[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018051840A1 - メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法 - Google Patents

メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法 Download PDF

Info

Publication number
WO2018051840A1
WO2018051840A1 PCT/JP2017/031885 JP2017031885W WO2018051840A1 WO 2018051840 A1 WO2018051840 A1 WO 2018051840A1 JP 2017031885 W JP2017031885 W JP 2017031885W WO 2018051840 A1 WO2018051840 A1 WO 2018051840A1
Authority
WO
WIPO (PCT)
Prior art keywords
methacrylic acid
catalyst
producing
heteropolyacid
containing liquid
Prior art date
Application number
PCT/JP2017/031885
Other languages
English (en)
French (fr)
Inventor
加藤 裕樹
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020197010279A priority Critical patent/KR102216827B1/ko
Priority to SG11201900754XA priority patent/SG11201900754XA/en
Priority to JP2017550262A priority patent/JP6414343B2/ja
Priority to CN201780050229.8A priority patent/CN109641192B/zh
Priority to MYPI2019000714A priority patent/MY189907A/en
Publication of WO2018051840A1 publication Critical patent/WO2018051840A1/ja
Priority to SA519401149A priority patent/SA519401149B1/ar

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a catalyst for producing methacrylic acid, a method for producing the same, and a method for producing methacrylic acid and methacrylic acid esters.
  • a heteropolyacid catalyst containing molybdenum element and phosphorus element As a catalyst for producing methacrylic acid used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, a heteropolyacid catalyst containing molybdenum element and phosphorus element is known.
  • a heteropolyacid catalyst include a proton type heteropolyacid whose counter cation is a proton, and a heteropoly acid salt in which a part of the proton is substituted with a cation other than a proton.
  • the heteropolyacid salt an alkali metal salt whose cation is an alkali metal ion and an ammonium salt whose cation is an ammonium ion are known.
  • Proton heteropolyacids are water-soluble, but alkali metal salts of heteropolyacids are generally poorly soluble because of the large cation radii (Non-pat
  • Patent Document 1 includes an acid salt of a Keggin type heteropolyacid containing phosphorus and molybdenum, and has a peak intensity of 3.24 to 3.26 ⁇ with respect to a peak intensity of 3.38 to 3.41 ⁇ in X-ray diffraction.
  • a catalyst for the production of methacrylic acid is proposed, characterized in that the ratio is from 0.001 to 0.01.
  • An object of this invention is to provide the catalyst for methacrylic acid manufacture with a high methacrylic acid yield.
  • the present invention includes the following [1] to [11].
  • a catalyst for producing methacrylic acid containing a heteropoly acid salt containing at least phosphorus, molybdenum and vanadium which is used when producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen, and having a temperature of 30
  • the (222) plane is attributed to the cubic structure of the heteropolyacid salt.
  • the ratio (I 1 / I 0 ) of the absolute value of the peak intensity I 1 of the (322) plane due to the cubic structure of the proton type heteropolyacid to the absolute value of the peak intensity I 0 of 0.01 is 0.01 or more and 0.00.
  • the catalyst for methacrylic acid production which is 80 or less.
  • [4] A method for producing the methacrylic acid production catalyst according to any one of [1] to [3], wherein the heteropoly acid salt-containing liquid i containing at least a phosphorus raw material and an alkali metal ion raw material, and at least a phosphorus raw material And a process for obtaining a catalyst precursor by drying using a heteropoly acid salt-containing liquid ii containing an ammonium ion raw material.
  • the method includes the step of mixing the heteropolyacid salt-containing liquid i and the heteropolyacid salt-containing liquid ii to obtain a heteropolyacid salt-containing liquid iii and drying it to obtain a catalyst precursor.
  • a dried product of either the heteropolyacid salt-containing liquid i or the heteropolyacid salt-containing liquid ii is mixed with another heteropolyacid salt-containing liquid to obtain a heteropolyacid salt-containing liquid iv, which is dried.
  • AMi is the number of moles of alkali metal ions contained in the heteropolyacid-containing liquid i
  • Pi is the number of moles of phosphorus contained in the heteropolyacid-containing liquid i
  • NH 4 ii is the above-mentioned
  • the number of moles of ammonium ions contained in the heteropolyacid-containing liquid ii, and Pii represents the number of moles of phosphorus contained in the heteropolyacid-containing liquid ii, respectively).
  • a method for producing methacrylic acid which comprises producing methacrylic acid by vapor-phase catalytic oxidation of methacrolein with molecular oxygen in the presence of the catalyst for producing methacrylic acid according to any one of [1] to [3].
  • [11] A method for producing a methacrylic acid ester by producing methacrylic acid by the method described in [9] and esterifying the methacrylic acid.
  • a catalyst for producing methacrylic acid having a high yield of methacrylic acid can be provided.
  • the catalyst for producing methacrylic acid according to the present invention is a catalyst containing a heteropoly acid salt containing at least phosphorus, molybdenum and vanadium, which is used in producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen. .
  • the Cu—K ⁇ ray of the catalyst (hereinafter also referred to as pre-treatment) after being left for 12 hours in an environment maintained at a temperature of 30 ° C. and a humidity of 90% (hereinafter also referred to as pre-treatment) is used.
  • the peak intensity I of the (322) plane due to the cubic structure of the proton type heteropolyacid relative to the absolute value of the peak intensity I 0 of the (222) plane due to the cubic structure of the heteropolyacid salt the ratio of the first absolute value (I 1 / I 0) (hereinafter referred to as the peak intensity ratio (I 1 / I 0)) is 0.01 or more 0.80 or less.
  • the elemental composition of the catalyst for producing methacrylic acid according to the present invention is not particularly limited as long as it contains at least phosphorus, molybdenum and vanadium, but may further contain other elements besides phosphorus, molybdenum and vanadium. Examples of other elements include copper and cesium. These may further contain one kind or two or more kinds.
  • the catalyst for methacrylic acid production according to the present invention preferably has an elemental composition represented by the following formula (4) from the viewpoint of methacrylic acid yield.
  • Mo, P, V, Cu and O are element symbols indicating molybdenum, phosphorus, vanadium, copper and oxygen, respectively.
  • A represents at least one element selected from the group consisting of antimony, bismuth, arsenic, germanium, zirconium, tellurium, silver, selenium, silicon, tungsten and boron.
  • E is selected from the group consisting of iron, zinc, chromium, magnesium, calcium, strontium, tantalum, cobalt, nickel, manganese, barium, titanium, tin, lead, niobium, indium, sulfur, palladium, gallium, cerium and lanthanum At least one element is indicated.
  • G represents at least one element selected from the group consisting of lithium, sodium, potassium, rubidium, cesium and thallium.
  • the elemental composition is a value calculated by analyzing a component in which the catalyst is dissolved in aqueous ammonia by ICP emission spectrometry.
  • the peak intensity ratio (I 1 / I 0 ) satisfies the range of 0.01 or more and 0.80 or less.
  • the peak intensity ratio (I 1 / I 0 ) is 0.01 or more, the adsorption site of methacrolein on the catalyst surface increases and the catalytic activity is improved.
  • the peak intensity ratio (I 1 / I 0 ) is 0.80 or less, the progress of sequential oxidation of methacrylic acid can be suppressed.
  • methacrylic acid when the catalyst according to the present invention is used for methacrylic acid production, methacrylic acid can be obtained in high yield. Moreover, it can be expected that a high yield of methacrylic acid can be maintained even when the catalyst is used for a long period of time by having the heteropolyacid salt and the proton type heteropolyacid in a predetermined ratio as in the present invention.
  • a pretreatment is performed on the catalyst for producing methacrylic acid.
  • the pretreatment is performed by leaving the catalyst at a temperature of 30 ° C. in an environment kept at 90% humidity for 12 hours.
  • water molecules are hydrated in the heteropolyacid contained in the catalyst for producing methacrylic acid, and a cubic structure of the proton type heteropolyacid is formed.
  • a diffraction pattern was obtained by X-ray diffraction (counter cathode Cu—K ⁇ ray) of the pretreated catalyst that had been subjected to the pretreatment, and the peak intensity I 0 of the (222) plane due to the cubic structure of the heteropolyacid salt was The ratio (I 1 / I 0 ) of the absolute value of the peak intensity I 1 of the (322) plane due to the cubic structure of the proton type heteropolyacid to the absolute value is calculated.
  • the peak position does not always match when the polyatom of the heteropolyacid, the heteroatom is substituted with another element, or due to the difference in the number of equivalents of the cation of the heteropolyacid salt, but the surface position can be determined by looking at the peak pattern. Can be confirmed.
  • the sum of absolute values of the respective intensities of the (222) plane peaks resulting from the cubic structure of the heteropolyacid salt is I 0 . To do. The same applies to the I 1.
  • the X-ray diffraction pattern can be measured with an X-ray structure analyzer (trade name: X′Pert PRO MPD, manufactured by PANalytical).
  • the peak intensity ratio (I 1 / I 0 ) is 0.01 or more and 0.80 or less, and from the viewpoint of achieving a higher methacrylic acid yield, the lower limit is preferably 0.05 or more, more preferably 0.40 or more. Preferably, 0.50 or more is more preferable.
  • the upper limit is preferably 0.75 or less, more preferably 0.73 or less, and even more preferably 0.70 or less.
  • the manufacturing method of the catalyst for methacrylic acid manufacture concerning this invention is not specifically limited, For example, it can manufacture by the following method.
  • the method includes a step of dissolving or suspending at least a phosphorus raw material, a molybdenum raw material, and a vanadium raw material in a solvent to prepare a catalyst raw material liquid (hereinafter also referred to as a catalyst raw material liquid preparation step), and a cation raw material in the catalyst raw material liquid.
  • a heteropoly acid salt-containing liquid hereinafter also referred to as a cation addition process
  • drying the heteropoly acid salt-containing liquid to obtain a catalyst precursor
  • a step of producing a catalyst for producing methacrylic acid by heat-treating the precursor hereinafter also referred to as a heat treatment step
  • a step of molding the catalyst precursor hereinafter also referred to as a molding step
  • the method for producing a methacrylic acid production catalyst according to the present invention comprises a heteropoly acid salt-containing liquid i containing at least a phosphorus raw material and an alkali metal ion raw material, and a heteropoly acid salt containing liquid ii containing at least a phosphorus raw material and an ammonium ion raw material. It is preferable to include a step of using and drying to obtain a catalyst precursor.
