面54aとの間、および、外面41f2と軸受面54bとの間に、それぞれ油膜を形成しつつ、そのまま下部に流下する。
For example, a general lubricating oil is used as the bearing fluid. Such lubricating oil is continuously supplied to the pocket 55 through the supply pipes 56a and 56b, and between the outer surface 41f1 and the bearing surface 54a of the sub shaft 41 and between the outer surface 41f2 and the bearing surface 54b, respectively. While forming an oil film, it flows down as it is.
以上の様な構成の流体軸受(係合装置)43を含む回転防止装置40を備えた缶成形装置20の作用を説明する。本実施形態の缶成形装置(ボトルネッカー)20を用いて缶体を成形する際には、ターンテーブル23に形成された保持部材(缶チャック)27に缶体の底部を保持させて、駆動装置(往復動装置)25によってダイテーブル22を離間位置(図4を参照)と接近位置(図5を参照)との間で往復動させて、缶体の開口端に加工ツール26を押し付ける。これにより、缶体にネック部12やネジ溝13(図2の(g)を参照)が成形される。
The operation of the can molding apparatus 20 including the rotation preventing apparatus 40 including the fluid bearing (engagement apparatus) 43 having the above-described configuration will be described. When forming a can body using the can forming apparatus (bottle necker) 20 of the present embodiment, the bottom of the can body is held by a holding member (can chuck) 27 formed on the turntable 23 to drive the drive body. The reciprocating device 25 reciprocates the die table 22 between the separation position (see FIG. 4) and the approach position (see FIG. 5), and presses the processing tool 26 against the open end of the can body. Thereby, the neck part 12 and the thread groove 13 (refer (g) of FIG. 2) are shape | molded by the can.
こうした缶体の成形の際に、回転するターンテーブル23の中心に貫通している、ターンテーブル23を支持するメインシャフト36には、回転方向に応力が加わる。こうしたメインシャフト36に加わる回転応力によるメインシャフト36(ダイテーブル22)の回転を抑止するために、回転防止装置40として、メインシャフト36の外周面から離間し、かつ、テーブル軸TAと平行に延びる、サブシャフト41をメインフレーム21に固定し、このサブシャフト41とメインシャフト36とを連結部材42を介して係合させる。これにより、メインシャフト36の回転を抑止している。
When such a can is formed, stress is applied to the main shaft 36 that supports the turntable 23 that passes through the center of the turntable 23 that rotates. In order to suppress the rotation of the main shaft 36 (die table 22) due to the rotational stress applied to the main shaft 36, the rotation preventing device 40 is separated from the outer peripheral surface of the main shaft 36 and extends in parallel with the table axis TA. The sub shaft 41 is fixed to the main frame 21, and the sub shaft 41 and the main shaft 36 are engaged with each other through the connecting member 42. Thereby, rotation of the main shaft 36 is suppressed.
連結部材42とサブシャフト41とは、流体軸受(係合装置)43を介して摺動可能に係合されており、ダイテーブル22のテーブル軸TAに沿った移動に追従して、メインシャフト36の一端部に固定された連結部材42をサブシャフト41の中心軸に沿って移動可能にしている。
The connecting member 42 and the sub shaft 41 are slidably engaged via a fluid bearing (engagement device) 43, and follow the movement of the die table 22 along the table axis TA to follow the main shaft 36. The connecting member 42 fixed to one end of the sub-shaft 41 is movable along the central axis of the sub-shaft 41.
そして、長軸方向の一端側がメインシャフト36に固定された連結部材42とサブシャフト41とを摺動可能に係合させる軸受として、流体軸受43を用いる。これにより、ダイテーブル22の高速な往復動にも対応することが可能になる。
Then, a fluid bearing 43 is used as a bearing for slidably engaging the connecting member 42 whose one end side in the major axis direction is fixed to the main shaft 36 and the sub shaft 41. As a result, it is possible to cope with high-speed reciprocation of the die table 22.
即ち、従来のように、固体どうしの物理的な接触を伴うベアリング軸受などの軸受では、摩擦などによって高速な摺動に対応することが困難である。しかしながら、本発明の缶成形装置では、回転防止装置40を構成する、メインシャフト36に固定された連結部材42とサブシャフト41とを流体軸受43によって摺動可能に係合させる。これにより、連結部材42とサブシャフト41とは、流体(軸受油)を介して間接的に軸受される。
That is, it is difficult to cope with high-speed sliding due to friction or the like in a conventional bearing such as a bearing having physical contact between solids. However, in the can molding apparatus of the present invention, the coupling member 42 fixed to the main shaft 36 and the sub shaft 41 constituting the rotation preventing device 40 are slidably engaged by the fluid bearing 43. Thereby, the connection member 42 and the sub shaft 41 are indirectly bearing through the fluid (bearing oil).
