[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018047603A1 - Pump motor - Google Patents

Pump motor Download PDF

Info

Publication number
WO2018047603A1
WO2018047603A1 PCT/JP2017/029604 JP2017029604W WO2018047603A1 WO 2018047603 A1 WO2018047603 A1 WO 2018047603A1 JP 2017029604 W JP2017029604 W JP 2017029604W WO 2018047603 A1 WO2018047603 A1 WO 2018047603A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
base
pump motor
rotating
rotor core
Prior art date
Application number
PCT/JP2017/029604
Other languages
French (fr)
Japanese (ja)
Inventor
友治 中村
裕之 上田
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Publication of WO2018047603A1 publication Critical patent/WO2018047603A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a pump motor.
  • Japanese Patent Application Laid-Open No. 2010-220473 discloses a rotor in which a plurality of substantially arc-shaped permanent magnets are bonded to the surface of a rotor yoke made of a high permeability material such as iron by a resin mold.
  • a resin mold made of a high permeability material such as iron by a resin mold.
  • the vicinity of the center in the circumferential direction of the permanent magnet is not covered with resin. That is, in the rotor, the magnet is exposed, and the position of the magnet can be easily grasped from the outside.
  • a rotor core and a magnet In the molding process, when the rotor core and the magnet are set in the mold, they need to be arranged at appropriate positions.
  • a rotor core and a magnet may be covered with a cover member.
  • molding and magnetization are performed in a state where the rotor core and the magnet are covered with the cover member, it is difficult to grasp the positions of the magnet and the rotor core covered with the cover member from the outside.
  • an object of the present invention to provide a pump motor that can appropriately position the rotor core and the magnet. Moreover, an object of this invention is to provide the motor for pumps which can grasp
  • An exemplary pump motor of the present invention includes a rotating portion that rotates about a central axis that extends in the up-down direction, and a stationary portion that is disposed radially outside the rotating portion.
  • the rotating portion is in contact with a shaft disposed along the central axis, a rotor core disposed on a radially outer side of the shaft, a magnet attached to an outer peripheral surface of the rotor core, and a lower surface of the rotor core, And a first base disposed on a radially outer side of the shaft.
  • the magnet has a protruding portion that protrudes below the lower surface of the rotor core.
  • the first base has a first convex portion whose upper surface is in contact with the lower surface of the rotor core and whose outer peripheral surface is in contact with the radially inner surface of the protruding portion.
  • a pump motor that can appropriately position the rotor core and the magnet. Further, according to the present invention, it is possible to provide a pump motor that can appropriately grasp the positions of the rotor core and the magnet covered by the cover member.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a pump system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the pump motor according to the embodiment of the present invention.
  • FIG. 3 is an enlarged view showing the rotating unit shown in FIG. 2 in an enlarged manner.
  • 4 is a schematic cross-sectional view taken along the line XX in FIG.
  • FIG. 5 is a schematic perspective view of a first base included in the pump motor according to the embodiment of the present invention.
  • FIG. 6 is a plan view schematically showing the relationship between the first convex portion and the protruding portion of the magnet.
  • FIG. 7 is an enlarged cross-sectional view schematically showing the relationship between the first convex portion and the protruding portion of the magnet.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a pump system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the pump motor according to the embodiment of the
  • FIG. 8 is an enlarged cross-sectional view schematically showing the relationship between the cover member and the first base.
  • FIG. 9 is a schematic perspective view of a first base included in the pump motor according to the embodiment of the present invention.
  • FIG. 10 is a schematic perspective view showing the relationship between the first base and the rotating plate.
  • FIG. 11 is a schematic perspective view showing the relationship between the second base and the stationary plate.
  • FIG. 12 is a schematic perspective view of the second base with the stationary part removed.
  • FIG. 13 is a schematic perspective view of the second base to which the stationary plate is attached as viewed from below.
  • the extending direction of the central axis A of the motor shown in FIG. 2 is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis A of the motor are simply “radial direction” and “circumferential direction”. I will call it.
  • the axial direction when the motor is arranged in the direction shown in FIG. 2 is defined as the vertical direction.
  • the vertical direction is simply a name used for explanation, and does not limit the actual positional relationship or direction. *
  • FIG. 1 is a schematic diagram showing a schematic configuration of a pump system 100 according to an embodiment of the present invention.
  • the pump system 100 includes a pump unit 101, a running water cable 102, and a water storage tank 103. *
  • the pump unit 101 is immersed in a ground water source, for example.
  • the pump unit 101 is immersed in a water source having a depth of about 50 to 100 m from the ground, for example.
  • the pump unit 101 includes a pump motor 1 and an impeller unit 2.
  • the impeller unit 2 is connected to the pump motor 1.
  • the impeller unit 2 has blades (not shown) that rotate by driving the pump motor 1. *
  • FIG. 2 is a schematic cross-sectional view of the pump motor 1 according to the embodiment of the present invention.
  • FIG. 2 is a view cut along a cut surface including the central axis A of the motor 1.
  • the motor 1 includes a rotating unit 10 and a stationary unit 20.