  • Catalyst raw material preparation process In this step, at least a phosphorus raw material, a molybdenum raw material, and a vanadium raw material are dissolved or suspended in a solvent to prepare a catalyst raw material liquid.
  • the raw material compound of each element is not particularly limited, and nitrates, carbonates, acetates, ammonium salts, oxides, halides, oxoacids, oxoacid salts, and the like of each element are used alone or in combination of two or more. be able to.
  • phosphoric acid, phosphorus pentoxide, ammonium phosphate, or the like can be used as the phosphorus raw material.
  • molybdenum raw material molybdenum trioxide, ammonium paramolybdate, molybdic acid, molybdenum chloride, or the like can be used.
  • vanadium raw material ammonium metavanadate, phosphovanadomolybdic acid, vanadium pentoxide, or the like can be used. These may use 1 type and may use 2 or more types together.
  • water As the solvent for dissolving or suspending the raw material compound, water, ethyl alcohol, acetone or the like can be used. These may use 1 type and may use 2 or more types together. Among these, water is preferable as the solvent.
  • one type of catalyst raw material liquid may be prepared, or two or more types may be prepared.
  • two or more catalyst raw material liquids are prepared and mixed before and after the drying step described later from the viewpoint of easily controlling the peak intensity ratio (I 1 / I 0 ) within the scope of the present invention.
  • a cation raw material is added to the catalyst raw material liquid obtained in the catalyst raw material liquid preparation step to obtain a heteropolyacid salt-containing liquid.
  • the cation is capable of forming a heteropoly acid salt having a cubic crystal structure, and alkali metal ions such as potassium, rubidium, cesium, and ammonium ions are particularly preferable.
  • alkali metal ions such as potassium, rubidium, cesium, and ammonium ions are particularly preferable.
  • examples of the cation raw material include alkali metal carbonates, hydrogen carbonates, hydroxides, chloride salts, sulfates, nitrates, and the like.
  • examples of the cation raw material include ammonium bicarbonate, ammonium carbonate, ammonium nitrate, and aqueous ammonia. These can use 1 type and can also use 2 or more types together.
  • a cation may be contained in the catalyst raw material liquid by using an alkali metal salt or ammonium salt of each element as a raw material for each element.
  • a cation raw material it is preferable to use both an alkali metal ion raw material and an ammonium ion raw material from the viewpoint of methacrylic acid yield.
  • the catalyst raw material liquid When adding the cation raw material to the catalyst raw material liquid, it is preferable to add the catalyst raw material liquid with stirring.
  • the temperature at which the cation raw material is added is preferably 1 to 100 ° C. Then, after adding all or part of the cation raw material, it is preferable to heat and stir at 90 to 150 ° C. for 1 to 10 hours.
  • the peak intensity ratio (I 1 / I 0 ) can be adjusted to 0.01 or more and 0.80 or less.
  • a cation raw material can be added to at least 1 type of catalyst raw material liquid in this process, and a heteropolyacid salt containing liquid can be prepared.
  • the heteropoly acid salt-containing liquid i containing at least a phosphorus raw material and an alkali metal ion raw material and the heteropoly acid salt containing liquid ii containing at least a phosphorus raw material and an ammonium ion raw material results in the peak intensity ratio (I 1 / I 0 ) is preferable from the viewpoint of easy control. Further, it is more preferable that the heteropolyacid salt-containing liquids i and ii satisfy the following formulas (1) to (3) from the viewpoint of easy control of the peak intensity ratio (I 1 / I 0 ).
  • AMi is the number of moles of alkali metal ions contained in the heteropolyacid-containing liquid i
  • Pi is the number of moles of phosphorus element contained in the heteropolyacid-containing liquid i
  • NH 4 ii is the above-mentioned
  • the number of moles of ammonium ions contained in the heteropolyacid-containing liquid ii, and Pii respectively represent the number of moles of phosphorus element contained in the heteropolyacid-containing liquid ii.
  • AMi / Pi represents the ratio of the number of moles of alkali metal ions to phosphorus element in the heteropolyacid-containing liquid i.
  • the lower limit of AMi / Pi is preferably 1.7 or more, and the upper limit is preferably 2.8 or less, the lower limit is 1.9 or more, and the upper limit is more preferably 2.6 or less.
  • NH 4 ii / Pii indicates the number of moles of ammonium ions to phosphorus element in the heteropoly acid-containing liquid ii.
  • the lower limit of NH 4 ii / Pii is preferably 4.1 or more, and the upper limit is preferably 4.9 or less, the lower limit is 4.2 or more, and the upper limit is more preferably 4.8 or less.
  • Pii / Pi represents a mixing ratio of the heteropolyacid-containing liquids i and ii.
  • the lower limit of Pii / Pi is preferably 1.1 or more, and the upper limit is preferably 1.9 or less, the lower limit is 1.2 or more, and the upper limit is more preferably 1.8 or less.
  • the value of Pii / Pi is increased or decreased within a range where the heteropolyacid salt-containing liquids i and ii satisfy the formulas (1) to (3).
  • the heteropolyacid salt-containing liquid obtained in the cation addition step is dried to obtain a catalyst precursor.
  • drying method and drying temperature are not particularly limited, and can be appropriately selected depending on the shape and size of the desired dried product.
  • Examples of the drying method include a drying method using a box-type dryer, a drum drying method, an airflow drying method, an evaporation to dryness method, and a spray drying method.
  • the drying temperature can be, for example, 120 to 500 ° C, the lower limit is preferably 140 ° C or higher, and the upper limit is preferably 400 ° C or lower. Drying can be performed until the heteropolyacid salt-containing liquid is dried.
  • the structure of the obtained catalyst precursor can be confirmed by measuring by infrared absorption analysis.
  • the catalyst precursor preferably has a Keggin type heteropolyacid structure.
  • the obtained infrared absorption spectrum has characteristic peaks around 1060, 960, 870, and 780 cm ⁇ 1 .
  • heteropolyacid salt-containing liquids obtained in the cation addition step when there are two or more kinds of heteropolyacid salt-containing liquids obtained in the cation addition step, these can be mixed before and after this step. That is, mixing may be performed in the state of the heteropoly acid salt-containing liquid before drying, or may be performed in the state of the catalyst precursor after drying. Moreover, after drying 1 or more types of heteropolyacid salt containing liquid, what mixed with the other heteropolyacid salt containing liquid may be dried again, and a catalyst precursor may be obtained.
  • the peak intensity ratio (I 1 / I 0 ) in the resulting catalyst is within the scope of the present invention. It is preferable to control to methacrylic acid yield.
  • a catalyst having a higher methacrylic acid yield can be obtained by mixing two or more kinds of catalyst precursors containing heteropolyacid salts having different atomic ratios.
  • a catalyst precursor can be obtained by the drying.
  • the catalyst precursor can be obtained by mixing the dried product of the heteropolyacid salt-containing liquid i and the dried product of the heteropolyacid salt-containing liquid ii.
  • the heteropolyacid salt-containing liquid i and the heteropolyacid salt-containing liquid ii can be mixed to obtain a heteropolyacid salt-containing liquid iii, which can be dried to obtain a catalyst precursor.
  • the dried product of either the heteropolyacid salt-containing liquid i or the heteropolyacid salt-containing liquid ii is mixed with the other heteropolyacid salt-containing liquid to obtain a heteropolyacid salt-containing liquid iv, which is dried.
  • a catalyst precursor can be obtained.
  • the catalyst precursor obtained by the drying step may be molded.
  • the molding method is not particularly limited, and a known dry or wet molding method can be applied.
  • tableting molding, press molding, extrusion molding, granulation molding and the like can be mentioned.
  • the shape of the molded product is not particularly limited, and examples thereof include a columnar shape, a ring shape, and a spherical shape.
  • known additives such as graphite and talc, as well as known from organic and inorganic substances, if necessary.
  • a binder may be added.
  • a catalyst for methacrylic acid production is produced by heat-treating the catalyst precursor obtained by the drying step or the molded product of the catalyst precursor obtained by the molding step (hereinafter collectively referred to as catalyst precursor).
  • the catalyst precursor can be heat-treated under the flow of at least one of air and inert gas.
  • the inert gas refers to a gas that does not decrease the catalytic activity, and examples thereof include nitrogen, carbon dioxide, helium, and argon. These may use 1 type and may mix and use 2 or more types.
  • the heat treatment is preferably performed under a flow of oxygen-containing gas such as air.
  • the shape of the heat treatment container is not particularly limited, it is preferable to use a tubular heat treatment container having a cross-sectional area of 2 square centimeters or more and 100 square centimeters or less.
  • the heat treatment temperature is preferably 300 ° C. or higher and 700 ° C. or lower, the lower limit is 320 ° C. or higher, and the upper limit is more preferably 450 ° C. or lower.
  • the structure of the resulting catalyst for producing methacrylic acid can be confirmed by measuring by infrared absorption analysis.
  • the methacrylic acid production catalyst preferably has a Keggin type heteropolyacid structure.
  • the obtained infrared absorption spectrum has characteristic peaks in the vicinity of 1060, 960, 870, and 780 cm ⁇ 1 .
  • methacrolein is vapor-phase contact oxidized with molecular oxygen in the presence of the catalyst for methacrylic acid production according to the present invention to produce methacrylic acid. According to this method, methacrylic acid can be produced with a high yield, and a high methacrylic acid yield can be maintained for a long period of time.
  • methacrylic acid can be produced by bringing a raw material gas containing methacrolein and molecular oxygen into contact with the methacrylic acid production catalyst according to the present invention. This reaction can be carried out in a fixed bed.
  • the catalyst layer may be one layer or two or more layers.
  • the catalyst for producing methacrylic acid may contain other additives.
  • the concentration of methacrolein in the raw material gas is not particularly limited, but is preferably 1 to 20% by volume, the lower limit is preferably 3% by volume or more, and the upper limit is more preferably 10% by volume or less.
  • the methacrolein may contain a small amount of impurities such as a lower saturated aldehyde that do not substantially affect the present reaction.
  • the concentration of molecular oxygen in the raw material gas is preferably 0.4 to 4.0 mol with respect to 1.0 mol of methacrolein, the lower limit is preferably 0.5 mol or more, and the upper limit is more preferably 3.0 mol or less.
