[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018059518A1 - 一种数据传输方法、装置和系统 - Google Patents

一种数据传输方法、装置和系统 Download PDF

Info

Publication number
WO2018059518A1
WO2018059518A1 PCT/CN2017/104104 CN2017104104W WO2018059518A1 WO 2018059518 A1 WO2018059518 A1 WO 2018059518A1 CN 2017104104 W CN2017104104 W CN 2017104104W WO 2018059518 A1 WO2018059518 A1 WO 2018059518A1
Authority
WO
WIPO (PCT)
Prior art keywords
drb
data packet
terminal device
signaling
drbs
Prior art date
Application number
PCT/CN2017/104104
Other languages
English (en)
French (fr)
Inventor
唐珣
权威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17854968.9A priority Critical patent/EP3512244A4/en
Publication of WO2018059518A1 publication Critical patent/WO2018059518A1/zh
Priority to US16/369,288 priority patent/US20190230682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a data transmission method, apparatus, and system.
  • a PDN connection may contain multiple EPS bearers.
  • Each EPS bearer includes three parts, a data radio bearer (DRB) between the terminal device and the eNB, an S1 bearer between the eNB (evolved node B) and the SGW (serving gateway), and the SGW
  • DRB data radio bearer
  • S1 bearer between the eNB (evolved node B) and the SGW (serving gateway)
  • SGW serving gateway
  • S5 bearer between the PDN and the PDN gateway is shown in Figure 1.
  • E-RAB E-UTRAN Radio Access Bearer
  • E-UTRAN Evolved UTRAN (Universal Terrestrial Radio Access Network). network).
  • the E-RAB, DRB, and EPS bearers have a one-to-one correspondence.
  • Each EPS bearer corresponds to one QoS requirement (or QoS requirement), that is, a set of QoS parameters, including QCI (QoS class identifier) and ARP (allocation and Retention priority, allocation and retention priority, GBR (guaranteed bit rate), MBR (maximum bit rate, maximum rate or maximum bit rate).
  • QCI QoS class identifier
  • ARP allocation and Retention priority, allocation and retention priority
  • GBR guaranteed bit rate
  • MBR maximum bit rate, maximum rate or maximum bit rate
  • the EPS default bearer is set up to meet a default QoS requirement.
  • the default QoS requirement is part of the subscription data of the terminal device.
  • the default EPS bearer is Non-GBR (Non-guaranteed bit rate). ) Carrying.
  • the uplink and downlink data of the terminal device are transmitted on the EPS default bearer.
  • the network establishes a dedicated EPS bearer for the terminal device.
  • the dedicated EPS bearer may be a GBR bearer or a Non-GBR bearer.
  • the following data stream is sent by the PDN to the PGW for several IP data streams for a certain terminal device.
  • the PGW first filters and classifies the IP data streams to identify different QoS requirements corresponding to different IP data streams, and then maps to different
  • the EPS bearer is transmitted to the terminal device as shown in FIG. 2.
  • one EPS bearer contains one DRB and supports one QoS. On the base station side, one DRB supports one QoS. If the data transmission requires a new QoS, an EPS bearer needs to be established. As shown in FIG. 1, on the base station side, the process of establishing an EPS bearer is complicated, and the network overhead is large.
  • one EPS bearer may include multiple DRBs, and multiple DRBs can satisfy different QoS requirements.
  • the bearer signaling is established in the bearer process because the number of bearers is reduced.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the base station determines the first data packet to be transmitted.
  • the base station maps the first data packet to a first DRB belonging to one EPS bearer according to the QOS indication information of the first data packet.
  • the EPS bearer includes N DRBs, and N is an integer greater than or equal to 2.
  • the base station sends the first data packet to the terminal device by using the first DRB. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the mapping, by the base station, the first data packet to the first DRB that belongs to an EPS bearer according to the QOS indication information of the first data packet includes:
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a corresponding QoS parameter in the QoS profile).
  • the QoS indication information may also be an indicator requirement, such as a delay requirement.
  • the matching between the QoS of the first DRB and the QoS indication information of the first data packet refers to that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB; or the first data
  • the indication information included in the QoS of the packet is the same as at least one of the QoS of the first DRB. Since there are many possible QoS requirements for data packets, the number of DRBs will be greatly exceeded. By mapping, the QoS of the data packets can be satisfied as much as possible. At the same time, a corresponding DRB is not established for each QoS requirement, which can save resources.
  • the base station maps the first data packet according to the QOS indication information of the first data packet, there is no DRB that matches the first data packet QoS indication information, and the first data is sent by using a default DRB. package. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found on the base station side, sending the first data packet by using the default DRB can save system overhead.
  • the base station sends, to the terminal device, first signaling that configures M DRBs.
  • the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer.
  • M DRBs are all inactive, and the first DRB is one of M DRBs.
  • the base station when the first DRB is in an inactive state, sends a second signaling or a MAC SDU (Media Access Control service data unit) to the terminal device, where the The second signaling or MAC SDU is used to activate the first DRB.
  • the MAC sub-head corresponding to the MAC SDU includes an LCID (logic channel identification), and the LCID is used to indicate the first DRB.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID.
  • the DRB on the terminal device side receives the data packet of the DRB of the same LCID.
  • QoS Quality of Service
  • the base station sends a third signaling to the terminal device, where the third signaling is used to instruct the terminal device to establish the first DRB.
  • Establishing the DRB in advance can reduce the waiting time for the base station to send data.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the terminal device receives the first data packet from the base station, and maps the first data packet to the first DRB according to the LCID.
  • the first DRB belongs to one EPS bearer, and the EPS bearer includes N DRBs, and N is an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID.
  • the DRB on the terminal device side receives the data packet of the DRB of the same LCID sent by the base station.
  • the terminal device receives the first signaling that configures the M DRBs, where the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer.
  • the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer.
  • M is a positive integer.
  • Each of the M DRBs is in an inactive state, and the first DRB is one of the M DRBs.
  • they can be configured without being activated, and then activated after data is sent. This saves resources because it is not activated after configuration and does not consume resources.
  • the terminal device receives the second signaling or receives the MAC SDU, where the second signaling or the MAC SDU is used to indicate that the terminal device activates the first DRB, where the MAC SDU corresponds to the MAC
  • the LCID is included in the subheader, and the LCID is used to indicate the first DRB.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID.
  • the DRB on the terminal device side receives the data packet of the DRB of the same LCID sent by the base station.
  • QoS Quality of Service
  • they can be configured without being activated, and then activated after data is sent. Because it is not activated after configuration, it can be saved when needed, which can save the memory of the terminal device and the resource usage of the timer.
  • the terminal device receives the third signaling, where the third signaling is used to instruct the terminal device to establish the first DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the terminal device determines a second data packet to be sent, and maps the second data packet to a second DRB that belongs to an EPS bearer according to the QoS indication information of the second data packet, where the EPS bearer includes P DRBs, and P is greater than or equal to An integer of 2.
  • the terminal device transmits the second data packet to the base station by using the second DRB. Due to one
  • the EPS bearers include multiple DRBs, and multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the mapping, by the terminal device, the second data packet to the second DRB according to the QOS indication information of the second data packet includes: mapping the second data packet to the second DRB, where The QOS indication information of the second DRB matches the QoS indication information of the second data packet.
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a group of QoS parameters in the corresponding QoS profile), or may be a single indicator requirement. (such as delay requirements, etc.).
  • the matching between the QoS of the first DRB and the QoS indication information of the first data packet refers to that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB; or the first data
  • the indication information included in the QoS of the packet is the same as at least one of the QoS of the first DRB. Since there are many possible QoS requirements for data packets, the number of DRBs will be greatly exceeded. By mapping, the QoS of the data packets can be satisfied as much as possible. At the same time, a corresponding DRB is not established for each QoS requirement, which can save resources.
  • the terminal device receives the fourth signaling that configures the M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are not In an active state, the second DRB is one of M DRBs.
  • the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are not In an active state, the second DRB is one of M DRBs.
  • the terminal device receives the fifth signaling, where the fifth signaling indicates that the terminal device activates the second DRB.
  • the fifth signaling indicates that the terminal device activates the second DRB.
  • the terminal device receives the sixth signaling, where the sixth signaling is used to instruct the terminal device to establish a second DRB.
  • Establishing DRB in advance can reduce the waiting time for data transmission.
  • the terminal device maps the second data packet to the second DRB according to the QOS indication information of the second data packet, and if there is no DRB that matches the second data packet, the second The packet is sent through the default DRB. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, the terminal device can save the system overhead by sending the first data packet by using the default DRB.
  • the second data packet is sent by using the default DRB, including: a packet header of the second data packet includes a request for establishing a second DRB; or, a packet header of the second data packet includes activating a second DRB Request.
  • the packet header contains indication information for requesting activation or establishing a DRB, which can save signaling overhead.
  • the terminal device sends a seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • the terminal device activates the second DRB according to the QoS of the second data packet to be sent. Since the signaling process of the DRB is not activated, the terminal device activates the second DRB by using the QoS of the second data packet, reduces the second data packet transmission delay, and saves signaling overhead.
  • the second DRB includes a second logical channel, the second logical channel is mapped to a second transport channel, and the second transport channel is one of multiple uplink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like. Passing different resources (time-frequency resources) or transmissions at the physical layer Configuration (number of retransmissions, timer timeout setting, etc.) can guarantee the QoS of data transmission.
  • an embodiment of the present application provides a data transmission method, where the method includes:
  • the base station receives the second data packet from the terminal device, where the second data packet is mapped to the second DRB according to the LCID, the second DRB belongs to an EPS bearer, the EPS bearer includes P DRBs, and P is an integer greater than or equal to 2. . Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the base station sends a fourth signaling that configures M DRBs to the terminal device, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M The DRBs are all inactive, and the second DRB is one of M DRBs.
  • the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M The DRBs are all inactive, and the second DRB is one of M DRBs.
  • the base station sends a fifth signaling to the terminal device, where the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the base station sends a sixth signaling to the terminal device, where the sixth signaling is used to instruct the terminal device to establish a second DRB.
  • Establishing DRB in advance can reduce the waiting time for data transmission.
  • the base station receives the seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • Establishing the DRB in advance can reduce the waiting time for the base station to receive data. Wait until there is data to be received and then activate. Since it is not activated after configuration, it can save resources of the base station when it is activated when needed.
  • the base station receives the second data packet by using a default DRB, where the header of the second data packet includes a request to establish or activate the second DRB.
  • the packet header contains indication information for requesting activation or establishing a DRB, which can save signaling overhead.
  • the second DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • an embodiment of the present application provides a base station, where the base station has a function of implementing a behavior of a base station in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes:
  • a processing unit configured to determine the first data packet to be sent, and map the first data packet to the first DRB belonging to one EPS bearer according to the QOS indication information of the first data packet.
  • the EPS bearer includes N DRBs, and N is greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • a sending unit configured to send the first data packet to the terminal device by using the first DRB.
  • the QoS of the first DRB matches the QoS indication information of the first data packet.
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a group of QoS parameters in the corresponding QoS profile), or may be a single indicator requirement. (such as delay requirements, etc.).
  • the matching between the QoS of the first DRB and the QoS indication information of the first data packet refers to that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB; or the first data
  • the indication information included in the QoS of the packet is the same as at least one of the QoS of the first DRB. Since there are many possible QoS requirements for data packets, the number of DRBs will be greatly exceeded. By mapping, the QoS of the data packets can be satisfied as much as possible. At the same time, a corresponding DRB is not established for each QoS requirement, which can save resources.
  • the sending unit is further configured to: when the processor maps the first data packet according to the QOS indication information of the first data packet, the DRB that does not match the first data packet QoS, by default The DRB sends the first data packet. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead.
  • the sending unit is further configured to send the first signaling that configures the M DRBs to the terminal device, where the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer.
  • the M DRBs are all inactive, and the first DRB is one of M DRBs.
  • the sending unit is further configured to send a second signaling or MAC SDU to the terminal device, where the second signaling or MAC SDU is used to activate the first DRB.
  • the MAC sub-head corresponding to the MAC SDU includes an LCID, where the LCID is used to indicate the first DRB.
  • the sending unit is further configured to send the third signaling to the terminal device, where the third signaling is used to instruct the terminal device to establish the first DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • the embodiment of the present application provides another terminal device, where the terminal device has a function of implementing the behavior of the terminal device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the terminal device includes:
  • a receiving unit configured to receive a first data packet from a base station
  • a processing unit configured to map the first data packet to the first DRB according to the LCID, where the first DRB belongs to one EPS bearer, and the EPS bearer includes N DRB Ns being an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID.
  • the DRB on the terminal device side receives the data packet of the DRB of the same LCID sent by the base station.
  • the receiving unit is further configured to receive first signaling that configures M DRBs, where the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and M DRBs are Inactive state, the first DRB is one of M DRBs. Services that are not commonly used for QoS can be configured without being activated. After data is sent and then activated, resources can be saved.
  • the receiving unit is further configured to receive the second signaling or the receiving the MAC SDU, where the second signaling or the MAC SDU is used to instruct the terminal device to activate the first DRB, where the MAC SDU
  • the corresponding MAC subheader includes an LCID, and the LCID is used to indicate the first DRB.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID.
  • the DRB on the terminal device side receives the data packet of the DRB of the same LCID sent by the base station.
  • QoS Quality of Service
  • they can be configured without being activated, and then activated after data is sent. Because it is not activated after configuration, it can be saved when needed, which can save the memory of the terminal device and the resource usage of the timer.
  • the receiving unit is further configured to receive third signaling, where the third signaling is used to instruct the terminal device to establish the second DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • the embodiment of the present application provides another terminal device, where the terminal device has a function of implementing the behavior of the terminal device in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the modules can be software and/or hardware.
  • the terminal device includes:
  • a processing unit configured to determine a second data packet to be sent, and map the second data packet to a second DRB that belongs to an EPS bearer according to the QoS indication information of the second data packet, where the EPS bearer includes P DRBs, P Is an integer greater than or equal to 2.
  • a sending unit configured to send the second data packet to the base station by using the second DRB.
  • one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements.
  • the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the QoS of the first DRB matches the QoS indication information of the first data packet.
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a group of QoS parameters in the corresponding QoS profile), or may be a single indicator requirement. (such as delay requirements, etc.).
  • the matching between the QoS of the first DRB and the QoS indication information of the first data packet refers to that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB; or the first data
  • the indication information included in the QoS of the packet is the same as at least one of the QoS of the first DRB. Since there are many possible QoS requirements for data packets, the number of DRBs will be greatly exceeded. By mapping, the QoS of the data packets can be satisfied as much as possible. At the same time, a corresponding DRB is not established for each QoS requirement, which can save resources.
  • the terminal device further includes:
  • a receiving unit configured to receive fourth signaling that configures M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are all inactive.
  • the second DRB is one of M DRBs.
  • the receiving unit is further configured to receive the fifth signaling, where the fifth signaling indicates that the terminal device activates the second DRB.
  • the fifth signaling indicates that the terminal device activates the second DRB.
  • the receiving unit can be configured without being activated, and then activated after data is sent. This saves resources because it is not activated after configuration and does not consume resources.
  • the receiving unit is further configured to receive a sixth signaling, where the sixth signaling is used to instruct the terminal device to establish a second DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the sending unit is further configured to send the second data packet by using a default DRB. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead.
  • the second data packet is sent by using the default DRB, including:
  • the header of the second data packet includes a request to establish a second DRB;
  • the header of the second data packet includes a request to activate the second DRB.
  • the packet header contains indication information for requesting activation or establishing a DRB, which can save signaling overhead.
  • the sending unit is further configured to send a seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • the processing unit is further configured to activate the second DRB according to the QoS of the second data packet to be sent. Since the signaling process of the DRB is not activated, the QoS of the second data packet is used to activate the second DRB, which reduces the data transmission delay and saves signaling overhead.
  • the second DRB includes a second logical channel, the second logical channel is mapped to a second transport channel, and the second transport channel is one of multiple uplink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • an embodiment of the present application provides a base station, where the base station has a function of implementing a behavior of a base station in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • Said The hardware or software includes one or more modules corresponding to the functions described above.
  • the base station includes:
  • a receiving unit configured to receive a second data packet from the terminal device
  • a processing unit configured to map the second data packet to the second DRB according to the LCID, where the second DRB belongs to one EPS bearer, the EPS bearer includes P DRBs, and P is an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the base station is further characterized by:
  • a sending unit configured to send, by the terminal device, fourth signaling that configures M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are Inactive state, the second DRB is one of M DRBs.
  • the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are Inactive state, the second DRB is one of M DRBs.
  • the sending unit is further configured to send a fifth signaling to the terminal device, where the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the sending unit is further configured to send a sixth signaling to the terminal device, where the sixth signaling is used to instruct the terminal device to establish a second DRB.
  • Establishing DRB in advance can reduce the waiting time for data transmission.
  • the receiving unit is further configured to receive the seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • Establishing DRB in advance can reduce the waiting time for data transmission. Wait until there is data to be sent and then activate. The resource occupation of the base station and the terminal device can be saved because it is not activated after the configuration, and is activated when needed.
  • the receiving unit is further configured to receive, by using a default DRB, a second data packet, where the header of the second data packet includes a request to establish or activate the second DRB.
  • the packet header contains indication information for requesting activation or establishing a DRB, which can save signaling overhead.
  • the second DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • the transmitting unit may be a transmitter
  • the receiving unit may be a receiver
  • the processing unit may be a processor
  • the embodiment of the invention further provides a system, which comprises the terminal device and the base station in the above embodiment.
  • one EPS bearer includes multiple DRBs, which can make the multiple DRBs meet different QoS requirements. In this way, when the system QoS requirements are met, the number of bearers is reduced, and signaling for establishing bearers is saved.
  • Figure 1 is a schematic diagram of PDN connection and bearer.
  • Figure 2 is a schematic diagram of the downlink data stream transmission process.
  • FIG. 3 is a schematic flowchart of downlink data transmission according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the relationship between E-RAB and DRB according to an embodiment of the present invention.
  • FIG. 5 is a DRB and transport channel map in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of uplink data transmission according to an embodiment of the present invention.
