[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018048261A1 - 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 - Google Patents

신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
WO2018048261A1
WO2018048261A1 PCT/KR2017/009909 KR2017009909W WO2018048261A1 WO 2018048261 A1 WO2018048261 A1 WO 2018048261A1 KR 2017009909 W KR2017009909 W KR 2017009909W WO 2018048261 A1 WO2018048261 A1 WO 2018048261A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
azaspiro
oxa
diene
unsubstituted
Prior art date
Application number
PCT/KR2017/009909
Other languages
English (en)
French (fr)
Inventor
김미현
김선여
알람세티벤카나
김강
조교희
도르마 라마프레마
이상윤
Original Assignee
가천대학교 산학협력단
(의료)길의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단, (의료)길의료재단 filed Critical 가천대학교 산학협력단
Priority to EP17849145.2A priority Critical patent/EP3395804B1/en
Priority to CN201780013645.0A priority patent/CN108699013B/zh
Publication of WO2018048261A1 publication Critical patent/WO2018048261A1/ko
Priority to US16/044,285 priority patent/US10836734B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/201,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with hetero atoms directly attached in position 4
    • C07D265/22Oxygen atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/537Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/38Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/57Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/44Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
    • C07C317/46Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton the carbon skeleton being further substituted by singly-bound oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/75Amino or imino radicals, acylated by carboxylic or carbonic acids, or by sulfur or nitrogen analogues thereof, e.g. carbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function

Definitions

  • the present invention relates to a novel spiroquinone derivative compound, a preparation method thereof and a pharmaceutical composition for the prevention or treatment of neurological diseases containing the same as an active ingredient.
  • microglia are known to perform self-defense functions such as phagocytosis that eats denatured neurons and foreign substances in tissues.
  • inflammation-producing substances such as tumor necrosis factor (TNF) -reactive oxygen (ROS) or nitrogen compounds produced for defense purposes are excessively secreted or long-lived with the cells themselves activated, they may cause side effects such as nerve cell damage. It is known to bring about.
  • TNF tumor necrosis factor
  • ROS reactive oxygen
  • microglia is involved in neurodegenerative diseases such as Alzheimer's and Parkinson's disease, as well as neuronal damage due to trauma and ischemia, and thus inhibiting or releasing hyperglia activated microglia.
  • research is underway to develop therapeutics and therapies that inhibit the action of pro-inflammatory agents (Gonzalez-Scarano F and Baltuch G, Annu. Rev. Neurosci., 1999, 22, 219-240).
  • the existing drug and drug candidates, active materials and compound libraries are based on the heteronuclear ring structure as a basic mother nucleus, and based on a material similar in structure to the structure of the endogenous ligand in vivo.
  • research has been conducted to develop pharmaceuticals and industrially available materials, but continuous research and development is required.
  • the spiroquinone structure itself is a compound having a structure used as an intermediate for total synthesis of natural products, such as Spirooliganones A and B, and is known for its application as a drug such as an anticancer agent or an infectious agent.
  • Previous studies have reported methods for synthesizing spiroquinone compounds through oxidative cyclization using metal reagents such as cerium (CAN) or oxidants such as hypervalent iodine.
  • Quinone compounds represent structures in which a single or one heteroatom is contained in a ring (Carnesi S et al., Angew. Chem. Int. Ed., 2004, 43, 4336-4338; Yasuyuki K et al., Angew. Chem. Int. Ed., 2008, 47, 3787-3790).
  • the present inventors have diligently researched to develop a new spiroquinone derivative compound exhibiting excellent activity in the prevention or treatment of diseases of the nervous system.
  • a method for introducing oxygen atoms into the spiro position by the method it is possible to efficiently synthesize a new spiroquinone derivative in which three hetero atoms are introduced, and introduce an amineal structure into the spiroquinone skeleton.
  • novel spiroquinone derivatives have utility in the prevention or treatment of neurological diseases through the effect of inhibiting 'microglial activation' and cell death induced by LPS (lipid polysaccharide).
  • LPS lipid polysaccharide
  • RIPK5 CDK3 / cyclin E
  • PKN2 / PRK2 Haspin
  • Significant enzymatic inhibitory activity was confirmed in STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, and TLK1.
  • the present invention has been completed by clarifying that it can be usefully used as a pharmaceutical composition for the prevention or treatment of neurological diseases or as a nutraceutical composition for the prevention or improvement of neurological diseases.
  • Another object of the present invention is to provide a method for preparing the spiroquinone derivative compound, its stereoisomer, or a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is to provide a pharmaceutical composition for the prevention or treatment of diseases of the nervous system, containing the spiroquinone derivative compound, its stereoisomer, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • Another object of the present invention to provide a health functional food composition for the prevention or improvement of neurological diseases containing the spiroquinone derivative compound, its stereoisomer, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • Still another object of the present invention is to provide a method for preventing or treating a neurological disease, comprising administering the pharmaceutical composition in a therapeutically effective amount to a subject in need thereof.
  • Another object of the present invention is to provide a therapeutically effective amount of a spiroquinone derivative compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof to a subject in need thereof. It provides a method for preventing or treating.
  • Still another object of the present invention is to provide a use of the spiroquinone derivative compound, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof for the prevention or treatment of neurological diseases.
  • the present invention provides a compound represented by the following general formula (1) or (1 '), stereoisomers thereof or pharmaceutically acceptable salts thereof.
  • R 1 and R 2 are the same or different and each independently hydrogen, unsubstituted or substituted C 1-6 straight or branched chain alkyl, unsubstituted or substituted C 1- containing one or more double or triple bonds; 6 linear or branched unsaturated alkyl, unsubstituted or substituted C 3-10 cycloalkyl, N, O, and S unsubstituted or substituted C 3-10 containing one or more heteroatoms selected from the group consisting of At least one hetero atom selected from the group consisting of heterocycloalkyl, unsubstituted or substituted C 6-10 arylC 1-3 alkyl, unsubstituted or substituted C 6-10 aryl, N, O and S Unsubstituted or substituted 5 to 10-membered ring heteroarylC 1-3 alkyl, or unsubstituted or substituted 5 to 10-membered ring containing one or more hetero atoms selected from the group consisting of N, O and S Heter
  • substituted alkyl, substituted alkenyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted arylalkyl, substituted aryl, substituted heteroarylalkyl or substituted heteroaryl are each independently substituted or unsubstituted C 6-10 arylsulfonyl, substituted or unsubstituted C 6-10 arylsulfonylC 1-5 alkyl, substituted or unsubstituted C 6-10 aryl, substituted or unsubstituted C 6-10 aryl C Selected from the group consisting of substituted or unsubstituted 5 to 10-membered heteroarylsulfonyl, N, O and S containing one or more hetero atoms selected from the group consisting of 1-5 alkyl, N, O and S Substituted or unsubstituted containing one or more heteroatoms comprising one or more heteroatoms selected from the group consisting of substituted or unsubstituted
  • R 3 and R 4 are the same or different and each independently hydrogen, unsubstituted or substituted C 1-6 linear or branched alkyl, unsubstituted or substituted C 1-6 straight or branched alkoxy, hydroxy group, Halogen, amino, nitro or cyano,
  • substituted alkyl or substituted alkoxy are each independently substituted with one or more substituents selected from the group consisting of hydroxy, halogen, amino, nitro and cyano.
  • It provides a method for producing a compound represented by the formula (1) of claim 1 comprising the step (step 1) of preparing a compound represented by the formula (1) from the compound represented by the formula (2).
  • R 1 , R 2 , R 3 and R 4 are the same as defined in Formula 1 of claim 1.
  • the present invention provides a pharmaceutical composition for preventing or treating a neurological disease, which comprises the compound represented by Formula 1 or Formula 1 ′, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention also provides a health functional food composition for preventing or improving a neurological disease containing the compound represented by Formula 1 or Formula 1 ', a stereoisomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the present invention provides a method for preventing or treating a neurological disease, comprising administering the pharmaceutical composition in a therapeutically effective amount to a subject in need thereof.
  • the present invention provides a use of the compound represented by Formula 1 or Formula 1 ', a stereoisomer thereof or a pharmaceutically acceptable salt thereof for the prevention or treatment of neurological diseases.
  • novel spiroquinone derivative compounds, stereoisomers thereof, or pharmaceutically acceptable salts thereof according to the present invention can excellently inhibit 'microglial activation', acetylcholinesterase, JNK1, JNK2 In addition to the excellent inhibitory activity against, and JNK3, in addition to neurological diseases and related enzymes, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O Significant enzyme inhibitory activity in DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, and TLK1, and confirmed that it can exhibit a cell death inhibitory effect, a novel spiroquinone derivative compound according to the present invention , A stereoisomer thereof, or a pharmaceutical composition for preventing or treating a nervous system disease containing a pharmaceutically acceptable salt thereof as an active ingredient or a health functional food for preventing or improving
  • nitric oxide in neuronal cell line (murine microglial BV-2 cells) treated with neurotoxic material (LPS) for 0.01 ⁇ M, 0.1 ⁇ M, 1 ⁇ M concentration treatment of the Example compound of the present invention ) Is a graph showing the degree of nitrite generation from the quantification.
  • Figure 2 shows the cell survival rate (%) by concentration in the neuronal cell line (murine microglial BV-2 cells) treated with neurotoxic material (LPS) for 0.01 ⁇ M, 0.1 ⁇ M, 1 ⁇ M concentration of the compound of the present invention Is a graph.
  • FIG. 3 is measured nitric oxide in neuronal cell lines treated with neurotoxic material (LPS) for concentration treatment of 1 ⁇ M, 5 ⁇ M, and 10 ⁇ M of Example compounds of the present invention (nitric) oxide is a graph showing the degree of nitrite generation from the quantification.
  • LPS neurotoxic material
  • Figure 4 shows the cell survival rate (%) by concentration in the neuronal cell line (murine microglial BV-2 cells) treated with neurotoxic material (LPS) at a concentration of 1 ⁇ M, 5 ⁇ M, 10 ⁇ M of the compound of the present invention The graph shown.
  • FIG. 5 is a graph showing IC 50 values calculated from nitric oxide detection results measured by concentration gradient of an example compound of the present invention (graph horizontal axis: Example number, vertical axis: IC 50). ( ⁇ M)).
  • 6 is a graph showing the residual activity (%) of acetylcholinesterase after treating the compound of the present invention in two concentrations of 10 ⁇ M and 30 ⁇ M.
  • Figure 7 is donepezil (5 mg / kg, po), 10% Tween 80 solution, after the administration of the present invention compound (10 mg / kg, po), scopolamine (1 mg / kg, ip) It is a graph showing the percentage of spontaneous shift behavior to induce memory damage.
  • the present invention provides a compound represented by the following general formula (1) or (1 '), stereoisomers thereof or pharmaceutically acceptable salts thereof.
  • R 1 and R 2 are the same or different and each independently hydrogen, unsubstituted or substituted C 1-6 straight or branched chain alkyl, unsubstituted or substituted C 1- containing one or more double or triple bonds; 6 linear or branched unsaturated alkyl, unsubstituted or substituted C 3-10 cycloalkyl, N, O, and S unsubstituted or substituted C 3-10 containing one or more heteroatoms selected from the group consisting of At least one hetero atom selected from the group consisting of heterocycloalkyl, unsubstituted or substituted C 6-10 arylC 1-3 alkyl, unsubstituted or substituted C 6-10 aryl, N, O and S Unsubstituted or substituted 5 to 10-membered ring heteroarylC 1-3 alkyl, or unsubstituted or substituted 5 to 10-membered ring containing one or more hetero atoms selected from the group consisting of N, O and S Heter
  • substituted alkyl, substituted alkenyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted arylalkyl, substituted aryl, substituted heteroarylalkyl or substituted heteroaryl are each independently substituted or unsubstituted C 6-10 arylsulfonyl, substituted or unsubstituted C 6-10 arylsulfonylC 1-5 alkyl, substituted or unsubstituted C 6-10 aryl, substituted or unsubstituted C 6-10 aryl C Selected from the group consisting of substituted or unsubstituted 5 to 10-membered heteroarylsulfonyl, N, O and S containing one or more hetero atoms selected from the group consisting of 1-5 alkyl, N, O and S Substituted or unsubstituted containing one or more heteroatoms comprising one or more heteroatoms selected from the group consisting of substituted or unsubstituted
  • R 3 and R 4 are the same or different and each independently hydrogen, unsubstituted or substituted C 1-6 linear or branched alkyl, unsubstituted or substituted C 1-6 straight or branched alkoxy, hydroxy group, Halogen, amino, nitro or cyano,
  • substituted alkyl or substituted alkoxy may be independently substituted with one or more substituents selected from the group consisting of hydroxy, halogen, amino, nitro and cyano.
  • R 1 is unsubstituted or substituted C 1-6 linear or branched alkyl, unsubstituted or substituted C 1-6 linear or branched unsaturated alkyl, unsubstituted or containing at least one double or triple bond, or Unsubstituted or substituted C 3-10 heterocycloalkyl, unsubstituted or substituted C 6 comprising at least one hetero atom selected from the group consisting of substituted C 3-10 cycloalkyl, N, O and S -10 aryl or unsubstituted or substituted 5 to 10 angular heteroaryl containing one or more hetero atoms selected from the group consisting of N, O and S,
  • substituted alkyl, substituted alkenyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl are each independently C 1-6 linear or branched alkyl, C 1-6 It may be substituted with one or more substituents selected from the group consisting of linear or branched alkoxy, hydroxy, halogen, amino, nitro and cyano.
  • R 2 is hydrogen, unsubstituted or substituted C 1-6 linear or branched alkyl, unsubstituted or substituted C 1-6 linear or branched unsaturated alkyl, including one or more double or triple bonds, unsubstituted a ring or a substituted C 3-10 cycloalkyl, N, O, and heterocycloalkyl unsubstituted or substituted C 3-10 containing one or more heteroatoms selected from the group consisting of S, unsubstituted or substituted C 6-10 arylC 1-3 alkyl, unsubstituted or substituted C 6-10 unsubstituted or substituted 5 to 10 comprising one or more hetero atoms selected from the group consisting of aryl, N, O and S Each ring heteroarylC 1-3 alkyl, or an unsubstituted or substituted 5 to 10 each ring heteroaryl containing one or more hetero atoms selected from the group consisting of N, O and S,
  • substituted alkyl, substituted alkenyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted arylalkyl, substituted aryl, substituted heteroarylalkyl or substituted heteroaryl are each independently substituted or unsubstituted Phenylsulfonyl, substituted or unsubstituted phenylsulfonylC 1-5 alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted phenylC 1-5 alkyl, N, O and S selected from the group consisting of Substituted or unsubstituted 5 to 10-membered heteroarylsulfonyl containing at least 2 hetero atoms, substituted or unsubstituted 5 to 10-membered containing at least one hetero atom selected from the group consisting of N, O and S ring made by hetero arylsulfonyl C 1-5 alkyl, N, O and S
  • Substituted 5 to 10-membered heteroarylsulfonyl, substituted 5 to 10-membered heteroarylsulfonylC 1-5 alkyl, substituted 5 to 10-membered heteroaryl, substituted 5 to 10-membered heteroarylC 1-5 alkyl, or substituted C 1-6 linear or branched alkyl is each independently C 1-6 linear or branched alkyl, C 1-6 straight or branched alkoxy, hydroxy, halogen, It may be substituted with one or more substituents selected from the group consisting of amino, nitro and cyano.
  • R 1 is , , , or ego
  • R 2 is , , , , , , , , , , , or to be.
  • Preferred specific examples of the compound represented by Formula 1 or Formula 1 'according to the present invention include the following compounds.
  • the present invention provides a compound represented by Formula 2, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof.
  • R 1 , R 2 , R 3 and R 4 are the same as defined in Chemical Formula 1.
  • the compound represented by the formula (1) or (1 '), or the compound represented by the formula (2) of the present invention can be used in the form of a pharmaceutically acceptable salt, the salt may be pharmaceutically acceptable free acid (free acid)
  • Acid addition salts formed are useful. Acid addition salts include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, hydrobromic acid, hydroiodic acid, nitrous acid, phosphorous acid, aliphatic mono and dicarboxylates, phenyl-substituted alkanoates, hydroxy alkanoates and alkanes.
  • Non-toxic organic acids such as dioate, aromatic acids, aliphatic and aromatic sulfonic acids and the like, and organic acids such as acetic acid, benzoic acid, citric acid, lactic acid, maleic acid, gluconic acid, methanesulfonic acid, 4-toluenesulfonic acid, tartaric acid, fumaric acid and the like.
  • Such pharmaceutically nontoxic salts include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, nitrate, phosphate, monohydrogen phosphate, dihydrogen phosphate, metaphosphate, pyrophosphate chloride, bromide, eye Odide, fluoride, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suve Latex, sebacate, fumarate, maleate, butyne-1,4-dioate, hexane-1,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitro benzoate, hydroxybenzoate, Methoxybenzoate, phthalate, terephthalate, benzenesulfonate, toluenesulfonate, chloro
  • the acid addition salt according to the present invention can be prepared by a conventional method, for example, a derivative of Formula 1 or Formula 1 'is dissolved in an organic solvent such as methanol, ethanol, acetone, dichloromethane, acetonitrile, and the like.
  • the precipitate produced by addition may be prepared by filtration and drying, or the solvent and excess acid may be distilled under reduced pressure and dried to crystallize in an organic solvent.
  • Bases can also be used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and evaporating and drying the filtrate. At this time, it is pharmaceutically suitable to prepare sodium, potassium or calcium salt as the metal salt.
  • Corresponding salts are also obtained by reacting alkali or alkaline earth metal salts with a suitable negative salt (eg silver nitrate).
  • the present invention includes not only the compound represented by Formula 1 or Formula 1 'and pharmaceutically acceptable salts thereof, but also solvates, stereoisomers, hydrates, and the like that can be prepared therefrom.
  • the pharmaceutically acceptable salts of the novel spiroquinone derivative compounds of the present invention can be used without limitation as long as they are salts of compounds that exhibit the prophylactic or therapeutic effect of neurological diseases equivalent to the novel spiroquinone derivative compounds of the present invention.
  • It provides a method for producing a compound represented by the formula (1) of claim 1 comprising the step (step 1) of preparing a compound represented by the formula (1) from the compound represented by the formula (2).
  • R 1 , R 2 , R 3 and R 4 are the same as defined in Formula 1 of claim 1.
  • Step 1 of Scheme 1 is a step of preparing a compound represented by Formula 1 from the compound represented by Formula 2.
  • step 1 is included in the scope of the present invention without limitation, if the method for preparing the compound represented by the formula (1) from the compound represented by the formula (2), it may be understood as an oxidative cyclization reaction.
  • the oxidative cyclization reaction is a reaction for forming a 3,5-substituted oxaspiroquinone, and may be performed using a hypervalent iodine oxidant.
  • BAIB bis (acetoxy) iodobenzene
  • PIFA phenyliodinebis (trifluoroacetate)
  • BAIB bis (acetoxy) iodobenzene
  • PIFA phenyliodinebis (trifluoroacetate)
  • any oxidizing agent capable of performing the oxidative cyclization reaction of step 1 may be used without limitation. And are included in the scope of the present invention.
  • H 2 O ethanol, tetrahydrofuran (THF), dichloromethane, toluene, acetonitrile, dimethylformamide, hexafluoro isopropanol
  • hexafluoro isopropanol may be used, but is not limited thereto.
  • Step 2 Preparing a compound represented by Chemical Formula 6 from the compound represented by Chemical Formula 7 prepared in Step 1 (Step 2);
  • Step 3 Preparing a compound represented by Chemical Formula 5 from the compound represented by Chemical Formula 6 prepared in Step 2 (Step 3);
  • Step 4 Preparing a compound represented by Chemical Formula 4 from the compound represented by Chemical Formula 5 prepared in Step 3 (Step 4);
  • Step 5 Preparing a compound represented by Chemical Formula 3 from the compound represented by Chemical Formula 4 prepared in Step 4 (Step 5);
  • Step 6 Preparing a compound represented by Chemical Formula 2 from the compound represented by Chemical Formula 3 prepared in Step 5 (step 6);
  • R 1 , R 2 , R 3 and R 4 are the same as defined in Formula 1 of claim 1.
  • Step 1 of Scheme 2 is a step of preparing a compound represented by Chemical Formula 7 from the compound represented by Chemical Formula 8.
  • Step 1 of Scheme 2 is a step of introducing a protecting group to the hydroxy group of the compound represented by the formula (8).
  • MOM methoxymethyl ether
  • methyl ether, methoxymethyl ether, methoxyethyl ether or benzyloxymethyl ether may be used.
  • any protecting group that can be commonly used in the field of the present invention may be used without limitation, which is included in the scope of the present invention.
  • Step 2 of Scheme 2 is a step of preparing a compound represented by Chemical Formula 6 from the compound represented by Chemical Formula 7.
  • step 2 of Scheme 2 may be understood as an introduction reaction of NH 2 R 1 , and in performing this, for example, a ligand such as the amine, Pd 2 (dba) 3 , NaOtBu, BINAP, or X-Phos, It can be carried out under the condition of anhydrous toluene, and the present invention includes the range which is normally changeable from this.
  • a ligand such as the amine, Pd 2 (dba) 3 , NaOtBu, BINAP, or X-Phos
  • the temperature is not particularly limited in carrying out the reaction, but may be preferably performed at 20 ° C-120 ° C.
  • Step 3 of Scheme 2 is a step of preparing a compound represented by Chemical Formula 5 from the compound represented by Chemical Formula 6.
  • step 3 of Scheme 2 may be understood as acyl-substituted reaction with malonic acid monoester to obtain an N, N-substituted malon amide ester, for example, the compound represented by the formula (6), methyl mal It can be carried out in the presence of niyl chloride, and the present invention includes the conventionally changeable range that can be changed therefrom.
  • the temperature is not particularly limited in carrying out the reaction, but may be preferably performed at 0 ° C-30 ° C.
  • Step 4 of Scheme 2 is a step of preparing a compound represented by Chemical Formula 4 from the compound represented by Chemical Formula 5.
  • step 4 of Scheme 2 may be understood as a step of obtaining a 2-substituted malonamide ester by introducing a R 2 substituent at the 2-position of the N, N-substituted malonamide ester, for example Compound represented by the formula (5), KOH (aqueous or solid), TBAI, R 2 -X (halogen), may be carried out in the presence of a solvent or NaH, R 2 -X (halogen), may be carried out under anhydrous solvent conditions It is to be understood that the present invention encompasses typically alterable ranges which may be modified therefrom.
  • the temperature is not particularly limited in carrying out the reaction, but may be preferably performed at 0 ° C-30 ° C.
  • Step 5 of Scheme 2 is a step of preparing a compound represented by Formula 3 from the compound represented by Formula 4.
  • step 5 of Scheme 2 may be understood as a step of reducing the ester group of the compound represented by the formula (4), for example, the compound represented by the formula (4), may be carried out under Li (OtBu) 3 H conditions,
  • the present invention encompasses typically alterable ranges which may be modified therefrom.
  • the temperature is not particularly limited in carrying out the reaction, but may be preferably performed at -40 ° C-0 ° C.
  • Step 6 of Scheme 2 is a step of preparing a compound represented by Chemical Formula 2 from the compound represented by Chemical Formula 3.
  • step 6 of Scheme 2 may be understood as a deprotection reaction to remove the protecting group introduced in step 1, the present invention includes a conventionally changeable range that can be changed therefrom.
  • the compound of formula 2 is an ester of N, N-substituted malonamide ester having a substituent introduced at the 2-position obtained according to the literature (Non-Patent Document 3). Only groups can be reduced by chemoselective reduction and obtained by removing the hydroxy protecting groups of the protected phenol in the N, N-substituents.
  • Step 3 Preparing a compound represented by Formula 1 from the compound represented by Formula 1 '' prepared in Step 2 (Step 3); may be a manufacturing method comprising a.
  • R 1 , R 3 and R 4 are as defined in Formula 1 above;
  • R 2 ′ is C 1-5 straight or branched alkynyl containing one or more triple bonds
  • R a is C 1-5 linear or branched alkylene
  • R b is hydrogen, substituted or unsubstituted C 6-10 arylsulfonyl, substituted or unsubstituted C 6-10 arylsulfonylC 1-5 alkyl, substituted or unsubstituted C 6-10 aryl, substituted Or a substituted or unsubstituted 5 to 10-membered heteroarylsulfonyl, N containing one or more hetero atoms selected from the group consisting of unsubstituted C 6-10 arylC 1-5 alkyl, N, O and S, N , Substituted or unsubstituted 5 to 10-membered heteroarylsulfonylC 1-5 alkyl comprising one or more hetero atoms selected from the group consisting of O and S 1 selected from the group consisting of N, O and S Substituted or unsubstituted 5 to 10-membered ring heteroaryl including one or more heteroatoms including one or more heteroatoms, one or more hetero
  • Substituted 5 to 10-membered heteroarylsulfonyl, substituted 5 to 10-membered heteroarylsulfonylC 1-5 alkyl, substituted 5 to 10-membered heteroaryl, substituted 5 to 10-membered heteroarylC 1-5 alkyl, or substituted C 1-6 linear or branched alkyl is each independently C 1-6 linear or branched alkyl, C 1-6 straight or branched alkoxy, hydroxy, halogen, It may be substituted with one or more substituents selected from the group consisting of amino, nitro and cyano.
  • the present invention provides a pharmaceutical composition for preventing or treating a neurological disease, which comprises the compound represented by Formula 1 or Formula 1 ′, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • Compounds represented by Formula 1 or Formula 1 ', stereoisomers thereof or pharmaceutically acceptable salts thereof according to the present invention may be used to inhibit' microglial activation 'as a synthesized compound as an example of industrial applicability. It can be usefully used in the prevention or treatment of neurological diseases through the inhibitory effect on cell death, and also has excellent inhibitory activity against acetylcholinesterase, JNK1, JNK2, and JNK3, and other neurological diseases and related enzyme groups, From significant enzyme inhibitory activity also in RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, and TLK1 It can be usefully used in the prevention or treatment of diseases of the nervous system.
  • the pharmaceutical composition may be a symptom or disease that may be damaged or result from microglial hyperactivation or neurotoxic substances such as lipid polysaccharide (LPS), or acetylcholinesterase, JNK1, JNK2, JNK3, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, or treatments requiring inhibition of TLK1 Disease It can be used as a pharmaceutical composition, preferably characterized in that to prevent or treat diseases of the nervous system.
  • LPS lipid polysaccharide
  • acetylcholinesterase JNK1, JNK2, JNK3, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK
  • the neurological disease inhibits microglial activation or acetylcholinesterase, JNK1, JNK2, JNK3, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2 , CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, or may mean a neurological disease requiring treatment that inhibits the activity of TLK1.
  • the nervous system diseases may include, in particular, brain and central nervous system diseases.
  • examples of the neurological disease include multiple sclerosis, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, spinal cord injury, Alzheimer's disease. , Parkinson's disease, HIV dementia (HIV-associated dementia), Huntington's disease, Lou Gehrig's disease, amyotrophic lateral sclerosis, myasthenia gravis, Creutzfeldt-Jakob disease can be one or more selected from the group consisting of, but not limited to.
  • the neurological disorders include attention deficit disorder, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment, schizophrenia, senile memory disorder (AAMI), senile dementia, AIDS dementia, peak disease, Lewy body related dementia, Down syndrome related dementia , Atrophic lateral sclerosis, Huntington's disease, smoking cessation, nicotine withdrawal symptoms, schizophrenia, bipolar and manic disorders, CNS function associated with traumatic brain injury, acute pain, postoperative pain, chronic pain, inflammatory pain and neuropathic pain At least one disease selected from the group consisting of:
  • the nervous system diseases include Alzheimer's disease, Huntington's disease, Dandy-walker Syndrome, Parkinson's disease, Parkinson's-Plus disease, Amyotrophic lateral sclerosis (ALS), ischemia, stroke, intracranial bleeding, cerebral hemorrhage, brain barrier disorder , Trigeminal neuralgia, pharyngeal neuralgia, facial palsy (Bell's Palsy), myasthenia gravis, dystrophy, progressive muscular dystrophy, primary lateral sclerosis (PLS), false soft paralysis, progressive soft paralysis, progressive nuclear paralysis, spinal muscular atrophy, Hereditary muscular dystrophy, invertebrate intervertebral disc syndrome, cervical spondylosis, plexus disorder, thoracic outlet destruction syndrome, peripheral neuropathy, porphyrinosis, multisystem atrophy, progressive nucleus palsy, cortical basal degeneration, Lewy body dementia, anterior temporal lobe Dementia, dehydration disease, Guillain-Barre
  • the pharmaceutical composition of the present invention may prevent and treat neurological diseases by inhibiting hyperactivation of microglia.
  • the pharmaceutical composition of the present invention exhibits a cytoprotective effect on neurotoxicity by LPS, thereby preventing and treating neurological diseases.
  • the pharmaceutical composition of the present invention can prevent and treat neurological diseases by inhibiting the activity of acetylcholinesterase.
  • the pharmaceutical composition of the present invention can prevent and treat neurological diseases by inhibiting the activity of JNK1, JNK2, or JNK3.
  • the present inventors confirmed the protective effect against LPS-induced neuronal damage from the compound of the present invention, and demonstrates that the acetylcholinesterase inhibitory activity and microglia inhibit the cell death.
  • the recovery according to the treatment of the present invention compound which is also represented by the formula (1) or formula (1 ') of the present invention.
  • the compound may be used as an active ingredient as a pharmaceutical composition for preventing or treating the above-mentioned diseases, or as a nutraceutical composition for preventing or improving.
  • the compound represented by Formula 1 or Formula 1 'of the present invention, a stereoisomer thereof, or a pharmaceutically acceptable salt, hydrate, or solvate thereof has a cytoprotective activity per se, but is absorbed into the body and then a special body environment The possibility of pharmacological action by agonists or by products of metabolic processes is not excluded.
  • the pharmaceutical dosage form of the compound represented by Formula 1 or Formula 1 ', the stereoisomer or pharmaceutically acceptable salt, hydrate, or solvate thereof of the present invention may be a pharmaceutically acceptable salt or solvent thereof. It can also be used in the form of cargo.
  • the present invention also provides a health functional food composition for preventing or improving a neurological disease containing the compound represented by Formula 1 or Formula 1 ', a stereoisomer thereof or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the health functional food composition comprises a compound represented by the formula (1) or (1 ') of the present invention, a stereo isomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient, is prepared as a conventional health functional food composition
  • Formulations, food forms, or dosage forms known to those of skill in the art can be used and are included within the scope of the present invention, and are included in the nutraceutical compositions of the present invention as long as they are within the scope recognized as nutraceutical compositions therefrom. .
  • prevention may mean any action of inhibiting or delaying the onset of a neurological disease by administering a pharmaceutical composition according to the present invention to a subject.
  • treatment may mean any action that improves or benefits the symptoms of a neurological disease by administering a pharmaceutical composition according to the present invention to a subject.
  • composition of the present invention may further comprise a pharmaceutically acceptable carrier, excipient or diluent.
  • the pharmaceutical composition containing the compound represented by Formula 1 or Formula 1 ', a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient may be used in various clinical administrations. It may be formulated and administered in the following oral or parenteral dosage forms, but is not limited thereto.
  • Formulations for oral administration include, for example, tablets, pills, hard / soft capsules, solutions, suspensions, emulsifiers, syrups, granules, elixirs, troches, and the like. , Dextrose, sucrose, mannitol, sorbitol, cellulose and / or glycine), lubricants such as silica, talc, stearic acid and its magnesium or calcium salts and / or polyethylene glycols. Tablets may also contain binders such as magnesium aluminum silicate, starch paste, gelatin, methylcellulose, sodium carboxymethylcellulose and / or polyvinylpyrrolidine, and optionally such as starch, agar, alginic acid or its sodium salt. Disintegrants or boiling mixtures and / or absorbents, colorants, flavors and sweeteners.
  • a pharmaceutical composition comprising the compound represented by Formula 1 or Formula 1 'as an active ingredient may be administered parenterally, and parenteral administration may be performed by injecting subcutaneous injection, intravenous injection, intramuscular injection, or intrathoracic injection. All.
  • the compound represented by Formula 1 or Formula 1 ', its stereoisomer, or a pharmaceutically acceptable salt thereof is mixed with water together with a stabilizer or a buffer to prepare a formulation for parenteral administration into a solution or suspension. And can be prepared in ampule or vial unit dosage forms.
  • the composition may contain sterile and / or auxiliaries such as preservatives, stabilizers, hydrating or emulsifying accelerators, salts and / or buffers for the control of osmotic pressure, and other therapeutically useful substances, which are conventional methods of mixing, granulating Or according to a coating method.
  • the dosage of the pharmaceutical composition containing the compound represented by Formula 1 or Formula 1 'as an active ingredient to the human body may vary depending on the age, weight, sex, dosage form, health condition and degree of disease of the patient, Preferably, an amount of 0.01 to 1000 mg / kg / day is administered by oral or parenteral route by dividing a predetermined time interval several times a day, preferably once to three times a day, according to the judgment of a doctor or pharmacist. Can be.
  • the pharmaceutical composition of the present invention can also be used as a single agent.
  • it may be prepared and used as a complex preparation further comprising one or more kinds of other neurological diseases therapeutic agents.
  • the present invention provides a method of preventing or treating a neurological disease, comprising administering the pharmaceutical composition in a therapeutically effective amount to a subject in need thereof.
  • the pharmaceutical composition refers to a pharmaceutical composition for preventing or treating neurological diseases, including the compound of Formula 1 or Formula 1 ′, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the neurological disease is a neurological disease that requires treatment to inhibit microglia activation, or acetylcholinesterase, JNK1, JNK2, JNK3, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1 , ARK5 / NUAK1, PKCb2, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, or neurological disease as a disease in need of treatment that inhibits the activation of TLK1.
  • the nervous system diseases may include, in particular, brain and central nervous system diseases.
  • the neurological disease refers to all of the neurological diseases described above, and more specifically, the neurological disease is a neurological disease requiring treatment to inhibit microglia activation, or acetylcholinesterase, JNK1, JNK2, Inhibits the activation of JNK3, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, or TLK1 Neurological diseases that require treatment, such as multiple sclerosis, ischemic stroke, intracerebral hemorrhage, traumatic brain injury, spinal cord injury , Alzheimer's disease, Parkinson's disease, HIV-associated dementia, Huntington's disease, Lou Gehrig's disease, Amyotrophic lateral sclerosis, Myasthenia gravis, Creutzfeldt-Jakob disease,
  • the pharmaceutical composition of the present invention may prevent and treat neurological diseases by inhibiting hyperactivation of microglia.
  • the pharmaceutical composition of the present invention exhibits a cytoprotective effect on neurotoxicity by LPS, thereby preventing and treating neurological diseases.
  • the therapeutically effective amount may be administered to the subject by administering a compound of the invention, a stereoisomer thereof, or a pharmaceutically acceptable salt thereof, to ameliorate, improve, preferably prevent or treat the disease in the subject. It can be understood to mean an effective amount of at least a minimum amount at which the effect of starts to appear.
  • the term "administration" means introducing a pharmaceutical composition of the present invention to a subject in an appropriate manner, and the route of administration of the pharmaceutical composition of the present invention can be reached as long as the target tissue can be reached.
  • Administration can be by any general route. May be administered by intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, pulmonary administration, rectal administration, intrauterine dural or intracerbroventricular injection. However, it is not limited thereto.
  • the term "subject” refers to all animals, including mammals, including humans, mammals without humans, livestock, etc., which may or may have a neurological disease.
  • the pharmaceutical composition of the present invention can be administered to a subject to effectively prevent or treat neurological diseases.
  • LPS-treated neurons (murine microglial BV-2 cells) was shown to significantly inhibit the production of nitrite in a concentration-dependent manner (see Experimental Example 1, Figure 1 and Experimental Example 2, Figure 3).
  • the cell survival rate (%) in the LPS-treated neurons (murine microglial BV-2 cells) by the compound of the present invention was also shown to increase significantly in a concentration-dependent (Experimental Example 1, Figure 2 and experiments) Example 2, see FIG. 4).
  • the compound represented by the formula (1) or (1 ') of the present invention was confirmed to have an excellent neuroprotective effect (protective effect of neurons from neurotoxicity, for example, oxidation, stress, etc. induced from neurotoxic substances). It was confirmed that there is an excellent inhibitory effect on microglial hyperactivity.
  • the compound represented by the formula (1) or formula (1 ') of the present invention is a disease associated with acetylcholine inhibition, for example, the nervous system diseases, the nervous system diseases described herein above, more specifically, Alzheimer's dementia or Alzheimer's disease, Refractory epilepsy, stroke, cerebral infarct, head trauma, cerebral arteriosclerosis, and Parkinson disease Huntington's disease, Creutzfeldt-Jakob disease ), Pick disease, Lewy body disease, Amyotrophic lateral sclerosis, multiple sclerosis and ischemic brain disease, cerebrovascular disease, cerebral neuropathy, cognition Disease or disorder, schizophrenia, attention deficit hyperactivity disorder (ADHD), attention deficit disorder (ADD), central nervous system (CNS) or peripheral nervous system (PNS) disease, Guillain-Barré symptoms It was found to be effective against one or more diseases selected from the group consisting of progressive dementia and progressive ataxia due to gradual death of neurons (see Experimental Example 3 below).
  • ADHD attention deficit hyperactivity disorder
  • ADD attention deficit disorder
  • CNS central nervous
  • the compounds of the present invention are JNK1, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / Significant enzyme inhibitory activity values for STK24, TLK1, JNK2, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, and JNK3.
  • JNK1, CDK2 / cyclin O, DAPK1 Prophylactic or therapeutic, for PKCa, CDK1 / cyclin B, MST3 / STK24, TLK1, JNK2, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, and JNK3 related diseases It can be seen that it may be useful as an active ingredient compound of the pharmaceutical composition.
  • AD Alzheimer's disease
  • PD Parkinson's disease
  • animal model experiments (Y-tube mouse experiments) using the compound represented by Formula 1 or Formula 1 'according to the present invention (new spiroquinone derivative compound) resulted in inducing memory damage from the compound of the present invention to the drug. It was confirmed that the memory damage of the mice was restored to the level similar to donepezil in the mice.
  • the compounds of the present invention are clearly identified as a neuroprotective function, and usefully as a pharmaceutical composition for the prevention or treatment of diseases of the nervous system, preferably cerebral nervous system diseases, central nervous system diseases, more specifically all the nervous system diseases described herein. It can be seen that it can be used (see Experimental Example 5 below).
  • Step 2 Preparation of N- (4- (methoxymethoxyphenyl) pyridin-3-amine
  • step 2 of Preparation Example 1 is a case where there is an aromatic substituent substituted with a heteroatom such as pyridine, and as described in step 2, pyridin-3-amine and 1-bromo-4- (methoxymethoxy).
  • the target compound of step 2 may be prepared from oxy) benzene, and in another method, 4- (methoxymethoxy) anyl and 3-bromopyridine are reacted as in Scheme 3 below. Compounds can be prepared.
  • Step 2 Preparation of N- (4- (methoxymethoxy) phenyl) pyridin-3-amine
  • Oven dried seal tubes were tri (dibenzylideneacetone) dipalladium (0.437 g, 0.321 mmol), (XPhos) palladium (2) phenethylamine chloride (1.364 g, 1.364 mmol), sodium tert-butoxide (1.318 g) , 9.61 mmol), and degassed anhydrous toluene (10 mL) was added. After degassing with argon gas, 3-bromopyridine (0.92 mL, 9.61 mmol) and 4- (methoxymethoxy) aniline (1.4 g, 11.53 mmol) were added. The argon gas was charged again, and the mixture was stirred at room temperature for 5-10 minutes.
  • Step 3 Preparation of Methyl 3-((4- (methoxymethoxy) phenyl) (pyridin-3-yl) amino) -3-oxopropanoate
  • the reaction mixture formed was diluted with ethyl acetate and washed with water and saturated aqueous sodium chloride solution. The organic phase was dried over sodium sulfate and concentrated in vacuo. The crude product was purified using flash column chromatography on silica gel using a mobile phase of EtOAc: Hex (3: 7) to afford the desired compound (1.85 g, 68%).
  • the reaction mixture formed was diluted with ethyl acetate and washed with water and saturated aqueous sodium chloride solution The organic phase was dried over sodium sulfate and concentrated in vacuo
  • the crude product was a mobile phase of EtOAc: Hex (3: 7). Purification was carried out by flash column chromatography on silica gel used to obtain the target compound (2.4 g, 86%).
  • Step 4 Preparation of Methyl 2-benzyl-3-((4- (methoxymethoxy) phenyl) (pyridin-3-yl) amino) -3-oxopropanoate
  • the compound (0.500 g, 1.515 mmol) prepared in step 3 was dissolved in toluene, tetra-n-butylammonium bromide (TBAB) (0.049 g, 0.1515 mmol) and 50% aqueous potassium hydroxide solution (0.54 mL, 19.61 mmol) were added sequentially at room temperature and then stirred.
  • TBAB tetra-n-butylammonium bromide
  • 50% aqueous potassium hydroxide solution (0.54 mL, 19.61 mmol
  • Benzyl bromide (0.18 mL, 1.15 mmol) was added to the stirred solution, and the mixture was stirred at room temperature until the substrate (compound prepared in Step 3) disappeared.
  • the reaction solution was diluted with water and ethyl acetate to terminate the reaction.
  • the reaction mixture was diluted with ethyl acetate and washed with water and saturated aqueous sodium chloride solution.
  • the organic phase was dried over sodium sulfate and concentrated in vacuo.
  • the crude product was purified using flash column chromatography on silica gel using a mobile phase of EtOAc: Hex (1: 4) to afford the title compound (0.458 g, 72%).
  • Step 5 Preparation of 2-benzyl-3-hydroxy-N- (4- (methoxymethoxy) phenyl) -N- (pyridin-3-yl) procaineamide
  • step 4 The compound prepared in step 4 (0.340 g, 0.8095 mmol) was dissolved in anhydrous THF (6 mL), and LiAl (Ot-Bu) 3 H (30% in THF, 8.9 mL, 10.523 mmol) was added to an argon stream at -40 ° C. Slowly dropwise under After 30 minutes of stirring at the same temperature, the temperature was slowly increased to room temperature. After confirming that the substrate (compound prepared in step 4) disappeared, the reaction solution was quenched with saturated aqueous sodium potassium tartaric acid solution, diluted with ethyl acetate and stirred until the water layer and the organic layer became clear. The organic layer was separated and washed with saturated aqueous sodium chloride solution.
  • Step 6 Preparation of 2-benzyl-3-hydroxy-N- (4-hydroxyphenyl) -N- (pyridin-3-yl) propanamide
  • step 5 The compound prepared in step 5 (0.180 gr, 0.4591 mmol) was dissolved in 15 mL of acetonitrile and 15 mL of dichloromethane and stirred, and then sodium iodide (0.688 g, 4.591 mmol) was added at 0 ° C., followed by chlorotrimethyl Silane (chlorotrimethylsilan) (0.6 mL, 4.591 mmol) was added. After stirring for 1 hour, the reaction was terminated with saturated aqueous sodium bisulfite solution, and the organic layer obtained by extraction with dichloromethane (2 x 50 mL) was washed with saturated aqueous sodium chloride solution. The organic phase was dried over sodium sulfate and concentrated in vacuo. The crude product was purified using flash column chromatography on silica gel using a mobile phase of EtOAc: Hex (4: 1) to afford the title compound (0.111 g, 70%).
  • a target compound was prepared in the same manner as in Preparation Example 1, except that aniline was used in place of the pyridin-3-amine used in Step 2 of Preparation Example 1.
  • the brown solution was diluted with distilled water (200 mL) and extracted with ethyl acetate.
  • the organic layer was washed with brine solution and dried over sodium sulfate.
  • the solvent was removed by lowering the pressure, and the crude product was recrystallized from ethyl acetate to obtain the target compound (14.4 gr, 61.6 mmol 90%) protected by carboxybenzyl group.
  • Step 2 Preparation of Benzyl (4- (methoxyketoxy) phenyl) carbamate
  • step 1 To a mixture of sodium hydride (1.604 g, 66.87 mmol, dispersed in 60% paraffin oil) in anhydrous dimethylformamide (10 mL), the compound prepared in step 1 (13.8 g, 60.78 mmol) was added to anhydrous dimethylformamide. The solution dissolved in (10 mL) was added slowly with nitrogen gas at 0 ° C. After 30 minutes after the hydrogen gas is no longer generated stops. Then, bromomethylmethyl ether (5.45 mL, 66.87 mmol) was slowly added at 0 ° C., and then stirred at room temperature for 2 hours.
  • Step 3 Preparation of benzyl (4- (methoxymethoxy) phenyl) (methyl) carbamate
  • the reaction was terminated with cold ice cubes, extracted with ethyl acetate, and the organic layer was washed with brine solution and dried over sodium sulfate. The solvent was removed by lowering the pressure, and then purified by flash column chromatography on silica gel to obtain a brown target compound (6.5 g, 86%).
  • Step 5 Preparation of Methyl-3-((4- (methoxymethoxy) phenyl) (methyl) amino) -3-oxopropanoate
  • Methylmalonyl chloride (1.57 mL, 14.65 mmol), which was previously refrigerated, was dissolved in anhydrous dimethylformamide (10 mL), and the compound (2.69 g, 16.11 mmol) prepared in step 4 was dissolved in anhydrous dimethylformamide (20 mL). ) was slowly added to the solution dissolved at 0 ° C. and stirred for 1 hour. The reaction was terminated with ice cubes, extracted with dichloromethane, and the organic layer was washed with brine solution and dried over sodium sulfate. Thereafter, the solvent was removed by lowering the pressure, and then purified by flash column chromatography on silica gel to obtain the title compound (3.8 g, 89%) as a colorless liquid.
  • step 5 the target compounds were prepared in the same manner as described in Steps 4, 5, and 6 of Preparation Example 1.
  • step 1 of Preparation Example 1 4-bromo-2-methylphenol was used in place of 4-bromophenol, and aniline was used in place of pyridin-3-amine used in step 2. Except for using allyl bromide in place of benzyl bromide was carried out as in Preparation Example 1 to prepare a target compound.
  • step 1 of Preparation Example 1 4-bromo-2-methylphenol was used in place of 4-bromophenol, and aniline was used in place of pyridin-3-amine used in step 2.
  • a target compound was prepared in the same manner as in Preparation Example 1, except that methyl iodide was used instead of benzyl bromide.
  • Step 1 Preparation of 3-hydroxy-N- (4- (methoxymethoxy) phenyl) -N-phenylpropanamide
  • Step 2 Preparation of 3-hydroxy-N- (4-hydroxyphenyl) -N-phenylpropanamide
  • Aniline was used in place of the pyridin-3-amine used in Step 2 of Preparation Example 1, and 1- (bromomethyl) -3,5-bis (trifluoromethyl) was substituted for benzylbromide used in Step 4.
  • a target compound was prepared in the same manner as in Preparation Example 1, except that benzene was used.
  • Aniline was used in place of the pyridin-3-amine used in Step 2 of Preparation Example 1, and 1- (bromomethyl) -2-nitro-4- (trifluoromethyl was substituted in place of benzylbromide used in Step 4.
  • a target compound was prepared in the same manner as in Preparation Example 1, except that benzene was used.
  • Aniline was used in place of the pyridin-3-amine used in Step 2 of Preparation Example 1, and 2- (bromomethyl) -1-fluoro-3- (trifluoro) was used in place of benzylbromide used in Step 4.
  • a target compound was prepared in the same manner as in Preparation Example 1, except that methyl) benzene was used.
  • the target compound was prepared in the same manner as in Preparation Example 1, except that iodomethane was used in place of the benzyl bromide used in Step 4 of Preparation Example 1.
  • 4-bromo-2-fluorophenol was used in place of 4-bromophenol in Step 1 of Preparation Example 1, and aniline was used in place of pyridin-3-amine used in Step 2.
  • a target compound was prepared in the same manner as in Preparation Example 1, except that 2-methyl-allyl bromide was used instead of the benzyl bromide.
  • 4-bromo-2-fluorophenol was used in place of 4-bromophenol in step 1 of Preparation Example 1, and aniline was used in place of pyridin-3-amine used in step 2, and in step 4
  • a target compound was prepared in the same manner as in Preparation Example 1, except that 4-bromo-buty-1-ene was used instead of the benzyl bromide.
  • 4-bromo-2-methylphenol was used in place of 4-bromophenol in step 1 of Preparation Example 1, and aniline was used in place of pyridin-3-amine used in step 2, and used in step 4
  • a target compound was prepared in the same manner as in Preparation Example 1, except that 4-bromo-buty-1-ene was used instead of benzyl bromide.
  • Step 5 of Preparation Example 4 except that iodo methane was used instead of benzyl bromide in Step 4 of Preparation Example 1, the same procedure as described in Steps 5 and 6 was performed to prepare a target compound. It was.
  • Step 5 of Preparation Example 4 except that 3-bromo-prop-1-phene was used instead of benzyl bromide in Step 4 of Preparation Example 1, the method described in Steps 5 and 6 was the same. To give the desired compound.
  • Step 5 of Preparation Example 4 except that 4-bromo-buty-1-ene was used instead of benzyl bromide in Step 4 of Preparation Example 1, the method was carried out in the same manner as in Step 5 and Step 6. To give the desired compound.
  • Step 5 of Preparation Example 4 except that 1- (bromomethyl) -4-fluorobenzene was used instead of benzyl bromide in Step 4 of Preparation Example 1, the method was performed in Steps 5 and 6 In the same manner to prepare the target compound.
  • Step 5 of Preparation Example 4 except that 1- (bromomethyl) -4-bromobenzene was used instead of benzyl bromide in Step 4 of Preparation Example 1, the method was performed in Steps 5 and 6 In the same manner to prepare the target compound.
  • Step 5 of Preparation Example 4 except that 1- (bromomethyl) -4-cyanobenzene was used instead of benzyl bromide in Step 4 of Preparation Example 1, the method was performed in Steps 5 and 6 In the same manner to prepare the target compound.
  • Step 5 of Preparation Example 4 except that 1- (chloromethyl) -2- (phenylsulfonyl) benzene was used instead of benzyl bromide in Step 4 of Preparation Example 1, in Step 5 and Step 6
  • the target compound was prepared by following the same procedure as described above.
  • step 3 of Preparation Example 4 except that 2-iodopropane was used in place of iodo methane, and in step 4 of Preparation Example 1, except that iodo methane was used instead of benzyl bromide.
  • the desired compound was prepared by following the same procedure as described in Steps 5 and 6.
  • step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, and 3-bromopro-1-pine was used instead of benzyl bromide in step 4 of Preparation Example 1. Except that, the same procedure as in Step 5 and Step 6 was carried out to prepare the target compound.
  • Step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, and 1-bromo-4-fluorobenzene was used instead of benzyl bromide in Step 4 of Preparation Example 1. Except for the use, the same procedure as in Step 5 and Step 6 was carried out to prepare the target compound.
  • Step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, and 1-bromo-4- (trifluoro) was substituted for benzyl bromide in Step 4 of Preparation Example 1. Except for using methyl) benzene, the method described in Step 5 and Step 6 was carried out in the same manner to prepare the target compound.
  • step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, except that 4-bromobenzonitrile was used instead of benzyl bromide in step 4 of Preparation Example 1.
  • the method described in Step 5 and Step 6 was carried out in the same manner to prepare the target compound.
  • Step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, and 2-bromo-1-fluoro-3 instead of benzyl bromide in Step 4 of Preparation Example 1 Except for using-(trifluoromethyl) benzene, the method described in Step 5 and Step 6 was carried out in the same manner to prepare the target compound.
  • step 3 of Preparation Example 4 except that 2-iodopropane was used in place of iodo methane, and 1,3-dibromobenzene was used instead of benzyl bromide in step 4 of Preparation Example 1.
  • the method described in Step 5 and Step 6 was carried out in the same manner to prepare the target compound.
  • step 3 of Preparation Example 4 2-iodopropane was used in place of iodo methane, and 1-bromo-4-nitrobenzene was used instead of benzyl bromide in step 4 of Preparation Example 1. Except that, the same procedure as in Step 5 and Step 6 was carried out to prepare the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 14 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 5 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 6 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 15 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that Compound 16 was used instead of the compound of Preparation Example 1, which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 3 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 8 compound was used instead of the Preparation Example 1 compound, which was used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 17 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 18 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 9 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that Compound 7 was used instead of Preparation Example 1, a starting material used in Example 19, to obtain the target compound.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 19 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 20 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 21 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 22 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 23 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 24 compound was used instead of the Preparation Example 1 compound which is a starting material used in Example 19, to obtain the target compound.
  • the compound (0.010 g, 0.028 mmol) prepared in Preparation Example 1 was dissolved in anhydrous hexafluoroisopropanol (1 mL), and potassium carbonate (0.008 g, 0.057 mmol) was slowly added under an argon stream at 0 ° C. After stirring for 30 minutes at the same temperature, a solution of phenyliodinebis (trifluoroacetate) (0.012 g, 0.043 mmol) dissolved in anhydrous hexafluoroisopropanol was slowly added dropwise at the same temperature. After stirring at the same temperature for 1 hour, the temperature was slowly increased to room temperature.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 2 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • Example 21 was obtained as a bi-product by carrying out the same reaction as in Example 20.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 27 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 28 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 13 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 12 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 11 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 29 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 10 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 30 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 32 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 1 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 4 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • the target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 35 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 36 compound was used instead of the Preparation Example 1 compound as a starting material used in Example 19, to obtain the target compound.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 37 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 38 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • Example 38 Using Example 38 as the starting material, the target compound was obtained according to Scheme B below.
  • Step 1 3-((1- (4-methoxyphenyl) -1H-1,2,3-triazol-4-yl) methyl) -5-phenyl-1-oxa-5-azaspiro [5,5 Preparation of Undeka-7,10-diene-4,9-dione
  • Example 38 Compound (1 mmol) was dissolved in a solvent in a ratio of 1: 1 ratio of tetrahydrofuran and distilled water at 5 ° C., and then 1-azido-4-methoxybenzene (1.5 mmol) and copper sulfate pentahydrate ( CuSO 4.5 H 2 O) (2 mmol) is added. Then sodium ascorbate (1 mmol) is added and slowly raised to room temperature with stirring. After confirming the consumption of the starting material by TLC, extracted with ethyl acetate, the organic layer was washed with brine solution and dried over sodium sulfate. The solvent was removed by lowering the pressure, and then purified by flash column chromatography on silica gel to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 39 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 1 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 1 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except for using the Preparation Example 42 compound instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a target compound was obtained by performing a cyclization reaction in the same manner as in Example 19, except that the Preparation Example 43 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 44 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • a cyclization reaction was carried out in the same manner as in Example 19, except that the Preparation Example 46 compound was used instead of the Preparation Example 1 compound which was the starting material used in Example 19, to obtain the target compound.
  • Example Chemical structure Example Chemical structure One 26 2 27 3 28 4 29 5 30 6 31 7 32 8 33 9 34 10 35 11 36 12 37 13 38 14 39 15 40 16 41 17 42 18 43 19 44 20 45 21 46 22 47 23 48 24 49 25
  • mouse microglia BV2 cells were supplemented with 10% heat-inactivated fetal bovine serum (Hyclone, USA) in a 95% humidity, 5% CO 2 incubator.
  • fetal bovine serum Hyclone, USA
  • DMEM Dulbecco's modified Eagle's medium
  • 'LPS lipid polysaccahride
  • '6-shogaol' was used as a positive control to confirm whether the cell protective activity against the damage model.
  • the compound of the present invention is administered at 0.01 ⁇ M, 0.1 ⁇ M and 1 ⁇ M concentrations, or at 1 ⁇ M, 5 ⁇ M and 10 ⁇ M concentrations without serum.
  • the toxin 100 mg / mL LPS
  • All treatment chemicals were dissolved in dimethylsulfoxide (DMSO) and the final concentration of DMSO was 0.2%.
  • DMSO dimethylsulfoxide
  • MTT was measured in BV2 cells, and the results are shown in FIGS. 2 and 4 (Con: DMSO treated group (Example compound, LPS not treated), LPS: LPS treated group, Example compound treated) group).
  • the compound represented by Formula 1 or Formula 1 '(a new spiroquinone derivative compound) according to the present invention can excellently protect a neuronal cell line from LPS, and thus, a pharmaceutical for preventing or treating a neurological disease containing the same as an active ingredient. It can be seen that it can be usefully used as a suitable composition.
  • the amount of nitrite was quantified from the amount of nitric oxide secreted in order to quantitatively evaluate the production of nitrite from the LPS-treated neuronal cell line. Quantitative nitrite was used to determine how much neuroglial activation was inhibited and neuroprotective effect was observed.
  • 100 mg / mL LPS was applied to BV-2 neuronal cell line, 0.01 ⁇ M, 0.1
  • Example compounds were treated with BV-2 cell lines at ⁇ M and 1 ⁇ M concentrations, or at concentrations of 1 ⁇ M, 5 ⁇ M and 10 ⁇ M, and the results are shown in FIGS. 1 and 3 (Con: DMSO treated group (execution) Example compound, no LPS treatment), LPS: LPS treatment group, Example compound treatment group).
  • IC 50 values were calculated from nitric oxide detection results measured by the concentration gradient of FIGS. 1 and 3, and the results are shown in FIG. 5.
  • the embodiment of the present invention is excellent in inhibiting the production of nitrite (concentration-dependent (0.01, 0.1, 1 uM)) in the LPS-treated neurons (murine microglial BV-2 cells) It is confirmed.
  • IC 50 calculated value for the nitric oxide (nitric oxide) of the example compound of Figure 5 all of the example compounds of the present invention shows an excellent inhibitory ability of the micromolar unit, in particular Example 14 compound is excellent oxidation of less than about 0.3 ⁇ M When it shows nitrogen suppression ability, the outstanding neuronal protective effect can be confirmed.
  • the inflammatory response in the central nervous system is known to play an important role in degenerative brain diseases, and the activation of microglia is an inflammatory response mediated by the hyperactivity of the microglia, leading to the death of neurons.
  • Inhibiting glial activation may be a pharmacological target for the treatment of degenerative brain diseases, and the association between Parkinson's disease or Alzheimer's and microglial activation results in the activation of microglial cells in the treatment of LPS toxic substances.
  • nitric oxide (NO) is secreted by expression of nitric oxide synthase (iNOS)
  • the compound represented by Formula 1 or Formula 1 '(a new spiroquinone derivative compound) according to the present invention is excellent in protecting neuronal cell lines.
  • an acetylcholinease eeAChE, EC 3.1.1.7
  • acetylcholine chloride ACh
  • ACh quantification colorimetric assay kit from BioVision
  • the experiment was carried out in the following order based on the prescribed standard method of the Ach kit manufacturer (Draczkowski, P. et al. Bba-Gen Subjects 1860 , 967-974, doi: 10.1016 / j.bbagen. 2015.11.006 (2016)).
  • acetylcholine degrading enzyme (eeAChE, EC 3.1.1.7) was dissolved in 20 ⁇ M Tris-HCL buffer and prepared so that the concentration of acetylcholine degrading enzyme was 5 ⁇ M.
  • Acetylcholine chloride was dissolved in 20 mM Tris-HCL buffer to prepare Tris-HCL buffer aqueous solution with 10 ⁇ M acetylcholine chloride concentration.
  • Example Compounds were prepared at two concentrations of 10 ⁇ M and 30 ⁇ M. The prepared acetylcholine chloride solution and the example solution were mixed in 20 ⁇ M acetylcholine degrading enzyme.
  • IC 50 values were calculated based on the data obtained from the 10 ⁇ M and 30 ⁇ M treatments of the above-described experiments, respectively, and the results are shown in Table 3.
  • Example Residual activity (%) of acetylcholinesterase after the experiment IC 50 ( ⁇ M) 10 ⁇ M treatment 30 ⁇ M treatment 2 29.73 7.03 16.01 ⁇ 0.94 3 30.32 -2.03 13.76 ⁇ 1.17 6 40.19 6.07 13.62 ⁇ 1.05 7 46.73 4.74 14.44 ⁇ 0.33 10 27.26 12.95 15.25 ⁇ 0.64 11 69.43 22.06 17.47 ⁇ 2.84 19 66.08 8.07 13.61 ⁇ 0.72 22 51.63 2.47 18.76 ⁇ 2.96 23 38.07 5.64 20.6 ⁇ 4.47 24 35.63 8.89 16.70 ⁇ 0.7 25 20.92 8.15 15.75 ⁇ 0.72 28 55.43 3.08 12.85 ⁇ 0.74 33 50.53 2.08 14.22 ⁇ 0.72
  • the compound according to the present invention can excellently inhibit the activity of acetylcholinesterase, comprising as an active ingredient, acetylcholinesterase-related diseases
  • it can be usefully used as a pharmaceutical composition for the prevention or treatment of neurological diseases.
  • Radiolabeled ATP [ ⁇ - 33 P] ATP
  • Example compounds were tested at 30 ⁇ M for ATP concentrations of 10 ⁇ M and substrate concentrations of 10 ⁇ M.
  • Staurosporine was tested in 10 dose IC 50 mode with 4-fold dilution starting at 20 or 100 ⁇ M.
  • Example compounds were tested in 10 dose IC 50 mode with 3-fold or 4-fold serial dilutions starting at 10, 20 or 100 ⁇ M. Curve fitting of control compounds with less than 65% enzymatic activity at the highest concentration of compounds was performed, the concentration of DMSO was adjusted, and based on the raw data, the enzymatic activity for the DMSO control was calculated and each of the 369 enzymes calculated Of the inhibitory activity of the Example compound for, the enzyme and the inhibitory activity (%) showing a significant result is shown in Table 4 below.
  • the compounds of the present invention are JNK1, CDK2 / cyclin O, DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, TLK1, JNK2, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 Significant enzyme inhibitory activity values for / YSK1, ARK5 / NUAK1, PKCb2, and JNK3 were found.
  • cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, and JNK3 related diseases it can be seen that it may be useful as an active ingredient compound of a pharmaceutical composition for prophylaxis or treatment.
  • the animal model was subjected to the Y-maze test (Y-maze test) to evaluate the effect of the compound of the present invention, was carried out to evaluate the spatial recognition of the mouse.
  • a Y-shaped maze of 20 cm in length, 5 cm in width and 10 cm in height was prepared, and the bottom and walls of the maze were made of dark and opaque polyvinyl plastic, and the three arms of the maze were named A, B and C. Placed symmetrically with each other at an angle of 120 °). Mice were left in the Y-maze for 2 minutes and then watched for 8 minutes to record the number of times they fully enter each arm (from nose to tail).
  • N shifts is the number of shifts observed (1 point) and N total inputs is the total number of arm inputs
  • mice were dosed with donepezil (5 mg / kg, p.o.), 10% Tween 80 solution, Example Compound of the Invention (10 mg / kg, p.o.). Scopolamine (1 mg / kg, i.p.) was administered to induce memory damage 30 minutes prior to testing.
  • the compound according to the present invention is useful as a pharmaceutical composition for the prevention or treatment of neurological diseases, preferably cerebral nervous system diseases, central nervous system diseases, as shown in animal model experiments, the neuroprotective function is clearly identified. It can be seen that it can be used.
  • neurological diseases preferably cerebral nervous system diseases, central nervous system diseases, as shown in animal model experiments, the neuroprotective function is clearly identified. It can be seen that it can be used.
  • novel spiroquinone derivative compounds, stereoisomers thereof, or pharmaceutically acceptable salts thereof according to the present invention can excellently inhibit 'microglial activation', acetylcholinesterase, JNK1, JNK2 In addition to the excellent inhibitory activity against, and JNK3, in addition to neurological diseases and related enzymes, RIPK5, CDK3 / cyclin E, PKN2 / PRK2, Haspin, STK25 / YSK1, ARK5 / NUAK1, PKCb2, CDK2 / cyclin O Significant enzyme inhibitory activity in DAPK1, PKCa, CDK1 / cyclin B, MST3 / STK24, and TLK1, and confirmed that it can exhibit a cell death inhibitory effect, a novel spiroquinone derivative compound according to the present invention , A stereoisomer thereof, or a pharmaceutical composition for preventing or treating a nervous system disease containing a pharmaceutically acceptable salt thereof as an active ingredient or a health functional food for preventing or improving