  • the molecular oxygen source is preferably air from the viewpoint of economy. If necessary, a gas or the like enriched with molecular oxygen by adding pure oxygen to air may be used.
  • the raw material gas may be obtained by diluting methacrolein and molecular oxygen with an inert gas such as nitrogen or carbon dioxide. Further, water vapor may be added to the source gas. By performing the reaction in the presence of water vapor, methacrylic acid can be obtained with higher selectivity.
  • the concentration of water vapor in the raw material gas is preferably from 0.1 to 50.0% by volume, the lower limit is preferably 1.0% by volume or more, and the upper limit is more preferably 40.0% by volume or less.
  • the contact time between the raw material gas and the catalyst for producing methacrylic acid is preferably 1.5 to 15.0 seconds, the lower limit is preferably 2.0 seconds or more, and the upper limit is more preferably 5.0 seconds or less.
  • the reaction pressure is preferably 0.1 MPa (G) to 1.0 MPa (G). Note that (G) means a gauge pressure.
  • the reaction temperature is preferably 200 to 450 ° C, the lower limit is preferably 250 ° C or higher, and the upper limit is more preferably 400 ° C or lower.
  • methacrylic acid produced by the method according to the present invention is esterified.
  • a methacrylic acid ester can be obtained using methacrylic acid obtained by gas phase catalytic oxidation of methacrolein.
  • the alcohol to be reacted with methacrylic acid is not particularly limited, and examples thereof include methanol, ethanol, isopropanol, n-butanol, and isobutanol.
  • Examples of the resulting methacrylic acid ester include methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
  • the reaction can be carried out in the presence of an acidic catalyst such as a sulfonic acid type cation exchange resin.
  • the reaction temperature is preferably 50 to 200 ° C.
  • Parts in Examples and Comparative Examples means parts by mass.
  • the X-ray diffraction pattern was measured with an X-ray structure analyzer (trade name: X'Pert PRO MPD, manufactured by PANalytical).
  • the analysis of the raw material gas and the product was performed using gas chromatography. From the results of gas chromatography, the conversion rate of methacrolein, the selectivity of methacrylic acid to be produced, and the yield of methacrylic acid were determined by the following formula.
  • Example 1 In 132 parts of pure water, 33 parts of molybdenum trioxide, 2.5 parts of ammonium metavanadate, 2.2 parts of an 85% by mass aqueous phosphoric acid solution, and 2.3 parts of copper (II) nitrate trihydrate were dissolved. The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C. and stirring with a rotary blade stirrer, 8.6 parts of cesium bicarbonate dissolved in 20 parts of pure water was added and stirred for 15 minutes to precipitate the cesium salt of the heteropolyacid. It was.
  • the obtained heteropolyacid salt-containing liquid i-1 was evaporated to dryness to obtain a catalyst precursor A1.
  • 54 parts of molybdenum trioxide, 4.1 parts of ammonium metavanadate, 3.6 parts of 85 mass% phosphoric acid aqueous solution, and 3.8 parts of copper (II) nitrate trihydrate were dissolved in 216 parts of pure water. .
  • the mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C.
  • the obtained heteropolyacid salt-containing liquid ii-1 was evaporated to dryness to obtain a catalyst precursor B1. Next, the catalyst precursors A1 and B1 were mixed to obtain a catalyst precursor.
  • the obtained catalyst precursor was molded, and the molded product was put in a cylindrical quartz glass baking container having an inner diameter of 3 cm.
  • a catalyst for methacrylic acid production was prepared by heating at 10 ° C./h under air flow and calcining at 380 ° C. for 5 hours. This catalyst for producing methacrylic acid had a Keggin type heteropolyacid structure.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 0.9 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry.
  • the obtained catalyst for producing methacrylic acid was filled in a reaction tube, and reacted at a reaction temperature of 300 ° C. through a raw material gas consisting of 5% by volume of methacrolein, 10% by volume of oxygen, 30% by volume of water vapor and 55% by volume of nitrogen. .
  • the product was collected and analyzed by gas chromatography to calculate methacrylic acid yield and the like. The results are shown in Table 1.
  • Example 2 A catalyst precursor A1 was obtained in the same manner as in Example 1. On the other hand, in 240 parts of pure water, 60 parts of molybdenum trioxide, 4.6 parts of ammonium metavanadate, 4.0 parts of 85 mass% phosphoric acid aqueous solution, and 4.2 parts of copper (II) nitrate trihydrate were dissolved. . The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C. and stirring with a rotary blade stirrer, 5.3 parts of ammonium carbonate dissolved in 22.2 parts of pure water was added and stirred for 15 minutes to precipitate the ammonium salt of the heteropolyacid. I let you. The obtained heteropolyacid salt-containing liquid ii-2 was evaporated to dryness to obtain a catalyst precursor B2. Next, the catalyst precursors A1 and B2 were mixed to obtain a catalyst precursor.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • This catalyst for producing methacrylic acid had a Keggin type heteropolyacid structure.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 0.8 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry. Further, a pre-treated catalyst was prepared in the same manner as in Example 1.
  • Example 3 In 200 parts of pure water, 50 parts of molybdenum trioxide, 3.8 parts of ammonium metavanadate, 3.3 parts of an 85 mass% phosphoric acid aqueous solution, and 3.5 parts of copper (II) nitrate trihydrate were dissolved. The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C. and stirring with a rotary blade stirrer, 13.0 parts of cesium bicarbonate dissolved in 20 parts of pure water was added and stirred for 15 minutes to precipitate the cesium salt of the heteropolyacid. Thus, a heteropolyacid salt-containing liquid i-2 was obtained.
  • the heteropolyacid salt-containing liquids i-2 and ii-3 are mixed, and the resulting heteropolyacid salt-containing liquid iii-1 is stirred for 15 minutes while being kept at 95 ° C., and then evaporated to dryness to obtain a catalyst precursor.
  • a catalyst precursor Got.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • This catalyst for producing methacrylic acid had a Keggin type heteropolyacid structure.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 1.0 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry. Further, a pre-treated catalyst was prepared in the same manner as in Example 1.
  • Example 4 In 100 parts of pure water, 25 parts of molybdenum trioxide, 1.9 parts of ammonium metavanadate, 1.7 parts of an 85 mass% phosphoric acid aqueous solution, and 1.8 parts of copper (II) nitrate trihydrate were dissolved. The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C. and stirring with a rotary blade stirrer, 6.5 parts of cesium bicarbonate dissolved in 10 parts of pure water was added and stirred for 15 minutes to precipitate the cesium salt of the heteropolyacid. It was.
  • the obtained heteropolyacid salt-containing liquid i-3 was evaporated to dryness to obtain a catalyst precursor A2.
  • a catalyst precursor A2 On the other hand, in 300 parts of pure water, 75 parts of molybdenum trioxide, 5.6 parts of ammonium metavanadate, 5.0 parts of 85 mass% phosphoric acid aqueous solution, and 5.3 parts of copper (II) nitrate trihydrate were dissolved. .
  • the mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C.
  • the obtained heteropolyacid salt-containing liquid ii-4 was evaporated to dryness to obtain a catalyst precursor B3.
  • the catalyst precursors A2 and B3 were mixed to obtain a catalyst precursor.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • This catalyst for producing methacrylic acid had a Keggin type heteropolyacid structure.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 0.6 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry. Further, a pre-treated catalyst was prepared in the same manner as in Example 1.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 2.3 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry.
  • a pre-treated catalyst was prepared in the same manner as in Example 1.
  • Table 1 The results are shown in Table 1.
  • a catalyst precursor A1 was obtained in the same manner as in Example 1. On the other hand, 70 parts of molybdenum trioxide, 5.3 parts of ammonium metavanadate, 4.7 parts of 85 mass% phosphoric acid aqueous solution, and 4.9 parts of copper (II) nitrate trihydrate were dissolved in 280 parts of pure water. . The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 0.7 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry.
  • a pre-treated catalyst was prepared in the same manner as in Example 1.
  • the peak intensity ratio I 1 / I 0 was 0.81.
  • Table 1 The results are shown in Table 1.
  • a catalyst precursor A1 was obtained in the same manner as in Example 1. On the other hand, in 455.2 parts of pure water, 114 parts of molybdenum trioxide, 8.6 parts of ammonium metavanadate, 7.6 parts of 85% by weight aqueous phosphoric acid solution, and 8.0 parts of copper (II) nitrate trihydrate were added. Dissolved. The mixture was heated to 95 ° C. while stirring, and stirred for 2 hours while maintaining the liquid temperature at 95 ° C. While maintaining the liquid temperature at 95 ° C.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 Cs 0.5 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry.
  • a pre-treated catalyst was prepared in the same manner as in Example 1.
  • the peak intensity ratio I 1 / I 0 was 2.25.
  • Table 1 The results are shown in Table 1.
  • the catalyst for methacrylic acid manufacture was manufactured from the catalyst precursor by the method similar to Example 1, and methacrylic acid was manufactured using this catalyst.
  • the composition of the catalyst was Mo 12 P 1.0 V 1.1 Cu 0.5 .
  • the elemental composition was calculated by analyzing a component in which the catalyst was dissolved in aqueous ammonia by ICP emission spectrometry.
  • a pre-treated catalyst was prepared in the same manner as in Example 1.
  • I 0 since I 0 was not observed, it was set to 0. Therefore, the peak intensity ratio I 1 / I 0 could not be calculated.
  • Table 1 The results are shown in Table 1.
  • Example 1 it was confirmed that the peak intensity ratio (I 1 / I 0 ) was within the specified range in the present invention, and the catalyst had a high methacrylic acid yield. Among them, the highest methacrylic acid yield was obtained in Example 2 where the peak intensity ratio (I 1 / I 0 ) was 0.69, and the optimum range for the peak intensity ratio (I 1 / I 0 ) was I found out.
  • the catalyst for producing methacrylic acid according to the present invention is industrially useful because it shows a high yield of methacrylic acid when it is used for producing methacrylic acid by vapor phase catalytic oxidation of methacrolein with molecular oxygen. .
  • the proton type heteropoly acid effectively functions as an active site while maintaining the stability of the heteropoly acid salt, which is high for a long period of time. It can be expected that the yield of methacrylic acid is expressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

