[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018061196A1 - ガラス容器の焼傷検査装置 - Google Patents

ガラス容器の焼傷検査装置 Download PDF

Info

Publication number
WO2018061196A1
WO2018061196A1 PCT/JP2016/079097 JP2016079097W WO2018061196A1 WO 2018061196 A1 WO2018061196 A1 WO 2018061196A1 JP 2016079097 W JP2016079097 W JP 2016079097W WO 2018061196 A1 WO2018061196 A1 WO 2018061196A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
unit
imaging
light
image
Prior art date
Application number
PCT/JP2016/079097
Other languages
English (en)
French (fr)
Inventor
原田 崇
悠貴 伊藤
Original Assignee
東洋ガラス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ガラス株式会社 filed Critical 東洋ガラス株式会社
Priority to JP2018541846A priority Critical patent/JP6778754B2/ja
Priority to KR1020197008995A priority patent/KR102187406B1/ko
Priority to CN201680089663.2A priority patent/CN109844505B/zh
Priority to PCT/JP2016/079097 priority patent/WO2018061196A1/ja
Publication of WO2018061196A1 publication Critical patent/WO2018061196A1/ja
Priority to PH12019500510A priority patent/PH12019500510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/90Investigating the presence of flaws or contamination in a container or its contents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • the present invention relates to a burner inspection apparatus for glass containers that optically inspects defects called burns that occur in the molding process of glass containers.
  • Glass containers such as glass bottles and glass tableware are molded by putting gob (a lump of molten glass) into a rough mold and blowing or pressing to form a parison, then transferring it to a finishing mold and blowing it. Is done. If there is a scratch or wrinkle on the gob cut out from the orifice, it remains as a streak-like groove in a glass container formed with a finishing die, which is a defect called burn.
  • gob a lump of molten glass
  • the finishing mold in the molding process of the glass container is a split mold
  • a slight level difference on the mating surface of the split mold is formed on the container surface as a joint line.
  • the seam line appears linearly in the longitudinal direction of the glass container.
  • An object of the present invention is to provide a burn inspection apparatus for a glass container that can more accurately detect the presence or absence of burns while accurately distinguishing between burns and joint lines.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • the burn inspection device for glass containers is A light emitting part for illuminating the container; A rotation support for supporting the container while rotating the container around the axis of the container; An imaging unit disposed opposite to the light emitting unit across a container; A determination unit that determines the presence or absence of a defect based on a first image of the container surface in the first imaging region captured by the imaging unit and a second image of the container surface in the second imaging region; Including The second image is an image of a container surface corresponding to the first image;
  • the first imaging region is a part of the container surface on the right side when viewed from the imaging unit with respect to a reference line connecting the imaging unit and the axis,
  • the second imaging region is a part of the container surface on the left side when viewed from the imaging unit with respect to the reference line,
  • the first imaging area and the second imaging area are each set at 1 to 10 degrees around the axis.
  • the glass container burn inspection apparatus can more accurately detect the presence or absence of burns while accurately distinguishing between burns and seams.
  • the first imaging area is set in an area in a range of 15 degrees to 60 degrees when the reference line is set to 0 degrees around the axis line on the right side from the reference line
  • the second imaging region may be set in a region in a range of 15 degrees to 60 degrees when the reference line is set to 0 degrees around the axis line on the left side from the reference line.
  • the glass container burn inspection apparatus according to this application example can more accurately detect the presence or absence of burns.
  • a through-hole provided between the light-emitting unit and the container supported by the rotation support unit, through which a part of light from the light-emitting unit passes;
  • a light-shielding part that is provided on both sides of the through-hole in a cross section perpendicular to the axis, and blocks a part of light from the light-emitting part;
  • the width of the through hole is not less than the width of the container and does not exceed a range obtained by adding 30 mm to the width of the container.
  • the glass container burn inspection apparatus according to this application example can more accurately detect the presence or absence of burns.
  • a control unit that emits light from a light emitting region that is a part of the light emitting unit;
  • the rotation support unit rotates the container around the axis and conveys the container along the conveyance direction,
  • the control unit sets the width of the light emitting region in a cross section orthogonal to the axis to be equal to or larger than the width of the container and does not exceed a range obtained by adding 30 mm to the width of the container.
  • the container can be moved following the container conveyed in the conveying direction.
  • the glass container burn inspection apparatus according to this application example can more accurately detect the presence or absence of burns.
  • the present invention can provide a glass container burn inspection apparatus that can more accurately detect the presence or absence of burns while accurately distinguishing between burns and joint lines.
  • FIG. 1 is a plan view of a burn inspection apparatus.
  • FIG. 2 is a side view of the burn inspection apparatus.
  • FIG. 3 is a front view of the burn inspection apparatus for explaining the relationship between the light shielding portion and the container.
  • FIG. 4 is a front view of the container for explaining the first imaging region and the second imaging region.
  • FIG. 5 is a diagram comparing the first image and the second image.
  • FIG. 6 is a flowchart for explaining an inspection method using a burn inspection apparatus.
  • FIG. 7 is a plan view of a burn inspection apparatus according to a modification.
  • FIG. 8 is a front view of a burn inspection apparatus according to a modification for explaining the movement of the light emitting region.
  • FIG. 9 is a front view of a burn inspection apparatus according to a modification for explaining the movement of the light emitting region.
  • the glass container burn inspection apparatus includes a light emitting unit that illuminates the container, a rotation support unit that supports the container while rotating the container around the axis of the container, and the light emitting unit that faces the light emitting unit across the container. And determining the presence / absence of a defect based on a first image of the container surface in the first imaging region and a second image of the container surface in the second imaging region captured by the imaging unit.
  • the second image is an image of the container surface corresponding to the first image
  • the first imaging region is the imaging unit with respect to a reference line connecting the imaging unit and the axis
  • the second imaging region is a part of the container surface on the left side when viewed from the imaging unit with respect to the reference line, and the first imaging region and Each of the second imaging areas is 1 to 10 degrees around the axis. Characterized in that it is set.
  • FIG. 1 is a plan view of the burn inspection apparatus 1
  • FIG. 2 is a side view of the burn inspection apparatus 1
  • FIG. 3 is a burn inspection apparatus 1 for explaining the relationship between the light shielding portion 81 and the container 10.
  • FIG. 1 is a plan view of the burn inspection apparatus 1
  • FIG. 2 is a side view of the burn inspection apparatus 1
  • FIG. 3 is a burn inspection apparatus 1 for explaining the relationship between the light shielding portion 81 and the container 10.
  • the burn inspection apparatus 1 includes a light emitting unit 20 that illuminates the container 10 and a rotation support unit (30, 32) that supports the container 10 while rotating the container 10 around the axis 12 of the container 10. And an imaging unit 40 disposed opposite the light emitting unit 20 with the container 10 interposed therebetween, and a determination unit 52 that determines the presence or absence of a defect based on the image of the container surface 14 captured by the imaging unit 40.
  • the container 10 is made of glass and is transparent or translucent. Semi-transparency is a degree of transparency that allows burns to be determined by light from the light emitting unit 20 that has passed through the container 10.
  • the container 10 has a circular cross section.
  • the cross-sectional shape of the container 10 may be a polygon.
  • the axis 12 is an imaginary line indicating the rotation center axis around which the container 10 supported by the first rotation support part 30 and the second rotation support part 32 rotates.
  • the axis 12 coincides with the center of the circle formed by the container surface 14 in the cross section of the container 10.
  • the burn inspection apparatus 1 uses the light transmitted through the container 10 to image the container surface 14 with the imaging unit 40, and a portion appearing in black in the captured image is a detection body (in this embodiment, “dark line”). It is a light transmission type burn inspection apparatus 1 that is detected as a portion recognized as “. In burns, the light from the light emitting unit 20 is randomly reflected or refracted, and the amount of light reaching the imaging unit 40 is extremely small compared to other parts (the container surface 14 without the detection body). For this reason, the burned portion becomes darker than the other portions, and appears as black burn on the white container surface 14 in the image. Details of the burn will be described later.
  • the reference line 41 is a virtual line connecting the imaging unit 40 and the axis 12.
  • the imaging unit 40 can image the container 10 around the reference line 41. 1 and 2, the imaging unit 40 represents the camera body, so the reference line 41 coincides with the optical axis of the camera from the imaging unit 40 toward the axis 12 of the container 10. Since the imaging unit 40 is fixed at a predetermined position, the reference line 41 is always at the same position even when the container 10 is not conveyed. In addition, when the imaging part 40 follows according to the movement of the container 10 like the modification mentioned later, the reference line 41 will also move.
  • the container 10 determined to be non-defective by the determination unit 52 is transported to the next inspection process (not shown), for example.
  • the container 10 determined to be defective by the determination unit 52 is discharged to the outside of the burn inspection apparatus 1 from, for example, a discharge unit (not shown).
  • FIG. 4 is a front view of the container 10 for explaining the first imaging region 60 and the second imaging region 62. Details of the first imaging region 60 and the second imaging region 62 will be described later.
  • the burn inspection apparatus 1 must be able to determine that the joint line 16 is not the burn 18. This is because the seam line 16 is present in almost all containers 10 and does not substantially affect the quality of the containers 10.
  • the joint line 16 is a step formed on the surface 14 of the container due to the finish of the finishing mold in the forming process of the container 10.
  • the seam line 16 has a steep slope on one side and a gentle slope on the other side, and is bilaterally asymmetric and directional. For this reason, when the seam line 16 is on the left side of the reference line 41 and when it is on the right side, reflection and refraction of light from the light emitting unit 20 are different.
  • the first imaging area 60 becomes a dark line and becomes a detection body, but when moving to the second imaging area 62, the imaging unit 40 cannot recognize the detection body.
  • the burn 18 has a groove shape with a V-shaped cross section, and its slope is not smooth but uneven. For this reason, the light from the light emitting unit 20 is randomly reflected and refracted by the burn 18, and the burn 18 reaches the imaging unit 40 from any portion (left side or right side) of the container 10. Light is extremely reduced, and the burn 18 becomes a detection body in the image captured by the imaging unit 40. Further, although the burn 18 extends in the direction along the axis 12 of the container 10, the burn 18 similarly becomes a detection body in the image even in the horizontal direction or the inclined burn 18. In the example illustrated in FIG. 4, the detection object of the burn 18 appears in the first imaging region 60 and the second imaging region 62 and is imaged by the imaging unit 40.
  • the determination unit 52 compares the left image of the first imaging region 60 and the right image of the second imaging region 62 imaged by the imaging unit 40. It can be determined that there is a detection object, and when there is a detection object on only one of them, it can be determined that the joint line 16 is present.
  • the light emitting unit 20 is a light source that illuminates the container 10.