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물에 관한 것으로, 본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염은 '미세아교세포 활성화(microglial activation)'를 우수하게 억제할 수 있고, 아세틸콜린에스터라제, JNK1, JNK2, 및 JNK3에 대하여 우수한 저해활성을 확인하였을 뿐 아니라, 이 외에 신경계 질환과 관련 효소군, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 및 TLK1에서 유의미한 효소 저해 활성을 확인하고, 세포 사멸(cell death) 억제 효과를 나타낼 수 있음을 확인한 바, 본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 또는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물로 유용하게 사용될 수 있다.

Description

신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물
본 발명은 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물에 관한 것이다.
중추신경계를 구성하는 신경교세포(astrocytes) 중 미세아교세포(microglia)는 조직 내의 변성된 뉴런(neuron)과 이물질 등을 잡아먹는 탐식 작용 등의 자기방어 기능을 수행하는 것으로 알려져 있다. 그러나, 방어 목적으로 생산된 TNF(tumor necrosis factor)-α, 반응성 산소(ROS) 또는 질소 화합물 등의 염증 유발 물질들이 과다하게 분비되거나 세포 자체가 활성화된 상태로 오래 지속될 경우 신경 세포 손상이라는 부작용을 초래하는 것으로 알려져 있다.
최근, 알츠하이머, 파킨슨병 등의 퇴행성 신경계 질환 뿐만 아니라 외상 및 허혈 상태에 따른 신경세포 손상에도 미세아교세포의 과민 활성화가 관련되어 있으며, 이와 같이 과민 활성화된 미세아교세포를 억제하거나 미세아교세포가 분비하는 염증유발 물질의 작용을 저해하는 치료제 및 치료법을 개발하기 위한 연구가 수행되고 있다(Gonzalez-Scarano F and Baltuch G, Annu. Rev. Neurosci., 1999, 22, 219-240).
한편, 아세틸콜린에스터라제 억제로부터 신경 보호 효능(neuroprotective effect)이 있음이 알려져 있다. 그러나, 아세틸콜린 저해제가 신경계 질환의 예방 및 치료 효과를 입증하고 있음에도 알츠하미어를 통제할 근본적 치료제(DMD, disease modifying drug)는 현재 존재하지 않으며, 임상 의약품인 도네페질(donepezil), 갈란타민(galatamine), 타크린(tacrine) 등은 질병의 예후가 나빠지는 것을 늦추는 증상 경감의 효과를 나타낼 뿐 병인을 제거하거나 해결하지는 못한다.
다른 한편, JNK 유전자가 제거된 마우스에서 더 높은 도파민 레벨과 도파민 작용성 뉴런의 손실이 적은 게 관찰되어 파킨슨병과 JNK의 관련성이 입증된 바 있으나, 이 역시 신경계 질환에 약물로서 지속적인 연구가 필요한 실정이다.
한편, 기존의 의약품 및 의약품 후보물질, 유효물질 및 화합물 라이브러리는 대부분 '헤테로 방향족 고리 구조'를 기본 모핵으로 하고, 생체 내 내인성리간드의 구조와 구조적 유사성이 있는 물질을 기반으로 한다. 지금까지 의약품 및 산업적으로 이용가능한 물질을 개발하기 위한 연구가 이루어져 왔으나, 지속적인 연구 개발이 필요한 실정이다.
스피로퀴논 구조 자체는 천연물인 Spirooliganones A 및 B 등을 전합성(total synthesis)하기 위해 중간체로 사용하는 구조의 화합물로, 항암제나 감염증 치료제 등의 의약품으로서의 이용가능성에 대하여 알려져 있다. 종래 연구에서는 세리움(CAN) 같은 금속시약을 이용하거나 과요오드화물(hypervalent iodine) 등의 산화제를 이용하여 산화적 고리화 반응을 통해 스피로퀴논 화합물을 합성하는 방법 등이 보고되어 있으며, 기존의 스피로퀴논 화합물은 단일 또는 1개의 헤테로 원자가 고리 안에 포함된 구조를 나타낸다(Carnesi S et al., Angew. Chem. Int. Ed., 2004, 43, 4336-4338; Yasuyuki K et al., Angew. Chem. Int. Ed., 2008, 47, 3787-3790).
이러한 배경 하에, 본 발명자들은 신경계 질환 예방 또는 치료에 있어서 우수한 활성을 나타내는 새로운 스피로퀴논 유도체 화합물을 개발하고자 예의 연구노력한 결과, 의약품 구조에 다빈도로 등장하는 아미드기를 스피로퀴논 골격에 도입하고 산화적 고리화 방법에 의해 산소 원자를 스피로 위치에 도입하는 방법을 개발하여, 3개의 헤테로 원자가 도입된 신규 스피로퀴논 유도체를 효율적으로 합성할 수 있으며, 아민알(aminal) 구조를 스피로퀴논 골격에 도입할 수 있음을 최초로 확인하였다.
또한, 상기 신규 스피로퀴논 유도체가 LPS(lipid polysaccharide)에 의해 유도된 '미세아교세포 활성화(microglial activation)' 억제 및 세포 사멸(cell death) 억제 효과를 통해 신경계 질환의 예방 또는 치료에 있어서 유용성을 가짐을 확인하고, 또한 아세틸콜린에스터라제, JNK1, JNK2, 및 JNK3에 대하여 우수한 저해활성을 확인하였을 뿐 아니라, 이 외에 신경계 질환과 관련 효소군, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 및 TLK1에서 유의미한 효소 저해 활성을 확인되는 바, 본 발명의 신규 스피로퀴논 유도체 화합물을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 또는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물로 유용하게 사용될 수 있음을 규명하여, 본 발명을 완성하였다.
본 발명의 목적은 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 제공하는 것이다.
본 발명의 다른 목적은 상기 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효 성분으로 함유하는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 약학적 조성물을 치료학적으로 유효한 양으로 이를 필요로 하는 대상(subject)에 투여하는 단계를 포함하는, 신경계 질환의 예방 또는 치료 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 치료학적으로 유효한 양으로, 이를 필요로 하는 대상(subject)에 투여시키는 단계를 포함하는 신경계 질환의 예방 또는 치료 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염의, 신경계 질환의 예방 또는 치료의 용도를 제공하는 것이다.
상기 목적을 달성하기 위해,
본 발명은 하기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2017009909-appb-I000001
[화학식 1']
Figure PCTKR2017009909-appb-I000002
상기 화학식 1 또는 화학식 1'에 있어서,
R1 및 R2는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10아릴C1-3알킬, 비치환 또는 치환된 C6-10의 아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴C1-3알킬, 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴알킬, 치환된 아릴, 치환된 헤테로아릴알킬 또는 치환된 헤테로아릴은 각각 독립적으로 치환 또는 비치환된 C6-10아릴설포닐, 치환 또는 비치환된 C6-10아릴설포닐C1-5알킬, 치환 또는 비치환된 C6-10의 아릴, 치환 또는 비치환된 C6-10아릴C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고; 및
R3 및 R4는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시기, 할로젠, 아미노, 나이트로 또는 시아노이되,
여기서, 상기 치환된 알킬 또는 치환된 알콕시는 각각 독립적으로 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환된다.
또한, 본 발명은 하기 반응식 1에 나타난 바와 같이,
화학식 2로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계(단계 1)를 포함하는 제1항의 화학식 1로 표시되는 화합물의 제조방법을 제공한다.
[반응식 1]
Figure PCTKR2017009909-appb-I000003
상기 반응식 1에 있어서,
R1, R2, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같다.
나아가, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
또한, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물을 제공한다.
나아가, 본 발명은 상기 약학적 조성물을 치료학적으로 유효한 양으로 이를 필요로 하는 대상(subject)에 투여시키는 단계를 포함하는 신경계 질환의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염의 신경계 질환의 예방 또는 치료의 용도를 제공한다.
본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염은 '미세아교세포 활성화(microglial activation)'를 우수하게 억제할 수 있고, 아세틸콜린에스터라제, JNK1, JNK2, 및 JNK3에 대하여 우수한 저해활성을 확인하였을 뿐 아니라, 이 외에 신경계 질환과 관련 효소군, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 및 TLK1에서 유의미한 효소 저해 활성을 확인하고, 세포 사멸(cell death) 억제 효과를 나타낼 수 있음을 확인한 바, 본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 또는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물로 유용하게 사용될 수 있다.
도 1은 본 발명의 실시예 화합물 0.01 μM, 0.1 μM, 1 μM 농도 처리에 대하여, 신경 독성 물질(LPS)을 처리한 신경세포주(murine microglial BV-2 cells)에서의 측정된 산화 질소(nitric oxide) 정량으로부터 니트라이트(nitrite)의 발생 정도를 비교하여 나타낸 그래프이다.
도 2는 본 발명의 실시예 화합물 0.01 μM, 0.1 μM, 1 μM 농도처리에 대하여, 신경 독성 물질(LPS)을 처리한 신경세포주(murine microglial BV-2 cells)에서의 농도별 세포생존율(%)을 나타낸 그래프이다.
도 3은 본 발명의 실시예 화합물 1 μM, 5 μM, 10 μM의 농도 처리에 대하여, 신경 독성 물질(LPS)을 처리한 신경세포주(murine microglial BV-2 cells)에서의 측정된 산화 질소(nitric oxide) 정량으로부터 니트라이트(nitrite)의 발생 정도를 비교하여 나타낸 그래프이다.
도 4는 본 발명의 실시예 화합물 1 μM, 5 μM, 10 μM의 농도로, 신경 독성 물질(LPS)을 처리한 신경세포주(murine microglial BV-2 cells)에서의 농도별 세포생존율(%)을 나타낸 그래프이다.
도 5는 본 발명의 실시예 화합물을 농도 구배하여 측정된 산화 질소(nitric oxide) 검출 결과로부터, IC50 값을 산출하여 그래프로 도시한 것이다(그래프 가로 축: 실시예 번호, 세로 축: IC50(μM)).
도 6은 본 발명의 실시예 화합물은 10 μM 과 30 μM의 두가지 농도로 처리한후, 아세틸콜린에스터라제 잔여 활성(%)을 그래프로 도시한 것이다.
도 7은 마우스에 도네페질(5 mg/kg, p.o.), 10 % 트윈(Tween) 80 용액, 본 발명 실시예 화합물(10 mg/kg, p.o.) 투여 후, 스코폴라민(1 mg/kg, i.p.) 기억 손상 유도에 대한 자발적 교대 행동 비율(%)을 도시한 그래프이다.
이하, 본 발명을 상세히 설명한다.
본 발명은 하기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 제공한다.
[화학식 1]
Figure PCTKR2017009909-appb-I000004
[화학식 1']
Figure PCTKR2017009909-appb-I000005
상기 화학식 1 또는 화학식 1'에 있어서,
R1 및 R2는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10아릴C1-3알킬, 비치환 또는 치환된 C6-10의 아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴C1-3알킬, 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴알킬, 치환된 아릴, 치환된 헤테로아릴알킬 또는 치환된 헤테로아릴은 각각 독립적으로 치환 또는 비치환된 C6-10아릴설포닐, 치환 또는 비치환된 C6-10아릴설포닐C1-5알킬, 치환 또는 비치환된 C6-10의 아릴, 치환 또는 비치환된 C6-10아릴C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고; 및
R3 및 R4는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시기, 할로젠, 아미노, 나이트로 또는 시아노이되,
여기서, 상기 치환된 알킬 또는 치환된 알콕시는 각각 독립적으로 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
본 발명의 일 측면에서,
상기 R1은 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10의 아릴 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴, 치환된 헤테로아릴은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
본 발명의 다른 측면에서,
상기 R2는 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10아릴C1-3알킬, 비치환 또는 치환된 C6-10의 아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴C1-3알킬, 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴알킬, 치환된 아릴, 치환된 헤테로아릴알킬 또는 치환된 헤테로아릴은 각각 독립적으로 치환 또는 비치환된 페닐설포닐, 치환 또는 비치환된 페닐설포닐C1-5알킬, 치환 또는 비치환된 페닐, 치환 또는 비치환된 페닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
본 발며의 또 다른 측면에서,
상기 R1
Figure PCTKR2017009909-appb-I000006
,
Figure PCTKR2017009909-appb-I000007
,
Figure PCTKR2017009909-appb-I000008
,
Figure PCTKR2017009909-appb-I000009
또는
Figure PCTKR2017009909-appb-I000010
이고; 및
상기 R2
Figure PCTKR2017009909-appb-I000011
, ,
Figure PCTKR2017009909-appb-I000013
,
Figure PCTKR2017009909-appb-I000014
,
Figure PCTKR2017009909-appb-I000015
,
Figure PCTKR2017009909-appb-I000016
,
Figure PCTKR2017009909-appb-I000017
,
Figure PCTKR2017009909-appb-I000018
,
Figure PCTKR2017009909-appb-I000019
,
Figure PCTKR2017009909-appb-I000020
,
Figure PCTKR2017009909-appb-I000021
,
Figure PCTKR2017009909-appb-I000022
,
Figure PCTKR2017009909-appb-I000023
,
Figure PCTKR2017009909-appb-I000024
,
Figure PCTKR2017009909-appb-I000025
,
Figure PCTKR2017009909-appb-I000026
또는
Figure PCTKR2017009909-appb-I000027
이다.
본 발명에 따른 상기 화학식 1 또는 화학식 1'로 표시되는 화합물의 바람직한 일 구체예로는 하기의 화합물들을 들 수 있다.
(1) 5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(2) 3-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(3) 3-알릴-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(4) 3-(2-메틸-알릴)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(5) 3-(3-부테닐)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(6) 3-벤질-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(7) 3-(4-플루오로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(8) 3-(4-클로로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(9) 3-(3-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(10) 3-(4-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(11) 3-(4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(12) 3-(4-니트로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(13) 3-(2-(페닐설포닐메틸)-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(14) 3-(3,5-디트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(15) 3-(3,5-디메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(16) 3-(2-니트로-4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(17) 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(18) 3-(2-클로로-5-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(19) 3-벤질-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(20) 3-메틸-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(21) 3-히드록시-2-메틸-N-(4-옥소사이클로헥사-2,5-디에틸)-N-(피리딘-3-일)프로판아미드;
(22) 3-메틸-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(23) 3-알릴-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(24) 3-벤질-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(25) 3,8-디메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(26) 3-알릴-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(27) 3-(2-메틸-알릴)-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(28) 3-벤질-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(29) 3,5-디메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(30) 3-알릴-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(31) 3-(3-부테닐)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(32) 3-(2-메틸-알릴)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(33) 3-벤질-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(34) 3-(4-플루오로-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(35) 3-(4-브로모-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(36) 3-(4-시아노-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(37) 3-(2-(페닐설포닐메틸)-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(38) 3-알릴-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(39) 3-((1-(4-메톡시페닐)-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(40) 3-((1-벤질-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(41) 3-메틸-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(42) 3-알릴-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(43) 3-(4-플루오로-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(44) 3-(4-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(45) 3-(4-시아노-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(46) 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(47) 3-((1-페닐-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
(48) 3-(3-브로모벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온; 및
(49) 5-이소프로필-3-(4-니트로벤질)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온.
한편, 본 발명의 일 측면에서,
본 발명은 하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 제공한다.
[화학식 2]
Figure PCTKR2017009909-appb-I000028
상기 화학식 2에 있어서,
R1, R2, R3 및 R4는 상기 화학식 1에서 정의한 바와 같다.
본 발명의 화학식 1 또는 화학식 1'로 표시되는 화합물, 또는 화학식 2로 표시되는 화합물은 약학적으로 허용 가능한 염의 형태로 사용할 수 있으며, 염으로는 약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산 부가염이 유용하다. 산 부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산, 아인산 등과 같은 무기산류, 지방족 모노 및 디카르복실레이트, 페닐-치환된 알카노에이트, 히드록시 알카노에이트 및 알칸디오에이트, 방향족 산류, 지방족 및 방향족 설폰산류 등과 같은 무독성 유기산, 아세트산, 안식향산, 구연산, 젖산, 말레인산, 글루콘산, 메탄설폰산, 4-톨루엔설폰산, 주석산, 푸마르산 등과 같은 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염의 종류로는 설페이트, 피로설페이트, 바이설페이트, 설파이트, 바이설파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 다이하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 히드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-히드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트, 만델레이트 등을 포함한다.
본 발명에 따른 산 부가염은 통상의 방법으로 제조할 수 있으며, 예를 들면 화학식 1 또는 화학식 1'의 유도체를 메탄올, 에탄올, 아세톤, 디클로로메탄, 아세토니트릴 등과 같은 유기용매에 녹이고 유기산 또는 무기산을 가하여 생성된 침전물을 여과, 건조시켜 제조하거나, 용매와 과량의 산을 감압 증류한 후 건조시켜 유기용매 하에서 결정화시켜서 제조할 수 있다.
또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속 염은 예를 들면 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해하고, 비용해 화합물 염을 여과하고, 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하다. 또한, 이에 대응하는 염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 음염(예, 질산은)과 반응시켜 얻는다.
나아가, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물 및 이의 약학적으로 허용가능한 염뿐만 아니라, 이로부터 제조될 수 있는 용매화물, 입체 이성질체, 수화물 등을 모두 포함한다.
본 발명의 신규 스피로퀴논 유도체 화합물의 약학적으로 허용 가능한 염으로는 본 발명의 신규 스피로퀴논 유도체 화합물과 동등한 신경계 질환의 예방 또는 치료 효과를 나타내는 화합물의 염이면 제한없이 모두 사용 가능하다.
또한, 본 발명은 하기 반응식 1에 나타난 바와 같이,
화학식 2로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계(단계 1)를 포함하는 제1항의 화학식 1로 표시되는 화합물의 제조방법을 제공한다.
[반응식 1]
Figure PCTKR2017009909-appb-I000029
상기 반응식 1에 있어서,
R1, R2, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같다.
이하, 본 발명에 따른 화학식 1로 표시되는 화합물의 제조방법을 단계별로 상세히 설명한다.
본 발명에 따른 화학식 1로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 1의 단계 1은 화학식 2로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 단계 1은 화학식 2로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조할 수 있는 방법이라면 제한없이 본 발명의 범주에 포함되나, 바람직하게 산화적 고리화 반응으로 이해될 수 있다.
여기서, 상기 산화적 고리화 반응은 3,5-치환된 옥아자스피로퀴논을 형성하기 위한 반응으로서, 과산화요오드(hypervalent iodine) 산화제를 사용하여 수행할 수 있다.
상기 과산화요오드 산화제로서, 바람직하게 BAIB(bis(acetoxy)iodobenzene) 또는 PIFA(phenyliodinebis(trifluoroacetate))를 사용할 수 있으나, 상기 단계 1의 산화적 고리화 반응을 수행할 수 있는 산화제라면 제한 없이 사용할 수 있고, 이는 본 발명의 범주에 포함된다.
또한, 상기 단계 1에 사용 가능한 용매로는 H2O, 에탄올, 테트라하이드로퓨란(THF), 디클로로메탄, 톨루엔, 아세토니트릴, 디메틸포름아미드, 헥사플로로이소프로판올(hexafluoro isopropanol) 등을 사용할 수 있고, 바람직하게 헥사플로로이소프로판올(hexafluoro isopropanol)을 사용할 수 있으나, 이에 제한되지 않는다.
한편, 상기 화학식 2로 표시되는 화합물은,
하기 반응식 2에 나타난 바와 같이,
화학식 8로 표시되는 화합물로부터 화학식 7로 표시되는 화합물을 제조하는 단계(단계 1);
상기 단계 1에서 제조한 화학식 7로 표시되는 화합물로부터 화학식 6으로 표시되는 화합물을 제조하는 단계(단계 2);
상기 단계 2에서 제조한 화학식 6으로 표시되는 화합물로부터 화학식 5로 표시되는 화합물을 제조하는 단계(단계 3);
상기 단계 3에서 제조한 화학식 5로 표시되는 화합물로부터 화학식 4로 표시되는 화합물을 제조하는 단계(단계 4);
상기 단계 4에서 제조한 화학식 4로 표시되는 화합물로부터 화학식 3으로 표시되는 화합물을 제조하는 단계(단계 5); 및
상기 단계 5에서 제조한 화학식 3으로 표시되는 화합물로부터 화학식 2로 표시되는 화합물을 제조하는 단계(단계 6);을 포함하는 상기 화학식 2로 표시되는 화합물의 제조방법으로부터 제조될 수 있다.
[반응식 2]
Figure PCTKR2017009909-appb-I000030
(상기 반응식 2에 있어서,
R1, R2, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같다.)
이하, 상기 화학식 2로 표시되는 화합물의 제조방법을 단계별로 상세히 설명한다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 1은 화학식 8로 표시되는 화합물로부터 화학식 7로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 1은 화학식 8로 표시되는 화합물의 히드록시기에 보호기를 도입하는 단계이다.
여기서, 상기 보호기는 상기 반응식 2에 나타난 바와 같이, MOM(메톡시메틸 에테르)를 사용할 수 있으나, 메틸 에테르, 메톡시메틸 에테르, 메톡시에틸 에테르 또는 벤질록시메틸 에테르를 사용할 수 있다. 이외에 본 발명이 속하는 분야에서 통상적으로 사용할 수 있는 보호기라면 제한없이 사용할 수 있고, 이는 본 발명의 범주에 포함된다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 2는 화학식 7로 표시되는 화합물로부터 화학식 6으로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 2는 NH2R1의 도입반응으로 이해될 수 있고, 이를 수행하는데 있어서, 일례로 상기 아민, Pd2(dba)3, NaOtBu, BINAP 혹은 X-Phos 등의 리간드, 무수 톨루엔의 조건 하에서 수행될 수 있고, 본 발명은 이로부터 통상적으로 변경 가능한 범위를 포함한다.
또한, 반응을 수행하는데 있어 온도는 특별한 제한은 없으나, 바람직하게 20℃-120℃에서 수행될 수 있다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 3은 화학식 6으로 표시되는 화합물로부터 화학식 5로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 3은 말론산 모노에스테르와 아실치환 반응시켜 N,N-치환된 말론 아미드 에스테르를 수득하는 단계로 이해될 수 있고, 일례로 상기 화학식 6으로 표시도는 화합물, 메틸말로닐클로라이드의 존재하에 수행될 수 있고, 본 발명은 이로부터 변경 가능한 통상적으로 변경 가능한 범위를 포함한다.
또한, 반응을 수행하는데 있어 온도는 특별한 제한은 없으나, 바람직하게 0℃-30℃에서 수행될 수 있다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 4는 화학식 5로 표시되는 화합물로부터 화학식 4로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 4는 상기 N,N-치환된 말론아미드 에스테르의 2-위치에 R2 치환기를 도입하여 2-치환된 말론아미드 에스테르를 수득하는 단계로 이해될 수 있고, 일례로 상기 화학식 5로 표시되는 화합물, KOH(수용액 혹은 고체), TBAI, R2-X(할로젠), 용매 존재하에 수행될 수 있고 혹은 NaH, R2-X(할로젠), 무수 용매 조건하에서 수행될 수 있고, 본 발명은 이로부터 변경 가능한 통상적으로 변경 가능한 범위를 포함한다.
또한, 반응을 수행하는데 있어 온도는 특별한 제한은 없으나, 바람직하게 0℃-30℃에서 수행될 수 있다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 5는 화학식 4로 표시되는 화합물로부터 화학식 3으로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 5는 화학식 4로 표시되는 화합물의 에스테르기를 환원시키는 단계로 이해될 수 있고, 일례로 상기 화학식 4로 표시되는 화합물, Li(OtBu)3H 조건하에 수행될 수 있고, 본 발명은 이로부터 변경 가능한 통상적으로 변경 가능한 범위를 포함한다.
또한, 반응을 수행하는데 있어 온도는 특별한 제한은 없으나, 바람직하게 -40℃ - 0℃에서 수행될 수 있다.
상기 화학식 2로 표시되는 화합물의 제조방법에 있어서, 상기 반응식 2의 단계 6은 화학식 3으로 표시되는 화합물로부터 화학식 2로 표시되는 화합물을 제조하는 단계이다.
이때, 상기 반응식 2의 단계 6은 상기 단계 1에서 도입한 보호기를 제거하는 탈보호화 반응으로 이해될 수 있고, 본 발명은 이로부터 변경 가능한 통상적으로 변경 가능한 범위를 포함한다.
대안적으로, R2가 C1-C6 알킬인 경우, 상기 화학식 2의 화합물은 문헌(비특허문헌 3)에 의거하여 얻은 2-위치에 치환기가 도입된 N,N-치환된 말론아미드 에스테르의 에스테르기만을 화학선택적인 환원 반응(chemoselective reduction)을 통해 환원하고, N,N-치환기 중 보호된 페놀의 히드록시 보호기를 제거하여 수득할 수 있다.
한편, 본 발명의 상기 반응식 1로 표시되는 제조방법에 있어서, 또 다른 측면의 일예로,
상기 단계 1은, 하기 반응식 1'에 나타낸 바와 같이,
화학식 2'으로 표시되는 화합물로부터 화학식 1''으로 표시되는 화합물을 제조하는 단계(단계 2); 및
상기 단계 2에서 제조한, 화학식 1''으로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계(단계 3);를 포함하는 것을 특징으로 하는 제조방법일 수 있다.
[반응식 1']
Figure PCTKR2017009909-appb-I000031
상기 반응식 1'에 있어서,
R1, R3 및 R4는 상기 화학식 1에서 정의한 바와 같고;
R2'은 하나 이상의 삼중결합을 포함하는 C1-5의 직쇄 또는 측쇄의 알카이닐이고; 및
여기서, R2
Figure PCTKR2017009909-appb-I000032
이되,
여기서, 상기 Ra는 C1-5의 직쇄 또는 측쇄의 알킬렌이고,
상기 Rb는 수소, 치환 또는 비치환된 C6-10아릴설포닐, 치환 또는 비치환된 C6-10아릴설포닐C1-5알킬, 치환 또는 비치환된 C6-10의 아릴, 치환 또는 비치환된 C6-10아릴C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 또는 시아노이되,
다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환될 수 있다.
나아가, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염은 합성된 화합물들이 산업적 이용가능성의 한 예로서 '미세아교세포 활성화(microglial activation)' 억제에 의한 세포 사멸 억제 효과를 통해 신경계 질환의 예방 또는 치료에 있어서 유용하게 사용될 수 있고, 또한 아세틸콜린에스터라제, JNK1, JNK2, 및 JNK3에 대하여 우수한 저해활성과, 이 외의 신경계 질환과 관련 효소군, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 및 TLK1에서도 유의미한 효소 저해 활성으로부터, 신경계 질환의 예방 또는 치료에 있어서 유용하게 사용될 수 있다.
구체적으로 상기 약학적 조성물은 미세아교세포 과활성화 또는 LPS(lipid polysaccharide)와 같은 신경독성 물질로부터 손상되거나 기인될 수 있는 증상 또는 질환, 또는 아세틸콜린에스터라제, JNK1, JNK2, JNK3, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 또는 TLK1의 활성화를 억제시키는 치료를 필요로 하는 질환 바람직하게 신경계 질환을 예방 또는 치료하는 것을 특징으로 하는 약학적 조성물로 사용될 수 있다.
이때, 상기 신경계 질환은 미세아교세포 활성화를 억제시키거나, 또는 아세틸콜린에스터라제, JNK1, JNK2, JNK3, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 또는 TLK1의 활성을 억제하는 치료를 필요로 하는 신경 질환을 의미하는 것일 수 있다. 또한, 상기 신경계 질환은 특히 뇌 신경계 및 중추 신경계 질환을 포함할 수 있다.
보다 구체적으로, 상기 신경계 질환은의 예로는 다발성 경화증(multiple sclerosis), 뇌허혈(ischemic stroke), 대뇌출혈(intracerebral hemorrhage), 외상성 뇌손상(traumatic brain injury), 척수외상(spinal cord injury), 알츠하이머병, 파킨슨병, HIV 치매(HIV-associated dementia), 헌팅턴병, 루게릭병, 근위축성 측삭 경화증, 중증근무력증, 크로이츠펠트야콥병 등으로 이루어진 군으로부터 선택되는 1종 이상의 질환일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 또 다른 측면에서,
상기 신경계 질환은 주의력 결핍 장애, 주의력 결핍 과잉행동 장애(ADHD), 경증 인지 장애, 정신분열병, 노인성 기억력 감퇴증(AAMI), 노인성 치매, AIDS 치매, 피크병, 루이소체 관련 치매, 다운 증후군 관련 치매, 근위축성측삭경화증, 헌팅톤병, 금연, 니코틴 금단 증상, 분열정동장애, 양극성 및 조울증 장애, 외상성 뇌 손상과 관련된 CNS 기능 저하, 급성 통증, 수술후 통증, 만성 통증, 염증성 통증 및 신경병증성 통증으로 이루어진 군으로부터 선택되는 1종 이상의 질환일 수 있다.
본 발명의 다른 측면에서,
상기 신경계 질환은 알츠하이머병, 헌팅톤병, 댄디-워커 증후군(Dandy-walker Syndrome), 파킨슨병, 파킨슨-플러스 질환, 근위축 측삭 경화증(ALS), 허혈, 뇌졸중, 두개내 출혈, 뇌출혈, 뇌 장벽 장애, 삼차 신경통, 혀인두 신경통, 안면 신경 마비(Bell's Palsy), 중증 근무력증, 근육 이영양증(dystrophy), 진행성 근위축증, 원발성 측삭 경화증(PLS), 거짓 연수 마비, 진행성 연수 마비, 진행성 핵상마비, 척수 근위축증, 유전성 근위축증, 무척추동물 추간판 증후군, 경추증, 얼기(plexus) 장애, 흉곽 출구 파괴 증후군, 말초 신경병증, 포르피린증, 다계통 위축증, 진행성 핵상 마비, 피질기저 변성, 레비소체(Lewy body) 치매, 전측두엽 치매, 탈수 질환, 길랭-바레(Guillain-Barre) 증후군, 다발성 경화증, 샤르코-마리-투스(Charcot-Marie-Tooth) 병, 프리온 질환, 크로이츠펠트-야콥(Creutzfeldt-Jakob) 병, 게르스트만-슈트로이슬러-샤인커(Gerstmann-Straussler-Scheinker) 증후군(GSS), 치명적 가족성 불면증(FFI), 소 해면 양뇌증, 픽병(Pick's disease), 간질, AIDS 치매 복합증; 중금속, 공업 용제, 약물 및 화학치료제로 이루어진 군으로부터 선택되는 독성 화합물에 대한 노출에 의한 신경 손상; 물리적, 기계적 또는 화학적 외상에 의해 유발된 신경계 손상; 녹내장, 격자 이영양증, 망막 색소변성, 연령-관련 황반 변성(AMD), 습성 또는 건성 AMD와 관련된 광수용체 변성, 다른 망막 변성, 시신경 드루젠(drusen), 시신경병증 및 시신경염으로 이루어진 군으로부터 선택되는 1종 이상의 질환일 수 있다.
상기 열거된 질환에 있어서, 본 발명의 약학적 조성물은 미세아교세포(microglia)의 과활성화를 억제하여 신경계 질환을 예방 및 치료할 수 있다. 또한, 본 발명의 약학적 조성물은 LPS에 의한 신경독성에 대한 세포보호 효과를 나타내어 신경계 질환을 예방 및 치료할 수 있다. 또한, 본 발명의 약학적 조성물은 아세틸콜린에스터라제의 활성을 억제하는 것으로부터 신경계 질환을 예방 및 치료할 수 있다. 나아가, 본 발명의 약학적 조성물은 JNK1, JNK2, 또는 JNK3의 활성을 억제하는 것으로부터 신경계 질환을 예방 및 치료할 수 있다. 나아가, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 또는 TLK1에 대한 활성을 억제하는 것으로부터 신경계 질환을 예방 및 치료할 수 있다.
상술된 질환에 대한 본 발명의 화학식 1 또는 화학식 1'로 표시되는 화합물의 약리학적 효과는 본 발명 실시예 화합물을 사용한, 하기 실험예에서 입증되고 있다.
구체적으로, 본 발명자들은 본 발명 실시 화합물로부터 LPS로 유도된 신경손상에 대한 보호 효과를 확인하였으며, 아세틸콜린에스터라제 저해활성 및 미세아교세포를 억제하여 세포 사멸 억제 효과가 있음을 입증하고 있다.
또한, 마우스 동물 모델 실험에서 약물에 의한 기억 인지 장애를 유도한 후, 이에 대한 본 발명 실시 화합물 처리에 따른 회복을 확인한 바, 상술된 질환에 있어서도, 본 발명 화학식 1, 또는 화학식 1'로 표시되는 화합물을 유효성분으로서, 상술된 질환의 예방 또는 치료용 약학적 조성물, 또는 예방 또는 개선용 건강기능식품 조성물로 사용될 수 있음을 이해할 수 있다.
본 발명의 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염, 수화물, 또는 용매화물은 그 자체로 세포보호 활성을 가지나, 체내에 흡수된 후 특수한 체내 환경에 의해 혹은 대사과정의 산물 등이 효능제로서 약리작용을 나타낼 가능성도 배제하지는 않는다.
이에 따라 본 발명의 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 약학적으로 허용 가능한 염, 수화물, 또는 용매화물의 약학적 투여 형태는, 이들의 약학적으로 허용 가능한 염 또는 용매화물의 형태로도 사용될 수 있다.
또한, 본 발명은 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물을 제공한다.
이때, 상기 건강기능식품 조성물은 본 발명의 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하여, 통상의 건강기능식품 조성물로 제조되어 사용될 수 있고, 당업자에게 알려진 제형, 식품의 형태 또는 투여의 형태라면 본 발명의 범주내에 포함되고, 이로부터 건강기능식품 조성물로서 인정될 수 있는 범위의 것이라면 본 발명의 상기 건강기능식품 조성물에 포함된다.
본 발명에서 사용되는 용어, "예방"이란, 본 발명에 따른 약학적 조성물을 대상(subject)에 투여하여 신경계 질환의 발병을 억제하거나 지연시키는 모든 행위를 의미할 수 있다.
본 발명에서 사용되는 용어, "치료"란, 본 발명에 따른 약학적조성물을 대상(subject)에 투여하여 신경계 질환의 증세가 호전되도록 하거나 이롭게 되도록 하는 모든 행위를 의미할 수 있다.
본 발명의 약학적 조성물은 약학적으로 허용 가능한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다.
본 발명의 조성물을 의약품으로 사용하는 경우, 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 약학적 조성물은 임상투여 시에 다양한 하기의 경구 또는 비경구 투여 형태로 제제화되어 투여될 수 있으나, 이에 한정되는 것은 아니다.
경구 투여용 제형으로는 예를 들면 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭시르제, 트로키제 등이 있는데, 이들 제형은 유효성분 이외에 희석제(예: 락토즈, 덱스트로즈, 수크로즈, 만니톨, 솔비톨, 셀룰로오즈 및/또는 글리신), 활택제(예: 실리카, 탈크, 스테아르산 및 그의 마그네슘 또는 칼슘염 및/또는 폴리에틸렌 글리콜)를 함유하고 있다. 정제는 또한 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 메틸셀룰로즈, 나트륨 카복시메틸셀룰로즈 및/또는 폴리비닐피롤리딘과 같은 결합제를 함유할 수 있으며, 경우에 따라 전분, 한천, 알긴산 또는 그의 나트륨 염과 같은 붕해제 또는 비등 혼합물 및/또는 흡수제, 착색제, 향미제 및 감미제를 함유할 수 있다.