  • the rotating unit 10 rotates about a central axis A extending in the vertical direction.
  • the stationary part 20 is disposed on the radially outer side of the rotating part 10. *
  • the rotating unit 10 includes a shaft 11 disposed along the central axis A.
  • the shaft 11 is disposed at the rotation center of the rotating unit 10.
  • the shaft 11 is a columnar member extending in the axial direction.
  • the shaft 11 functions as an output shaft.
  • the impeller portion 2 described above is connected to the upper end portion of the shaft 11. *
  • the rotating unit 10 includes a rotor core 12 that is disposed on the radially outer side of the shaft 11.
  • the rotor core 12 is a cylindrical member that extends in the vertical direction.
  • the rotor core 12 has a configuration in which a plurality of magnetic steel plates such as silicon steel plates are laminated in the axial direction.
  • the rotor core 12 may be formed by joining a plurality of core pieces.
  • the rotating unit 10 has a magnet 13 attached to the outer peripheral surface of the rotor core 12.
  • the magnet 13 is fixed to the outer peripheral surface of the rotor core 12 with an adhesive.
  • the magnet 13 is a permanent magnet for a field, and may be, for example, a sintered magnet or a bonded magnet.
  • a plurality of magnets 13 are arranged in the circumferential direction.
  • the stationary part 20 includes a stator core 21, a coil 22, and an insulator 23.
  • the stator core 21 has a configuration in which a plurality of magnetic steel plates such as silicon steel plates are laminated in the axial direction.
  • the stator core 21 may be formed by joining a plurality of core pieces.
  • the stator core 21 has an annular core back and a plurality of teeth protruding radially inward from the core back.
  • the coil 22 is wound around each tooth via an insulator 23.
  • the insulator 23 is an insulating member that electrically insulates the stator core 21 and the coil 22 from each other.
  • the stationary part 20 further includes a stator can 24.
  • the stator can 24 is a cylindrical member extending in the vertical direction.
  • the stator can 24 is made of a metal such as stainless steel.
  • the stator can 24 is disposed on the radially outer side of the rotating unit 10 and on the radially inner side of the stator core 21.
  • the stator can 24 is held by the upper bracket 32 at the upper part in the axial direction.
  • a gap is formed between the rotating unit 10 and the stator can 24.
  • a lubricant is present in this gap. This lubricant is water, for example, and may contain a preservative such as propylene glycolose.
  • the stationary part 20 includes a resin 25 that covers at least a part of the stator core 21, the coil 22, the insulator 23, and the stator can 24. *
  • the motor 1 further includes a casing 30 that houses the rotating unit 10 and the stationary unit 20.
  • the casing 30 includes a frame 31, an upper bracket 32, and a lower bracket 33.
  • the frame 31 is a cylindrical metal member that extends in the vertical direction.
  • the frame 31 is disposed on the radially outer side of the stationary part 20.
  • the stationary part 20 is fixed to the frame 31.
  • the upper bracket 32 is attached to the upper end of the frame 31.
  • the lower bracket 33 is attached to the lower end of the frame 31. *
  • the shaft 11 is rotatably supported by an upper bearing 34 provided on the upper bracket 32 and a lower bearing 35 provided on the lower bracket 33.
  • the upper bearing 34 and the lower bearing 35 are constituted by sleeve bearings.
  • the upper bearing 34 and the lower bearing 35 may be composed of other bearings, for example, ball bearings.
  • the upper bearing 34 and the lower bearing 35 function as radial bearings.
  • the pump motor 1 also has a thrust bearing that receives a load in the thrust direction. This will be described later.
  • the upper end portion of the shaft 11 protrudes upward from the upper bracket 32.
  • the protruding portion of the shaft 11 is connected to the impeller portion 2 described above. *
  • FIG. 3 is an enlarged view showing the rotating part 10 shown in FIG. 2 in an enlarged manner.
  • 4 is a schematic cross-sectional view taken along the line XX in FIG. *
  • the rotating portion 10 includes a first resin portion R ⁇ b> 1 that is interposed between the shaft 11 and the rotor core 12 and fixes them.
  • the first resin portion R ⁇ b> 1 contacts the outer peripheral surface of the shaft 11 and contacts the inner peripheral surface of the rotor core 12.
  • the first resin portion R1 has an annular structure that extends in the vertical direction.
  • the first resin portion R1 has a protrusion R1a protruding in the radial direction.
  • the protrusion R1a extends in the vertical direction of the rotor core.
  • a plurality of protrusions R1a are arranged at equal intervals in the circumferential direction.
  • the first resin portion R1 has a pair of flat surface portions R1b disposed to face each other with the shaft 11 interposed therebetween on the outer periphery.
  • a pair of plane part R1b is extended in an up-down direction.
  • the plurality of protrusions R1a and the pair of flat surfaces R1b can serve as a detent for the rotor core 12.
  • the rotating part 10 is integrated with the first resin part R1 interposed between the shaft 11 and the rotor core 12. For this reason, possibility that the rotation part 10 will be deform
  • the rotating part 10 has a second resin part R ⁇ b> 2 arranged on the upper side of the magnet 13.