メタクリル酸収率の高いメタクリル酸製造用触媒を提供する。メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン及びバナジウムを含むヘテロポリ酸塩を含むメタクリル酸製造用触媒であって、温度30℃、湿度90%に保たれた環境下に12時間放置した前記メタクリル酸製造用触媒のCu-Kα線を用いたX線回折パターンにおいて、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピーク強度Iの絶対値に対する、プロトン型ヘテロポリ酸の立方晶構造に起因する(322)面のピーク強度Iの絶対値の比(I/I)が、0.01以上0.80以下である、メタクリル酸製造用触媒。

Description

メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
 本発明は、メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法に関する。
 メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられるメタクリル酸製造用触媒としては、モリブデン元素およびリン元素を含むヘテロポリ酸系触媒が知られている。このようなヘテロポリ酸系触媒としては、カウンターカチオンがプロトンであるプロトン型ヘテロポリ酸、およびそのプロトンの一部をプロトン以外のカチオンで置換したヘテロポリ酸塩が挙げられる。ヘテロポリ酸塩としては、カチオンがアルカリ金属イオンであるアルカリ金属塩や、カチオンがアンモニウムイオンであるアンモニウム塩が知られている。なお、プロトン型ヘテロポリ酸は水溶性であるが、ヘテロポリ酸のアルカリ金属塩はカチオンのイオン半径が大きいため、一般に難溶性である(非特許文献1)。
 特許文献1には、リン及びモリブデンを含むケギン型ヘテロポリ酸の酸性塩からなり、X線回折における面間隔3.38~3.41Åのピーク強度に対する面間隔3.24~3.26Åのピーク強度の比が、0.001~0.01であることを特徴とするメタクリル酸製造用触媒が提案されている。
特開2005-131577号公報
大竹正之、小野田武、触媒、vol.18、No.6(1976)
 しかしながら、特許文献1に記載された触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いた場合、工業用触媒としてメタクリル酸収率が十分ではなく、更なる改良が望まれている。本発明はメタクリル酸収率の高いメタクリル酸製造用触媒を提供することを目的とする。
 本発明は、以下の[1]から[11]である。
 [1]メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン及びバナジウムを含むヘテロポリ酸塩を含むメタクリル酸製造用触媒であって、温度30℃、湿度90%に保たれた環境下に12時間放置した前記メタクリル酸製造用触媒のCu-Kα線を用いたX線回折パターンにおいて、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピーク強度Iの絶対値に対する、プロトン型ヘテロポリ酸の立方晶構造に起因する(322)面のピーク強度Iの絶対値の比(I/I)が、0.01以上0.80以下である、メタクリル酸製造用触媒。
 [2]I/Iが0.05以上0.75以下である[1]に記載のメタクリル酸製造用触媒。
 [3]I/Iが0.40以上0.73以下である[2]に記載のメタクリル酸製造用触媒。
 [4][1]から[3]のいずれかに記載のメタクリル酸製造用触媒を製造する方法であって、少なくともリン原料及びアルカリ金属イオン原料を含むヘテロポリ酸塩含有液iと、少なくともリン原料及びアンモニウムイオン原料を含むヘテロポリ酸塩含有液iiとを用い、乾燥により触媒前駆体を得る工程を含む、メタクリル酸製造用触媒の製造方法。
 [5]前記ヘテロポリ酸塩含有液iの乾燥物と前記ヘテロポリ酸塩含有液iiの乾燥物とを混合して触媒前駆体を得る工程を含む、[4]に記載のメタクリル酸製造用触媒の製造方法。
 [6]前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiとを混合してヘテロポリ酸塩含有液iiiを得、これを乾燥して触媒前駆体を得る工程を含む、[4]に記載のメタクリル酸製造用触媒の製造方法。
 [7]前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiのいずれかの乾燥物をもう一方のヘテロポリ酸塩含有液に混合して、ヘテロポリ酸塩含有液ivを得、これを乾燥して触媒前駆体を得る工程を含む、[4]に記載のメタクリル酸製造用触媒の製造方法。
 [8]前記ヘテロポリ酸塩含有液iおよびiiが下記式(1)から(3)を満たす、[4]から[7]のいずれかに記載のメタクリル酸製造用触媒の製造方法。
  1.5≦AMi/Pi≦3.0   (1)
  4.0≦NHii/Pii≦5.0   (2)
  1.0≦Pii/Pi≦2.0   (3)
(式(1)から(3)中、AMiは前記ヘテロポリ酸含有液iに含まれるアルカリ金属イオンのモル数、Piは前記ヘテロポリ酸含有液iに含まれるリンのモル数、NHiiは前記ヘテロポリ酸含有液iiに含まれるアンモニウムイオンのモル数、Piiは前記ヘテロポリ酸含有液iiに含まれるリンのモル数をそれぞれ示す。)。
 [9][1]から[3]のいずれかに記載のメタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造するメタクリル酸の製造方法。
 [10][9]に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。
 [11][9]に記載の方法によりメタクリル酸を製造し、該メタクリル酸をエステル化するメタクリル酸エステルの製造方法。
 本発明によれば、メタクリル酸収率の高いメタクリル酸製造用触媒を提供できる。
 [メタクリル酸製造用触媒]
 本発明に係るメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン及びバナジウムを含むヘテロポリ酸塩を含む触媒である。前記触媒を、温度30℃、湿度90%に保たれた環境下に12時間放置した(以下、前処理とも示す)後の触媒(以下、前処理後触媒とも示す)のCu-Kα線を用いたX線回折パターンにおいて、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピーク強度Iの絶対値に対する、プロトン型ヘテロポリ酸の立方晶構造に起因する(322)面のピーク強度Iの絶対値の比(I/I)(以下、ピーク強度比(I/I)とも示す)が、0.01以上0.80以下である。
 本発明に係るメタクリル酸製造用触媒の元素組成は、少なくともリン、モリブデン及びバナジウムを含めば特に限定されないが、リン、モリブデン及びバナジウム以外にも、その他の元素をさらに含むことができる。その他の元素としては、例えば銅、セシウム等が挙げられる。これらは一種をさらに含んでもよく、二種以上をさらに含んでもよい。特に、本発明に係るメタクリル酸製造用触媒は、メタクリル酸収率の観点から下記式(4)で示される元素組成を有することが好ましい。
  MoCu   (4)
 式(4)中、Mo、P、V、CuおよびOはそれぞれモリブデン、リン、バナジウム、銅および酸素を示す元素記号である。Aはアンチモン、ビスマス、砒素、ゲルマニウム、ジルコニウム、テルル、銀、セレン、ケイ素、タングステンおよびホウ素からなる群から選択される少なくとも1種の元素を示す。Eは鉄、亜鉛、クロム、マグネシウム、カルシウム、ストロンチウム、タンタル、コバルト、ニッケル、マンガン、バリウム、チタン、スズ、鉛、ニオブ、インジウム、硫黄、パラジウム、ガリウム、セリウムおよびランタンからなる群から選択される少なくとも1種の元素を示す。Gはリチウム、ナトリウム、カリウム、ルビジウム、セシウムおよびタリウムからなる群から選択される少なくとも1種の元素を示す。a、b、c、d、e、f、gおよびhは各元素の原子比率を表し、a=12の時、b=0.5~3、c=0.01~3、d=0.01~2、e=0.1~3、f=0~3、g=0.01~3であり、hは前記各元素の原子価を満足するのに必要な酸素の原子比率である。なお、前記元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出される値である。
 本発明では、本発明に係る触媒に対して前記前処理を行った後の前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した時に、前記ピーク強度比(I/I)が0.01以上0.80以下の範囲を満たす。前記ピーク強度比(I/I)が0.01以上であることにより、触媒表面におけるメタクロレインの吸着サイトが増加して触媒活性が向上する。また前記ピーク強度比(I/I)が0.80以下であることにより、メタクリル酸の逐次酸化の進行が抑制できる。したがって、本発明に係る触媒をメタクリル酸製造に用いた場合、高い収率でメタクリル酸が得られる。また、本発明のようにヘテロポリ酸塩とプロトン型ヘテロポリ酸を所定の割合で有することで、触媒を長期間使用しても高いメタクリル酸収率を維持することが期待できる。
 X線回折パターンの測定においては、まずメタクリル酸製造用触媒に対して前処理を行う。前処理は、触媒を30℃の温度下で、湿度90%で保たれた環境下に12時間放置することにより行われる。該前処理を行うことによって、メタクリル酸製造用触媒に含まれるヘテロポリ酸中に水分子が水和し、プロトン型ヘテロポリ酸の立方晶構造が形成される。該前処理を行った前処理後触媒をX線回折(対陰極Cu-Kα線)により、回折パターンを取得し、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピーク強度Iの絶対値に対する、プロトン型ヘテロポリ酸の立方晶構造に起因する(322)面のピーク強度Iの絶対値の比(I/I)を算出する。
 例えば、セシウムをカチオンとして含むヘテロポリ酸塩であるCsPVMo1140の場合、(222)面のピークは2θ=26.241°の位置に表れる(Troemel, M., Inst. f. Anorganische Chem, Frankfurt, Germany., ICDD Grant-in-Aid,(1995))。また、プロトン型ヘテロポリ酸であるHPVMo1140・32HOの場合、(322)面のピークは2θ=26.801°の位置に表れる(Troemel, M., Inst. f. Anorganische Chem, Frankfurt,Germany., ICDD Grant-in-Aid(1994))。その他、ヘテロポリ酸のポリ原子、ヘテロ原子が別の元素で置換された場合やヘテロポリ酸塩のカチオンの当量数の違いにより、ピーク位置は必ずしも一致しないが、ピークパターンを見ることで面の位置を確認することができる。また、ヘテロポリ酸塩として複数の塩が存在し、ピークパターンも複数確認できる場合は、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピークそれぞれの強度の絶対値の和をIとする。Iについても同様である。X線回折パターンは、X線構造解析装置(商品名:X‘Pert PRO MPD、PANalytical社製)にて測定することができる。
 前記ピーク強度比(I/I)は0.01以上0.80以下であり、より高いメタクリル酸収率を達成できる観点から、下限は0.05以上が好ましく、0.40以上がより好ましく、0.50以上がさらに好ましい。上限は0.75以下が好ましく、0.73以下がより好ましく、0.70以下がさらに好ましい。
 [メタクリル酸製造用触媒の製造方法]
 本発明に係るメタクリル酸製造用触媒の製造方法は特に限定されないが、例えば以下の方法により製造することができる。該方法は、少なくともリン原料、モリブデン原料、およびバナジウム原料を溶媒に溶解または懸濁し、触媒原料液を調製する工程(以下、触媒原料液調製工程とも示す)と、前記触媒原料液にカチオン原料を添加してヘテロポリ酸塩含有液を得る工程(以下、カチオン添加工程とも示す)と、前記ヘテロポリ酸塩含有液を乾燥して触媒前駆体を得る工程(以下、乾燥工程とも示す)と、前記触媒前駆体を熱処理してメタクリル酸製造用触媒を製造する工程(以下、熱処理工程とも示す)と、を含む。ここで、熱処理工程の前に触媒前駆体を成形する工程(以下、成形工程とも示す)を含んでもよい。特に本発明に係るメタクリル酸製造用触媒の製造方法は、少なくともリン原料及びアルカリ金属イオン原料を含むヘテロポリ酸塩含有液iと、少なくともリン原料及びアンモニウムイオン原料を含むヘテロポリ酸塩含有液iiとを用い、乾燥により触媒前駆体を得る工程を含むことが好ましい。