  • FIG. 7a is a schematic structural diagram of a sub-header of a MAC address (Media Access Control Element) of a BSR (buffer status report) according to an embodiment of the present invention.
  • FIG. 7b is a schematic diagram of a BSR MAC CE payload structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a payload structure of a DRB activating MAC CE according to an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 10 is another schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 12 is another schematic block diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a user equipment according to another embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a base station according to another embodiment of the present invention.
  • the network architecture and the service scenario described in the embodiments of the present invention are used to more clearly illustrate the technical solutions of the embodiments of the present invention, and do not constitute a limitation of the technical solutions provided by the embodiments of the present invention.
  • the technical solutions provided by the embodiments of the present invention are equally applicable to similar technical problems.
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD Time division duplex
  • a terminal equipment may be referred to as a terminal, or may be a user equipment (UE), a mobile station (MS), and a mobile terminal ( Mobile terminal), a notebook computer, etc.
  • the terminal device can communicate with one or more core networks via a radio access network (RAN), for example, the terminal device can be a mobile phone (or "cellular" phone Or a computer with a mobile terminal, etc., for example, the terminal device may also be a portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile device that is connected to the wireless device. Incoming voice and/or data.
  • RAN radio access network
  • the base station may be an evolved base station (evolved node B, hereinafter referred to as "eNB or e-NodeB") in the LTE system, and a base station of the LTE 5G (the fifth generation) system may also be used. It is another base station, and may also be an access network device such as a relay.
  • eNB evolved node B
  • e-NodeB evolved node B
  • LTE 5G fifth generation
  • the invention is not limited.
  • the embodiment of the present invention proposes a solution based on the communication system shown in FIG. 1 to improve the performance of different QoS services.
  • Embodiments of the present invention provide a communication system.
  • the communication system includes at least one UE 10, one eNB 20, one SGW 30, one PGW 40, and one PDN 50. Taking FIG. 1 as an example, the PDN 50 and the UE 10 establish a PDN connection.
  • the direction in which the base station sends data to the terminal device is the downlink direction; the direction in which the terminal device sends data to the base station is the uplink direction.
  • an IP (Internet Protocol) protocol connection between a terminal device and a PDN (Packet Data Network) is called a PDN connection or an EPS (Evolved Packet System).
  • a PDN connection may contain multiple EPS bearers between the PGW and the terminal device.
  • Each EPS bearer consists of three parts, a DRB (Data Radio Bearer) between the terminal device and the eNB, an S1 bearer between the eNB (evolved node B, the evolved base station) and the SGW (Serving Gateway), and the SGW and the PGW.
  • S5 bearer between (PDN gateway) as shown in Figure 1.
  • the cascading combination of the DRB and the S1 bearer is also called the E-RAB, and the E-RAB, the DRB, and the EPS bearer have a one-to-one correspondence.
  • Each EPS bearer corresponds to a QoS requirement, that is, a set of QoS parameters, including QCI (QoS Class Identifier), ARP (Allocation and Retention Priority). Priority is reserved), GBR (Guaranteed Bit Rate), MBR (Maximum Bit Rate), etc.
  • QCI QoS Class Identifier
  • ARP Allocation and Retention Priority
  • Priority is reserved
  • GBR Guard Bit Rate
  • MBR Maximum Bit Rate
  • the E-RAB includes two parts, an S1 bearer and a DRB.
  • the IP data packet transmitted from the S1 bearer to the base station is directly mapped to the corresponding DRB.
  • Each DRB includes an independent PDCP (Packet Data Convergence Protocol) and an RLC entity.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • SDU serving data unit
  • the SDUs on different logical channels are uniformly processed at the MAC layer, and the MAC PDUs are formed in the order of logical channel priorities, and then transmitted to the terminal device by the physical layer.
  • the PDN 50 transmits three IP data streams for the terminal device 10 to the PGW 40. These three IP data streams are recorded as IP data stream 1, IP data stream 1, and IP data stream 3.
  • the PGW 40 first performs filtering classification processing on the three IP data streams, identifies different QoS requirements corresponding to different IP data streams, and then maps to different EPS bearers for transmission to the terminal device 10. For example, IP data streams 1, 2 are mapped to default EPS bearers; IP data stream 3 is mapped to dedicated EPS bearers.
  • an EPS bearer can be established by the network.
  • the establishment of an EPS bearer involves multiple network nodes, and the establishment process of the EPS bearer is complicated and the network overhead is large.
  • FIG. 3 shows a schematic diagram of a method of downlink data transmission according to an embodiment of the present invention.
  • the base station in FIG. 3 may be the base station 20 in FIG. 1; the terminal device in FIG. 3 may be the terminal device 10 in FIG. 1; as shown in FIG. 3, the method includes:
  • Step 301 The base station maps the first data packet.
  • the base station determines a first data packet to be transmitted.
  • the base station maps the first data packet to a first DRB belonging to one EPS bearer according to the QOS indication information of the first data packet.
  • the EPS bearer corresponds to N DRBs in the air interface, and N is greater than or equal to 2.
  • each DRB can correspond to one QoS configuration, that is, a set of QoS parameters.
  • an E-RAB can be mapped to four DRBs, namely DRB1, DRB2, DRB3, and DRB4. In FIG.
  • each DRB includes an independent PDCP PDCP (Packet Data Convergence Protocol) and an RLC (radio link layer control protocol) entity. After the data packet is processed by PDCP and RLC, It becomes an SDU (service data unit) on the logical channel corresponding to each DRB.
  • PDCP Packet Data Convergence Protocol
  • RLC radio link layer control protocol
  • SDU service data unit
  • a variety of transport channels are designed for different Qos types at the MAC layer, for example, multiple transport channels include high reliability transport channels; low latency transport channels; high rate transport channels.
  • one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced. For example, for a terminal device, only one non-GBR bearer can be reserved, and the number of bearers can be reduced, and by retaining multiple DRBs on the air interface side, the Q
  • the base station maps the first data packet to a first DRB that belongs to an EPS bearer according to the QOS indication information of the first data packet. And mapping, by the base station, the first data packet to the first DRB that belongs to an EPS bearer according to the QOS indication information of the first data packet, including:
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a corresponding QoS parameter in the QoS profile).
  • the QoS indication information may also be an indicator requirement, such as a delay requirement.
  • the matching of the QoS of the first DRB with the QoS indication information of the first data packet may be that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB. For example, only the first data packet QCI and the first DRB have the same QCI; or only the first data packet QCI, MBR and the first DRB have the same QCI and MBR. Or the indication information included in the QoS of the first data packet is the same as the at least one indicator in the QoS of the first DRB. For example, the delay requirement of the first data packet is the same as the delay requirement of the first DRB.
  • the data packet may be mapped to a DRB with a higher QoS parameter or indicator standard, such as mapping to a delay. Require a higher level of DRB, or a DRB with a higher reliability requirement.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of a plurality of downlink transport channels. At least two of the plurality of downlink transport channels are different in type; or, at least two of the plurality of downlink transport channels are transmitted The sources are different; or, the configurations of at least two of the plurality of downlink transmission channels are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • each DRB has independent PDCP and RLC entities, and has independent logical channels.
  • Logical channels corresponding to different DRBs are multiplexed into the same transport channel at the MAC layer, and for downlink data transmission, that is, multiple DTCHs ( The dedicated traffic channel is mapped to the same DL-SCH (Downlink share channel).
  • MBB Mobile BroadBand
  • mMTC Massive Machine Type Communication
  • the DRB has a corresponding relationship with the corresponding transport channel.
  • DRB1 corresponds to DL-SCH1
  • DRB2 corresponds to DL-SCH2
  • DRB3 and 4 both correspond to DL-SCH3.
  • Different transport channels may have different air interface resources, such as time-frequency resources, code resources, and the like.
  • Different transport channels correspond to DRBs to meet different QoS requirements. That is, different transport channels can satisfy different QOS requirements.
  • the transmission configuration can be used to reflect different transmission channel characteristics to meet different QOS requirements.
  • the MBB transmission channel it is required to support a high transmission rate, which can be configured with one or several of short-cycle semi-persistent scheduling characteristics, multi-beam aggregation transmission characteristics on a single carrier, large transmission bandwidth characteristics, and efficient channel coding characteristics;
  • a high-reliability transmission channel with a delay can be configured with a short transmission time interval (short TTI), a seamless soft handover feature, a larger number of HARQ retransmissions, and the like.
  • a contention transmission characteristic can be configured.
  • the configuration of the above transport channel can be preset or notified by an RRC message.
  • the English explanation in Figure 5 is as follows:
  • PHY physical layer
  • MAC media access control
  • RLC radio link control
  • PDCP Packet Data Convergence Protocol
  • HARQ hybrid automatic repeat request
  • DRB data radio bearer
  • PDCP entity PDCP entity
  • AM un-acknowledge mode
  • UM acknowledgenowledge mode confirmation mode
  • DTCH dedicated traffic channel
  • PDSCH physical downlink shared channel
  • the first data packet is an IP packet
  • the QoS is carried in the IP packet.
  • the base station determines the QoS according to at least one of a source IP address, a destination IP address, a source port number, a destination port number, and a protocol number.
  • the QoS can be flexibly set for the IP.
  • the QOS is represented by at least QCI, ARP.
  • the QOS is carried in an 8-bit differentiated service channel field of an IP header.
  • 8bit type of service information or called differentiated service information 8bit from left to right is PPPDTRCU, where: PPP indicates priority; D is 0 for general delay, 1 low delay; T is 0 for general throughput, 1 Indicates high throughput; R is 0 for general reliability, 1 for high reliability; C is 0 for common cost, 1 for low cost; U reserved for fixed 0.
  • the base station can map the DTR to the low latency, high rate, and high reliability QoS requirements of the wireless air interface, respectively.
  • the IP packet header may also include an IP Option field, which has a variable length, and may also be used to store QoS information, including one or more of QCI, ARP, GBR, and MBR.
  • the base station obtains corresponding QoS information according to the IP quintuple information.
  • the IP quintuple refers to the source IP address, destination IP address, source port number, destination port number, and protocol number.
  • the source IP address, destination IP address, and protocol number are carried in the IP header.
  • the source port number and destination port are used.
  • the number is carried in the IP packet data payload (eg, carried in the TCP or UDP header).
  • the base station can identify the packet type by using the IP quintuple information, for example, video data, voice data, webpage data, etc. (including but not limited to, the source IP address is judged to be from a video resource server, and is determined by the source port. It is a game, etc.), and then mapped to the corresponding DRB for transmission according to QoS standards of different data types.
  • the QoS criteria for different data types may be obtained by the core network device to inform the base station or according to a predefined manner.
  • Step 302 The base station sends a DRB establishment or a DRB configuration signaling.
  • the base station sends a DRB setup or DRB configuration signaling to the terminal device.
  • Establishing DRB refers to the process of completing the complete establishment of DRB by the terminal device; configuring DRB means that the terminal device only receives and saves the parameters of the DRB, and does not perform other operations.
  • the terminal device receives the signaling, if the signaling is to establish the signaling of the DRB, after the terminal device receives the signaling, the terminal establishes the DRB on the terminal side, and after the establishment, the DRB is in an active state. If the signaling is signaling for configuring the DRB, the terminal device saves the parameters of the DRB but does not activate the DRB.
  • the base station sends, to the terminal device, first signaling that configures M DRBs.
  • the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, M DRBs are in an inactive state, and the first DRB is one of M DRBs.
  • M is a positive integer
  • M DRBs are in an inactive state
  • the first DRB is one of M DRBs.
  • the first signaling sent by the base station to the terminal device indicates a parameter of each DRB of the M DRBs, and allocates a logical channel ID (logic channel ID) to each of the M DRBs. ).
  • the DRB on the base station side and the DRB on the terminal device side can be associated, and the DRB on the terminal device side receives the same DRID data packet of the LCID.
  • the terminal device After receiving the first signaling, the terminal device configures the M DRBs, but only configures them parameters, but does not activate them. After the configuration, on the terminal device side, the M DRBs are in an activated state.
  • the third signaling is sent to the terminal device, where the third signaling is used to instruct the terminal device to establish the first DRB.
  • Establish DRB in advance, which can reduce the waiting time for data transmission. If the QoS requirement of the first data packet does not match the DRB currently established or to be activated, a DRB may be created and the corresponding transmission channel characteristics and parameters may be configured.
  • the transmission channel characteristics It may be a TTI length, for example a TTI of 2 symbols; the transmission channel parameter may be the number of HARQ retransmissions.
  • the base station can flexibly configure the transmission channel characteristics and the transmission channel parameters.
  • the first DRB is established. After the terminal device establishes the first DRB, the first DRB is in an active state on the terminal device side.
  • Step 303 The base station sends signaling to activate the first DRB to the terminal device.
  • the terminal device receives the first DRB signaling and activates the first DRB.
  • the base station before the base station sends the first data packet to the terminal device by using the first DRB, when the first DRB is in an inactive state, the base station sends the second signaling to the terminal device or The MAC SDU, the second signaling or MAC SDU is used to instruct the terminal to activate the first DRB.
  • the MAC sub-header of the MAC SDU includes an LCID corresponding to the first DRB.
  • dedicated activation signaling the base station can transmit after the first DRB is activated.
  • the QoS can be guaranteed by the configuration of the DRB, and the DRB is not activated when it is not used, which can save resources.
  • the implicit activation of the DRB by means of data transmission can save signaling overhead.
  • the second signaling may be RRC signaling (or carried by an RRC message); the second signaling may also be a dedicated MAC CE.
  • the base station side When the MAC SDU is used to activate the first DRB, the base station side first establishes the first DRB entity, and applies its configuration to transmit the first data packet. After the terminal device receives the data, the MAC layer can determine that the first DRB is inactive by identifying the LCID. Then, the first DRB is immediately activated on the terminal device side.
  • Step 304 The base station sends the first data packet to the terminal device.
  • step 304 the base station sends the first data packet to the terminal device by using the first DRB.
  • the terminal device receives a first data packet from the base station, and maps the first data packet to the first DRB according to an LCID, where the first DRB belongs to one EPS bearer, and the EPS bearer includes N DRBs. , N is greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. In the case of satisfying the QoS requirements, the number of bearers is reduced, and signaling for establishing bearers is saved.
  • the base station maps the first data packet according to the QOS indication information of the first data packet
  • there is no DRB that matches the first data packet QoS indication information and the first data is sent by using a default DRB. package. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead. If there are multiple default DRBs, the DRB whose QoS parameter is closest to the QOS parameter of the first data packet may be selected among the multiple default DRBs to carry the transmission of the first data packet.
  • the QCI of the selected default DRB is closest to the QCI of the first data packet; or the selected default DRB is closest to one or several indicators of the first data packet, for example, the indicator is delay, error rate Or; or, select a default DRB having the same service type as the first data.
  • the default DRB may be one for each non-GBR EPS bearer, or multiple, depending on the QoS profile that the core network sends to the base station.
  • the QoS profile refers to the set of QoS parameters that need to be supported.
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers, saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • FIG. 6 shows a schematic diagram of a method of uplink data transmission according to an embodiment of the present invention.
  • the base station in FIG. 6 may be the base station 20 in FIG. 1; the terminal device in FIG. 6 may be the terminal device 10 in FIG. 1; as shown in FIG. 6, the method includes:
  • Step 601 The terminal device maps the second data packet.
  • the terminal device determines a second data packet to be sent, and maps the second data packet to a second DRB that belongs to an EPS bearer according to the QoS indication information of the second data packet, where the EPS bearer includes P DRBs. And P is an integer greater than or equal to 2.
  • the terminal device sends the second data packet to the base station by using the second DRB. Since one EPS bearer includes multiple DRBs, the number of EPS bearers is reduced, signaling for establishing EPS bearers is saved, and multiple DRBs can meet different QoS requirements.
  • FIG. 4 is a schematic diagram showing the relationship between E-RAB and DRB. For a detailed description of FIG. 4, reference may be made to the description of FIG. 4 in step 301.
  • the base station receives a second data packet from the terminal device, and the second data packet is mapped to the second DRB according to the LCID, and receives data from the second DRB.
  • the DRB on the base station side can be associated with the DRB on the terminal device side, and the DRB on the base station side can receive the same DRID data packet of the LCID from the terminal device side.
  • mapping, by the terminal device, the second data packet to the second DRB according to the QOS indication information of the second data packet includes:
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a corresponding QoS parameter in the QoS profile).
  • the QoS indication information may also be an indicator requirement, such as a delay requirement.
  • the matching between the QoS of the second DRB and the QoS indication information of the second data packet may be that the indication information included in the QoS of the second data packet is the same as the at least one parameter in the QoS of the second DRB. For example, only the second data packet QCI and the second DRB have the same QCI; or only the second data packet QCI, MBR, and the second DRB have the same QCI and MBR. Or the indication information included in the QoS of the second data packet is the same as the at least one indicator in the QoS of the second DRB. For example, the delay requirement of the second data packet is the same as the delay requirement of the second DRB.
  • the terminal device may map the data packet to a DRB with a higher QoS parameter or indicator standard, such as mapping to The delay requires a higher level of DRB, or a DRB with a higher reliability requirement.
  • the second DRB includes a second logical channel, the second logical channel is mapped to a second transport channel, and the second transport channel is one of multiple uplink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • each DRB has independent PDCP and RLC entities, and has independent logical channels.
  • Logical channels corresponding to different DRBs are multiplexed into the same transport channel at the MAC layer, and for downlink data transmission, that is, multiple DTCH mappings. Go to the same DL-SCH (Downlink share channel).
  • multiple transmission channels are designed, and each transmission channel can correspond to a certain type of service, such as MBB (Mobile BroadBand) service, which has a high service. Rate characteristics; low latency and high reliability services; mMTC (Massive Machine Type Communication), this service has low-cost transmission characteristics.
  • MBB Mobile BroadBand
  • mMTC Massive Machine Type Communication
  • DRB1 corresponds to DL-SCH1
  • DRB2 corresponds to DL-SCH2
  • DRB3 and 4 both correspond to DL-SCH3.
  • Different transport channels may have different air interface resources, such as time-frequency resources, code resources, and the like.
  • Different transport channels correspond to DRBs to meet different QoS requirements. That is, different transport channels can satisfy different QOS requirements.
  • the transmission configuration can be used to reflect different transmission channel characteristics to meet different QOS requirements.
  • the MBB transmission channel it is required to support a high transmission rate, which can be configured with one or several of short-cycle semi-persistent scheduling characteristics, multi-beam aggregation transmission characteristics on a single carrier, large transmission bandwidth characteristics, and efficient channel coding characteristics;
  • a high-reliability transmission channel with short delay can be configured with short TTI (short transmission time Interval), seamless soft handover, and a larger number of HARQ retransmissions.
  • TTI short transmission time Interval
  • seamless soft handover seamless soft handover
  • a larger number of HARQ retransmissions For mMTC transport channels, competitive transmission characteristics can be configured.
  • the configuration of the above transport channel can be preset or notified by an RRC message.
  • Step 602 The terminal device receives DRB establishment or configuration signaling.
  • the terminal device receives the base station to send DRB establishment or DRB configuration signaling.
  • the establishment of the DRB refers to the process of completing the complete establishment of the DRB by the terminal.
  • the configuration of the DRB refers to that the terminal device only receives and saves the parameters of the DRB, and does not perform other operations.
  • the terminal device receives the fourth signaling that configures the M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are not In an active state, the second DRB is one of M DRBs.
  • the first signaling received by the terminal device indicates a parameter of each of the M DRBs, and a logical channel ID (LCID) is allocated to each of the M DRBs. After receiving the first signaling, the terminal device saves the parameters, but does not immediately establish a corresponding DRB, waits for the base station to resend the activation signaling, and then establishes, so that resources can be saved.
  • LCID logical channel ID
  • the terminal device receives the sixth signaling, where the sixth signaling is used to instruct the terminal device to establish a second DRB.
  • Establish DRB in advance which can reduce the waiting time for data transmission. If the QoS requirement of the first data packet does not match the DRB currently established or to be activated, a new DRB may also be created for data transmission.
  • Step 603 The terminal device sends a request to activate/establish a DRB.