  • the light emitting unit 20 is a surface light source that can illuminate the container 10 from the opposite side of the imaging unit 40.
  • the light emitting unit 20 is set to a size that can illuminate the entire largest container 10 that is scheduled to be inspected by the burn inspection apparatus 1.
  • the light emitting unit 20 has a rectangular shape on the front side on the container 10 side, and almost the entire front surface is a light emitting surface.
  • the light emitting unit 20 faces the container 10 and the imaging unit 40 and is arranged so that light transmitted through the container 10 reaches the imaging unit 40.
  • the light source of the light emitting unit 20 a known light source such as an LED or an organic EL can be used.
  • the light emitting unit 20 is a diffuse illumination, and when an LED is used, the container 10 can be irradiated with uniform light using a diffusion plate on the front surface of the light source.
  • a diffusion plate a known plate that diffuses light from a light source such as an LED and emits the light to the outside can be used. When light is diffused by the diffusion plate, unevenness with a portion where no light source exists can be reduced when a large number of light sources are used.
  • the light emitting unit 20 may be capable of partially emitting light. For example, when LEDs are used, since the light emitting unit 20 has a large number of LEDs arranged on the entire surface of the light emitting unit 20, light can be emitted for each LED or a set of a plurality of LEDs in a partial region. It is good. By doing in this way, the area
  • the light shielding plate 80 is disposed between the light emitting part 20 and the container 10 supported by the first rotation support part 30.
  • the light shielding plate 80 includes a through hole 82 and a light shielding portion 81.
  • the through hole 82 is provided between the light emitting unit 20 and the container 10 supported by the first rotation support unit 30 and illuminates the container 10 through a part of the light from the light emitting unit 20.
  • the light shielding portions are provided on both sides of the through hole 82 in the cross section orthogonal to the axis 12 and shield a part of the light from the light emitting portion 20.
  • the light shielding unit 81 is for irradiating the container 10 with only a predetermined range of light in the light emitting unit 20.
  • the light that has passed through the through-hole 82 is irradiated on the surface of the container 10 opposite to the imaging unit 40, and the light that has not been transmitted through the through-hole 82 does not reach the container 10.
  • the outer shape of the light shielding part 81 has the same size as the light emitting part 20, for example, and the through hole 82 is formed in a similar shape, for example, according to the outer shape line when the container 10 is viewed from the front.
  • the width D1 of the through-hole 82 is not less than the width D2 of the container 10 and does not exceed the range obtained by adding 30 mm to the width D2 of the container 10. It is desirable. This is to detect the presence or absence of the burn 18 more accurately. If the width D1 is equal to or greater than the width D2, light can be sufficiently irradiated over the entire width of the container 10, so that dark portions due to uneven thickness distribution near both ends in the width direction of the container 10 can be reduced. If the width D1 is equal to or less than the width D2 + 30 mm, the burn 18 is not whitened in the first imaging target area 70 and the second imaging target area 72. That is, the burn 18 can be clearly imaged as a detection body.
  • the height of the light shielding part 81 is preferably the same as or slightly higher than the height of the part to be photographed, for example, the trunk part.
  • the light emission part 20 can be made to light-emit partially according to the shape of the container 10 like the modification mentioned later, the light-shielding part 81 does not need to be provided.
  • Rotation Support Unit As illustrated in FIGS. 2 and 3, the rotation support units (30, 32) support the container 10 while rotating the container 10 around the axis 12 in the rotation direction R.
  • the rotation support portions (30, 32) include a first rotation support portion 30 and a second rotation support portion 32.
  • the first rotation support part 30 is a cylindrical member below the container 10, and the bottom part of the container 10 is placed on the upper surface of the first rotation support part 30 and rotates around the axis 12.
  • the 1st rotation support part 30 has a drive device which is not illustrated in the lower part. An electric motor or the like can be used as the drive device.
  • the first rotation support unit 30 rotates a predetermined amount when the container 10 to be inspected is conveyed on the reference line 41 of the imaging unit 40.
  • the predetermined amount of rotation is an amount necessary for the entire circumference of the container 10 to be imaged in two imaging regions on the right side and the left side with respect to the reference line 41.
  • the predetermined amount of rotation is one or more rotations. For example, when the left and right images are shifted and compared as described later with reference to FIG.
  • the rotation amount of the first rotation support unit 30 is calculated by the control unit 50 based on the output of the rotation detection unit 54 shown in FIG.
  • the rotation detection unit 54 may be a rotary encoder attached directly or indirectly to the drive device of the first rotation support unit 30.
  • the second rotation support portion 32 is a cylindrical member above the container 10, and the lower surface thereof is placed on the mouth of the container 10 and rotates with the rotation of the container 10 about the axis 12.
  • the 2nd rotation support part 32 does not have a drive device.
  • the second rotation support part 32 supports the container 10 so as to be sandwiched from above and below together with the first rotation support part 30, thereby preventing the container 10 from swinging or falling due to rotation.
  • the position of the container 10 in FIG. 1 is the inspection position in the burn inspection apparatus 1.
  • the container 10 supported by the first rotation support unit 30 and the second rotation support unit 32 is transported to the reference line 41 that is the inspection position, the container 10 stops at the inspection position and rotates about one or more rotations about the axis 12. To do.
  • the container 10 is unloaded from the inspection position while being supported by the first rotation support portion 30.
  • the container 10 is supported intermittently by the first rotation support unit 30 and the second rotation support unit 32.
  • Imaging Unit 40 As shown in FIGS. 1 and 2, the imaging unit 40 is arranged to face the light emitting unit 20 with the container 10 interposed therebetween. The imaging unit 40 is disposed on a reference line 41 that passes through the axis 12 of the container 10. The imaging unit 40 can image at least a portion to be inspected of the container 10, and is arranged here so that the entire body of the container 10 falls within the field of view of the imaging unit 40.
  • the imaging unit 40 can capture an image that allows the burn 18 to be determined by the light of the light emitting unit 20 that has passed through the container 10.
  • the imaging unit 40 can use a known area sensor.
  • As the area sensor a CCD image sensor, a CMOS image sensor, or the like can be used.
  • the imaging unit 40 is on the left side when viewed from the imaging unit 40 with respect to the reference line 41 and the first imaging region 60 that is a part of the container surface 14 on the right side when viewed from the imaging unit 40.
  • the second imaging region 62 that is a part of the container surface 14 is imaged. This is for discriminating between the burn 18 and the joint line 16.
  • the imaging unit 40 images the entire front surface of the container 10 including the first imaging region 60 and the second imaging region 62, and the image processing unit 53 corresponds to the first imaging region 60 and the second imaging region 62 from the image. May be cut out as a first image 100 and a second image 102 (described later with reference to FIG. 5).
  • the first imaging area 60 and the second imaging area 62 are each set to 1 to 10 degrees around the axis 12.
  • the set angle ⁇ 1 of the first shooting area 60 and the second shooting area 62 is set to the same angle (width).
  • the container 10 having a cylindrical body having a diameter of 34 mm to 206 mm if it is 10 degrees or less, the largest portion is a burn 18 having a depth of 0.05 mm or more and a length of 2.5 mm or more and the surface Bubbles can be recognized, and if it is 1 or more, it can be determined whether or not burns 18 are present in the image.
  • the setting angle ⁇ 1 of the first imaging region 60 and the second imaging region 62 can be set to about 6.6 degrees, for example, and in this case, the container 10 rotates about 6.6 degrees. Each time it is taken, at least 65 shots are taken. As will be described later with reference to FIG. 5, the position of the first image in the first shooting area 60 and the position of the first image in the second shooting area 62 are misaligned. .
  • the timing at which the imaging unit 40 captures an image is determined by the control unit 50 issuing a command to the imaging unit 40 based on rotation angle data (pulse signal) from the rotation detection unit 54 that detects the rotation of the first rotation support unit 30. .
  • the first imaging region 60 is located in the first imaging target region 70 in the range of 15 to 60 degrees when the reference line 41 is set to 0 degrees around the axis 12 on the right side from the reference line 41.
  • the second imaging region 62 is set within the second imaging target region 72 in the range of 15 to 60 degrees when the reference line 41 is set to 0 degrees with the axis 12 on the left side from the reference line 41.
  • the setting angle of the first imaging target region 70 is preferably set such that the angle ⁇ 2 from the reference line 41 is 15 degrees or more and the angle ⁇ 3 from the reference line 41 is 60 degrees or less.
  • the setting angle of the second imaging target region 72 is preferably such that the angle ⁇ 4 from the reference line 41 is 15 degrees or more and the angle ⁇ 5 from the reference line 41 is 60 degrees or less. This is because the burn 18 may not appear as a detection object in an area smaller than 15 degrees (a range indicated by hatching from the reference line 41 to ⁇ 2 ( ⁇ 4) in FIG. 1). In addition, in a region larger than 60 degrees (a range indicated by hatching from ⁇ 3 ( ⁇ 5) to 90 degrees in FIG. 1), a shadow due to uneven thickness of the container 10 may be erroneously recognized as a burn 18. is there.
  • the first imaging region 60 and the second imaging region 62 are set around a position of 36 degrees to the left and right from the reference line 41. As shown in FIG.
  • Determination Unit As illustrated in FIGS. 1 and 2, the determination unit 52 is a part of the control unit 50. Therefore, the control unit 50 instructs the subsequent processing of the inspected container 10 based on the determination result of the determination unit 52.
  • the determination unit 52 may be provided separately from the control unit 50. In that case, the determination result of the determination unit 52 is notified to the control unit 50.
  • FIG. 5 is a diagram comparing the first image 100 and the second image 102.
  • the determination unit 52 includes the first image 100 of the container surface 14 in the first imaging region 60 captured by the imaging unit 40 and the second of the container surface 14 in the second imaging region 62. The presence or absence of a defect is determined based on the image 102.
  • the second image 102 to be compared by the determination unit 52 is an image of the container surface 14 corresponding to the first image 100. That is, the second image 102 is captured when the target portion of the container surface 14 in the first image 100 captured in the first imaging region 60 rotates and comes to the second imaging region 62.
  • the first image 100 and the second image 102 are images of the same container surface 14 portion.
  • the image processing unit 53 includes the first image 100 and the second image 102 corresponding to the first imaging region 60 and the second imaging region 62 from the entire front image of the container 10 captured by the imaging unit 40. Cut out as.
  • FIG. 5 shows that only the first image 100 cut out by the image processing unit 53 is arranged side by side for the entire circumference of the container surface 14, and below that, only the second image 102 processed similarly is displayed on the container surface 14. They are arranged so that the same parts are arranged one above the other. Specifically, since the first image capturing area 60 and the second image capturing area 62 are simultaneously imaged after performing the density extraction process on the first image 100 and the second image 102, the first image capturing area 60 and the second image capturing area The first image 100 is shifted and arranged as indicated by an arrow by the amount of deviation from the imaging region 62.
  • the light and shade extraction process is a known image processing method, and is an image process that extracts a portion having a large luminance difference.
  • the coordinates of the detection body of each image may be calculated by performing a labeling process on the first image 100 and the second image 102. This is because an accurate determination can be made by matching the coordinates of the detection object.