これによって、駆動装置(往復動装置)25でメインシャフト36を高速に往復動させることが可能になる。例えば、連結部材42のサブシャフト41に対する最高速度は、従来のボールベアリングを用いた軸受を使用する場合では、1.55m/s程度が限界である。これに対して、本発明のように流体軸受43を使用する場合では、連結部材42のサブシャフト41に対する最高速度は、例えば1.9m/s~2.2m/s程度となり、従来のボールベアリングを用いた軸受を使用する場合と比べて1.3倍~1.4倍の速度まで高めることが可能になる。
Thus, the main shaft 36 can be reciprocated at high speed by the drive device (reciprocating device) 25. For example, the maximum speed of the connecting member 42 with respect to the sub-shaft 41 is limited to about 1.55 m / s when a conventional bearing using a ball bearing is used. On the other hand, when the fluid bearing 43 is used as in the present invention, the maximum speed of the connecting member 42 with respect to the sub-shaft 41 is, for example, about 1.9 m / s to 2.2 m / s. It is possible to increase the speed to 1.3 to 1.4 times as compared with the case of using a bearing using.
こうしてメインシャフト36を高速に往復動させることによって、ダイテーブル22に形成された加工ツール26による缶体の加工速度が高められる。よって、ダイテーブル22を支持するメインシャフト36の回動を抑止しつつ、缶体を高速成形することが可能な缶成形装置20を実現できる。
Thus, by reciprocating the main shaft 36 at a high speed, the processing speed of the can by the processing tool 26 formed on the die table 22 is increased. Therefore, the can forming apparatus 20 that can form the can at high speed while suppressing the rotation of the main shaft 36 that supports the die table 22 can be realized.
また、サブシャフト41の外面41f1との間で油膜を形成する軸受面54a、および、サブシャフト41の外面41f2との間で油膜を形成する軸受面54bを、メインシャフト36に加わる回転応力の方向に対して略直角に交わる方向に広がるように形成する。これにより、流体軸受43は、サブシャフト41の外面41f1、41f2と軸受面54a、54bとの間の隙間のうち、一方の隙間が縮まる方向に流体軸受43が微動すると、油膜の反発力によって他方の隙間が縮まる方向(逆方向)に流体軸受43を微動させる。
The direction of rotational stress applied to the main shaft 36 includes a bearing surface 54a that forms an oil film with the outer surface 41f1 of the sub shaft 41 and a bearing surface 54b that forms an oil film with the outer surface 41f2 of the sub shaft 41. It is formed so as to spread in a direction that intersects at a substantially right angle to. As a result, when the fluid bearing 43 finely moves in a direction in which one of the gaps between the outer surfaces 41f1 and 41f2 of the sub shaft 41 and the bearing surfaces 54a and 54b is contracted, the other is caused by the repulsive force of the oil film. The hydrodynamic bearing 43 is finely moved in the direction in which the gap is reduced (reverse direction).
これにより、軸受面54aとサブシャフト41の外面41f1との隙間、および、軸受面54bとサブシャフト41の外面41f2との隙間が、常に一定に保たれる。こうした自動調芯機能によって、メインシャフト36に回転応力が加わっても、サブシャフト41の外面41f1、41f2と、軸受面54a、54bとが接触することが無く、常に非接触でメインシャフト36の回動を抑制することが可能になる。
Thereby, the clearance between the bearing surface 54a and the outer surface 41f1 of the sub shaft 41 and the clearance between the bearing surface 54b and the outer surface 41f2 of the sub shaft 41 are always kept constant. With such an automatic alignment function, even if a rotational stress is applied to the main shaft 36, the outer surfaces 41f1 and 41f2 of the sub-shaft 41 do not come into contact with the bearing surfaces 54a and 54b. It becomes possible to suppress movement.
なお、上述した実施形態では、サブシャフト41として断面が矩形の四角棒状の部材を用いたが、これに限定されない。例えば、断面円形の丸棒、断面六角形の六角棒、などの各種形状のサブシャフトを適用することができる。そして、流体軸受(係合装置)43の軸受孔53の形状は、貫通させるサブシャフト41の形状に合わせればよい。
In the embodiment described above, a rectangular bar-shaped member having a rectangular cross section is used as the sub shaft 41, but the present invention is not limited to this. For example, sub-shafts of various shapes such as a round bar having a circular cross section and a hexagonal bar having a cross section can be applied. The shape of the bearing hole 53 of the fluid dynamic bearing (engagement device) 43 may be matched with the shape of the sub shaft 41 to be penetrated.