 (触媒原料液調製工程)
 本工程では、少なくともリン原料、モリブデン原料、およびバナジウム原料を溶媒に溶解または懸濁し、触媒原料液を調製する。
 各元素の原料化合物は特に限定されず、各元素の硝酸塩、炭酸塩、酢酸塩、アンモニウム塩、酸化物、ハロゲン化物、オキソ酸、オキソ酸塩等を単独で又は2種以上を組み合わせて使用することができる。例えばリン原料としては、リン酸、五酸化リン、リン酸アンモニウム等を用いることができる。モリブデン原料としては、三酸化モリブデン、パラモリブデン酸アンモニウム、モリブデン酸、塩化モリブデン等を用いることができる。バナジウム原料としては、メタバナジン酸アンモニウム、リンバナドモリブデン酸、五酸化バナジウム等を用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。
 前記原料化合物を溶解または懸濁する溶媒としては、水、エチルアルコール、アセトン等を用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、溶媒としては水が好ましい。
 なお、本工程では、触媒原料液を1種調製してもよく、2種以上調製してもよい。特に、触媒原料液を2種以上調製し、後述する乾燥工程の前後にて混合することが、前記ピーク強度比(I/I)を本発明の範囲内に制御しやすい観点から好ましい。
 (カチオン添加工程)
 本工程では、前記触媒原料液調製工程により得られた前記触媒原料液に、カチオン原料を添加してヘテロポリ酸塩含有液を得る。
 ここでカチオンとは、立方晶の結晶構造を有するヘテロポリ酸塩を形成することができるものであり、特にカリウム、ルビジウム、セシウム等のアルカリ金属イオン、およびアンモニウムイオンが好ましい。カチオンがアルカリ金属イオンである場合、カチオン原料としては、アルカリ金属の炭酸塩、炭酸水素塩、水酸化物、塩化物塩、硫酸塩、硝酸塩などが挙げられる。カチオンがアンモニウムイオンである場合、カチオン原料としては、炭酸水素アンモニウム、炭酸アンモニウム、硝酸アンモニウム、アンモニア水等が挙げられる。これらは一種を用いることができ、二種以上を併用することもできる。なお、前記触媒原料液調製工程において、各元素の原料として各元素のアルカリ金属塩やアンモニウム塩を用いることにより、触媒原料液にカチオンが含まれるようにしてもよい。カチオン原料としては、アルカリ金属イオン原料及びアンモニウムイオン原料の両方を用いることが、メタクリル酸収率の観点から好ましい。
 前記カチオン原料を前記触媒原料液に添加する際には、前記触媒原料液を撹拌しながら添加することが好ましい。前記カチオン原料を添加する際の温度は、1~100℃が好ましい。そして、前記カチオン原料の全てまたは一部を添加した後に、90~150℃で1~10時間加熱撹拌することが好ましい。
 本工程において添加するカチオン原料の量を変更することにより、前記ピーク強度比(I/I)を0.01以上0.80以下に調整することができる。また、前記触媒原料液調製工程において前記触媒原料液を2種以上調製する場合、本工程において少なくとも1種の触媒原料液にカチオン原料を添加し、ヘテロポリ酸塩含有液を調製することができる。特に、少なくともリン原料及びアルカリ金属イオン原料を含むヘテロポリ酸塩含有液iと、少なくともリン原料及びアンモニウムイオン原料を含むヘテロポリ酸塩含有液iiとを調製することが、前記ピーク強度比(I/I)を制御しやすい観点から好ましい。更に、前記ヘテロポリ酸塩含有液iおよびiiが下記式(1)から(3)を満たすことが、前記ピーク強度比(I/I)を制御しやすい観点からより好ましい。
  1.5≦AMi/Pi≦3.0   (1)
  4.0≦NHii/Pii≦5.0   (2)
  1.0≦Pii/Pi≦2.0   (3)
 式(1)から(3)中、AMiは前記ヘテロポリ酸含有液iに含まれるアルカリ金属イオンのモル数、Piは前記ヘテロポリ酸含有液iに含まれるリン元素のモル数、NHiiは前記ヘテロポリ酸含有液iiに含まれるアンモニウムイオンのモル数、Piiは前記ヘテロポリ酸含有液iiに含まれるリン元素のモル数をそれぞれ示す。前記式(1)において、AMi/Piはヘテロポリ酸含有液iにおけるリン元素に対するアルカリ金属イオンのモル数の比を示す。AMi/Piの下限は1.7以上、上限は2.8以下が好ましく、下限は1.9以上、上限は2.6以下がより好ましい。前記式(2)において、NHii/Piiはヘテロポリ酸含有液iiにおけるリン元素に対するアンモニウムイオンのモル数の比を示す。NHii/Piiの下限は4.1以上、上限は4.9以下が好ましく、下限は4.2以上、上限は4.8以下がより好ましい。前記式(3)において、Pii/Piはヘテロポリ酸含有液iおよびiiの混合比を示す。Pii/Piの下限は1.1以上、上限は1.9以下が好ましく、下限は1.2以上、上限は1.8以下がより好ましい。
 前記ピーク強度比(I/I)を調整する方法として、例えば前記ヘテロポリ酸塩含有液iおよびiiが前記式(1)から(3)を満たす範囲内で、Pii/Piの値を増減させる方法が挙げられる。Pii/Piを増加させるとピーク強度比(I/I)は増加し、Pii/Piを減少させるとピーク強度比(I/I)は減少する傾向がある。
 (乾燥工程)
 本工程では、前記カチオン添加工程により得られる前記ヘテロポリ酸塩含有液を乾燥して、触媒前駆体を得る。
 乾燥方法や乾燥温度等の条件は特に限定されず、所望の乾燥物の形状や大きさにより適宣選択することができる。乾燥方法としては、例えば、箱型乾燥器を用いた乾燥方法、ドラム乾燥法、気流乾燥法、蒸発乾固法、噴霧乾燥法等が挙げられる。乾燥温度は、例えば120~500℃とすることができ、下限は140℃以上、上限は400℃以下が好ましい。乾燥は、ヘテロポリ酸塩含有液が乾固するまで行うことができる。
 得られた触媒前駆体の構造は赤外吸収分析で測定することにより確認することができる。該触媒前駆体は、ケギン型ヘテロポリ酸構造を有することが好ましい。該触媒前駆体がケギン型ヘテロポリ酸構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。
 なお、前記カチオン添加工程において得られるヘテロポリ酸塩含有液が2種以上ある場合、本工程の前後においてこれらを混合することができる。すなわち、混合は乾燥を行う前のヘテロポリ酸塩含有液の状態で行っても良く、乾燥を行った後の触媒前駆体の状態で行ってもよい。また、1種以上のヘテロポリ酸塩含有液を乾燥した後に、その他のヘテロポリ酸塩含有液と混合したものを再度乾燥し、触媒前駆体を得てもよい。原子比率が異なるヘテロポリ酸塩を含む2種類以上のヘテロポリ酸塩含有液、又は触媒前駆体を混合することで、得られる触媒における前記ピーク強度比(I/I)を本発明の範囲内に制御することが、メタクリル酸収率の観点から好ましい。特に、原子比率が異なるヘテロポリ酸塩を含む2種類以上の触媒前駆体を混合することで、よりメタクリル酸収率の高い触媒を得ることができる。
 前記ヘテロポリ酸塩含有液iおよびiiを用いる場合には、前記乾燥により触媒前駆体を得ることができる。例えば、前記ヘテロポリ酸塩含有液iの乾燥物と前記ヘテロポリ酸塩含有液iiの乾燥物とを混合して触媒前駆体を得ることができる。また、前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiとを混合してヘテロポリ酸塩含有液iiiを得、これを乾燥して触媒前駆体を得ることができる。また、前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiのいずれかの乾燥物をもう一方のヘテロポリ酸塩含有液に混合して、ヘテロポリ酸塩含有液ivを得、これを乾燥して触媒前駆体を得ることができる。
 (成形工程)
 後述する熱処理工程の前に、前記乾燥工程により得られた触媒前駆体を成形してもよい。成形方法は特に制限されず、公知の乾式又は湿式の成形方法が適用できる。例えば、打錠成形、プレス成形、押出成形、造粒成形等が挙げられる。成形品の形状は特に限定されず、例えば、円柱状、リング状、球状等が挙げられる。また、成形時には触媒前駆体に担体やバインダー等を添加せず、触媒前駆体のみを成形することが好ましいが、必要に応じて例えばグラファイト、タルク等の公知の添加剤や有機物、無機物由来の公知のバインダーを添加してもよい。
 (熱処理工程)
 本工程では、前記乾燥工程により得られる触媒前駆体、または前記成形工程により得られる触媒前駆体の成形品(以下、まとめて触媒前駆体と示す)を熱処理してメタクリル酸製造用触媒を製造する。例えば、前記触媒前駆体を空気及び不活性ガスの少なくとも一方の流通下で熱処理することができる。ここで、不活性ガスとは触媒活性を低下させない気体のことを示し、例えば窒素、炭酸ガス、ヘリウム、アルゴン等が挙げられる。これらは一種を用いてもよく、二種以上を混合して使用してもよい。熱処理は、空気等の酸素含有ガス流通下で行われることが好ましい。
 熱処理容器の形状は特に制限されないが、断面積が2平方センチメートル以上、100平方センチメートル以下である管状熱処理容器を用いることが好ましい。熱処理温度は300℃以上700℃以下が好ましく、下限は320℃以上、上限は450℃以下がより好ましい。
 得られたメタクリル酸製造用触媒の構造は赤外吸収分析で測定することにより確認することができる。該メタクリル酸製造用触媒はケギン型ヘテロポリ酸構造を有することが好ましい。該メタクリル酸製造用触媒がケギン型ヘテロポリ酸構造を有する場合、得られる赤外吸収スペクトルは、1060、960、870、780cm-1付近に特徴的なピークを有する。
 [メタクリル酸の製造方法]
 本発明に係るメタクリル酸の製造方法は、本発明に係るメタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造する。該方法によれば、高い収率でメタクリル酸を製造することができ、また高いメタクリル酸収率を長期間維持することができる。
 具体的には、メタクロレインおよび分子状酸素を含む原料ガスと、本発明に係るメタクリル酸製造用触媒とを接触させることでメタクリル酸を製造することができる。この反応は固定床で行うことができる。触媒層は1層でもよく、2層以上でもよい。メタクリル酸製造用触媒は、その他の添加剤を含んでもよい。原料ガス中のメタクロレインの濃度は特に限定されないが、1~20容量%が好ましく、下限は3容量%以上、上限は10容量%以下がより好ましい。メタクロレインは、低級飽和アルデヒド等の本反応に実質的な影響を与えない不純物を少量含んでいてもよい。原料ガス中の分子状酸素の濃度は、メタクロレイン1.0モルに対して0.4~4.0モルが好ましく、下限は0.5モル以上、上限は3.0モル以下がより好ましい。なお、分子状酸素源としては、経済性の観点から空気が好ましい。必要であれば、空気に純酸素を加えて分子状酸素を富化した気体等を用いてもよい。
 原料ガスは、メタクロレインおよび分子状酸素を、窒素、炭酸ガス等の不活性ガスで希釈したものであってもよい。さらに、原料ガスに水蒸気を加えてもよい。水蒸気の存在下で反応を行うことにより、メタクリル酸をより高い選択率で得ることができる。原料ガス中の水蒸気の濃度は、0.1~50.0容量%が好ましく、下限は1.0容量%以上、上限は40.0容量%以下がより好ましい。原料ガスとメタクリル酸製造用触媒との接触時間は、1.5~15.0秒が好ましく、下限は2.0秒以上、上限は5.0秒以下がより好ましい。反応圧力は、0.1MPa(G)~1.0MPa(G)が好ましい。なお、(G)はゲージ圧であることを意味する。反応温度は200~450℃が好ましく、下限は250℃以上、上限は400℃以下がより好ましい。
 [メタクリル酸エステルの製造方法]
 本発明に係るメタクリル酸エステルの製造方法は、本発明に係る方法により製造されたメタクリル酸をエステル化する。該方法によれば、メタクロレインの気相接触酸化により得られるメタクリル酸を用いて、メタクリル酸エステルを得ることができる。メタクリル酸と反応させるアルコールとしては特に限定されず、例えばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブタノール等が挙げられる。得られるメタクリル酸エステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル等が挙げられる。反応は、スルホン酸型カチオン交換樹脂等の酸性触媒の存在下で行うことができる。反応温度は50~200℃が好ましい。
 以下、実施例および比較例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例および比較例中の「部」は質量部を意味する。X線回折パターンは、X線構造解析装置(商品名:X‘Pert PRO MPD、PANalytical社製)にて測定した。原料ガスおよび生成物の分析は、ガスクロマトグラフィーを用いて行った。ガスクロマトグラフィーの結果から、メタクロレインの転化率、生成するメタクリル酸の選択率およびメタクリル酸の収率を下記式にて求めた。