  • the joint line 16 and the burn 18 appear as the detection body, but only the burn 18 appears as the detection body in the corresponding second image 102.
  • the determination unit 52 determines that there is a defect (burn burn 18) in this portion, and determines that it is a defective product.
  • burn burn 18 the joint line 16 and the burn 18 are described so as to be within the same image. However, if there is a detection body at the same position above and below in FIG. ), And if there is a detection body only in one of the upper and lower positions, the determination unit 52 does not determine that the defect is a defect (burn 18).
  • the determination unit 52 determines a detection body having a predetermined brightness or less common to the first image 100 and the second image 102 as a defect (burn burn 18). Moreover, the determination part 52 can also determine the black part more than predetermined length and the predetermined area in the 1st image 100 as a fault (burn 18). According to the burn inspection apparatus 1 according to the present embodiment, the size of the burn 18 that can be determined as compared with the apparatus described in Japanese Patent No. 4886830 can be reduced to about 1/10.
  • the control unit 50 is a CPU having a storage unit. By the control unit 50, the burn inspection apparatus 1 performs a process of intermittently transporting the container 10 at predetermined time intervals and a process of inspecting the container 10.
  • the determination unit 52 and the image processing unit 53 may be provided separately from the control unit 50. This is because the determination unit 52, the image processing unit 53, and the like can be added to the existing inspection apparatus having the control unit 50.
  • the determination unit 52 inspects the burn 18 for the presence or absence of defects
  • the present invention is not limited to this, and for example, it is possible to target bubbles and foreign matters. This is because any of them appears as a black spot on the image, so that it can be determined as a defect similarly to the burn 18.
  • FIG. 6 is a flowchart for explaining an inspection method using the burn inspection apparatus 1.
  • the control unit 50 instructs the imaging unit 40 to start imaging.
  • the imaging unit 40 calculates the rotation angle of the container 10 based on the output from the rotation detection unit 54 in accordance with an instruction from the control unit 50, and sets the first imaging region 60 and the second imaging region 62 (for example, 6 degrees). Every time, the entire circumference of the container surface 14 is photographed.
  • the control unit 50 instructs the image processing unit 53 to cut out the first image 100 and the second image 102 and store them in a storage unit (not shown).
  • the image processing unit 53 stores the first image 100 and the second image 102 for one round of the container 10.
  • the control unit 50 causes the determination unit 52 to determine the presence or absence of defects in the stored first image 100 and second image 102. As a result of the determination, if there is no detection object in any of the images, S22 is executed. If the result of determination is that there is a detection object in any of the images, S18 is executed.
  • the control unit 50 causes the determination unit 52 to determine whether or not there are detection bodies in both the stored first image 100 and second image 102. As a result of the determination, if there is no detection object in any of the images, S22 is executed. This is because the detection body appearing in one image is considered to be the joint line 16. If any image has a detection object as a result of the determination, it is determined that there is a defect, and S20 is executed. This is because it is considered that the detection body is not the joint line 16 but the burn 18.
  • the control unit 50 treats the container 10 to be inspected as a defective product.
  • the defective container 10 is discharged from a discharge unit (not shown) provided in the conveyance path on the downstream side of the burn inspection apparatus 1.
  • the control unit 50 processes the container 10 to be inspected as a non-defective product. For example, inspection and packing of the next process (not shown) provided in the conveyance path on the downstream side of the burn inspection apparatus 1 are performed.
  • the processing of S12 to S18 is executed by the determination unit 52, and the control unit 50 is notified of the determination result of the determination unit 52, thereby controlling the control unit 50.
  • the unit 50 executes S20 and S22.
  • FIG. 7 is a plan view of the burn inspection apparatus 2 according to the modification
  • FIG. 8 is a front view of the burn inspection apparatus 2 according to the modification for explaining the movement of the light emitting region 22.
  • FIG. 7 is a plan view of the burn inspection apparatus 2 according to the modification
  • FIG. 8 is a front view of the burn inspection apparatus 2 according to the modification for explaining the movement of the light emitting region 22.
  • FIG. 7 is a plan view of the burn inspection apparatus 2 according to the modification
  • FIG. 8 is a front view of the burn inspection apparatus 2 according to the modification for explaining the movement of the light emitting region 22.
  • These are the front views of the burn inspection apparatus 2 which concerns on the modification for demonstrating the movement of the light emission area
  • the configuration having the same function as in FIGS. 1 to 3 will be described using the same name and the same reference numeral, and detailed description thereof will be omitted.
  • the burn inspection device 2 includes three annular transfer devices (a first transfer device 90, a second transfer device 92, and a third transfer device 96).
  • the 1st conveyance apparatus 90, the 2nd conveyance apparatus 92, and the 3rd conveyance apparatus 96 convey the container 10 continuously, and do not stop in an inspection position like the burn inspection apparatus 1 mentioned above.
  • the first transport device 90 sequentially feeds the containers 10 to the second transport device 92, and the third transport device 96 sequentially takes out the containers 10 that have been inspected from the second transport device 92 and transports them to the next process.
  • the second transport device 92 transports the container 10 while being rotatably supported about the axis 12 by the same mechanism as the first rotation support unit 30 and the second rotation support unit 32 shown in FIG. Accordingly, the container 10 rotates around the axis 12 while revolving around the outer periphery of the second transport device 92.
  • the second transport device 92 revolves the container 10 by transmitting the driving force of the revolving drive device 95 to the rotating shaft 93 via the belt 94.
  • the belt 94 and the revolution drive device 95 are arranged in the machine base of the burn inspection device 2.
  • the revolution drive device 95 is provided with a first rotation detection unit 54 a directly or indirectly, detects the movement angle of the container 10 on the conveyance path, and outputs it to the control unit 50.
  • the second transport device 92 rotates the container 10 by rotating the belt 35 stretched between the rotation driving device 34 and the pulley 36 along the transport path.
  • the belt 35, the rotation driving device 34, and the like are disposed in the machine base of the burn inspection device 2.
  • the belt 35 is directly or indirectly connected to the first rotation support portion 30 that supports the container 10, and the driving force of the rotation driving device 34 is transmitted to the belt 35.
  • the second rotation detector 54b is in contact with the belt 35, and the rotation angle of the container 10 by the rotation driving device 34 can be detected.
  • the first rotation detection unit 54a and the second rotation detection unit 54b only need to be capable of detecting the amount of rotation, and are, for example, rotary encoders.
  • the imaging unit 40 includes a camera 42 and a tracking mirror 44.
  • the tracking mirror 44 is for photographing the container 10 following the movement of the container 10.
  • the camera 42 provided with the tracking mirror 44 is disclosed in Japanese Patent Application Laid-Open No. 2004-279222.
  • the tracking mirror 44 rotates following the container 10 conveyed on the outer periphery of the second conveying device 92 by a motor (not shown).
  • a reference line 41 (which coincides with the optical axis of the camera) connecting the axis 12 and the imaging unit 40 by this rotation follows the movement of the container 10 by the rotation of the tracking mirror 44.
  • the swing angle of the tracking mirror 44 is calculated based on the output of the first rotation detection unit 54a so that the control unit 50 can predict the next shooting position and image the container 10 at the predicted shooting position. .
  • the controller 50 drives the motor of the tracking mirror 44.
  • the camera 42 images the container 10 at the predicted imaging position of the container 10.
  • the imaging unit 40 images the first imaging region 60 and the second imaging region 62 as in the embodiment of FIGS.
  • the captured first image 100 and second image 102 are processed by the image processing unit 53 in the same manner as in the embodiment of FIGS.
  • the rotation angle of the container 10 that determines the timing for imaging must be calculated with respect to the reference line 41 by the rotation angle by rotation and the movement by revolution.
  • the control unit 50 calculates the rotation angle of the container 10 based on the outputs of the first rotation detection unit 54a and the second rotation detection unit 54b.
  • the light emitting unit 20 causes the control unit 50 to emit light in the light emitting region 22 that is a part of the light emitting unit 20.
  • the first rotation support unit 30 and the second rotation support unit 32 (see FIG. 2) rotate the container 10 around the axis 12 and transport the container 10 along the transport direction of the second transport device 92.
  • the control unit 50 sets the width D3 of the light emitting region 22 to be equal to or greater than the width D2 of the container 10 in the cross section orthogonal to the axis 12, and does not exceed the range obtained by adding 30 mm to the width D2 of the container 10.
  • the light emitting area 22 is moved following the container 10 being conveyed in the conveying direction. Thus, even when the container 10 moves during the inspection, the presence or absence of the burn 18 can be detected more accurately by causing the light emitting region 22 to follow the movement of the container 10.
  • the light emitting region 22 will be described with reference to FIGS.
  • the light emitting unit 20 is a surface light emitting device, and is disposed with the light emitting surface facing a conveyance path through which the container 10 is conveyed.
  • the light emitting unit 20 can partially emit light according to a command from the control unit 50.
  • the light emitting unit 20 can have a number of LEDs arranged vertically and horizontally at a predetermined interval, and can emit light for each column in accordance with a command from the control unit 50.
  • the width D3 is equal to or greater than the width D2
  • light can be sufficiently irradiated over the entire width of the container 10, so that dark portions due to uneven thickness distribution near both ends in the width direction of the container 10 can be reduced.
  • the width D3 is equal to or less than the width D2 + 30 mm, the burn 18 is not whitened in the first imaging target area 70 and the second imaging target area 72 (see FIG. 1).
  • the light emitting unit 20 causes only the light emitting region 22 to emit light according to the width D2 of the container 10,
  • the dark portion 24 is formed without emitting light in the range. And the light emission area
  • the movement of the light emitting area 22 and the dark part 24 is performed by stopping the light emission and the issuance for each column or multiple columns of the LED columns.
  • the movement of the light emitting region 22 can be sequentially performed, for example, every 4 mm to 20 mm.
  • the light emitting region 22 is sequentially performed along the transport direction every 10 mm that is the pitch of the LED columns.
  • Example 1 has a through hole width D1 of 100 mm
  • Comparative Example 1 has a through hole width D2 of 120 mm, an internal volume of 500 ml, and a container width D2 was detected on the container 10 having a diameter of 72.2 mm.
  • Example 1 it was possible to detect up to a burn 18 having a step depth of 0.05 mm.
  • detection of burn 18 was unstable even in the same container.
  • Example 2 sets the width D3 of the light emitting region to 100 mm
  • Comparative Example 2 sets the width D3 of the light emitting region to 120 mm, and has an internal capacity of 500 ml.
  • the burn 18 was detected for the container 10 having a width D2 of 72.2 mm.
  • Example 2 it was possible to detect up to a burn 18 having a step depth of 0.05 mm.
  • detection of burn 18 was unstable even in the same container.
  • the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same objects and effects).
  • the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
  • the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object.
  • the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

