[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018054191A1 - 免授权传输的方法、网络设备和终端设备 - Google Patents

免授权传输的方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2018054191A1
WO2018054191A1 PCT/CN2017/098315 CN2017098315W WO2018054191A1 WO 2018054191 A1 WO2018054191 A1 WO 2018054191A1 CN 2017098315 W CN2017098315 W CN 2017098315W WO 2018054191 A1 WO2018054191 A1 WO 2018054191A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot sequence
terminal device
network device
sequence index
feedback result
Prior art date
Application number
PCT/CN2017/098315
Other languages
English (en)
French (fr)
Inventor
张锦芳
卢磊
刘瑾
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019516399A priority Critical patent/JP2019535176A/ja
Priority to EP17852260.3A priority patent/EP3506538B1/en
Publication of WO2018054191A1 publication Critical patent/WO2018054191A1/zh
Priority to US16/365,052 priority patent/US10757725B2/en
Priority to US16/942,968 priority patent/US20210022163A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0675Space-time coding characterised by the signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1642Formats specially adapted for sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1664Details of the supervisory signal the supervisory signal being transmitted together with payload signals; piggybacking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements

Definitions

  • the present application relates to the field of communications, and in particular, to a method, network device, and terminal device for unauthorized transmission in the field of communications.
  • the selection of the uplink data sharing channels is based on the scheduling/granting mechanism, and is completely affected by the base station (BS).
  • the complete data transmission process usually includes four steps: scheduling request, scheduling grant, data transmission, and transmission feedback.
  • the user equipment User Equipment, UE
  • the uplink Grant is sent to the UE to notify the UE of the uplink transmission resource allocated to the UE.
  • the UE performs data transmission on the permitted uplink transmission resource accordingly.
  • next-generation communication networks Large-scale user access is one of the typical application scenarios for next-generation communication networks.
  • Scheduling/Grant mechanism When a large number of users access, if the above-mentioned Scheduling/Grant mechanism is used, on the one hand, it will cause huge signaling transmission overhead and scheduling pressure of BS resource allocation, and on the other hand, it will cause significant transmission delay.
  • the next-generation communication network will adopt the Grant Free transmission mode to support massive user access.
  • the base station In the unlicensed transmission mode, the base station does not schedule the transmission resources of the user equipment. When multiple user equipments have data to be transmitted at the same time, the user equipment usually performs data on the pre-configured common time-frequency resources in a contention-based manner.
  • the process of transmission and unlicensed transmission can be simplified into two steps of data transmission and transmission feedback, which can reduce the signaling overhead and reduce the transmission delay. Since the base station does not know the identification information of the user equipment in the unlicensed transmission mode, and does not know the time-frequency resource information occupied by the user equipment for data transmission, the base station cannot use the feedback method in the prior art to feedback the data transmission of the user equipment. . If the user identifier is directly fed back to the successfully decoded user equipment to indicate that the transmission is successful, the excessive number of bits occupied by the user identifier may reduce the resource usage efficiency.
  • the embodiment of the present application provides an unlicensed transmission method, a terminal device, and a network device, which can effectively utilize the wireless transmission resource to feedback the unauthorized transmission of the user equipment.
  • a method for license-free transmission comprising:
  • the network device detects a pilot sequence used by the terminal device for uplink transmission
  • the network device sends information about the feedback result of the uplink transmission to the terminal device according to the pilot sequence index.
  • the network device indicates, by using the pilot sequence index, the feedback result for the current uplink transmission to the terminal device, and can effectively use the wireless transmission resource to feed back the unauthorized transmission of the user equipment.
  • the network device sending the information about the feedback result of the uplink transmission to the terminal device, including: the network device according to the network device Determining, by the pilot sequence index, a target bit corresponding to the pilot sequence index in a bitmap, each bit in the bitmap corresponding to a different pilot sequence index; the network device according to the a result of the feedback, determining a value on the target bit, the value on the target bit is used to indicate that the feedback result is an acknowledgement ACK or a negative acknowledgement NACK; the network device sends the bitmap to the terminal device .
  • the number of pilot sequences determines the length of the feedback information field
  • the network device indicates the feedback result by using a fixed length bitmap. Specifically, the value of the bit position in the bitmap indicates the corresponding feedback result. Achieve more efficient use of wireless transmission resources to feedback the unauthorized transmission of user equipment, and it is simpler to implement.
  • the value of the bit sequence corresponding to the pilot sequence index of the pilot sequence Indicates that the feedback result is NACK.
  • the number of the bits in the bitmap is greater than or equal to the number of pilot sequences that can be used for uplink transmission.
  • the number of the bits in the bitmap is determined according to the number of pilot sequences that can be used for uplink transmission on the unlicensed transmission resource, and may be determined by the network device, or may be a network device and a terminal device. Pre-agreed as specified in the agreement.
  • the network device sends the bitmap to the terminal device, where the network device sends the bearer to the terminal device on a physical downlink control channel.
  • Downlink control information DCI the DCI includes the bitmap; or the network device sends the bitmap that is carried on a physical downlink shared channel to the terminal device.
  • the network device sends the information about the feedback result of the uplink transmission to the terminal device according to the pilot sequence index, including: if the feedback result For the ACK, the network device sends the pilot sequence index to the terminal device, or if the feedback result is NACK, the network device prohibits sending the pilot sequence index to the terminal device.
  • the network device implicitly indicates the feedback result by transmitting a pilot sequence index. Since the number of pilot sequences is much smaller than the number of user equipments, the number of bits used to identify the pilot sequence index is much smaller than The number of bits of the user identification is identified, so the wireless transmission resources used can be saved compared to indicating the feedback result by the user identification.
  • the number of bits occupied by the pilot sequence index is determined according to a number of pilot sequences that can be used for uplink transmission.
  • the network device sends the pilot to the terminal device
  • the sequence index includes: the network device sends, to the terminal device, downlink control information DCI carried on a physical downlink control channel, where the DCI includes the pilot sequence index; or the network device sends the terminal sequence device to the terminal device The index of the pilot sequence carried on the physical downlink shared channel.
  • the method further includes: the network device sending, to the terminal device, indication information, where the indication information is used to: instruct the terminal device to determine according to a bitmap Determining, by the terminal device, the terminal device, according to a receiving state of a pilot sequence index, where the receiving state includes that the terminal device receives the pilot sequence index or does not receive the pilot Sequence index.
  • the method before the sending, by the network device, the indication information to the terminal device, the method further includes: the network device, according to the number of terminal devices that perform uplink transmission at the same time And determining the indication information by the number of pilot sequences that can be used for uplink transmission.
  • the number of bits occupied by the pilot sequence index, the total number of pilot sequence indexes that can be represented, should be greater than or equal to the total number of pilot sequences that can be used for uplink transmission, and the bits in the bitmap.
  • the total number should be greater than or equal to the total number of pilot sequences that can be used for uplink transmission.
  • the total number of bits occupied by the plurality of pilot sequence indexes to be transmitted may be greater than the total number of pilot sequences that can be used for uplink transmission.
  • the indication information may indicate The terminal device determines the feedback result according to the bitmap; when the number of successfully transmitted terminal devices is less than a certain threshold, the total number of bits occupied by the plurality of pilot sequence indexes to be transmitted is smaller than the total number of pilot sequences that can be used for uplink transmission. At this time, the indication information may instruct the terminal device to determine the feedback result according to the reception status of the pilot sequence index.
  • the method further includes: the network device sending a transmission resource index to the terminal device, where the transmission resource index is used to indicate that the feedback result is directed to The location of the frequency domain resource used by the uplink transmission, where the location of the frequency domain resource is a location of the frequency domain resource in a plurality of frequency domain resources in a same time period.
  • a method for license-free transmission comprising:
  • the terminal device determines a feedback result of the uplink transmission according to the pilot sequence index and the information of the feedback result of the uplink transmission.
  • the terminal device determines the feedback result for the current uplink transmission indicated by the network device by using the pilot sequence index, and can effectively use the wireless transmission resource to obtain the feedback of the network device for the unauthorized transmission.
  • the receiving, by the terminal device, the information about the feedback result of the uplink transmission sent by the network device includes: receiving, by the terminal device, a bit sent by the network device In the figure, each bit in the bitmap corresponds to a different pilot sequence index;
  • the terminal device Determining, by the terminal device, the feedback result of the uplink transmission according to the information about the pilot sequence index and the feedback result of the uplink transmission, including: the terminal device according to the pilot sequence index, in the bitmap Medium Deriving a target bit corresponding to the pilot sequence index; the terminal device determines the feedback result according to the value on the target bit, and the value on the target bit is used to indicate that the feedback result is an acknowledgement ACK or Negative confirmation NACK.
  • the number of bits in the bitmap is greater than or equal to the number of pilot sequences that can be used for uplink transmission.
  • the terminal device receives a bitmap that is sent by the network device, where the terminal device receives a bearer sent by the network device on a physical downlink control channel.
  • Downlink control information DCI the DCI includes the bitmap; or the terminal device receives the bitmap transmitted by the network device on a physical downlink shared channel.
  • the terminal device determines, according to the information about the pilot sequence index and the feedback result of the uplink transmission, the feedback result of the uplink transmission, including: Receiving, by the terminal device, the pilot sequence index sent by the network device, the terminal device determining that the feedback result is an ACK; or if the terminal device does not receive the pilot sent by the network device The sequence index, the terminal device determines that the feedback result is a NACK.
  • the number of bits occupied by the pilot sequence index is determined according to the number of pilot sequences that can be used for uplink transmission.
  • the pilot sequence index is received by the terminal device by using a physical downlink control channel, and the DCI carried on the physical downlink control channel includes the pilot sequence.
  • An index; or the pilot sequence index is received by the terminal device through a physical downlink shared channel.
  • the method before the terminal device determines, according to the pilot sequence index, a feedback result that is indicated by the network device for the uplink transmission, the method further includes: The terminal device receives the indication information sent by the network device, where the indication information is used to: indicate that the terminal device determines the feedback result according to the bitmap, or instruct the terminal device to determine, according to the receiving state of the pilot sequence index, As a result of the feedback, the receiving state includes that the terminal device receives the pilot sequence index or does not receive the pilot sequence index;
  • the method further includes: receiving, by the terminal device, a transmission resource index that is sent by the network device, where the transmission resource index is used to indicate that the feedback result is The location of the frequency domain resource used by the uplink transmission, where the location of the frequency domain resource is a location of the frequency domain resource in a plurality of frequency domain resources in a same time period;
  • the terminal device can perform uplink unlicensed transmission on multiple time-frequency resources at the same time.
  • a network device that can be used to perform various processes performed by a network device in the method of the above-described first aspect and the unlicensed transmission in various implementations.
  • the network device includes a processing unit and a transmitting unit.
  • the processing unit is configured to detect a pilot sequence used by the terminal device to perform uplink transmission, and determine a pilot sequence of the pilot sequence according to the pilot sequence and a correspondence between a pilot sequence and a pilot sequence index.
  • An indexing unit configured to send, according to the pilot sequence index determined by the processing unit, to the terminal device Information about the feedback result of the uplink transmission.
  • a terminal device which can be used to perform various processes performed by the terminal device in the method of the above-mentioned second aspect and the unlicensed transmission in various implementation manners.
  • the network device includes a processing unit and a receiving unit.
  • the processing unit is configured to determine a pilot sequence index of the pilot sequence according to a pilot sequence used by an uplink transmission, and a correspondence between a pilot sequence and a pilot sequence index; and the receiving unit is configured to receive The information about the feedback result of the uplink transmission sent by the network device; the processing unit is further configured to: according to the pilot sequence index determined by the processing unit, and the feedback result of the uplink transmission received by the receiving unit The information determines the feedback result of the uplink transmission.
  • a network device which can be used to perform various processes performed by a network device in the method of the above-described first aspect and the unlicensed transmission in various implementation manners.
  • the network device includes a processor and a transmitter.
  • the processor is configured to detect a pilot sequence used by the terminal device to perform uplink transmission, and determine a pilot sequence of the pilot sequence according to the pilot sequence and a correspondence between a pilot sequence and a pilot sequence index.
  • An index configured to send, according to the pilot sequence index determined by the processing unit, information about a feedback result of the uplink transmission to the terminal device.
  • a terminal device which can be used to perform various processes performed by the terminal device in the method of the above-mentioned second aspect and the unlicensed transmission in various implementation manners.
  • the terminal device includes a processor and a transmitter.
  • the processor is configured to determine a pilot sequence index of the pilot sequence according to a pilot sequence used by an uplink transmission, and a correspondence between a pilot sequence and a pilot sequence index; and the receiver is configured to receive The information about the feedback result of the uplink transmission sent by the network device; the processor is further configured to: according to the pilot sequence index determined by the processing unit, and the feedback result of the uplink transmission received by the receiving unit The information determines the feedback result of the uplink transmission.
  • a computer readable storage medium in a seventh aspect, storing a program causing a network device to perform the first aspect described above, and any one of its various implementations exempt The method of transmission.
  • a computer readable storage medium storing a program, the program causing a network device to perform the second aspect described above, and any one of the various implementations thereof The method of transmission.
  • the wireless transmission resource can be effectively utilized to feedback the unauthorized transmission of the user equipment.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of an uplink grant-free transmission including retransmission in the prior art.
  • FIG. 3 is a flow diagram of a process for an unlicensed transmission method according to an embodiment of the present application.
  • FIG. 4 is a flow diagram of a process for an unlicensed transmission method according to another embodiment of the present application.
  • FIG. 5 is a flow diagram of a process for an unauthorized transfer method according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmission resource index of an embodiment of the present application.
  • FIG. 7 is a structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a structural block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a system chip of an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 11 is a structural block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a system chip of an embodiment of the present application.
  • a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication system Universal Mobile Telecommunication System, UMTS
  • future 5G communication systems for example, Global System of Mobile Communication (GSM) system, Code Division Multiple Access (CDMA) system, and Wideband Code Division Multiple Access.
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • Universal Mobile Communication system Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • the present application describes various embodiments in connection with a terminal device.
  • the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the present application describes various embodiments in connection with a network device.
  • the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a future evolved PLMN network. Network devices, etc.
  • a large number of connections need to consume more resources to access the UE and need to consume more resources for the transmission of scheduling signaling related to data transmission of the terminal device.
  • FIG. 1 shows a schematic architectural diagram of a communication system to which an embodiment of the present application is applied.
  • the communication system may include a network device 10 and a terminal device 20 to a terminal device 70 (referred to as UE in the figure) through a wireless connection. Or connect by wire or other means.
  • the network in the embodiment of the present application may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine/Man (M2M) network.
  • PLMN Public Land Mobile Network
  • D2D Device to Device
  • M2M Machine to Machine/Man
  • FIG. 1 is only a simplified schematic diagram of an example, and other network devices may also be included in the network, which are not shown in FIG.
  • Grant free transmission can solve a variety of services in the future network, such as Machine Type Communication (MTC) services or Ultra Reliable and Low Latency Communication (URLLC) services to meet low latency, Highly reliable business transmission needs. Grant free transmission can be targeted for upstream data transmission. Those skilled in the art will appreciate that Grant free transmissions can also be called other names, such as autonomous access, spontaneous multiple access, or contention-based multiple access.
  • MTC Machine Type Communication
  • URLLC Ultra Reliable and Low Latency Communication
  • Grant free transmission can be targeted for upstream data transmission.
  • Grant free transmissions can also be called other names, such as autonomous access, spontaneous multiple access, or contention-based multiple access.
  • a Grant Free transmission can be understood to include, but is not limited to, any one of the following meanings, or multiple meanings, or a combination of some of the various technical meanings:
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources; when the terminal device has the uplink data transmission requirement, select at least one transmission resource from the plurality of transmission resources pre-allocated by the network device, and use the selected one.
  • the transmission resource sends the uplink data; the network device detects the uplink data sent by the terminal device on one or more of the pre-assigned multiple transmission resources.
  • the detection may be blind detection, or may be performed according to one of the control domains in the uplink data, or may be detected in other manners.
  • the unlicensed transmission may be: the network device pre-allocates and informs the terminal device of multiple transmission resources, so that when the terminal device has an uplink data transmission requirement, at least one transmission resource is selected from a plurality of transmission resources pre-allocated by the network device, and used.
  • the selected transmission resource sends uplink data.
  • the unlicensed transmission may be: acquiring information of a plurality of pre-assigned transmission resources, selecting at least one transmission resource from the plurality of transmission resources when the uplink data transmission request is required, and transmitting the uplink data by using the selected transmission resource.
  • the method of obtaining can be obtained from a network device.
  • the unlicensed transmission may refer to a method for implementing uplink data transmission of the terminal device without dynamic scheduling of the network device.
  • the dynamic scheduling may refer to that the network device indicates the transmission by using signaling for each uplink data transmission of the terminal device.
  • a way of scheduling resources Alternatively, dynamic scheduling of network devices is not required and can also be understood as static, and/or semi-static scheduling.
  • the "A and/or B" mentioned in the embodiment of the present application may represent A and B, or, A, or B, and will not be described again.
  • implementing uplink data transmission of the terminal device may be understood as allowing data of two or more terminal devices to perform uplink data transmission on the same time-frequency resource.
  • the transmission resource may be one or more transmission time units of transmission resources after the time when the UE receives the signaling.
  • a transmission time unit may refer to a minimum time unit for one transmission, such as a Transmission Time Interval (TTI), the value may be 1 ms, or may be a preset transmission time unit.
  • TTI Transmission Time Interval
  • Unauthorized transmission may refer to: the terminal device performs uplink data transmission without requiring network device authorization.
  • the authorization may be performed by the terminal device sending an uplink scheduling request to the network device. After receiving the scheduling request, the network device sends an uplink grant to the terminal device, where the uplink grant indicates the uplink transmission resource allocated to the terminal device.
  • the unlicensed transmission may be a competitive transmission mode. Specifically, multiple terminals may simultaneously perform uplink data transmission on the same time-frequency resources allocated in advance, without requiring the base station to perform authorization.
  • the data may be included in service data or signaling data.
  • the blind detection can be understood as performing data that may arrive without predicting whether or not data arrives. Detection.
  • the blind detection can also be understood as detection without explicit signaling indication.
  • the transmission resource may include, but is not limited to, a combination of one or more of the following resources: a time domain resource, such as a radio frame, a subframe, a symbol, etc.; a frequency domain resource, such as a subcarrier, a resource block, etc.; a spatial domain resource, such as Sending antennas, beams, etc.; code domain resources, such as Sparse Code Multiple Access (SCMA) codebook group, Low Density Signature (LDS) group, CDMA code group, etc.; uplink pilot resources Interleaved resources; channel coding mode.
  • a time domain resource such as a radio frame, a subframe, a symbol, etc.
  • a frequency domain resource such as a subcarrier, a resource block, etc.
  • a spatial domain resource such as Sending antennas, beams, etc.
  • code domain resources such as Sparse Code Multiple Access (SCMA) codebook group, Low Density Signature (LDS) group, CDMA code group, etc.
  • the foregoing transmission resource may be transmitted according to a control mechanism including but not limited to: uplink power control, such as uplink transmission power upper limit control, etc.; modulation and coding mode setting, such as transmission block size, code rate, modulation order setting, etc.; Transmission mechanism, such as Hybird Automatic Repeat reQuest (HARQ) mechanism.
  • uplink power control such as uplink transmission power upper limit control, etc.
  • modulation and coding mode setting such as transmission block size, code rate, modulation order setting, etc.
  • Transmission mechanism such as Hybird Automatic Repeat reQuest (HARQ) mechanism.
  • HARQ Hybird Automatic Repeat reQuest
  • FIG. 2 shows a schematic flow chart of a typical uplink grant-free transmission including retransmission.
  • the network device 10 and the terminal device 20 are shown in FIG. 2, and an unlicensed transmission between the network device 10 and the terminal device 20 is taken as an example for description.
  • the process of the uplink grant-free transmission including retransmission is as follows:
  • the terminal device 20 selects a transmission parameter, such as a pilot sequence, and obtains transmission information such as a corresponding modulation and coding mode.
  • a transmission parameter such as a pilot sequence
  • a feature of the uplink unlicensed transmission is that the terminal device 20 first selects a pilot sequence and performs uplink grant exemption on the configured uplink unlicensed transmission time-frequency resource block according to the transmission information indicated by the pilot sequence. transmission. It can be seen that for each transmission block transmission, the terminal device can select a pilot sequence, which can be randomly selected and/or selected according to a certain preset rule, so there is no pilot sequence between the terminal device and the terminal device. Binding relationship. However, in a transmission process, in the scenario where there is no pilot collision, one pilot corresponds to data transmission of one terminal device; in the scenario with pilot collision, one pilot corresponds to data transmission of at least two terminal devices.
  • the terminal device 20 performs uplink data transmission.
  • the uplink data is sent according to the transmission information indicated by the pilot sequence, and is transmitted on the specified unlicensed uplink time-frequency physical resource after the corresponding code modulation processing.
  • the network device 10 detects the pilot signal, and demodulates and decodes the uplink data according to the transmission information indicated by the detected pilot sequence. If the decoding fails, execution 204 is performed.
  • the network device 10 detects the data sent by the terminal device 20 by means of a blind check, that is, the network device 10 first blindly detects the pilot signal. After detecting the pilot sequence, the network device 10 receives the received information according to the pilot information. The uplink data is demodulated and decoded.
  • the network device 10 sends a negative acknowledgment (NACK) to the terminal device 20.
  • NACK negative acknowledgment
  • the terminal device 20 monitors the feedback of the network device 10.
  • the terminal device 20 reselects transmission parameters, such as a pilot sequence, and obtains transmission information such as a corresponding modulation and coding mode.
  • the terminal device 20 re-transmits the uplink data.
  • the network device 10 After receiving the data retransmitted by the terminal device 20, the network device 10 performs the combined decoding on the uplink data, and if the decoding is successful, sends an acknowledgement (ACK) to the terminal device 20.
  • ACK acknowledgement
  • the terminal device and the terminal device implement data separation between the multi-terminal devices by orthogonality of time-frequency resources of data transmission.