  メタクロレイン転化率(%)=(β/α)×100
  メタクリル酸選択率(%)=(γ/β)×100
  メタクリル酸収率(%)=(γ/α)×100
 式中、αは供給したメタクロレイン中の炭素数、βは反応したメタクロレイン中の炭素数、γは生成したメタクリル酸中の炭素数を示す。
 [実施例1]
 純水132部に、三酸化モリブデン33部、メタバナジン酸アンモニウム2.5部、85質量%リン酸水溶液2.2部、および硝酸銅(II)3水和物2.3部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水20部に溶解した重炭酸セシウム8.6部を添加して15分攪拌し、ヘテロポリ酸のセシウム塩を析出させた。得られたヘテロポリ酸塩含有液i-1を蒸発乾固することで、触媒前駆体A1を得た。一方、純水216部に、三酸化モリブデン54部、メタバナジン酸アンモニウム4.1部、85質量%リン酸水溶液3.6部、および硝酸銅(II)3水和物3.8部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水20部に溶解した炭酸アンモニウム4.8部を添加して15分攪拌し、ヘテロポリ酸のアンモニウム塩を析出させた。得られたヘテロポリ酸塩含有液ii-1を蒸発乾固することで、触媒前駆体B1を得た。次に、前記触媒前駆体A1およびB1を混合し、触媒前駆体を得た。
 得られた触媒前駆体を成形し、内径3センチメートルの円筒状石英ガラス製焼成容器に成形物を入れた。空気流通下、10℃/hで昇温し、380℃にて5時間焼成してメタクリル酸製造用触媒を調製した。このメタクリル酸製造用触媒は、ケギン型ヘテロポリ酸構造を有していた。該触媒の組成はMo121.01.1Cu0.5Cs0.9であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、該触媒を、温度30℃、湿度90%に保たれた環境下に12時間放置した後の前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.1°、Iは2θ=26.3°の位置に確認され、ピーク強度比I/Iは0.43であった。
 得られたメタクリル酸製造用触媒を反応管に充填し、メタクロレイン5容量%、酸素10容量%、水蒸気30容量%および窒素55容量%からなる原料ガスを通じて、反応温度300℃で反応を行った。生成物を捕集し、ガスクロマトグラフィーで分析して、メタクリル酸収率等を算出した。結果を表1に示す。
 [実施例2]
 実施例1と同様の方法により触媒前駆体A1を得た。一方、純水240部に、三酸化モリブデン60部、メタバナジン酸アンモニウム4.6部、85質量%リン酸水溶液4.0部、および硝酸銅(II)3水和物4.2部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水22.2部に溶解した炭酸アンモニウム5.3部を添加して15分攪拌し、ヘテロポリ酸のアンモニウム塩を析出させた。得られたヘテロポリ酸塩含有液ii-2を蒸発乾固することで、触媒前駆体B2を得た。次に、前記触媒前駆体A1およびB2を混合し、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。このメタクリル酸製造用触媒は、ケギン型ヘテロポリ酸構造を有していた。触媒の組成はMo121.01.1Cu0.5Cs0.8であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.1°、Iは2θ=26.5°の位置に確認され、ピーク強度比I/Iは0.69であった。結果を表1に示す。
 [実施例3]
 純水200部に、三酸化モリブデン50部、メタバナジン酸アンモニウム3.8部、85質量%リン酸水溶液3.3部、および硝酸銅(II)3水和物3.5部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水20部に溶解した重炭酸セシウム13.0部を添加して15分攪拌し、ヘテロポリ酸のセシウム塩を析出させ、ヘテロポリ酸塩含有液i-2を得た。一方、純水280部に、三酸化モリブデン70部、メタバナジン酸アンモニウム5.3部、85質量%リン酸水溶液4.7部、および硝酸銅(II)3水和物4.9部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水20部に溶解した炭酸アンモニウム6.8部を添加して15分攪拌し、ヘテロポリ酸のアンモニウム塩を析出させ、ヘテロポリ酸塩含有液ii-3を得た。前記ヘテロポリ酸塩含有液i-2およびii-3を混合し、得られたヘテロポリ酸塩含有液iii-1を95℃に保ちつつ15分撹拌した後、蒸発乾固することで、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。このメタクリル酸製造用触媒は、ケギン型ヘテロポリ酸構造を有していた。触媒の組成はMo121.01.1Cu0.5Cs1.0であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.2°、Iは2θ=26.5°の位置に確認され、ピーク強度比I/Iは0.09であった。結果を表1に示す。
 [実施例4]
 純水100部に、三酸化モリブデン25部、メタバナジン酸アンモニウム1.9部、85質量%リン酸水溶液1.7部、および硝酸銅(II)3水和物1.8部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水10部に溶解した重炭酸セシウム6.5部を添加して15分攪拌し、ヘテロポリ酸のセシウム塩を析出させた。得られたヘテロポリ酸塩含有液i-3を蒸発乾固することで、触媒前駆体A2を得た。一方、純水300部に、三酸化モリブデン75部、メタバナジン酸アンモニウム5.6部、85質量%リン酸水溶液5.0部、および硝酸銅(II)3水和物5.3部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。得られたヘテロポリ酸塩含有液ii-4を蒸発乾固することで、触媒前駆体B3を得た。次に、前記触媒前駆体A2およびB3を混合し、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。このメタクリル酸製造用触媒は、ケギン型ヘテロポリ酸構造を有していた。触媒の組成はMo121.01.1Cu0.5Cs0.6であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.1°、Iは2θ=26.5°の位置に確認され、ピーク強度比I/Iは0.75であった。結果を表1に示す。
 [比較例1]
 純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液6.7部、および硝酸銅(II)3水和物7.0部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水40部に溶解した重炭酸セシウム26.0部を添加して15分攪拌し、ヘテロポリ酸のセシウム塩を析出させた。得られたヘテロポリ酸塩含有液i-4を蒸発乾固することで、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。触媒の組成はMo121.01.1Cu0.5Cs2.3であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.0°の位置に確認された。一方、Iは確認できなかったため0とした。従ってピーク強度比I/Iは0.00であった。結果を表1に示す。
 [比較例2]
 実施例1と同様の方法により触媒前駆体A1を得た。一方、純水280部に、三酸化モリブデン70部、メタバナジン酸アンモニウム5.3部、85質量%リン酸水溶液4.7部、および硝酸銅(II)3水和物4.9部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水25.9部に溶解した炭酸アンモニウム6.2部を添加して15分攪拌し、ヘテロポリ酸のアンモニウム塩を析出させた。得られたヘテロポリ酸塩含有液ii-5を蒸発乾固することで、触媒前駆体B4を得た。次に、前記触媒前駆体A1およびB4を混合し、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。触媒の組成はMo121.01.1Cu0.5Cs0.7であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.1°、Iは2θ=26.5°の位置に確認され、ピーク強度比I/Iは0.81であった。結果を表1に示す。
 [比較例3]
 実施例1と同様の方法により触媒前駆体A1を得た。一方、純水455.2部に、三酸化モリブデン114部、メタバナジン酸アンモニウム8.6部、85質量%リン酸水溶液7.6部、および硝酸銅(II)3水和物8.0部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。液温を95℃に保持し、回転翼攪拌機を用いて攪拌しつつ、純水42.1部に溶解した炭酸アンモニウム10.1部を添加して15分攪拌し、ヘテロポリ酸のアンモニウム塩を析出させた。得られたヘテロポリ酸塩含有液ii-6を蒸発乾固することで、触媒前駆体B5を得た。次に、前記触媒前駆体A1およびB5を混合し、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。触媒の組成はMo121.01.1Cu0.5Cs0.5であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.2°、Iは2θ=26.4°の位置に確認され、ピーク強度比I/Iは2.25であった。結果を表1に示す。
 [比較例4]
 純水400部に、三酸化モリブデン100部、メタバナジン酸アンモニウム7.5部、85質量%リン酸水溶液6.7部、および硝酸銅(II)3水和物7.0部を溶解した。これを攪拌しながら95℃に昇温し、液温を95℃に保ちつつ2時間攪拌した。得られたヘテロポリ酸塩含有液ii-7を蒸発乾固することで、触媒前駆体を得た。
 その後、実施例1と同様の方法により触媒前駆体からメタクリル酸製造用触媒を製造し、該触媒を用いてメタクリル酸の製造を行った。触媒の組成はMo121.01.1Cu0.5であった。なお、該元素組成は触媒をアンモニア水に溶解した成分をICP発光分析法で分析することにより算出した。また、実施例1と同様に前処理後触媒を調製し、該前処理後触媒について、Cu-Kα線を用いたX線回折パターンを測定した結果、Iは2θ=26.5°の位置に確認された。一方、Iは観察されなかったため0とした。従ってピーク強度比I/Iを算出することはできなかった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4では、ピーク強度比(I/I)が本発明における規定の範囲内であり、メタクリル酸収率が高い触媒であることが確認された。その中でも、ピーク強度比(I/I)が0.69である実施例2において最も高いメタクリル酸収率が得られており、ピーク強度比(I/I)として最適な範囲があることがわかった。
 一方、比較例1~4では、ピーク強度比(I/I)が本発明における規定の範囲外であり、実施例1~4よりもメタクリル酸収率が低かった。なお、比較例4ではヘテロポリ酸塩に起因するピークパターンが確認されず、Iが0であるため、ピーク強度比(I/I)を算出することができなかった。このような場合にもメタクリル酸収率は低く、ピーク強度比(I/I)が本発明における規定の範囲外である場合には、メタクリル酸収率が低いことが確認された。なお、本実施例で得られたメタクリル酸をエステル化することで、メタクリル酸エステルを得ることができる。
 この出願は、2016年9月14日に出願された日本出願特願2016-179403を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本発明に係るメタクリル酸製造用触媒は、メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いた場合、高いメタクリル酸収率を示すため、工業的に有用である。また、このようにヘテロポリ酸塩とプロトン型ヘテロポリ酸の結晶構造とすることで、ヘテロポリ酸塩の安定性を有しつつ、プロトン型ヘテロポリ酸が活性点として有効に機能することで、長期間高いメタクリル酸収率を発現することが期待できる。
 