  • the terminal device sends a seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • the base station may determine whether to establish or activate the second DRB for the terminal device according to the load of the cell, etc., to improve the efficiency of data transmission of the entire cell.
  • the seventh signaling may be an RRC message.
  • the seventh signaling may also be carried by the MAC CE.
  • the seventh signaling When the seventh signaling is also carried by the MAC CE, it may be designed based on a BSR (Buffer Status Report) MAC CE in the current LTE system.
  • the current BSR structure of LTE is shown in Figures 7a and 7b.
  • the BSR includes two parts, a BSR subheader and a BSR payload.
  • the LCID (Logic Channel ID) of the BSR subheader is used to indicate that this is a BSR MAC CE.
  • the BSR payload portion indicates the LCGID and the amount of data to be transmitted.
  • the buffer size in Figures 7a and 7b is the buffer size.
  • the MAC CE used for the DRB establishment or activation request has the same sub-header structure as the BSR sub-header, but defines a different LCID for indicating that this is a MAC CE of a DRB establishment or activation request.
  • the DRB index may be included.
  • the data volume indication to be sent may also be included.
  • the DRB index in FIG. 8 occupies 2 bits as an example, and the number of bits occupied by the DRB index is used. Can be specified in advance.
  • the payload may include at least one of a service type indication, a QoS type indication, a specific QoS parameter, and an index number in the QoS profile.
  • the amount of data to be transmitted may also be added.
  • the service type indication or the QoS type indication may be an index number, the content pointed to, the specific service type or the QoS type may be predefined.
  • the QoS parameter if the QoS parameter is included, it may be at least one of QCI, GBR, ARP, and MBR.
  • Some DRBs can be used after they are established, and some DRBs need to be configured before being activated. Whether the DRB needs to be activated or not can be specified in the protocol or notified to the terminal device by the base station.
  • the DRB corresponding to the MBB service can be set to be activated by default, and the UE can be used after the establishment.
  • the DRB corresponding to the low-latency and high-reliability service may be related to the use of the short TTI (Transmission Time Interval).
  • the UE needs to perform data detection and transmission in a new frame structure, and needs to be configured to be used after activation.
  • the DRB corresponding to the mMTC (Massive Machine Type Communication) service involves a competitive transmission mode and requires the UE. The available resources are selected in the contention pool. In order to ensure the success rate of the transmission in the competition mode, more precise resource management is required. Therefore, the DRB corresponding to the mMTC service needs to be activated before being used.
  • the DRB For the DRB that needs to be activated, it is also possible to configure an activation valid time, and the DRB is considered to be available during the activation time. After the activation time, the DRB needs to be reactivated to use it; or configure a timer to use the corresponding DRB every time the UE is used. After the data is sent, the timer is cleared and restarts. If the timer expires, the corresponding DRB is set to inactive. If you want to use DRB to send data, you need to re-apply for activation.
  • Step 604 The terminal device receives the signaling of activating/establishing the DRB sent by the base station.
  • step 604 the terminal device receives signaling of activation/establishment of the second DRB sent by the base station. Activating or establishing signaling of the second DRB according to the signaling
  • the terminal device receives the fifth signaling, where the fifth signaling indicates that the terminal device activates the second DRB. After receiving the fifth signaling, the terminal device activates the second DRB. For services that are not commonly used for QoS, they can be configured without being activated, and then activated after data is sent. This saves resources because it is not activated after configuration and does not consume resources.
  • Step 605 The terminal device sends the second data packet.
  • the base station receives the second data packet from the terminal device, and the second data packet is mapped to the first according to the LCID.
  • the second DRB belongs to an EPS bearer, and the EPS bearer includes P DRBs, and P is an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the terminal device maps the second data packet to the second DRB according to the QOS indication information of the second data packet, and if there is no DRB that matches the second data packet, the second The data packet is sent through the default DRB. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead. If there are multiple default DRBs, the DRB whose QoS parameter is closest to the QOS parameter of the first data packet may be selected among the multiple default DRBs to carry the transmission of the first data packet.
  • the QCI of the selected default DRB is closest to the QCI of the first data packet; or the selected default DRB is closest to one or several indicators of the first data packet, for example, the indicator is delay, error rate Or; or, select a default DRB having the same service type as the first data.
  • the default DRB may be one for each non-GBR EPS bearer, or multiple, depending on the QoS configuration that the core network sends to the base station.
  • the second data packet is sent by using the default DRB, and the packet header of the second data packet includes a request for establishing a second DRB.
  • the second data packet is sent by using the default DRB, and the packet header of the second data packet includes a request for activating the second DRB.
  • the indication information is included in the packet header of the data packet, and is used to request activation or establishment of the DRB, which can save signaling overhead.
  • the indication information is included in the packet header of the data packet, and is used to request activation or establishment of the DRB, which can save signaling overhead.
  • DRB Indicated in the RLC layer header. If the DRB is requested to be activated, two fields are added to the existing RLC data header, one field is an indication information field requesting activation of the DRB, for example, occupying 2 bits (bits), and the two are '00', indicating that the request is activated. DRB; another field is a DRB index field, for example, occupying 6 bits, representing the corresponding DRB index number to be activated. If the request is to establish a DRB, two fields are added to the existing RLC data header.
  • one field is an indication information field requesting activation of the DRB, for example, occupying 2 bits (bits), and the two are '00', indicating that the request is activated.
  • DRB another field is a DRB index field, for example, occupying 6 bits, representing the corresponding DRB index number to be activated. If the request is to establish a DRB, two fields are added to the existing RLC data header.
  • One field is an indication information field for requesting establishment of a DRB, for example, occupying 2 bits, and when it is '01', it requests to activate the DRB; another field is
  • the QoS indicator field for example, occupies 6 bits, represents the corresponding request QoS parameter index number, and the index object is a set of QoS parameters pre-configured to the QoS profile of the UE, and may also directly indicate QoS parameters in this field, such as QCI, etc. .
  • the request is to activate the DRB
  • two fields are added to the existing PDCP data header, one field is an indication information field requesting activation of the DRB, for example, occupying 2 bits (bits), and the two are '00', indicating that the request is activated.
  • DRB another field is a DRB index field, for example, occupying 6 bits, representing the corresponding DRB index number to be activated.
  • DRB is requested to be established, two fields are added to the existing PDCP data header.
  • One field is the indication information field for requesting the establishment of the DRB, for example, occupying 2 bits.
  • the QoS indicator field occupies 6 bits, represents the corresponding request QoS parameter index number, and the index object is a set of QoS parameters pre-configured to the QoS profile of the UE, and may also directly indicate QoS parameters in this field, such as QCI, etc. .
  • the base station may determine whether to establish or activate the second DRB for the terminal device according to the load of the cell, etc., so as to improve data transmission of the entire cell. effectiveness. If the base station decides to establish or activate the second DRB for the terminal device, it sends a signaling to establish or activate the second DRB to the terminal device; or sends or activates a message of the second DRB.
  • the terminal device activates the second DRB according to the QoS of the second data packet to be sent, and sends the second data packet to the base station by using the second DRB. Since the signaling process of the DRB is not activated, the QoS of the second data packet is used to activate the second DRB, which reduces the data transmission delay and saves signaling overhead. . Specifically, after the UE determines that the second data packet needs to be sent, according to the QoS requirement of the second data packet, the corresponding DRB is selected to perform the sending process.
  • the UE may first activate the DRB locally, and construct a MAC SDU by using the corresponding PDCP and the RLC entity, and the MAC sub-head corresponding to the MAC SDU includes the corresponding one. LCID of the DRB. After receiving the MAC SDU, the base station recognizes that this is an inactive DRB through the LCID. It can be known that the UE side is activated, and then the DRB of the base station side can be activated, and the MAC SDU is received by using the DRB.
  • a DRB For a DRB, its LCID is the identity of the DRB.
  • a DRB can be a bidirectional DRB, that is, the DRB is used for both downlink data transmission and uplink data transmission.
  • a DRB can be a unidirectional DRB, that is, the DRB is only used for downlink data transmission or only for uplink data transmission.
  • the LCID of the first DRB of the embodiment in FIG. 3 is the same as the LCID of the second DRB of the embodiment in FIG. 4, the second DRB and the first DRB are one DRB, and are two-way DRBs.
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers, saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • the embodiment of the present invention provides a terminal device 10 as shown in FIG. 1, and the terminal device 10 includes:
  • the receiving unit 903 is configured to receive the first data packet from the base station
  • the processing unit 901 is configured to map the first data packet to the first DRB according to the LCID, where the first DRB belongs to one EPS bearer, and the EPS bearer includes N DRB Ns being an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. In the case of satisfying the QoS requirements, the number of bearers is reduced, and signaling for establishing bearers is saved.
  • the DRB on the base station side and the DRB on the terminal device side can be associated by the LCID, and the DRB on the terminal device side receives the same DRID data packet of the LCID.
  • the receiving unit 903 is further configured to receive the first signaling that configures the M DRBs, where the first signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and M DRBs. All are in an inactive state, and the first DRB is one of M DRBs. Services that are not commonly used for QoS can be configured without being activated. After data is sent and then activated, resources can be saved.
  • the receiving unit 903 is further configured to receive the second signaling or the receiving the MAC SDU, where the second signaling or the MAC SDU is used to instruct the terminal device to activate the first DRB, where
  • the MAC sub-head corresponding to the MAC SDU includes an LCID, and the LCID is used to indicate the first DRB.
  • the LCID By means of the LCID, the DRB on the base station side can be associated with the DRB on the terminal device side, and the DRB on the terminal device side can receive the DRB data packet of the same LCID.
  • the receiving unit 903 is further configured to receive third signaling, where the third signaling is used to instruct the terminal device to establish the second DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • the specific implementation may refer to the specific implementation of the terminal device in the foregoing method embodiment.
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers and saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • an embodiment of the present invention provides a terminal device 10 as shown in FIG. 1, which includes:
  • the processing unit 1001 is configured to determine a second data packet to be sent, and map the second data packet to a second DRB that belongs to an EPS bearer according to the QoS indication information of the second data packet, where the EPS bearer includes P DRBs.
  • P is an integer greater than or equal to 2.
  • the sending unit 1002 is configured to send the second data packet to the base station by using the second DRB.
  • one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. In the case of satisfying the QoS requirements, the number of bearers is reduced, and signaling for establishing bearers is saved.
  • the QoS of the second DRB matches the QoS indication information of the second data packet.
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a corresponding QoS parameter in the QoS profile).
  • the QoS indication information may also be an indicator requirement, such as a delay requirement.
  • the matching between the QoS of the second DRB and the QoS indication information of the second data packet may be that the indication information included in the QoS of the second data packet is the same as the at least one parameter in the QoS of the second DRB. For example, only the second data packet QCI and the second DRB have the same QCI; or only the second data packet QCI, MBR, and the second DRB have the same QCI and MBR. Or the indication information included in the QoS of the second data packet is the same as the at least one indicator in the QoS of the second DRB. For example, the delay requirement of the second data packet is the same as the delay requirement of the second DRB.
  • the data packet may be mapped to a DRB with a higher QoS parameter or indicator standard, such as mapping to a delay. Require a higher level of DRB, or a DRB with a higher reliability requirement.
  • the terminal device further includes:
  • the receiving unit 1003 is configured to receive fourth signaling that configures M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are all inactive.
  • the second DRB is one of M DRBs. For services that are not commonly used for QoS, you can configure it after it is not activated, and so on. Activate after being sent. This saves resources because it is not activated after configuration and does not consume resources.
  • the receiving unit 1003 is further configured to receive a fifth signaling, where the fifth signaling indicates that the terminal device activates the second DRB.
  • the fifth signaling indicates that the terminal device activates the second DRB.
  • the receiving unit 1003 is further configured to receive a sixth signaling, where the sixth signaling is used to instruct the terminal device to establish a second DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the sending list 1002 is further configured to send the second data packet by using a default DRB. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead.
  • the second data packet is sent by using the default DRB, including:
  • the header of the second data packet includes a request to establish a second DRB;
  • the header of the second data packet includes a request to activate the second DRB.
  • the packet header contains indication information for requesting activation or establishing a DRB, which saves signaling overhead.
  • the sending unit is further configured to send, by the sending unit, a seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • the processing unit 1001 is further configured to activate the second DRB according to the QoS of the second data packet to be sent. Since the signaling process of the DRB is not activated, the QoS of the second data packet is used to activate the second DRB, which reduces the data transmission delay and saves signaling overhead.
  • the second DRB includes a second logical channel, the second logical channel is mapped to a second transport channel, and the second transport channel is one of multiple uplink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers and saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • the embodiment of the present invention provides a base station 20 as shown in FIG. 1, and the base station 20 includes:
  • the processing unit 1101 is configured to determine a first data packet to be sent, and map the first data packet to a first DRB that belongs to an EPS bearer according to the QOS indication information of the first data packet.
  • the EPS bearer includes N DRBs, and N is greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. When the QoS requirement is met, the signaling of establishing a bearer in the bearer process is reduced because the number of bearers is reduced.
  • the sending unit 1103 is configured to send the first data packet to the terminal device by using the first DRB.
  • the QoS of the first DRB matches the QoS indication information of the first data packet.
  • the QoS indication information may be a specific QoS parameter (for example, QCI, MBR, etc.), or may be an index number of the QoS profile (for a corresponding QoS parameter in the QoS profile).
  • the QoS indication information may also be an indicator requirement, such as a delay requirement.
  • the matching of the QoS of the first DRB with the QoS indication information of the first data packet may be that the indication information included in the QoS of the first data packet is the same as the at least one parameter in the QoS of the first DRB. For example, only the first data packet QCI and the first DRB have the same QCI; or only the first data packet QCI, MBR and the first DRB have the same QCI and MBR. Or the indication information included in the QoS of the first data packet is the same as the at least one indicator in the QoS of the first DRB. For example, the delay requirement of the first data packet is the same as the delay requirement of the first DRB.
  • the data packet may be mapped to a DRB with a higher QoS parameter or indicator standard, such as mapping to a delay. Require a higher level of DRB, or a DRB with a higher reliability requirement.
  • the sending unit 1103 is further configured to: when the processor maps the first data packet according to the QOS indication information of the first data packet, the DRB that does not match the first data packet QoS passes The default DRB sends the first data packet. Since the DRB that satisfies the QoS requirement of the first data packet cannot be found, sending the first data packet through the default DRB can save system overhead.
  • the sending unit 1103 is further configured to send, to the terminal device, first signaling that configures M DRBs, where the first signaling is used to indicate that the terminal device configures M DRBs, where M is positive.
  • M DRBs are in an inactive state
  • the first DRB is one of M DRBs.
  • the sending unit is further configured to send a second signaling or MAC SDU to the terminal device, where the second signaling or MAC SDU is used to activate the first DRB.
  • the MAC sub-head corresponding to the MAC SDU includes an LCID, where the LCID is used to indicate the first DRB.
  • the LCID is used to indicate the first DRB.
  • the DRB on the base station side can be associated with the DRB on the terminal device side, and the DRB on the terminal device side can receive the DRB data packet of the same LCID.
  • QoS Quality of Service
  • they can be configured without being activated, and then activated after data is sent. Since it is not activated after the configuration, it is activated when waiting for the need, which can save the memory of the terminal device and the resource usage of the timer.
  • the sending unit 1103 is further configured to send the third signaling to the terminal device, where the third signaling is used to instruct the terminal device to establish the first DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the first DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple downlink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the transport channel type refers to a transport channel corresponding to a specific service type.
  • the transmission resource may be a time-frequency resource at a physical layer.
  • the configuration of the transport channel may be the number of retransmissions, the timer timeout setting, and the like.
  • the QoS of data transmission can be guaranteed at the physical layer through different resources (time-frequency resources) or transmission configuration (number of retransmissions, timer timeout setting, etc.).
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers and saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • an embodiment of the present invention provides a base station 20 as shown in FIG. 1, and the base station 20 includes:
  • the receiving unit 1202 is configured to receive, by the terminal device, a second data packet.
  • the processing unit 1201 is configured to map the second data packet to the second DRB according to the LCID, where the second DRB belongs to one EPS bearer, the EPS bearer includes P DRBs, and P is an integer greater than or equal to 2. Since one EPS bearer includes multiple DRBs, multiple DRBs can meet different QoS requirements. In the case of satisfying the QoS requirements, the number of bearers is reduced, and signaling for establishing bearers is saved.
  • the base station is further characterized by:
  • the sending unit 1203 is configured to send, by the terminal device, fourth signaling that configures M DRBs, where the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are In the inactive state, the second DRB is one of the M DRBs.
  • the fourth signaling is used to indicate that the terminal device configures M DRBs, where M is a positive integer, and the M DRBs are In the inactive state, the second DRB is one of the M DRBs.
  • the sending unit 1203 is further configured to send a fifth signaling to the terminal device, where the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the fifth signaling is used to instruct the terminal device to activate the second DRB.
  • the sending unit 1203 is further configured to send a sixth signaling to the terminal device, where the sixth signaling is used to instruct the terminal device to establish a second DRB. Establishing DRB in advance can reduce the waiting time for data transmission.
  • the receiving unit 1203 is further configured to receive the seventh signaling, where the seventh signaling is a request to activate or establish a second DRB.
  • Establishing DRB in advance can reduce the waiting time for data transmission. Wait until there is data to be sent and then activate. Because it is not activated after configuration, it can be saved when needed, which can save the memory of the terminal device and the resource usage of the timer.
  • the receiving unit 1202 is further configured to receive, by using a default DRB, a second data packet, where the header of the second data packet includes a request to establish or activate the second DRB.
  • the packet header contains indication information for requesting activation or establishing a DRB, which saves signaling overhead.
  • the second DRB includes a first logical channel, the first logical channel is mapped to a first transport channel, and the first transport channel is one of multiple downlink transport channels, and the multiple uplink transmissions At least two transport channel types or configured physical transmission resources in the channel are different.
  • the processing unit and the sending unit of the base station reference may be made to the specific implementation of the base station in the foregoing method embodiment.
  • one EPS bearer includes multiple DRBs, which reduces the number of bearers and saves signaling for establishing bearers, and multiple DRBs can meet different QoS requirements.
  • the terminal device 10 including the processor 1301, the transmitter 1302, and the receiver 1303 is as shown in FIG.
  • a base station 20 including a processor 1402, a transmitter 1403, and a receiver 1401 is shown in FIG.
  • the processing unit 901, 1001 may be specifically the processor 1301; the sending unit 902, 1002 may be the transmitter 1302; and the receiving unit 903, 1003 may be the receiver 1303.
  • the processing unit 1101, 1201 may specifically be the processor 1401; the receiving unit 1102, 1202 may be the receiver 1402; the transmitting unit 1103, 1203 may be the transmitter 1302.
  • one DRB supports one QoS.
  • one DRB can support multiple QoS, each QoS is supported by a QoS pipe.
  • the function of one QoS pipe is consistent with the function of one DRB in the above embodiment of the present application.
  • the processor 1301, 1401 may be a central processing unit ("CPU"), and the processor 1301, 1401 may also be other general-purpose processors, digital signal processing. (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及移动通信领域,尤其涉及无线通信系统中的数据传输技术。本申请给出一种数据传输的发送方法、装置和系统。在此方案中,基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,所述EPS承载包括N个DRB,N大于等于2。所述基站通过所述第一DRB向终端设备发送所述第一数据包。由于一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。