상기 화학식 1 또는 화학식 1'로 표시되는 화합물을 유효성분으로 하는 약학적 조성물은 비경구 투여할 수 있으며, 비경구 투여는 피하주사, 정맥주사, 근육 내 주사 또는 흉부 내 주사를 주입하는 방법에 의한다.
이때, 비경구 투여용 제형으로 제제화하기 위하여 상기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용되는 염을 안정제 또는 완충제와 함께 물에 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알 단위 투여형으로 제조할 수 있다. 상기 조성물은 멸균되고/되거나 방부제, 안정화제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제 및 기타 치료적으로 유용한 물질을 함유할 수 있으며, 통상적인 방법인 혼합, 과립화 또는 코팅 방법에 따라 제제화할 수 있다.
상기 화학식 1 또는 화학식 1'로 표시되는 화합물을 유효성분으로 함유하는 약학적 조성물의 인체에 대한 투여량은 환자의 나이, 몸무게, 성별, 투여형태, 건강상태 및 질환 정도에 따라 달리질 수 있으며, 바람직하게는 0.01 내지 1000 mg/kg/일의 양으로 의사 또는 약사의 판단에 따라 일정 시간 간격을 1일 수회, 바람직하게는 1일 1회 내지 3회로 분할하여 경구 또는 비경구적 경로를 통해 투여할 수 있다.
이하, 본 발명에 따른 상기 화학식 1 또는 화학식 1'로 표시되는 화합물의 제조방법을 제조예 또는 실시예를 통해 상세하게 설명한다. 하기 실시예는 상기 화학식 1 또는 화학식 1'로 표시되는 화합물을 제조하는 방법의 일례로서, 본 발명을 예시하는 것일 뿐, 이에 한정하지 않는다. 하기 실시예에 의해 설명되는 제조방법은 유기합성 분야에서 잘 알려진 합성조건, 적절한 시약 등을 사용하여 얻을 수 있다.
본 발명의 약학적 조성물은 단일제제로도 사용할 수 있다. 또한, 1 종류 이상의 다른 신경계 질환 치료제를 추가로 포함하여 복합제제로 제조하여 사용할 수 있다.
또 다른 양태로서, 본 발명은 상기 약학적 조성물을 치료학적으로 유효한 양으로 이를 필요로 하는 대상(subject)에 투여하는 단계를 포함하는, 신경계 질환의 예방 또는 치료 방법을 제공한다.
상기 약학 조성물은 전술한 화학식 1 또는 화학식 1'의 화합물, 이의 입체이성질체, 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는, 신경계 질환의 예방 또는 치료용 약학적조성물을 의미한다.
또한, 상기 신경계 질환은 미세아교세포 활성화를 억제시키는 치료를 필요로 하는 신경 질환, 또는 아세틸콜린에스터라제, JNK1, JNK2, JNK3, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 또는 TLK1의 활성화를 억제시키는 치료를 필요로 하는 질환으로서의 신경 질환을 의미하는 것일 수 있다. 또한, 상기 신경계 질환은 특히 뇌 신경계 및 중추 신경계 질환을 포함할 수 있다.
한편, 상기 신경계 질환은, 상기 기재된 모든 신경계 질환을 말하며, 보다 구체적으로, 상기 신경계 질환은, 미세아교세포 활성화를 억제시키는 치료를 필요로 하는 신경 질환, 또는 아세틸콜린에스터라제, JNK1, JNK2, JNK3, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 또는 TLK1의 활성화를 억제시키는 치료를 필요로 하는 질환으로서의 신경 질환으로, 그 예로는 다발성 경화증(multiple sclerosis), 뇌허혈(ischemic stroke), 대뇌출혈(intracerebral hemorrhage), 외상성 뇌손상(traumatic brain injury), 척수외상(spinal cord injury), 알츠하이머병, 파킨슨병, HIV 치매(HIV-associated dementia), 헌팅턴병, 루게릭병, 근위축성 측삭 경화증, 중증근무력증, 크로이츠펠트야콥병, 댄디-워커 증후군(Dandy-walker Syndrome), 진행성 핵상마비 등으로 이루어진 군으로부터 선택되는 1종 이상의 질환일 수 있으나, 이에 제한되는 것은 아니다.
상기 열거된 질환에 있어서, 본 발명의 약학적 조성물은 미세아교세포(microglia)의 과활성화를 억제하여 신경계 질환을 예방 및 치료할 수 있다. 또한, 본 발명의 약학적 조성물은 LPS에 의한 신경독성에 대한 세포보호 효과를 나타내어 신경계 질환을 예방 및 치료할 수 있다.
상기 치료학적으로 유효한 양은 본 발명의 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 상기 대상(subject)에 투여하여, 대상(subject)에 있어서 질환의 개선, 호전, 바람직하게 예방 또는 치료의 효과가 나타나기 시작하는 최소한의 양 이상의 유효량을 의미하는 것으로 이해될 수 있다.
본 발명에서 사용된 용어, "투여"는 적절한 방법으로 대상(subject)에게 본 발명의 약학적 조성물을 도입하는 것을 의미하며, 본 발명의 약학적 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비내 투여, 폐내 투여, 직장내 투여, 자궁 내 경막 또는 뇌혈관(intracerbroventricular) 주사에 의해 투여될 수 있으나, 이에 제한되지는 않는다.
본 발명에서 사용된 용어, "대상(subject)"는 신경계 질환이 발병하였거나 발병할 수 있는 인간을 포함한 포유동물, 인간을 포함하지 않는 포유동물, 가축 등의 모든 동물을 의미한다. 본 발명의 약학적 조성물을 대상(subject)에게 투여하여 신경계 질환을 효과적으로 예방 또는 치료할 수 있다.
다음으로, 본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)의 약리 활성과, 질환에 대한 효과를 평가 및 검토하기 위하여, 본 발명에서는 다음과 같은 실험을 수행하였다.
먼저, 본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)의 신경 세포 보호 활성을 평가하기 위해 실험을 수행한 결과, LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서 니트라이트(nitrite)의 생성을 농도의존적으로 유의하게 억제하는 것으로 나타났다(하기 실험예 1, 도 1 및 실험예 2, 도 3 참조).
또한, 본 발명의 화합물에 의한, LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서의 세포생존율(%)도 농도의존적으로 유의하게 증가하는 것으로 나타났다(하기 실험예 1, 도 2 및 실험예 2, 도 4 참조).
이에, 본 발명 화학식 1 또는 화학식 1'로 표시되는 화합물은 우수한 신경보호 효과(신경세포 보호 효과, 예를 들어 신경 독성물질로부터 유발되는 산화, 스트레스 등으로부터 신경세포의 보호 효과)를 가지는 것으로 확인되었고, 미세아교세포 과활성에 대한 우수한 억제 효과가 있음이 확인되었다.
나아가, 본 발명의 화합물에 대한, 아세틸콜린에스터라제에 대하여, 억제 활성을 검토한 결과, 유의미한 억제 활성값을 확인하였다.
이에, 본 발명 화학식 1 또는 화학식 1'로 표시되는 화합물은 아세틸콜린 억제와 관련한 질환, 예를 들어 신경계 질환, 상기 본 명세서에 상술된 신경계 질환, 보다 구체적인 예로, 알츠하이머성 치매 혹은 알츠하미어 질환, 난치성 간질, 뇌졸증(stroke), 뇌경색(cerebral infarct), 머리외상(head trauma), 뇌동맥 경화증(cerebral arteriosclerosis), 및 파킨슨 질환(Parkinson disease) 헌팅턴병(huntington's disease), 크로이츠펠트-야콥병(Creutzfeldt-Jakob disease), 피크(Pick)병, 루이체병(Lewy body disease), 근위축성 축삭 경화증(Amyotrophic lateral sclerosis), 다발성 경화증(multiple sclerosis) 및 허혈성 뇌질환(ischemic brain disease), 뇌혈관성질환, 뇌신경질환, 인지 질환 또는 장애, 정신분열증, 주의력결핍과다 행동질환(ADHD), 주의력결핍질환(ADD), 중추신경계 (CNS) 또는 말초신경계 (PNS) 질환, 길랑-바레 증후군, 신경 세포의 점차적인 사멸에 의한 진행성 치매(dementia) 및 진행성 실조증으로 이루어진 군으로부터 선택되는 1종 이상의 질환에 유효함을 알 수 있었다(하기 실험예 3 참조).
또한, 본 발명의 화합물에 대한, 369개의 키나아제 중, 유의미한 억제 활성을 나타내는 키나아제를 살펴본 실험을 수행한 결과, 본 발명 화합물은 JNK1, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, TLK1, JNK2, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, 및 JNK3에 대하여 유의미한 효소 저해 활성값을 나타내는 바, JNK1, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, TLK1, JNK2, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, 및 JNK3 관련 질환에 대하여, 예방 또는 치료용 약학적 조성물의 유효성분 화합물로서 유용할 수 있음을 알 수 있었다.
보다 구체적으로, 상기 각 키나아제 관련 질환은 예를 들어, 하기 표 1과 같다.
키나아제 관련 질환 관련 문헌
JNK 1 신경 퇴행성 질환, 허혈, AD, PD Neurobiology of Disease 54 (2013) 432-444Nat Rev Drug Discov. 2003 Jul;2(7):554-65.Journal of Neuroinflammation 2012, 9:175Brain, Behavior, and Immunity 24 (2010) 800.811
CDK2/cyclin 0 신경퇴행성 질환 Journal of Neurochemistry, 2005, 93, 538.548Neuroscience 146 (2007) 350-365
DAPK1 AD, 허혈 Prog Neurobiol. 2014 Apr;115:157-88.Cell Death Dis. 2014 May 22;5:e1237.
PKCa 뇌 미세혈관 내피세포 장벽 장애 Journal of Neuroinflammation 2011, 8:28
CDK1/cyclin B 신경퇴행성 질환 Neuroscience 146 (2007) 350-365
MST3/STK24 AD PLoS Biol. 2010 Jan; 8(1): e1000294
JNK2 신경 퇴행성 질환, AD, PD Neurobiology of Disease 54 (2013) 432-444Nat Rev Drug Discov. 2003 Jul;2(7):554-65.Journal of Neuroinflammation 2012, 9:175Brain, Behavior, and Immunity 24 (2010) 800.811
RIPK5 알츠하이머 병, 다운 증후군 J. Med. Chem. 2012, 55, 9312.9330
CDK3/cyclin E 신경 퇴행성 질환 Neuroscience 146 (2007) 350-365
PKCb2 뇌 미세혈관 내피세포 장벽 장애 Journal of Neuroinflammation 2011, 8:28
JNK3 신경 퇴행성 질환, AD, PD Neurobiology of Disease 54 (2013) 432-444Nat Rev Drug Discov. 2003 Jul;2(7):554-65.Journal of Neuroinflammation 2012, 9:175Brain, Behavior, and Immunity 24 (2010) 800.811
(*알츠하이머 병: AD, 파킨슨 병: PD)
따라서, 본 발명의 화학식 1 또는 화학식 1'로 표시되는 화합물은 상술된 키나아제 관련 신경계 질환에 특히 유효함을 알 수 있었다(하기 실험예 4 참조).
나아가, 본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)을 사용한 동물 모델 실험(Y관 마우스 실험)을 수행한 결과, 본 발명의 화합물로부터 약물로 기억 손상이 유도된 마으스에서 도네페질과 유사한 수준으로 마우스의 기억 손상이 회복되고 있음을 확인하였다.
이에, 본 발명 화합물은 신경 보호 기능이 분명하게 확인되는 바, 신경계 질환, 바람직하게 뇌 신경계 질환, 중추 신경계 질환, 보다 구체적으로 본 명세서에 기재된 모든 신경계 질환의 예방 또는 치료용 약학적 조성물로 유용하게 사용될 수 있음을 알 수 있었다(하기 실험예 5 참조).
이하, 본 발명을 제조예, 실시예 및 실험예에 의하여 상세히 설명한다.
단, 하기 제조예, 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다.
<제조예 1> 2-벤질-3-히드록시-N-(4-히드록시페닐)-N-(피리딘-3-일)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000033
단계 1: 1-브로모-4-(메톡시메톡시)벤젠의 제조
4-브로모페놀(5 g, 28.9 mmol)을 50mL의 무수 테트라하이드로파이란에 녹이고 브로모(메톡시)메탄(MOM-Br, 2.8 mL, 34.68 mmol) 및 소듐하이드라이드(1.387 g, 34.68 mmol)를 첨가하여 12시간 교반하고, 메탄올 방울과 증류수로 반응을 종결하였다. 형성된 반응 혼합물은 에틸아세테이트로 희석하고 물과, 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하고 진공에서 농축하였다. 조 생성물은 EtOAc: Hex (1:9)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물(5.35 g, 85%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.41 (d, J = 8.6 Hz, 2 H), 6.92 (d, J = 8.24 Hz, 2 H), 5.17 (s, 2H), 3.49 (s, 3H)
단계 2: N-(4-(메톡시메톡시페닐)피리딘-3-아민의 제조
무수 톨루엔 10mL에 상기 단계 1에서 제조한 화합물(1.4 g, 11.53 mmol), 피리딘-3-아민(0.92mL, 9.61 mmol), Pd2(bda)3(0.437 g, 0.321 mmol), X-Phos(1.364 g, 1.364 mmol) 및 NaOtBu(1.318 g, 9.61 mmol)을 아르곤 가스가 충전된 씰 튜브에 첨가한 뒤, 100 ~ 120도에서 18시간동안 교반한 후, 상온으로 온도를 내려 증류수로 반응을 종결하였다. 형성된 반응 혼합물은 에틸아세테이트로 희석하고 물과, 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하고 진공에서 농축하였다. 조 생성물은 EtOAc: Hex (1:4)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 8.27 (d, J = 2.6 Hz, 1 H), 8.08 (dd, J = 4.5, 0.94 Hz, 1 H), 7.26-7.23 (m, 1 H), 7.12-7.09 (m, 1 H), 7.06 (d, J = 9.0 Hz, 2 H), 7.01 (d, J = 9.0 Hz, 2 H), 5.87-5.85 (bs, 1 H), 5.15 (s, 2 H), 3.49 (s, 3 H), 13C NMR (125 MHz, CDCl3): δ 153.0, 141.2, 140.6, 138.5, 135.7, 123.6, 121.8 (3 C), 121.4, 117.4 (2 C), 94.8, 55.9 ppm.
한편, 상기 제조예 1의 단계 2는 피리딘과 같은 헤테로원자가 치환된 방향족 치환기가 있는 경우이고, 상기 단계 2에서 설명된 바와 같이, 피리딘-3-아민 및 1-브로모-4-(메톡시메톡시)벤젠으로부터 상기 단계 2의 목적 화합물을 제조할 수 있고, 이 외의 방법으로, 하기 반응식 3과 같이, 4-(메톡시메톡시)아닐 및 3-브로모피리딘을 반응시켜 상기 단계 2의 목적 화합물을 제조할 수 있다.
[반응식 3]
Figure PCTKR2017009909-appb-I000034
단계 2: N-(4-(메톡시메톡시)페닐)피리딘-3-아민의 제조
오븐에 건조한 씰 튜브는 트리(디벤질리딘아세톤)디팔라디움(0.437 g, 0.321 mmol), (XPhos)팔라디움(2) 페네틸라민 클로라이드(1.364 g, 1.364 mmol), 소듐 터셜-뷰톡사이드(1.318 g, 9.61 mmol)로 채워졌고, 탈기된 무수 톨루엔(10 mL)이 첨가되었다. 이후에 아르곤 가스로 탈기한 뒤, 3-브로모피리딘(0.92 mL, 9.61mmol) 및 4-(메톡시메톡시)아닐린(1.4 g, 11.53 mmol)을 첨가하였다. 다시 아르곤 가스를 채워 넣고, 혼합물을 실온에서 5-10분 교반하였다. 이후 테플론 스크류 캡으로 밀봉한 뒤에 100-120℃에서 18시간 동안 교반하였다. TLC 크로마토그래피로 반응 진행을 모니터링 하였으며, 반응이 종결되고 난 뒤에 혼합물은 실온으로 식히고, 디클로로메탄(25 mL)으로 희석하였으며 셀라이트로 여과하였다. 이후 압력을 낮추어 농축시킨 뒤 생성물은 EtOAc:Hex(3:7)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 밝은 갈색의 고체상의 목적 화합물(1.92 g, 87%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 8.27 (d, J = 2.6 Hz, 1 H), 8.08 (dd, J = 4.5, 0.94 Hz, 1 H), 7.26-7.23 (m, 1 H), 7.12-7.09 (m, 1 H), 7.06 (d, J = 9.0 Hz, 2 H), 7.01 (d, J = 9.0 Hz, 2 H), 5.87-5.85 (bs, 1 H), 5.15 (s, 2 H), 3.49 (s, 3 H)
단계 3: 메틸 3-((4-(메톡시메톡시)페닐)(피리딘-3-일)아미노)-3-옥소프로파노에이트의 제조
1.12 mL의 3-메톡시-3-옥소프로판산(3-methoxy-3-oxopropanoic acid)(9.08 mmol)을 12 mL의 무수 다이클로로메탄에 녹이고 교반하면서 0℃로 냉각한 후, EDCI·HCl (1.90 g, 9.91 mmol) 및 무수 HOBt (1.51 g, 9.91 mmol)을 순차적으로 적가하였다. 상기 혼합액에 상기 단계 2에서 제조한 화합물(1.9 g, 8.26 mmol)을 0℃에서 적가하고, 상온으로 온도를 올린 후, 12시간 교반하여 포화 중탄산나트륨 수용액으로 반응을 종결하였다. 형성된 반응 혼합물은 에틸아세테이트로 희석하고 물과, 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하고 진공에서 농축하였다. 조 생성물은 EtOAc: Hex (3:7)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물(1.85 g, 68%)을 수득하였다.
또 다른 방법으로 1.23 mL의 메틸말로닐 클로라이드를 30 mL의 무수 다이클로로메탄에 녹이고 교반하면서 0℃로 냉각한 후, 트리에틸아민 5.5 mL을 0℃에서 적가하였다. 상기 혼합액에 N-(4-(메톡시메톡시페닐)피리딘-3-아민 (1.9 g, 8.26 mmol)을 0℃에서 적가하고, 상온으로 온도를 천천히 올린 후, 12시간 교반하여 포화 중탄산나트륨 수용액으로 반응을 종결하였다. 형성된 반응 혼합물은 에틸아세테이트로 희석하고 물과, 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하고 진공에서 농축하였다. 조 생성물은 EtOAc: Hex (3:7)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물(2.4g, 86%)을 수득하였다.
1H NMR(600 Hz, CDCl3): δ 8.52 (s, 1 H), 8.41 (s, 1 H), 7.72 (d, J = 6.9 Hz, 1 H), 7.27-7.20 (m, 3 H), 7.10 (d, J = 7.3 Hz, 2 H), 5.19 (s, 2 H), 3.71 (s, 3 H), 3.49 (s, 3 H), 3.42 (s, 2 H), 13C NMR (125 MHz, CDCl3): δ 167.6, 166.5, 157.4, 146.9, 146.8, 138.9, 134.9, 132.9, 129.8 (2 C), 123.3, 117.6 (2 C), 94.3, 56.2, 52.4, 42.3 ppm.
단계 4: 메틸 2-벤질-3-((4-(메톡시메톡시)페닐)(피리딘-3-일)아미노)-3-옥소프로파노에이트의 제조
상기 단계 3에서 제조한 화합물(0.500 g, 1.515 mmol)을 톨루엔에 녹이고, 테트라부틸암모늄 브로마이드(Tetra-n-butylammonium bromide; TBAB) (0.049 g, 0.1515 mmol)와 50% 수산화칼륨 수용액(0.54 mL, 19.61 mmol)을 상온에서 차례대로 첨가한 후 교반하였다. 교반된 용액에 벤질브로마이드(0.18 mL, 1.15 mmol)를 가하고 기질(상기 단계 3에서 제조한 화합물)이 사라질 때까지 상온에서 교반하였다. 반응액은 물과 에틸아세테이트로 희석하여 반응을 종결하고, 반응 혼합물을 에틸아세테이트로 희석한 후, 물 및 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하여 진공에서 농축하였다. 조 생성물은 EtOAc: Hex(1:4)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물(0.458 g, 72%)을 수득하였다.
1H NMR(600 Hz, CDCl3): δ 8.37 (d, J = 4.1 Hz, 1 H), 8.31 (d, J = 1.7 Hz, 1 H), 7.48 (d, J = 8.1 Hz, 1 H), 7.36-7.27 (m, 4 H), 7.23-7.19 (m, 1 H), 7.14 (d, J = 6.9 Hz, 3 H), 6.97-6.89 (m, 2 H), 5.16 (s, 2 H), 3.83-3.78 (m, 1 H), 3.77 (s, 3 H), 3.48 (s, 3 H), 3.33 (t, J = 13.7 Hz, 1 H), 3.20 (dd, J = 13.1, 4.3 Hz, 1 H), 13C NMR (125 MHz, CDCl3): δ 169.4, 169.1, 157.1, 147.2, 146.8, 138.9, 137.9, 134.7, 133.1, 129.9, 129.4 (3 C), 128.5 (2 C), 126.9, 123.2, 117.1 (2 C), 94.3, 56.1, 52.6, 51.3, 35.4 ppm.
단계 5: 2-벤질-3-히드록시-N-(4-(메톡시메톡시)페닐)-N-(피리딘-3-일)프로카인아미드의 제조
상기 단계 4에서 제조한 화합물(0.340 g, 0.8095 mmol)을 무수 THF(6 mL)에 녹이고, LiAl(O-t-Bu)3H(30% in THF, 8.9 mL, 10.523 mmol)를 -40℃의 아르곤 기류하에서 천천히 적가하였다. 동일한 온도에서 30분 교반한 후, 온도를 천천히 상온으로 증가시키며 교반하였다. 기질(상기 단계 4에서 제조한 화합물)이 사라진 것을 확인하고, 반응액을 포화 나트륨 칼륨 주석산 수용액으로 퀀칭한 후, 에틸아세테이트로 희석하여 물층과 유기층이 맑아질 때까지 교반하였다. 유기층을 분리하고 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하여 진공에서 농축하였다. 조 생성물은 EtOAc: Hex(6:4)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피 (flash column chromatography)를 이용하여 정제하여 목적 화합물(0.269 g, 85%)을 수득하였다.
1H NMR(600 Hz, CDCl3): δ 8.37 (d, J = 4.1 Hz, 1 H), 8.36 (d, J = 1.8 Hz, 1 H), 7.49 (d, J = 7.9 Hz, 1 H), 7.33-7.27 (m, 3 H), 7.24-7.20 (m, 1 H), 7.08-7.05 (m, 3 H), 6.98-6.91 (m, 3 H), 5.17 (s, 2 H), 3.86-3.81 (m, 1 H), 3.79-3.76 (m, 1 H), 3.49 (s, 3 H), 3.07-3.01 (m, 1 H), 2.78-2.74 (m, 1 H).
13C NMR (125 MHz, CDCl3): δ 175.4, 156.9, 147.5, 146.8, 139.1, 138.6, 134.9, 133.3, 130.0, 129.2 (2 C), 128.4 (2 C), 126.6, 123.3, 117.1 (2 C), 94.3, 63.8, 56.1, 46.7, 35.7 ppm.
HRMS (ESI): calcd. For C23H25N2O4 [M + H]+ 393.1814; found 393.1814.
단계 6: 2-벤질-3-히드록시-N-(4-히드록시페닐)-N-(피리딘-3-일)프로판아미드의 제조
상기 단계 5에서 제조한 화합물(0.180 gr, 0.4591 mmol)을 아세토나이트릴 15 mL 및 다이클로로메탄 15 mL에 녹이고 교반한 후, 0℃에서 요오드화 나트륨 (0.688 g, 4.591 mmol)을 가하고, 차례로 클로로트리메틸실란(chlorotrimethylsilan) (0.6 mL, 4.591 mmol)을 첨가하였다. 1시간 동안 교반한 후, 포화 중아황산나트륨(sodium bisulfite) 수용액으로 반응을 종결하고, 다이클로로메탄(2 x 50 mL)으로 추출하여 얻은 유기층을 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하여 진공에서 농축하였다. 조 생성물은 EtOAc: Hex(4:1)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피 (flash column chromatography)를 이용하여 정제하여 목적 화합물(0.111 g, 70%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 9.14 (d, J = 3.9 Hz, 1 H), 9.1 (s, 1 H), 8.25 (d, J = 7.9 Hz, 1 H), 8.17-8.05 (m, 5 H), 7.85 (d, J = 7.3 Hz, 2 H), 7.67-7.61 (m, 1 H), 7.51-7.44 (m, 2 H), 5.69-5.62 (bs, 1 H), 4.50 (t, J = 8.4 Hz, 1 H), 4.24-4.18 (m, 1 H), 3.74-3.68 (m, 1 H), 3.55-3.44 (m, 2 H), 13C NMR (125 MHz, MeOD): δ 183.6, 157.0, 155.9, 149.3, 148.8, 143.0, 138.5 (4 C), 137.7 (3 C), 135.8 (2 C), 133.2, 128.4 (2 C), 72.4, 57.0, 44.9 ppm.
HRMS (ESI): calcd. For C21H21N2O3 [M + H]+ 349.1552; found 349.1548.
<제조예 2> 3-히드록시-N-(4-히드록시페닐)-2-메틸-N-(피리딘-3-일)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000035
상기 제조예 1의 단계 4에서 벤질브로마이드를 대신하여 요오드메탄을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 8.43 (s, 1 H), 8.24 (s, 1 H), 7.71-7.52 (m, 1 H), 7.42-7.33 (m, 1 H), 7.22-7.04 (m, 2 H), 6.81-6.64 (m, 2 H), 3.72-3.63 (m, 1 H), 3.38-3.34 (m, 1 H), 2.73-2.92 (m, 1 H), 0.87 (d, J = 1.7 Hz, 3 H); 13C NMR (125 MHz, MeOD): 177.15, 157.75, 146.90, 145.78, 140.40, 134.47, 132.99, 129.82 (2 C), 123.93, 116.20 (2 C), 64.53, 39.92, 13.12 ppm.
<제조예 3> 2-벤질-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000036
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.39 - 7.23 (m, 6H), 7.19 (t, J = 7.3 Hz, 1H), 7.15 - 7.06 (m, 4H), 6.92 (d, J = 8.7 Hz, 1H), 6.78 - 6.61 (m, 2H), 3.92 - 3.86 (m, 1H), 3.63 - 3.59 (m, 1H), 3.16 - 3.03 (m, 1H), 2.87 - 2.80 (m, 1H), 2.78 - 2.70 (m, 1H); 13C NMR (151 MHz, MeOD) δ 175.24, 156.99, 143.11, 139.21, 133.77, 129.68, 129.11, 129.09, 129.00, 128.53, 128.41, 128.12, 127.81, 127.36, 126.47, 126.23, 126.20, 115.43, 115.15, 63.61, 48.10, 35.57 ppm.
<제조예 4> 2-벤질-3-히드록시-N-(4-히드록시페닐)-N-메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000037
제조예 1-3 및 5-13과 다르게 제조예 4와 같이, 방향족 치환기를 대신하여 알킬기가 치환된 이차 아민 화합물을 제조하는 경우, 하기 반응식 4와 같이 수행하여 제조할 수 있다.
[반응식 4]
Figure PCTKR2017009909-appb-I000038
단계 1: 벤질(4-히드록시페닐)카바메이트의 제조
4-아미노페놀(8.0 g, 73.3 mmol)을 증류수(91.5 mL)와 테트라하이드로퓨란(91.5 mL) (1:1) 혼합액에 교반하고 0℃로 온도를 내린 상태에서 소듐카보네이트(15.58 g, 146.7 mmol)를 적가하였다. 이어서 벤질크로로포르메이트(12.5 mL, 76.2 mmol)를 테트라하이드로퓨란(30 mL)에 녹인 용액을 천천히 가해주었다. 갈색 부유물이 있는 용액은 천천히 실온으로 내려주어 1시간 더 교반하였고, 이후에 테트라하이드로퓨란을 진공에서 제거하였다. 갈색용액은 증류수(200 mL)에 희석 하고, 에틸아세테이트로 추출하였다. 유기층은 브라인 용액으로 씻어내고 소듐설페이트로 건조하였다. 용매는 압력을 낮추어 제거하였고, 미정제 생성물은 에틸아세테이트로부터 재결정을 통해 카복시벤질기로 보호된 하얀색 결정의 목적화합물(14.4 gr, 61.6 mmol 90%)을 수득하였다.
1H NMR (600 MHz, DMSO-d6) δ δ 5.12 (s, 2 H), 6.66-7.00 (m, 2 H), 7.24 (d, J = 8.1 Hz, 2 H), 7.31-7.47 (m, 5H), 9.12 (s, 1 H), 9.44 (br s, 1 H) ppm.
단계 2: 벤질(4-(메톡시케톡시)페닐)카바메이트의 제조
소듐 하이드라이드(1.604 g, 66.87 mmol, 60% 파라핀 오일에 분산)를 무수 디메틸포름아마이드(10 mL)에 섞은 혼합액에, 상기 단계 1에서 제조한 화합물(13.8 g, 60.78 mmol)을 무수 디메틸포름아마이드(10 mL)에 녹인 용액을 0℃온도에서 질소가스를 충전한 상태에서 천천히 가해주었다. 이후 수소가스가 더 이상 발생하지 않는 시점에서 30분이 지난 뒤 정지하였다. 이후, 0℃에서 브로모메틸메틸에테르(5.45 mL, 66.87 mmol)를 천천히 가해준 뒤, 실온에서 2시간 교반하였다. 반응이 종결된 후, 적색 용액을 진공에서 농축하고, 잔류물질은 에틸아세테이트(250 mL), 10% 시트르산(2 × 100 mL), 1M의 소듐하이드록사이드(aq) (2 × 150 mL) 및 브라인 용액으로 씻어낸 뒤, 소듐설페이트로 건조하였다. 용매는 압력을 낮추어 제거하였고, 미정제 생성물을 에탄올로부터 재결정하여 하얀색 결정의 목적화합물(9.3 gr, 56.8%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.17-7.29 (m, 7 H), 6.98 (d, J = 9.0 Hz, 2 H), 5.19 (s, 2 H), 5.13 (s, 2 H), 3.47 (s, 3 H), 13C NMR (125 MHz, CDCl3): δ 153.5, 136.0, 131.9, 128.5 (4 C), 128.29 (2 C), 128.26 (2 C), 120.4, 116.8 (2 C), 94.78, 66.9, 55.8 ppm.
단계 3: 벤질(4-(메톡시메톡시)페닐)(메틸)카바메이트의 제조
소듐 하이드라이드(0.93 g, 37.63 mmol, 60% 파라핀 오일에 분산) 및 무수 디메틸포름아마이드(15 mL) 혼합액에 상기 단계 2에서 제조한 화합물(7.2 g, 25.08 mmol)을 무수 디메틸포름아마이드(20 mL) 0℃ 온도에서 질소가스를 충전한 상태에서 천천히 가해주고 30분간 교반하였다. 이후 수소가스가 더 이상 발생하지 않는 시점에서 30분이 지난 뒤 정지하였다. 이후, 0℃ 온도에서 메틸아이오다이드(2.3 mL, 37.63 mmol)를 천천히 가해준 뒤, 실온에서 6시간 교반하였다. 반응은 차가운 얼음조각으로 종결시켰으며 에틸아세테이트로 추출한 뒤, 유기층은 브라인 용액으로 씻어내고, 소듐설페이트로 건조하였다. 압력을 낮추어 용매를 제거한 뒤 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 갈색의 목적 화합물(6.5 g, 86%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.38-7.27 (m, 5 H), 7.16-7.24 (m, 2 H), 7.04 (d, J = 8.3 Hz, 2 H), 5.19 (s, 4 H), 3.51 (s, 3 H), 3.30 (s, 3 H) ppm.
단계 4: 4-(메톡시메톡시)-N-메틸알라닌의 제조
상기 단계 3에서 제조한 화합물(6.0 g, 35.01 mmol)을 메탄올에 녹이고, 팔라듐(3.4 g, 5% 활성탄 분말상)을 아르곤 가스로 충전된 상태에서 적가한 뒤, 아르곤가스를 수소가스로 교환하고, 시작 기질들이 완전히 반응될 때까지 교반하였다. 반응종결 후, 반응혼합물은 규조토 패드로 여과하였다. 이후 압력을 낮추어 용매를 제거한 뒤, 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 노란 오일의 목적 화합물(2.88 g, 86%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.28-7.25 (m, 4 H), 5.04 (s, 2 H), 2.77 (s, 3 H) ppm.
단계 5: 메틸-3-((4-(메톡시메톡시)페닐)(메틸)아미노)-3-옥소프로파노에이트의 제조
미리 냉장시켜놓은 메틸말로닐클로라이드(1.57 mL, 14.65 mmol)를 무수 디메틸포름아미드(10 mL)에 녹인 용액을 상기 단계 4에서 제조한 화합물(2.69 g, 16.11 mmol)을 무수 디메틸포름아미드(20 mL)에 녹인 용액에 0℃ 온도에서 천천히 가해주고, 1시간 동안 교반하였다. 반응은 얼음조각으로 종결하였으며, 디클로로메테인으로 추출하고, 유기층은 브라인용액으로 세척하였으며, 소듐설페이트로 건조하였다. 이후, 압력을 낮추어 용매를 제거한 뒤, 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 무색 액체의 목적 화합물(3.8 g, 89%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.13-7.06 (m, 4 H), 5.2 (s, 2 H), 3.69 (s, 3 H), 3.50 (s, 3 H), 3.28 (s, 3 H), 3.23 (s, 3 H) ppm.
단계 6: 2-벤질-3-히드록시-N-(4-히드록시페닐)-N-메틸프로판아미드의 제조
상기 단계 5에 이어서, 상기 제조예 1의 단계 4, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.29 - 7.22 (m, 3H), 7.04 - 6.97 (m, 2H), 6.81 - 6.55 (m, 4H), 3.78 (dd, J = 10.6, 8.2 Hz, 1H), 3.51 (dd, J = 10.6, 5.8 Hz, 1H), 3.10 (d, J = 3.8 Hz, 1H), 2.93 - 2.86 (m, 1H), 2.76 (dd, J = 12.8, 10.2 Hz, 1H), 2.63 (dd, J = 12.9, 4.8 Hz, 1H); 13C NMR (150 MHz, MeOD) δ 174.80, 156.85, 139.33, 134.68, 128.77 (2 C), 128.34, 128.01(2 C), 126.02(2 C), 115.46 (2 C), 63.36, 47.67, 36.61, 35.31 ppm.
<제조예 5> 3-히드록시-N-(4-히드록시페닐)-2-메틸--N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000039
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 벤질브로마이드를 대신하여 요오드메탄을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.51 - 7.06 (m, 7H), 6.91-6.67 (m, 2H), 3.79 (dd, J = 10.4, 8.5 Hz, 1H), 3.44 (dd, J = 10.0, 5.5 Hz, 1H), 2.87 (dd, J = 16.7, 10.2 Hz, 1H), 1.05 (d, J = 6.9 Hz, 3H); 13C NMR (150 MHz, MeOD) δ 178.16, 158.57, 144.51, 135.54, 130.83, 129.89, 129.51, 129.27, 128.88, 127.82, 127.40, 117.21, 116.54, 65.85, 41.23, 14.56 ppm.
<제조예 6> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000040
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 알릴브로마이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.45 - 7.30 (m, 3H), 7.26 (s, 1H), 7.19 (d, J = 7.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 6.82 (d, J = 8.5 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.78-5.67 (m, 1H), 5.11-5.04 (t, J = 12.4 Hz, 2H), 3.80 (dd, J = 10.5, 8.5 Hz, 1H), 3.53 (dd, J = 10.4, 5.4 Hz, 1H), 3.02 - 2.86 (m, 1H), 2.38-2.26 (m, 1H), 2.21-2.13 (m, 1H); 13C NMR (151 MHz, MeOD) δ 176.79, 158.51, 144.57, 136.51, 135.38, 131.25, 130.62, 129.88 (2 C), 129.27, 127.87 (2 C), 117.41, 117.06, 116.53, 64.49, 46.45, 35.14 ppm.
<제조예 7> 3-히드록시-N-(4-히드록시페닐)-N-페닐-2-(4-(트리플루오로메틸)벤질)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000041
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-트리플루오로메틸벤질 브로마이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.65 (d, J = 6.9 Hz, 2H), 7.38-7.24 (m, 5H), 7.19 (t, J = 7.1 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 6.76 - 6.60 (m, 3H), 3.91 (t, J = 9.0 Hz, 1H), 3.66 - 3.61 (m, 1H), 3.19 - 3.06 (m, 1H), 2.98 - 2.80 (m, 2H); 13C NMR (150 MHz, MeOD) δ 176.09, 158.44, 145.38, 144.31, 135.68, 134.95, 131.02, 130.82, 130.44, 129.93, 129.55, 129.07, 128.82, 127.70, 127.60, 126.34, 126.31, 124.89, 116.88, 116.55, 64.79, 49.22, 36.57 ppm.
<제조예 8> 2-(4-플루오로벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000042
제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-플루오로밴질브로마이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.32-7.24 (m, 3H), 7.17 (t, J = 7.2 Hz, 1H), 7.13-6.98 (m, 6H), 6.91 (d, J = 8.3 Hz, 1H), 6.75 - 6.58 (m, 2H), 3.86 (t, J = 8.9 Hz, 1H), 3.58 (t, J = 8.9 Hz, 1H), 3.12-2.99 (m, 1H), 2.85-2.77 (m, 1H), 2.74-7.68 (m, 1H); 13C NMR (150 MHz, MeOD) δ 176.40, 163.96, 158.40, 144.36, 136.50, 136.43, 135.74, 135.06, 132.04, 131.99, 130.41, 129.89, 129.11, 127.75, 127.55, 116.84, 116.52, 116.06, 115.92, 64.80, 49.39, 35.94 ppm.
<제조예 9> 2-(4-브로모벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000043
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-브로모벤질 브로마이이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.58 (s, 1 H), 7.47 (d, J = 7.2 Hz, 2 H), 7.31-7.26 (m, 3 H), 7.19-7.15 (m, 1 H), 7.09-7.07 (m, 2 H), 7.06-6.96 (m, 2 H), 7.09-7.07 (m, 2 H), 6.92-6.88 (m, 1 H), 6.73-6.66 (m, 2 H), 3.86 (t, J = 8.9 Hz, 1 H), 3.58 (s, 1 H), 3.09-3.01 (m, 1 H), 2.82-2.71 (m, 2 H) ppm.
<제조예 10> 2-벤질-3-히드록시-N-(4-히드록시-3-메틸페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000044
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-메틸페놀을 사용한 것과, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용한것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.37-7.21 (m, 5 H), 7.19-7.13 (t, J = 1.9Hz, 1 H), 7.13-7.05 (m, 3 H), 6.79-6.67 (m, 1 H), 6.66-6.55 (m, 1 H), 3.90-3.82 (m, 1 H), 3.62-3.54 (m, 1 H), 2.86-2.76 (m, 1 H) 2.75-2.66 (m, 1 H), 2.13-1.95 (m, 3H); 13C NMR (150 Hz, MeOD): δ 176.76, 156.62, 144.73, 140.89, 130.68, 130.51, 130.05, 129.92, 129.68, 128.85, 128.34, 128.01, 127.83, 127.75, 127.75, 127.69, 126.51, 115.93, 115.82, 65.21, 37.15, 30.82, 16.32 ppm.
<제조예 11> N-(4-히드록시-3-메틸페닐)-2-(히드록시메틸)-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000045
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-메틸페놀을 사용한 것과, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 알릴브로마이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.45-7.36 (m, 1 H), 7.35-7.27 (m, 2 H), 7.26-7.24 (m, 2 H), 7.05-6.86 (m, 2 H), 6.76-6.61 (m, 1 H), 5.78-5.53 (m, 1 H), 5.42-5.29 (m, 1 H), 5.13-5.02 (m, 2H), 3.83-3.70 (m, 2 H), 2.93-2.80 (m, 2 H), 2.50-2.39 (m, 1 H), 2.36-2.26 (m, 1 H), 2.25-2.12 (m, 3 H); 13C NMR (150 Hz, MeOD): δ 178.60, 140.45, 139.06, 136.41, 133.35, 132.50, 131.52, 129.98, 129.17, 127.90, 124.97, 122.49, 120.97, 110.36, 110.02, 77.93, 38.97, 30.89, 21.16 ppm.
<제조예 12> 3-히드록시-N-(4-히드록시-3-메틸페닐)-2-메틸-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000046