Claims (11)

  1.  メタクロレインを分子状酸素により気相接触酸化してメタクリル酸を製造する際に用いられる、少なくともリン、モリブデン及びバナジウムを含むヘテロポリ酸塩を含むメタクリル酸製造用触媒であって、温度30℃、湿度90%に保たれた環境下に12時間放置した前記メタクリル酸製造用触媒のCu-Kα線を用いたX線回折パターンにおいて、ヘテロポリ酸塩の立方晶構造に起因する(222)面のピーク強度Iの絶対値に対する、プロトン型ヘテロポリ酸の立方晶構造に起因する(322)面のピーク強度Iの絶対値の比(I/I)が、0.01以上0.80以下である、メタクリル酸製造用触媒。
  2.  I/Iが0.05以上0.75以下である請求項1に記載のメタクリル酸製造用触媒。
  3.  I/Iが0.40以上0.73以下である請求項2に記載のメタクリル酸製造用触媒。
  4.  請求項1から3のいずれか1項に記載のメタクリル酸製造用触媒を製造する方法であって、少なくともリン原料及びアルカリ金属イオン原料を含むヘテロポリ酸塩含有液iと、少なくともリン原料及びアンモニウムイオン原料を含むヘテロポリ酸塩含有液iiとを用い、乾燥により触媒前駆体を得る工程を含む、メタクリル酸製造用触媒の製造方法。
  5.  前記ヘテロポリ酸塩含有液iの乾燥物と前記ヘテロポリ酸塩含有液iiの乾燥物とを混合して触媒前駆体を得る工程を含む、請求項4に記載のメタクリル酸製造用触媒の製造方法。
  6.  前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiとを混合してヘテロポリ酸塩含有液iiiを得、これを乾燥して触媒前駆体を得る工程を含む、請求項4に記載のメタクリル酸製造用触媒の製造方法。
  7.  前記ヘテロポリ酸塩含有液iと前記ヘテロポリ酸塩含有液iiのいずれかの乾燥物をもう一方のヘテロポリ酸塩含有液に混合して、ヘテロポリ酸塩含有液ivを得、これを乾燥して触媒前駆体を得る工程を含む、請求項4に記載のメタクリル酸製造用触媒の製造方法。
  8.  前記ヘテロポリ酸塩含有液iおよびiiが下記式(1)から(3)を満たす、請求項4から7のいずれか1項に記載のメタクリル酸製造用触媒の製造方法。
      1.5≦AMi/Pi≦3.0   (1)
      4.0≦NHii/Pii≦5.0   (2)
      1.0≦Pii/Pi≦2.0   (3)
    (式(1)から(3)中、AMiは前記ヘテロポリ酸含有液iに含まれるアルカリ金属イオンのモル数、Piは前記ヘテロポリ酸含有液iに含まれるリンのモル数、NHiiは前記ヘテロポリ酸含有液iiに含まれるアンモニウムイオンのモル数、Piiは前記ヘテロポリ酸含有液iiに含まれるリンのモル数をそれぞれ示す。)
  9.  請求項1から3のいずれか1項に記載のメタクリル酸製造用触媒の存在下でメタクロレインを分子状酸素により気相接触酸化して、メタクリル酸を製造するメタクリル酸の製造方法。
  10.  請求項9に記載のメタクリル酸の製造方法により製造されたメタクリル酸をエステル化するメタクリル酸エステルの製造方法。
  11.  請求項9に記載の方法によりメタクリル酸を製造し、該メタクリル酸をエステル化するメタクリル酸エステルの製造方法。
     