Description

一种数据传输方法、装置和系统
本申请要求于2016年9月30日提交中国专利局、申请号为201610877498.9、申请名称为“一种数据传输方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,特别涉及一种数据传输方法、装置和系统。
背景技术
在LTE((Long Term Evolution,长期演进))系统中,终端设备和PDN(packet data network,分组数据网)间的IP(Internet Protocol,网络之间互连的协议)连接被称为PDN连接或EPS(evolved packet system,演进的分组系统)会话,一个PDN连接可以包含多个EPS承载。每个EPS承载包含三部分,终端设备和eNB间的DRB(data radio bearer,数据无线承载),eNB(evolved node B,演进型基站)和SGW(serving gateway,服务网关)间的S1承载,SGW和PGW(PDN gateway,PDN网关)间的S5承载,如图1所示。同时DRB和S1承载的级联也称为E-RAB(E-UTRAN Radio Access Bearer,E-UTRAN无线接入承载),其中E-UTRAN为Evolved UTRAN(Universal Terrestrial Radio Access Network,通用陆地无线接入网)。E-RAB、DRB、EPS承载为一一对应关系。
数据传输QoS(quality of service,服务质量)的管理是基于EPS承载,每个EPS承载对应一个QoS要求(或QoS需求),即一组QoS参数,包括QCI(QoS class identifier)、ARP(allocation and retention priority,分配和保留优先级)、GBR(guaranteed bit rate,保证速率)、MBR(maximum bit rate,最大速率或最大比特率)等。当终端设备在网络注册时,建立了EPS默认承载,满足一个默认的QoS要求,这个默认QoS要求是终端设备签约数据的一部分,EPS默认承载是Non-GBR(Non-guaranteed bit rate,不保证速率)承载。在EPS默认承载建立后,终端设备的上下行数据都在该EPS默认承载上传输。当默认QoS要求不能满足终端设备要求时,网络会为终端设备建立专用EPS承载。对应一个QoS要求,专用EPS承载可以是GBR承载,也可以是Non-GBR承载。
以下行数据流为例,PDN向PGW发送了针对某终端设备的若干IP数据流,PGW首先将这些IP数据流进行滤波分类处理,识别出不同IP数据流对应的不同QoS要求,然后映射到不同的EPS承载传输到终端设备,如图2所示。
现有LTE系统中,一个EPS承载包含一个DRB,支持一个QoS。在基站侧,一个DRB支持一个QoS。如果数据传输需要一个新的QoS,则需要建立一个EPS承载。由图1所示,在基站侧,建立EPS承载过程复杂,网络开销大。
发明内容
本申请提供一种数据传输方法、装置和系统。在本申请中,一个EPS承载可以包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中的建立承载信令。
第一方面,本申请实施例提供一种数据传输方法,该方法包括:
基站确定待发送的第一数据包。所述基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB。所述EPS承载包括N个DRB,N为大于等于2的整数。所述基站通过所述第一DRB向终端设备发送所述第一数据包。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,包括:
将所述第一数据包映射到所述第一DRB,所述第一DRB的QoS与第一数据包的QoS指示信息匹配。
QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是QoS profile(Qos配置)的一个索引号(用于对应QoS profile中的一组QoS参数)。QoS指示信息,还可以是指标要求,例如时延要求等。
所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配指的是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同;或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,在所述基站根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS指示信息匹配的DRB,通过默认DRB发送所述第一数据包。由于在基站侧,无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述基站向所述终端设备发送配置M个DRB的第一信令。所述第一信令用于指示所述终端设备配置M个DRB,M为正整数。所述M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有待发送的数据后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,当所述第一DRB为未激活状态时,所述基站向终端设备发送第二信令或MAC SDU(Media Access Control service data unit,媒体接入控制服务数据单元),所述第二信令或MAC SDU用于激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID(logic channel identification,逻辑信道标识),所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来。所述终端设备侧的DRB接收与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置 后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述基站向终端设备发送第三信令,所述第三信令用于指示所述终端设备建立第一DRB。提前建立好DRB,可以减少基站发送数据的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第二方面,本申请实施例提供一种数据传输方法,该方法包括:
终端设备从基站接收第一数据包,并根据LCID将所述第一数据包映射到第一DRB。所述第一DRB属于一个EPS承载,所述EPS承载包括N个DRB,N为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。通过LCID,可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来。所述终端设备侧的DRB接收所述基站发送的与之相同的LCID的DRB的数据包。
可选地,所述终端设备接收配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数。M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述终端设备接收第二信令或接收MAC SDU,所述第二信令或所述MAC SDU用于指示所述终端设备激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来。所述终端设备侧的DRB接收所述基站发送的与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述终端设备接收第三信令,所述第三信令用于指示所述终端设备建立第一DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第三方面,本申请实施例提供一种数据传输方法,该方法包括:
终端设备确定待发送的第二数据包,根据第二数据包的QoS指示信息映射所述第二数据包到属于一个EPS承载的第二DRB,所述EPS承载包括P个DRB,P为大于等于2的整数.所述终端设备通过所述第二DRB向基站发送所述第二数据包。由于一 个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB,包括:将所述第二数据包映射到所述第二DRB,所述第二DRB的QOS指示信息与第二数据包的QoS指示信息匹配。
QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是可能是QoS profile的一个索引号(用于对应QoS profile中的一组QoS参数),还可以是单一的指标要求(例如时延要求等)。
所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配指的是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同;或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述终端设备接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述终端设备接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述终端设备接收第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB时,没有与所述第二数据包匹配的DRB,则所述第二数据包通过默认DRB发送。由于无法找到满足所述第一数据包QoS要求的DRB,所述终端设备通过所述默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述第二数据包通过所述默认DRB发送,包括:所述第二数据包的包头包括建立第二DRB的请求;或者,所述第二数据包的包头包括激活第二DRB的请求。数据包的包头中包含指示信息,用于请求激活或建立DRB,可以节省信令开销。
可选地,所述终端设备发送第七信令,所述第七信令为激活或建立第二DRB的请求。
可选地,所述终端设备根据待发送的第二数据包的QoS激活第二DRB。由于没有激活DRB的信令过程,所述终端设备使用所述第二数据包的QoS激活第二DRB,降低了该第二数据包发送时延,并节省了信令开销。
可选地,所述第二DRB包括第二逻辑信道,所述第二逻辑信道映射到第二传输信道,所述第二传输信道为多个上行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输 配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第四方面,本申请实施例提供一种数据传输方法,该方法包括:
基站从终端设备接收第二数据包,所述第二数据包根据LCID映射到第二DRB,所述第二DRB属于一个EPS承载,所述EPS承载包括P个DRB,P为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述基站向所述终端设备发送配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述基站向所述终端设备发送第五信令,所述第五信令用于指示所述终端设备激活第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述基站向所述终端设备发送第六信令所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述基站接收第七信令,所述第七信令为激活或建立第二DRB的请求。提前建立好DRB,可以减少基站接收数据的等待时间。等有数据待接收后再激活。由于配置后不激活,等需要时激活,能够节省基站的资源。
可选地,所述基站通过默认DRB接收第二数据包,所述第二数据包的包头包括建立或者激活所述第二DRB的请求。数据包的包头中包含指示信息,用于请求激活或建立DRB,可以节省信令开销。
可选地,所述第二DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第五方面,本申请实施例提供一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
所述基站包括:
处理单元,用于确定待发送的第一数据包,根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB。所述EPS承载包括N个DRB,N大于等于2。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
发送单元,用于通过所述第一DRB向终端设备发送所述第一数据包。
可选地,所述第一DRB的QoS与第一数据包的QoS指示信息匹配。QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是可能是QoS profile的一个索引号(用于对应QoS profile中的一组QoS参数),还可以是单一的指标要求(例如时延要求等)。所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配指的是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同;或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述发送单元还用于,在所述处理器根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS匹配的DRB,通过默认DRB发送所述第一数据包。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述发送单元还用于向所述终端设备发送配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节约资源。
可选地,当所述第一DRB为未激活状态时,所述发送单元还用于向终端设备发送第二信令或MAC SDU,所述第二信令或MAC SDU用于激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,终端设备侧的DRB接收与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等待需要时在激活,能够节省该基站和终端设备的资源。
可选地,所述发送单元还用于向终端设备发送第三信令,所述第三信令用于指示所述终端设备建立第一DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第六方面,本申请实施例提供另一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
所述终端设备包括:
接收单元,用于从基站接收第一数据包;
处理单元,用于根据LCID将所述第一数据包映射到第一DRB,所述第一DRB属于一个EPS承载,所述EPS承载包括N个DRB N为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。通过LCID,可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来。所述终端设备侧的DRB接收所述基站发送的与之相同的LCID的DRB的数据包。
可选地,所述接收单元还用于接收配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活,可以节省资源。
可选地,所述接收单元还用于接收第二信令或接收MAC SDU,所述第二信令或所述MAC SDU用于指示所述终端设备激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来。所述终端设备侧的DRB接收所述基站发送的与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述接收单元还用于接收第三信令,所述第三信令用于指示所述终端设备建立所述第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第七方面,本申请实施例提供另一种终端设备,该终端设备具有实现上述方法设计中终端设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。
所述终端设备包括:
处理单元,用于确定待发送的第二数据包,根据第二数据包的QoS指示信息映射所述第二数据包到属于一个EPS承载的第二DRB,所述EPS承载包括P个DRB,P为大于等于2的整数。
发送单元,用于通过所述第二DRB向基站发送所述第二数据包。
由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述第一DRB的QoS与第一数据包的QoS指示信息匹配。QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是可能是QoS profile的一个索引号(用于对应QoS profile中的一组QoS参数),还可以是单一的指标要求(例如时延要求等)。所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配指的是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同;或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述的终端设备,还包括:
接收单元,用于接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述接收单元还用于接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述接收单元还用于接收第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,没有与所述第二数据包匹配的DRB,所述发送单元还用于通过默认DRB发送所述第二数据包。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述第二数据包通过所述默认DRB发送,包括:
所述第二数据包的包头包括建立第二DRB的请求;或者,
所述第二数据包的包头包括激活第二DRB的请求。
数据包的包头中包含指示信息,用于请求激活或建立DRB,可以节省信令开销。
可选地,所述发送单元还用于发送第七信令,所述第七信令为激活或建立第二DRB的请求。
可选地,所述处理单元,还用于根据待发送的第二数据包的QoS激活第二DRB。由于没有激活DRB的信令过程,使用第二数据包的QoS激活第二DRB,降低了数据发送时延并节省了信令开销。
可选地,所述第二DRB包括第二逻辑信道,所述第二逻辑信道映射到第二传输信道,所述第二传输信道为多个上行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
第八方面,本申请实施例提供一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述 硬件或软件包括一个或多个与上述功能相对应的模块。
所述基站包括:
接收单元,用于从终端设备接收第二数据包;
处理单元,用于将所述第二数据包根据LCID映射到第二DRB,所述第二DRB属于一个EPS承载,所述EPS承载包括P个DRB,P为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述基站,其特征在于,还包括:
发送单元,用于所述终端设备发送配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省所述基站和所述终端设备的资源占用。
可选地,所述发送单元,还用于向所述终端设备发送第五信令,所述第五信令用于指示所述终端设备激活第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述发送单元,还用于向所述终端设备发送第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述接收单元,还用于接收第七信令,所述第七信令为激活或建立第二DRB的请求。提前建立好DRB,可以减少数据发送的等待时间。等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省所述基站和所述终端设备的资源占用。
可选地,所述接收单元,还用于通过默认DRB接收第二数据包,所述第二数据包的包头包括建立或者激活所述第二DRB的请求。数据包的包头中包含指示信息,用于请求激活或建立DRB,可以节省信令开销。
可选地,所述第二DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
在第五方面到第八方面,发送单元可以是发送器,接收单元可以是接收器,处理单元可以是处理器。
本发明实施例还提供了一种系统,该系统包括上述实施例中的终端设备和基站。
相较于现有技术,本申请提供的方案中,一个EPS承载包括多个DRB,可以使该多个DRB满足不同的QoS要求。这样,在满足系统QoS要求的情况下,减少了承载的数量,节约建立承载的信令。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1PDN连接及承载示意图。
图2下行数据流传输过程示意图。
图3为本发明实施例的下行数据传输的流程示意图。
图4是根据本发明实施例的E-RAB和DRB的关系的示意图。
图5是根据本发明实施例的DRB和传输信道映射图。
图6为本发明实施例的上行数据传输的流程示意图。
图7a为本发明实施例的BSR(buffer status report,缓冲区状态报告)MAC CE(Media Access Control Control Element,媒体接入控制层控制元素)子头结构示意图。
图7b为本发明实施例的BSR MAC CE载荷结构示意图。
图8为本发明实施例的DRB激活MAC CE的载荷结构示意图。