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-메틸페놀을 사용한 것과, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 메틸아이오다이드를 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.47-7.14 (m, 5 H), 7.11-6.95 (m, 2 H), 6.80-6.66 (m, 1 H), 3.82-3.75 (t, J = 1.7Hz, 1 H), 3.46-3.38 (m, 1 H), 2.92-2.82 (m, 1 H), 2.21-2.09 (m, 3 H), 1.06-1.02 (d, J = 1.1Hz, 3 H); 13C NMR (150 Hz, MeOD): δ 174.30, 147.54, 144.84, 144.22, 143.62, 130.96, 130.08 (2 C), 128.16, 128.03, 127.56, 126.61, 122.96, 66.07, 41.45, 16.32, 14.80 ppm.
<제조예 13> 2-벤질-N-(3-플루오로-4-히드록시페닐)-3-히드록시-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000047
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-플루오로페놀을 사용한 것과, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용한것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.75-7.69 (m, 1 H), 7.64-7.59 (m, 1 H), 7.37-7.25 (m, 5 H), 7.23-7.17 (m, 1 H), 7.14-7.02 (m, 3 H), 6.80-6.78 (m, 2 H), 4.28 (t, J = 6.6 Hz, 1 H), 3.88 (t, J = 5.8 Hz, 1 H), 3.63-3.55 (m, 1 H), 2.85-2.76 (m, 1 H), 2.75-2.70 (m, 1 H) ppm.
<제조예 14> 3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000048
제조예 1-13과 다르게 제조예 14와 같이, 상기 반응식 1에서의 R2가 수소일 경우, 상기 제조예 1의 단계 3까지 동일하게 진행한 다음, 이후는 하기 반응식 A와 같이 수행하여 제조할 수 있다.
[반응식 A]
Figure PCTKR2017009909-appb-I000049
상기 반응식 A와 같이 제조예 14는 다음과 같이 제조하였다.
단계 1: 3-히드록시-N-(4-(메톡시메톡시)페닐)-N-페닐프로판아미드의 제조
상기 제조예 1의 단계3에서 제조한 화합물 (0.175g, 0.53m mmol)을 무수 테트라하이드로퓨란에 녹인 뒤 소듐보로하이드라이드(0.022g, 0.58 mmol)을 0°C에서 가해준 뒤, 서서히 실온으로 올리며 24시간 교반한다. 스타팅 물질의 소진을 확인한 뒤, 반응 혼합물은 필터로 거른 후, 다이클로로메테인으로 희석하고 물과, 포화 염화나트륨 수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하고 진공에서 농축하였다. 조 생성물은 EtOAc: Hex (1:1)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물(0.124g, 78%)을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.39 (d, J = 49.2 Hz, 2H), 7.29 (s, 1H), 7.11 (s, 2H), 6.84-6.57 (m, 3H), 3.88 (t, J = 5.4Hz, 2H), 3.64-3.47 (bs 1H), 2.52 (t, J = 5.3 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 173.53, 156.11, 142.40, 134.40, 129.94, 129.69, 128.99, 128.15, 127.85, 126.41, 126.09, 116.65, 116.18, 58.79, 37.08 ppm.
단계 2: 3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
상기 단계 1에서 제조한 화합물을 사용하여, 제조예 1의 단계 6과 같이 수행하여 최종 목적 화합물을 제조하였다.
1H NMR (600 MHz, CDCl3) δ 7.39 (d, J = 49.2 Hz, 2H), 7.29 (s, 1H), 7.11 (s, 2H), 6.84-6.57 (m, 3H), 3.88 (t, J = 5.4Hz, 2H), 3.64-3.47 (bs 1H), 2.52 (t, J = 5.3 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 173.53, 156.11, 142.40, 134.40, 129.94, 129.69, 128.99, 128.15, 127.85, 126.41, 126.09, 116.65, 116.18, 58.79, 37.08 ppm.
<제조예 15> 2-(히드록시메틸)-N-(4-히드록시페닐)-4-메틸-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000050
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-브로모-2-메틸부티-1-엔을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.44 - 7.36 (m, 1H), 7.34- 7.29 (m, 2H), 7.26 - 7.13 (m, 3H), 7.07 (d, J = 8.5 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 6.75 (d, J = 8.5 Hz, 1H), 4.82 - 4.78 (m, 1H), 4.75 (d, J = 8.0 Hz, 1H), 3.81 (t, J = 9.5 Hz, 1H), 3.52-3.48 (m, 1H), 3.11 - 3.01 (m, 1H), 2.42-3.24 (m, 1H), 2.12 - 2.02 (m, 1H), 1.49 (d, J = 33.9 Hz, 3H); 13C NMR (150 MHz, MeOD) δ 177.32, 158.66, 144.81, 144.10, 135.54, 131.43, 130.81, 130.09, 129.50, 128.98, 128.10, 127.68, 117.27, 116.74, 113.58, 64.83, 45.09, 39.22, 22.63 ppm.
<제조예 16> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-페닐헥-5-엔아미드의 제조
Figure PCTKR2017009909-appb-I000051
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-브로모부티-1-엔을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, CDCl3) δ 7.33 - 7.29 (m, 3H), 7.07 - 7.02 (m, 2H), 7.01 (dd, J = 10.2, 3.2 Hz, 1H), 6.95 (dd, J = 10.2, 3.2 Hz, 1H), 6.11-6.02 (m, 2H), 5.88-5.80 (m, 1H), 5.13 - 5.09 (m, 1H), 5.06-5.03 (m, 1H), 4.32 (dd, J = 12.0, 5.3 Hz, 1H), 4.11 (dd, J = 12.1, 6.9 Hz, 1H), 2.79 (m, 1H), 2.32 - 2.19 (m, 2H), 2.17 - 2.07 (m, 1H), 1.83-1.75 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.76, 170.25, 143.88, 143.47, 137.22, 136.31, 129.74 (2 C), 129.55, 129.51, 128.87 (2 C), 128.74, 115.60, 82.97, 63.78, 41.13, 30.94, 27.80 ppm.
<제조예 17> 2-(4-클로로벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000052
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-(브로모메틸)-4-클로로벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.36 - 7.26 (m, 4H), 7.18 (t, J = 7.3 Hz, 1H), 7.13 - 7.02 (m, 4H), 6.90 (d, J = 8.5 Hz, 1H), 6.76 - 6.57 (m, 3H), 3.86 (t, J = 9.2 Hz, 1H), 3.62 - 3.53 (m, 1H), 3.14 - 3.01 (m, 1H), 2.84-2.76 (m, 1H), 2.75 - 2.67 (m, 1H); 13C NMR (150 MHz, MeOD) δ 176.35, 158.50, 144.42, 139.45, 135.09, 133.46, 132.05 (2 C), 131.00, 130.50, 129.98, 129.54 (2 C), 129.17, 128.86, 127.81, 127.63, 116.93, 116.60, 49.31, 36.15, 20.84 ppm.
<제조예 18> 2-(3-브로모벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000053
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1,3-다이브로모벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.53 - 7.47 (m, 1H), 7.34 - 7.24 (m, 5H), 7.20 (t, J = 7.4 Hz, 1H), 7.14 - 7.06 (m, 3H), 6.94 - 6.88 (m, 1H), 6.75 - 6.71 (m, 2H), 3.93 - 3.86 (m, 1H), 3.62 (dd, J = 10.6, 6.0 Hz, 1H), 3.16 - 3.01 (m, 1H), 2.83 - 2.70 (m, 2H); 13C NMR (150 MHz, MeOD) δ 176.26, 158.52, 144.43, 143.34, 135.07, 133.53, 131.40, 130.74, 130.53, 130.02 (2C), 129.75, 129.45, 129.27, 127.93 (2C), 123.52, 116.97, 116.63, 64.93, 49.29, 36.58 ppm.
<제조예 19> 3-히드록시-N-(4-히드록시페닐)-2-(4-니트로벤질)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000054
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-브로모-4-니트로벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 8.20 (d, J = 8.3 Hz, 2H), 7.39 - 7.25 (m, 5H), 7.17 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 7.8 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.78 - 6.62 (m, 3H), 3.89 (t, J = 9.1 Hz, 1H), 3.65-3.57 (m, 1H), 3.20-3.07 (m, 1H), 3.00-2.93 (m, 1H), 2.92-2.82 (m, 1H); 13C NMR (150 MHz, MeOD) δ 175.89, 158.64, 148.81, 148.31, 144.33, 134.99, 131.54, 130.95, 130.66, 130.04, 129.67, 129.16, 129.03, 127.78, 127.71, 124.62 (2 C), 117.08, 116.66, 64.80, 48.75, 36.56 ppm.
<제조예 20> 3-히드록시-N-(4-히드록시페닐)-N-페닐-2-(2-((페닐설포닐)메틸)벤질)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000055
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-(브로모메틸)-2-((페닐설포닐)메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.89 (s, 1H), 7.75 - 7.58 (m, 3H), 7.52 (t, J = 7.6 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 7.29 - 7.20 (m, 4H), 7.15 (d, J = 7.2 Hz, 2H), 7.08 (dd, J = 20.8, 7.5 Hz, 1H), 6.99 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 6.71 - 6.55 (m, 3H), 4.59 (s, 1H), 4.44 (dd, J = 30.1, 14.2 Hz, 1H), 4.28 (dd, J = 32.0, 14.2 Hz, 1H), 3.79 (t, J = 8.9 Hz, 1H), 3.52 (dd, J = 9.8, 6.8 Hz, 1H), 3.04 - 2.90 (m, 1H), 2.76 - 2.59 (m, 2H); 13C NMR (150 MHz, MeOD) δ 176.21, 158.43, 144.23, 141.19, 139.66, 135.12, 134.94, 133.98, 132.21, 130.87, 130.48, 130.23 (2 C), 129.98, 129.64 (2 C), 129.58, 129.05, 128.87, 128.38, 127.90, 127.71, 127.67, 116.90, 116.59, 64.81, 59.88, 48.84, 33.20 ppm.
<제조예 21> 2-(3,5-비스(트리플루오로메틸)벤질)3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000056
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-(브로모메틸)-3,5-비스(트리플루오로메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.93 (s, 1H), 7.73 (s, 1H), 7.69 (s, 1H), 7.27 (dd, J = 10.7, 4.9 Hz, 3H), 7.17 (t, J = 7.4 Hz, 1H), 7.05 - 6.95 (m, 1H), 6.82 (d, J = 8.8 Hz, 1H), 6.73-6.57 (m, 3H), 3.94-3.88 (m, 1H), 3.64 (dd, J = 10.6, 6.1 Hz, 1H), 3.21 - 3.06 (m, 1H), 3.03 - 2.90 (m, 2H); 13C NMR (150 MHz, MeOD) δ 175.64, 158.76, 144.18, 144.16, 134.87, 132.99, 132.77, 131.07, 130.71, 130.00 (2 C), 129.47, 129.05, 127.80, 127.69 (2 C), 125.82, 124.02, 121.55, 117.13, 116.61, 64.78, 49.18, 36.39 ppm.
<제조예 22> 2-(3,5-디메틸벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000057
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-브로모-3,5-다이메틸벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.31 - 7.14 (m, 4H), 7.06 (d, J = 7.9 Hz, 1H), 6.94 (s, 1H), 6.86 (d, J = 8.5 Hz, 1H), 6.68 (d, J = 22.0 Hz, 5H), 3.86 (dd, J = 15.9, 7.2 Hz, 1H), 3.58 (dd, J = 10.3, 5.7 Hz, 1H), 3.11 - 2.99 (m, 1H), 2.73 - 2.59 (m, 2H), 2.30 (d, J = 4.3 Hz, 6H) ; 13C NMR (150 MHz, MeOD) δ 175.41, 156.95, 143.17, 138.87, 137.66, 133.79, 129.77, 128.80, 128.51 (2 C), 127.85, 127.60, 127.55, 127.00, 126.98, 126.52 (2 C), 115.25, 115.12, 63.63, 48.10, 35.59, 20.02 (2 C) ppm.
<제조예 23> 3-히드록시-N-(4-히드록시페닐)-2-(2-니트로-4-(트리플루오로메틸)벤질)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000058
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 1-(브로모메틸)-2-니트로-4-(트리플루오로메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 8.31 (d, J = 7.1 Hz, 1H), 8.05 - 8.01 (m, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.24 (m, 2H), 7.18 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.5 Hz, 1H), 6.91 (d, J = 8.8 Hz, 1H), 6.76-6.53 (m, 3H), 3.89 (dd, J = 10.6, 8.2 Hz, 1H), 3.66 (dd, J = 10.6, 5.6 Hz, 1H), 3.37 - 3.31 (m, 1H), 3.30-3.24 (m, 1H), 3.08 (dd, J = 12.7, 10.4 Hz, 1H); 13C NMR (150 MHz, MeOD) δ 175.71, 158.61, 150.82, 144.26, 140.07, 135.77, 134.84, 130.67, 130.04, 129.11, 129.03, 127.74 (2 C), 125.46, 123.66, 123.42, 117.11, 116.66, 65.11, 48.76, 48.61, 47.50, 33.83 ppm.
<제조예 24> 2-(2-플루오로-6-(트리플루오로메틸)벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000059
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 2-(브로모메틸)-1-플루오로-3-(트리플루오로메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.89 (s, 1H), 7.53 - 7.47 (m, 2H), 7.43 - 7.39 (m, 1H), 7.31 (t, J = 7.9 Hz, 2H), 7.24 - 7.14 (m, 4H), 7.03 (d, J = 8.8 Hz, 1H), 6.73 (d, J = 8.8 Hz, 1H), 6.59 (s, 1H), 3.93 (m, 1H), 3.54 (m, 1H), 3.27 - 3.21 (m, 1H), 3.20 - 3.13 (m, 1H), 2.83 (t, J = 10.9 Hz, 1H); 13C NMR (150 MHz, MeOD) δ 175.88, 163.88, 158.01, 157.04, 144.17, 134.77, 130.13, 129.71, 129.58 (2 C), 128.76, 128.35, 127.38 (2 C), 127.18, 123.09, 120.33, 120.17, 116.58, 116.22, 64.80, 46.55, 26.15 ppm.
<제조예 25> 2-(2-클로로-5-(트리플루오로메틸)벤질)-3-히드록시-N-(4-히드록시페닐)-N-페닐프로판아미드의 제조
Figure PCTKR2017009909-appb-I000060
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 2-(브로모메틸)-1-클로로-4-(트리플루오로메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.61-7.58 (m, 3H), 7.32 - 7.26 (m, 3H), 7.17 (dd, J = 9.3, 1H), 7.09 - 7.04 (m, 2H), 6.86 (d, J = 8.8 Hz, 1H), 6.68 (d, J = 8.8 Hz, 2H), 3.97 - 3.85 (m, 1H), 3.73 - 3.51 (m, 1H), 3.39 - 3.31 (m, 1H), 3.04 (m, 1H), 2.97 - 2.86 (m, 1H); 13C NMR (150 MHz, MeOD) δ 174.52, 157.17, 156.12, 142.84, 138.12, 133.48, 130.30, 129.22, 128.87, 128.52 (2 C), 128.11, 127.68, 127.51, 126.34 (2 C), 126.31, 124.88, 115.65, 115.12, 63.49, 44.81, 33.30 ppm.
<제조예 26> 3-히드록시-N-(4-히드록시페닐)-2-메틸-N-(피리디-3-닐)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000061
상기 제조예 1의 단계 4에서 사용한 벤질브로마이드를 대신하여 아이오도메테인을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 8.43 (s, 1 H), 8.24 (s, 1 H), 7.71-7.52 (m, 1 H), 7.42-7.33 (m, 1 H), 7.22-7.04 (m, 2 H), 6.81-6.64 (m, 2 H), 3.72-3.63 (m, 1 H), 3.38-3.34 (m, 1 H), 2.73-2.92 (m, 1 H), 0.87 (d, J = 1.7 Hz, 3 H); 13C NMR (125 MHz, MeOD): 177.15, 157.75, 146.90, 145.78, 140.40, 134.47, 132.99, 129.82 (2 C), 123.93, 116.20 (2 C), 64.53, 39.92, 13.12 ppm.
<제조예 27> N-(4-히드록시-3-메틸페닐)-2-(히드록시메틸)-4-메틸-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000062
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-플루오로페놀을 사용한 것과, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용한 것, 단계 4에서 사용한 벤질브로마이드를 대신하여 2-메틸-알릴브로마이드 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.44-7.16 (m, 5 H), 7.12-6.95 (m, 2 H), 6.79-6.67 (m, 1 H), 4.82-4.79 (s, 1 H), 4.76-4.72 (m, 1 H), 3.83-3.76 (m, 1 H), 3.52-3.46 (m, 1 H), 3.09-3.02 (m, 1 H),2.41-2.34 (m, 1 H), 2.18-2.12 (m, 3 H), 2.09-2.05(m, 1 H), 1.54-1.45 (m, 3 H); 13C NMR (150 Hz, MeOD): δ 177.35, 145.03, 144.23, 138.88, 138.52, 130.79, 130.12, 130.06 (2 C), 128.09 (2 C), 127.62, 116.22, 113.58 (2 C), 64.88, 45.15, 39.22, 22.57, 16.31 ppm.
<제조예 28> N-(3-플루오로-4-히드록시페닐)-2-(히드록시메틸)-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000063
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-플루오로페놀을 사용하였고, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-브로모-부티-1-엔을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.47 - 7.26 (m, 3H), 7.24 (s, 1H), 7.21 (d, J = 7.6 Hz, 2H), 6.83 -6.74 (m, 2H), 5.80-5.77 (m, 1H), 5.08-5.06 (t, J = 12.6 Hz, 2H), 3.79-3.76 (m, 1H), 3.52 (dd, J = 10.2, 5.5 Hz, 1H), 3.01 - 2.88 (m, 1H), 2.39-2.27 (m, 1H), 2.20-2.14 (m, 1H); 13C NMR (150 MHz, MeOD) δ 177.54, 154.62, 158.46, 144.75, 136.54, 135.36, 131.24, 130.60, 130.08 (2 C), 129.36, 128.09 (2 C), 116.61, 116.54, 64.52, 46.54, 35.12 ppm.
<제조예 29> N-(4-히드록시-3-메틸페닐)-2-(히드록시메틸)-N-페닐펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000064
상기 제조예 1의 단계 1에서 4-브로모페놀을 대신하여 4-브로모-2-메틸페놀을 사용하였고, 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 4-브로모-부티-1-엔을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 Hz, MeOD): δ 7.45-7.36 (m, 1 H), 7.35-7.27 (m, 2 H), 7.26-7.24 (m, 2 H), 7.05-6.86 (m, 2 H), 6.76-6.61 (m, 1 H), 5.78-5.53 (m, 1 H), 5.42-5.29 (m, 1 H), 5.13-5.02 (m, 2H), 3.83-3.70 (m, 2 H), 2.93-2.80 (m, 2 H), 2.50-2.39 (m, 1 H), 2.36-2.26 (m, 1 H), 2.25-2.12 (m, 3 H); 13C NMR (150 Hz, MeOD): δ 178.60, 140.45, 139.06, 136.41, 133.35, 132.50, 131.52, 129.98, 129.17, 127.90, 124.97, 122.49, 120.97, 110.36, 110.02, 77.93, 38.97, 30.89, 21.16 ppm.
<제조예 30> 3-히드록시-N-(4-히드록시페닐)-N,2-디메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000065
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 아이오도 메테인을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.13 - 7.11 (m, 2H), 6.86 (d, J = 8.9 Hz, 2H), 3.71 (dd, J = 10.5, 8.3 Hz, 1H), 3.37 (dd, J = 10.5, 5.8 Hz, 1H), 3.22 (s, 3H), 2.74 - 2.68 (m, 1H), 0.96 (d, J = 6.9 Hz, 3H); 13C NMR (150 MHz, MeOD) δ 176.43, 157.13, 135.14, 128.20 (2 C), 115.86 (2 C), 64.37, 39.08, 36.65, 13.13 ppm.
<제조예 31> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-메틸펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000066
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 3-브로모-프로-1-펜을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.10 (d, J = 8.5 Hz, 2H), 6.87 - 6.83 (m, 2H), 5.66 - 5.59 (m, 1H), 5.03 - 4.97 (m, 2H), 3.71 (dd, J = 10.6, 8.3 Hz, 1H), 3.49 - 3.44 (m, 1H), 3.22 (s, 3H), 2.79 - 2. 74 (m, 1H), 2.25 - 2.20 (m, 1H), 2.13 - 2.08 (m, 1H); 13C NMR (150 MHz, MeOD) δ 175.02, 157.08, 135.26 (2 C), 134.99, 128.63, 115.74, 115.72 (2 C), 63.08, 44.67, 36.72, 33.47 ppm.
<제조예 32> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-메틸헥-5-센아미드의 제조
Figure PCTKR2017009909-appb-I000067
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 4-브로모-부티-1-엔을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, CDCl3) δ 7.05 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.61 - 5.54 (m, 1H), 4.91 - 4.85 (m, 2H), 3.74 - 3.66 (m, 1H), 3.27 (s, J = 4.6 Hz, 3H), 2.69 - 2.65 (m, 1H), 1.95 - 1.88 (m, 2H), 1.70 - 1.55 (m, 2H) ; 13C NMR (150 MHz, CDCl3) δ 176.34, 156.20, 137.55, 135.52, 128.68, 116.50 (2 C), 115.10 (2 C), 63.27, 42.61, 37.79, 31.59, 31.12 ppm.
<제조예 33> 2-(히드록시메틸)-N-(4-히드록시페닐)-N,4-디메틸펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000068
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 3-브로모-2-메틸프로-1-펜을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.09 (d, J = 7.5 Hz, 2H), 6.85 - 6.82 (m, 2H), 4.70 (s, 1H), 4.63 (s, 1H), 3.73 - 3.68 (m, 1H), 3.42 (dd, J = 10.5, 5.4 Hz, 1H), 3.20 (s, 3H), 2.90 - 2.84 (m, 1H), 2.23 (dd, J = 13.4, 8.1 Hz, 1H), 1.99 (dd, J = 13.4, 6.2 Hz, 1H), 1.45 (s, 3H) ; 13C NMR (150 MHz, MeOD) δ 174.11, 155.79, 141.30, 133.70, 127.35, 114.45 (2C), 110.44 (2C), 61.86, 41.89, 36.05, 35.46, 19.70 ppm.
<제조예 34> 2-(4-플루오로벤질)-3-히드록시-N-(4-히드록시페닐)-N-메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000069
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-(브로모메틸)-4-플루오로벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.03 - 6.99 (m, 4H), 6.83 - 5.86 (m, 4H), 3.77 (dd, J = 10.6, 8.1 Hz, 1H), 3.50 (dd, J = 10.6, 5.9 Hz, 1H), 3.11 (s, 3H), 2.92 - 2.88 (m, 1H), 2.74 (dd, J = 13.1, 10.1 Hz, 1H), 2.63 (dd, J = 13.1, 4.9 Hz, 1H) ; 13C NMR (150 MHz, MeOD) δ 174.64, 162.51, 160.90, 156.94, 135.29, 135.27, 134.65, 130.40, 130.35, 128.33, 115.51, 114.62, 114.48, 63.25, 47.46, 36.60, 34.38 ppm.
<제조예 35> 2-(4-브로모벤질)-3-히드록시-N-(4-히드록시페닐)-N-메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000070
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-(브로모메틸)-4-브로모벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.47 - 7.36 (m, 2H), 6.96 - 6.92 (m, 2H), 6.85 - 6.47 (bs, 3H), 5.97 (bs, 1H), 3.77 (dd, J = 10.6, 8.0 Hz, 1H), 3.50 (dd, J = 10.6, 5.9 Hz, 1H), 3.11 (s, 3H), 2.91 - 2.86 (m, 1H), 2.73 (dd, J = 13.0, 10.2 Hz, 1H), 2.62 (dd, J = 13.0, 4.8 Hz, 1H) ; 13C NMR (150 MHz, MeOD) δ 174.49, 156.94, 138.64, 134.59, 131.07 (2C), 130.73 (2C), 128.27, 119.71 (2C), 115.52 (2C), 78.07, 63.25, 36.62, 34.61 ppm.
<제조예 36> 2-(4-시아노벤질)-3-히드록시-N-(4-히드록시페닐)-N-메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000071
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-(브로모메틸)-4-사이아노벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.65 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 6.86 - 6.57 (bs, 4H), 3.81 - 3.76 (m, 1H), 3.52 (dd, J = 10.6, 6.0 Hz, 1H), 3.11 (s, 3H), 2.96 - 2.91 (m, 1H), 2.85 (dd, J = 12.8, 10.1 Hz, 1H), 2.75 (dd, J = 12.8, 4.7 Hz, 1H); 13C NMR (150 MHz, MeOD) δ 174.07, 157.03, 145.50, 134.47, 131.91 (2 C), 129.84 (2 C), 128.23, 118.36 (2 C), 115.59 (2 C), 109.88, 63.18, 47.14, 36.61, 35.23 ppm.
<제조예 37> 3-히드록시-N-(4-히드록시페닐)-N-메틸-2-(2-((페닐설포닐)메틸)벤질)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000072
상기 제조예 4의 반응식 4 단계 5에 이어서, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-(클로로메틸)-2-(페닐설포닐)벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.77 - 7.64 (m, 4H), 7.57 - 7.51 (m, 2H), 7.31 - 7.17 (m, 3H), 7.11 (dd, J = 13.0, 6.2 Hz, 1H), 7.01 (dd, J = 28.5, 7.6 Hz, 1H), 6.78 - 6.49 (m, 2H), 4.46 (d, J = 14.2, 6.2 Hz, 1H), 4.29 (d, J = 14.2 Hz, 1H), 3.70 (dd, J = 10.5, 7.5 Hz, 1H), 3.45 (dd, J = 10.6, 6.4 Hz, 1H), 3.04 (s, J = 4.8 Hz, 3H), 2.82 - 2.76 (m, 1H), 2.66 (dd, J = 13.8, 10.6 Hz, 1H), 2.58 (dd, J = 13.8, 4.2 Hz, 1H); 13C NMR (150 MHz, MeOD) δ 174.42, 156.87, 139.94, 138.33, 134.46, 133.71, 132.47, 130.51, 128.85 (2 C), 128.75(2C), 128.26 (2 C), 126.82, 126.29 (2 C), 115.52 (2 C), 63.23, 58.33, 46.82, 36.57, 31.63 ppm.
<제조예 38> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-페닐펜-4-틴아미드의 제조
Figure PCTKR2017009909-appb-I000073
상기 제조예 1의 단계 2에서 사용한 피리딘-3-아민을 대신하여 아닐린을 사용하였고, 단계 4에서 사용한 벤질브로마이드를 대신하여 2-(브로모메틸)-1-클로로-4-(트리플루오로메틸)벤젠을 사용한 것을 제외하고 제조예 1과 같이 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.51 - 7.43 (m, 1H), 7.40 - 7.27 (m, 4H), 7.22 (t, J = 7.2 Hz, 1H), 7.14 (d, J = 8.5 Hz, 1H), 6.86 (d, J = 8.6 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 3.80 (dd, J = 10.6, 7.7 Hz, 1H), 3.69 - 3.50 (m, 1H), 3.18 - 2.99 (m, 1H), 2.48 (dd, J = 16.5, 9.1 Hz, 1H), 2.44 (d, J = 16.7 Hz, 1H), 2.39 - 2.29 (m, 1H); 13C NMR (150 MHz, MeOD) δ 174.41, 157.25, 143.18, 133.97 (2 C), 129.96 (2 C), 128.60, 127.61, 126.53, 126.23, 115.80, 115.24, 80.96, 69.91, 62.72, 44.53, 18.14 ppm.
<제조예 39> 3-히드록시-N-(4-히드록시페닐)-N-이소프로필-2-메틸프로판아미드의 제조
Figure PCTKR2017009909-appb-I000074
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 아이오도 메테인을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.06 - 7.00 (m, 2H), 6.89 - 6.85 (m, 2H), 4.94 - 4.91 (m, 1H), 3.71 (dd, J = 10.5, 8.1 Hz, 1H), 3.35 (dd, J = 10.5, 5.9 Hz, 1H), 2.52 - 2.45 (m, 1H), 1.05 (dd, J = 9.3, 6.8 Hz, 6H), 0.94 (d, J = 6.9 Hz, 3H) ; 13C NMR (150 MHz, MeOD) δ 175.88, 157.47, 131.60, 130.61, 129.06, 115.49, 115.17, 64.35, 45.97, 40.04, 19.86, 19.79, 13.23 ppm.
<제조예 40> 2-(히드록시메틸)-N-(4-히드록시페닐)-N-이소프로필펜트-4-엔아미드의 제조
Figure PCTKR2017009909-appb-I000075
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 3-브로모프로-1-페인을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.05 - 7.02 (m, 1H), 6.98 - 6.96 (m, 1H), 6.88 - 6.84 (m, 2H), 5.66 - 5.59 (m, 1H), 5.02 - 4.97 (m, 2H), 4.95 - 4.91 (m, 1H), 3.70 (dd, J = 10.6, 8.1 Hz, 1H), 3.43 (dd, J = 10.6, 5.8 Hz, 1H), 2.56 - 2.52 (m, 1H), 2.25 - 2.19 (m, 1H), 2.12 - 2.06 (m, 1H), 1.07 (d, J = 6.8 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H); 13C NMR (150 MHz, MeOD) δ 174.36, 157.43, 135.35, 131.84, 131.24, 128.90, 115.71, 115.38, 114.95, 63.08, 46.15, 45.52, 33.57, 20.10, 19.72 ppm.
<제조예 41> 2-(4-플루오로벤질)-3-히드록시-N-(4-히드록시페닐)-N-이소프로필프로판아미드의 제조
Figure PCTKR2017009909-appb-I000076
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-브로모-4-플루오로벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.06 - 6.92 (m, 5H), 6.79 (dd, J = 8.5, 2.8 Hz, 1H), 6.57 (dd, J = 8.5, 2.8 Hz, 1H), 5.70 (dd, J = 8.5, 2.6 Hz, 1H), 4.88 - 4.86 (m, 1H).3.74 (dd, J = 10.5, 7.5 Hz, 1H), 3.48 (dd, J = 10.6, 5.8 Hz, 1H), 2.78 - 2.72 (m, 1H), 2.70 - 2.59 (m, 2H), 0.96 - 0.87 (m, 6H) ; 13C NMR (150 MHz, MeOD) δ 173.94, 162.54, 160.93, 157.27, 135.39, 131.65, 130.80, 130.66, 128.48, 115.16, 114.71, 114.56, 114.42, 63.35, 48.55, 46.00, 34.44, 19.82, 19.63 ppm.
<제조예 42> 3-히드록시-N-(4-히드록시페닐)-N-이소프로필-2-(4-(트리플루오로메틸)벤질)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000077
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-브로모-4-(트리플루오로메틸)벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.59 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 6.95 (dd, J = 8.5, 2.6 Hz, 1H), 6.79 (dd, J = 8.5, 2.9 Hz, 1H), 6.51 (dd, J = 8.5, 2.9 Hz, 1H), 5.57 (dd, J = 8.5, 2.6 Hz, 1H), 4.89 - 4.85 (m, 1H), 3.79 - 3.75 (m, 1H), 3.53 - 3.50 (m, 1H), 2.88 - 2.83 (m, 1H), 2.76 - 2.72 (m, 1H), 2.72 - 2.66 (m, 1H), 0.93 (d, J = 6.8 Hz, 3H), 0.88 (d, J = 6.7 Hz, 3H); 13C NMR (150 MHz, MeOD) δ 173.62, 157.31, 144.26, 131.69, 130.49, 129.65 (2 C), 128.55, 128.37, 128.34, 124.84, 124.81, 115.24, 114.66, 63.34, 48.37, 46.11, 35.06, 19.80, 19.58 ppm.
<제조예 43> 2-(4-시아노벤질)-3-히드록시-N-(4-히드록시페닐)-N-이소프로필프로판아미드의 제조
Figure PCTKR2017009909-appb-I000078
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 4-브로모벤조나이트릴을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.68 - 7.65 (m, 2H), 7.23 (d, J = 8.2 Hz, 2H), 6.97 (dd, J = 8.5, 2.6 Hz, 1H), 6.80 (dd, J = 8.5, 2.9 Hz, 1H), 6.59 (dd, J = 8.5, 2.9 Hz, 1H), 5.73 (dd, J = 8.5, 2.6 Hz, 1H), 4.86 (dd, J = 13.6, 6.8 Hz, 1H), 3.76 (dd, J = 10.6, 7.5 Hz, 1H), 3.50 (dd, J = 10.6, 6.3 Hz, 1H), 2.86 (dd, J = 12.7, 10.4 Hz, 1H), 2.77 - 2.67 (m, 2H), 0.94 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.7 Hz, 3H) ; 13C NMR (150 MHz, MeOD) δ 173.40, 157.40, 145.63, 131.85 (2 C), 131.69, 130.50, 130.10 (2 C), 128.37, 118.35, 115.31, 114.78, 109.87, 63.26, 48.09, 46.17, 35.28, 19.87, 19.59 ppm.
<제조예 44> 2-(2-플루오로-6-(트리플루오로메틸)벤질)-3-히드록시-N-(4-히드록시페닐)-N-이소프로필프로판아미드의 제조
Figure PCTKR2017009909-appb-I000079