以上、本発明の実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
As mentioned above, although embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
本発明によれば、ダイテーブルを支持するシャフトの回動を抑止しつつ、シャフトの往復動の速度を向上させることが可能な缶成形装置を提供することができる。
According to the present invention, it is possible to provide a can forming apparatus capable of improving the speed of reciprocation of the shaft while suppressing the rotation of the shaft supporting the die table.
10 缶体(ボトル缶)
20 缶成形装置(ボトルネッカー)
21 メインフレーム(本体部)
22 ダイテーブル
23 ターンテーブル
25 駆動装置(往復動装置)
29 インデックス(回転装置)
36 メインシャフト
40 回転防止装置
41 サブシャフト
42 連結部材
43 流体軸受(係合装置)
52 軸受本体
53 軸受孔
54a、54b 軸受面
TA テーブル軸
Q 仮想円
L 接線 10 Can body (bottle can)
20 Can molding equipment (bottle necker)
21 Main frame (main part)
22 Die table 23Turntable 25 Drive device (reciprocating device)
29 Index (Rotating device)
36Main shaft 40 Anti-rotation device 41 Sub shaft 42 Connecting member 43 Fluid bearing (engagement device)
52Bearing body 53 Bearing hole 54a, 54b Bearing surface
TA Table axis Q Virtual circle L Tangent
20 缶成形装置(ボトルネッカー)
21 メインフレーム(本体部)
22 ダイテーブル
23 ターンテーブル
25 駆動装置(往復動装置)
29 インデックス(回転装置)
36 メインシャフト
40 回転防止装置
41 サブシャフト
42 連結部材
43 流体軸受(係合装置)
52 軸受本体
53 軸受孔
54a、54b 軸受面
TA テーブル軸
Q 仮想円
L 接線 10 Can body (bottle can)
20 Can molding equipment (bottle necker)
21 Main frame (main part)
22 Die table 23
29 Index (Rotating device)
36
52
TA Table axis Q Virtual circle L Tangent
Claims (4)
- メインフレームと、
前記メインフレームに回動可能に支持され、缶体を着脱可能に保持する複数の缶体保持部が円環状に配列されたターンテーブルと、
テーブル軸に沿って前記ターンテーブルを貫通するメインシャフトと、
前記メインシャフトを介して前記メインフレームに支持され、前記缶体を成形する複数の加工ツールが円環状に配列されたダイテーブルと、
前記ダイテーブルを前記テーブル軸に沿って往復動させる往復動装置と、
前記ターンテーブルを前記テーブル軸回りで間欠的に回転させる回転装置と、を有する缶成形装置であって、
前記メインシャフトの外周面から離間し、かつ、前記テーブル軸と平行に延び、両端部が前記メインフレームに固定されたサブシャフトと、
一端側が前記メインシャフトに固定され、他端側が前記サブシャフトに向けて延びる連結部材と、
前記連結部材の他端側に形成され、前記サブシャフトの中心軸に沿って、前記連結部材を前記サブシャフトに対して摺動可能に係合させる係合装置と、
を含む、前記メインシャフトの回転防止装置を備え、
前記係合装置は、流体を介して前記サブシャフトを支持する流体軸受である缶成形装置。 The mainframe,
A turntable in which a plurality of can body holding portions that are rotatably supported by the main frame and removably hold the can body are arranged in an annular shape,
A main shaft passing through the turntable along the table axis;
A die table supported by the main frame via the main shaft and in which a plurality of processing tools for forming the can body are arranged in an annular shape;
A reciprocating device for reciprocating the die table along the table axis;
A rotating device that intermittently rotates the turntable around the table axis,
A sub-shaft that is spaced apart from the outer peripheral surface of the main shaft and that extends parallel to the table axis, and whose both ends are fixed to the main frame;
One end side is fixed to the main shaft, and the other end side extends toward the sub-shaft,
An engaging device that is formed on the other end side of the connecting member and slidably engages the connecting member with the sub shaft along a central axis of the sub shaft;
Including an anti-rotation device for the main shaft,
The can forming apparatus, wherein the engagement device is a fluid bearing that supports the sub shaft via a fluid. - 前記流体軸受は、軸受本体と、前記軸受本体に形成され前記サブシャフトが貫通する軸受孔と、前記軸受孔の内面に開口し、軸受流体を供給するポケットを備えた軸受面と、を備えている請求項1記載の缶成形装置。 The fluid bearing includes a bearing body, a bearing hole formed in the bearing body and through which the sub-shaft passes, and a bearing surface provided with a pocket that opens to an inner surface of the bearing hole and supplies bearing fluid. The can molding apparatus according to claim 1.