图9是根据本发明实施例的用户设备的示意性框图
图10是根据本发明实施例的用户设备的另一示意性框图。
图11是根据本发明实施例的基站的示意性框图。
图12是根据本发明实施例的基站的另一示意性框图。
图13是根据本发明另一实施例的用户设备的示意性框图。
图14是根据本发明另一实施例的基站的示意性框图。
具体实施方式
本发明实施例描述的网络架构以及业务场景是为了更加清楚的说明本发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)通信系统等。
还应理解,在本发明实施例中,终端设备(terminal equipment)可称之为终端(terminal),也可以是用户设备(user equipment,UE)、移动台(mobile station,MS),移动终端(mobile terminal),笔记本电脑等,该终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)或具有移动终端的计算机等,例如,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接 入网交换语音和/或数据。
在本发明实施例中,基站可以是LTE系统中的演进型基站(evolved node B,简称为“eNB或e-NodeB”),LTE 5G(the fifth generation,第五代)系统的基站,也可以是其他基站,也可以是中继(relay)之类的接入网设备。本发明并不限定。
本发明实施例基于图1所示的通信系统提出一种解决方案,用以提高不同的QoS业务的性能。本发明实施例提供了一种通信系统。该通信系统至少包括至少一个UE 10、一个eNB 20、一个SGW 30、一个PGW 40和一个PDN 50。以图1为例,PDN 50和UE 10建立一个PDN连接。基站向终端设备发送数据的方向为下行方向;终端设备向基站发送数据的方向为上行方向。在LTE系统中,终端设备和PDN(Packet Data Network,分组数据网)间的IP(Internet Protocol,网络之间互连的协议)连接被称为PDN连接或EPS(Evolved Packet System,演进的分组系统)会话,一个PDN连接在PGW和终端设备之间可以包含多个EPS承载。每个EPS承载包含三部分,终端设备和eNB间的DRB(Data Radio Bearer,数据无线承载),eNB(evolved node B,演进型基站)和SGW(Serving Gateway,)间的S1承载,SGW和PGW(PDN gateway)间的S5承载,如图1所示。同时DRB和S1承载的级联组合也称为E-RAB,E-RAB、DRB、EPS承载为一一对应关系。
数据传输QoS(Quality of Service,服务质量)的管理是基于EPS承载,每个EPS承载对应一个QoS要求,即一组QoS参数,包括QCI(QoS Class Identifier)、ARP(Allocation and Retention Priority,分配和保留优先级)、GBR(Guaranteed Bit Rate,保证最低速率)、MBR(Maximum Bit Rate,最大速率)等。当终端设备在网络注册时,建立了EPS默认承载,满足一个默认的QoS要求,这个默认QoS要求是终端设备签约数据的一部分,EPS默认承载是Non-GBR承载。在EPS默认承载建立后,终端设备的上下行数据都在EPS承载上传输。当默认QoS要求不能满足终端设备要求时,网络会为终端设备建立专用EPS承载,对应另一个QoS要求,专用EPS承载可以是GBR承载,也可以是Non-GBR承载。
在当前的LTE系统,E-RAB包括S1承载和DRB两部分。对于下行数据流,从S1承载传输到基站的IP数据包,直接映射到相应的DRB。每个DRB内包含独立的PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)和RLC实体,IP数据包经过PDCP和RLC处理后,成为每个DRB对应的逻辑信道上的SDU(servic data unit,服务数据单元)。不同的逻辑信道上的SDU统一在MAC层处理,按照逻辑信道优先级的顺序构成MAC PDU,再交由物理层传输到终端设备。
以图2为例,在下行方向,PDN 50向PGW 40发送了针对终端设备10的3个IP数据流。这三个IP数据流记为IP数据流1、IP数据流1、IP数据流3。PGW 40首先将这3个IP数据流进行滤波分类处理,识别出不同IP数据流对应的不同QoS要求,然后映射到不同的EPS承载传输到终端设备10。例如,将IP数据流1、2映射到默认EPS承载;将IP数据流3映射到专用EPS承载。
现有LTE系统中,QoS和EPS绑定,如果数据传输需要一个新的QoS,可以由网络建立一个EPS承载。但建立EPS承载涉及到多个网络节点,EPS承载的建立过程复杂,网络开销大。
图3示出了根据本发明实施例的一种下行数据传输的方法的示意图。图3中的基站可以是图1中的基站20;图3中的终端设备可以是图1中的终端设备10;如图3所示,该方法包括:
步骤301:基站映射第一数据包。
在步骤301中,基站确定待发送的第一数据包。所述基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB。所述EPS承载在空口对应N个DRB,N大于等于2。对应一个E-RAB,在基站侧存在多个DRB,每个DRB可以对应一个QoS配置,即一组QoS参数。如图4所示,一个E-RAB可以映射到4个DRB,分别为DRB1、DRB2、DRB3、DRB4。在图4中,每个DRB内包含独立的PDCP PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)和RLC(radio link control,无线链路层控制协议)实体,数据包经过PDCP和RLC处理后,成为每个DRB对应的逻辑信道上的SDU(service data unit,服务数据单元)。在MAC层针对不同Qos类型设计多种传输信道,例如,多种传输信道包括高可靠传输信道;低时延传输信道;高速率传输信道。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。例如,对一个终端设备,可以只保留一个non-GBR承载,减少承载数量,而通过在空中接口侧保留多个DRB,保证数据包在空中接口侧传输的QoS。
可选地,所述基站根据第一数据包的QOS指示信息映射所述第一数据包到同属于一个EPS承载的第一DRB。所述基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,包括:
将所述第一数据包映射到所述第一DRB,所述第一DRB的QoS与第一数据包的QoS指示信息匹配。
QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是QoS profile(Qos配置)的一个索引号(用于对应QoS profile中的一组QoS参数)。QoS指示信息,还可以是指标要求,例如时延要求等。
所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配可以是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同。例如,只需要所述第一数据包QCI和所述第一DRB的QCI相同;或者,只需要所述第一数据包QCI、MBR和所述第一DRB的QCI、MBR相同。或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。例如,所述第一数据包的的时延要求和所述第一DRB的时延要求相同。或者,为了将多种QoS要求的数据包映射到有限的DRB中,如果没有对应的最匹配的承载,可以将该数据包映射到QoS参数或指标标准更高的DRB中,比如映射到时延要求高一级的DRB,或可靠性要求高一级的DRB等。
由于基站和终端对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,在基站和终端设备通信时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个。所述多个下行传输信道中至少两个传输信道类型不同;或者,所述多个下行传输信道中至少两个传输信道的传输资 源不同;或者,所述多个下行传输信道中至少两个传输信道的配置不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
在现有技术中,每个DRB具有独立的PDCP和RLC实体,具有独立的逻辑信道,不同DRB对应的逻辑信道在MAC层复用到同一传输信道中,对于下行数据传输,即多个DTCH(dedicated traffic channel,专用业务信道)映射到同一DL-SCH(Downlink share channel下行共享信道)。而在本发明的实施例中,为了提供不同QoS的传输服务,设计多个传输信道,每个传输信道可以对应某一类的业务,例如MBB(Mobile BroadBand,移动宽带)业务,此业务具有高速率特性;低时延高可靠业务;mMTC(Massive Machine Type Communication,海量机器类型通信),此业务具有低成本传输特性。DRB和相应传输信道具有对应关系,以图5为例,DRB1对应DL-SCH1,DRB2对应DL-SCH2,DRB3和4都对应DL-SCH3。不同的传输信道可以具有不同的空口资源,例如时频资源,码资源等等。不同的传输信道与DRB对应可以满足不同的QoS要求。也就是不同的传输信道可以满足不同的QOS要求的业务。可以通过传输配置来体现不同的传输信道特性满足不同的QOS要求。对于MBB传输信道需要支持高传输速率,可为其配置短周期半静态调度特性、单载波上的多波束聚合传输特性、大传输带宽特性、高效信道编码特性中的一个或几个;而对于低时延高可靠传输信道,可以配置short TTI(short transmission time interval,短TTI)特性、无缝软切换特性、更大的HARQ重传次数等;对于mMTC传输信道,可以配置竞争传输特性等。以上传输信道的配置可预先设定,或由RRC消息通知。图5中的英文的解释如下:
PHY(physical layer,物理层);MAC(media access control,媒体访问控制);RLC(radio link control,无线链路层控制协议);
PDCP(Packet Data Convergence Protocol,分组数据汇聚协议);
Scheduling/Priority(调度/优先级);Handing(处理);
HARQ(hybrid automatic repeat request,混合自动重传请求);
DRB(data radio bearer,数据无线承载);PDCP entity(PDCP实体)
AM(un-acknowledge mode)/UM(acknowledge mode确认模式);DTCH(dedicated traffic channel,专用业务信道);
DL-SCH(downlink share channel,下行共享信道)
PDSCH(physical downlink shared channel,物理下行共享信道)
Radio Bears(无线承载)
Logical Channel(逻辑信道);Transport Channels(传输信道)
可选地,所述第一数据包为IP包,在所述IP包中携带所述QoS。所述基站根据源IP地址、目的IP地址、源端口号、目的端口号和协议号中至少一个确定所述QoS。通过所述IP包中携带所述QoS,可以对IP灵活的设置QoS。
可选地,所述QOS至少由QCI,ARP表示。
可选地,在IP头的8比特区分服务信道字段中携带所述所述QOS。IP头中包含 8bit type of service信息或称为区分服务信息,8bit从左到右依次为PPPDTRCU,其中:PPP表示优先级;D为0表示一般延迟,为1低延迟;T为0表示一般吞吐量,为1表示高吞吐量;R为0表示一般可靠性,为1表示高可靠性;C为0表示普通成本,为1表示低成本;U保留位,固定为0。复用已有的数据结构,可以减少终端设备的复杂度。
所述基站可以将DTR分别映射为无线空口的低时延、高速率和高可靠性QoS要求。IP包头中还可以包括IP Option字段,具有可变长度,也可以用于存放QoS信息,包括QCI、ARP、GBR、MBR中一个或多个。
可选地,所述基站根据IP五元组信息获得相应的QoS信息。IP五元组是指{源IP地址、目的IP地址、源端口号、目的端口号、协议号},其中源IP地址、目的IP地址和协议号在IP包头中携带,源端口号、目的端口号在IP包数据载荷中携带(例如,在TCP或UDP包头中携带)。基站通过对IP五元组信息进行识别,可以判段数据包类型,例如是视频数据、语音数据、网页数据等(包括但不限于通过源IP地址判断是来自某视频资源服务器,通过源端口判断是某游戏等),然后根据不同数据类型的QoS标准,映射到相应的DRB中进行传输。不同数据类型的QoS标准可由核心网设备通知基站或根据预定义的方式来获得。
步骤302:基站发送DRB建立或DRB配置信令。
在步骤302中,所述基站向所述终端设备发送DRB建立或DRB配置信令。建立DRB指的是终端设备要完成完整建立DRB的过程;配置DRB指的是在终端设备只接收,保存该DRB的参数,不做其他的操作。所述终端设备收到该信令后,如果该信令是建立DRB的信令,所述终端设备收到后该信令后,在终端侧建立该DRB,建立后,该DRB是激活状态。如果该信令是配置DRB的信令,则终端设备,保存该DRB的参数,但不激活该DRB。
可选地,所述基站向所述终端设备发送配置M个DRB的第一信令。所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。基站向所述终端设备发送的第一信令中,指示了所述M个DRB中每个DRB的参数,而且对所述M个DRB中的每个DRB分配逻辑信道ID(logic channel ID,LCID)。之后通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,终端设备侧的DRB接收与之相同的LCID的DRB的数据包。所述终端设备,收到第一信令后,就配置这M个DRB,但只给它们配置参数,但不激活它们。配置后,在终端设备侧,这M个DRB是为激活的状态。
可选地,在基站确定待发送的第一数据包后,向终端设备发送第三信令,所述第三信令用于指示所述终端设备建立所述第一DRB。提前建立好DRB,这样可以减少数据发送的等待时间。如果所述第一数据包的QoS要求与当前已建立或待激活的DRB不匹配,也可以新建一个DRB,并配置相应的传输信道特性及参数。所述传输信道特性, 可以是TTI长度,例如2个符号的TTI;所述传输信道参数,可以是HARQ重传次数。基站可以灵活配置所述传输信道特性和所述传输信道参数。
所述终端设备收到第三信令后,建立所述第一DRB。终端设备建立第一DRB完成后,在终端设备侧,所述第一DRB为激活状态。
步骤303,基站向终端设备发送激活第一DRB的信令。
所述终端设备接收该第一DRB信令,并激活所述第一DRB。
可选地,在所述基站通过所述第一DRB向终端设备发送所述第一数据包之前,当所述第一DRB为未激活状态时,所述基站向终端设备发送第二信令或MAC SDU,所述第二信令或MAC SDU用于指示终端激活所述第一DRB。其中,所述MAC SDU的MAC子头中包含对应所述第一DRB的LCID。采用专用激活信令,基站可以在所述第一DRB被激活后发送。基站数据传输时,可以用DRB的配置保证QoS,而且DRB不要用的时候不激活,可以节约资源。而通过数据发送的方式隐式激活DRB,可以节约信令开销。所述第二信令可以是RRC信令(或由RRC消息携带);所述第二信令也可以是专用MAC CE。
当MAC SDU用于激活所述第一DRB时,基站侧先建立所述第一DRB实体,并应用其配置进行所述第一数据包的发送。所述终端设备接收到数据后,在MAC层能够通过识别LCID,判断出所述第一DRB是未激活的状态。然后,在所述终端设备侧立即激活所述第一DRB。
步骤304,基站向终端设备发送第一数据包。
在步骤304中,所述基站通过所述第一DRB向所述终端设备发送所述第一数据包。
所述终端设备从所述基站接收第一数据包,并根据LCID将所述第一数据包映射到所述第一DRB,所述第一DRB属于一个EPS承载,所述EPS承载包括N个DRB,N大于等于2。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足,QoS要求的情况下,减少了承载的数量,节约建立承载的信令。
可选地,在所述基站根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS指示信息匹配的DRB,通过默认DRB发送所述第一数据包。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。如果有多个默认的DRB,可以在多个默认DRB中选择QoS参数与所述第一数据包的QOS参数最接近的DRB,来承载所述第一数据包的传输。例如选择的默认DRB的QCI与所述第一数据包的QCI最接近;或者,选择的默认的DRB与所述第一数据包一个或几个指标最接近,例如指标为时延、误码率等;或者,选择一个与所述第一数据具有相同业务类型的默认DRB。
默认DRB可以是每个non GBR EPS承载都有一个,也可以有多个,取决于核心网发给基站的QoS profile(QoS配置),QoS profile指的是需要支持的QoS参数集合。
因此,本发明实施例的数据传输方法,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
图6示出了根据本发明实施例的一种上行数据传输的方法的示意图。图6中的基站可以是图1中的基站20;图6中的终端设备可以是图1中的终端设备10;如图6所示,该方法包括:
步骤601:终端设备映射第二数据包。
在步骤601中,终端设备确定待发送的第二数据包,根据第二数据包的QoS指示信息映射所述第二数据包到属于一个EPS承载的第二DRB,所述EPS承载包括P个DRB,P为大于等于2的整数.所述终端设备通过所述第二DRB向基站发送所述第二数据包。由于一个EPS承载包括多个DRB,减少了EPS承载的数量,节约建立EPS承载的信令,同时多个DRB能够满足不同的QoS要求。图4给出了E-RAB和DRB的关系的示意图,对图4的具体描述,可以参见在步骤301中,对图4的描述。
所述基站从该终端设备接收第二数据包,所述第二数据包根据LCID映射到第二DRB,从该第二DRB接收数据。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,基站侧的DRB就可以从终端设备侧接收与之相同的LCID的DRB的数据包。
可选地,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB,包括:
将所述第二数据包映射到所述第二DRB,所述第二DRB的QOS指示信息与第二数据包的QoS指示信息匹配。
QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是QoS profile(Qos配置)的一个索引号(用于对应QoS profile中的一组QoS参数)。QoS指示信息,还可以是指标要求,例如时延要求等。
所述第二DRB的QoS与所述第二数据包的QoS指示信息匹配可以是第二数据包的QoS包括的指示信息和所述第二DRB的QoS中至少一个参数相同。例如,只需要所述第二数据包QCI和所述第二DRB的QCI相同;或者,只需要所述第二数据包QCI、MBR和所述第二DRB的QCI、MBR相同。或者第二数据包的QoS包括的指示信息和所述第二DRB的QoS中的的至少一个指标相同。例如,所述第二数据包的的时延要求和所述第二DRB的时延要求相同。或者,为了将多种QoS要求的数据包映射到有限的DRB中,如果没有对应的最匹配的承载,终端设备可以将该数据包映射到QoS参数或指标标准更高的DRB中,比如映射到时延要求高一级的DRB,或可靠性要求高一级的DRB等。
由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,在所述基站和所述终端设备侧,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述第二DRB包括第二逻辑信道,所述第二逻辑信道映射到第二传输信道,所述第二传输信道为多个上行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
在现有技术中,每个DRB具有独立的PDCP和RLC实体,具有独立的逻辑信道,不同DRB对应的逻辑信道在MAC层复用到同一传输信道中,对于下行数据传输,即多个DTCH映射到同一DL-SCH(Downlink share channel下行共享信道)。而在本发明的实施例中,为了提供不同QoS的传输服务,设计多个传输信道,每个传输信道可以对应某一类的业务,例如MBB(Mobile BroadBand,移动宽带)业务,此业务具有高速率特性;低时延高可靠业务;mMTC(Massive Machine Type Communication,海量机器类型通信),此业务具有低成本传输特性。DRB和相应传输信道具有对应关系,以图5为例,DRB1对应DL-SCH1,DRB2对应DL-SCH2,DRB3和4都对应DL-SCH3。不同的传输信道可以具有不同的空口资源,例如时频资源,码资源等等。不同的传输信道与DRB对应可以满足不同的QoS要求。也就是不同的传输信道可以满足不同的QOS要求的业务。可以通过传输配置来体现不同的传输信道特性满足不同的QOS要求。对于MBB传输信道需要支持高传输速率,可为其配置短周期半静态调度特性、单载波上的多波束聚合传输特性、大传输带宽特性、高效信道编码特性中的一个或几个;而对于低时延高可靠传输信道,可以配置short TTI(short Transmission Time Interval)特性、无缝软切换特性、更大的HARQ重传次数等;对于mMTC传输信道,可以配置竞争传输特性等。以上传输信道的配置可预先设定,或由RRC消息通知。