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 2-브로모-1-플루오로-3-(트리플루오로메틸)벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.54 - 7.49 (m, 2H), 7.38 - 7.34 (m, 1H), 6.93 (dd, J = 8.5, 2.6 Hz, 1H), 6.78 (dd, J = 8.5, 2.9 Hz, 1H), 6.41 (dd, J = 8.5, 2.9 Hz, 1H), 5.68 (dd, J = 8.5, 2.6 Hz, 1H), 4.94 -4.91 (m, 1H), 3.84 (dd, J = 10.4, 9.1 Hz, 1H), 3.47 (dd, J = 10.6, 5.5 Hz, 1H), 3.08 (dd, J = 13.8, 9.7 Hz, 1H), 2.87 - 2.82 (m, 1H), 2.75 (d, J = 14.0 Hz, 1H), 0.96 (dd, J = 6.7, 5.4 Hz, 6H) ; 13C NMR (150 MHz, MeOD) δ 173.87, 162.86, 161.22, 157.10, 131.92, 130.11, 128.46, 128.39, 125.60, 121.81, 119.15, 118.99, 115.24, 114.57, 63.72, 46.14, 45.89, 24.99, 19.78, 19.51 ppm.
<제조예 45> 2-(3-브로모벤질)-3-히드록시-N-(4-히드록시페닐)-N-이소프로필아미드의 제조
Figure PCTKR2017009909-appb-I000080
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1,3-다이브로모벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 7.45 (dd, J = 8.0, 0.9 Hz, 1H), 7.23 - 7.20 (m, 2H), 7.03 (d, J = 7.7 Hz, 1H), 6.94 (dd, J = 8.5, 2.6 Hz, 1H), 6.79 (dd, J = 8.5, 2.9 Hz, 1H), 6.59 (dd, J = 8.5, 2.9 Hz, 1H), 5.57 (dd, J = 8.5, 2.6 Hz, 2H), 4.86 - 4.85 (m, 1H), 4.84 - 4.81 (m, 1H), 3.75 (dd, J = 10.6, 7.4 Hz, 2H), 3.50 (dd, J = 10.6, 5.9 Hz, 2H), 2.77 - 2.70 (m, 1H), 2.69 - 2.62 (m, 2H), 0.93 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H) ; 13C NMR (150 MHz, MeOD) δ 173.65, 157.30, 142.14, 132.02, 131.61, 130.77, 129.81, 129.09, 128.34, 127.95, 121.90, 115.17, 114.72, 63.41, 48.43, 46.03, 34.92, 19.93, 19.59 ppm.
<제조예 46> 3-히드록시-N-(4-히드록시페닐)-N-이소프로필-2-(4-니트로벤질)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000081
상기 제조예 4의 반응식 4 단계 3에서, 아이오도 메테인을 대신하여 2-아이오도프로페인을 사용하고, 상기 제조예 1의 단계 4에서 벤질 브로마이드 대신 1-브로모-4-니트로벤젠을 사용한 것을 제외하고, 단계 5 및 단계 6에서 실시한 방법을 동일하게 수행하여 목적 화합물을 제조하였다.
1H NMR (600 MHz, MeOD) δ 8.18 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H), 6.98 (dd, J = 8.5, 2.6 Hz, 1H), 6.81 (dd, J = 8.5, 2.9 Hz, 1H), 6.57 (dd, J = 8.5, 2.9 Hz, 1H), 5.76 (dd, J = 8.5, 2.6 Hz, 1H), 4.87 - 4.84 (m, 1H), 3.77 (dd, J = 10.6, 7.5 Hz, 1H), 3.51 (dd, J = 10.6, 6.3 Hz, 1H), 2.91 (dd, J = 12.8, 10.4 Hz, 1H), 2.80 (dd, J = 12.8, 4.5 Hz, 1H), 2.76 - 2.69 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H) ; 13C NMR (150 MHz, MeOD) δ 173.34, 157.42, 147.63, 146.76, 131.69, 130.48, 130.09 (2 C), 128.37, 123.03 (2 C), 115.35, 114.81, 63.25, 48.08, 46.22, 34.97, 19.88, 19.58 ppm.
상기 제조예 1 내지 제조예 46을 토대로, 상기 반응식 1에서와 같이, 고리화 반응을 수행하여 하기 실시예 1 내지 실시예 49 화합물을 제조하였다.
<실시예 1> 5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000082
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 14 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.37 - 7.29 (m, 3H), 7.09-7.04 (m, 2H), 7.02 - 6.93 (m, 2H), 6.09 (d, J = 10.2 Hz, 2H), 4.33 (t, J = 6.0 Hz, 2H), 2.85 (t, J = 6.0 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 183.94, 167.19, 143.71 (2 C), 136.32, 129.87 (2 C), 129.81 (2 C), 129.14, 129.09, 129.02, 83.07, 60.26, 32.82 ppm.
<실시예 2> 3-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000083
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 5 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.55 (d, J = 8.0 Hz, 1H), 7.40 - 7.30 (m, 3H), 7.11 - 7.05 (m, 2H), 6.94 (dd, J = 10.2, 3.2 Hz, 1H), 6.12 (dd, J = 10.2, 2.0 Hz, 1H), 6.08 (dd, J = 10.2, 2.0 Hz, 1H), 4.32 (dd, J = 11.9, 5.5 Hz, 1H), 4.06 (dd, J = 11.9, 7.8 Hz, 1H), 2.98 - 2.88 (m, 1H), 1.39 (d, J = 7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 184.09, 171.21, 144.51, 143.52, 136.60, 130.05, 129.81, 129.79, 129.17, 129.11, 129.05, 120.02, 83.53, 66.14, 37.29, 13.72 ppm.
<실시예 3> 3-알릴-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000084
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 6 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.34 - 7.29 (m, 3H), 7.06 - 7.03 (m, 2H), 7.01 (dd, J = 10.2, 3.2 Hz, 1H), 6.95 (dd, J = 10.2, 3.2 Hz, 1H), 6.12-6.03 (m, 2H), 5.91 - 5.80 (m, 1H), 5.23-5.14 (m, 2H), 4.29 (dd, J = 12.2, 5.5 Hz, 1H), 4.13 (dd, J = 12.2, 7.0 Hz, 1H), 2.89 - 2.81 (m, 1H), 2.75 - 2.69 (m, 1H), 2.57 - 2.50 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.84, 169.72, 143.89, 143.52, 136.34, 135.13, 134.44, 129.76, 129.64, 128.97, 128.87, 124.29, 119.91, 118.19, 117.60, 83.11, 63.33, 41.24, 33.09 ppm.
<실시예 4> 3-(2-메틸-알릴)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000085
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 15 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.32 - 7.29 (m, 3H), 7.06 - 7.02 (m, 2H), 7.01 (dd, J = 10.0, 3.2 Hz, 1H), 6.97 (dd, J = 10.0, 3.1 Hz, 1H), 6.11 - 6.05 (m, 2H), 4.86 (d, J = 44.8 Hz, 2H), 4.25 (dd, J = 12.2, 5.2 Hz, 1H), 4.08 (dd, J = 12.2, 6.6 Hz, 1H), 2.95 - 2.88 (m, 1H), 2.78 (dd, J = 14.1, 3.7 Hz, 1H), 2.41 (dd, J = 14.0, 11.0 Hz, 1H), 1.79 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 183.95, 170.25, 143.97, 143.73, 141.82, 136.49, 129.90, 129.75, 129.06, 128.94, 113.59, 83.23, 77.25, 77.04, 76.83, 63.35, 39.85, 37.10, 21.92 ppm.
<실시예 5> 3-(3-부테닐)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000086
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 16 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.33 - 7.29 (m, 3H), 7.07 - 7.02 (m, 2H), 7.01 (dd, J = 10.2, 3.2 Hz, 1H), 6.95 (dd, J = 10.2, 3.2 Hz, 1H), 6.11-6.02 (m, 2H), 5.88-5.80 (m, 1H), 5.13 - 5.09 (m, 1H), 5.06-5.03 (m, 1H), 4.32 (dd, J = 12.0, 5.3 Hz, 1H), 4.11 (dd, J = 12.1, 6.9 Hz, 1H), 2.79 (m, 1H), 2.32 - 2.19 (m, 2H), 2.17 - 2.07 (m, 1H), 1.83-1.75 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.76, 170.25, 143.88, 143.47, 137.22, 136.31, 129.74 (2 C), 129.55, 129.51, 128.87 (2 C), 128.74, 115.60, 82.97, 63.78, 41.13, 30.94, 27.80 ppm.
<실시예 6> 3-벤질-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000087
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 3 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.39 - 7.26 (m, 8H), 7.05 - 7.01 (m, 2H), 6.92 (dd, J = 10.4, 3.2 Hz, 1H), 6.66 (dd, J = 10.4, 3.2 Hz, 1H), 6.05-5.99 (m, 1H), 4.18 (dd, J = 12.2, 5.2 Hz, 1H), 4.06 (dd, J = 12.2, 6.4 Hz, 1H), 3.29 (dd, J = 13.2, 3.5 Hz, 1H), 3.16 - 3.01 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 183.87, 169.67, 143.76, 143.57, 138.02, 136.42, 129.84, 129.72, 129.68, 129.40, 129.06, 128.97, 128.93, 128.90, 128.78, 128.67, 126.87, 120.08, 83.16, 63.10, 43.37, 34.94 ppm.
<실시예 7> 3-(4-플루오로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000088
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 8 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.34-7.29 (m, 3H), 7.27-7.21 (m, 2H), 7.08-6.97 (m, 4H), 6.92 (dd, J = 10.3, 2.9 Hz, 1H), 6.73 - 6.68 (m, 1H), 6.04 (d, J = 10.2 Hz, 2H), 4.18 (dd, J = 12.2, 5.2 Hz, 1H), 4.04 (dd, J = 12.2, 6.5 Hz, 1H), 3.25 (dd, J = 13.7, 3.8 Hz, 1H), 3.11-3.05 (m, 1H), 3.04-2.98 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.65, 169.37, 162.46, 160.84, 143.51, 143.24, 136.16, 133.49, 130.72, 130.67, 129.66 (2 C), 129.60, 128.93 (2 C), 128.87, 115.42, 115.28, 83.05, 62.81, 43.28, 33.89 ppm.
<실시예 8> 3-(4-클로로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000089
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 17 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
Figure PCTKR2017009909-appb-I000090
1H NMR (600 MHz, CDCl3) δ 7.38-7.29 (bs, 5H), 7.22 (d, J = 7.8 Hz, 2H), 7.04-6.94 (bs, 2H), 6.92 (d, J = 9.8 Hz, 1H), 6.73 (d, J = 9.0 Hz, 1H), 6.05 (d, J = 10.1 Hz, 2H), 4.18 (dd, J = 12.2, 4.2 Hz, 1H), 4.02 (dd, J = 11.8, 6.3 Hz, 1H), 3.25 (d, J = 13.2 Hz, 1H), 3.08-2.97 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 183.86, 169.54, 143.70, 143.41, 136.55, 136.34, 132.80, 130.76 (2 C), 129.90, 129.87 (2 C), 129.84, 129.16 (2 C), 129.11, 128.87 (2 C), 83.30, 62.99, 43.39, 34.23 ppm.
<실시예 9> 3-(3-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000091
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 18 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3)δ 7.44 (d, J = 8.2 Hz, 1H), 7.44 - 7.40 (m, 1H), 7.33 - 7.29 (m, 3H), 7.24 - 7.19 (m, 2H), 7.04 - 7.01 (m, 2H), 6.93 (dd, J = 10.4, 3.2 Hz, 1H), 6.69 (dd, J = 10.4, 3.2 Hz, 1H), 4.19 (dd, J = 12.3, 5.1 Hz, 1H), 4.03 (dd, J = 12.3, 6.3 Hz, 1H), 3.25 (dd, J = 12.7, 3.0 Hz, 1H), 3.09 - 2.99 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 183.81, 169.37, 143.62, 143.37, 140.47, 136.29, 132.28, 130.25, 130.06, 129.88 (2C), 129.85, 129.80, 129.11 (2C), 129.06, 128.06, 122.75, 83.25, 63.00, 43.21, 34.58 ppm.
<실시예 10> 3-(4-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000092
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 9 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H-NMR (600 MHz, CDCl3) δ 7.54 -7.49 (m, 1 H), 7.47 -7.43 (m, 1 H), 7.42-7.35 (m, 5 H), 7.31-7.26 (m, 2 H), 7.14-7.06 (m, 2 H), 6.72 (d, J = 10.5 Hz 1 H), 6.03 (d, J = 10.3 Hz 1 H), 4.21-4.13 (m, 1 H), 4.07-3.96 (m, 2 H), 3.08-2.99 (m, 2 H), 2.87 -2.78 (m, 1 H) ppm.
<실시예 11> 3-(4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000093
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 7 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.3 Hz, 2H), 7.32 (bs, 3H), 7.16 (d, J = 7.5 Hz, 2H), 7.02 (bs, 2H), 6.92 (d, J = 10.4 Hz, 1H), 6.74 (d, J = 10.0 Hz, 1H), 6.05 (d, J = 10.1 Hz, 2H), 4.17 (d, J = 11.0 Hz, 1H), 4.05-3.99 (m, 1H), 3.24 (d, J = 12.2 Hz, 1H), 3.09 - 2.97 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 183.84, 169.49, 143.68, 143.38, 137.07, 136.63, 136.32, 131.82 (2 C), 131.12 (2 C), 129.89, 129.86 (2 C), 129.84, 129.15 (2 C), 129.10, 120.82, 83.29, 62.98, 43.33, 34.27 ppm.
<실시예 12> 3-(4-니트로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000094
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 19 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 8.22 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 7.40-7.29 (m, 3H), 7.02 (d, J = 3.4 Hz, 2H), 6.93 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 9.7 Hz, 1H), 6.07 (d, J = 10.1 Hz, 2H), 4.21 (dd, J = 12.1, 5.0 Hz, 1H), 4.02 (dd, J = 12.1, 6.8 Hz, 1H), 3.41 (dd, J = 13.6, 3.9 Hz, 1H), 3.17 (dd, J = 13.4, 9.3 Hz, 1H), 3.14-3.07 (m, 1H); 13C NMR (151 MHz, CDCl3) δ 183.73, 169.13, 146.05, 143.50, 143.05, 136.16, 130.24 (2 C), 130.07, 130.03, 129.94, 129.84 (2 C), 129.25, 129.24, 129.09, 123.97 (2 C), 83.44, 63.00, 43.30, 34.65 ppm.
<실시예 13> 3-(2-((페닐설포닐)메틸)-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000095
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 20 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.78 (d, J = 7.0 Hz, 2H), 7.63 (t, J = 6.5 Hz, 1H), 7.50 (d, J = 7.4 Hz, 2H), 7.41 - 7.27 (m, 5H), 7.25 - 7.16 (m, 2H), 7.05 (s, 2H), 6.98 (d, J = 10.1 Hz, 1H), 6.91 (d, J = 10.0 Hz, 1H), 6.10 - 6.06 (m, 2H), 4.53 (s, 2H), 4.20 (d, J = 11.9 Hz, 1H), 4.03 (d, J = 11.5 Hz, 1H), 3.31 (d, J = 12.4 Hz, 1H), 3.04 - 2.92 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 183.88, 169.82, 143.87, 143.35, 138.89, 138.63, 136.32, 133.88, 132.93, 130.58, 129.95 (3 C), 129.85, 129.31, 129.14 (2 C), 129.10 (2 C), 128.54 (2 C), 127.20 (2 C), 126.82, 83.37, 62.91, 59.33, 43.46, 31.61 ppm.
<실시예 14> 3-(3,5-디트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000096
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 21 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.82 (s, 1H), 7.76 (s, 2H), 7.36 - 7.29 (m, 3H), 7.05 - 6.98 (m, 2H), 6.94 (dd, J = 10.0, 3.1 Hz, 1H), 6.74 (dd, J = 10.0, 2.8 Hz, 1H), 6.07 (t, J = 10.3 Hz, 2H), 4.23 (dd, J = 12.3, 5.1 Hz, 1H), 4.03 (dd, J = 12.2, 6.7 Hz, 1H), 3.43 (dd, J = 14.0, 4.3 Hz, 1H), 3.21 (dd, J = 14.0, 8.8 Hz, 1H), 3.15 - 3.07 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.68, 168.93, 143.36, 142.95, 140.91, 136.08, 132.38, 132.16, 131.94, 131.72, 130.05, 129.81, 129.48, 129.46, 129.23, 129.21, 125.92, 124.11, 122.30, 121.03, 83.43, 62.93, 43.23, 34.55 ppm.
<실시예 15> 3-(3,5-디메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000097
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 22 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.34 (s, 3H), 7.05 (d, J = 1.6 Hz, 2H), 6.98 - 6.86 (m, 4H), 6.75 (d, J = 10.3 Hz, 1H), 6.06 (d, J = 9.9 Hz, 2H), 4.19 (d, J = 12.2 Hz, 1H), 4.10 - 4.05 (m, 1H), 3.25 (d, J = 11.4 Hz, 1H), 3.07 - 2.98 (m, 2H), 2.34 (s, 6H) ; 13C NMR (150 MHz, CDCl3) δ 183.94, 169.63, 143.89, 143.77, 138.25, 137.94, 136.52, 129.92 (2C ), 129.74, 129.70, 129.09 (2C ), 129.00, 128.47 (2 C), 127.19 (2C ), 83.20, 63.12, 43.45, 34.79, 21.29 (2C ) ppm.
<실시예 16> 3-(2-니트로-4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000098
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 23 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 8.30 (d, J = 0.9 Hz, 1H), 7.82 (dd, J = 8.1, 1.5 Hz, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.37 - 7.31 (m, 3H), 7.09 (dd, J = 10.3, 3.2 Hz, 1H), 7.06-70.2 (m, 2H), 6.94 (d, J = 3.2 Hz, 1H), 6.15 (dd, J = 10.3, 2.0 Hz, 1H), 6.09 (dd, J = 10.2, 2.0 Hz, 1H), 4.43 (dd, J = 12.1, 5.1 Hz, 1H), 4.21 (dd, J = 12.1, 6.9 Hz, 1H), 3.74 (dd, J = 13.5, 8.0 Hz, 1H), 3.26 (dd, J = 13.5, 5.9 Hz, 1H), 3.23 - 3.13 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.78, 169.20, 149.09, 143.51, 143.22, 138.41, 136.00, 134.36, 130.79, 130.57, 130.07, 130.05, 129.90, 129.61, 129.58, 129.20, 129.17, 122.46, 122.44, 83.53, 64.10, 43.41, 32.16 ppm.
<실시예 17> 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000099
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 24 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz, 1H), 7.35 (m, 1H), 7.31 - 7.26 (m, 4H), 7.11 - 7.03 (m, 3H), 6.95 (dd, J = 10.2, 3.2 Hz, 1H), 6.10 (dd, J = 10.2, 2.0 Hz, 1H), 6.06 (dd, J = 10.2, 2.0 Hz, 1H), 4.15 (m, 2H), 3.74 (m, 1H), 3.22 - 3.15 (m, 1H), 3.07 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 183.96, 168.85, 161.22, 143.79, 136.30, 130.09 (2 C), 129.88 (2 C), 129.04 (3 C), 129.00, 128.65, 128.59, 124.70, 122.19, 119.23, 119.07, 83.44, 63.97, 42.36, 25.26 ppm.
<실시예 18> 3-(2-클로로-5-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000100
하기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 25 화합물을 사용한 것을 제외하고, 하기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.65 (d, J = 1.7 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.53 - 7.49 (m, 1H), 7.37 - 7.31 (m, 3H), 7.08 - 7.05 (m, 2H), 6.94 (dd, J = 10.3, 3.2 Hz, 1H), 6.89 (dd, J = 10.4, 3.2 Hz, 1H), 6.12 - 6.07 (m, 2H), 4.23 (dd, J = 12.2, 5.0 Hz, 1H), 4.13 (dd, J = 12.2, 6.9 Hz, 1H), 3.62 (dd, J = 12.7, 3.7 Hz, 1H), 3.24 - 3.15 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 183.95, 169.35, 143.91, 143.30, 138.37, 137.55, 136.36, 130.53, 130.09, 130.09, 130.06 (2 C), 129.29 (2 C), 129.14, 128.39, 125.34, 124.87, 120.38, 83.56, 63.37, 42.67, 32.21 ppm.
<실시예 19> 3-벤질-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000101
상기 제조예 1에서 제조한 화합물(0.010 g, 0.028 mmol)을 무수 헥사플로로이소프로판올(1 mL)에 녹이고, 칼륨카보네이트 (0.008 g, 0.057 mmol)를 0 ℃의 아르곤기류하에서 서서히 첨가하였다. 동일한 온도에서 30분간 교반한 후, 무수 헥사플로로아이소프로판올에 녹인 PIFA(phenyliodinebis(trifluoroacetate)) (0.012 g, 0.043 mmol) 용액을 동일한 온도에서 서서히 적가하였다. 1시간 동안 동일온도에서 교반한 후 온도를 천천히 상온으로 증가시키며 교반하였다. TLC로 기질(상기 제조예 1에서 제조한 화합물)이 사라진 것을 확인한 후 물로 퀀칭하고 에틸아세테이트로 희석하여 물층과 유기층이 맑아질 때까지 교반하였다. 유기층을 분리하고 포화 염화나트륨수용액으로 세척하였다. 유기상은 황산나트륨으로 건조하여 진공에서 농축하였다. 조 생성물은 EtOAc: Hex(3:7)의 이동상을 이용하는 실리카겔 상의 컬럼크로마토그래피 (flash column chromatography)를 이용하여 정제하여 목적 화합물(0.018 g, 76%)을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 8.61-8.55 (m, 1 H), 8.46-8.42 (bs, ½ H), 7.5 (d, J = 7.9 Hz, 1/2 H), 7.35-7.22 (m, 3 H), 7.17-7.14 (m, ½ H), 7.11-7.01 (m, ½ H), 7.01-6.97 (m, 2 H), 6.87-6.83 (m, ½ H), 6.77-6.69 (m, 1 H), 6.66-6.62 (m, ½ H), 6.39-6.33 (m, 2 H), 6.11-6.07 (m, ½ H), 4.11-4.06 (m, 1 H), 3.84-3.75 (m, 1 H), 3.66-3.89 (m, 1 H), 2.84-2.78 (m, 1 H), 2.60-2.55 (m, 1 H); 13C NMR (125 MHz, CDCl3): 183.91, 175.06, 151.89, 150.20, 141.85, 140.69, 138.83, 138.31, 130.94, 130.59, 129.52 (2 C), 129.28, 128.73 (2 C), 128.42, 127.03, 86.04, 64.40, 49.05, 35.84 ppm.
HRMS (ESI): calcd. For C21H19N2O3 [M + H]+ 347.1396; found 347.1380.
<실시예 20> 3-메틸-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000102
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 2 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 8.55-8.52 (m, 1 H), 8.45-8.31 (m, 1 H), 7.46-7.32 (m, 1 H), 7.29-7.27 (m, 1 H), 7.15-7.02 (m, 2 H ), 6.92-6.79 (m, 2 H), 4.33-4.25 (m, 1 H), 4.09-4.031 (m, 1 H), 2.96-2.85 (m, 1 H), 1.38 (d, J = 1.68 Hz, 3 H); 183.45, 171.37, 150.98, 149.76, 143.67, 142.50 (2 C), 137.73, 130.27, 130.20, 123.87, 83.78, 65.91, 37.27, 13.39 ppm.
HRMS (ESI): calcd. For C15H15N2O3 [M + H]+ 271.1083; found 271.1079.
<실시예 21> 3-히드록시-2-메틸-N-(4-옥소사이클로헥사-2,5-디에틸)-N-(피리딘-3-일)프로판아미드의 제조
Figure PCTKR2017009909-appb-I000103
상기 실시예 20과 동일한 반응을 수행하여 부 반응물(Bi-product)로 실시예 21을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 8.63 (q, J = 7.5, 3.9 Hz, 1 H), 8.49 (d, J = 7.4 Hz,1 H), 7.59 (d, J = 7.2 Hz, 1 H), 7.42-7.36 (m, 1 H), 6.85-6.74 (m, 2 H), 6.33 (d, J = 8.2 Hz, 2 H), 4.25-4.18 (m, 1 H), 3.59- 3.67(m, 1 H), 3.48-3.36 (m, 1 H), 2.28-2.36 (m, 1H), 0.88 (d, J = 1.68 Hz, 3 H); 13C NMR (150 Hz, CDCl3):183.92, 176.66, 152.06, 151.14, 150.51, 141.94, 140.57, 131.59, 130.10, 124.198, 123.86, 69.91, 65.10, 41.12, 13.86 ppm.
<실시예 22> 3-메틸-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000104
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 27 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.52 - 7.37 (m, 4H), 7.11 -7.04 (m, 2H), 6.64 (dd, J = 11.9, 2.9 Hz, 1H), 6.12 - 6.06 (m, 1H), 4.25 - 4.18 (m, 1H), 4.13 (dd, J = 14.8, 7.8 Hz, 1H), 3.07-2.96 (m, 1H), 1.38 (d, J = 7.3 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 175.63, 168.68, 155.16, 145.24, 142.82, 129.91, 129.26, 129.02, 128.95, 128.28 (2 C), 118.94, 82.95, 64.95, 43.35, 13.94 ppm.
<실시예 23> 3-알릴-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000105
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 28 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.38 - 7.27 (m, 4H), 7.04 - 7.01 (m, 2H), 6.98 (dd, J = 10.1, 3.4 Hz, 1H), 6.94 (dd, J = 10.2, 3.1 Hz, 1H), 5.94 - 5.78 (m, 1H), 5.22-5.11 (m, 2H), 3.78-3.76 (m, 1H), 3.54 (dd, J = 10.2, 5.5 Hz, 1H), 3.04 - 2.89 (m, 1H), 2.37-2.27 (m, 1H), 2.18-2.15 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 176.93, 168.69, 155.36, 144.59, 135.86, 135.34, 131.12, 130.59, 129.92, 129.89, 129.36, 128.04 (2 C), 116.57, 116.56, 64.53, 46.49, 35.14 ppm.
<실시예 24> 3-벤질-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000106
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 13 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.44 - 7.36 (m, 6H), 7.10 - 7.06 (m, 3H), 6.67 (d, J = 9.4 Hz, 1H), 6.53 (d, J = 12.0 Hz, 1H), 6.14 - 6.03 (m, 2H), 4.16 (dd, J = 12.0, 5.4 Hz, 1H), 4.08 (dd, J = 12.1, 5.8 Hz, 1H), 3.36-3.32 (m, 1H), 3.18 - 3.07 (m, 2H); 13C NMR (151 MHz, CDCl3) δ 176.78, 168.72, 155.38, 143.74, 143.62, 138.08, 136.32, 127.89, 129.70, 129.48, 129.16, 129.04, 128.94, 128.80, 128.64, 126.84, 120.16, 118.72, 82.38, 63.08, 43.42, 34.96 ppm.
<실시예 25> 3,8-디메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000107
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 12 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.33-7.26 (m, 3H), 7.05-7.00 (m, 2.5H), 6.91-6.86 (m, 1/2 H), 6.82-6.79(s, 1/2H), 6.71-6.66(s, 1/2H), 6.10-6.01 (m, 1 H), 4.32-4.25 (m, 1 H), 4.06-3.99 (m, 1 H), 2.93-2.84 (m, 1 H), 1.82-1.74 (dd, J = 0.8, 4 Hz, 3 H), 1.40-1.33 (m, 3 H); 13C NMR (150 Hz, CDCl3): δ 184.99, 172.47, 144.29, 143.29, 140.25, 139.22, 137.03, 137.00, 130.23, 129.98, 129.19, 129.07, 84.40, 66.20, 37.43, 15.57, 13.85 ppm.
<실시예 26> 3-알릴-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000108
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 11 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) : δ 7.34 - 7.28 (m, 3H), 7.05 - 7.01 (m, 2H), 6.99 (dd, J = 10.1, 3.2 Hz, 1H), 6.71 (dd, J = 3.1, 1.5 Hz, 1H), 6.07 (t, J = 6.7 Hz, 1H), 5.87-5.82 (m, 1H), 5.23 - 5.15 (m, 2H), 4.28 (dd, J = 12.1, 5.5 Hz, 1H), 4.15 - 4.09 (m, 1H), 2.85 (dtt, J = 12.5, 11.1, 5.6 Hz, 1H), 2.75 - 2.69 (m, 1H), 2.52 (dt, J = 14.2, 8.6 Hz, 1H), 1.77 (d, J = 1.5 Hz, 3H); 13C NMR (150 Hz, CDCl3): δ 184.88, 170.09, 143.39, 139.75, 137.00, 136.87, 134.88, 130.08 (2 C), 129.98, 129.14(2 C), 129.03, 118.40, 84.115, 63.56, 41.52, 33.38, 15.53 ppm.
<실시예 27> 3-(2-메틸-알릴)-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000109
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 29 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) : δ 7.34 - 7.28 (m, 3H), 7.05 - 7.01 (m, 2H), 6.99 (dd, J = 10.1, 3.2 Hz, 1H), 6.71 (dd, J = 3.1, 1.5 Hz, 1H), 6.07 (t, J = 6.7 Hz, 1H), 5.87-5.82 (m, 1H), 5.23 - 5.15 (m, 2H), 4.28 (dd, J = 12.1, 5.5 Hz, 1H), 4.15 - 4.09 (m, 1H), 2.85 (dtt, J = 12.5, 11.1, 5.6 Hz, 1H), 2.75 - 2.69 (m, 1H), 2.52 (dt, J = 14.2, 8.6 Hz, 1H), 1.77 (d, J = 1.5 Hz, 3H); 13C NMR (150 Hz, CDCl3): δ 184.88, 170.09, 143.39, 139.75, 137.00, 136.87, 134.88, 130.08 (2 C), 129.98, 129.14(2 C), 129.03, 118.40, 84.115, 63.56, 41.52, 33.38, 15.53 ppm.
<실시예 28> 3-벤질-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000110
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 10 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 Hz, CDCl3): δ 7.39-7.26 (m, 9 H), 7.04-6.96 (s, 1 H), 6.69-6.62 (d, J = 3 Hz, 2 H), 6.3-5.97 (d, J = 2.5 Hz, 1H), 4.20-4.10 (m 1H), 4.08-4.02 (m 1H), 3.31-3.25 (d, J = 2.8 Hz 1 H), 3.13-3.00 (m, 2 H), 1.61-1.53 (s, 3H); 13C NMR (150 Hz, CDCl3): δ 184.86, 170.05, 143.38, 139.53, 138.35, 136.97, 136.87, 130.08 (2 C), 129.98, 129.64 (2 C), 129.15 (2 C), 129.07, 128.90 (2 C), 127.07, 84.09, 63.21, 43.56, 35.13, 15.50 ppm.
<실시예 29> 3,5-디메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000111
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 30 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 6.88 - 6.84 (m, 1H), 6.76 - 6.74 (m, 1H), 6.37 - 6.35 (m, 2H), 4.16 (dd, J = 11.8, 5.3 Hz, 1H), 3.87 (dd, J = 11.7, 7.6 Hz, 1H), 2.79 (s, 3H), 2.77 - 2.71 (m, 1H), 1.30 (d, J = 7.2 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 183.98, 170.84, 144.54, 143.50, 130.58, 130.50, 82.31, 65.72, 36.89, 28.43, 13.46 ppm.
<실시예 30> 3-알릴-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000112
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 31 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다
1H NMR (600 MHz, CDCl3) δ 6.83 - 6.77 (m, 2H), 6.36 (d, J = 10.0, 1.8 Hz, 2H), 5.85 - 5.78 (m, 1H), 5.18 - 5.13 (m, 2H), 4.14 (dd, J = 12.0, 5.0 Hz, 1H), 3.97 (dd, J = 12.0, 6.5 Hz, 1H), 2.79 (s, 3H), 2.72 - 2.65 (m, 2H), 2.45 - 2.38 (m, 1H) ; 13C NMR (150 MHz, CDCl3) δ 183.95, 169.58, 144.06, 143.79, 134.71, 130.63, 130.59, 118.05, 82.12, 63.08, 41.25, 33.04, 28.47.
<실시예 31> 3-(3-부테닐)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000113
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 32 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 6.81 - 6.75 (m, 2H), 6.37 - 6.32 (m, 2H), 5.85 - 5.78 (m, 1H), 5.11 - 5.01 (m, 2H), 4.16 (dd, J = 11.9, 4.9 Hz, 1H), 3.94 (dd, J = 11.9, 6.4 Hz, 1H), 2.77 (s, 3H), 2.62 - 2.58 (m, 1H), 2.27 - 2.13 (m, 2H), 2.08 - 2.02 (m, 1H), 1.71 - 1.65 (m, 1H) ; 13C NMR (150 MHz, CDCl3) δ 183.96, 170.22, 144.08, 143.88, 137.38, 130.58 (2 C), 115.69, 82.06, 63.57, 41.19, 31.14, 28.45, 27.86 ppm.