  • the transmission feedback of multiple terminal devices can be mapped into the same group, for example, by group number, orthogonal sequence index, and the like.
  • the system serial number and the network sequence are configured by the network serial number and the orthogonal sequence index.
  • the parameters such as the time-frequency resource index and the pilot sequence displacement of the terminal device transmission configuration are obtained.
  • the terminal device In the unlicensed transmission mode, when multiple terminal devices have data at the same time, since the network device does not schedule transmission resources for the terminal device, the terminal device usually transmits data on the pre-configured common time-frequency resources in a contention-based manner. In the unlicensed transmission mode, the network device does not know the identification information of the terminal device, and does not know the information of the time-frequency resource occupied by the terminal device for data transmission. Therefore, the network device cannot use the feedback method of the prior art to the terminal device. The data is transmitted for feedback.
  • a feedback method that is easy to think of is to directly feedback the user identifier to the successfully decoded terminal device, indicating successful transmission.
  • this method has a problem in that the number of user identification bits is long and the resource usage efficiency is low.
  • a 16-bit Physical Layer Network Temporary Identifier (C-RNTI) is used. Since the C-RNTI is uniquely owned by the cell, the coverage of the cell will be large with the appearance of a virtual cell in the future. In the coverage of the current cell, in order to uniquely identify the user in the cell range, a longer user identifier is required, so that the network device directly feedbacks the user identifier to occupy more transmission resources.
  • the HARQ feedback mode in the process of the unlicensed transmission in the embodiment of the present application can occupy less transmission resources and save transmission resources.
  • the pilot signal mentioned in the embodiment of the present application may also be referred to as a reference signal, and is a signal provided by the transmitting end to the receiving end for channel estimation, channel sounding or channel state detection. If the number of pilots is small, on the one hand, it is impossible to distinguish each user by pilot, and the user needs to share the pilot. When a pilot collision occurs, the base station cannot perform accurate user detection and channel estimation, and cannot successfully demodulate the data.
  • the index of the pilot signal means that the pilot signal can be determined by the index.
  • the pilot signal may be directly determined by using the index, or the index may be determined by combining the index with other information.
  • the indexes mentioned in the embodiments of the present application may also be referred to as numbers, or lookup parameters, and the like.
  • FIG. 3 is a flow diagram of a process 300 of a method 300 for grant-free transfer in accordance with an embodiment of the present application.
  • the transmitting end of the data and the pilot signal may be a terminal device or a network device
  • the receiving end of the data and the pilot signal may be a terminal device or a network device.
  • the transmitting end of the data and the pilot signal is the terminal device, and the receiving end of the data and the pilot signal is a network device.
  • the embodiment of the present application is not limited thereto.
  • the transmitting end of the data and the pilot signal is the terminal device, and the receiving end of the data and the pilot signal is another terminal device.
  • the embodiment of the present application can apply the D2D transmission.
  • FIG. 3 shows the network device 10 and the terminal device 20, but the network device 10 can perform information transmission using the method of the embodiment of the present application with a plurality of terminal devices including the terminal device 20, and the method performed by other terminal devices Reference may be made to the method performed by the terminal device 20, and for brevity, no further details are provided herein.
  • the method may be applied to the unlicensed transmission, and may also be applied to other scenarios.
  • the following is an example of the unauthorized transmission, that is, the uplink transmission performed by the terminal device 20 and the network device 10 is an unauthorized transmission, and the used transmission is used.
  • Resources are resources that are not authorized to transfer.
  • the method for unauthorized transfer includes:
  • network device 10 detects a pilot sequence used by terminal device 20 for uplink transmission.
  • the terminal device 20 before performing the uplink unlicensed transmission, the terminal device 20 first selects a pilot sequence, and performs uplink and unlicensed transmission on the configured uplink unlicensed transmission time-frequency resource block according to the transmission information indicated by the pilot sequence.
  • the data may be transmitted according to the transmission information indicated by the pilot sequence, and processed on the specified unlicensed uplink time-frequency physical resource after the corresponding code modulation processing.
  • the network device 10 detects the uplink data sent by the terminal device 20 by means of a blind check, that is, the network device 10 first blindly detects the pilot. After detecting the pilot sequence, the network device 10 uses the pilot information according to the pilot information.
  • the indicated transmission information demodulates and decodes the uplink data. In general, the probability of successful pilot detection is much higher than the probability of successful data decoding. Therefore, the general pilot sequence is easy to detect and can be detected even if there is a collision, but the data may be due to pilot collision or poor channel. Decoding failed.
  • each terminal device may select a pilot sequence, and the selection may be random and/or selection according to a preset rule, so the pilot sequence and the terminal device have no binding relationship.
  • the pilot sequence and the terminal device have no binding relationship.
  • one pilot sequence corresponds to the uplink transmission of one terminal device
  • one pilot corresponds to the uplink transmission of two or more terminal devices.
  • the network device 10 determines the pilot sequence index of the pilot sequence according to the pilot sequence and the correspondence between the pilot sequence and the pilot sequence index.
  • the network device 10 may determine the pilot sequence index of the pilot sequence according to the correspondence between the pilot sequence and the pilot sequence index.
  • the corresponding relationship between the pilot sequence and the pilot sequence index may be determined by the terminal device 20 according to the pilot sequence that can be used for uplink transmission on the unlicensed transmission resource and notified to the network device 10, or may be the network device 10.
  • the terminal device 20 is notified; it may also be agreed in advance between the network device 10 and the terminal device 20, for example, as specified in the protocol.
  • the correspondence between the pilot sequence maintained by the network device 10 and the terminal device 20 and the pilot sequence index is the same.
  • each pilot sequence index uniquely indicates a pilot sequence, such as a pilot sequence.
  • the index 0 corresponds to the pilot sequence 0
  • the pilot sequence index 1 corresponds to the pilot sequence 1
  • the pilot sequence index i corresponds to the pilot sequence i.
  • the network device 10 transmits the information of the feedback result of the uplink transmission to the terminal device 20 according to the pilot sequence index.
  • the terminal device 20 and the network device 10 maintain the correspondence between the same pilot sequence and the pilot sequence index, and the network device 10 can forward to the terminal device 20 according to the pilot sequence index corresponding to the detected pilot sequence.
  • the feedback result may be an acknowledgement ACK, indicating that the uplink transmission is successful, that is, the uplink sent by the network device 10 to the terminal device 20 according to the detected pilot sequence of the terminal device 20.
  • the data is successfully decoded; or the feedback result may be a negative acknowledgement NACK, indicating that the uplink transmission fails, for example, the network device 10 does not detect the pilot sequence of the terminal device 20, or the network device 10 detects the pilot sequence, but according to The pilot sequence fails to decode the data transmitted by the terminal device 20.
  • NACK negative acknowledgement
  • the wireless transmission resource can be effectively utilized to feedback the unauthorized transmission of the user equipment.
  • the network device 10 can indicate the feedback result for the uplink transmission to the terminal device 20 in two ways. One way is that the network device 10 indicates the feedback result in the position of the corresponding pilot sequence index by means of a bitmap; the other way is that the network device 10 directly indicates the feedback result through the pilot sequence index. It should be understood that the bitmap in the embodiment of the present application may also be referred to as a bit bitmap or a bitmap.
  • FIG. 4 is a flow diagram of a process for an unlicensed transmission method according to another embodiment of the present application.
  • the network device 10 indicates the feedback result to the terminal device 20 by means of a bitmap, and the above 330 may be replaced by 331 to 333.
  • the network device 10 determines a target bit corresponding to the pilot sequence index in the bitmap according to the pilot sequence index.
  • Each bit in the bitmap corresponds to a different pilot sequence index.
  • the network device 10 performs pilot detection on the uplink grant-free transmission, performs demodulation and decoding, obtains a feedback result, and decodes the uplink data sent by the terminal device 20 in a bitmap manner.
  • the corresponding pilot sequence index position is indicated to the terminal device 20.
  • Each bit in the bitmap corresponds to a different pilot sequence index, and each pilot sequence index corresponds one-to-one to each bit in the bitmap.
  • the target bit corresponding to the pilot sequence index may be determined according to the correspondence between the pilot sequence index and the bit in the bitmap. .
  • the number of the bits in the bitmap is determined according to the number of pilot sequences that can be used for uplink transmission on the unlicensed transmission resource, and may be determined by the network device 10, or may be a network device. 10 is pre-agreed with the terminal device 20, for example as specified in the protocol.
  • the number of bits in the bitmap needs to be greater than or equal to the number of pilot sequences that can be used for uplink transmission.
  • network device 10 determines a value on the target bit based on the feedback.
  • the value on the target bit is used to indicate that the feedback result is an acknowledgement ACK or a negative acknowledgement NACK.
  • the network device 10 successfully decodes the uplink data sent by the terminal device 20 according to the detected pilot sequence of the terminal device 20, the feedback result indicating that the transmission is successful needs to be indicated to the terminal device 20, For example, the ACK is fed back to the terminal device 20; if the network device 10 does not detect the pilot sequence of the terminal device 20, or detects the pilot sequence but fails to decode the uplink data according to the pilot sequence, the network device 10 A feedback result indicating a transmission failure needs to be indicated to the terminal device 20, for example, a NACK is fed back to the terminal device 20.
  • the network device 10 may determine the location of the pilot sequence index in the bitmap according to the pilot sequence index corresponding to the pilot sequence used by the terminal device 20 for the uplink transmission, that is, the guide The frequency sequence index corresponds to the target bit, and the value of the target bit is set to 1 to indicate that the feedback result is ACK; or if the NACK is required to be fed back, the value on the target bit is set to 0, To indicate that the feedback result is NACK. It should be understood that here, 0 can also be used to indicate that the feedback result is NACK, and 1 is used to indicate that the feedback result is ACK.
  • network device 10 transmits the bitmap to terminal device 20.
  • the network device 10 sends the bitmap to the terminal device 20, where the network device 10 sends downlink control information (Downlink Control Information, DCI) carried on the physical downlink control channel to the terminal device 20,
  • DCI Downlink Control Information
  • the DCI includes the bitmap; or the network device 10 transmits the bitmap that is carried on the physical downlink shared channel to the terminal device 20.
  • the network device 10 may generate a DCI including the bitmap, and the DCI format (DCI format) of the DCI may be designed to correspond to a control information such as a bitmap.
  • the DCI may be carried in a physical downlink control channel (PDCCH), or may be carried in a physical downlink of an enhanced physical downlink control channel (EPDCCH) and a machine type communication (MTC).
  • Control channel MTC PDCCH, MPDCCH
  • narrowband physical downlink control channel Narrowband PDCCH, NBPDCCH
  • XX-PDCCH future designed downlink physical control channel
  • the network device 10 may also generate a transport block for transmitting the bitmap.
  • the bitmap may be carried on a typical physical downlink shared channel (PDSCH) or a newly designed downlink physical shared channel.
  • PDSCH physical downlink shared channel
  • the bitmap is transmitted as data, indicating a downstream transmission by the conventional DCI format.
  • the feedback result indicated by the network device 10 to the terminal device 20 includes the feedback result for many uplink transmissions, that is, each bit in the bitmap carries the feedback result for different uplink transmissions.
  • the DCI Cyclic Redundancy Check (CRC) can be scrambled using a Universal Free Radio Network Temporary Identifier (GF-RNTI).
  • Table 2 shows a bit map.
  • the following is an example of a pilot sequence that can be used for uplink transmission on the time-frequency resource of the above-mentioned line-free transmission.
  • the pilot sequence index is also 96, which corresponds to 96 pilot sequences, respectively.
  • the bitmap used to indicate the feedback result requires at least 96 bits, that is, 12 bytes. These 96 bits are in one-to-one correspondence with the above 96 pilot sequence indices.
  • the least significant bit e.g., the 0th bit, which corresponds to the pilot sequence index 0
  • the 1st bit corresponds to the pilot sequence index 1
  • the 95th bit corresponds to the pilot sequence index 95.
  • the bit map shown in Table 2 is from right to left, and the first line is the 0th bit, the 1st bit, the 2nd bit, the 7th bit, and the second line is respectively 8 bits, ninth bit, 10th bit... 15th bit, and so on.
  • the feedback result indicated by the network device 10 may indicate that the transmission fails (the feedback result is NACK), and indicates that the transmission is successful (the feedback result is ACK). It is assumed that the terminal device 20 performs uplink transmission using the pilot sequence 0, and the corresponding pilot sequence index is 0. The network device 10 detects that the terminal device 20 using the pilot sequence index 0 has uplink transmission, but the channel is too poor or pilot collision. The uplink data sent by the terminal device 20 is not successfully decoded. At this time, the network device 10 sets 0 at the position of the 0th bit in the bitmap to indicate that the data transmission fails. It is assumed that the terminal device 20 uses the pilot sequence 1 for uplink transmission.
  • the corresponding pilot sequence index is 1, and the network device 10 detects that the terminal device 20 using the pilot sequence index 1 has uplink transmission, and successfully decodes the user data. At this time, the network device 10 is the first in the bitmap. The bit position is set to 1, indicating that the data transfer was successful, as shown in Table 2.
  • the network device 10 does not detect the pilot sequence, it may be that the pilot sequence is not selected by the terminal device for transmission in the current transmission, or the pilot itself may not be detected, when the feedback result is indicated.
  • the network device 10 does not obtain the obtained pilot sequence information, and the values on all the bits corresponding to the pilot sequence index of the pilot sequences may be set to zero.
  • the number of pilot sequences determines the length of the feedback information field
  • the network device indicates the feedback result by using a fixed-length bitmap.
  • the value of the bit position in the bitmap indicates the corresponding feedback result, which can be implemented. More efficient use of wireless transmission resources to feedback the unauthorized transmission of user equipment, and is more simple to implement.
  • Another way to indicate the feedback result proposed by the present application is to directly indicate the feedback result through the pilot sequence index. The details are described below.
  • the network device 10 indicates, according to the pilot sequence index, the feedback result for the uplink transmission to the terminal device 20, including:
  • the network device 10 transmits the pilot sequence index to the terminal device 20, or if the feedback result is NACK, the network device 10 prohibits transmitting the pilot sequence index to the terminal device 20.
  • the network device 10 can directly indicate the feedback result for the uplink transmission by transmitting a pilot sequence index.
  • the network device 10 determines the pilot sequence index corresponding to the pilot sequence according to the detected pilot sequence selected by the terminal device 20, and directly sends the pilot sequence index to the pilot sequence.
  • the terminal device 20 indicates that the feedback result is ACK; and when the transmission is unsuccessful, the network device 10 does not send the pilot sequence index to the terminal device 20, thereby implicitly indicating that the feedback result is NACK.
  • the number of bits occupied by the pilot sequence index is determined according to the number of pilot sequences that can be used for uplink transmission.
  • pilot sequences are still taken as an example. Since 96 is between 26 and 27, the pilot sequence index can be set to 7 bits, and 7 bits can represent 128 numbers. The pilot sequence index can be indicated by 7 bits.
  • Table 3 shows the pilot sequence index of all currently transmitted terminal devices.
  • the number of bits occupied by the pilot sequence index is 7, and each pilot sequence index is arranged separately by row as an example.
  • the terminal device 20 uses the pilot sequence 0 for uplink transmission, and the corresponding pilot sequence index is 0. If the network device 10 successfully decodes the uplink data, the network device 10 transmits the pilot sequence index to the terminal device 20 at this time. , indicating that the data transfer was successful.
  • the pilot sequence index 0 includes 7 bits, ie 0000000. Therefore, as shown in the first row of Table 3, the pilot sequence index 0000000 is sent to the terminal device 20.
  • the network device 10 detects that the terminal device 20 using the pilot sequence index 0 has an uplink transmission, but because of the channel The decoding of the uplink data sent by the terminal device 20 fails due to a situation such as a poor or pilot collision. In this case, the network device 10 does not send the pilot sequence index 0 to the terminal device 20, thereby indicating to the terminal device 20 that the data transmission fails.
  • the pilot sequence index 0 is not included in the pilot sequence index of all successfully transmitted terminal devices transmitted by the network device 10 shown in Table 3.
  • the network device 10 sends the pilot sequence index to the terminal device 20, including:
  • the network device 10 transmits the downlink control information DCI carried on the physical downlink control channel to the terminal device 20, the DCI includes the pilot sequence index; or the network device 10 transmits the pilot carried on the physical downlink shared channel to the terminal device 20 Sequence index.
  • the network device implicitly indicates the feedback result by transmitting a pilot sequence index. Since the number of pilot sequences is much smaller than the number of user equipments, the number of bits used to identify the pilot sequence index is much smaller than The number of bits of the user identification is identified, so the wireless transmission resources used can be saved compared to indicating the feedback result by the user identification.
  • the terminal device 20 determines the pilot sequence index of the pilot sequence according to the pilot sequence used by the uplink transmission and the correspondence between the pilot sequence and the pilot sequence index.
  • the terminal device 20 selects a pilot sequence and performs uplink grant-free transmission on the configured uplink grant-free time-frequency resource block according to the transmission information indicated by the pilot sequence. After the terminal device 20 sends the uplink data, it waits for the transmission result fed back by the network device.
  • the terminal device 20 may determine the pilot sequence index of the pilot sequence according to the correspondence between the pilot sequence and the pilot sequence index, so that after receiving the indication of the feedback result by the network device, determining the feedback according to the pilot sequence index. result.
  • the corresponding relationship between the pilot sequence and the pilot sequence index may be determined by the terminal device 20 according to the pilot sequence that can be used for uplink transmission on the unlicensed transmission resource and notified to the network device 10, or may be the network device 10. After the terminal device 20 is notified, it may also be agreed in advance between the network device 10 and the terminal device 20, for example, as specified in the protocol.
  • the correspondence between the pilot sequence maintained by the network device 10 and the terminal device 20 and the pilot sequence index is the same.
  • the terminal device 20 determines, according to the pilot sequence index, a feedback result indicated by the network device 10 for the uplink transmission.
  • the terminal device 20 and the network device 10 maintain the correspondence between the same pilot sequence and the pilot sequence index.
  • the terminal device 20 determines, according to the pilot sequence index corresponding to the pilot sequence used for transmitting the uplink data, the feedback result indicated by the network device 10 for the uplink transmission, for example, the feedback result may be an acknowledgement ACK, indicating the uplink.
  • the feedback result may be a negative acknowledgement NACK, indicating that the uplink transmission fails, and the terminal device 20 needs to retransmit the data that failed to be transmitted.
  • the terminal device 20 can also determine the feedback result indicated by the network device 10 for the uplink transmission by using the foregoing two manners.
  • One mode is that the terminal device 20 determines the feedback result indicated by the network device 10 for the uplink transmission according to the bitmap generated by the network device 10; the other manner is that the terminal device 20 indexes according to the pilot sequence sent by the network device 10, Determine the feedback result.
  • the following describes in detail how the terminal device 20 determines the feedback result indicated by the network device 10 for the uplink transmission.
  • FIG. 5 is a flow diagram of a process for an unauthorized transfer method according to another embodiment of the present application.
  • the terminal device 20 determines the feedback result indicated by the network device 10 according to the bitmap generated by the network device 10. Before 350, the method may further include 351. At this time, 350 may be replaced by 352 and 353. .
  • the terminal device 20 receives the bitmap of the network device 10.
  • Each bit in the bitmap corresponds to a different pilot sequence index.
  • the terminal device 20 receives the bitmap sent by the network device 10, including:
  • the terminal device 20 receives the downlink control information DCI carried by the network device 10, which is carried on the physical downlink control channel, and the DCI includes the bitmap; or the terminal device 20 receives the bitmap transmitted by the network device 10 on the physical downlink shared channel. .
  • the DCI received by the terminal device 20 may be carried in the PDCCH, or may be carried on the enhanced physical downlink control channel EPDCCH, the physical downlink control channel MPDCCH, the narrowband physical downlink control channel NBPDCCH, and the future new Designed downlink physical control channel XX-PDCCH.
  • the bit map received by the terminal device 20 may also be carried on a normal physical downlink shared channel PDSCH or a newly designed downlink physical shared channel.
  • the bitmap received by the terminal device 20 is equivalent to downlink data, and is traditional.
  • the DCI format is used to indicate the downlink transmission.
  • the terminal device 20 determines a target bit corresponding to the pilot sequence index in the bitmap according to the pilot sequence index.
  • each bit in the bitmap corresponds to a different pilot sequence index
  • each pilot sequence index corresponds to each bit in the bitmap.
  • the target bit corresponding to the pilot sequence index may be determined according to the correspondence between the pilot sequence index and the bit in the bitmap.
  • the terminal device 20 determines the feedback result based on the value on the target bit.
  • the value on the target bit is used to indicate that the feedback result is ACK or NACK.
  • the terminal device 20 determines the value on the target bit after determining the target bit corresponding to the pilot sequence index in the received bitmap according to its own pilot sequence index.
  • the value on the target bit indicates the feedback result. For example, if the value on the target bit is 1, the terminal device 20 determines that the feedback result is ACK, indicating that the uplink transmission is successful; if the value on the target bit is 0, the terminal device 20 determines that the feedback result is NACK. , indicating that the uplink transmission failed, and necessary retransmission is required.
  • the feedback result may be indicated by N as a NACK, and by 1 to indicate that the feedback result is an ACK.
  • the terminal device 20 determines the pilot sequence among the 96 bits in the bitmap transmitted by the network device 10. The target bit corresponding to the index.
  • the terminal device 20 determines the value at the 0th bit in the bitmap, as shown in Table 2, the 0th is the upper If the value is 0, the terminal device 20 determines that the feedback information indicated by the network device 10 is NACK, indicating that the data transmission fails, and needs to be retransmitted. Assuming that the terminal device 20 performs uplink transmission using the pilot sequence 1, and the corresponding pilot sequence index is 1, the terminal device 20 determines the value in the first bit in the bitmap, as shown in Table 2, the first is above. If the value is 1, the terminal device 20 determines that the feedback information indicated by the network device 10 is ACK, indicating that the data transmission is successful.
  • the number of pilot sequences determines the length of the feedback information field
  • the terminal device determines the feedback result by means of a bitmap, so that the effective use of the wireless transmission resource can be realized, and the implementation is also simpler.
  • the terminal device 20 determines that the feedback result can be determined by another manner, that is, the terminal device 20 directly determines the feedback result according to the receiving state of the pilot sequence index, which is specifically described below.
  • the terminal device 20 determines, according to the pilot sequence index, a feedback result that is indicated by the network device 10 for the uplink transmission, and includes:
  • the terminal device 20 determines that the feedback result is an ACK; or, if the terminal device 20 does not receive the pilot sequence index sent by the network device 10, the terminal device 20 Determine that the feedback result is NACK.
  • the terminal device 20 may determine the feedback result according to the receiving state of the pilot sequence index, and the receiving state may include the terminal device 20 receiving the pilot sequence index or not receiving the pilot sequence index.
  • the network device 10 directly transmits the pilot sequence index corresponding to the terminal device 20 to indicate that the feedback result is ACK; and when the transmission is unsuccessful, the network device 10 does not notify the terminal device 20
  • the pilot sequence index is sent, thereby implicitly indicating that the feedback result is NACK.
  • the terminal device 20 receives its own pilot sequence index, it considers that the network device 10 feeds back an ACK, the uplink transmission is successful, and the terminal device 20 can continue to transmit new uplink data; if the terminal device 20 does not receive To the own pilot sequence, it is considered that the network device 10 feeds back a NACK, the uplink transmission is a failure, and the terminal device 20 performs the necessary retransmission.
  • the pilot sequence index is received by the terminal device 20 through a physical downlink control channel, where the DCI carried on the physical downlink control channel includes the pilot sequence index, or the pilot sequence index is shared by the terminal device 20 through physical downlink. Channel received.
  • the network device implicitly indicates the feedback result by transmitting the pilot sequence index, and the terminal device only needs to determine whether the pilot sequence index is received, and the feedback result for the uplink transmission can be obtained, because