步骤602:所述终端设备接收DRB建立或配置信令。
在步骤602中,所述终端设备接收所述基站发送DRB建立或DRB配置信令。建立DRB指的是终端要完成完整建立DRB的过程,配置DRB指的是在终端设备只接收,保存该DRB的参数,不做其他的操作。
可选地,所述终端设备接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。所述终端设备接收的第一信令中,指示了所述M个DRB中每个DRB的参数,而且对所述M个DRB中的每个DRB分配逻辑信道ID(logic channel ID,LCID)。终端设备收到所述第一信令后,保存这些参数,但是并不立即建立相应的DRB,等待基站再发来激活信令后再建立,这样可以节约资源。
可选地,所述终端设备接收第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,这样可以减少数据发送的等待时间。如果所述第一数据包的QoS要求与当前已建立或待激活的DRB不匹配,也可以新建一个DRB用于数据传输。
步骤603:终端设备发送激活/建立DRB的请求。
可选地,所述终端设备发送第七信令,所述第七信令为激活或建立第二DRB的请求。
该基站接收该第7信令后,可以根据可以根据小区的负载等情况,决定是否为所述终端设备建立或激活所述第二DRB,提高整个小区数据传输的效率。
所述第七信令可以RRC消息。所述第七信令也可以是MAC CE携带。
当所述第七信令也可以通过MAC CE携带时,可以是基于当前LTE系统中的BSR(Buffer Status Report,缓存状态报告)MAC CE进行设计。当前LTE的BSR结构如图7a和图7b所示。在图7a中,BSR包括BSR子头和BSR载荷两部分。其中BSR子头的LCID(Logic Channel ID,逻辑信道ID),用于指示这是一个BSR MAC CE。BSR载荷部分指示了LCGID和待传输数据量。图7a、图7b中的buffer size是缓存大小。
在本发明实施例中,用于DRB建立或激活请求的MAC CE,子头结构同BSR子头,但定义一个不同的LCID用于指示这是一个DRB建立或激活请求的MAC CE。
对于载荷部分,如果是激活消息,可以包含DRB索引,可选地,还可以包括待发送数据量指示,如图8所示,图8中DRB索引占用2bit只作为示例,DRB索引占用的比特数可以预先规定。
对于载荷部分,如果是DRB建立消息,在载荷上可以包含业务类型指示、QoS类型指示、具体的QoS参数、QoS profile中索引号中的至少一个,可选地,还可以加上待传输数据量指示。业务类型指示或QoS类型指示可以是一个索引号,指向的内容,具体的业务类型或QoS类型可以预先定义。DRB建立消息中,如果包含QoS参数,可以是QCI、GBR、ARP、MBR中的至少一个。
某些DRB建立后就可使用,而某些DRB需要先配置,然后再激活后使用。DRB是否需要激活后使用可以在协议中规定或由基站通知给终端设备。例如,可以将MBB业务对应的DRB设为默认激活,建立后UE即可使用;而低时延高可靠业务对应的DRB,由于涉及到short TTI(Transmission Time Interval,传输时间间隔)的使用,可能需要UE在新的帧结构下进行数据检测和发送,需要配置成激活后使用;同样,对应mMTC(Massive Machine Type Communication,海量机器类型通信)类业务对应的DRB,涉及到竞争传输模式,需要UE在竞争资源池中选择可用资源,为了保证竞争模式下发送成功率,需要进行更精确的资源管理,所以mMTC类业务对应的DRB也需要激活后再使用。
对于需要激活的DRB,还可以可以配置一个激活有效时间,在激活时间内认为DRB是可用的,超过激活时间后DRB需要重新激活才能使用;或者配置一个计时器,在每次UE使用相应的DRB发送完数据后计时器清零并重新开始计时,如果计时器超时,则将相应的DRB设为非激活态,此时如果想使用DRB发送数据需要重新申请激活。
步骤604:终端设备接收基站发送的激活/建立DRB的信令。
在步骤604中,终端设备接收基站发送的激活/建立所述第二DRB的信令。根据该信令,激活或建立所述第二DRB的信令
可选地,所述终端设备接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。终端设备收到该第五信令后,激活所述第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
步骤605:终端设备发送第二数据包。
在基站侧,基站从终端设备接收第二数据包,所述第二数据包根据LCID映射到第 二DRB,所述第二DRB属于一个EPS承载,所述EPS承载包括P个DRB,P为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
可选地,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB时,没有与所述第二数据包匹配的DRB,则所述第二数据包通过所述默认DRB发送。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。如果有多个默认的DRB,可以在多个默认DRB中选择QoS参数与所述第一数据包的QOS参数最接近的DRB,来承载所述第一数据包的传输。例如选择的默认DRB的QCI与所述第一数据包的QCI最接近;或者,选择的默认的DRB与所述第一数据包一个或几个指标最接近,例如指标为时延、误码率等;或者,选择一个与所述第一数据具有相同业务类型的默认DRB。默认DRB可以是每个non GBR EPS承载都有一个,也可以有多个,取决于核心网发给基站的QoS配置。
可选地,所述第二数据包通过所述默认DRB发送,所述第二数据包的包头包括建立第二DRB的请求。
可选地,所述第二数据包通过所述默认DRB发送,所述第二数据包的包头包括激活第二DRB的请求。
以上两种方式,都是在数据包的包头中包含指示信息,用于请求激活或建立DRB,这种方式可以节省信令开销。在数据包头中添加指示信息的方法如下:
1.在RLC层数据头中指示。如果是请求激活DRB,则在已有RLC数据头中加入两个字段,一个字段为请求激活DRB的指示信息字段,例如占用2个bit(比特),这2个为’00’时代表请求激活DRB;另一个字段为DRB索引字段,例如占用6个bit,代表相应的待激活DRB索引号。如果是请求建立DRB,则在已有RLC数据头中加入两个字段,一个字段为请求建立DRB的指示信息字段,例如占用2个bit,为’01’时代表请求激活DRB;另一个字段为QoS指示字段,例如占用6个bit,代表相应的请求QoS参数索引号,索引对象是预配置给UE的QoS profile中的一组QoS参数,也可以在此字段中直接指示QoS参数,例如QCI等。
2.在PDCP层数据头中指示。如果是请求激活DRB,则在已有PDCP数据头中加入两个字段,一个字段为请求激活DRB的指示信息字段,例如占用2个bit(比特),这2个为’00’时代表请求激活DRB;另一个字段为DRB索引字段,例如占用6个bit,代表相应的待激活DRB索引号。如果是请求建立DRB,则在已有PDCP数据头中加入两个字段,一个字段为请求建立DRB的指示信息字段,例如占用2个bit,为’01’时代表请求激活DRB;另一个字段为QoS指示字段,例如占用6个bit,代表相应的请求QoS参数索引号,索引对象是预配置给UE的QoS profile中的一组QoS参数,也可以在此字段中直接指示QoS参数,例如QCI等。
该基站接收建立或激活所述第二DRB的请求后,可以根据小区的负载等情况,决定是否为所述终端设备建立或激活所述第二DRB,这样可以提高整个小区数据传输的 效率。如果该基站决定为所述终端设备建立或激活所述第二DRB,则会向所述终端设备发送建立或激活所述第二DRB的信令;或发送或激活所述第二DRB的消息。
可选地,终端设备根据待发送的第二数据包的QoS激活第二DRB,并使用第二DRB向基站发送第二数据包。由于没有激活DRB的信令过程,使用第二数据包的QoS激活第二DRB,降低了数据发送时延并节省了信令开销。。具体的,当UE确定需要发送第二数据包后,根据第二数据包的QoS要求,选择相应的DRB执行发送过程。当根据QoS映射或匹配规则,选择出的DRB处于未激活状态,则UE可以首先在本地激活此DRB,并使用相应的PDCP和RLC实体构造MAC SDU,MAC SDU对应的MAC子头中包含对应此DRB的LCID。基站收到这个MAC SDU后,通过LCID识别出这是一个未激活的DRB,则可知在UE侧已激活,然后可以激活基站侧的DRB,并使用此DRB接收这个MAC SDU。
对一个DRB而言,它的LCID是该DRB的标识。一个DRB可以是双向的DRB,即这个DRB既用于下行数据的传输,又用于上行数据的传输。一个DRB可以是单向的DRB,即这个DRB只用于下行数据的传输或只用于上行数据的传输。当图3中的实施例的第一DRB的LCID和图4中的实施例的第二DRB的LCID一样时,第二DRB和第一DRB是一个DRB,而且是个双向的DRB。
因此,本发明实施例的数据传输方法,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
上文中结合图3到图8,详细描述了根据本发明实施例的方法,下面将结合图9至图12,详细描述根据本发明实施例的终端设备和基站。
如图9所示,本发明实施例提供了一种如图1所示的终端设备10,该终端设备10包括:
接收单元903,用于从基站接收第一数据包;
处理单元901,用于根据LCID将所述第一数据包映射到第一DRB,所述第一DRB属于一个EPS承载,所述EPS承载包括N个DRB N为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足,QoS要求的情况下,减少了承载的数量,节约建立承载的信令。通过LCID,可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,终端设备侧的DRB接收与之相同的LCID的DRB的数据包。
可选地,所述接收单元903,还用于接收配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活,可以节省资源。
可选地,所述接收单元903,还用于接收第二信令或接收MAC SDU,所述第二信令或所述MAC SDU用于指示所述终端设备激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,终端设备侧的DRB接收与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等 有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述接收单元903,还用于接收第三信令,所述第三信令用于指示所述终端设备建立所述第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
对于终端设备的处理单元,发送单元而言,具体实现可以参照上述方法实施例中的终端设备的具体实现。
因此,本发明实施例数据传输的终端设备,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
如图10所示,本发明实施例提供了一种如图1所示的终端设备10,该终端设备10包括:
处理单元1001,用于确定待发送的第二数据包,根据第二数据包的QoS指示信息映射所述第二数据包到属于一个EPS承载的第二DRB,所述EPS承载包括P个DRB,P为大于等于2的整数。
发送单元1002,用于通过所述第二DRB向基站发送所述第二数据包。
由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足,QoS要求的情况下,减少了承载的数量,节约建立承载的信令。
可选地,所述第二DRB的QoS与第二数据包的QoS指示信息匹配。QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是QoS profile(Qos配置)的一个索引号(用于对应QoS profile中的一组QoS参数)。QoS指示信息,还可以是指标要求,例如时延要求等。
所述第二DRB的QoS与所述第二数据包的QoS指示信息匹配可以是第二数据包的QoS包括的指示信息和所述第二DRB的QoS中至少一个参数相同。例如,只需要所述第二数据包QCI和所述第二DRB的QCI相同;或者,只需要所述第二数据包QCI、MBR和所述第二DRB的QCI、MBR相同。或者第二数据包的QoS包括的指示信息和所述第二DRB的QoS中的的至少一个指标相同。例如,所述第二数据包的的时延要求和所述第二DRB的时延要求相同。或者,为了将多种QoS要求的数据包映射到有限的DRB中,如果没有对应的最匹配的承载,可以将该数据包映射到QoS参数或指标标准更高的DRB中,比如映射到时延要求高一级的DRB,或可靠性要求高一级的DRB等。
可选地,所述终端设备还包括:
接收单元1003,用于接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据 待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述接收单元1003,还用于接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述接收单元1003,还用于接收第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,没有与所述第二数据包匹配的DRB,所述发送单,1002还用于通过默认DRB发送所述第二数据包。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述第二数据包通过所述默认DRB发送,包括:
所述第二数据包的包头包括建立第二DRB的请求;或者,
所述第二数据包的包头包括激活第二DRB的请求。
数据包的包头中包含指示信息,用于请求激活或建立DRB,这种方式可以节省信令开销。
可选地,所述发送单元还1002,用于发送第七信令,所述第七信令为激活或建立第二DRB的请求。
可选地,所述处理单1001,还用于根据待发送的第二数据包的QoS激活第二DRB。由于没有激活DRB的信令过程,使用第二数据包的QoS激活第二DRB,降低了数据发送时延并节省了信令开销。
可选地,所述第二DRB包括第二逻辑信道,所述第二逻辑信道映射到第二传输信道,所述第二传输信道为多个上行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
因此,本发明实施例数据传输的终端设备,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
如图11所示,本发明实施例提供了一种如图1所示的基站20,该基站20包括:
处理单元1101,用于确定待发送的第一数据包,根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,。所述EPS承载包括N个DRB,N大于等于2。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足QoS要求的情况下,由于减少了承载的数量,减少了建立承载流程中建立承载的信令。
发送单元1103,用于通过所述第一DRB向终端设备发送所述第一数据包。
可选地,所述第一DRB的QoS与第一数据包的QoS指示信息匹配。
QoS指示信息,可以是具体的QoS参数(例如QCI、MBR等),也可以是QoS profile(Qos配置)的一个索引号(用于对应QoS profile中的一组QoS参数)。QoS指示信息,还可以是指标要求,例如时延要求等。
所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配可以是第一数据包的QoS包括的指示信息和所述第一DRB的QoS中至少一个参数相同。例如,只需要所述第一数据包QCI和所述第一DRB的QCI相同;或者,只需要所述第一数据包QCI、MBR和所述第一DRB的QCI、MBR相同。或者第一数据包的QoS包括的指示信息和所述第一DRB的QoS中的的至少一个指标相同。例如,所述第一数据包的的时延要求和所述第一DRB的时延要求相同。或者,为了将多种QoS要求的数据包映射到有限的DRB中,如果没有对应的最匹配的承载,可以将该数据包映射到QoS参数或指标标准更高的DRB中,比如映射到时延要求高一级的DRB,或可靠性要求高一级的DRB等。
由于对数据包的QoS要求的可能有很多,会大大超过DRB数量,通过映射,可以使数据包的QoS尽量得到满足。同时,没有给每一个QoS要求都建立一个对应的DRB,可以节约资源。
可选地,所述发送单元1103还用于,在所述处理器根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS匹配的DRB,通过默认DRB发送所述第一数据包。由于无法找到满足所述第一数据包QoS要求的DRB,通过默认DRB发送所述第一数据包可以节省系统开销。
可选地,所述发送单元1103,还用于向所述终端设备发送配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,当所述第一DRB为未激活状态时,所述发送单元还用于向终端设备发送第二信令或MAC SDU,所述第二信令或MAC SDU用于激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。通过LCID,就可以使所述基站侧的DRB和所述终端设备侧的DRB关联起来,终端设备侧的DRB接收与之相同的LCID的DRB的数据包。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等待需要时在激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述发送单元1103还用于向终端设备发送第三信令,所述第三信令用于指示所述终端设备建立第一DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述第一DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个下行传输信道中至少两个传输信道类型或配置的物理传输资源不同。传输信道类型指的是和具体业务类型对应的传输信道。所述传输资源,可以是在物理层的时频资源。所述传输信道的配置,可以是重传次数,定时器超时设置等。在物理层通过不同的资源(时频资源)或传输配置(重传次数,timer超时设置等),可以保证数据传输的QoS。
对于基站的处理单元、发送单元,具体实现可以参照上述方法实施例中的基站的具体实现。
因此,本发明实施例的数据传输的基站,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
如图12所示,本发明实施例提供了一种如图1所示的基站20,该基站20包括:
接收单元1202,用于从终端设备接收第二数据包;
处理单元1201,用于将所述第二数据包根据LCID映射到第二DRB,所述第二DRB属于一个EPS承载,所述EPS承载包括P个DRB,P为大于等于2的整数。由于一个EPS承载包括多个DRB,多个DRB能够满足不同的QoS要求。在满足,QoS要求的情况下,减少了承载的数量,节约建立承载的信令。
可选地,所述基站,其特征在于,还包括:
发送单元1203,用于所述终端设备发送配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省基站和终端设备的资源。
可选地,所述发送单元1203,还用于向所述终端设备发送第五信令,所述第五信令用于指示所述终端设备激活第二DRB。对不常用的QoS对应的业务,可以配置后不激活,等有数据待发送后再激活。由于配置后不激活,不占用资源,这样做可以节约资源。
可选地,所述发送单元1203,还用于向所述终端设备发送第六信令,所述第六信令用于指示所述终端设备建立第二DRB。提前建立好DRB,可以减少数据发送的等待时间。
可选地,所述接收单元1203,还用于接收第七信令,所述第七信令为激活或建立第二DRB的请求。提前建立好DRB,可以减少数据发送的等待时间。等有数据待发送后再激活。由于配置后不激活,等需要时激活,能够节省终端设备的内存和timer(定时器)的资源占用。
可选地,所述接收单元1202,还用于通过默认DRB接收第二数据包,所述第二数据包的包头包括建立或者激活所述第二DRB的请求。数据包的包头中包含指示信息,用于请求激活或建立DRB,这种方式可以节省信令开销。
可选地,所述第二DRB包括第一逻辑信道,所述第一逻辑信道映射到第一传输信道,所述第一传输信道为多个下行传输信道中的一个,所述多个上行传输信道中至少两个传输信道类型或配置的物理传输资源不同。对于基站的处理单元、发送单元,具体实现可以参照上述方法实施例中的基站的具体实现。
因此,本发明实施例的数据传输的基站,一个EPS承载包括多个DRB,减少了承载的数量,节约建立承载的信令,同时多个DRB能够满足不同的QoS要求。
包括处理器1301、发送器1302和接收器1303的终端设备10如图13所示。包括处理器1402、发送器1403和接收器1401的基站20如图14所示。
上述处理单元901、1001具体可以是处理器1301;发送单元902、1002可以是发送器1302;接收单元903、1003可以是接收器1303。处理单元1101、1201具体可以是处理器1401;接收单元1102、1202可以是接收器1402;发送单元1103、1203可以是发送器1302。
在本申请上述实施例中,一个DRB支持一个QoS。可选地,一个DRB可以支持多 个QoS,每个QoS由一个QoS管道支持。在这种情况下,一个QoS管道的功能与本申请上述实施例中一个DRB的功能一致。
应理解,在本发明实施例中,该处理器1301、1401可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器1301、1401还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims (40)