<실시예 32> 3-(2-메틸-알릴)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000114
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 33 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 6.81 - 6.77 (m, 2H), 6.37 - 6.33 (m, 2H), 4.86 (s, 1H), 4.77 (s, 1H), 4.09 (dd, J = 11.9, 4.8 Hz, 1H), 3.92 - 3.88 (m, 1H), 2.78 (s, 3H), 2.75 - 2.69 (m, 2H), 2.32 - 2.26 (m, 1H), 1.77 (s, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.96, 170.05, 143.96, 143.92, 141.86, 130.61 (2 C), 113.45, 82.11, 62.95, 39.63, 36.99, 21.84 ppm.
<실시예 33> 3-벤질-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000115
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 4 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.36 - 7.32 (m, 2H), 7.27 - 7.24 (m, 3H), 6.80 - 6.77 (m, 1H), 6.63 - 6.60 (m, 1H), 6.36 - 6.32 (m, 2H), 4.01 (dd, J = 12.0, 4.6 Hz, 1H), 3.88 (dd, J = 12.0, 5.7 Hz, 1H), 3.33 (dd, J = 13.3, 3.5 Hz, 1H), 2.91 (dd, J = 13.3, 10.4 Hz, 1H), 2.89 - 2.83 (m, 1H), 2.81 (s, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.94, 169.63, 143.94, 143.74, 138.23, 130.63, 130.61, 129.16 (2 C), 128.70 (2 C), 126.77, 82.12, 62.69, 43.52, 34.95, 28.54 ppm.
<실시예 34> 3-(4-플루오로-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000116
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 34 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다
1H NMR (600 MHz, CDCl3) δ 7.22 - 7.19 (m, 2H), 7.04 - 7.00 (m, 2H), 6.80 - 6.76 (m, 1H), 6.64 - 6.61 (m, 1H), 6.35 - 6.32 (m, 2H), 4.01 (dd, J = 12.0, 4.7 Hz, 1H), 3.85 (dd, J = 12.0, 5.9 Hz, 1H), 3.27 (dd, J = 13.8, 3.9 Hz, 1H), 2.89 (dd, J = 13.8, 10.1 Hz, 1H), 2.83 - 2.80 (m, 1H), 2.79 (s, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.87, 169.39, 160.93, 143.79, 143.64, 133.88, 133.86, 130.69, 130.65, 130.64, 115.59, 115.45, 82.14, 62.56, 43.54, 34.07, 28.53 ppm.
<실시예 35> 3-(4-브로모-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000117
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 35 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다
1H NMR (600 MHz, CDCl3) δ 7.45 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 6.77 (dd, J = 10.3, 3.1 Hz, 1H), 6.63 (dd, J = 10.3, 3.1 Hz, 1H), 6.34 (d, J = 10.4 Hz, 2H), 4.00 (dd, J = 12.0, 4.6 Hz, 1H), 3.84 (dd, J = 12.0, 5.8 Hz, 1H), 3.25 (dd, J = 13.5, 3.7 Hz, 1H), 2.87 (dd, J = 13.5, 10.2 Hz, 1H), 2.83 - 2.81 (m, 1H), 2.79 (s, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.84, 169.26, 143.72, 143.62, 137.23, 131.78 (2C), 130.89 (2C), 130.72, 130.68, 120.67, 82.16, 62.54, 43.34, 34.27, 28.55 ppm.
<실시예 36> 3-(4-시아노-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000118
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 36 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 6.79 - 6.76 (m, 1H), 6.66 - 6.61 (m, 1H), 6.37 - 6.34 (m, 2H), 4.03 (dd, J = 12.1, 4.7 Hz, 1H), 3.83 (dd, J = 12.1, 6.1 Hz, 1H), 3.36 (dd, J = 13.8, 4.3 Hz, 1H), 2.97 (dd, J = 13.8, 9.9 Hz, 1H), 2.89 - 2.85 (m, 1H), 2.80 (s, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.74, 168.89, 144.02, 143.42 (2 C), 132.49 (2 C), 130.84, 130.81, 129.97 (2 C), 118.67, 110.83, 82.23, 62.55, 43.16, 34.93 ppm.
<실시예 37> 3-(2-(페닐설포닐메틸)-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000119
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 37 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.80 - 7.78 (m, 2H), 7.65 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.31 (t, J = 7.5, 1.4 Hz, 1H), 7.23 (d, J = 7.5 Hz, 1H), 7.21 - 7.15 (m, 2H), 6.79 (dd, J = 10.0, 3.2 Hz, 1H), 6.73 (dd, J = 10.0, 3.2 Hz, 1H), 6.37 - 6.33 (m, 2H), 4.53 (s, 2H), 4.01 (dd, J = 12.1, 4.2 Hz, 1H), 3.82 (dd, J = 12.1, 4.9 Hz, 1H), 3.25 (dd, J = 14.3, 3.6 Hz, 1H), 2.84 (dd, J = 14.2, 10.7 Hz, 1H), 2.79 (s, 3H), 2.78 - 2.77 (m, 1H) ; 13C NMR (150 MHz, CDCl3) δ 183.88, 169.47, 144.12, 143.26, 138.99, 138.64, 133.89, 132.82, 130.81, 130.70, 130.46, 129.30, 129.13 (2 C), 128.53 (2 C), 127.12, 126.79, 82.21, 62.39, 59.27, 43.38, 31.54 ppm.
<실시예 38> 3-(2-프로피닐)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000120
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 38 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H-NMR (600 MHz, CDCl3) δ 7.30 -7.33 (m, 3 H), 7.02 -7.05 (m, 2 H), 7.00 (dd, J = 2.1, 10.2 Hz 1 H), 6.96 (dd, J = 2.6, 10.8 Hz 1 H), 6.09 (dd, J = 3.2, 10.1 Hz 1 H), 6.06 (dd, J = 2.7, 10.6 Hz 1 H), 5.82 -5.89 (m, 1 H), 5.16 -5.21 (m, 2 H), 4.27 -4.30 (m, 1 H), 4.12 -4.15 (m, 1 H), 2.87 -2.83 (m, 1 H), 2.70 -2.74 (m, 1 H), 2.50 -2.55 (m, 1 H) ppm.
<실시예 39> 3-((1-(4-메톡시페닐)-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000121
상기 실시예 38을 시작 물질로 하여 하기 반응식 B에 따라 목적 화합물을 수득하였다.
[반응식 B]
Figure PCTKR2017009909-appb-I000122
단계 1 3-((1-(4-메톡시페닐)-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
실시예 38 화합물(1 mmol)을 5°C의 테트라하이드로퓨란과 증류수가 1:1 비율이 되는 용매에 녹인 뒤, 1-아지도-4-메톡시벤젠(1.5 mmol)과 코퍼 설페이트 펜타하이드레이트 (CuSO4. 5 H2O) (2 mmol) 을 가해준다. 이후 소듐 아스코르베이트(1 mmol)를 가해주고 교반하면서 서서히 실온으로 올려준다. 시작물질의 소모를 TLC로 확인한 후, 에틸아세테이트로 추출한 뒤, 유기층은 브라인 용액으로 씻어내고, 소듐설페이트로 건조하였다. 압력을 낮추어 용매를 제거한 뒤 실리카겔 상의 컬럼크로마토그래피(flash column chromatography)를 이용하여 정제하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.80 (s, 1H), 7.64 (d, J = 9.0 Hz, 2H), 7.32 - 7.28 (m, 3H), 7.19 (dd, J = 10.3, 3.2 Hz, 1H), 7.04 (d, J = 9.0 Hz, 2H), 6.98 (dd, J = 7.7, 1.5 Hz, 2H), 6.84 (dd, J = 10.2, 3.2 Hz, 1H), 6.12 (dd, J = 10.3, 2.0 Hz, 1H), 6.03 (dd, J = 10.2, 2.0 Hz, 1H), 4.67 (dd, J = 12.2, 9.7 Hz, 1H), 4.40 (dd, J = 12.2, 6.6 Hz, 1H), 3.90 (s, 3H), 3.44 (dd, J = 15.0, 6.9 Hz, 1H), 3.40 - 3.31 (m, 1H), 3.18 (dd, J = 15.0, 3.7 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 184.02, 169.59, 159.83, 144.78, 142.96, 136.47, 130.44, 129.83, 129.80 (3 C), 129.07 (2 C), 128.97 (2 C), 122.02 (2 C), 121.11, 114.80 (2 C), 83.43, 63.74, 55.65, 41.54, 31.94 ppm.
<실시예 40> 3-((1-벤질-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000123
상기 반응식 B의 단계 1에서 1-아지도-4-메톡시벤젠을 대신하여 1-아지도-4-벤질벤젠을 사용한 것을 제외하고, 상기 실시예 39와 동일한 방법으로 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.44 - 7.36 (m, 4H), 7.35 - 7.30 (m, 3H), 7.25 (t, J = 7.4 Hz, 2H), 6.92 (dd, J = 10.3, 3.2 Hz, 1H), 6.83 (d, J = 7.3 Hz, 2H), 6.78 (dd, J = 10.2, 3.2 Hz, 1H), 6.06 (dd, J = 10.3, 2.0 Hz, 1H), 5.99 (dd, J = 10.2, 2.0 Hz, 1H), 5.59 (d, J = 14.8 Hz, 1H), 5.46 (d, J = 14.8 Hz, 1H), 4.49 (dd, J = 12.1, 9.8 Hz, 1H), 4.33 (dd, J = 12.2, 6.7 Hz, 1H), 3.38 (dd, J = 15.0, 6.5 Hz, 1H), 3.30 - 3.21 (m, 1H), 3.06 (dd, J = 15.0, 3.7 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 183.99, 177.33, 169.45, 144.71, 142.85, 136.39, 134.79, 130.50, 129.73, 129.67 (3 C), 129.18 (2 C), 129.04 (2 C), 128.90, 128.86, 128.06 (2 C), 83.27, 63.60, 54.20, 41.29, 23.61 ppm.
<실시예 41> 3-메틸-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000124
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 39 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 6.92 - 6.89 (m, 1H), 6.82 - 6.79 (m, 1H), 6.36 - 6.34 (m, 2H), 4.09 (dd, J = 11.7, 5.3 Hz, 1H), 3.80 (dd, J = 11.7, 7.6 Hz, 1H), 3.09 - 3.05 (m, 1H), 2.69 - 2.063 (m, 1H), 1.41 (d, J = 6.8 Hz, 3H), 1.39 (d, 3H), 1.26 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 184.21, 170.45, 144.99, 144.01, 130.32, 130.22, 82.89, 65.41, 49.63, 37.77, 20.53, 20.45, 13.36 ppm.
<실시예 42> 3-알릴-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000125
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 40 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 6.88 - 6.80 (m, 2H), 6.36 - 6.34 (m, 2H), 5.84 - 5.76 (m, 1H), 5.16 - 5.11 (m, 2H), 4.06 (dd, J = 11.9, 5.1 Hz, 1H), 3.90 (dd, J = 11.9, 6.7 Hz, 1H), 3.09 - 3.05k (m, 1H), 2.65 - 2.59 (m, 2H), 2.46 - 2.41 (m, 1H), 1.42 (d, J = 6.8 Hz, 3H), 1.38 (d, J = 6.8 Hz, 3H) ; 13C NMR (150 MHz, CDCl3) δ 184.18, 169.11, 144.63, 144.21, 134.78, 130.34 (2 C), 117.92, 82.68, 62.80, 49.75, 42.01, 33.00, 20.48, 20.46 ppm.
<실시예 43> 3-(4-플루오로-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000126
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 41 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.21 (dd, J = 8.4, 5.4 Hz, 2H), 7.02 (t, J = 8.6 Hz, 2H), 6.82 (dd, J = 10.0, 3.1 Hz, 1H), 6.59 (dd, J = 10.0, 3.1 Hz, 1H), 6.35 - 6.30 (m, 2H), 3.97 (dd, J = 12.0, 4.9 Hz, 1H), 3.80 (dd, J = 12.0, 6.2 Hz, 1H), 3.19 (dd, J = 13.9, 4.1 Hz, 1H), 3.08 - 3.04 (m, 1H), 2.97 (dd, J = 13.9, 9.4 Hz, 1H), 2.78 - 2.75 (m, 1H), 1.43 (d, J = 6.8 Hz, 3H), 1.39 (d, J = 6.8 Hz, 3H) ; 13C NMR (150 MHz, CDCl3) δ 184.08, 168.87, 162.54, 144.14 (2 C), 133.97, 130.79, 130.74, 130.45, 130.40, 115.49, 115.35, 82.68, 62.37, 49.80, 44.23, 34.05, 20.46 (2 C) ppm.
<실시예 44> 3-(4-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000127
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 42 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.59 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 6.82 (dd, J = 10.0, 3.1 Hz, 1H), 6.59 (dd, J = 10.0, 3.1 Hz, 1H), 6.35 - 6.31(m, 2H), 3.97 (dd, J = 12.0, 4.8 Hz, 1H), 3.79 (dd, J = 12.0, 6.1 Hz, 1H), 3.32 - 3.28 (m, 1H), 3.08 -3.01 (m, 2H), 2.83 - 2.79 (m, 1H), 1.43 (d, J = 6.8 Hz, 3H), 1.40 (d, J = 6.8 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 184.00, 168.58, 143.98 (2 C), 142.62, 130.51, 130.47, 129.62 (2 C), 129.23, 129.02, 125.55, 125.52, 82.72, 62.32, 49.85, 44.06, 34.67, 20.45, 20.42 ppm.
<실시예 45> 3-(4-시아노-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000128
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 43 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.62 (d, J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 6.83 - 6.80 (m, 1H), 6.60 - 6.57 (m, 1H), 6.35 - 6.31 (m, 2H), 3.98 (dd, J = 12.0, 4.9 Hz, 1H), 3.76 (dd, J = 12.0, 6.2 Hz, 1H), 3.27 (dd, J = 13.8, 4.4 Hz, 1H), 3.09 - 3.00 (m, 2H), 2.83 - 2.79 (m, 1H), 1.42 (d, J = 6.8 Hz, 3H), 1.38 (d, J = 6.8 Hz, 3H) ; 13C NMR (150MHz, CDCl3) δ 183.94, 168.30, 144.17, 143.88, 143.79, 132.38 (2 C), 130.60, 130.53, 130.10 (2 C), 118.72, 110.74, 82.74, 62.32, 49.88, 43.89, 34.97, 20.45, 20.39 ppm.
<실시예 46> 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000129
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 44 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.50 (d, J = 7.9 Hz, 1H), 7.38 (dd, J = 13.5, 8.0 Hz, 1H), 7.27 (d, J = 8.9 Hz, 1H), 6.92 (dd, J = 10.1, 3.1 Hz, 1H), 6.85 (dd, J = 10.1, 3.1 Hz, 1H), 6.39 - 6.34 (m, 2H), 3.98 (dd, J = 11.8, 4.2 Hz, 1H), 3.90 (dd, J = 11.8, 5.4 Hz, 1H), 3.64 (dd, J = 13.5, 6.0 Hz, 1H), 3.10 - 3.06 (m, 1H), 2.99 - 2.92 (m, 2H), 1.39 (dd, J = 6.8, 2.9 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 184.20, 168.02, 161.17, 144.51, 144.13, 130.43 (2 C), 128.51, 128.45, 125.11, 122.13, 119.09, 118.94, 82.77, 63.34, 49.78, 43.01, 25.24, 20.36, 20.21 ppm.
<실시예 47> 3-((1-페닐-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000130
상기 반응식 B의 단계 1에서 1-아지도-4-메톡시벤젠을 대신하여 4-아지도-1,1’바이페닐을 사용한 것을 제외하고, 상기 실시예 39와 동일한 방법으로 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 7.89 (s, 1H), 7.74 (dd, J = 8.6, 1.1 Hz, 2H), 7.55 (t, J = 7.9 Hz, 2H), 7.49 - 7.45 (m, 1H), 7.33 - 7.26 (m, 3H), 7.18 (dd, J = 10.3, 3.2 Hz, 1H), 7.00 - 6.97 (m, 2H), 6.84 (dd, J = 10.2, 3.2 Hz, 1H), 6.12 (dd, J = 10.3, 2.0 Hz, 1H), 6.03 (dd, J = 10.2, 2.0 Hz, 1H), 4.65 (dd, J = 12.2, 9.6 Hz, 1H), 4.40 (dd, J = 12.2, 6.6 Hz, 1H), 3.45 (dd, J = 15.0, 6.9 Hz, 1H), 3.41 - 3.31 (m, 1H), 3.19 (dd, J = 15.0, 3.8 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 184.02, 169.61, 144.74, 142.93, 136.97, 136.43, 129.84, 129.81 (4 C), 129.08 (3 C), 128.99, 128.80 (2 C), 121.00, 120.40 (2 C), 83.44, 63.71, 41.55, 23.65 ppm.
<실시예 48> 3-(3-브로모벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000131
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 45 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다
1H NMR (600 MHz, CDCl3) δ 7.42 - 7.38 (m, 2H), 7.21 - 7.15 (m, 2H), 6.81 (dd, J = 10.1, 3.2 Hz, 1H), 6.57 (dd, J = 10.1, 3.1 Hz, 1H), 6.34 - 6.30 (m, 2H), 3.97 (dd, J = 12.0, 5.0 Hz, 1H), 3.80 (dd, J = 12.0, 6.2 Hz, 1H), 3.18 (dd, J = 13.8, 4.2 Hz, 1H), 3.07 - 2.95 (m, 1H), 2.97 (dd, J = 13.8, 9.3 Hz, 1H), 2.80 - 2.76(m, 1H), 1.41 (dd, J = 15.3, 6.8 Hz, 6H) ; 13C NMR (150 MHz, CDCl3) δ 184.06, 168.62, 144.11, 144.07, 140.73, 132.26, 130.46, 130.42, 130.15, 129.87, 127.96, 122.65, 82.69, 62.39, 49.87, 43.96, 34.48, 20.50, 20.45 ppm.
<실시예 49> 5-이소프로필-3-(4-니트로벤질)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온의 제조
Figure PCTKR2017009909-appb-I000132
상기 실시예 19에서 사용한 출발 물질인 제조예 1 화합물을 대신하여 제조예 46 화합물을 사용한 것을 제외하고, 상기 실시예 19와 동일한 방법으로 고리화 반응을 수행하여 목적 화합물을 수득하였다.
1H NMR (600 MHz, CDCl3) δ 8.21 - 8.17 (m, 2H), 7.42 (d, J = 8.7 Hz, 2H), 6.83 - 6.80 (m, 1H), 6.64 - 6.60 (m, 1H), 6.36 - 6.31 (m, 2H), 3.99 (dd, J = 12.0, 4.9 Hz, 1H), 3.78 (dd, J = 12.0, 6.3 Hz, 1H), 3.32 (dd, J = 13.9, 4.5 Hz, 1H), 3.11 - 3.05 (m, 2H), 2.86 - 2.82 (m, 1H), 1.42 (d, J = 6.8 Hz, 3H), 1.39 (d, J = 6.8 Hz, 3H) ; 13C NMR (150 MHz, CDCl3) δ 183.92, 168.21, 146.92, 146.33, 143.88, 143.72, 130.63, 130.56, 130.14 (2 C), 123.83 (2 C), 82.78, 62.31, 49.91, 43.91, 34.65, 20.47, 20.39 ppm.
상기 실시예 1-49에서 제조한 화합물의 화학구조를 하기 표 2에 나타냈다.
실시예 화학구조 실시예 화학구조
1
Figure PCTKR2017009909-appb-I000133
26
Figure PCTKR2017009909-appb-I000134
2
Figure PCTKR2017009909-appb-I000135
27
Figure PCTKR2017009909-appb-I000136
3
Figure PCTKR2017009909-appb-I000137
28
Figure PCTKR2017009909-appb-I000138
4
Figure PCTKR2017009909-appb-I000139
29
Figure PCTKR2017009909-appb-I000140
5
Figure PCTKR2017009909-appb-I000141
30
Figure PCTKR2017009909-appb-I000142
6
Figure PCTKR2017009909-appb-I000143
31
Figure PCTKR2017009909-appb-I000144
7
Figure PCTKR2017009909-appb-I000145
32
Figure PCTKR2017009909-appb-I000146
8
Figure PCTKR2017009909-appb-I000147
33
Figure PCTKR2017009909-appb-I000148
9
Figure PCTKR2017009909-appb-I000149
34
Figure PCTKR2017009909-appb-I000150
10
Figure PCTKR2017009909-appb-I000151
35
Figure PCTKR2017009909-appb-I000152
11
Figure PCTKR2017009909-appb-I000153
36
Figure PCTKR2017009909-appb-I000154
12
Figure PCTKR2017009909-appb-I000155
37
Figure PCTKR2017009909-appb-I000156
13
Figure PCTKR2017009909-appb-I000157
38
Figure PCTKR2017009909-appb-I000158
14
Figure PCTKR2017009909-appb-I000159
39
Figure PCTKR2017009909-appb-I000160
15
Figure PCTKR2017009909-appb-I000161
40
Figure PCTKR2017009909-appb-I000162
16
Figure PCTKR2017009909-appb-I000163
41
Figure PCTKR2017009909-appb-I000164
17
Figure PCTKR2017009909-appb-I000165
42
Figure PCTKR2017009909-appb-I000166
18
Figure PCTKR2017009909-appb-I000167
43
Figure PCTKR2017009909-appb-I000168
19
Figure PCTKR2017009909-appb-I000169
44
Figure PCTKR2017009909-appb-I000170
20
Figure PCTKR2017009909-appb-I000171
45
Figure PCTKR2017009909-appb-I000172
21
Figure PCTKR2017009909-appb-I000173
46
Figure PCTKR2017009909-appb-I000174
22
Figure PCTKR2017009909-appb-I000175
47
Figure PCTKR2017009909-appb-I000176
23
Figure PCTKR2017009909-appb-I000177
48
Figure PCTKR2017009909-appb-I000178
24
Figure PCTKR2017009909-appb-I000179
49
Figure PCTKR2017009909-appb-I000180
25
Figure PCTKR2017009909-appb-I000181
<실험예 1> 신경세포주 보호 활성 평가
본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)의 신경세포주에 대한 보호 활성을 평가하기 위해, 다음과 같이 실험하였다.
구체적으로, 마우스 뇌교세포(microglia) BV2 세포를 습도 95%, 5% CO2인큐베이터내에서, 10% 열-불활성화된 (heat-inactivated) 태아 소 혈청 (Fetal Bovine Serum; Hyclone, 미국)이 보충된 Dulbecco's modified Eagle's medium (DMEM; Hyclone)에, 37℃에서 배양하였다. 세포 손상 반응을 유도하기 위한 독성 물질로 'LPS (lipid polysaccahride)'를 사용하였고, 해당 손상 모델에 대해 세포 보호 활성 여부를 확인하기 위해 '6-shogaol'이 양성 대조군으로 사용되었다. 세포가 면적의 70% 내지 80%에 도달(confluence)한 후, 혈청이 없는 조건 하에서 본 발명 실시예 화합물을 0.01 μM, 0.1 μM 및 1 μM 농도로, 또는 1 μM, 5 μM 및 10 μM 농도로, 처리한 뒤 30분 후에 독성 물질(100 mg/mL의 LPS)을 처리하였다. 모든 처리 화학물질은 디메틸설폭사이드(DMSO)에 용해하였으며 DMSO의 최종 농도는 0.2%이었다. 24시간 후, BV2 세포에서는 MTT 측정을 하였고, 그 결과를 도 2 및 도 4에 나타내었다(Con: DMSO 처리군(실시예 화합물, LPS 무처리), LPS: LPS 단독 처리군, 실시예 화합물 처리군).
도 2를 살펴보면, 본 발명의 실시예 화합물에 의한, LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서의 세포생존율(%)은 농도 의존적으로 우수하게 증가하는 것으로 확인된다.
도 4를 살펴보면, 본 발명의 실시예 화합물에 의한, LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서의 세포생존율(%)은 농도 의존적으로 우수하게 증가하는 것으로 확인된다.
따라서, 본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)은 LPS로부터 신경세포주를 우수하게 보호할 수 있어, 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물로 유용하게 사용될 수 있음을 알 수 있다.
<실험예 2> 니트라이트(nitrite) 생성 정량 평가
본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)의 신경세포주에 대한 니트라이트(nitrite)의 생성을 정량하여 평가하기 위해, 다음과 같이 실험하였다.
구체적으로, LPS가 처리된 신경세포주로부터 니트라이트(nitrite)의 생성을 정량하여 평가하기 위해 분비된 산화 질소(nitric oxide)의 양으로부터 니트라이트(nitrite)의 양으로 정량하였다. 정량된 니트라이트(nitrite)로 미세아교세포의 활성화가 어느 정도 억제되어 신경세포 보호 효과가 나타났는지를 가늠하였고, 100 mg/mL의 LPS를 BV-2 신경세포주에 처리한 후, 0.01 μM, 0.1 μM 및 1 μM 농도로, 또는 1 μM, 5 μM 및 10 μM 농도로, 실시예 화합물을 BV-2 세포주에 처리하였으며, 그 결과를 도 1 및 도 3에 나타내었다(Con: DMSO 처리군(실시예 화합물, LPS 무처리), LPS: LPS 단독 처리군, 실시예 화합물 처리군).
나아가, 도 1 및 도 3의 농도 구배하여 측정된 산화 질소(nitric oxide) 검출 결과로부터, IC50 값을 산출하였고, 그 결과를 도 5에 나타내었다.
도 1을 살펴보면, 본 발명의 실시예 화합물은 LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서 니트라이트(nitrite)의 생성을 농도 의존적(0.01, 0.1, 1 uM)으로 우수하게 억제하는 것으로 확인된다.
도 3을 살펴보면, 본 발명의 실시예 화합물은 모두 LPS를 처리한 신경세포주(murine microglial BV-2 cells)에서 산화 질소(nitric oxide)의 생성을 농도의존적(1, 5, 10 uM)으로 유의하게 억제하는 것을 반복 확인하였다.
도 5의 실시예 화합물의 산화 질소(nitric oxide)에 대한 IC50 산출 값을 살펴보면, 본 발명 실시예 화합물 모두 마이크로몰 단위의 우수한 억제능을 보이고, 특히 실시예 14 화합물은 약 0.3 μM 이하의 우수한 산화 질소 억제능을 나타내는 바, 우수한 신경세포 보호 효과를 확인할 수 있다.
따라서, 중추신경계에서의 염증반응은 퇴행성 뇌질환에 중요한 역할을 하는 것으로 알려져 있고, 미세아교세포의 활성화는 미세아교세포의 과활성을 매개로 한 염증반응은 신경세포의 사멸을 유도하기 때문에, 미세아교세포의 활성화를 억제하는 것은 퇴행성 뇌질환의 치료의 약물학적 타겟이 될 수 있고, 또한, 파킨슨병이나 알츠하이머와 미세아교세포 활성화 사이의 연관 관계는 LPS 독성 물질 처리시 미세아교세포의 활성화가 일어나고 iNOS(Nitric oxide synthase)가 발현되어 니트로 옥사이드(NO)가 분비되는 점을 고려할 때, 본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물(신규 스피로퀴논 유도체 화합물)은 신경세포주를 우수하게 보호할 수 있어, 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물로 유용하게 사용될 수 있음을 알 수 있다.
<실험예 3> 아세틸콜린에스터라제 저해 활성 평가
본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물의 아세틸콜린에스터라제에 대한 저해 활성을 평가하기 위해, 다음과 같이 실험하였다.
구체적으로, 전기 뱀장어(Electrophorus electricus)의 아세틸콜린분해효소(eeAChE, EC 3.1.1.7)와 염화 아세틸콜린(acetylcholine chloride, ACh) 및 아세틸콜린 정량을 위한 정량 키트(ACh quantification colorimetric assay kit from BioVision)를 본 측정을 위해 구비한 후, 실시예 화합물의 효소 저해능을 측정하기 위해, Ach 키트 제작자의 정해진 규격 방법에 근거하여 다음의 순서로 실험을 수행하였다(Draczkowski, P. et al. Bba-Gen Subjects 1860, 967-974, doi:10.1016/j.bbagen.2015.11.006 (2016) 참조).
먼저, 아세틸콜린 분해효소(eeAChE, EC 3.1.1.7)는 20 μM 트리스-HCL 버퍼에 용해시키고, 아세틸콜린 분해효소의 농도가 5 μM이 되도록 제조하였다. 염화 아세틸콜린은 20 mM 트리스-HCL 버퍼에 용해시켜, 10 μM 염화 아세틸콜린 농도의 트리스-HCL 버퍼 수용액을 제조하였다. 실시예 화합물은 10 μM 과 30 μM의 두가지 농도로 제조하였다. 제조한 염화 아세틸콜린 용액과 실시예 용액은 20 μM 아세틸콜린 분해효소에 혼합시켰다. 혼합 후, 20분과 30분에 아세틸콜린을 콜린으로 분해하는 아세틸콜린분해제(실시예 화합물)의 저해 효능 측정은 정량 키트의 색 변화를 570nm 파장에서 측정하여 평가하였다.
모든 실험 결과는 2회 이상 실험하여 평균과 표준편차를 도출하였고, 그 결과를 표 3 및 도 6에 나타내었다.
또한, 상술된 실험의 10 μM 과 30 μM 처리 각각으로부터 얻어진 데이터를 토대로, IC50 값을 산출하였고, 그 결과를 표 3에 나타내었다.
실시예 실험 후, 아세틸콜린에스터라제의 잔여활성(%) IC50(μM)
10 μM 처리 30 μM 처리
2 29.73 7.03 16.01±0.94
3 30.32 -2.03 13.76±1.17
6 40.19 6.07 13.62±1.05
7 46.73 4.74 14.44±0.33
10 27.26 12.95 15.25±0.64
11 69.43 22.06 17.47±2.84
19 66.08 8.07 13.61±0.72
22 51.63 2.47 18.76±2.96
23 38.07 5.64 20.6±4.47
24 35.63 8.89 16.70±0.7
25 20.92 8.15 15.75±0.72
28 55.43 3.08 12.85±0.74
33 50.53 2.08 14.22±0.72
표 3을 살펴보면, 실시예 화합물 모두 아세틸콜린에스터라제의 활성이 수하게 저해하는 것을 확인할 수 있고, IC50 산출 값에서 또한 확인되듯이, 마이크로몰 단위의 우수한 값이 확인되는 바, 실시예 화합물 모두 우수한게 아세틸콜린에스터라제의 활성을 저해하고 있음이 확인된다.
따라서, 본 발명에 따른 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염은 아세틸콜린에스터라제의 활성을 우수하게 저해할 수 있는 바, 이를 유효성분으로 포함하는, 아세틸콜린에스터라제 관련 질환, 예를 들어, 신경계 질환의 예방 또는 치료용 약학적 조성물로 유용하게 사용할 수 있다.
<실험예 4> 효소 저해 활성 선택성 평가
본 발명에 따른 화학식 1 또는 화학식 1'로 표시되는 화합물의 다양한 효소 저해 활성에 대한 선택성을 평가하기 위해, 다음과 같이 실험하였다.
369개의 키나아제 패널(Reaction Biology Corp)에 대한 본 발명 실시예 화합물의 선택성을 조사하였다. 방사성 표지된 ATP([γ-33P] ATP)를 사용하여, 기질을 33P-인산화 기질로 대체되는 정도를, 방사성 표지된 인산화 기질의 측정으로부터 키나제의 활성 변화를 측정하였다. 10 μM의 ATP 농도 및 10 μM의 기질 농도에 대하여 실시예 화합물을 30 μM로 처리하여 시험하였다. 대조 화합물로, Staurosporine은 20 또는 100 μM에서 시작하는 4배 단계 희석으로 10회 투여 IC50 모드에서 시험하였다. 실시예 화합물은 10, 20 또는 100μM에서 시작하는 3 배 또는 4 배 연속 희석액을 갖는 10 회 투여 IC50 모드에서 시험 하였다. 가장 높은 농도의 화합물에서 효소 활성이 65 % 미만인 대조 화합물의 곡선 맞춤을 수행하였고, DMSO의 농도를 조절하고, 로우 데이터를 토대로, DMSO 대조군에 대한 효소 활성을 계산하였고, 산출된 각각의 369개 효소에 대한 실시예 화합물의 저해 활성 중, 유의적인 결과를 나타내는 효소와 그에 대한 저해 활성(%)을 하기 표 4에 나타내었다.
키나아제 잔여 효소 활성(%)(DMSO 대조군 대비 산출값)
1회차 2회차
JNK 1 36.03 35.58
CDK/cyclin O 43.80 42.33
DAPK 1 45.43 45.32
PKCa 46.47 44.81
CKD 1/cyclin B 46.54 45.38
MST3/STK24 58.19 57.62
TLK 1 58.62 57.28
JNK 2 58.79 57.84
RIPK 5 59.94 58.59
CDK 3/cyclin E 60.20 58.48
PKN 2/PRK 2 64.75 62.16
Haspin 66.80 66.06
STK25/YSK1 66.95 66.88
ARK5/NUAK1 70.84 70.70
PKCb 2 71.17 67.73
JNK 3 73.42 70.58
표 4에 확인되는 바와 같이, 본 발명 화합물은 JNK1, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, TLK1, JNK2, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, 및 JNK3에 대하여 유의미한 효소 저해 활성값을 나타내는 바, JNK1, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, TLK1, JNK2, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, 및 JNK3 관련 질환에 대하여, 예방 또는 치료용 약학적 조성물의 유효성분 화합물로서 유용할 수 있음을 알 수 있다.
<실험예 5> 동물 모델 실험
본 발명 화합물의 신경 보호 효과를 동물 모델에서 확인하기 위하여, 다음과 같은 실험을 수행하였다.
구체적으로, 동물 모델(마우스)을 대상(subject)으로 Y-미로시험(Y-maze test)을 실시하여 본 발명 화합물의 효과를 평가하기로 하고, 마우스의 공간 인식을 평가하기 위해 시행되었다. 길이 20 cm, 폭 5 cm, 높이 10 cm의 Y 형 미로를 준비하고, 미로 바닥과 벽은 어둡고 불투명한 폴리비닐 플라스틱으로 되었으며, 각각 미로의 3 개의 팔을 A, B, C로 명명 하였다(팔은 서로 120 °의 각도로 대칭으로 배치). 마우스를 Y-미로에 미숙한 상태에서 2분 동안 미로를 돌린 후 8 분간 관찰하여 각 팔에 완전히 들어가는 횟수 (코에서 꼬리까지)를 기록했다. 마우스가 3 개의 다른 팔을 연속적으로 입력하면, 입력 된 팔마다 1 포인트가 주어지는 것으로 산정하였다. 항목이 연속적이지 않으면 포인트가 가산되지 않는다. 교대 행동은 미로의 3 가지 다른 팔에 3 연속 입력으로 정의되었다. 공간 인식 능력은 다음 공식에 따라 계산되었다.
자발적 교대 행동 비율(%) = [(N교대수) / (N전체입력수-2)] × 100
(여기서 N교대수는 교대 동작이 관찰된 횟수(1 점)이며 N전체입력수는 팔 입력의 총 횟수이다)
구체적으로, 시퀀스(즉, ABCCAB 등)와 팔 입구의 수는 8 분 동안 각 마우스에 대해 수동으로 기록되었다. 실제의 교대는 3 가지 연속 선택(즉, ABC, CAB 또는 BCA는 포함하지만 BAB는 포함하지 않음)만을 가산하였다.
시험 1 시간 전에, 마우스에게 도네페질(5 mg/kg, p.o.), 10 % 트윈(Tween) 80 용액, 본 발명 실시예 화합물(10 mg/kg, p.o.)을 투여시켰다. 스코폴라민(1 mg/kg, i.p.)을 투여하여 시험 30분 전에 기억 손상을 유도하였다.
상술된 실험으로부터 산출되는 자발적 교대 행동 비율(%)의 결과 값을 도 7에 나타내었다.
도 7을 살펴보면, 기억 손상이 유도된 후, 마우스의 공간인식 기능이 현저히 떨어지고 있음이 확인된다. 반면, 본 발명 실시예 화합물을 처리한 경우에서는, 비교군인 도네페질과 유사한 수준으로 마우스의 기억 손상이 회복되고 있음을 알 수 있다.
따라서, 본 발명에 따른 실시 화합물은 동물 모델 실험에서 확인되는 바와 같이, 신경 보호 기능이 분명하게 확인되는 바, 신경계 질환, 바람직하게 뇌 신경계 질환, 중추 신경계 질환의 예방 또는 치료용 약학적 조성물로 유용하게 사용될 수 있음을 알 수 있다.
본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염은 '미세아교세포 활성화(microglial activation)'를 우수하게 억제할 수 있고, 아세틸콜린에스터라제, JNK1, JNK2, 및 JNK3에 대하여 우수한 저해활성을 확인하였을 뿐 아니라, 이 외에 신경계 질환과 관련 효소군, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, 및 TLK1에서 유의미한 효소 저해 활성을 확인하고, 세포 사멸(cell death) 억제 효과를 나타낼 수 있음을 확인한 바, 본 발명에 따른 신규 스피로퀴논 유도체 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 또는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물로 유용하게 사용될 수 있다.