  • the number of pilot sequences is much smaller than the number of user equipments.
  • the number of bits used to identify the pilot sequence index is much smaller than the number of bits identifying the user identifier. Therefore, compared to determining the feedback result indicated by the network device according to the user identifier, You can save on the wireless transmission resources used.
  • the network device 10 sends the bitmap, only 96 bits are needed, and the feedback result of the uplink transmission of 96 terminal devices can be indicated at most.
  • the information of the bitmap can be scrambled by using a common scrambling sequence, and the plurality of terminal devices use the same sequence to descramble the information of the bitmap, and each terminal device descrambles to obtain the information of the bitmap.
  • the respective target bits are found in the bitmap, thereby receiving a value on the target bit indicating the feedback result.
  • the terminal device receives the bitmap, which may be obtained by the terminal device.
  • the feedback information on the target bit is received after the bitmap is taken.
  • the receiving the pilot sequence index of the terminal device may also refer to receiving the pilot sequence index corresponding to the pilot sequence in the multiple pilot sequence indexes, and may refer to the process of receiving the value on the target bit, and details are not described herein again.
  • the pilot sequence index of the plurality of successfully transmitted terminal devices may be simultaneously transmitted on one transmission resource, for example, the case shown in Table 3.
  • the network device indicates the feedback result for the uplink transmission to the terminal device.
  • the former method indicating the feedback result through the bitmap
  • the second method by whether or not The way in which the pilot index is sent indicates the feedback result
  • the second method may save more wireless resources than the first method.
  • the number of pilot sequences that can be used for uplink transmission on the authorized transmission resource is 96. If the number of terminal devices that need feedback is more than 13 when the index is indexed by the 7-bit feedback pilot sequence, it needs to be used for indication. The number of bits of the feedback result will exceed 96 bits. At this time, the network device sends a pilot sequence index to indicate the feedback result, which indicates the feedback result in a bitmap manner and occupies more radio resources. Conversely, when the number of terminal devices requiring feedback does not exceed 13, the transmission of the pilot sequence index will occupy less radio resources than the bit map indicates that the feedback result is used.
  • the effective use of the downlink transmission resource is implemented, and the uplink unlicensed transmission can be adaptively determined according to the number of successfully decoded terminal devices and the number of pilot sequences that can be used for uplink transmission.
  • the feedback is performed, and an indication is given to the terminal device, for example, with 1 bit indication, 0 indicates that the terminal device determines the feedback result according to the bitmap, and 1 indicates that the terminal device determines the feedback result according to the reception state of the pilot sequence index.
  • the method further includes:
  • the network device 10 sends the indication information to the terminal device 20, and the content indicated by the indication information includes:
  • the network device 10 may indicate information to the terminal device 20 for indicating which of the two feedback methods is used for the current transmission feedback. One.
  • the network device 10 indicates to the terminal device 20 which way the uplink grant-free transmission is used to indicate the feedback result, and can be indicated by two indication manners.
  • the long period indication that is, the network device 10 instructs the terminal device 20 to determine the feedback result indicated by the network device 10 in a certain fixed manner during the time period according to a certain period of time.
  • the 96 pilot sequences that can be used for uplink transmission on the authorized transmission resource are still taken as an example. If the network device 10 finds that it is within a period of time, there is only a far less in a Transmission Time Interval (TTI). The 13 terminal devices simultaneously transmit the uplink data by using the unlicensed resource. In this case, the network device 10 may send the indication information, for example, by broadcasting, to instruct the terminal device to determine the feedback result according to the receiving state of the pilot sequence index, the receiving state. Including the terminal device 20 receiving the pilot sequence index or not receiving the pilot sequence The network device 10 can send the indication information by, for example, broadcasting, when the network device 10 finds that the uplink data is transmitted by using the unlicensed resource in the same time. Instructing the terminal device 20 to determine the feedback result based on the bitmap.
  • TTI Transmission Time Interval
  • the network device 10 Each time the network device 10 indicates the feedback result, it is indicated by 1 bit in the feedback information, that is, the bitmap or the pilot sequence index, indicating which manner the terminal device 20 uses to determine the feedback result indicated by the network device 10. After receiving the bitmap or the pilot sequence index, the terminal device 20 first confirms the content indicated by the indication information, and then determines the feedback result according to the indication information and the pilot sequence index.
  • the method further includes:
  • the network device 10 determines the indication information based on the number of terminal devices 20 that simultaneously perform uplink transmission and the number of pilot sequences that can be used for uplink transmission.
  • the number of bits occupied by the pilot sequence index, the total number of pilot sequence indexes that can be represented, should be greater than or equal to the total number of pilot sequences that can be used for uplink transmission.
  • the total number of bits in the bitmap shall be greater than or equal to the total number of pilot sequences that can be used for uplink transmission.
  • the indication information may indicate The terminal device determines the feedback result according to the bitmap; when the number of successfully transmitted terminal devices is less than a certain threshold, the total number of bits occupied by the plurality of pilot sequence indexes to be transmitted is smaller than the total number of pilot sequences that can be used for uplink transmission. At this time, the indication information may instruct the terminal device to determine the feedback result according to the reception status of the pilot sequence index.
  • the method before determining, by the terminal device 20, the feedback result indicated by the network device 10 for the uplink transmission, the method further includes:
  • the terminal device 20 receives the indication information sent by the network device 10, and the content indicated by the indication information includes:
  • the terminal device 20 determines, according to the pilot sequence index, the feedback result indicated by the network device 10 for the uplink transmission, including:
  • the terminal device 20 determines the feedback result according to the indication information and the pilot sequence index.
  • the network device 10 may send the indication information to the terminal device 20 to indicate the terminal device's determination of the feedback result of the current transmission, in two ways, to use the minimum transmission resource when the feedback result is indicated. Which one?
  • Tables 4 and 5 are respectively composed of feedback information of uplink grant-free transmission in two modes for indicating feedback results, and the feedback information includes the bitmap or the pilot sequence index.
  • Table 4 shows the manner in which the feedback result is indicated by the bitmap
  • Table 5 shows the manner in which the feedback result is indicated by whether or not the pilot sequence index is transmitted.
  • the content included in Table 4 and Table 5 includes at least: information of the transmission resource index, which is used to indicate the resources occupied by the uplink unlicensed transmission; and indicates whether the terminal device 20 determines the feedback result according to the bitmap or the reception status of the pilot sequence index.
  • the values on the upper right corner of Tables 4 and 5 are used to indicate the content indicated by the indication information, the second line and The value on the bit below the second line is used to indicate the feedback result, and the position of the bit carrying the different types of information can be determined according to the actual situation, which is merely illustrative here. It can be seen that the value of the bit in the upper right corner of Table 4 is 0, which can be used to indicate that the terminal device 20 determines the feedback result according to the bitmap. The value in the upper right corner of Table 5 is 1. It is used to instruct the terminal device 20 to determine the feedback result according to the reception status of the pilot sequence index.
  • Table 4 and Table 5 indicate that the terminal device 20 determines the feedback result according to the bitmap by indicating that the information is 0, and the indication information is 1 indicates that the terminal device 20 determines the feedback result according to the receiving state of the pilot sequence index, and the bit is used as an example.
  • An example in which the feedback result is ACK and the bit is 0 indicates that the feedback result is NACK is described as an example, but the present application is not limited thereto.
  • the length of the field indicating that the feedback result is ACK or NACK is the same as the number of pilot sequences that can be used for uplink transmission, or is greater than the number of pilot sequences.
  • the feedback information that is, the size occupied by the bitmap is relatively fixed. Since a fixed length of feedback information is used, ACK/NACK can be fed back simultaneously without increasing the use of radio resources.
  • the size of the feedback information is determined by the number of terminal devices that successfully transmit data, that is, the number of feedback ACKs. The more the number of terminal devices that are successfully transmitted.
  • the feedback information is a plurality of pilot sequence indexes corresponding to the successfully transmitted terminal device, and the more resources are occupied, so the length of the field of the feedback information is variable.
  • the network device 10 may further add a transmission resource index to the feedback information for indicating feedback when transmitting feedback information indicating the feedback result.
  • the result corresponds to the uplink grant-free transmission resource.
  • the method further includes: the network device 10 sends a transmission resource index to the terminal device 20, where the transmission resource index is used to indicate a location of a frequency domain resource used by the uplink transmission for which the feedback result is, the frequency domain resource The location is the location of the frequency domain resources in multiple frequency domain resources within the same time period.
  • multiple uplink grant-free transmission resources can be configured in one subframe at a time.
  • one terminal device can simultaneously select the same or different pilot sequences on multiple uplink unlicensed transmission resources for uplink unlicensed transmission.
  • the terminal device 20 needs to perform uplink transmission on two different uplink unlicensed transmission resources at the same time, and at this time, the network device 10 needs to perform this.
  • the feedback results of the two uplink grant-free transmissions are respectively indicated.
  • an uplink unlicensed transmission resource index (referred to as a transmission resource index) may be used to distinguish different uplink grant-free transmission resource configurations, and the transmission resource index is a PRB index, and there are 100 physical resource blocks in one subframe (Physical Resource Block, PRB) is an example for performing the unlicensed uplink transmission.
  • PRB Physical Resource Block
  • One subframe includes two slots, and seven symbols ⁇ 12 subcarriers in each slot form one PRB, and each two PRBs form one PRB pair. If the uplink unlicensed transmission resource can be configured to a minimum of one PRB pair, 7bit can be used to indicate the transmission resource index, as shown in Table 4 and Table 5. As shown in FIG.
  • the terminal device 20 has two data blocks simultaneously performing uplink transmission on two different uplink unlicensed transmission resources, and this is performed in one subframe.
  • the transmission resource index may also be referred to as a PRB pair index, which is also commonly referred to as a PRB index.
  • the terminal device 20 may determine, according to the transmission resource index in the feedback information, whether the data transmitted by the resource indicated by the transmission resource index is failed or successful.
  • the terminal device 20 needs to have two The feedback information, for example, two DCIs or two data blocks including the feedback result are descrambled, and then the indication of the PRB index is used to know which time-frequency resource block corresponds to its own uplink transmission; if the terminal device 20 can distinguish different time frequencies
  • the resource block for example, uses different scrambling sequences for the feedback information of the unlicensed transmissions on the two time-frequency resource blocks. At this time, the terminal device 20 can identify which time-frequency resource block corresponds to itself through different scrambling sequences. The uplink transmission, then the PRB index may not be added to the feedback information.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • a network device for unauthorized transmission will be described below with reference to FIG. 7.
  • the technical features described in the method embodiments may be applied to the following device embodiments.
  • FIG. 7 illustrates a network device 700 for transmitting data in accordance with an embodiment of the present application.
  • the network device 700 includes:
  • the processing unit 710 is configured to detect a pilot sequence used by the terminal device to perform uplink transmission
  • the processing unit 710 is further configured to determine, according to the pilot sequence, and a correspondence between a pilot sequence and a pilot sequence index, a pilot sequence index of the pilot sequence;
  • the sending unit 720 is configured to send information about the feedback result of the uplink transmission to the terminal device according to the pilot sequence index determined by the processing unit 710.
  • the network device indicates, by using the pilot sequence index, the feedback result for the current uplink transmission to the terminal device, and can effectively use the wireless transmission resource to feed back the unauthorized transmission of the user equipment.
  • processing unit 710 is specifically configured to:
  • the sending unit 720 is specifically configured to send the bitmap to the terminal device.
  • the number of bits in the bitmap is greater than or equal to the number of pilot sequences that can be used for uplink transmission.
  • the sending unit 720 is specifically configured to: send, to the terminal device, downlink control information DCI carried on a physical downlink control channel, where the DCI includes the bitmap; or send the bearer to the terminal device.
  • the bit map on the physical downlink shared channel.
  • the sending unit 720 is specifically configured to: if the feedback result is an ACK, the network device sends the pilot sequence index to the terminal device, or if the feedback result is a NACK, the network The device prohibits sending the pilot sequence index to the terminal device.
  • the number of bits occupied by the pilot sequence index is determined according to the number of pilot sequences that can be used for uplink transmission.
  • the sending unit 720 is specifically configured to: send, to the terminal device, downlink control information DCI carried on a physical downlink control channel, where the DCI includes the pilot sequence index, or send to the terminal device The index of the pilot sequence carried on the physical downlink shared channel.
  • the sending unit 720 is further configured to: send the indication information to the terminal device, where the indication information is used to: instruct the terminal device to determine the feedback result according to the bitmap, or instruct the terminal device to The receiving state of the pilot sequence index determines the feedback result, the receiving state including the terminal device receiving the pilot sequence index or not receiving the pilot sequence index.
  • the processing unit 710 is further configured to: according to the number of terminal devices that perform uplink transmission simultaneously, and a pilot sequence that can be used for uplink transmission. The number of the determination information is determined.
  • the sending unit 720 is further configured to: send, to the terminal device, a transmission resource index, where the transmission resource index is used to indicate a location of a frequency domain resource used by the uplink transmission for which the feedback result is directed
  • the location of the frequency domain resource is a location of the frequency domain resource in multiple frequency domain resources in a same time period.
  • the processing unit 710 may be implemented by a processor, and the sending unit 720 may receive The transmitter is implemented, and the processing unit 710 can be implemented by a processor.
  • network device 800 can include a processor 810, a transceiver 820, and a memory 830.
  • the transceiver 820 can include a receiver 821 and a transmitter 822, and the memory 830 can be used to store code and the like executed by the processor 810.
  • the various components in the network device 800 are interconnected by internal connection paths.
  • the processor 810 is configured to detect a pilot sequence used by the terminal device to perform uplink transmission, and determine the pilot sequence according to the pilot sequence and a correspondence between a pilot sequence and a pilot sequence index. Pilot sequence index;
  • the transmitter 822 is configured to send information about the feedback result of the uplink transmission to the terminal device according to the pilot sequence index determined by the processor 810.
  • the processor 810 is specifically configured to:
  • the transmitter 822 is specifically configured to send the bitmap to the terminal device.
  • the number of bits in the bitmap is greater than or equal to the number of pilot sequences that can be used for uplink transmission.
  • the transmitter 822 is specifically configured to: send, to the terminal device, downlink control information DCI carried on a physical downlink control channel, where the DCI includes the bitmap; or send the bearer to the terminal device.
  • the bit map on the physical downlink shared channel.
  • the transmitter 822 is specifically configured to: if the feedback result is an ACK, the network device sends the pilot sequence index to the terminal device, or if the feedback result is a NACK, the network The device prohibits sending the pilot sequence index to the terminal device.
  • the number of bits occupied by the pilot sequence index is determined according to the number of pilot sequences that can be used for uplink transmission.
  • the transmitter 822 is specifically configured to: send, to the terminal device, downlink control information DCI carried on a physical downlink control channel, where the DCI includes the pilot sequence index; or send to the terminal device The index of the pilot sequence carried on the physical downlink shared channel.
  • the transmitter 822 is further configured to: send the indication information to the terminal device, where the indication information is used to: instruct the terminal device to determine the feedback result according to the bitmap, or instruct the terminal device to The receiving state of the pilot sequence index determines the feedback result, the receiving state including the terminal device receiving the pilot sequence index or not receiving the pilot sequence index.
  • the processor 810 is further configured to: according to the number of terminal devices that perform uplink transmission simultaneously, and a pilot sequence that can be used for uplink transmission. The number of the determination information is determined.
  • the transmitter 822 is further configured to: send, to the terminal device, a transmission resource index, where the transmission resource index is used to indicate a location of a frequency domain resource used by the uplink transmission for which the feedback result is directed
  • the location of the frequency domain resource is a location of the frequency domain resource in multiple frequency domain resources in a same time period.
  • FIG. 9 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 900 of Figure 9 includes input The interface 901, the output interface 902, the at least one processor 903, the memory 904, the input interface 901, the output interface 902, the processor 903, and the memory 904 are mutually connected by an internal connection path, and the processor 903 is used for The code in the memory 904 is executed, and when the code is executed, the processor 903 implements the method performed by the network device of FIGS. 3-6.
  • the network device 700 shown in FIG. 7 or the network device 800 shown in FIG. 8 or the system chip 900 shown in FIG. 9 can implement the various processes implemented by the network device in the foregoing method embodiments of FIG. 3 to FIG. , no longer repeat them here.
  • a network device for unauthorized transmission will be described below with reference to FIG. 10.
  • the technical features described in the method embodiments may be applied to the following device embodiments.
  • FIG. 10 shows a terminal device 1000 that transmits data according to an embodiment of the present application.
  • the terminal device 1000 includes:
  • the processing unit 1010 is configured to determine, according to a pilot sequence used by the uplink transmission, and a correspondence between the pilot sequence and the pilot sequence index, the pilot sequence index of the pilot sequence.
  • the receiving unit 1020 is configured to receive information about a feedback result of the uplink transmission sent by the network device.
  • the processing unit 1010 is further configured to determine, according to the pilot sequence index determined by the processing unit, and the information of the feedback result of the uplink transmission received by the receiving unit, a feedback result of the uplink transmission.
  • the terminal device determines the feedback result for the current uplink transmission indicated by the network device by using the pilot sequence index, and can effectively use the wireless transmission resource to obtain the feedback of the network device for the unauthorized transmission.
  • the receiving unit 1020 is specifically configured to: receive a bitmap that is sent by the network device, where each bit in the bitmap corresponds to a different pilot sequence index;
  • the processing unit 1010 is specifically configured to:
  • the sending unit is specifically configured to: receive downlink control information DCI that is sent by the network device and that is carried on a physical downlink control channel, where the DCI includes the bitmap; or receive a bearer sent by the network device.
  • the bitmap on the physical downlink shared channel.
  • the processing unit 1010 is specifically configured to: if the terminal device receives the pilot sequence index sent by the network device, the terminal device determines that the feedback result is an ACK; or if the terminal is The device does not receive the pilot sequence index sent by the network device, and the terminal device determines that the feedback result is a NACK.
  • the pilot sequence index is received by the receiving unit 1020 by using a physical downlink control channel, where the DCI carried on the physical downlink control channel includes the pilot sequence index; or the pilot sequence index is The receiving unit 1020 is received by a physical downlink shared channel.
  • the receiving unit 1020 is further configured to:
  • the indication information is used to: indicate that the terminal device determines the feedback result according to a bitmap, or instruct the terminal device to determine the feedback according to a receiving state of a pilot sequence index.
  • the receiving state includes that the terminal device receives the pilot sequence index or does not receive the pilot sequence index;
  • the processing unit 1010 is specifically configured to: determine the feedback result according to the indication information and the pilot sequence index.
  • the receiving unit 1020 is further configured to: receive a transmission resource index sent by the network device, where the transmission resource index is used to indicate a frequency domain resource used by the uplink transmission for which the feedback result is directed a location, where the location of the frequency domain resource is a location of the frequency domain resource in a plurality of frequency domain resources in a same time period;
  • the processing unit 1010 is specifically configured to: determine the feedback result according to the pilot index and the transmission resource index.
  • the processing unit 1010 may be implemented by a processor
  • the sending unit 1020 may be implemented by a transceiver
  • the processing unit 1010 may be implemented by a processor.
  • the terminal device 1100 may include a processor 1110, a transceiver 1120, and a memory 1130.
  • the transceiver 1120 can include a receiver 1121 and a transmitter 1122.
  • the memory 1130 can be used to store code and the like executed by the processor 1110.
  • the various components in the network device 1100 are interconnected by internal connection paths.
  • the processor 1110 is configured to determine a pilot sequence index of the pilot sequence according to a pilot sequence used by the uplink transmission, and a correspondence between the pilot sequence and the pilot sequence index.
  • the receiver 1121 is configured to receive information about a feedback result of the uplink transmission sent by a network device.
  • the processor 1110 is further configured to determine, according to the pilot sequence index determined by the processing unit, and the information of the feedback result of the uplink transmission received by the receiving unit, a feedback result of the uplink transmission.
  • the receiver 1121 is specifically configured to: receive a bitmap of the network device, where each bit in the bitmap corresponds to a different pilot sequence index;
  • the processor 1110 is specifically configured to:
  • the sending unit is specifically configured to: receive downlink control information DCI that is sent by the network device and that is carried on a physical downlink control channel, where the DCI includes the bitmap; or receive a bearer sent by the network device.
  • the bitmap on the physical downlink shared channel.
  • the processor 1110 is specifically configured to: if the terminal device receives the pilot sequence index sent by the network device, the terminal device determines that the feedback result is an ACK; or if the terminal is The device does not receive the pilot sequence index sent by the network device, and the terminal device determines that the feedback result is a NACK.
  • the pilot sequence index is received by the receiver 1121 through a physical downlink control channel, and the DCI carried on the physical downlink control channel includes the pilot sequence index; or the pilot sequence index is The receiver 1121 receives the physical downlink shared channel.
  • the receiver 1121 is further configured to:
  • the receiving state includes that the terminal device receives the pilot sequence index or does not receive the pilot Sequence index
  • the processor 1110 is specifically configured to: determine the feedback result according to the indication information and the pilot sequence index.
  • the receiver 1121 is further configured to: receive a transmission resource index sent by the network device, where the transmission resource index is used to indicate a frequency domain resource used by the uplink transmission for which the feedback result is directed a location, where the location of the frequency domain resource is a location of the frequency domain resource in a plurality of frequency domain resources in a same time period;
  • the processor 1110 is specifically configured to: determine the feedback result according to the pilot index and the transmission resource index.
  • FIG. 12 is a schematic structural diagram of a system chip according to an embodiment of the present application.
  • the system chip 1200 of FIG. 9 includes an input interface 1201, an output interface 1202, at least one processor 1203, and a memory 1204.
  • the input interface 1201, the output interface 1202, the processor 1203, and the memory 1204 are interconnected by an internal connection path.
  • the processor 1203 is configured to execute code in the memory 1204, and when the code is executed, the processor 1203 implements the method performed by the terminal device in FIG. 3 to FIG.
  • the terminal device 1000 shown in FIG. 10 or the terminal network device 1100 shown in FIG. 11 or the system chip 1200 shown in FIG. 12 can implement the various processes implemented by the terminal device in the foregoing method embodiments of FIG. 3 to FIG. Repeat, no longer repeat them here.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or may be each Units exist physically alone, or two or more units can be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory ROM, a random access memory RAM, a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种免授权传输的方法、网络设备和终端设备。该方法包括:网络设备检测终端设备进行上行传输所使用的导频序列;所述网络设备根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。因此,网络设备通过导频序列索引向终端设备指示针对当前上行传输的反馈结果,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。