  1. 一种数据传输方法,其特征在于:
    基站确定待发送的第一数据包;
    所述基站根据第一数据包的QoS(服务质量)指示信息映射所述第一数据包到属于一个EPS(演进的分组系统)承载的第一DRB,所述EPS承载包括N个DRB(数据无线承载),N为大于等于2的整数;
    所述基站通过所述第一DRB向终端设备发送所述第一数据包。
  2. 根据权利要求1所述的方法,其特征在于,所述基站根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,包括:
    将所述第一数据包映射到所述第一DRB,所述第一DRB的QoS与所述第一数据包的QoS指示信息匹配。
  3. 根据权利要求1或2所述的方法,其特征在于,在所述基站根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS指示信息匹配的DRB,通过默认DRB发送所述第一数据包。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述基站向所述终端设备发送配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。
  5. 根据权利要求1至4任意一项所述的方法,其特征在于,当所述第一DRB为未激活状态时,所述基站向终端设备发送第二信令或MAC SDU(媒体接入控制服务数据单元),所述第二信令或MAC SDU用于激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID(逻辑信道标识),所述LCID用于指示所述第一DRB。
  6. 一种数据传输方法,其特征在于:
    终端设备从基站接收第一数据包,并根据LCID(逻辑信道标识)将所述第一数据包映射到第一DRB(数据无线承载),所述第一DRB属于一个EPS(演进的分组系统)承载,所述EPS承载包括N个DRB,N为大于等于2的整数。
  7. 根据权利要求6所述的方法,其特征在于,所述终端设备接收配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。
  8. 根据权利要求6或7所述的方法,其特征在于,所述终端设备接收第二信令或接收MAC SDU(媒体接入控制服务数据单元),所述第二信令或所述MAC SDU用于指示所述终端设备激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。
  9. 一种数据传输方法,其特征在于:
    终端设备确定待发送的第二数据包,根据第二数据包的QoS(服务质量)指示信息映射所述第二数据包到属于一个EPS承载的第二DRB(数据无线承载),所述EPS承载包括P个DRB,P为大于等于2的整数;
    所述终端设备通过所述第二DRB向基站发送所述第二数据包。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB,包括:
    将所述第二数据包映射到所述第二DRB,所述第二DRB的QOS指示信息与第二数据包的QoS指示信息匹配。
  11. 根据权利要求9或10所述的方法,其特征在于,所述终端设备接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。
  12. 根据权利要求9或10所述的方法,其特征在于,所述终端设备接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。
  13. 根据权利要求9所述的方法,其特征在于,所述终端设备根据第二数据包的QOS指示信息,映射所述第二数据包到所述第二DRB时,没有与所述第二数据包匹配的DRB,则所述第二数据包通过默认DRB发送。
  14. 根据权利要求13所述的方法,其特征在于,所述第二数据包通过所述默认DRB发送,包括:
    所述第二数据包的包头包括建立第二DRB的请求;或者,
    所述第二数据包的包头包括激活第二DRB的请求。
  15. 根据权利要求9至14任意一项所述的方法,其特征在于,所述终端设备发送第七信令,所述第七信令为激活或建立第二DRB的请求,
  16. 根据权利要求9至13任意一项所述的方法,其特征在于,终端设备根据待发送的第二数据包的QoS激活第二DRB。
  17. 一种数据传输方法,其特征在于:
    基站从终端设备接收第二数据包,所述第二数据包根据LCID(逻辑信道标识)映射到第二DRB(数据无线承载),所述第二DRB属于一个EPS承载,所述EPS(演进的分组系统)承载包括P个DRB,P为大于等于2的整数。
  18. 根据权利要求17所述的方法,其特征在于,所述基站向所述终端设备发送配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。
  19. 根据权利要求17或18所述的方法,其特征在于,所述基站向所述终端设备发送第五信令,所述第五信令用于指示所述终端设备激活第二DRB。
  20. 根据权利要求17所述的方法,其特征在于,所述基站接收第七信令,所述第七信令为激活或建立第二DRB的请求。。
  21. 一种基站,其特征在于,包括:
    处理单元,用于确定待发送的第一数据包,根据第一数据包的QOS指示信息映射所述第一数据包到属于一个EPS承载的第一DRB,所述EPS承载包括N个DRB,N大于等于2;
    发送单元,用于通过所述第一DRB向终端设备发送所述第一数据包。
  22. 根据权利要求21所述的基站,其特征在于:所述第一DRB的QoS与第一数据包的QoS指示信息匹配。
  23. 根据权利要求21或22所述的基站,其特征在于:
    所述发送单元还用于,在所述处理器根据第一数据包的QOS指示信息映射所述第一数据包时,没有与所述第一数据包QoS匹配的DRB,通过默认DRB发送所述第一数据 包。
  24. 根据权利要求21至23任意一项所述的基站,其特征在于,所述发送单元还用于向所述终端设备发送配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。
  25. 根据权利要求21至24任意一项所述的基站,其特征在于,当所述第一DRB为未激活状态时,所述发送单元还用于向终端设备发送第二信令或MAC SDU(媒体接入控制服务数据单元),所述第二信令或MAC SDU用于激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。
  26. 一种终端设备,其特征在于,包括:
    接收单元,用于从基站接收第一数据包;
    处理单元,用于根据LCID(逻辑信道标识)将所述第一数据包映射到第一DRB(数据无线承载),所述第一DRB属于一个EPS(演进的分组系统)承载,所述EPS承载包括N个DRB,N为大于等于2的整数。
  27. 根据权利要求26所述的终端设备,其特征在于,所述接收单元还用于接收配置M个DRB的第一信令,所述第一信令用于指示所述终端设备配置M个DRB,M为正整数,M个DRB均为未激活状态,所述第一DRB为M个DRB中的一个。
  28. 根据权利要求26或27所述的终端设备,其特征在于,所述接收单元还用于接收第二信令或接收MAC SDU(媒体接入控制服务数据单元),所述第二信令或所述MAC SDU用于指示所述终端设备激活第一DRB;其中,所述MAC SDU对应的MAC子头中包含LCID,所述LCID用于指示所述第一DRB。
  29. 一种终端设备,其特征在于,包括:
    处理单元,用于确定待发送的第二数据包,根据第二数据包的QoS(服务质量)指示信息映射所述第二数据包到属于一个EPS(演进的分组系统)承载的第二DRB,所述EPS承载包括P个DRB(数据无线承载),P为大于等于2的整数;
    发送单元,用于通过所述第二DRB向基站发送所述第二数据包。
  30. 根据权利要求29所述的终端设备,其特征在于,所述第二DRB的QoS与第二数据包的QoS指示信息匹配。
  31. 根据权利要求29或30所述的终端设备,还包括:
    接收单元,用于接收配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。
  32. 根据权利要求29或30所述的终端设备,还包括:所述接收单元还用于接收第五信令,所述第五信令指示所述终端设备激活所述第二DRB。
  33. 根据权利要求29至32任意一项所述的终端设备,其特征在于,没有与所述第二数据包匹配的DRB,所述发送单元还用于通过默认DRB发送所述第二数据包。
  34. 根据权利要求29所述的终端设备,其特征在于,所述第二数据包通过所述默认DRB发送,包括:
    所述第二数据包的包头包括建立或者激活第二DRB的请求。。
  35. 根据权利要求29至34任意一项所述的终端设备,其特征在于,所述发送单元还用于发送第七信令,所述第七信令为激活或建立第二DRB的请求。
  36. 根据权利要求29至33任意一项所述的终端设备,其特征在于,所述处理单元,还用于根据待发送的第二数据包的QoS激活第二DRB。
  37. 一种基站,其特征在于,包括:
    接收单元,用于从终端设备接收第二数据包;
    处理单元,用于将所述第二数据包根据LCID(逻辑信道标识)映射到第二DRB(数据无线承载),所述第二DRB属于一个EPS(演进的分组系统)承载,所述EPS承载包括P个DRB,P为大于等于2的整数。
  38. 根据权利要求37所述的基站,其特征在于,还包括:
    发送单元,用于所述终端设备发送配置M个DRB的第四信令,所述第四信令用于指示所述终端设备配置M个DRB,M为正整数,所述M个DRB均为未激活状态,所述第二DRB为M个DRB中的一个。
  39. 根据权利要求37或38所述的基站,其特征在于,所述发送单元,还用于向所述终端设备发送第五信令,所述第五信令用于指示所述终端设备激活第二DRB。
  40. 根据权利要求37至39所述的基站,其特征在于,所述接收单元,还用于接收第七信令,所述第七信令为激活或建立第二DRB的请求。
PCT/CN2017/104104 2016-09-30 2017-09-28 一种数据传输方法、装置和系统 WO2018059518A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17854968.9A EP3512244A4 (en) 2016-09-30 2017-09-28 METHOD, DEVICE AND SYSTEM FOR DATA TRANSMISSION
US16/369,288 US20190230682A1 (en) 2016-09-30 2019-03-29 Data transmission method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877498.9A CN108307450A (zh) 2016-09-30 2016-09-30 一种数据传输方法、装置和系统
CN201610877498.9 2016-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,288 Continuation US20190230682A1 (en) 2016-09-30 2019-03-29 Data transmission method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018059518A1 true WO2018059518A1 (zh) 2018-04-05