Claims (21)

  1. 하기 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염:
    [화학식 1]
    Figure PCTKR2017009909-appb-I000182
    [화학식 1']
    Figure PCTKR2017009909-appb-I000183
    (상기 화학식 1 또는 화학식 1'에 있어서,
    R1 및 R2는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10아릴C1-3알킬, 비치환 또는 치환된 C6-10의 아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴C1-3알킬, 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
    여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴알킬, 치환된 아릴, 치환된 헤테로아릴알킬 또는 치환된 헤테로아릴은 각각 독립적으로 치환 또는 비치환된 C6-10아릴설포닐, 치환 또는 비치환된 C6-10아릴설포닐C1-5알킬, 치환 또는 비치환된 C6-10의 아릴, 치환 또는 비치환된 C6-10아릴C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
    다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고; 및
    R3 및 R4는 동일하거나 상이하며, 각각 독립적으로 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시기, 할로젠, 아미노, 나이트로 또는 시아노이되,
    여기서, 상기 치환된 알킬 또는 치환된 알콕시는 각각 독립적으로 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환된다).
  2. 제1항에 있어서,
    R1은 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10의 아릴 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
    여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴, 치환된 헤테로아릴은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되는 것을 특징으로 하는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염.
  3. 제1항에 있어서,
    R2는 수소, 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬, 하나 이상의 이중결합 또는 삼중결합을 포함하는 비치환 또는 치환된 C1-6의 직쇄 또는 측쇄의 불포화알킬, 비치환 또는 치환된 C3-10의 사이클로알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 C3-10의 헤테로사이클로알킬, 비치환 또는 치환된 C6-10아릴C1-3알킬, 비치환 또는 치환된 C6-10의 아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴C1-3알킬, 또는 N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 비치환 또는 치환된 5 내지 10각환의 헤테로아릴이되,
    여기서, 상기 치환된 알킬, 치환된 알케닐, 치환된 사이클로알킬, 치환된 헤테로사이클로알킬, 치환된 아릴알킬, 치환된 아릴, 치환된 헤테로아릴알킬 또는 치환된 헤테로아릴은 각각 독립적으로 치환 또는 비치환된 페닐설포닐, 치환 또는 비치환된 페닐설포닐C1-5알킬, 치환 또는 비치환된 페닐, 치환 또는 비치환된 페닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되고,
    다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환되는 것을 특징으로 하는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염.
  4. 제1항에 있어서,
    R1
    Figure PCTKR2017009909-appb-I000184
    ,
    Figure PCTKR2017009909-appb-I000185
    ,
    Figure PCTKR2017009909-appb-I000186
    ,
    Figure PCTKR2017009909-appb-I000187
    또는
    Figure PCTKR2017009909-appb-I000188
    이고; 및
    R2
    Figure PCTKR2017009909-appb-I000189
    ,
    Figure PCTKR2017009909-appb-I000190
    ,
    Figure PCTKR2017009909-appb-I000191
    ,
    Figure PCTKR2017009909-appb-I000192
    ,
    Figure PCTKR2017009909-appb-I000193
    ,
    Figure PCTKR2017009909-appb-I000194
    ,
    Figure PCTKR2017009909-appb-I000195
    ,
    Figure PCTKR2017009909-appb-I000196
    ,
    Figure PCTKR2017009909-appb-I000197
    ,
    Figure PCTKR2017009909-appb-I000198
    ,
    Figure PCTKR2017009909-appb-I000199
    ,
    Figure PCTKR2017009909-appb-I000200
    ,
    Figure PCTKR2017009909-appb-I000201
    ,
    Figure PCTKR2017009909-appb-I000202
    ,
    Figure PCTKR2017009909-appb-I000203
    ,
    Figure PCTKR2017009909-appb-I000204
    또는
    Figure PCTKR2017009909-appb-I000205
    인 것을 특징으로 하는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화합물 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염:
    (1) 5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (2) 3-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (3) 3-알릴-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (4) 3-(2-메틸-알릴)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (5) 3-(3-부테닐)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (6) 3-벤질-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (7) 3-(4-플루오로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (8) 3-(4-클로로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (9) 3-(3-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (10) 3-(4-브로모-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (11) 3-(4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (12) 3-(4-니트로-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (13) 3-(2-(페닐설포닐메틸)-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (14) 3-(3,5-디트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (15) 3-(3,5-디메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (16) 3-(2-니트로-4-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (17) 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (18) 3-(2-클로로-5-트리플루오로메틸-벤질)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (19) 3-벤질-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (20) 3-메틸-5-(피리딘-3-일)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (21) 3-메틸-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (22) 3-알릴-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (23) 3-벤질-8-플루오로-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (24) 3,8-디메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (25) 3-알릴-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (26) 3-(2-메틸-알릴)-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (27) 3-벤질-8-메틸-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (28) 3,5-디메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (29) 3-알릴-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (30) 3-(3-부테닐)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (31) 3-(2-메틸-알릴)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (32) 3-벤질-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (33) 3-(4-플루오로-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (34) 3-(4-브로모-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (35) 3-(4-시아노-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (36) 3-(2-(페닐설포닐메틸)-벤질)-5-메틸-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (37) 3-알릴-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (38) 3-((1-(4-메톡시페닐)-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (39) 3-((1-벤질-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (40) 3-메틸-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (41) 3-알릴-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (42) 3-(4-플루오로-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (43) 3-(4-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (44) 3-(4-시아노-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (45) 3-(2-플루오로-6-트리플루오로메틸-벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (46) 3-((1-페닐-1H-1,2,3-트리아졸-4-일)메틸)-5-페닐-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온;
    (47) 3-(3-브로모벤질)-5-이소프로필-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온; 및
    (48) 5-이소프로필-3-(4-니트로벤질)-1-옥사-5-아자스피로[5,5]운데카-7,10-디엔-4,9-디온.
  6. 제1항에 있어서,
    상기 화학식 1'으로 표시되는 화합물은,
    (1) 3-히드록시-2-메틸-N-(4-옥소사이클로헥사-2,5-디에틸)-N-(피리딘-3-일)프로판아미드인 것을 특징으로 하는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염:
  7. 하기 반응식 1에 나타난 바와 같이,
    화학식 2로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계(단계 1)를 포함하는 제1항의 화학식 1로 표시되는 화합물의 제조방법:
    [반응식 1]
    Figure PCTKR2017009909-appb-I000206
    (상기 반응식 1에 있어서,
    R1, R2, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같다.)
  8. 제7항에 있어서,
    상기 단계 1은, 하기 반응식 1'에 나타낸 바와 같이,
    화학식 2'으로 표시되는 화합물로부터 화학식 1''으로 표시되는 화합물을 제조하는 단계(단계 2); 및
    상기 단계 2에서 제조한, 화학식 1''으로 표시되는 화합물로부터 화학식 1로 표시되는 화합물을 제조하는 단계(단계 3);를 포함하는 것을 특징으로 하는 제조방법:
    [반응식 1']
    Figure PCTKR2017009909-appb-I000207
    (상기 반응식 1'에 있어서,
    R1, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같고;
    R2'은 하나 이상의 삼중결합을 포함하는 C1-5의 직쇄 또는 측쇄의 알카이닐이고; 및
    R2
    Figure PCTKR2017009909-appb-I000208
    이되,
    여기서, 상기 Ra는 C1-5의 직쇄 또는 측쇄의 알킬렌이고,
    상기 Rb는 수소, 치환 또는 비치환된 C6-10아릴설포닐, 치환 또는 비치환된 C6-10아릴설포닐C1-5알킬, 치환 또는 비치환된 C6-10의 아릴, 치환 또는 비치환된 C6-10아릴C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴, N, O 및 S로 이루어진 군으로부터 선택되는 1개 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 치환 또는 비치환된 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 또는 시아노이되,
    다시 여기서, 상기 치환된 C6-10아릴설포닐, 치환된 C6-10아릴설포닐C1-5알킬, 치환된 C6-10의 아릴, 치환된 C6-10아릴C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴설포닐, 치환된 5 내지 10각환의 헤테로아릴설포닐C1-5알킬, 치환된 5 내지 10각환의 헤테로아릴, 치환된 5 내지 10각환의 헤테로아릴C1-5알킬, 또는 치환된 C1-6의 직쇄 또는 측쇄의 알킬은 각각 독립적으로 C1-6의 직쇄 또는 측쇄의 알킬, C1-6의 직쇄 또는 측쇄의 알콕시, 히드록시, 할로젠, 아미노, 나이트로 및 시아노로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환된다.)
  9. 하기 화학식 2로 표시되는 화합물, 이의 입체 이성질체, 또는 이의 약학적으로 허용 가능한 염:
    [화학식 2]
    Figure PCTKR2017009909-appb-I000209
    상기 화학식 2에 있어서,
    R1, R2, R3 및 R4는 제1항의 화학식 1에서 정의한 바와 같다.
  10. 제1항의 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물.
  11. 제10항에 있어서,
    상기 약학적 조성물은 미아교세포(microglia)의 과활성화를 억제하는 것으로부터, 상기 신경계 질환을 예방 또는 치료하는 것을 특징으로 하는 약학적 조성물.
  12. 제10항에 있어서,
    상기 약학적 조성물은 아세틸콜린에스터라제의 활성을 억제하는 것으로부터, 상기 신경계 질환을 예방 또는 치료하는 것을 특징으로 하는 약학적 조성물.
  13. 제10항에 있어서,
    상기 약학적 조성물은 JNK1, CDK2/cyclin O, DAPK1, PKCa, CDK1/cyclin B, MST3/STK24, TLK1, JNK2, RIPK5, CDK3/cyclin E, PKN2/PRK2, Haspin, STK25/YSK1, ARK5/NUAK1, PKCb2, 또는 JNK3의 활성을 억제하는 것으로부터, 상기 신경계 질환을 예방 또는 치료하는 것을 특징으로 하는 약학적 조성물.
  14. 제10항에 있어서,
    상기 신경계 질환은 알츠하이머병, 치매, 뇌졸증, 또는 신경계 염증인 것을 특징으로 하는 약학적 조성물.
  15. 제10항에 있어서,
    상기 신경계 질환은 알츠하이머병, 헌팅톤병, 댄디-워커 증후군(Dandy-walker Syndrome), 파킨슨병, 파킨슨-플러스 질환, 근위축 측삭 경화증(ALS), 허혈, 뇌졸중, 두개내 출혈, 뇌출혈, 뇌 장벽 장애, 삼차 신경통, 혀인두 신경통, 안면 신경 마비(Bell's Palsy), 중증 근무력증, 근육 이영양증(dystrophy), 진행성 근위축증, 원발성 측삭 경화증(PLS), 거짓 연수 마비, 진행성 연수 마비, 진행성 핵상마비, 척수 근위축증, 유전성 근위축증, 무척추동물 추간판 증후군, 경추증, 얼기(plexus) 장애, 흉곽 출구 파괴 증후군, 말초 신경병증, 포르피린증, 다계통 위축증, 진행성 핵상 마비, 피질기저 변성, 레비소체(Lewy body) 치매, 전측두엽 치매, 탈수 질환, 길랭-바레(Guillain-Barre) 증후군, 다발성 경화증, 샤르코-마리-투스(Charcot-Marie-Tooth) 병, 프리온 질환, 크로이츠펠트-야콥(Creutzfeldt-Jakob) 병, 게르스트만-슈트로이슬러-샤인커(Gerstmann-Straussler-Scheinker) 증후군(GSS), 치명적 가족성 불면증(FFI), 소 해면 양뇌증, 픽병(Pick's disease), 간질, AIDS 치매 복합증; 중금속, 공업 용제, 약물 및 화학치료제로 이루어진 군으로부터 선택되는 독성 화합물에 대한 노출에 의한 신경 손상; 물리적, 기계적 또는 화학적 외상에 의해 유발된 신경계 손상; 녹내장, 격자 이영양증, 망막 색소변성, 연령-관련 황반 변성(AMD), 습성 또는 건성 AMD와 관련된 광수용체 변성, 다른 망막 변성, 시신경 드루젠(drusen), 시신경병증 및 시신경염으로 이루어진 군으로부터 선택되는 1종 이상의 질환인 것을 특징으로 하는 약학적 조성물.
  16. 제1항의 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 함유하는 신경계 질환의 예방 또는 개선용 건강기능식품 조성물.
  17. 제16항에 있어서,
    상기 신경계 질환은 알츠하이머병, 치매, 뇌졸증, 또는 신경계 염증인 것을 특징으로 하는 건강기능식품 조성물.
  18. 제10항의 약학적 조성물을 치료학적으로 유효한 양으로 이를 필요로 하는 대상(subject)에 투여하는 단계를 포함하는, 신경계 질환의 예방 또는 치료 방법.
  19. 제18항에 있어서,
    상기 신경계 질환은 알츠하이머병, 치매, 뇌졸증, 또는 신경계 염증인 것을 특징으로 하는 방법.
  20. 제1항의 화학식 1 또는 화학식 1'로 표시되는 화합물, 이의 입체 이성질체 또는 이의 약학적으로 허용 가능한 염의, 신경계 질환의 예방 또는 치료의 용도.
  21. 제19항에 있어서,
    상기 신경계 질환은 알츠하이머병, 치매, 뇌졸증, 또는 신경계 염증인 것을 특징으로 하는 용도.
PCT/KR2017/009909 2016-09-08 2017-09-08 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물 WO2018048261A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17849145.2A EP3395804B1 (en) 2016-09-08 2017-09-08 Novel spiroquinone derivative compound, production method thereof, and pharmaceutical composition for preventing or treating neurological disorders which contains same as active ingredient
CN201780013645.0A CN108699013B (zh) 2016-09-08 2017-09-08 螺醌衍生物、其制备方法及含有其作为活性成分的用于预防或治疗神经疾患的药物组合物
US16/044,285 US10836734B2 (en) 2016-09-08 2018-07-24 Spiroquinone derivative compound, production method thereof, and pharamaceutical composition for preventing or treating neurological disorders which contains same as active ingredient