ガラス容器の焼傷検査装置1は、容器10を照らす発光部20と、容器10を軸線12の周りに回転させながら支持する回転支持部30と、容器10を挟んで発光部20と対向して配された撮像部40と、撮像部40で撮像した第1撮影領域60にある容器表面14の第1画像と第2撮影領域62にある容器表面14の第2画像とに基づいて欠点の有無を判定する判定部52と、を含む。第1撮影領域60は、撮像部40と軸線12とを結ぶ基準線41に対して撮像部40から見て右側にある容器表面14の一部である。第2撮影領域62は、基準線41に対して左側にある容器表面14の一部である。第1撮影領域60及び第2撮影領域62は、それぞれ軸線14を中心として1度~10度に設定される。

Description

ガラス容器の焼傷検査装置
 本発明は、ガラス製の容器の成形工程で生じる焼傷と呼ばれる欠点を光学的に検査するガラス容器の焼傷検査装置に関する。
 ガラスびんやガラス食器等のガラス容器は、ゴブ(溶融ガラスの塊)を粗型内に投入して吹製又はプレスによりパリソンを成形し、これを仕上型に移して吹製するなどして成形される。オリフィスから切り出されたゴブに傷やしわがあると、これが仕上型で成形されたガラス容器に筋状の溝として残り、焼傷と呼ばれる欠点になる。
 一方、ガラス容器には、その成形工程における仕上型が割型であるために、割型の合わせ面における僅かな段差が合わせ目線となって容器表面に生じる。合わせ目線は、ガラス容器の縦方向に直線的に現れる。
 焼傷のうちガラス容器の縦方向に直線状に現れるものを合わせ目線と正確に区別するガラス容器の検査方法が提案されている(特許文献1参照)。この方法は、撮像された容器画像において、容器の左側画像と容器の右側画像を比較し、左側画像と右側画像の双方に暗線があるときに画像が撮像された容器表面に焼傷が有ると判定し、その他の場合には焼傷が無いと判定している。
 しかしながら、この方法によれば、焼傷の欠点と合わせ目線を正確に区別できるものであるが、ガラス容器の60度ごとに分割された領域の画像によって比較するため、焼傷を判定しにくい領域まで含む画像で比較されることとなっていた。そのような不具合を解消するために、左右に中央画像を加えて3箇所で撮影した画像を比較したり、同じ場所を2度撮影するなどの重複処理を行ったりして検査精度を向上させる必要があった。焼傷を判定しにくい領域は、ガラス容器の肉厚や形状にもよるが、撮像手段から見てガラス容器の正面中央部付近とガラス容器の左右両端付近にある。
特許4886830号公報
 本発明は、焼傷と合わせ目線とを正確に区別しながらも、焼傷の有無をより正確に検出することができるガラス容器の焼傷検査装置を提供することを目的とする。
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
  [適用例1]
 本適用例に係るガラス容器の焼傷検査装置は、
 容器を照らす発光部と、
 容器を当該容器の軸線の周りに回転させながら支持する回転支持部と、
 容器を挟んで前記発光部と対向して配された撮像部と、
 前記撮像部で撮像した第1撮影領域にある容器表面の第1画像と第2撮影領域にある容器表面の第2画像とに基づいて欠点の有無を判定する判定部と、
を含み、
 前記第2画像は、前記第1画像に対応する容器表面の画像であり、
 前記第1撮影領域は、前記撮像部と前記軸線とを結ぶ基準線に対して前記撮像部から見て右側にある容器表面の一部であり、
 前記第2撮影領域は、前記基準線に対して前記撮像部から見て左側にある容器表面の一部であり、
 前記第1撮影領域及び前記第2撮影領域は、それぞれ前記軸線を中心として1度~10度に設定されることを特徴とする。
 本適用例に係るガラス容器の焼傷検査装置によれば、焼傷と合わせ目線とを正確に区別しながらも、焼傷の有無をより正確に検出することができる。
  [適用例2]
 本適用例に係るガラス容器の焼傷検査装置において、
 前記第1撮影領域は、前記基準線から右側に前記軸線を中心として前記基準線を0度とした場合に15度~60度の範囲の領域内に設定され、
 前記第2撮影領域は、前記基準線から左側に前記軸線を中心として前記基準線を0度とした場合に15度~60度の範囲の領域内に設定されることができる。
 本適用例に係るガラス容器の焼傷検査装置によれば、焼傷の有無をより正確に検出することができる。
  [適用例3]
 本適用例に係るガラス容器の焼傷検査装置において、
 前記発光部と前記回転支持部に支持された容器との間に設けられ、前記発光部からの光の一部を通す貫通孔と、
 前記軸線に直交する横断面における前記貫通孔の両側に設けられ、前記発光部からの光の一部を遮る遮光部と、
をさらに含み、
 前記横断面において、前記貫通孔の幅は、容器の幅以上であって、かつ、容器の幅に30mmを足した範囲を超えないことができる。
 本適用例に係るガラス容器の焼傷検査装置によれば、焼傷の有無をより正確に検出することができる。
  [適用例4]
 本適用例に係るガラス容器の焼傷検査装置において、
 前記発光部の一部である発光領域を発光させる制御部をさらに含み、
 前記回転支持部は、前記軸線の周りに容器を回転させると共に、容器を搬送方向に沿って搬送し、
 前記制御部は、前記軸線に直交する横断面において前記発光領域の幅を容器の幅以上であって、かつ、容器の幅に30mmを足した範囲を超えないように設定し、前記発光領域を前記搬送方向に搬送される容器に追従して移動させることができる。
 本適用例に係るガラス容器の焼傷検査装置によれば、焼傷の有無をより正確に検出することができる。
 本発明は、焼傷と合わせ目線とを正確に区別しながらも、焼傷の有無をより正確に検出することができるガラス容器の焼傷検査装置を提供することができる。
図1は、焼傷検査装置の平面図である。 図2は、焼傷検査装置の側面図である。 図3は、遮光部と容器との関係を説明するための焼傷検査装置の正面図である。 図4は、第1撮影領域と第2撮影領域とを説明するための容器の正面図である。 図5は、第1画像と第2画像とを比較する図である。 図6は、焼傷検査装置を用いた検査方法を説明するフローチャートである。 図7は、変形例に係る焼傷検査装置の平面図である。 図8は、発光領域の移動を説明するための変形例に係る焼傷検査装置の正面図である。 図9は、発光領域の移動を説明するための変形例に係る焼傷検査装置の正面図である。
 以下、本発明の好適な実施形態について、図面を用いて詳細に説明する。なお、以下に説明する実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また、以下で説明される構成の全てが本発明の必須構成要件であるとは限らない。
 本実施形態に係るガラス容器の焼傷検査装置は、容器を照らす発光部と、容器を当該容器の軸線の周りに回転させながら支持する回転支持部と、容器を挟んで前記発光部と対向して配された撮像部と、前記撮像部で撮像した第1撮影領域にある容器表面の第1画像と第2撮影領域にある容器表面の第2画像とに基づいて欠点の有無を判定する判定部と、を含み、前記第2画像は、前記第1画像に対応する容器表面の画像であり、前記第1撮影領域は、前記撮像部と前記軸線とを結ぶ基準線に対して前記撮像部から見て右側にある容器表面の一部であり、前記第2撮影領域は、前記基準線に対して前記撮像部から見て左側にある容器表面の一部であり、前記第1撮影領域及び前記第2撮影領域は、それぞれ前記軸線を中心として1度~10度に設定されることを特徴とする。
 1.ガラス容器の焼傷検査装置の概要
 図1~図3を用いてガラス容器(以下単に「容器10」という)の焼傷検査装置1の概要について説明する。図1は焼傷検査装置1の平面図であり、図2は焼傷検査装置1の側面図であり、図3は遮光部81と容器10との関係を説明するための焼傷検査装置1の正面図である。
 図1~図3に示すように、焼傷検査装置1は、容器10を照らす発光部20と、容器10を容器10の軸線12の周りに回転させながら支持する回転支持部(30,32)と、容器10を挟んで発光部20と対向して配された撮像部40と、撮像部40で撮像した容器表面14の画像に基づいて欠点の有無を判定する判定部52と、を含む。
 容器10は、ガラス製であって、透明または半透明である。半透明とは、容器10を透過した発光部20からの光によって焼傷を判定可能な程度の透明度である。容器10は横断面円形である。容器10の横断面形状は、多角形であってもよい。
 軸線12は、第1回転支持部30及び第2回転支持部32によって支持された容器10が回転する回転中心軸を示す仮想線である。軸線12は、容器10の横断面における容器表面14によって形成される円の中心と一致する。
 焼傷検査装置1は、容器10を透過した光を用いて容器表面14を撮像部40で撮像し、撮像された画像における黒色に表れた部分を容器10における検出体(本実施形態では「暗線」と認識される部分)として検出する光透過方式の焼傷検査装置1である。焼傷は発光部20からの光がランダムに反射し、または屈折し、他の部分(検出体の無い容器表面14)と比べて撮像部40に届く光が極めて少なくなる。そのため、焼傷がある部分は他の部分に比べて暗くなり、画像では白色の容器表面14に黒色の焼傷として表れる。なお、焼傷の詳細については後述する。
 基準線41は、撮像部40と軸線12とを結ぶ仮想線である。基準線41を中心にして、撮像部40は容器10を撮影することができる。図1及び図2では撮像部40はカメラ本体を表しているので、基準線41は撮像部40から容器10の軸線12へ向かうカメラの光軸と一致する。基準線41は、撮像部40が所定位置に固定されているため、容器10が搬送されてこない状態でも常に同じ位置にある。なお、後述する変形例のように容器10の移動に合わせて撮像部40も追従する場合には基準線41も移動することになる。
 判定部52で良品と判定された容器10は、例えば図示しない次の検査工程へと搬送される。判定部52で不良品と判定された容器10は、例えば図示しない排出部から焼傷検査装置1の外部へ排出される。
 2.合わせ目線と焼傷
 図4を用いて合わせ目線16と焼傷18について説明する。図4は、第1撮影領域60と第2撮影領域62とを説明するための容器10の正面図である。なお、第1撮影領域60と第2撮影領域62の詳細については後述する。
 図4に示すように、右側の容器10には合わせ目線16と焼傷18が検出体となって確認できる。そのため、焼傷検査装置1は、合わせ目線16を焼傷18ではないと判断できなければならない。合わせ目線16は、ほぼすべての容器10に存在するものであり、実質的に容器10の品質に影響はないからである。
 合わせ目線16は、容器10の成形工程における仕上型の合目によって容器表面14に生じる段差である。日本国の特許第4886830号において詳細に説明されているとおり、合わせ目線16は、一方が急斜面、他方が緩斜面となっており、左右非対称で方向性がある。このため、合わせ目線16が基準線41よりも左側にあるときと右側にあるときとでは、発光部20からの光の反射、屈折の様子が異なる。図4に示す例では、第1撮影領域60では暗線となって検出体となるが、第2撮影領域62に移動すると撮像部40は検出体を認識できない。
 一方、焼傷18は、横断面がV字の溝状であり、しかもその斜面は平滑でなく凸凹になっている。このため、発光部20からの光は焼傷18でランダムに反射・屈折し、焼傷18が容器10のどの部分(左側又は右側)にあっても、焼傷18から撮像部40に到達する光は極めて少なくなり、撮像部40で撮像された画像において焼傷18は検出体となる。また、焼傷18が容器10の軸線12に沿った方向に延びた場合であるが、水平方向や傾いた焼傷18であっても同様に画像において焼傷18は検出体となる。図4に示す例では、焼傷18の検出体が第1撮影領域60及び第2撮影領域62に表れて撮像部40で撮影される。
 そこで、判定部52は、撮像部40で撮像された第1撮影領域60の左側画像と第2撮影領域62の右側画像とを比較し、その双方に検出体があるときは、焼傷18であると判定することができ、その一方のみに検出体があるときは、合わせ目線16であると判定することができる。
 3.発光部