Family

ID=61762513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104104 WO2018059518A1 (zh) 2016-09-30 2017-09-28 一种数据传输方法、装置和系统

Country Status (4)

Country Link
US (1) US20190230682A1 (zh)
EP (1) EP3512244A4 (zh)
CN (1) CN108307450A (zh)
WO (1) WO2018059518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355641A1 (en) * 2017-01-25 2018-08-01 Acer Incorporated Method of mapping data packets and related apparatuses using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3496451B1 (en) * 2016-10-17 2023-10-11 Sk Telecom Co., Ltd. Base station device and qos control method in wireless section
CN112385173B (zh) * 2018-07-19 2023-05-16 Oppo广东移动通信有限公司 D2d通信的方法和终端设备
WO2020087280A1 (en) * 2018-10-30 2020-05-07 Qualcomm Incorporated Configurations for small data transmission
CN111294982B (zh) * 2018-12-10 2022-05-24 华为技术有限公司 通信方法和通信装置
CN111511033B (zh) * 2019-01-30 2022-02-08 华为技术有限公司 用于短周期半静态调度的资源配置方法和装置
CN113424580B (zh) * 2019-02-03 2024-04-05 鸿颖创新有限公司 用于演进分组数据汇聚协议复制的方法及装置
CN113748625B (zh) * 2019-03-26 2023-09-26 上海诺基亚贝尔股份有限公司 基于服务的harq启用机制
CN114499795B (zh) * 2020-11-12 2024-08-27 中国移动通信有限公司研究院 一种pdcp复制功能的确定方法、装置和存储介质
US12132654B2 (en) * 2021-04-06 2024-10-29 Cisco Technology, Inc. Dynamic intent-based QoS policies for commands within industrial protocols

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875275A (zh) * 2013-12-31 2014-06-18 华为技术有限公司 一种数据传输方法和用户设备以及基站
CN104584633A (zh) * 2012-08-23 2015-04-29 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
CN104754750A (zh) * 2013-12-31 2015-07-01 华为终端有限公司 资源分配方法和装置
US20150366000A1 (en) * 2014-06-12 2015-12-17 Nokia Solutions And Networks Oy Architecture for radio access network and evolved packet core

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194533A1 (en) * 2010-02-11 2011-08-11 Te-Ming Chen Method of Handling Radio Resource Reconfiguration
US9408125B2 (en) * 2012-07-05 2016-08-02 Qualcomm Incorporated Aggregation of data bearers for carrier aggregation
JP5871750B2 (ja) * 2012-08-28 2016-03-01 株式会社Nttドコモ 移動通信システム、無線基地局及び移動局
US10034199B2 (en) * 2013-03-04 2018-07-24 Samsung Electronics Co., Ltd. Method and system for parallelizing packet processing in wireless communication
US9819469B2 (en) * 2013-07-01 2017-11-14 Qualcomm Incorporated Techniques for enabling quality of service (QoS) on WLAN for traffic related to a bearer on cellular networks
WO2015108291A1 (en) * 2014-01-17 2015-07-23 Lg Electronics Inc. Bearer setup method and apparatus in wierless communication system supporting dual connectivity
KR102022157B1 (ko) * 2014-03-28 2019-09-17 후지쯔 가부시끼가이샤 베어러 관리 장치, 방법 및 통신 시스템
US9674733B2 (en) * 2014-05-27 2017-06-06 QUALCMM Incorporated Interworking link layer traffic aggregation with system level mobility
US10952093B2 (en) * 2016-03-15 2021-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for attaching a tag to a packet for transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104584633A (zh) * 2012-08-23 2015-04-29 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
CN103875275A (zh) * 2013-12-31 2014-06-18 华为技术有限公司 一种数据传输方法和用户设备以及基站
CN104754750A (zh) * 2013-12-31 2015-07-01 华为终端有限公司 资源分配方法和装置
US20150366000A1 (en) * 2014-06-12 2015-12-17 Nokia Solutions And Networks Oy Architecture for radio access network and evolved packet core

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3512244A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3355641A1 (en) * 2017-01-25 2018-08-01 Acer Incorporated Method of mapping data packets and related apparatuses using the same

Also Published As

Publication number Publication date
CN108307450A (zh) 2018-07-20
EP3512244A4 (en) 2019-11-06
EP3512244A1 (en) 2019-07-17
US20190230682A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2018059518A1 (zh) 一种数据传输方法、装置和系统
US11051322B2 (en) Data processing method, apparatus, and system
CN110235463B (zh) 在无线通信系统中执行反映服务质量(QoS)的方法及其设备
CN107872876B (zh) 消息的发送方法和装置
RU2728541C1 (ru) Улучшенная поддержка качества обслуживания для передач v2x
CN110301161B (zh) 通信系统、基础设施装备、通信设备及方法
US20200221538A1 (en) Data transmission method, terminal device, and network device
EP3603168B1 (en) Method for transmitting lossless data packet based on quality of service (qos) framework in wireless communication system and a device therefor
CN111757513B (zh) 通信方法及设备
EP3998786A1 (en) Data transmission method and apparatus, first communication node, and second communication node
EP3590280B1 (en) Method for transmitting tcp ack packet in wireless communication system and a device therefor
WO2017201677A1 (zh) 数据传输的方法及装置
JP7391946B2 (ja) データ送信方法、装置及び通信システム
CN111866796B (zh) 用于获取无线承载配置的方法和装置
US20230116578A1 (en) Data transmission method and apparatus
US20180035440A1 (en) Wireless communications system, base station, mobile station, and processing method
WO2021114107A1 (zh) 一种数据传输方法及装置
WO2014048224A1 (zh) 通过控制面信令传输数据的方法、设备及系统
WO2018228558A1 (zh) 一种传输数据的方法、网络设备和终端设备
WO2012136087A1 (zh) 一种资源调度的方法及系统及一种终端
WO2020114237A1 (zh) 数据传输方法与通信装置
JP2024095776A (ja) バッファステータスレポートの報告方法及び通信装置
WO2020192250A1 (zh) 无线承载建立方法及装置
CN116232408A (zh) 中继方法、路由表的生成方法、装置、设备及存储介质
WO2018054336A1 (zh) 消息的发送方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854968

Country of ref document: EP

Effective date: 20190412