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0115468 2016-09-08
KR20160115468 2016-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/044,285 Continuation-In-Part US10836734B2 (en) 2016-09-08 2018-07-24 Spiroquinone derivative compound, production method thereof, and pharamaceutical composition for preventing or treating neurological disorders which contains same as active ingredient

Publications (1)

Publication Number Publication Date
WO2018048261A1 true WO2018048261A1 (ko) 2018-03-15

Family

ID=61562137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/009909 WO2018048261A1 (ko) 2016-09-08 2017-09-08 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물

Country Status (5)

Country Link
US (1) US10836734B2 (ko)
EP (1) EP3395804B1 (ko)
KR (1) KR101850062B1 (ko)
CN (1) CN108699013B (ko)
WO (1) WO2018048261A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220060718A (ko) * 2020-11-05 2022-05-12 한림대학교 산학협력단 지연성 뇌허혈 진단을 위한 dapk1 바이오마커

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102218861B1 (ko) 2018-12-07 2021-02-24 한국과학기술연구원 단백질 키나아제 저해제인 신규한 페녹시 아로마틱 아마이드 유도체
KR102611617B1 (ko) * 2018-12-27 2023-12-11 가천대학교 산학협력단 신규 gsk-3 저해 화합물, 이의 제조방법 및 이의 용도
CN118084635A (zh) * 2024-03-18 2024-05-28 北京汇霖泽谷生物科技有限公司 一种用于治疗神经系统疾病的新化合物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268489A (ja) * 1997-03-28 1998-10-09 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
KR20020040160A (ko) * 2000-11-23 2002-05-30 김충섭 항산화 활성을 가지는 퀴논 화합물
US20100056613A1 (en) * 2006-11-24 2010-03-04 Hykes Laboratories Llc Spiroquinone compound and pharmaceutical composition
CN102850337A (zh) * 2011-06-30 2013-01-02 四川大学 多氮唑联螺烯酮类化合物及其制备方法和用途
CN105085433A (zh) * 2014-05-19 2015-11-25 中国科学院上海药物研究所 取代酰胺苯酚类化合物及其制备方法、药物组合物和用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300831B1 (ko) * 2005-03-21 2013-08-30 에스*바이오 피티이 리미티드 이미다조[1,2-a]피리딘 유도체, 이의 제조 방법 및 그의약학적 용도
CN101646679A (zh) * 2007-03-29 2010-02-10 弗·哈夫曼-拉罗切有限公司 杂环抗病毒化合物
GB0707934D0 (en) * 2007-04-24 2007-05-30 Glaxo Group Ltd Chemical compounds
JP6402115B2 (ja) 2013-02-04 2018-10-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 神経学的疾患および状態の処置に有用なスピロ−キナゾリノン誘導体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10268489A (ja) * 1997-03-28 1998-10-09 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
KR20020040160A (ko) * 2000-11-23 2002-05-30 김충섭 항산화 활성을 가지는 퀴논 화합물
US20100056613A1 (en) * 2006-11-24 2010-03-04 Hykes Laboratories Llc Spiroquinone compound and pharmaceutical composition
CN102850337A (zh) * 2011-06-30 2013-01-02 四川大学 多氮唑联螺烯酮类化合物及其制备方法和用途
CN105085433A (zh) * 2014-05-19 2015-11-25 中国科学院上海药物研究所 取代酰胺苯酚类化合物及其制备方法、药物组合物和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220060718A (ko) * 2020-11-05 2022-05-12 한림대학교 산학협력단 지연성 뇌허혈 진단을 위한 dapk1 바이오마커
KR102466956B1 (ko) 2020-11-05 2022-11-11 한림대학교 산학협력단 지연성 뇌허혈 진단을 위한 dapk1 바이오마커

Also Published As

Publication number Publication date
EP3395804A1 (en) 2018-10-31
EP3395804B1 (en) 2020-05-13
US20180327370A1 (en) 2018-11-15
CN108699013B (zh) 2022-05-06
EP3395804A4 (en) 2019-03-20
CN108699013A (zh) 2018-10-23
KR20180028391A (ko) 2018-03-16
US10836734B2 (en) 2020-11-17
KR101850062B1 (ko) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017018804A1 (ko) 히스톤 탈아세틸화효소 6 억제제로서의 1,3,4-옥사다이아졸 아마이드 유도체 화합물 및 이를 포함하는 약제학적 조성물
WO2017018805A1 (en) 1,3,4-oxadiazole sulfamide derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2018048261A1 (ko) 신규 스피로퀴논 유도체 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 신경계 질환의 예방 또는 치료용 약학적 조성물
WO2015137750A1 (en) Novel compounds as histone deacetylase 6 inhibitors and pharmaceutical compositions comprising the same
WO2019078522A1 (ko) 세레브론 단백질의 분해 유도 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2023018237A1 (en) Novel plk1 degradation inducing compound
WO2015102426A1 (en) Novel indole derivative compound and pharmaceutical composition comprising the same
WO2020022787A1 (ko) Jnk 저해 활성을 갖는 신규한 이미다졸 유도체 및 이를 포함하는 약학적 조성물
AU2020360000B2 (en) N-(1H-imidazol-2-yl)benzamide compound and pharmaceutical composition comprising the same as active ingredient
WO2018044136A1 (ko) 신규한 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 폴리(adp-리보스)폴리머라제-1(parp-1) 관련 질환의 예방 또는 치료용 약학적 조성물
WO2018151562A2 (ko) Jnk 저해 활성을 갖는 신규한 벤즈이미다졸 유도체 및 이의 용도
WO2021086069A1 (ko) Ezh2 저해제 및 e3 리가제 바인더를 포함하는 화합물 및 이를 유효성분으로 함유하는 ezh2 관련 질환의 예방 또는 치료용 약학적 조성물
AU2021208943B2 (en) Novel compound, preparation method thereof, and use thereof
AU2021255176B2 (en) 1,3,4-oxadiazole derivative compounds as histone deacetylase 6 inhibitor, and the pharmaceutical composition comprising the same
WO2010032986A2 (ko) 신규 5-(4-아미노페닐)-이소퀴놀린 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 유효성분으로 함유하는 raf 키나제의 과활성에 의해 유발되는 질환의 예방 또는 치료용 조성물
WO2017150903A1 (en) Sulfamate derivative compounds, processes for preparing them and their uses
WO2023022463A1 (ko) 단백질 인산화 효소 저해 활성을 갖는 신규한 이미다졸 유도체 및 이의 용도
WO2022010328A1 (ko) 1-알킬-5-아릴리덴-2-셀레녹소이미다졸리딘-4-온 및 그 유도체, 이의 제조방법 및 이를 포함하는 신경퇴행성 질환의 예방, 개선 또는 치료용 조성물
WO2017183927A1 (ko) 신규한 헤테로고리 화합물, 이의 제조방법 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약학적 조성물
WO2023096304A1 (ko) 이속사졸 유도체 또는 이의 약학적으로 허용가능한 염 및 이의 용도
WO2024210578A1 (ko) 헤테로비시클릭 화합물 및 그를 포함하는 약제학적 조성물
WO2012150829A2 (ko) 신규한 트리아졸로피리딘 유도체 또는 이의 약학적으로 허용가능한 염, 이의 제조방법 및 이를 포함하는 약학적 조성물
WO2024035194A1 (ko) 신규한 헤테로아릴 치환 유도체 및 이를 포함하는 신경퇴행성 질환, 암, 및 염증성 질환의 예방 또는 치료용 조성물
WO2021086077A1 (ko) 이소퀴놀리논 유도체, 이의 제조방법 및 이를 유효성분으로 함유하는 폴리(adp-리보스)폴리머라제-1(parp-1) 관련 질환의 예방 또는 치료용 약학적 조성물
WO2022145989A1 (ko) 선택적 plk1 억제제로서의 피리미도디아제핀 유도체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017849145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017849145

Country of ref document: EP

Effective date: 20180727

NENP Non-entry into the national phase

Ref country code: DE