 図1~図3に示すように、発光部20は、容器10を照らす光源である。発光部20は、容器10を撮像部40の反対側から照らすことができる面光源である。発光部20は、焼傷検査装置1で検査することを予定している最大の容器10の全体を照らすことができる大きさに設定されている。
 図1~図3に示すように、発光部20は、容器10側の正面が長方形の形状であり、その正面のほぼ全面が発光面となっている。発光部20は、容器10及び撮像部40に対し正対し、容器10を透過した光が撮像部40に届くように配置される。
 発光部20の光源としては、例えばLEDや有機EL等の公知の光源を用いることができる。発光部20は拡散照明であり、LEDを用いる場合には光源の前面に拡散板を利用して均一な光を容器10に対して照射することができる。拡散板は、LED等の光源からの光を拡散させて外部に出射させる公知のものを用いることができる。拡散板によって光が拡散されることで、多数の光源を用いた場合に光源が存在しない部分とのムラを減少することができる。
 発光部20は、部分的に発光することが可能であってもよい。例えば、LEDを用いた場合には、発光部20は多数のLEDが発光部20の全面に配置されたものとなるため、個々のLEDまたは部分的な領域における複数のLEDの集合ごとに発光可能としてもよい。このようにすることで、発光する領域を容器10の大きさや形状に合わせて設定することができる。この場合、制御部50の図示しない記憶部に検査対象の容器10の大きさなどをあらかじめ入力し、制御部50が発光部20を容器10に合わせて部分的に発光させる。
 4.貫通孔及び遮光部
 図1~図3に示すように、遮光板80は、発光部20と第1回転支持部30に支持された容器10との間に配置される。遮光板80は、貫通孔82と遮光部81とを含む。貫通孔82は、発光部20と第1回転支持部30に支持された容器10との間に設けられ、発光部20からの光の一部を通して、容器10を照らす。遮光部は、軸線12に直交する横断面における貫通孔82の両側に設けられ、発光部20からの光の一部を遮る。遮光部81は、発光部20のうち所定範囲の光だけを容器10に照射させるためのものである。
 貫通孔82を通った光は容器10の撮像部40の反対側の表面に照射され、貫通孔82を通らない遮光された光は容器10には届かない。
 遮光部81の外形は例えば発光部20と同じ大きさを有し、貫通孔82は容器10を正面から見たときの外形線に合わせて例えば相似形に形成される。
 図1に示すように、軸線12に直交する横断面において、貫通孔82の幅D1は、容器10の幅D2以上であって、かつ、容器10の幅D2に30mmを足した範囲を超えないことが望ましい。焼傷18の有無をより正確に検出するためである。幅D1が幅D2以上であれば容器10の全幅において十分に光を照射することができるので、容器10の幅方向の両端付近における肉厚分布のムラによる暗部を減少することができる。また、幅D1が幅D2+30mm以下であれば第1撮影対象領域70及び第2撮影対象領域72において焼傷18を白くすることもない。すなわち、焼傷18が検出体として明確に撮像できる。
 また、遮光部81の高さは、撮影の対象となる部分、例えば胴部の高さと同じかまたはわずかに高いことが好ましい。
 なお、後述する変形例のように、発光部20を容器10の形状に合わせて部分的に発光させることができる場合には、遮光部81を設けなくてもよい。
 5.回転支持部
 図2及び図3に示すように、回転支持部(30,32)は、容器10を軸線12の周りに回転方向Rに回転させながら支持する。回転支持部(30,32)は、第1回転支持部30と第2回転支持部32とを含む。
 第1回転支持部30は、容器10の下方にある円柱状の部材であり、その上面に容器10の底部を載せて軸線12を中心に回転する。第1回転支持部30は、その下方に図示しない駆動装置を有する。駆動装置としては、電動モータなどを採用できる。第1回転支持部30は、検査対象の容器10が撮像部40の基準線41上に搬送されると所定量の回転を行う。所定量の回転は、容器10の全周が基準線41に対し右側と左側の2箇所の撮影領域で撮像されるのに必要な量である。所定量の回転は、1回転以上であり、例えば、図5を用いて後述するように左右の画像をずらして比較する場合にはそのずらした分を多く撮像する。
 第1回転支持部30の回転量は、図1に示す回転検出部54の出力により制御部50で演算される。回転検出部54は、第1回転支持部30の駆動装置に直接または間接に取り付けられたロータリエンコーダであることができる。
 第2回転支持部32は、容器10の上方にある円柱状の部材であり、その下面を容器10の口部に載せて軸線12を中心に容器10の回転に伴って回転する。第2回転支持部32は、駆動装置を有していない。第2回転支持部32は、第1回転支持部30と共に容器10を上下から挟み込むように支持することで、回転による容器10の振れや転倒を防止する。
 図1における容器10の位置は、焼傷検査装置1における検査位置にある。第1回転支持部30及び第2回転支持部32に支持された容器10は、検査位置である基準線41まで搬送されてくると、検査位置で停止して軸線12を中心に1回転以上回転する。検査が終了すると第1回転支持部30に支持されたまま容器10は検査位置から搬出される。容器10は第1回転支持部30及び第2回転支持部32に支持されて間欠搬送される。
 6.撮像部
 図1及び図2に示すように、撮像部40は、容器10を挟んで発光部20と対向して配される。撮像部40は、容器10の軸線12を通る基準線41上に配置される。撮像部40は、容器10の少なくとも検査対象部分を撮影でき、ここでは容器10の胴部の全体が撮像部40の視野内に入るように配置されている。
 撮像部40は、容器10を透過した発光部20の光によって焼傷18が判定可能な画像を撮影することができる。撮像部40は、公知のエリアセンサを用いることができる。エリアセンサとしては、CCD型イメージセンサやCMOS型のイメージセンサなどを用いることができる。
 撮像部40は、基準線41に対して撮像部40から見て右側にある容器表面14の一部である第1撮影領域60と、基準線41に対して撮像部40から見て左側にある容器表面14の一部である第2撮影領域62と、を撮影する。焼傷18と合わせ目線16とを判別するためである。撮像部40は、第1撮影領域60及び第2撮影領域62を含む容器10の正面全体を撮影し、画像処理部53においてその画像から第1撮影領域60及び第2撮影領域62に該当する部分を第1画像100及び第2画像102(図5を用いて後述する)として切り出す処理を行ってもよい。
 第1撮影領域60及び第2撮影領域62は、それぞれ軸線12を中心として1度~10度に設定される。第1撮影領域60及び第2撮影領域62の設定角度θ1は同じ角度(幅)に設定される。第1撮影領域60及び第2撮影領域62を10度以下の狭い領域に設定することにより、容器表面14における焼傷18が明確に判定できる範囲に限定して撮影することができる。すなわち、従来のように60度という広い範囲であると焼傷18が認識しにくい場所も含まれることとなり重複する判定処理などが必要となってしまったが、本実施形態のように10度以下であればそのような不具合もほとんどない。そのため、焼傷18と合わせ目線16とを正確に区別しながらも、焼傷18の有無をより正確に検出することができる。実験の結果、10度以下であれば直径が34mm~206mmの円筒状の胴部を有する容器10において、最大の部分が深さ0.05mm以上で長さ2.5mm以上の焼傷18及び表面泡を認識することができ、1度以上であれば焼傷18が画像内に存在するかどうかを判定可能である。
 撮像部40は、第1撮影領域60及び第2撮影領域62の設定角度θ1は、例えば約6.6度に設定することができ、その場合には、容器10が約6.6度回転するたびに撮影され、少なくとも65回の撮影が行われる。図5を用いて後述するように、第1撮影領域60の最初の画像と第2撮影領域62の最初の画像との位置がずれるため、そのずれた分を多く撮影しなければならないからである。撮像部40が撮影するタイミングは、第1回転支持部30の回転を検出する回転検出部54からの回転角度データ(パルス信号)に基づいて制御部50が撮像部40に指令を出すことによって決まる。
 図1に示すように、第1撮影領域60は、基準線41から右側に軸線12を中心として基準線41を0度とした場合に15度~60度の範囲の第1撮影対象領域70内に設定される。また、第2撮影領域62は、基準線41から左側に軸線12を中心として基準線41を0度とした場合に15度~60度の範囲の第2撮影対象領域72内に設定される。より具体的には、第1撮影対象領域70の設定角度は、基準線41からの角度θ2を15度以上とし、基準線41からの角度θ3が60度以下とすることが好ましい。また、第2撮影対象領域72の設定角度は、基準線41からの角度θ4を15度以上とし、基準線41からの角度θ5が60度以下とすることが好ましい。15度より小さい領域(図1において基準線41からθ2(θ4)までのハッチングで示した範囲)では焼傷18が検出体として現れない場合があるからである。また、60度より大きい領域(図1においてθ3(θ5)から90度までのハッチングで示した範囲)では容器10の肉厚のムラによる影を焼傷18と誤認識する可能性があるからである。特に、首部や肩部における曲率の小さな部分及び肉厚のムラの大きい部分では60度より大きい領域では誤認識しやすくなる傾向がある。したがって、第1撮影領域60と第2撮影領域62をこのように設定することで、合わせ目線16と焼傷18との差が明確となって判別しやすくなり、焼傷18の有無をより正確に検出することができる。図1では第1撮影領域60及び第2撮影領域62は、基準線41から左右に36度の位置を中心に設定されている。
 図1のように、第1撮影領域60及び第2撮影領域62が基準線41から左右に36度の位置を中心に約6.6度の範囲に設定した場合には、両撮影領域は同時に撮影が開始されるため、第2撮影領域62で撮影された部分が第1撮影領域60で撮影されるまでの間に、容器10が約0.2回転(約72度)することになる。そのため、後述する図5では撮像された画像の一方を72度分ずらすことで容器表面14の同じ部分を比較する。
 7.判定部
 図1及び図2に示すように、判定部52は、制御部50の一部である。したがって、判定部52の判定結果によって制御部50が検査済みの容器10のその後の処理を指示する。判定部52は制御部50とは別に設けられてもよい。その場合には、判定部52の判定結果を制御部50に通知する。
 図4及び図5を用いて判定部52についてさらに詳細に説明する。図5は、第1画像100と第2画像102とを比較する図である。
 図4及び図5に示すように、判定部52は、撮像部40で撮像した第1撮影領域60にある容器表面14の第1画像100と第2撮影領域62にある容器表面14の第2画像102とに基づいて欠点の有無を判定する。判定部52で対比する第2画像102は、第1画像100に対応する容器表面14の画像である。すなわち、第1撮影領域60で撮像した第1画像100に写った容器表面14の対象部分が、回転して第2撮影領域62に来たときに撮像したのが第2画像102である。第1画像100と第2画像102は、同じ容器表面14の部分を撮影したものである。
 上述した通り、画像処理部53は、撮像部40で撮像された容器10の正面全体の画像から第1撮影領域60及び第2撮影領域62に相当する部分を第1画像100及び第2画像102として切り出す。
 図5は、画像処理部53で切り出し処理をされた第1画像100だけを容器表面14の全周分横に並べ、その下に、同様に処理された第2画像102だけを容器表面14の同じ部分が上下に配置されるように並べたものである。具体的には、第1画像100及び第2画像102について濃淡抽出処理を行った後に、第1撮影領域60及び第2撮影領域62は同時に撮影開始されるため、第1撮影領域60と第2撮影領域62との間のずれの分、矢印のように第1画像100をずらして並べる。濃淡抽出処理は、公知の画像処理方法であり、輝度の差が大きい部分を抽出する画像処理である。さらに、第1画像100及び第2画像102についてラベリング処理を施して各画像の検出体の座標を算出してもよい。検出体の座標の一致により、正確な判定を行うことができるからである。