Description

免授权传输的方法、网络设备和终端设备
本申请要求于2016年09月26日提交中国专利局、申请号为201610850117.8、发明名称为“免授权传输的方法、网络设备和终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及通信领域中的免授权传输的方法、网络设备和终端设备。
背景技术
在典型无线通信网络(比如,长期演进(Long Term Evolution,LTE)中,上行数据共享信道(Shared Data Channels)的选择基于调度/准许(Scheduling/Grant)机制,完全受基站(Base Station,BS)控制,完整的数据传输过程通常包含调度请求、调度授予、数据传输、传输反馈这4个步骤。在该机制中,用户设备(User Equipment,UE)首先向BS发出上行调度请求。当BS接收到该请求后,向UE发出上行Grant以通知该UE为该UE分配给的上行传输资源。UE据此在经过准许的上行传输资源上进行数据传输。
大规模用户接入是下一代通信网络的典型应用场景之一。当海量用户接入时,如果沿用上述Scheduling/Grant机制,则一方面将导致巨大的信令传输开销以及BS资源分配的调度压力,另一方面将造成显著的传输时延。鉴于此,下一代通信网络为支撑海量用户接入将采用免授权(Grant Free)传输方式。
在免授权传输模式下,基站不会对用户设备的传输资源进行调度,当多个用户设备同时有数据需要传输时,用户设备通常是基于竞争的方式在预先配置的公共时频资源上进行数据传输,免授权传输的过程可以简化为数据传输、传输反馈这2个步骤,可以达到减少信令开销、减少传输时延的效果。由于免授权传输模式下基站不知道用户设备的标识信息,也不知道用户设备进行数据传输所占用的时频资源信息,因此基站无法使用现有技术中的反馈方式对用户设备的数据传输进行反馈。而如果直接对译码成功的用户设备反馈用户标识以指示传输成功,用户标识所占用的比特数过长会降低资源的使用效率。
因此,如何有效的利用无线传输资源,对用户设备的免授权传输进行反馈是急需解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种免授权传输的方法、终端设备和网络设别,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。
第一方面,提供了一种免授权传输的方法,该方法包括:
网络设备检测终端设备进行上行传输所使用的导频序列;
所述网络设备根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
因此,在本申请实施例中,网络设备通过导频序列索引向终端设备指示针对当前上行传输的反馈结果,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。
可选地,在第一方面的一种实现方式中,所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息,包括:所述网络设备根据所述导频序列索引,在比特图中确定所述导频序列索引对应的目标比特位,所述比特图中的每个比特位分别对应不同的导频序列索引;所述网络设备根据所述反馈结果,确定所述目标比特位上的值,所述目标比特位上的值用于表示所述反馈结果为确认ACK或者否定确认NACK;所述网络设备向所述终端设备发送所述比特图。
在该实施例中,导频序列的数量决定了反馈信息字段的长度,网络设备通过固定长度的比特图指示反馈结果,具体通过该比特图中的比特位置上的值指示对应的反馈结果,可以实现更有效地利用无线传输资源对用户设备的免授权传输进行反馈,而且实现起来更加简单。
可选地,对于所述网络设备没有检测到的导频序列,在通过所述比特图向所述终端设备指示反馈结果时,这些导频序列的导频序列索引所对应的比特位上的值表示所述反馈结果为NACK。
可选地,在第一方面的一种实现方式中,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
其中,该比特图中的比特位的个数是根据免授权传输资源上的能够用于上行传输的导频序列的个数确定的,可以是网络设备确定的,也可以是网络设备与终端设备预先约定好的例如协议中规定的。
可选地,在第一方面的一种实现方式中,所述网络设备向所述终端设备发送所述比特图,包括:所述网络设备向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者所述网络设备向所述终端设备发送承载在物理下行共享信道上的所述比特图。
可选地,在第一方面的一种实现方式中,所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息,包括:若所述反馈结果为ACK,所述网络设备向所述终端设备发送所述导频序列索引,或者若所述反馈结果为NACK,所述网络设备禁止向所述终端设备发送所述导频序列索引。
在该实施例中,网络设备通过是否发送导频序列索引来隐含地指示反馈结果,由于导频序列的数量要远小于用户设备的数量,用于标识导频序列索引的比特数要远小于标识用户标识的比特数,因此相比于通过用户标识来指示反馈结果,可以节省所使用的无线传输资源。
可选地,在第一方面的一种实现方式中,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
可选地,在第一方面的一种实现方式中,所述网络设备向所述终端设备发送所述导频 序列索引,包括:所述网络设备向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述导频序列索引;或者所述网络设备向所述终端设备发送承载在物理下行共享信道上的所述导频序列索引。
可选地,在第一方面的一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引。
可选地,在第一方面的一种实现方式中,在所述网络设备向所述终端设备发送指示信息之前,所述方法还包括:所述网络设备根据同时进行上行传输的终端设备的数量,和能够用于上行传输的导频序列的个数,确定所述指示信息。
例如,导频序列索引所占用的比特位的个数,其所能表示的导频序列索引的总数,应大于或等于能够用于上行传输的导频序列的总数,比特图中的比特位的总数,应大于或等于能够用于上行传输的导频序列的总数。当传输成功的终端设备的数量超过一定阈值,需要发送的多个导频序列索引所占的总比特数,会大于能够用于上行传输的导频序列的总数,这时,该指示信息可以指示终端设备根据比特图确定反馈结果;当传输成功的终端设备的数量少于一定阈值,需要发送的多个导频序列索引所占的总比特数,小于能够用于上行传输的导频序列的总数,这时,该指示信息可以指示终端设备根据导频序列索引的接收状态,确定该反馈结果。
可选地,在第一方面的一种实现方式中,所述方法还包括:所述网络设备向所述终端设备发送传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置。
因此,通过在反馈信息中增加传输资源索引,可以支持在同一时间段内的同时配置有多个上行免授权传输资源,有效支持终端设备同时在多个时频资源上进行上行免授权传输。
第二方面,提供了一种免授权传输的方法,该方法包括:
终端设备根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
所述终端设备接收网络设备发送的所述上行传输的反馈结果的信息;
所述终端设备根据所述导频序列索引,和所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
因此,在本申请实施例中,终端设备通过导频序列索引确定网络设备所指示的针对当前上行传输的反馈结果,能够有效地利用无线传输资源获取网络设备针对免授权传输进行的反馈。
可选地,在第二方面的一种实现方式中,所述终端设备接收所述网络设备发送的所述上行传输的反馈结果的信息,包括:所述终端设备接收所述网络设备发送的比特图,所述比特图中的每个比特位分别对应不同的导频序列索引;
所述终端设备根据所述导频序列索引和所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果,包括:所述终端设备根据所述导频序列索引,在所述比特图中确定所 述导频序列索引对应的目标比特位;所述终端设备根据所述目标比特位上的值,确定所述反馈结果,所述目标比特位上的值用于表示所述反馈结果为确认ACK或否定确认NACK。
其中,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
可选地,在第二方面的一种实现方式中,所述终端设备接收所述网络设备发送的比特图,包括:所述终端设备接收所述网络设备发送的承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者所述终端设备接收所述网络设备发送的承载在物理下行共享信道上的所述比特图。
可选地,在第二方面的一种实现方式中,所述终端设备根据所述导频序列索引,和所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果,包括:若所述终端设备接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为ACK;或者若所述终端设备没有接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为NACK。
可选地,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
可选地,在第二方面的一种实现方式中,所述导频序列索引是所述终端设备通过物理下行控制信道接收的,所述物理下行控制信道上承载的DCI包括所述导频序列索引;或者所述导频序列索引是所述终端设备通过物理下行共享信道接收的。
可选地,在第二方面的一种实现方式中,在所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果之前,所述方法还包括:所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引;
所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果,包括:所述终端设备根据所述指示信息和所述导频序列索引,确定所述反馈结果。
可选地,在第二方面的一种实现方式中,所述方法还包括:所述终端设备接收所述网络设备发送的传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置;
所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果,包括:所述终端设备根据所述导频索引和所述传输资源索引,确定所述反馈结果。
因此,通过在反馈信息中增加传输资源索引,使得终端设备能够同时在多个时频资源上进行上行免授权传输。
第三方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的免授权传输的方法中由网络设备执行的各个过程。该网络设备包括处理单元和发送单元。所述处理单元,用于检测终端设备进行上行传输所使用的导频序列;根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;所述发送单元,用于根据所述处理单元确定的所述导频序列索引,向所述终端设备发送所 述上行传输的反馈结果的信息。
第四方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及各种实现方式中的免授权传输的方法中由终端设备执行的各个过程。该网络设备包括处理单元和接收单元。所述处理单元,用于根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;所述接收单元,用于接收网络设备发送的所述上行传输的反馈结果的信息;所述处理单元还用于,根据所述处理单元确定的所述导频序列索引,以及所述接收单元接收的所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
第五方面,提供了一种网络设备,该网络设备可以用于执行前述第一方面及各种实现方式中的免授权传输的方法中由网络设备执行的各个过程。该网络设备包括处理器和发送器。所述处理器,用于检测终端设备进行上行传输所使用的导频序列;根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;所述发送器,用于根据所述处理单元确定的所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
第六方面,提供了一种终端设备,该终端设备可以用于执行前述第二方面及各种实现方式中的免授权传输的方法中由终端设备执行的各个过程。该终端设备包括处理器和发送器。所述处理器,用于根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;所述接收器,用于接收网络设备发送的所述上行传输的反馈结果的信息;所述处理器还用于,根据所述处理单元确定的所述导频序列索引,以及所述接收单元接收的所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第一方面,及其各种实现方式中的任一种免授权传输的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种免授权传输的方法。
基于本申请实施例所述的方法,通过利用导频序列索引向终端设备指示针对当前上行传输的反馈结果,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是现有技术中包括重传的上行免授权传输的示意性流程图。
图3是本申请实施例的免授权传输的方法的流程交互图。
图4是本申请另一实施例的免授权传输的方法的流程交互图。
图5是本申请另一实施例的免授权传输的方法的流程交互图。
图6所示的本申请实施例的传输资源索引的示意图。
图7是本申请实施例的网络设备的结构框图。
图8是本申请实施例的网络设备的结构框图。
图9本申请实施例的系统芯片的示意性结构图。
图10是本申请实施例的终端设备的结构框图。
图11是本申请实施例的终端设备的结构框图。
图12本申请实施例的系统芯片的示意性结构图。
具体实施方式
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
由于大量连接的存在,使得未来的无线通信系统和现有的通信系统存在很大差异。大量连接需要消耗更多的资源接入UE以及需要消耗更多的资源用于终端设备的数据传输相关的调度信令的传输。
图1示出了应用本申请实施例的一种通信系统的示意性架构图。如图1所示,该通信系统可以包括网络设备10和终端设备20至终端设备70(图中简称为UE)通过无线连接 或有线连接或其它方式连接。
本申请实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备对设备(Device to Device,D2D)网络或者机器对机器/人(Machine to Machine/Man,M2M)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请提出的方案可以应用于了免授权(Grant Free)传输。Grant free传输可以解决未来网络中的多种业务,例如机器类通信(Machine Type Communication,MTC)业务或者超可靠和低延迟通信(Ultra Reliable and Low Latency Communication,URLLC)业务,以满足低时延、高可靠的业务传输需求。Grant free传输可以针对的是上行数据传输。本领域技术人员可以知道,Grant free传输也可以叫做其他名称,比如叫做自发接入、自发多址接入、或者基于竞争的多址接入等。Grant Free传输可以理解为包括但不限于如下含义中的任意一种含义,或,多种含义,或者多种含义中的部分技术特征的组合:
1、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源;终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据;网络设备在所述预先分配的多个传输资源中的一个或多个传输资源上检测终端设备发送的上行数据。所述检测可以是盲检测,也可能根据所述上行数据中某一个控制域进行检测,或者是其他方式进行检测。
2、免授权传输可以指:网络设备预先分配并告知终端设备多个传输资源,以使终端设备有上行数据传输需求时,从网络设备预先分配的多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。
3、免授权传输可以指:获取预先分配的多个传输资源的信息,在有上行数据传输需求时,从所述多个传输资源中选择至少一个传输资源,使用所选择的传输资源发送上行数据。获取的方式可以从网络设备获取。
4、免授权传输可以指:不需要网络设备动态调度即可实现终端设备的上行数据传输的方法,所述动态调度可以是指网络设备为终端设备的每次上行数据传输通过信令来指示传输资源的一种调度方式。可选地,不需要网络设备动态调度也可以理解为静态,和/或,半静态调度。其中,本申请实施例中提到的“A和/或B”可以表示A和B,或,A,或B,不再赘述。可选地,实现终端设备的上行数据传输可以理解为允许两个或两个以上终端设备的数据在相同的时频资源上进行上行数据传输。可选地,所述传输资源可以是UE接收所述的信令的时刻以后的一个或多个传输时间单位的传输资源。一个传输时间单位可以是指一次传输的最小时间单元,比如传输时间间隔(Transmission Time Interval,TTI),数值可以为1ms,或者可以是预先设定的传输时间单元。
5、免授权传输可以指:终端设备在不需要网络设备授权的情况下进行上行数据传输。所述授权可以指终端设备发送上行调度请求给网络设备,网络设备接收调度请求后,向终端设备发送上行授权,其中所述上行授权指示分配给终端设备的上行传输资源。
6、免授权传输可以指:一种竞争传输方式,具体地可以指多个终端在预先分配的相同的时频资源上同时进行上行数据传输,而无需基站进行授权。
所述的数据可以为包括业务数据或者信令数据。
所述盲检测可以理解为在不预知是否有数据到达的情况下,对可能到达的数据进行的 检测。所述盲检测也可以理解为没有显式的信令指示下的检测。
所述传输资源可以包括但不限于如下资源的一种或多种的组合:时域资源,如无线帧、子帧、符号等;频域资源,如子载波、资源块等;空域资源,如发送天线、波束等;码域资源,如稀疏码多址接入(Sparse Code Multiple Access,SCMA)码本组、低密度签名(Low Density Signature,LDS)组、CDMA码组等;上行导频资源;交织资源;信道编码方式。
如上的传输资源可以根据包括但不限于如下的控制机制进行的传输:上行功率控制,如上行发送功率上限控制等;调制编码方式设置,如传输块大小、码率、调制阶数设置等;重传机制,如混合自动重传请求(Hybird Automatic Repeat reQuest,HARQ)机制等。
图2所示为典型的包括重传的上行免授权传输的示意性流程图。图2中示出了网络设备10和终端设备20,以网络设备10与终端设备20之间的免授权传输为例进行说明。根据图2所示,该包括重传的上行免授权传输的过程如下:
201,终端设备20选择传输参数例如导频序列,并获得相应的调制编码模式等传输信息。
上行免授权传输的一个特征是终端设备20进行上行免授权传输前,首先选择导频序列,并根据导频序列指示的传输信息,在配置的上行免授权传输时频资源块上进行上行免授权传输。可以看出,对每个传输块的传输,终端设备可以选择导频序列,该选择的方式可以是随机选择和/或根据一定的预设规则进行选择,因此导频序列与终端设备之间没有绑定关系。但是在一次传输过程中,在没有导频碰撞的场景下,一个导频对应一个终端设备的数据传输;在有导频碰撞的场景,一个导频对应至少两个终端设备的数据传输。
202,终端设备20进行上行数据的发送。
其中,该上行数据是根据导频序列所指示的传输信息,经相应的编码调制处理后在指定的免授权上行时频物理资源上进行发送的。
203,网络设备10检测导频信号,并根据检测出的导频序列所指示的传输信息,对上行数据进行解调译码。如果译码失败,则执行204。
网络设备10通过盲检的方式检测终端设备20发送的数据,即网络设备10首先盲检导频信号,在检测出导频序列后,网络设备10根据导频信息所指示的传输信息,对接收到的上行数据进行解调译码。
204,网络设备10向终端设备20发送非确认(Negative ACKnowledgment,NACK)。
205,终端设备20监测网络设备10的反馈。