- 前記サブシャフトは、断面矩形の四角棒状を成し、前記軸受面は、前記サブシャフトの外面のうち互いに平行な2面にそれぞれ対向するように形成されている請求項2記載の缶成形装置。 3. The can forming apparatus according to claim 2, wherein the sub shaft has a rectangular bar shape with a rectangular cross section, and the bearing surface is formed to face two parallel surfaces of the outer surface of the sub shaft.
- 前記軸受面は、前記テーブル軸を中心とした仮想円の接線に略直角に交わる方向に広がるように形成されている請求項3記載の缶成形装置。 4. The can forming apparatus according to claim 3, wherein the bearing surface is formed so as to extend in a direction substantially perpendicular to a tangent of a virtual circle centered on the table axis.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-193317 | 2016-09-30 | ||
JP2016193317 | 2016-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018061259A1 true WO2018061259A1 (en) | 2018-04-05 |
Family
ID=61759443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/011791 WO2018061259A1 (en) | 2016-09-30 | 2017-03-23 | Can forming device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6906412B2 (en) |
WO (1) | WO2018061259A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05131225A (en) * | 1990-01-05 | 1993-05-28 | Reynolds Metals Co | Device for forming one-piece metal can |
JPH0671351A (en) * | 1992-08-27 | 1994-03-15 | Mitsubishi Materials Corp | Device for forming can |
JPH09103834A (en) * | 1995-05-30 | 1997-04-22 | Minster Mach Co:The | Tool pack for body maker |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6474867B1 (en) * | 2000-02-17 | 2002-11-05 | Jerome Frank Perrone, Jr. | Shuttle compensated hydrostatic bearing |
JP2007083252A (en) * | 2005-09-20 | 2007-04-05 | Universal Seikan Kk | Apparatus for manufacturing bottle can |
CH703706B1 (en) * | 2010-09-15 | 2015-01-15 | Mall & Herlan Schweiz Ag | Necking. |
US9533338B2 (en) * | 2013-08-28 | 2017-01-03 | Stolle Machinery Company, Llc | Outboard hydrostatic bearing assembly for can bodymaker |
-
2017
- 2017-03-23 WO PCT/JP2017/011791 patent/WO2018061259A1/en active Application Filing
- 2017-09-26 JP JP2017184351A patent/JP6906412B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05131225A (en) * | 1990-01-05 | 1993-05-28 | Reynolds Metals Co | Device for forming one-piece metal can |
JPH0671351A (en) * | 1992-08-27 | 1994-03-15 | Mitsubishi Materials Corp | Device for forming can |
JPH09103834A (en) * | 1995-05-30 | 1997-04-22 | Minster Mach Co:The | Tool pack for body maker |
Also Published As
Publication number | Publication date |
---|---|
JP6906412B2 (en) | 2021-07-21 |
JP2018058115A (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2526348C2 (en) | Method and device for rotary extrusion with wall thinning | |
EP3328571B1 (en) | Forming ram assembly and method of assembling a forming ram assembly | |
US11326674B2 (en) | Spindle nut, threaded drive, and method for manufacturing a spindle nut | |
JP6305540B2 (en) | Mechanism and design to cope with ram droop | |
JP2008260042A (en) | Press forming apparatus | |
KR101505780B1 (en) | Apparatus for manufacturing metallic can | |
WO2018061259A1 (en) | Can forming device | |
US20180036786A1 (en) | Can making machine | |
JP7542348B2 (en) | Reciprocating linear motion mechanism for can forming device and can forming device | |
CN202129326U (en) | Radial clearance adjustable double-layer roll ball spinning device | |
JP2018192510A (en) | Cup presser mechanism of can molding equipment and can molding equipment | |
JP6884052B2 (en) | Can bottom molding method | |
JP6843713B2 (en) | Can molding equipment | |
JP2018012140A (en) | Can forming apparatus | |
JP6887363B2 (en) | How to make cans | |
CN210098787U (en) | Aluminum package manufacturing device | |
CN102274884B (en) | Double layer rolling ball spinning device with adjustable radial gap | |
WO2018008200A1 (en) | Forming processing unit and bottle can manufacturing device | |
JP6914434B2 (en) | Cold molded brake piston | |
JP7475230B2 (en) | Reciprocating linear motion mechanism for can forming device and can forming device | |
CN106238539B (en) | The device and method in turned-out straight flange hole processed on complex-curved hollow closing part | |
JP7479240B2 (en) | Reciprocating linear motion mechanism for can forming device and can forming device | |
JP7462501B2 (en) | Reciprocating linear motion mechanism for can forming device and can forming device | |
JP2019013948A (en) | Can bottom forming device | |
JP7499638B2 (en) | Reciprocating linear motion mechanism for can forming device and can forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17855218 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17855218 Country of ref document: EP Kind code of ref document: A1 |