 図5の第1画像100には検出体として合わせ目線16及び焼傷18が表れているが、対応する部分の第2画像102には検出体として焼傷18のみが表れている。判定部52は、この部分に欠点(焼傷18)があると判定し、不良品と判定する。図5では説明の都合上、合わせ目線16と焼傷18が同じ画像内に収まるように記載したが、図5の上下の同じ位置に検出体があれば、判定部52は欠点(焼傷18)として判定するし、上下の一方の位置にしか検出体が無ければ、判定部52は欠点(焼傷18)とは判定しない。
 判定部52は、第1画像100及び第2画像102に共通する所定の明度以下の検出体を欠点(焼傷18)と判定する。また、判定部52は、第1画像100における所定の長さや所定の面積以上の黒色の部分を欠点(焼傷18)と判定することもできる。本実施形態に係る焼傷検査装置1によれば、特許4886830号公報に記載された装置に比べて判定可能な焼傷18の大きさが1/10程度まで可能となった。
 制御部50は、記憶部を有するCPUである。制御部50によって、焼傷検査装置1は容器10を所定時間間隔で間欠搬送する処理と、容器10を検査する処理とを実行する。判定部52及び画像処理部53は、制御部50とは別に設けられてもよい。制御部50を有する既存の検査装置に、判定部52及び画像処理部53等を追加することができるからである。
 また、判定部52では、欠点の有無について焼傷18を対象として検査したが、これに限らず、例えば、泡や異物を対象とすることもできる。いずれも画像上の黒点として表れるため、焼傷18と同様に欠点として判定できるからである。
 8.検査方法
 図1~図6を用いて焼傷検査装置1を用いた検査方法について説明する。図6は、焼傷検査装置1を用いた検査方法を説明するフローチャートである。
 S10:制御部50は、第1回転支持部30及び第2回転支持部32に支持された容器10が検査位置に搬送されると、容器10を軸線12を中心に回転を開始させる。
 S12:制御部50は、撮像部40に撮像開始を指令する。撮像部40は、制御部50の指令に従って、回転検出部54からの出力に基づいて容器10の回転角度を演算し、第1撮影領域60及び第2撮影領域62の設定角度(例えば6度)毎に容器表面14の全周を撮影する。
 S14:制御部50は、画像処理部53に対し、第1画像100及び第2画像102を切り出して図示しない記憶部に記憶することを指令する。画像処理部53は、容器10の1周分の第1画像100及び第2画像102を記憶する。
 S16:制御部50は、判定部52に、記憶された第1画像100及び第2画像102における欠点の有無を判定させる。判定の結果、いずれの画像にも検出体がない場合には、S22を実行する。また、判定の結果、いずれかの画像に検出体がある場合には、S18を実行する。
 S18:制御部50は、判定部52に、記憶された第1画像100及び第2画像102の双方に検出体が有るか否かを判定させる。判定の結果、いずれかの画像に検出体がない場合には、S22を実行する。一方の画像に表れた検出体は合わせ目線16であると考えられるからである。また、判定の結果、いずれの画像にも検出体がある場合には、欠点があると判定し、S20を実行する。検出体は、合わせ目線16ではなく、焼傷18であると考えられるからである。
 S20:制御部50は、検査対象となった容器10を不良品として処理する。例えば、焼傷検査装置1の下流側の搬送路に設けられた図示しない排出部から不良品の容器10を排出する。
 S22:制御部50は、検査対象となった容器10を良品として処理する。例えば、焼傷検査装置1の下流側の搬送路に設けられた図示しない次工程の検査や梱包を実行する。
 なお、判定部52が制御部50とは別に設けられている場合には、S12~S18の処理は判定部52が実行し、判定部52の判定結果を制御部50に通知することで、制御部50がS20及びS22を実行する。
 9.変形例
 図7~図9を用いて、変形例に係る焼傷検査装置2について説明する。図7は、変形例に係る焼傷検査装置2の平面図であり、図8は、発光領域22の移動を説明するための変形例に係る焼傷検査装置2の正面図であり、図9は、発光領域22の移動を説明するための変形例に係る焼傷検査装置2の正面図である。図1~図3と同じ機能を有する構成については、同じ名称と同じ符号を用いて説明し、詳細な説明は省略する。
 図7に示すように、焼傷検査装置2は、3つの環状の搬送装置(第1搬送装置90、第2搬送装置92、第3搬送装置96)を含む。第1搬送装置90、第2搬送装置92及び第3搬送装置96は、連続的に容器10を搬送し、上述した焼傷検査装置1のように検査位置で停止しない。
 第1搬送装置90は、第2搬送装置92へ容器10を順次送り込み、第3搬送装置96は、検査の終了した容器10を第2搬送装置92から順次取り出して次工程へ搬送する。
 第2搬送装置92は、図2に示した第1回転支持部30及び第2回転支持部32と同様の機構により容器10を軸線12を中心に回転可能に支持しながら搬送する。したがって、容器10は、第2搬送装置92の外周を公転しつつ、軸線12を中心に自転するのである。
 第2搬送装置92は、公転用駆動装置95の駆動力をベルト94を介して回転軸93に伝えることにより容器10を公転させる。ベルト94及び公転用駆動装置95は焼傷検査装置2の機台内に配置される。公転用駆動装置95には直接的にまたは間接的に第1回転検出部54aが設けられ、容器10の搬送路上の移動角度を検出し、制御部50に出力する。
 第2搬送装置92は、搬送路に沿って自転用駆動装置34及びプーリ36との間に張られたベルト35を回すことで、容器10を自転させる。ベルト35及び自転用駆動装置34等は焼傷検査装置2の機台内に配置される。ベルト35は、容器10を支持した第1回転支持部30に直接的にまたは間接的に連結されており、自転用駆動装置34の駆動力が伝達される。ベルト35には第2回転検出部54bが接触しており、自転用駆動装置34による容器10の回転角度を検出することができる。
 第1回転検出部54a及び第2回転検出部54bは、回転量を検出可能なものであればよく、例えばロータリエンコーダである。
 撮像部40は、カメラ42とトラッキングミラー44とを含む。トラッキングミラー44は、容器10の移動に追従して容器10を撮影するためのものである。トラッキングミラー44を備えたカメラ42については、日本国の特開2004-279222号に開示されている。トラッキングミラー44は、図示しないモータによって第2搬送装置92の外周を搬送される容器10に追従して回転する。この回転によって軸線12と撮像部40とを結ぶ基準線41(カメラの光軸と一致する)は、トラッキングミラー44の回転によって容器10の移動に追従する。トラッキングミラー44の振れ角は、第1回転検出部54aの出力に基づいて、制御部50が次の撮影位置を予測し、その予測した撮影位置の容器10を撮像できるように振れ角を演算する。その演算された振れ角に基づいて制御部50がトラッキングミラー44のモータを駆動する。そして、予測した容器10の撮影位置でカメラ42が容器10を撮影する。
 撮像部40は、図1~図5の実施形態と同様に、第1撮影領域60及び第2撮影領域62を撮影する。撮影された第1画像100及び第2画像102は、画像処理部53で図1~図5の実施形態と同様に処理される。ここで撮像するタイミングを決める容器10の回転角度は、自転による回転角度と公転による移動とによって基準線41に対する角度を演算しなければならない。制御部50は、第1回転検出部54a及び第2回転検出部54bの出力に基づいて容器10の自転角度を演算する。
 発光部20は、制御部50によって発光部20の一部である発光領域22を発光させる。第1回転支持部30及び第2回転支持部32(図2参照)は、軸線12の周りに容器10を回転させると共に、容器10を第2搬送装置92の搬送方向に沿って搬送する。制御部50は、軸線12に直交する横断面において発光領域22の幅D3を容器10の幅D2以上であって、かつ、容器10の幅D2に30mmを足した範囲を超えないように設定し、発光領域22を搬送方向に搬送される容器10に追従して移動させる。このように検査の間に容器10が移動する場合であっても、発光領域22を容器10の動きに追従させることで、焼傷18の有無をより正確に検出することができる。
 図8及び図9を用いて発光領域22について説明する。発光部20は、面発光装置であり、容器10が搬送される搬送路に発光面を向けて配置される。発光部20は、制御部50による指令で部分的に発光させることができる。例えば、発光部20は、多数のLEDが縦横に所定間隔で配列され、制御部50の指令により縦1列ごとに発光させることができる。このように幅D3が幅D2以上であれば容器10の全幅において十分に光を照射することができるので、容器10の幅方向の両端付近における肉厚分布のムラによる暗部を減少することができる。また、幅D3が幅D2+30mm以下であれば第1撮影対象領域70及び第2撮影対象領域72(図1を参照)において焼傷18を白くすることもない。
 図8に示すように、左側から発光部20の前に搬送されてきた容器10に対して、発光部20は、容器10の幅D2に合わせて発光領域22だけを発光させ、その両側の所定範囲を発光させずに暗部24を形成する。そして、図9で示す位置に容器10が移動するのに追従して発光領域22及び暗部24を移動させる。
 発光領域22及び暗部24の移動は、LEDの縦列の1列ごとまたは複数列ごとに発光及び発行停止をさせることで行う。発光領域22の移動は、例えば4mm~20mmごとに順次行うことができ、ここではLEDの縦列のピッチである10mmごとに搬送方向に沿って順次行う。
 図1~図3の焼傷検査装置1を用いて、実施例1が貫通孔の幅D1を100mmとし、比較例1が貫通孔の幅D2を120mmとして、内容量が500mlで容器の幅D2が72.2mmの容器10について焼傷18の検出を行った。実施例1では段差深さ0.05mmの焼傷18まで検出することができた。比較例1では、同じ容器でも焼傷18の検出が不安定となった。
 また、図7~図9の焼傷検査装置2を用いて、実施例2が発光領域の幅D3を100mmとし、比較例2が発光領域の幅D3を120mmとして、内容量が500mlで容器の幅D2が72.2mmの容器10について焼傷18の検出を行った。実施例2では段差深さ0.05mmの焼傷18まで検出することができた。比較例2では、同じ容器でも焼傷18の検出が不安定となった。
 本発明は、上述した実施形態に限定されるものではなく、さらに種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法、及び結果が同一の構成、あるいは目的及び効果が同一の構成)を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
 1…焼傷検査装置、2…焼傷検査装置、10…容器、12…軸線、14…容器表面、16…合わせ目線、18…焼傷、20…発光部、22…発光領域、24…暗部、30…第1回転支持部、32…第2回転支持部、34…自転用駆動装置、35…ベルト、36…プーリ、40…撮像部、41…基準線、42…カメラ、44…トラッキングミラー、50…制御部、52…判定部、53…画像処理部、54…回転検出部、54a…第1回転検出部、54b…第2回転検出部、60…第1撮影領域、62…第2撮影領域、70…第1撮影対象領域、72…第2撮影対象領域、80…遮光板、81…遮光部、82…貫通孔、90…第1搬送装置、92…第2搬送装置、93…回転軸、94…ベルト、95…公転用駆動装置、96…第3搬送装置、100…第1画像、102…第2画像、D1…軸線の横断面における貫通孔の幅、D2…軸線の横断面における容器の幅、D3…軸線の横断面における発光領域の幅、R…容器の回転方向、θ1…第1撮影領域及び第2撮影領域の設定角度、θ2,θ3…第1撮影対象領域の設定角度、θ4,θ5…第2撮影対象領域の設定角度