如果发现传输失败,则执行206和207,即重新选择传输参数,并进行重传。
206,终端设备20重新选择传输参数例如导频序列,并获得相应的调制编码模式等传输信息。
207,终端设备20重新进行该上行数据的发送。
网络设备10接收到终端设备20重新发送的数据后,对该上行数据进行合并译码,如果译码成功,则向终端设备20发送确认(ACKnowledgment,ACK)。
在LTE系统中,有多个终端设备在进行上行数据的传输时,终端设备与终端设备之间通过数据传输的时频资源的正交性实现多终端设备之间的数据分离。网络设备以1bit反馈是否成功传输,多个终端设备的传输反馈可以映射到同一个组里面,例如通过组序号、正交序列索引等来标识。其中组序号和正交序列索引可以由网络配置的系统带宽、网络设 备为终端设备传输配置的时频资源索引、导频序列位移等参数计算获得。
而在免授权传输模式下,当多个终端设备同时有数据到达时,由于网络设备没有为终端设备调度传输资源,终端设备通常是基于竞争的方式在预先配置的公共时频资源上进行传输数据,由于免授权传输模式下,网络设备不知道终端设备的标识信息,也不知道终端设备进行数据传输所占用的时频资源的信息,因此网络设备无法使用现有技术中的反馈方式对终端设备的数据传输进行反馈。
容易想到的一个反馈方式是直接对译码成功的终端设备反馈用户标识,指示成功传输。但这种方法存在一个问题,用户标识比特数较长,资源使用效率低。例如使用16比特的物理层小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI),由于C-RNTI是小区唯一拥有的,而随着未来虚拟小区等的出现,小区覆盖范围会远远大于目前小区的覆盖范围,为了在小区范围内唯一标识用户,需要使用更长的用户标识,因此网络设备直接反馈用户标识会占用更多的传输资源。
本申请实施例的免授权传输的过程中的HARQ反馈方式,能够占用更少的传输资源,节省了传输资源。
应理解,本申请实施例提到的导频信号还可以称为参考信号,是由发射端提供给接收端用于信道估计、信道探测或信道状态检测的一种信号。如果导频数量较少,一方面无法通过导频区分每个用户,需要用户共享导频,而当发生导频碰撞时,基站无法进行准确的用户检测和信道估计,不能成功解调数据。
应理解,在本申请实施例中,导频信号的索引意味着可以通过该索引确定导频信号。
可选地,在本申请实施例中,可以通过该索引直接确定导频信号,或者,可以将该索引结合其他信息确定导频信号。本申请实施例提到的索引还可以称为编号、或查找参数等。
图3是根据本申请实施例的免授权传输的方法300的流程交互图。图3所示的方法中,数据和导频信号的发送端可以为终端设备或网络设备,数据和导频信号的接收端可以为终端设备或网络设备。
以下将以数据和导频信号的发送端为终端设备,以及数据和导频信号的接收端为网络设备为例进行说明,但本申请实施例并不限于此。例如,数据和导频信号的发送端为终端设备,数据和导频信号的接收端为另一终端设备,此时本申请实施例可以应用D2D传输。
图3示出了网络设备10和终端设备20,但网络设备10可以与包括终端设备20在内的多个终端设备之间利用本申请实施例的方法进行信息传输,其他终端设备所执行的方法可以参考终端设备20所执行的方法,为了简洁,这里不再赘述。可选地,该方法可以应用于免授权传输,也可以应用于其他场景,这里以免授权传输为例进行描述,即终端设备20与网络设备10进行的上行传输为免授权传输,所使用的传输资源为免授权传输资源。如图3所示,该免授权传输的方法包括:
在310中,网络设备10检测终端设备20进行上行传输所使用的导频序列。
具体而言,终端设备20进行上行免授权传输前,首先选择导频序列,并根据导频序列所指示的传输信息在配置的上行免授权传输时频资源块上进行上行免授权传输,该上行数据可以是根据导频序列所指示的传输信息,经相应的编码调制处理后在指定的免授权上行时频物理资源上进行发送的。网络设备10通过盲检的方式检测终端设备20发送的上行数据,即网络设备10首先盲检导频,在检测出导频序列后,网络设备10根据导频信息所 指示的传输信息对该上行数据进行解调译码。通常情况下,导频检测成功的概率要远高于数据译码成功的概率,因此一般导频序列容易检测出,即使有碰撞也能检测出,但数据可能由于导频碰撞或信道太差而译码失败。
对免授权传输时频资源块上的传输,每个终端设备可以选择导频序列,该选择可以是随机和/或根据预设规则进行的选择,因此导频序列和终端设备没有绑定关系。但是在一次传输过程中,在没有导频碰撞的场景下,一个导频序列对应一个终端设备的上行传输,在有导频碰撞的场景,一个导频对应两个或多个终端设备的上行传输。
在320中,网络设备10根据该导频序列,以及导频序列与导频序列索引的对应关系,确定该导频序列的导频序列索引。
具体而言,网络设备10检测到终端设备20进行上行传输所使用的该导频序列后,可以根据导频序列与导频序列索引的对应关系,确定该导频序列的导频序列索引。导频序列与导频序列索引之间的该对应关系,可以是终端设备20根据免授权传输资源上能够用于上行传输的导频序列自行确定并告知网络设备10的,也可以是网络设备10确定后通知终端设备20的;还可以是网络设备10与终端设备20之间事先约定好例如在协议中规定的。网络设备10与终端设备20维护的导频序列与导频序列索引的对应关系是相同的。例如表一所示的导频序列与导频序列索引的对应关系,导频序列索引与导频序列是一一对应的,每个导频序列索引唯一地指示一个导频序列,例如导频序列索引0对应导频序列0,导频序列索引1对应导频序列1,依次,导频序列索引i对应导频序列i。
表一
导频序列索引 导频序列
索引0 序列0
索引1 序列1
索引i 序列i
在330中,网络设备10根据该导频序列索引,向终端设备20发送该上行传输的反馈结果的信息。
具体地说,终端设备20和网络设备10维护相同的导频序列与导频序列索引的对应关系,则网络设备10可以根据检测出的导频序列所对应的导频序列索引,向终端设备20指示针对该上行传输的反馈结果,例如该反馈结果可以为确认ACK,表示该上行传输成功,即网络设备10根据检测到的终端设备20的该导频序列,对该终端设备20发送的该上行数据成功译码;或者该反馈结果可以为否定确认NACK,表示该上行传输失败,例如网络设备10没有检测到终端设备20的导频序列,或网络设备10根据检测到该导频序列,但是根据该导频序列对终端设备20发送的数据进行译码时失败。
因此,本申请实施例中,通过利用导频序列索引向终端设备指示针对当前上行传输的反馈结果,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。
在本申请实施例中,网络设备10可以通过两种方式向终端设备20指示针对该上行传输的反馈结果。一种方式是网络设备10通过比特图(bitmap)的方式在对应的导频序列索引的位置指示该反馈结果;另一种方式是网络设备10直接通过导频序列索引指示该反馈结果。应理解,本申请实施例中的比特图,也可以称为比特位图或位图等。
下面,结合图4详细地说明网络设备10如何通过这两种方式指示针对该上行传输的反馈结果。
图4是本申请另一实施例的免授权传输的方法的流程交互图。如图4所示,网络设备10通过比特图的方式向终端设备20指示该反馈结果,上述的330可以由331至333替代。
在331中,网络设备10根据该导频序列索引,在比特图中确定该导频序列索引对应的目标比特位。
其中,该比特图中的每个比特位分别对应不同的导频序列索引。
具体地说,网络设备10对上行免授权传输先进行导频检测,再进行解调译码,获得反馈结果,并将对终端设备20发送的上行数据的译码结果,以比特图的方式在对应的导频序列索引位置上指示给终端设备20。比特图中的每个比特位分别对应不同的导频序列索引,每个导频序列索引一一对应于该比特图中的每个比特位。网络设备10确定了该上行传输的导频序列所对应的导频序列索引后,可以根据该导频序列索引与比特图中的比特位的对应关系,确定该导频序列索引对应的目标比特位。
可选地,该比特图中的比特位的个数是根据免授权传输资源上的能够用于上行传输的导频序列的个数确定的,可以是网络设备10确定的,也可以是网络设备10与终端设备20预先约定好的例如协议中规定的。
进一步地,该比特图中的比特位的个数需要大于或等于能够用于上行传输的导频序列的个数。
在332中,网络设备10根据该反馈结果,确定该目标比特位上的值。
其中,该目标比特位上的值用于表示该反馈结果为确认ACK或者否定确认NACK。
具体地说,如果网络设备10根据检测到的终端设备20的该导频序列,对该终端设备20发送的该上行数据成功译码,则需要将表示传输成功的反馈结果指示给终端设备20,例如向终端设备20反馈ACK;如果在网络设备10没有检测到终端设备20的导频序列,或检测到该导频序列但根据该导频序列对上行数据译码失败等情况下,网络设备10需要将表示传输失败的反馈结果指示给终端设备20,例如向终端设备20反馈NACK。这时,如果需要反馈ACK,网络设备10可以根据终端设备20进行该上行传输所使用的导频序列所对应的导频序列索引,在比特图中确定该导频序列索引的位置,即该导频序列索引对应的目标比特位,并通过将该目标比特位上的值置为1,以表示该反馈结果为ACK;或者如果需要反馈NACK,则将该目标比特位上的值置为0,以表示该反馈结果为NACK。应理解,这里也可以用0表示反馈结果为NACK,用1表示反馈结果为ACK。
在333中,网络设备10向终端设备20发送该比特图。
可选地,网络设备10向终端设备20发送该比特图,包括:网络设备10向终端设备20发送承载在物理下行控制信道上的下行控制信息(Downlink Control Information,DCI), 该DCI包括所述比特图;或者网络设备10向终端设备20发送承载在物理下行共享信道上的该比特图。
具体地说,网络设备10可以生成一个DCI,该DCI包括该比特图,可以设计该DCI的DCI格式(DCI format)为与比特图这种控制信息相对应的格式。该DCI可以承载在普通的物理下行控制信道(Physical Downlink Control CHannel,PDCCH)中,也可以承载在增强物理下行控制信道(Enhanced PDCCH,EPDCCH)、机器类型通信(Machine Type Communication,MTC)的物理下行控制信道(MTC PDCCH,MPDCCH)、窄带物理下行控制信道(Narrowband PDCCH,NBPDCCH),以及未来新设计的下行物理控制信道(XX-PDCCH)上。
网络设备10也可以生成一个传输块,用于发送该比特图,该比特图可以承载在典型的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)或未来新设计的下行物理共享信道上,此时该比特图作为数据来传输,由传统的DCI format指示一个下行传输。
应理解,由于网络设备10向终端设备20指示的反馈结果中,包括了针对很多上行传输的反馈结果,也就是该比特图中的每一个比特位上都携带有针对不同上行传输的反馈结果的指示,此时,对DCI循环冗余校验(Cyclic Redundancy Check,CRC),可以使用通用的免授权无线网络临时标识(Grant Free Radio Network Temporary Identifier,GF-RNTI)进行加扰。
下面结合表二,以一个详细的示例来说明如何通过该方式,即比特图的方式,来指示反馈结果。表二示出了一个比特图。以上行免授权传输时频资源上能够用于上行传输的导频序列为96个为例进行说明。这时,导频序列索引也为96个,分别对应于96个导频序列。
用于指示反馈结果的该比特图至少需要96个比特(bit),即12字节(Byte)。这96个比特与上述96个导频序列索引一一对应。在该比特图中,可以定义最低位例如第0位,其对应于导频序列索引0,第1位对应于导频序列索引1,以此类推,第95位对应于导频序列索引95。例如表二所示的比特图,由右向左,第一行分别为第0个比特位、第1个比特位、第2个比特位……第7个比特位,第二行分别为第8个比特位、第9个比特位、第10个比特位……第15个比特位,依次类推。
网络设备10指示的反馈结果,可以0指示传输失败(反馈结果为NACK),以1指示传输成功(反馈结果为ACK)。假设终端设备20使用导频序列0进行上行传输,对应的导频序列索引为0,网络设备10检测出使用导频序列索引0的终端设备20有上行传输,但由于信道太差或导频碰撞使得终端设备20发送的该上行数据没有译码成功,此时网络设备10在比特图中的第0位的位置上置0,指示数据传输失败;假设终端设备20使用导频序列1进行上行传输,对应的导频序列索引为1,网络设备10检测出使用导频序列索引1的终端设备20有上行传输,并且对用户数据成功译码,此时,网络设备10在比特图中的第1位的位置上置1,指示数据传输成功,如表二所示。
表二
Figure PCTCN2017098315-appb-000001
Figure PCTCN2017098315-appb-000002
对于网络设备10没有检测到导频序列的场景,有可能是这个导频序列在本次发送中没有被终端设备选中用于发送,也有可能是导频本身没有被检测出来,在指示反馈结果时,网络设备10没有获取到的导频序列信息,这些导频序列的导频序列索引所对应的所有比特位上的值,可以均置为0。
该实施例中,导频序列的数量决定了反馈信息字段的长度,网络设备通过固定长度的比特图指示反馈结果,具体通过该比特图中的比特位置上的值指示对应的反馈结果,可以实现更有效地利用无线传输资源对用户设备的免授权传输进行反馈,而且实现起来更加简单。
本申请提出的另一种指示反馈结果的方式,是直接通过导频序列索引指示该反馈结果。下面具体说明。
作为另一个实施例,网络设备10根据该导频序列索引,向终端设备20指示针对该上行传输的反馈结果,包括:
若所述反馈结果为ACK,网络设备10向终端设备20发送该导频序列索引,或者若该反馈结果为NACK,网络设备10禁止向终端设备20发送该导频序列索引。
具体地说,网络设备10可以直接通过发送导频序列索引来指示针对该上行传输的反馈结果。在终端设备20的上行传输成功的情况下,网络设备10根据检测到的终端设备20选择的导频序列,确定该导频序列对应的导频序列索引,并直接将该导频序列索引发送给终端设备20,以指示反馈结果为ACK;而对于传输不成功时,网络设备10不向终端设备20发送该导频序列索引,从而隐式地指示该反馈结果为NACK。
可选地,该导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
仍然以96个导频序列为例进行说明,由于96介于26和27之间,所以这里可以设定导频序列索引所占的比特位为7比特,7比特最大可以表示128个数,因此可以用7比特指示导频序列索引。
下面结合表三,以一个详细的示例来阐述如何通过该方式,即发送导频序列索引的方式,来指示反馈结果。表三示出了当前所有传输成功的终端设备的导频序列索引,以导频序列索引所占的比特位的个数为7,且每个导频序列索引按行分开排列为例来说明。
假设终端设备20使用导频序列0进行上行传输,对应的导频序列索引为0,如果网络设备10对该上行数据译码成功,此时网络设备10向终端设备20发送该导频序列索引0,指示数据传输成功。该导频序列索引0包括7个比特,即0000000。因此,如表三中第一行所示,导频序列索引0000000会被发送给终端设备20。
如果网络设备10检测出使用导频序列索引0的终端设备20有上行传输,但由于信道 太差或导频碰撞等原因使得终端设备20发送的该上行数据译码失败,这时,网络设备10不会向终端设备20发送该导频序列索引0,从而向终端设备20指示数据传输失败,在表三所示的网络设备10发送的所有成功传输的终端设备的导频序列索引中,就不会包括该导频序列索引0。
表三
Figure PCTCN2017098315-appb-000003
可选地,网络设备10向终端设备20发送该导频序列索引,包括:
网络设备10向终端设备20发送承载在物理下行控制信道上的下行控制信息DCI,该DCI包括该导频序列索引;或者网络设备10向终端设备20发送承载在物理下行共享信道上的该导频序列索引。
在该实施例中,网络设备通过是否发送导频序列索引来隐含地指示反馈结果,由于导频序列的数量要远小于用户设备的数量,用于标识导频序列索引的比特数要远小于标识用户标识的比特数,因此相比于通过用户标识来指示反馈结果,可以节省所使用的无线传输资源。
在340中,终端设备20根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定该导频序列的导频序列索引。
具体地说,终端设备20选择导频序列并根据该导频序列所指示的传输信息,在配置的上行免授权传输时频资源块上,进行上行免授权传输。终端设备20发送上行数据后等待网络设备反馈的传输结果。终端设备20可以根据导频序列与导频序列索引的对应关系,确定该导频序列的导频序列索引,从而在接收到网络设备针对反馈结果的指示后,根据该导频序列索引确定该反馈结果。导频序列与导频序列索引之间的该对应关系,可以是终端设备20根据免授权传输资源上能够用于上行传输的导频序列自行确定并告知网络设备10的,也可以是网络设备10确定后通知终端设备20的,还可以是网络设备10与终端设备20之间事先约定好例如在协议中规定的。网络设备10与终端设备20维护的导频序列与导频序列索引的对应关系是相同的。
在350中,终端设备20根据该导频序列索引,确定网络设备10指示的针对该上行传输的反馈结果。
具体而言,终端设备20和网络设备10维护相同的导频序列与导频序列索引的对应关 系,终端设备20根据用于发送上行数据的导频序列所对应的导频序列索引,确定网络设备10所指示的针对该上行传输的反馈结果,例如该反馈结果可以为确认ACK,表示该上行传输成功;或者该反馈结果可以为否定确认NACK,表示该上行传输失败,终端设备20需要对传输失败的数据进行重传。
同样,终端设备20也可以通过上述的两种方式,确定网络设备10所指示针对该上行传输的反馈结果。一种方式是终端设备20根据网络设备10发送的比特图,确定网络设备10所指示的针对该上行传输的反馈结果;另一种方式是终端设备20根据网络设备10发送的导频序列索引,确定该反馈结果。下面详细地说明终端设备20如何确定网络设备10所指示的针对该上行传输的反馈结果。
图5是本申请另一实施例的免授权传输的方法的流程交互图。如图5所示,终端设备20根据网络设备10发送的比特图,确定网络设备10所指示的该反馈结果,在350之前,该方法还可以包括351,这时,350可以由352和353替代。
在351中,终端设备20接收网络设备10发送的比特图。
其中,该比特图中的每个比特位分别对应不同的导频序列索引。
可选地,终端设备20接收网络设备10发送的比特图,包括:
终端设备20接收网络设备10发送的承载在物理下行控制信道上的下行控制信息DCI,该DCI包括该比特图;或者终端设备20接收网络设备10发送的承载在物理下行共享信道上的该比特图。
具体地说,终端设备20接收到的该DCI可以是承载在PDCCH中,也可以承载在增强物理下行控制信道EPDCCH、机器类型通信的物理下行控制信道MPDCCH、窄带物理下行控制信道NBPDCCH,以及未来新设计的下行物理控制信道XX-PDCCH上。
终端设备20接收到的该比特图还可以是承载在普通的物理下行共享信道PDSCH或未来新设计的下行物理共享信道上,此时终端设备20接收到的该比特图相当于下行数据,由传统的DCI format来指示该下行传输。
在352中,终端设备20根据该导频序列索引,在比特图中确定该导频序列索引对应的目标比特位。
具体地说,终端设备20接收该比特图后,该比特图中的每个比特位分别对应不同的导频序列索引,每个导频序列索引一一对应于该比特图中的每个比特位。终端设备20确定了该上行传输的导频序列所对应的导频序列索引后,可以根据该导频序列索引与比特图中的比特位的对应关系,确定该导频序列索引对应的目标比特位。
在353中,终端设备20根据该目标比特位上的值,确定该反馈结果。
其中,该目标比特位上的值用于表示该反馈结果为ACK或NACK。
具体地说,终端设备20根据自己的导频序列索引,在接收到的比特图中,确定该导频序列索引对应的目标比特位后,判断该目标比特位上的值。该目标比特位上的值就指示了该反馈结果。例如,如果该目标比特位上的值为1,终端设备20确定该反馈结果为ACK,表示该上行传输成功;如果该目标比特位上的值为0,则终端设备20确定该反馈结果为NACK,表示该上行传输失败,需要进行必要的重传。应理解,这里在比特图中也可以用0指示反馈结果为NACK,用1指示反馈结果为ACK。
这里仍以上行免授权传输时频资源上能够用于上行传输的导频序列为96个为例举例 说明。如表2所示,终端设备20确定了用于传输该上行数据的导频序列的导频序列索引后,在网络设备10发送的比特图中的96个比特位中,确定与该导频序列索引对应的目标比特位。假设终端设备20使用导频序列0进行上行传输,对应的导频序列索引为0,那么终端设备20在比特图中确定第0位上的值,如表2所示,该第0为上的值为0,则终端设备20确定网络设备10指示的该反馈信息为NACK,表示数据传输失败,需要重传。假设终端设备20使用导频序列1进行上行传输,对应的导频序列索引为1,那么终端设备20在比特图中确定第1位上的值,如表2所示,该第1为上的值为1,则终端设备20确定网络设备10指示的该反馈信息为ACK,表示数据传输成功。