PCT/JP2017/031885 2016-09-14 2017-09-05 メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法 WO2018051840A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197010279A KR102216827B1 (ko) 2016-09-14 2017-09-05 메타크릴산 제조용 촉매 및 그의 제조 방법, 및 메타크릴산 및 메타크릴산 에스터의 제조 방법
SG11201900754XA SG11201900754XA (en) 2016-09-14 2017-09-05 Catalyst for production of methacrylic acid, method of producing the same, method of producing methacrylic acid, and method of producing methacrylic acid ester
JP2017550262A JP6414343B2 (ja) 2016-09-14 2017-09-05 メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
CN201780050229.8A CN109641192B (zh) 2016-09-14 2017-09-05 甲基丙烯酸制造用催化剂及其制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
MYPI2019000714A MY189907A (en) 2016-09-14 2017-09-05 Catalyst for production of methacrylic acid, method of producing the same, method of producing methacrylic acid, and method of producing methacrylic acid ester
SA519401149A SA519401149B1 (ar) 2016-09-14 2019-02-20 محفز لإنتاج حمض ميثاكريليك، وطريقة لإنتاجه، وطريقة إنتاج حمض ميثاكريليك، وطريقة إنتاج إستر حمض ميثاكريليك

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016179403 2016-09-14
JP2016-179403 2016-09-14

Publications (1)

Publication Number Publication Date
WO2018051840A1 true WO2018051840A1 (ja) 2018-03-22

Family

ID=61619401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031885 WO2018051840A1 (ja) 2016-09-14 2017-09-05 メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法

Country Status (7)

Country Link
JP (1) JP6414343B2 (ja)
KR (1) KR102216827B1 (ja)
CN (1) CN109641192B (ja)
MY (1) MY189907A (ja)
SA (1) SA519401149B1 (ja)
SG (1) SG11201900754XA (ja)
WO (1) WO2018051840A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026640A1 (ja) * 2017-07-31 2019-02-07 三菱ケミカル株式会社 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法
WO2019208715A1 (ja) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP2019188268A (ja) * 2018-04-18 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JPWO2019187840A1 (ja) * 2018-03-30 2020-04-30 旭化成株式会社 触媒、触媒の製造方法、アクリロニトリルの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113893879B (zh) * 2021-11-04 2024-02-06 淄博市翔力致高新材料有限责任公司 一种杂多酸催化剂及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122734A (en) * 1979-03-16 1980-09-20 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPH05177141A (ja) * 1991-12-27 1993-07-20 Tosoh Corp メタクリル酸の製造法
JP2003001111A (ja) * 2001-06-20 2003-01-07 Mitsubishi Rayon Co Ltd メタクリル酸合成用触媒の製造方法
JP2010119988A (ja) * 2008-11-21 2010-06-03 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
JP2011092882A (ja) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035178B2 (ja) * 1981-04-17 1985-08-13 株式会社日本触媒 酸化用触媒およびその調製法
JP2004008834A (ja) * 2002-06-03 2004-01-15 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法
JP4421558B2 (ja) * 2003-05-30 2010-02-24 日本化薬株式会社 メタクリル酸製造用触媒の製造方法
JP4352856B2 (ja) 2003-10-31 2009-10-28 住友化学株式会社 メタクリル酸製造用触媒の製造方法、これにより得られるメタクリル酸製造用触媒、及びメタクリル酸の製造方法。
CN1972751B (zh) * 2004-06-28 2010-05-12 三菱丽阳株式会社 甲基丙烯酸合成用催化剂的制造方法
JP5560596B2 (ja) * 2008-07-01 2014-07-30 三菱レイヨン株式会社 メタクリル酸製造用触媒の製造方法
JP5214500B2 (ja) * 2009-03-09 2013-06-19 住友化学株式会社 メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122734A (en) * 1979-03-16 1980-09-20 Nippon Kayaku Co Ltd Preparation of methacrylic acid and its catalyst
JPH05177141A (ja) * 1991-12-27 1993-07-20 Tosoh Corp メタクリル酸の製造法
JP2003001111A (ja) * 2001-06-20 2003-01-07 Mitsubishi Rayon Co Ltd メタクリル酸合成用触媒の製造方法
JP2010119988A (ja) * 2008-11-21 2010-06-03 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
JP2011092882A (ja) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd メタクリル酸製造用触媒の製造方法及びメタクリル酸の製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026640A1 (ja) * 2017-07-31 2019-02-07 三菱ケミカル株式会社 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法
JPWO2019026640A1 (ja) * 2017-07-31 2020-02-06 三菱ケミカル株式会社 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法
JPWO2019187840A1 (ja) * 2018-03-30 2020-04-30 旭化成株式会社 触媒、触媒の製造方法、アクリロニトリルの製造方法
US10940463B2 (en) 2018-03-30 2021-03-09 Asahi Kasei Kabushiki Kaisha Catalyst, method for producing catalyst, and method for producing acrylonitrile
JP2019188268A (ja) * 2018-04-18 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JP7006477B2 (ja) 2018-04-18 2022-02-10 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
WO2019208715A1 (ja) * 2018-04-26 2019-10-31 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
CN112004597A (zh) * 2018-04-26 2020-11-27 三菱化学株式会社 甲基丙烯酸制造用催化剂的制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
KR20210002576A (ko) * 2018-04-26 2021-01-08 미쯔비시 케미컬 주식회사 메타크릴산 제조용 촉매의 제조 방법, 및 메타크릴산 및 메타크릴산 에스터의 제조 방법
JPWO2019208715A1 (ja) * 2018-04-26 2021-05-20 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP7031737B2 (ja) 2018-04-26 2022-03-08 三菱ケミカル株式会社 メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
KR102463952B1 (ko) 2018-04-26 2022-11-04 미쯔비시 케미컬 주식회사 메타크릴산 제조용 촉매의 제조 방법, 및 메타크릴산 및 메타크릴산 에스터의 제조 방법

Also Published As

Publication number Publication date
JPWO2018051840A1 (ja) 2018-09-13
SA519401149B1 (ar) 2022-11-14
SG11201900754XA (en) 2019-02-27
KR102216827B1 (ko) 2021-02-17
CN109641192A (zh) 2019-04-16
JP6414343B2 (ja) 2018-10-31
MY189907A (en) 2022-03-21
KR20190042095A (ko) 2019-04-23
CN109641192B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
JP6414343B2 (ja) メタクリル酸製造用触媒およびその製造方法、並びにメタクリル酸およびメタクリル酸エステルの製造方法
JP5659490B2 (ja) メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JP6819699B2 (ja) メタクリル酸製造用触媒、メタクリル酸製造用触媒前駆体、およびそれらの製造方法、メタクリル酸の製造方法、並びにメタクリル酸エステルの製造方法
JP2021120333A (ja) ヘテロポリ酸化合物の製造方法、ヘテロポリ酸化合物及びメタクリル酸の製造方法
JP5560596B2 (ja) メタクリル酸製造用触媒の製造方法
JP2019195807A (ja) メタクリル酸製造用触媒の製造方法、メタクリル酸の製造方法およびメタクリル酸エステルの製造方法
JP5626583B2 (ja) メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
JP6680367B2 (ja) α,β−不飽和カルボン酸製造用触媒前駆体の製造方法、α,β−不飽和カルボン酸製造用触媒の製造方法、α,β−不飽和カルボン酸の製造方法およびα,β−不飽和カルボン酸エステルの製造方法
JP5885019B2 (ja) メタクリル酸製造用触媒の製造方法
JP5789917B2 (ja) メタクリル酸製造用触媒の製造方法、およびメタクリル酸の製造方法
JP4943289B2 (ja) メタクリル酸製造用触媒、その製造方法、およびメタクリル酸の製造方法
JP7031737B2 (ja) メタクリル酸製造用触媒の製造方法、並びにメタクリル酸及びメタクリル酸エステルの製造方法
JP5593605B2 (ja) メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
WO2024225230A1 (ja) メタクリル酸製造用触媒の製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法
JP6769557B2 (ja) 触媒前駆体、触媒の製造方法、メタクリル酸及びアクリル酸の製造方法、並びにメタクリル酸エステル及びアクリル酸エステルの製造方法
JP5424914B2 (ja) メタクリル酸製造用触媒およびその製造方法、ならびにメタクリル酸の製造方法
WO2023182425A1 (ja) メタクリル酸製造用触媒、その製造方法、並びにこれを用いたメタクリル酸およびメタクリル酸エステルの製造方法
WO2022202756A1 (ja) 触媒、触媒の製造方法、並びにα,β-不飽和アルデヒド、α,β-不飽和カルボン酸、及びα,β-不飽和カルボン酸エステルの製造方法
JP5691252B2 (ja) メタクリル酸製造用ヘテロポリ酸系触媒の製造方法、及びメタクリル酸の製造方法
CN118922249A (zh) 甲基丙烯酸制造用催化剂、其制造方法、以及使用该催化剂的甲基丙烯酸和甲基丙烯酸酯的制造方法
JP5609396B2 (ja) メタクリル酸製造用触媒
WO2019163984A1 (ja) α,β-不飽和カルボン酸製造用触媒の製造方法、並びにα,β-不飽和カルボン酸及びα,β-不飽和カルボン酸エステルの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017550262

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197010279

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17850743

Country of ref document: EP

Kind code of ref document: A1