Claims (4)

  1.  容器を照らす発光部と、
     容器を当該容器の軸線の周りに回転させながら支持する回転支持部と、
     容器を挟んで前記発光部と対向して配された撮像部と、
     前記撮像部で撮像した第1撮影領域にある容器表面の第1画像と第2撮影領域にある容器表面の第2画像とに基づいて欠点の有無を判定する判定部と、
    を含み、
     前記第2画像は、前記第1画像に対応する容器表面の画像であり、
     前記第1撮影領域は、前記撮像部と前記軸線とを結ぶ基準線に対して前記撮像部から見て右側にある容器表面の一部であり、
     前記第2撮影領域は、前記基準線に対して前記撮像部から見て左側にある容器表面の一部であり、
     前記第1撮影領域及び前記第2撮影領域は、それぞれ前記軸線を中心として1度~10度に設定されることを特徴とする、ガラス容器の焼傷検査装置。
  2.  請求項1において、
     前記第1撮影領域は、前記基準線から右側に前記軸線を中心として前記基準線を0度とした場合に15度~60度の範囲の領域内に設定され、
     前記第2撮影領域は、前記基準線から左側に前記軸線を中心として前記基準線を0度とした場合に15度~60度の範囲の領域内に設定されることを特徴とする、ガラス容器の焼傷検査装置。
  3.  請求項1または2において、
     前記発光部と前記回転支持部に支持された容器との間に設けられ、前記発光部からの光の一部を通す貫通孔と、
     前記軸線に直交する横断面における前記貫通孔の両側に設けられ、前記発光部からの光の一部を遮る遮光部と、
    をさらに含み、
     前記遮光部は、前記発光部からの光を通す貫通孔を有し、
     前記軸線に直交する横断面において、前記貫通孔の幅は、容器の幅以上であって、かつ、容器の幅に30mmを足した範囲を超えないことを特徴とする、ガラス容器の焼傷検査装置。
  4.  請求項1または2において、
     前記発光部の一部である発光領域を発光させる制御部をさらに含み、
     前記回転支持部は、前記軸線の周りに容器を回転させると共に、容器を搬送方向に沿って搬送し、
     前記制御部は、前記軸線に直交する横断面において前記発光領域の幅を容器の幅以上であって、かつ、容器の幅に30mmを足した範囲を超えないように設定し、前記発光領域を前記搬送方向に搬送される容器に追従して移動させることを特徴とする、ガラス容器の焼傷検査装置。
PCT/JP2016/079097 2016-09-30 2016-09-30 ガラス容器の焼傷検査装置 WO2018061196A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018541846A JP6778754B2 (ja) 2016-09-30 2016-09-30 ガラス容器の焼傷検査装置
KR1020197008995A KR102187406B1 (ko) 2016-09-30 2016-09-30 유리 용기의 소상 검사장치
CN201680089663.2A CN109844505B (zh) 2016-09-30 2016-09-30 玻璃容器的烧伤检查装置
PCT/JP2016/079097 WO2018061196A1 (ja) 2016-09-30 2016-09-30 ガラス容器の焼傷検査装置
PH12019500510A PH12019500510A1 (en) 2016-09-30 2019-03-08 Glass container burn mark inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/079097 WO2018061196A1 (ja) 2016-09-30 2016-09-30 ガラス容器の焼傷検査装置