该实施例中,导频序列的数量决定了反馈信息字段的长度,终端设备通过比特图的方式确定反馈结果,可以实现无线传输资源的有效利用,实现起来也更加简单。
在350中,终端设备20确定反馈结果可以通过另一种方式,就是终端设备20直接根据导频序列索引的接收状态来确定该反馈结果,下面具体说明。
作为另一个实施例,终端设备20根据该导频序列索引,确定网络设备10指示的针对该上行传输的反馈结果,包括:
若终端设备20接收到网络设备10发送的该导频序列索引,终端设备20确定该反馈结果为ACK;或者,若终端设备20没有接收到网络设备10发送的该导频序列索引,终端设备20确定该反馈结果为NACK。
具体地说,终端设备20可以根据导频序列索引的接收状态来确定该反馈结果,该接收状态可以包括终端设备20接收到该导频序列索引或者没有接收到该导频序列索引。在终端设备20的上行传输成功的情况下,网络设备10直接发送终端设备20对应的导频序列索引,以指示反馈结果为ACK;而对于传输不成功时,网络设备10不会向终端设备20发送该导频序列索引,从而隐式地指示该反馈结果为NACK。因此,终端设备20如果接收到了自己的导频序列索引,那么就认为网络设备10反馈的是ACK,该上行传输是成功的,终端设备20可以继续传输新的上行数据;如果终端设备20没有接收到自己的导频序列,那么就认为网络设备10反馈的是NACK,该上行传输是失败的,终端设备20会进行必要的重传。
可选地,导频序列索引是终端设备20通过物理下行控制信道接收的,该物理下行控制信道上承载的DCI包括该导频序列索引;或者该导频序列索引是终端设备20通过物理下行共享信道接收的。
在该实施例中,网络设备通过是否发送导频序列索引来隐含地指示反馈结果,终端设备只需要判断自己是否接收到了该导频序列索引,就能够获取针对该上行传输的反馈结果,由于导频序列的数量要远小于用户设备的数量,用于标识导频序列索引的比特数要远小于标识用户标识的比特数,因此相比于根据用户标识来确定网络设备所指示的反馈结果,可以节省所使用的无线传输资源。
需要注意的是,网络设备10发送该比特图时,只需要96比特的大小,就能够最多指示96个终端设备的上行传输的反馈结果。这时可以使用公共的加扰序列对该比特图的信息进行加扰,多个终端设备使用相同的序列对该比特图的信息进行解扰,每个终端设备解扰后得到该比特图的信息,在该比特图中找到各自的目标比特位,从而接收该目标比特位上的指示该反馈结果的值。本申请实施例中,终端设备接收该比特图,可以指终端设备获 取该比特图后接收该目标比特位上的该反馈信息。终端设备接收导频序列索引也可以指接收多个导频序列索引中的对应于自己导频序列的导频序列索引,具体可以参考接收该目标比特位上的值的过程,这里不再赘述。
网络设备10根据上述的加扰方式发送导频序列索引以指示反馈信息时,可以在一块传输资源上同时发送多个传输成功的终端设备的导频序列索引,例如表三所示的情况。
在上面描述的本申请实施例的免授权传输的方法中,分别描述了网络设备向终端设备指示针对该上行传输的反馈结果的不同方式。在实现有效的ACK/NACK反馈的两种方法中,从有效利用无线传输资源看,在不同场景下,有可能前一种方式(通过比特图来指示反馈结果)比第二种方式(通过是否发送导频索引的方式指示反馈结果)更节省无线资源。但是在另一些场景下,可能第二种方式比第一种方式更节省无线资源。
仍以免授权传输资源上能够用于上行传输的导频序列为96个为例进行说明,如果以7bit反馈导频序列索引,则当需要反馈的终端设备的数量超过13个时,需要用于指示反馈结果的比特数就会超过96bit。此时,网络设备发送导频序列索引以指示反馈结果,会比以比特图的方式指示反馈结果,占用更多的无线资源。反之,当需要反馈的终端设备的数量不超过13个时,发送导频序列索引就会比以比特图方式指示反馈结果占用更少的无线资源。
考虑网络设备进行反馈结果的指示时,实现对下行传输资源的有效使用,可以根据译码成功的终端设备的数量和能够用于上行传输的导频序列的个数,自适应确定上行免授权传输用哪种方式进行反馈,并向终端设备进行指示,例如以1bit进行指示,用0指示终端设备根据比特图确定反馈结果,用1指示终端设备根据导频序列索引的接收状态确定反馈结果。
作为另一个实施例,该方法还包括:
网络设备10向终端设备20发送指示信息,该指示信息所指示的内容包括:
指示终端设备20根据比特图确定该反馈结果,或者指示终端设备20根据导频序列索引的接收状态确定该反馈结果,该接收状态包括终端设备20接收到该导频序列索引或者没有接收到该导频序列索引。
具体地说,为了使网络设备10在指示反馈结果时,使用最少的传输资源,网络设备10可以向终端设备20指示信息,用于指示对本次传输反馈使用的是两种反馈方法中的哪一种。
该实施例中,网络设备10向终端设备20指示上行免授权传输用哪种方式进行指示反馈结果,可以通过两种指示方式进行指示。
方式1
长周期指示,即网络设备10按照一定的时间周期,指示终端设备20在该时间周期内使用某种固定的方式确定网络设备10指示的反馈结果。
仍以免授权传输资源上能够用于上行传输的导频序列为96个为例进行说明,如果网络设备10发现在一段时间内,在一个传输时间间隔(Transmission Time Interval,TTI)内只有远少于13个终端设备同时利用免授权资源发送上行数据,这时,网络设备10可以通过例如广播的方式,下发指示信息,指示终端设备根据导频序列索引的接收状态确定该反馈结果,该接收状态包括终端设备20接收到该导频序列索引或者没有接收到该导频序列 索引;而当网络设备10发现在一段时间内,在一个TTI内一直有超过13个终端设备同时利用免授权资源发送上行数据时,这时,网络设备10可以通过例如广播的方式下发指示信息,指示终端设备20根据比特图确定该反馈结果。
方式2
网络设备10每次指示该反馈结果时,在反馈信息即比特图或导频序列索引中用1bit进行指示,指示终端设备20使用哪种方式确定网络设备10所指示的反馈结果。终端设备20在接收到比特图或者导频序列索引后,首先确认指示信息所指示的内容,再根据指示信息和导频序列索引,确定反馈结果。
可选地,在网络设备10向终端设备20发送指示信息之前,该方法还包括:
网络设备10根据同时进行上行传输的终端设备20的数量,和能够用于上行传输的导频序列的个数,确定该指示信息。
具体而言,导频序列索引所占用的比特位的个数,其所能表示的导频序列索引的总数,应大于或等于能够用于上行传输的导频序列的总数。比特图中的比特位的总数,应大于或等于能够用于上行传输的导频序列的总数。
当传输成功的终端设备的数量超过一定阈值,需要发送的多个导频序列索引所占的总比特数,会大于能够用于上行传输的导频序列的总数,这时,该指示信息可以指示终端设备根据比特图确定反馈结果;当传输成功的终端设备的数量少于一定阈值,需要发送的多个导频序列索引所占的总比特数,小于能够用于上行传输的导频序列的总数,这时,该指示信息可以指示终端设备根据导频序列索引的接收状态,确定该反馈结果。
可选地,终端设备20根据该导频序列索引,确定网络设备10指示的针对该上行传输的反馈结果之前,该方法还包括:
终端设备20接收网络设备10发送的指示信息,该指示信息所指示的内容包括:
指示终端设备20根据比特图确定该反馈结果,或者指示终端设备20根据导频序列索引的接收状态确定该反馈结果,该接收状态包括终端设备20接收到所述导频序列索引或者没有接收到所述导频序列索引。
这时,终端设备20根据该导频序列索引,确定网络设备10指示的针对该上行传输的反馈结果,包括:
终端设备20根据该指示信息和该导频序列索引,确定该反馈结果。
下面结合表四和表五对该实施例进行详细说明。
具体地说,为达到指示反馈结果时使用最少的传输资源,网络设备10可以向终端设备20发送指示信息,用于指示终端设备对本次传输的反馈结果的确定,使用的是两种方式中的哪一种。
表四和表五分别是在两种用于指示反馈结果的方式下,上行免授权传输的反馈信息的组成,该反馈信息包括该比特图或导频序列索引。其中,表四示出了通过比特图指示反馈结果的方式;表五示出了通过是否发送导频序列索引指示反馈结果的方式。表四和表五中包括的内容至少有:传输资源索引的信息,用于指示上行免授权传输所占用的资源;指示终端设备20是根据比特图还是根据导频序列索引的接收状态确定反馈结果的指示信息;以及表示多个终端设备的上行免授权传输的反馈结果的信息。
表四和表五中的右上角的比特位上的值用于表示该指示信息所指示的内容,第二行和 第二行以下的比特位上的值用于指示反馈结果,承载不同类型信息的比特位的位置可以根据实际情况确定,这里仅仅为示意。可以看出,表四中的右上角的比特位上的值为0,可以用来指示终端设备20根据比特图确定该反馈结果,表五中的右上角的比特位上的值为1,可以用来指示终端设备20根据导频序列索引的接收状态确定该反馈结果。
表四和表五是以指示信息为0表示指示终端设备20根据比特图确定反馈结果,指示信息为1表示指示终端设备20根据导频序列索引的接收状态确定反馈结果进行举例,同时以比特位为1表示反馈结果为ACK,比特位为0表示反馈结果为NACK为例进行说明,但本申请不做限定。
应理解,在网络设备10通过比特图指示该反馈结果时,指示反馈结果为ACK或NACK的字段的长度和能够用于上行传输的导频序列的数量相同,或者大于该导频序列的数量。该反馈信息即该比特图所占的大小是相对固定的,由于使用固定长度的反馈信息,因此可以同时反馈ACK/NACK而不增加无线资源使用。而网络设备10通过发送导频序列索引的方式指示反馈结果时,反馈信息的大小是以数据传输成功的终端设备的数量,即反馈ACK的数量来确定的,传输成功的终端设备的数量越多,反馈信息即传输成功的终端设备对应的多个导频序列索引,所占用的资源越多,因此反馈信息的字段的长度是可变的。
表四
Figure PCTCN2017098315-appb-000004
表五
Figure PCTCN2017098315-appb-000005
可以看出,表四和表五中还包括至少一个比特位用于指示传输资源索引,例如表四和表五中第一行中所示的7比特的传输资源索引。为支持在一个子帧/帧中配置有多个上行免授权传输资源的场景,网络设备10在发送指示反馈结果的反馈信息时,还可以在反馈信息中增加一个传输资源索引,用于指示反馈结果对应的上行免授权传输资源。
可选地,该方法还包括:网络设备10向终端设备20发送传输资源索引,该传输资源索引用于指示该反馈结果所针对的该上行传输所使用的频域资源的位置,该频域资源的位置为该频域资源在同一时间段内的多个频域资源中的位置。
举例来说,在一个子帧内可以同时配置有多个上行免授权传输资源,此时一个终端设备可以同时在多个上行免授权传输资源上选择相同或不同的导频序列进行上行免授权传输,例如对配置有2个上行免授权传输资源的情况,终端设备20如果同时有2个数据块在2个不同的上行免授权传输资源上同时进行上行传输,此时,网络设备10需要对这2个上行免授权传输的反馈结果分别进行指示。
这里可以上行免授权传输资源索引(简称传输资源索引)来区分不同的上行免授权传输资源配置,假设该传输资源索引为PRB索引,以一个子帧内有100个物理资源块(Physical Resource Block,PRB)对用于进行免授权上行传输为例进行说明,一个子帧包含2个时隙,每个时隙中的7个符号×12个子载波组成一个PRB,每2个PRB组成一个PRB对,如果上行免授权传输资源可以最小配置到1个PRB对,此时可以使用7bit来指示传输资源索引,如表4和表5所示。如图6所示的本申请实施例中的传输资源索引的示意图,终端设备20同时有2个数据块在2个不同的上行免授权传输资源上同时进行上行传输,在一个子帧内的这2个上行免授权传输资源中,其中第一个上行免授权传输资源索引为k=0,包括第0个和第1个共2个PRB对,第二个上行免授权传输资源索引为k=99,包括第99个共1个PRB对。这时,传输资源索引也可以称为PRB对索引,通常也称为PRB索引。终端设备20接收到该反馈信息后,可以根据反馈信息中的该传输资源索引,确定自己在该传输资源索引所指示的资源上传输的那个数据是失败还是成功。
也就是说,如果终端设备20无法区分两个时频资源块,例如针对在两个时频资源块上的免授权传输的反馈信息使用同一个加扰序列,此时终端设备20需要将两个反馈信息,例如包括反馈结果的两个DCI或两个数据块都解扰出来,然后通过PRB索引的指示获知哪个时频资源块对应于自己的上行传输;如果终端设备20可以区分不同的时频资源块,例如针对在两个时频资源块上的免授权传输的反馈信息分别使用不同的加扰序列,此时,终端设备20通过不同的加扰序列可以识别哪个时频资源块对应于自己的上行传输,那么可以不在反馈信息中添加PRB索引。
因此,通过在反馈信息中增加传输资源索引,可以支持在同一时间段内的同时配置有多个上行免授权传输资源,有效支持终端设备同时在多个时频资源上进行上行免授权传输。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面将结合图7,描述根据本申请实施例的免授权传输的网络设备,方法实施例所描述的技术特征可以适用于以下装置实施例。
图7示出了根据本申请实施例的传输数据的网络设备700。如图7所示,该网络设备700包括:
处理单元710,用于检测终端设备进行上行传输所使用的导频序列;
所述处理单元710,还用于根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
发送单元720,用于根据所述处理单元710确定的所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
因此,网络设备通过导频序列索引向终端设备指示针对当前上行传输的反馈结果,能够有效地利用无线传输资源对用户设备的免授权传输进行反馈。
可选地,所述处理单元710具体用于:
根据所述导频序列索引,在比特图中确定所述导频序列索引对应的目标比特位,所述比特图中的每个比特位分别对应不同的导频序列索引;根据所述反馈结果,确定所述目标比特位上的值,所述目标比特位上的值用于表示所述反馈结果为确认ACK或者否定确认NACK;
所述发送单元720具体用于,向所述终端设备发送所述比特图。
可选地,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
可选地,所述发送单元720具体用于:向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者向所述终端设备发送承载在物理下行共享信道上的所述比特图。
可选地,所述发送单元720具体用于:若所述反馈结果为ACK,所述网络设备向所述终端设备发送所述导频序列索引,或者若所述反馈结果为NACK,所述网络设备禁止向所述终端设备发送所述导频序列索引。
可选地,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
可选地,所述发送单元720具体用于:向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述导频序列索引;或者向所述终端设备发送承载在物理下行共享信道上的所述导频序列索引。
可选地,所述发送单元720还用于:向所述终端设备发送指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引。
可选地,在所述发送单元720向所述终端设备发送指示信息之前,所述处理单元710还用于:根据同时进行上行传输的终端设备的数量,和能够用于上行传输的导频序列的个数,确定所述指示信息。
可选地,所述发送单元720还用于:向所述终端设备发送传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置。
应注意,本申请实施例中,处理单元710可以由处理器实现,发送单元720可以由收 发信机实现,处理单元710可以由处理器实现。如图8所示,网络设备800可以包括处理器810、收发信机820和存储器830。其中,收发信机820可以包括接收器821和发送器822,存储器830可以用于存储处理器810执行的代码等。网络设备800中的各个组件之间通过内部连接通路互相连接。
其中,所述处理器810,用于检测终端设备进行上行传输所使用的导频序列;根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
所述发送器822,用于根据所述处理器810确定的所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
可选地,所述处理器810具体用于:
根据所述导频序列索引,在比特图中确定所述导频序列索引对应的目标比特位,所述比特图中的每个比特位分别对应不同的导频序列索引;根据所述反馈结果,确定所述目标比特位上的值,所述目标比特位上的值用于表示所述反馈结果为确认ACK或者否定确认NACK;
所述发送器822具体用于,向所述终端设备发送所述比特图。
可选地,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
可选地,所述发送器822具体用于:向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者向所述终端设备发送承载在物理下行共享信道上的所述比特图。
可选地,所述发送器822具体用于:若所述反馈结果为ACK,所述网络设备向所述终端设备发送所述导频序列索引,或者若所述反馈结果为NACK,所述网络设备禁止向所述终端设备发送所述导频序列索引。
可选地,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
可选地,所述发送器822具体用于:向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述导频序列索引;或者向所述终端设备发送承载在物理下行共享信道上的所述导频序列索引。
可选地,所述发送器822还用于:向所述终端设备发送指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引。
可选地,在所述发送器822向所述终端设备发送指示信息之前,所述处理器810还用于:根据同时进行上行传输的终端设备的数量,和能够用于上行传输的导频序列的个数,确定所述指示信息。
可选地,所述发送器822还用于:向所述终端设备发送传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置。
图9是本申请实施例的系统芯片的一个示意性结构图。图9的系统芯片900包括输入 接口901、输出接口902、至少一个处理器903、存储器904,所述输入接口901、输出接口902、所述处理器903以及存储器904之间通过内部连接通路互相连接,所述处理器903用于执行所述存储器904中的代码,当所2述代码被执行时,所述处理器903实现图3至图6中网络设备执行的方法。
图7所示的网络设备700或图8所示的网络设备800或图9所示的系统芯片900能够实现前述图3至图6方法实施例中由网络设备所实现的各个过程,为避免重复,这里不再赘述。
下面将结合图10,描述根据本申请实施例的免授权传输的网络设备,方法实施例所描述的技术特征可以适用于以下装置实施例。
图10示出了根据本申请实施例的传输数据的终端设备1000。如图10所示,该终端设备1000包括:
处理单元1010,用于根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
接收单元1020,用于接收网络设备发送的所述上行传输的反馈结果的信息;
所述处理单元1010还用于,根据所述处理单元确定的所述导频序列索引,以及所述接收单元接收的所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
因此,在本申请实施例中,终端设备通过导频序列索引确定网络设备所指示的针对当前上行传输的反馈结果,能够有效地利用无线传输资源获取网络设备针对免授权传输进行的反馈。
可选地,所述接收单元1020具体用于:接收所述网络设备发送的比特图,所述比特图中的每个比特位分别对应不同的导频序列索引;
所述处理单元1010具体用于:
根据所述导频序列索引,在所述比特图中确定所述导频序列索引对应的目标比特位;根据所述目标比特位上的值,确定所述反馈结果,所述目标比特位上的值用于表示所述反馈结果为确认ACK或否定确认NACK。
可选地,所述发送单元具体用于:接收所述网络设备发送的承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者接收所述网络设备发送的承载在物理下行共享信道上的所述比特图。
可选地,所述处理单元1010具体用于:若所述终端设备接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为ACK;或者若所述终端设备没有接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为NACK。
可选地,所述导频序列索引是所述接收单元1020通过物理下行控制信道接收的,所述物理下行控制信道上承载的DCI包括所述导频序列索引;或者所述导频序列索引是所述接收单元1020通过物理下行共享信道接收的。
可选地,在所述处理单元1010根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果之前,所述接收单元1020还用于:
接收所述网络设备发送的指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈 结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引;
所述处理单元1010具体用于:根据所述指示信息和所述导频序列索引,确定所述反馈结果。
可选地,所述接收单元1020还用于:接收所述网络设备发送的传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置;
所述处理单元1010具体用于:根据所述导频索引和所述传输资源索引,确定所述反馈结果。
应注意,本申请实施例中,处理单元1010可以由处理器实现,发送单元1020可以由收发信机实现,处理单元1010可以由处理器实现。如图11所示,终端设备1100可以包括处理器1110、收发信机1120和存储器1130。其中,收发信机1120可以包括接收器1121和发送器1122,存储器1130可以用于存储处理器1110执行的代码等。网络设备1100中的各个组件通过内部连接通路互相连接。
其中,所述处理器1110,用于根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
所述接收器1121,用于接收网络设备发送的所述上行传输的反馈结果的信息;
所述处理器1110还用于,根据所述处理单元确定的所述导频序列索引,以及所述接收单元接收的所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
可选地,所述接收器1121具体用于:接收所述网络设备发送的比特图,所述比特图中的每个比特位分别对应不同的导频序列索引;
所述处理器1110具体用于:
根据所述导频序列索引,在所述比特图中确定所述导频序列索引对应的目标比特位;根据所述目标比特位上的值,确定所述反馈结果,所述目标比特位上的值用于表示所述反馈结果为确认ACK或否定确认NACK。
可选地,所述发送单元具体用于:接收所述网络设备发送的承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者接收所述网络设备发送的承载在物理下行共享信道上的所述比特图。
可选地,所述处理器1110具体用于:若所述终端设备接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为ACK;或者若所述终端设备没有接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为NACK。
可选地,所述导频序列索引是所述接收器1121通过物理下行控制信道接收的,所述物理下行控制信道上承载的DCI包括所述导频序列索引;或者所述导频序列索引是所述接收器1121通过物理下行共享信道接收的。
可选地,在所述处理器1110根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果之前,所述接收器1121还用于:
接收所述网络设备发送的指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频 序列索引;
所述处理器1110具体用于:根据所述指示信息和所述导频序列索引,确定所述反馈结果。
可选地,所述接收器1121还用于:接收所述网络设备发送的传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置;
所述处理器1110具体用于:根据所述导频索引和所述传输资源索引,确定所述反馈结果。
图12是本申请实施例的系统芯片的一个示意性结构图。图9的系统芯片1200包括输入接口1201、输出接口1202、至少一个处理器1203、存储器1204,所述输入接口1201、输出接口1202、所述处理器1203以及存储器1204之间通过内部连接通路互相连接,所述处理器1203用于执行所述存储器1204中的代码,当所2述代码被执行时,所述处理器1203实现图3至图6中终端设备执行的方法。
图10所示的终端设备1000或图11所示的终端络设备1100或图12所示的系统芯片1200能够实现前述图3至图6方法实施例中由终端设备所实现的各个过程,为避免重复,这里不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种免授权传输的方法,其特征在于,所述方法包括:
    网络设备检测终端设备进行上行传输所使用的导频序列;
    所述网络设备根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
    所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息,包括:
    所述网络设备根据所述导频序列索引,在比特图中确定所述导频序列索引对应的目标比特位,所述比特图中的每个比特位分别对应不同的导频序列索引;
    所述网络设备根据所述反馈结果,确定所述目标比特位上的值,所述目标比特位上的值用于表示所述反馈结果为确认ACK或者否定确认NACK;
    所述网络设备向所述终端设备发送所述比特图。
  3. 根据权利要求2所述的方法,其特征在于,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述网络设备向所述终端设备发送所述比特图,包括:
    所述网络设备向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者
    所述网络设备向所述终端设备发送承载在物理下行共享信道上的所述比特图。
  5. 根据权利要求1所述的方法,其特征在于,所述网络设备根据所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息,包括:
    若所述反馈结果为ACK,所述网络设备向所述终端设备发送所述导频序列索引,或者
    若所述反馈结果为NACK,所述网络设备禁止向所述终端设备发送所述导频序列索引。
  6. 根据权利要求5所述的方法,其特征在于,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
  7. 根据权利要求5或6所述的方法,其特征在于,所述网络设备向所述终端设备发送所述导频序列索引,包括:
    所述网络设备向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述导频序列索引;或者
    所述网络设备向所述终端设备发送承载在物理下行共享信道上的所述导频序列索引。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于:
    指示所述终端设备根据比特图确定所述反馈结果,或者
    指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引。
  9. 根据权利要求8所述的方法,其特征在于,在所述网络设备向所述终端设备发送指示信息之前,所述方法还包括:
    所述网络设备根据同时进行上行传输的终端设备的数量,和能够用于上行传输的导频序列的个数,确定所述指示信息。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置。
  11. 一种免授权传输的方法,其特征在于,所述方法包括:
    终端设备根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
    所述终端设备接收网络设备发送的所述上行传输的反馈结果的信息;
    所述终端设备根据所述导频序列索引,和所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备接收所述网络设备发送的所述上行传输的反馈结果的信息,包括:
    所述终端设备接收所述网络设备发送的比特图,所述比特图中的每个比特位分别对应不同的导频序列索引;
    所述终端设备根据所述导频序列索引和所述上行传输的反馈结果的信息,确定网络设备指示的针对所述上行传输的反馈结果,包括:
    所述终端设备根据所述导频序列索引,在所述比特图中确定所述导频序列索引对应的目标比特位;
    所述终端设备根据所述目标比特位上的值,确定所述反馈结果,所述目标比特位上的值用于表示所述反馈结果为确认ACK或否定确认NACK。
  13. 根据权利要求12所述的方法,其特征在于,所述终端设备接收所述网络设备发送的比特图,包括:
    所述终端设备接收所述网络设备发送的承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者
    所述终端设备接收所述网络设备发送的承载在物理下行共享信道上的所述比特图。
  14. 根据权利要求11所述的方法,其特征在于,所述终端设备根据所述导频序列索引,和所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果,包括:
    若所述终端设备接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为ACK;或者
    若所述终端设备没有接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为NACK。
  15. 根据权利要求14所述的方法,其特征在于,所述导频序列索引是所述终端设备通过物理下行控制信道接收的,所述物理下行控制信道上承载的DCI包括所述导频序列索 引;或者
    所述导频序列索引是所述终端设备通过物理下行共享信道接收的。
  16. 根据权利要求11至15中任一项所述的方法,其特征在于,在所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的指示信息,所述指示信息用于:
    指示所述终端设备根据比特图确定所述反馈结果,或者
    指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引;
    所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果,包括:
    所述终端设备根据所述指示信息和所述导频序列索引,确定所述反馈结果。
  17. 根据权利要求11至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置;
    所述终端设备根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果,包括:
    所述终端设备根据所述导频索引和所述传输资源索引,确定所述反馈结果。
  18. 一种免授权传输的网络设备,其特征在于,包括:
    处理单元,用于检测终端设备进行上行传输所使用的导频序列;
    所述处理单元,还用于根据所述导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
    发送单元,用于根据所述处理单元确定的所述导频序列索引,向所述终端设备发送所述上行传输的反馈结果的信息。
  19. 根据权利要求18所述的网络设备,其特征在于,所述处理单元具体用于:
    根据所述导频序列索引,在比特图中确定所述导频序列索引对应的目标比特位,所述比特图中的每个比特位分别对应不同的导频序列索引;
    根据所述反馈结果,确定所述目标比特位上的值,所述目标比特位上的值用于表示所述反馈结果为确认ACK或者否定确认NACK;
    所述发送单元具体用于,向所述终端设备发送所述比特图。
  20. 根据权利要求19所述的网络设备,其特征在于,所述比特图中的比特位的个数大于或等于能够用于上行传输的导频序列的个数。
  21. 根据权利要求19或20所述的网络设备,其特征在于,所述发送单元具体用于:
    向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述比特图;或者
    向所述终端设备发送承载在物理下行共享信道上的所述比特图。
  22. 根据权利要求18所述的网络设备,其特征在于,所述发送单元具体用于:
    若所述反馈结果为ACK,所述网络设备向所述终端设备发送所述导频序列索引,或 者
    若所述反馈结果为NACK,所述网络设备禁止向所述终端设备发送所述导频序列索引。
  23. 根据权利要求22所述的网络设备,其特征在于,所述导频序列索引所占的比特位的个数是根据能够用于上行传输的导频序列的个数确定的。
  24. 根据权利要求21或22所述的网络设备,其特征在于,所述发送单元具体用于:
    向所述终端设备发送承载在物理下行控制信道上的下行控制信息DCI,所述DCI包括所述导频序列索引;或者
    向所述终端设备发送承载在物理下行共享信道上的所述导频序列索引。
  25. 根据权利要求18至24中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送指示信息,所述指示信息用于:
    指示所述终端设备根据比特图确定所述反馈结果,或者
    指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引。
  26. 根据权利要求25所述的网络设备,其特征在于,在所述发送单元向所述终端设备发送指示信息之前,所述处理单元还用于:
    根据同时进行上行传输的终端设备的数量,和能够用于上行传输的导频序列的个数,确定所述指示信息。
  27. 根据权利要求18至26中任一项所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置。
  28. 一种免授权传输的终端设备,其特征在于,包括:
    处理单元,用于根据上行传输所使用的导频序列,以及导频序列与导频序列索引的对应关系,确定所述导频序列的导频序列索引;
    接收单元,用于接收网络设备发送的所述上行传输的反馈结果的信息;
    所述处理单元还用于,根据所述处理单元确定的所述导频序列索引,以及所述接收单元接收的所述上行传输的反馈结果的信息,确定所述上行传输的反馈结果。
  29. 根据权利要求28所述的终端设备,其特征在于,所述接收单元具体用于:
    接收所述网络设备发送的比特图,所述比特图中的每个比特位分别对应不同的导频序列索引;
    所述处理单元具体用于:
    根据所述导频序列索引,在所述比特图中确定所述导频序列索引对应的目标比特位;
    根据所述目标比特位上的值,确定所述反馈结果,所述目标比特位上的值用于表示所述反馈结果为确认ACK或否定确认NACK。
  30. 根据权利要求29所述的终端设备,其特征在于,所述发送单元具体用于:
    接收所述网络设备发送的承载在物理下行控制信道上的下行控制信息DCI,所述DCI 包括所述比特图;或者
    接收所述网络设备发送的承载在物理下行共享信道上的所述比特图。
  31. 根据权利要求28所述的终端设备,其特征在于,所述处理单元具体用于:
    若所述终端设备接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为ACK;或者
    若所述终端设备没有接收到所述网络设备发送的所述导频序列索引,所述终端设备确定所述反馈结果为NACK。
  32. 根据权利要求31所述的终端设备,其特征在于,所述导频序列索引是所述接收单元通过物理下行控制信道接收的,所述物理下行控制信道上承载的DCI包括所述导频序列索引;或者
    所述导频序列索引是所述接收单元通过物理下行共享信道接收的。
  33. 根据权利要求28至32中任一项所述的终端设备,其特征在于,在所述处理单元根据所述导频序列索引,确定网络设备指示的针对所述上行传输的反馈结果之前,所述接收单元还用于:
    接收所述网络设备发送的指示信息,所述指示信息用于:指示所述终端设备根据比特图确定所述反馈结果,或者指示所述终端设备根据导频序列索引的接收状态确定所述反馈结果,所述接收状态包括所述终端设备接收到所述导频序列索引或者没有接收到所述导频序列索引;
    所述处理单元具体用于:
    根据所述指示信息和所述导频序列索引,确定所述反馈结果。
  34. 根据权利要求28至33中任一项所述的终端设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的传输资源索引,所述传输资源索引用于指示所述反馈结果所针对的所述上行传输所使用的频域资源的位置,所述频域资源的位置为所述频域资源在同一时间段内的多个频域资源中的位置;
    所述处理单元具体用于:
    根据所述导频索引和所述传输资源索引,确定所述反馈结果。
  35. 一种免授权传输的网络设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,使得所述网络设备实现权利要求1-10中任一项所述的方法。
  36. 一种免授权传输的终端设备,其特征在于,包括处理器、收发器和存储器,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,当所述处理器执行所述存储器存储的指令时,使得所述终端设备实现权利要求11-17中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行权利要求1-10中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行权利要求11-17中任一项所述的方法。
  39. 一种芯片,其特征在于,包括输入接口、输出接口、至少一个处理器和存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现权利要 求1-10中任一项所述的方法。
  40. 一种芯片,其特征在于,包括输入接口、输出接口、至少一个处理器和存储器,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器实现权利要求11-17中任一项所述的方法。
PCT/CN2017/098315 2016-09-26 2017-08-21 免授权传输的方法、网络设备和终端设备 WO2018054191A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019516399A JP2019535176A (ja) 2016-09-26 2017-08-21 グラントフリー伝送方法、ネットワークデバイス、および端末デバイス
EP17852260.3A EP3506538B1 (en) 2016-09-26 2017-08-21 Method, network apparatus and terminal apparatus for grant-free transmission
US16/365,052 US10757725B2 (en) 2016-09-26 2019-03-26 Grant-free transmission method, network device, and terminal device
US16/942,968 US20210022163A1 (en) 2016-09-26 2020-07-30 Grant-free transmission method, network device, and terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610850117.8 2016-09-26
CN201610850117.8A CN107872298B (zh) 2016-09-26 2016-09-26 免授权传输的方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/365,052 Continuation US10757725B2 (en) 2016-09-26 2019-03-26 Grant-free transmission method, network device, and terminal device