Publications (1)

Publication Number Publication Date
WO2018061196A1 true WO2018061196A1 (ja) 2018-04-05

Family

ID=61759344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079097 WO2018061196A1 (ja) 2016-09-30 2016-09-30 ガラス容器の焼傷検査装置

Country Status (5)

Country Link
JP (1) JP6778754B2 (ja)
KR (1) KR102187406B1 (ja)
CN (1) CN109844505B (ja)
PH (1) PH12019500510A1 (ja)
WO (1) WO2018061196A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183896A (ja) * 2019-05-08 2020-11-12 東洋ガラス株式会社 ガラスびんの検査方法及びガラスびんの製造方法並びにガラスびんの検査装置
US20210231576A1 (en) * 2020-01-23 2021-07-29 Schott Schweiz Ag Detection and characterization of defects in pharmaceutical cylindrical containers
JP6954484B1 (ja) * 2021-01-20 2021-10-27 オムロン株式会社 検査装置
JP2021532340A (ja) * 2018-07-31 2021-11-25 アムジエン・インコーポレーテツド 医薬品容器のパターン認識に基づく検査を実施するためのロボットシステム
JP2022007489A (ja) * 2020-06-26 2022-01-13 キリンテクノシステム株式会社 撮像システム及び撮像制御方法
JP7086439B1 (ja) 2022-01-24 2022-06-20 大洋エレックス株式会社 容器検査装置
JP2023014080A (ja) * 2019-03-20 2023-01-26 東洋ガラス株式会社 容器検査装置
WO2023222298A1 (de) * 2022-05-19 2023-11-23 Syntegon Technology Gmbh Verfahren und vorrichtung zum inspizieren von zylinderförmigen behältnissen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267511B (zh) * 2021-05-10 2023-01-10 河北宝钢制罐北方有限公司 一种基于视觉捕捉的生产线自动化监测系统及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132650A (ja) * 1982-02-02 1983-08-08 Kirin Brewery Co Ltd 欠陥検出方法および装置
JPH01132942A (ja) * 1987-11-18 1989-05-25 Ishizuka Glass Co Ltd ガラス壜の外観検査方法
JPH0242345A (ja) * 1988-02-10 1990-02-13 Takeda Chem Ind Ltd 透明容器の検査装置
JPH0771935A (ja) * 1993-09-07 1995-03-17 Shionogi & Co Ltd アンプルの外観検査装置及び検査方法
JP2000162155A (ja) * 1998-11-30 2000-06-16 Kirin Techno System:Kk 壜胴部の欠陥検出方法
JP2001356097A (ja) * 2000-04-06 2001-12-26 Krones Ag 透明容器を光学的に検査するための方法および装置
JP2011002262A (ja) * 2009-06-16 2011-01-06 Toyo Glass Co Ltd ガラス製品検査装置
JP2011085464A (ja) * 2009-10-15 2011-04-28 Toyo Glass Co Ltd 透明ガラス容器の焼傷検査方法及び装置
JP2013108816A (ja) * 2011-11-18 2013-06-06 N Tech:Kk 容器の検査装置
JP2016085137A (ja) * 2014-10-27 2016-05-19 キリンテクノシステム株式会社 容器検査方法及び容器検査装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846928B2 (ja) * 1996-01-29 2006-11-15 株式会社キリンテクノシステム 壜の色の識別方法
JPH09318559A (ja) * 1996-05-31 1997-12-12 Ishizuka Glass Co Ltd 透明ガラス容器の外観検査方法及び装置
US7480040B2 (en) 2005-11-22 2009-01-20 Owens-Brockway Glass Container Inc. Method and apparatus for inspecting container sidewall contour
DE102010012570B4 (de) * 2010-03-23 2024-08-14 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Untersuchen von befüllten Behältnissen auf Fremdkörper
DE102010050673A1 (de) * 2010-11-09 2012-05-10 Krones Aktiengesellschaft Vorrichtung und Verfahren zum Inspizieren von Behältnissen
US9188545B2 (en) * 2011-10-28 2015-11-17 Owens-Brockway Glass Container Inc. Container inspection apparatus and method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132650A (ja) * 1982-02-02 1983-08-08 Kirin Brewery Co Ltd 欠陥検出方法および装置
JPH01132942A (ja) * 1987-11-18 1989-05-25 Ishizuka Glass Co Ltd ガラス壜の外観検査方法
JPH0242345A (ja) * 1988-02-10 1990-02-13 Takeda Chem Ind Ltd 透明容器の検査装置
JPH0771935A (ja) * 1993-09-07 1995-03-17 Shionogi & Co Ltd アンプルの外観検査装置及び検査方法
JP2000162155A (ja) * 1998-11-30 2000-06-16 Kirin Techno System:Kk 壜胴部の欠陥検出方法
JP2001356097A (ja) * 2000-04-06 2001-12-26 Krones Ag 透明容器を光学的に検査するための方法および装置
JP2011002262A (ja) * 2009-06-16 2011-01-06 Toyo Glass Co Ltd ガラス製品検査装置
JP2011085464A (ja) * 2009-10-15 2011-04-28 Toyo Glass Co Ltd 透明ガラス容器の焼傷検査方法及び装置
JP2013108816A (ja) * 2011-11-18 2013-06-06 N Tech:Kk 容器の検査装置
JP2016085137A (ja) * 2014-10-27 2016-05-19 キリンテクノシステム株式会社 容器検査方法及び容器検査装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021532340A (ja) * 2018-07-31 2021-11-25 アムジエン・インコーポレーテツド 医薬品容器のパターン認識に基づく検査を実施するためのロボットシステム
JP7359788B2 (ja) 2018-07-31 2023-10-11 アムジエン・インコーポレーテツド 医薬品容器のパターン認識に基づく検査を実施するためのロボットシステム
US11766700B2 (en) 2018-07-31 2023-09-26 Amgen Inc. Robotic system for performing pattern recognition-based inspection of pharmaceutical containers
JP2023014080A (ja) * 2019-03-20 2023-01-26 東洋ガラス株式会社 容器検査装置
JP7382475B2 (ja) 2019-03-20 2023-11-16 東洋ガラス株式会社 容器検査装置
JP2020183896A (ja) * 2019-05-08 2020-11-12 東洋ガラス株式会社 ガラスびんの検査方法及びガラスびんの製造方法並びにガラスびんの検査装置
JP7235583B2 (ja) 2019-05-08 2023-03-08 東洋ガラス株式会社 ガラスびんの検査方法及びガラスびんの製造方法並びにガラスびんの検査装置
US20210231576A1 (en) * 2020-01-23 2021-07-29 Schott Schweiz Ag Detection and characterization of defects in pharmaceutical cylindrical containers
US11841327B2 (en) * 2020-01-23 2023-12-12 Schott Pharma Schweiz Ag Detection and characterization of defects in pharmaceutical cylindrical containers
JP2022007489A (ja) * 2020-06-26 2022-01-13 キリンテクノシステム株式会社 撮像システム及び撮像制御方法
JP7107587B2 (ja) 2020-06-26 2022-07-27 キリンテクノシステム株式会社 撮像システム及び撮像制御方法
JP2022111631A (ja) * 2021-01-20 2022-08-01 オムロン株式会社 検査装置
JP6954484B1 (ja) * 2021-01-20 2021-10-27 オムロン株式会社 検査装置
JP7086439B1 (ja) 2022-01-24 2022-06-20 大洋エレックス株式会社 容器検査装置
JP2023107520A (ja) * 2022-01-24 2023-08-03 大洋エレックス株式会社 容器検査装置
WO2023222298A1 (de) * 2022-05-19 2023-11-23 Syntegon Technology Gmbh Verfahren und vorrichtung zum inspizieren von zylinderförmigen behältnissen

Also Published As

Publication number Publication date
JPWO2018061196A1 (ja) 2019-07-11
PH12019500510A1 (en) 2020-01-20
JP6778754B2 (ja) 2020-11-04
CN109844505A (zh) 2019-06-04
CN109844505B (zh) 2021-10-26
KR20190044654A (ko) 2019-04-30
KR102187406B1 (ko) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2018061196A1 (ja) ガラス容器の焼傷検査装置
US9329135B2 (en) Means for inspecting glass containers for defects
US7414716B2 (en) Machine for inspecting glass containers
US8058607B2 (en) Machine for inspecting glass containers at an inspection station using an addition of a plurality of illuminations of reflected light
JP7382519B2 (ja) ガラスびんの検査方法及びガラスびんの製造方法並びにガラスびんの検査装置
US7541572B2 (en) Machine for inspecting rotating glass containers with light source triggered multiple times during camera exposure time
CN112557410A (zh) 环形产品的外观检查装置
KR102300158B1 (ko) 용기 검사장치 및 용기 검사방법
US7876951B2 (en) Machine for inspecting glass containers
JP6897929B2 (ja) 透明物品の検査装置
JP6796704B2 (ja) 容器の検査装置及び容器の検査方法
JP4886830B2 (ja) 透明ガラス容器の焼傷検査方法及び装置
KR101729080B1 (ko) 테이퍼 롤러 베어링 케이지 검사장치
JP6675499B2 (ja) 光学検査装置を備える液体容器ラベリング機械
JP5959430B2 (ja) ボトルキャップの外観検査装置及び外観検査方法
WO2022176672A1 (ja) 透明可食体のマーキング検査装置およびマーキング装置
JP2016014589A (ja) 容器検査方法及び容器検査装置
JP4177204B2 (ja) 容器充填液体の異物検査装置
KR102133744B1 (ko) 용기 검사 방법 및 장치
JP2005345423A (ja) 容器検査装置
JP2014037977A (ja) プレス部品用検査装置
JP2004212079A (ja) 容器の検査用照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018541846

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197008995

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917746

Country of ref document: EP

Kind code of ref document: A1