Publications (1)

Publication Number Publication Date
WO2018054191A1 true WO2018054191A1 (zh) 2018-03-29

Family

ID=61690162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/098315 WO2018054191A1 (zh) 2016-09-26 2017-08-21 免授权传输的方法、网络设备和终端设备

Country Status (5)

Country Link
US (2) US10757725B2 (zh)
EP (1) EP3506538B1 (zh)
JP (1) JP2019535176A (zh)
CN (1) CN107872298B (zh)
WO (1) WO2018054191A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019246146A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Device-to-device (d2d) communication management techniques
US10931483B2 (en) 2017-11-06 2021-02-23 Qualcomm Incorporated Device-to-device (D2D) communication management techniques
JPWO2020144895A1 (ja) * 2019-01-09 2021-11-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3052899C (en) * 2017-02-07 2021-12-14 Hai Tang Method and device for transmitting data
CN110536424B (zh) * 2018-08-09 2023-06-09 中兴通讯股份有限公司 一种数据传输方法、基站及终端
US11929836B2 (en) * 2018-09-05 2024-03-12 Beijing Xiaomi Mobile Software Co., Ltd. Feedback method and apparatus for grant-free uplink transmission, and storage medium
CN110972172B (zh) 2018-09-28 2021-02-12 华为技术有限公司 上行免动态授权传输的方法及装置
CN111435879B (zh) * 2019-01-11 2021-09-03 大唐移动通信设备有限公司 一种漏检确定方法、终端及网络设备
CN113316963B (zh) * 2019-01-11 2024-07-23 株式会社Ntt都科摩 由用户设备、基站执行的方法以及用户设备和基站
CN112702149B (zh) * 2019-10-22 2022-06-10 华为技术有限公司 一种配置导频序列的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973397A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
CN104938021A (zh) * 2013-01-16 2015-09-23 交互数字专利控股公司 发现信号生成和接收
CN106411475A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 一种反馈传输方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594151B2 (en) * 2005-10-31 2013-11-26 Nokia Corporation Pilot sequence detection
KR101449757B1 (ko) * 2008-01-23 2014-10-13 한국전자통신연구원 셀룰라 시스템에서의 임의 접속 방법 및 장치
US20090247157A1 (en) * 2008-03-28 2009-10-01 Qualcomm Incorporated Femto cell system selection
CN101651525B (zh) * 2008-08-15 2012-08-22 富士通株式会社 响应信号的传送资源分配方法、反馈方法和处理方法
WO2010057540A1 (en) * 2008-11-21 2010-05-27 Telefonaktiebolaget L M Ericsson (Publ) Transmission method and devices in a communication system with contention-based data transmission
US9312978B2 (en) * 2009-03-04 2016-04-12 Centre Of Excellence In Wireless Technology Pilot aided data transmission and reception with interference mitigation in wireless systems
AU2015203574B2 (en) * 2009-08-12 2016-05-19 Interdigital Patent Holdings, Inc. Method and apparatus for contention-based uplink data transmission
CN102036394B (zh) * 2009-09-29 2013-11-20 电信科学技术研究院 一种传输信道质量信息的方法及系统
US8478258B2 (en) 2010-03-05 2013-07-02 Intel Corporation Techniques to reduce false detection of control channel messages in a wireless network
US9148871B2 (en) * 2011-06-09 2015-09-29 Qualcomm Incorporated Systems and methods for acknowledging communications from a plurality of devices
KR102050009B1 (ko) * 2011-08-12 2019-11-28 인터디지탈 패튼 홀딩스, 인크 무선 네트워크에서의 레퍼런스 신호 통신
CN104170451B (zh) * 2012-05-11 2018-07-20 富士通株式会社 确定上行控制信道基序列和物理资源的方法及其装置
US9768940B2 (en) * 2012-12-09 2017-09-19 Lg Electronics Inc. Method and device for transmitting and receiving signal in multi-cell cooperative communication system
US10028302B2 (en) * 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN103179670B (zh) * 2013-04-03 2016-08-24 华为技术有限公司 传输信道的方法及其装置
CN105406950A (zh) * 2014-08-07 2016-03-16 索尼公司 用于无线通信的装置和方法、电子设备及其方法
CN107113267B (zh) * 2014-10-31 2020-06-26 Lg电子株式会社 无线局域网系统中的站sta的数据发送方法及站sta
JP2018041993A (ja) * 2015-01-28 2018-03-15 シャープ株式会社 端末装置、および、基地局装置
US20170265217A1 (en) * 2016-03-09 2017-09-14 Intel Corporation Apparatus, system and method of communicating pilot signals according to a diversity scheme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104938021A (zh) * 2013-01-16 2015-09-23 交互数字专利控股公司 发现信号生成和接收
CN103973397A (zh) * 2013-01-29 2014-08-06 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
CN106411475A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 一种反馈传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Mapping Relations between UL VRB and DL ACK/NACK", 3GPP TSG RAN WG1#50, R1-073479, 24 August 2007 (2007-08-24), XP050107087 *
PANASONIC: "Implicit Assignment of PHICH", 3GPP TSG-RAN WG 1 MEETING #52, RI-080976, 15 February 2008 (2008-02-15), XP050109447 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10931483B2 (en) 2017-11-06 2021-02-23 Qualcomm Incorporated Device-to-device (D2D) communication management techniques
WO2019246146A1 (en) * 2018-06-21 2019-12-26 Qualcomm Incorporated Device-to-device (d2d) communication management techniques
JPWO2020144895A1 (ja) * 2019-01-09 2021-11-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 基地局、端末及び通信方法
JP7329543B2 (ja) 2019-01-09 2023-08-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 端末、通信方法及び集積回路
US11973603B2 (en) 2019-01-09 2024-04-30 Panasonic Intellectual Property Corporation Of America Base station, terminal, and communication method
JP7528327B2 (ja) 2019-01-09 2024-08-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 基地局、通信方法及び集積回路

Also Published As

Publication number Publication date
CN107872298A (zh) 2018-04-03
US20210022163A1 (en) 2021-01-21
US20190223203A1 (en) 2019-07-18
CN107872298B (zh) 2023-09-22
US10757725B2 (en) 2020-08-25
EP3506538B1 (en) 2021-06-16
EP3506538A4 (en) 2019-12-25
EP3506538A1 (en) 2019-07-03
JP2019535176A (ja) 2019-12-05

Similar Documents

Publication Publication Date Title
WO2018054191A1 (zh) 免授权传输的方法、网络设备和终端设备
US10264561B2 (en) Method and apparatus for reducing latency of LTE uplink transmissions
KR102421611B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
US9936501B2 (en) Method and apparatus for reducing latency of LTE uplink transmissions
CN107210903B (zh) 用于低成本用户设备的下行链路控制信道的传输
US9794961B2 (en) Method of handling random access in wireless communication system
EP2944038B1 (en) Pucch resource compression for epdcch in tdd mode
CN105940630B (zh) 增强harq机制的方法、用户设备及存储器
TWI696360B (zh) 反饋ack/nack信息的方法、終端設備和網絡側設備
WO2017000143A1 (zh) 传输上行数据的方法和装置
KR102320439B1 (ko) 무선 셀룰라 통신 시스템에서 제어 및 데이터 정보 자원 매핑 방법 및 장치
KR20200003020A (ko) 기지국 장치, 단말기 장치, 무선 통신 시스템, 및 통신 방법
US20100182964A1 (en) Apparatus, method and computer program memory medium providing efficient signaling of rach response
CN109951265A (zh) 一种控制信息传输的方法、终端设备和网络设备
US20200067644A1 (en) Data feedback method and related device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019516399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017852260

Country of ref document: EP

Effective date: 20190329