  • the second resin portion R ⁇ b> 2 covers the entire top surface of the magnet 13 and contacts the top surface of the magnet 13.
  • the second resin portion R2 has a cylindrical shape extending in the vertical direction.
  • six magnets 13 are arranged at equal intervals in the circumferential direction.
  • the second resin portion R2 covers the upper surfaces of all six magnets 13.
  • the number of magnets 13 is an example, and the number may be changed as appropriate.
  • the second resin portion R2 is connected to the first resin portion R1.
  • the second resin portion R2 can prevent the upper surface of the magnet 13 from being exposed and prevent the magnet 13 from rusting.
  • the second resin portion R2 preferably covers the entire top surface of the magnet 13 and does not expose the top surface of the magnet 13. However, in some cases, a part of the upper surface of the magnet 13 may be exposed.
  • the upper cover 14 is disposed on the second resin portion R2.
  • the upper cover 14 can be made of a metal such as stainless steel. The upper cover 14 may not be provided depending on circumstances. *
  • the rotating portion 10 includes a third resin portion R ⁇ b> 3 that is disposed on the radially outer side of the magnet 13.
  • the third resin portion R3 covers the entire outer peripheral surface of the magnet 13.
  • the third resin portion R ⁇ b> 3 has a cylindrical shape extending in the vertical direction and covers all the outer peripheral surfaces of the six magnets 13. More specifically, the third resin portion R3 fills a gap between the magnets 13 adjacent in the circumferential direction.
  • the third resin portion R3 is connected to the second resin portion R2.
  • the third resin portion R3 can prevent the outer peripheral surface of the magnet 13 from being exposed and prevent the magnet 13 from rusting. *
  • the third resin portion R3 preferably covers the entire outer peripheral surface of the magnet 13 and does not expose the outer peripheral surface of the magnet 13. However, in some cases, a part of the outer peripheral surface of the magnet 13 may be exposed.
  • the rotating unit 10 includes a cylindrical cover member 15 disposed on the radially outer side of the magnet 13.
  • the cover member 15 is a cylindrical member extending in the vertical direction.
  • the cover member 15 is made of a metal such as stainless steel.
  • the third resin portion R3 is in contact with the outer peripheral surface of the magnet 13 and the inner peripheral surface of the cover member 15. Since the magnet 13 and the cover member 15 are integrated by the third resin portion R3, the cover member 15 can be easily assembled by a molding process. *
  • the rotating unit 10 has a first base 16 that is in contact with the lower surface of the rotor core 12 and is arranged on the radially outer side of the shaft 11.
  • the first base 16 is made of metal.
  • the first base 16 has a through hole 16a extending in the vertical direction at the center. In a plan view, the through hole 16a has a circular shape.
  • the central axis A passes through the center of the through hole 16a.
  • the shaft 11 is inserted into the through hole 16a. *
  • the rotating part 10 has a fourth resin part R4 interposed between the shaft 11 and the first base 16.
  • the fourth resin portion R4 has a cylindrical shape extending in the vertical direction.
  • the fourth resin portion R4 is in contact with the outer peripheral surface of the shaft 11 and the inner peripheral surface of the first base 16.
  • the fourth resin portion R4 is connected to the first resin portion R1.
  • the first resin portion R1, the second resin portion R2, the third resin portion R3, and the fourth resin portion R4 are connected. Therefore, the first resin portion R1, the second resin portion R2, the third resin portion R3, and the fourth resin portion R4 can be formed by a single resin injection.
  • the shaft 11 and the first base 16 can be integrated by a molding process using a mold. For this reason, according to this configuration, the step of assembling the shaft 11 to the first base 16 by manual press-fitting or the like can be omitted, and workability at the time of assembling the rotating unit 10 can be improved.
  • the rotating part 10 has a seal part 17 provided at the lower part of the first base 16.
  • the seal portion 17 is in contact with the inner peripheral surface of the first base 16 and the outer peripheral surface of the shaft 11 over one circumference in the circumferential direction.
  • the first base 16 has an annular second convex portion 163 that extends downward on the lower surface, as will be described later.
  • the seal portion 17 is in contact with the inner peripheral surface of the second convex portion 163 and the outer peripheral surface of the shaft 11.
  • the seal portion 17 can prevent water from entering the inside of the rotating portion 10 from the lower surface side of the first base 16. *
  • FIG. 5 is a schematic perspective view of the first base 16 included in the pump motor 1 according to the embodiment of the present invention.
  • FIG. 5 is a view of the first base 16 as viewed obliquely from above.
  • the first base 16 has three cylindrical portions 16b, 16c, and 16d arranged in the vertical direction.
  • the three cylindrical portions 16b to 16d are the same member.
  • the second cylindrical portion 16c located in the middle has a smaller radial size.
  • the lowermost third cylindrical portion 16d has a larger radial size than the first cylindrical portion 16b and the second cylindrical portion 16c.
  • the first base 16 has a first convex portion 161.
  • the first convex portion 161 is formed on the upper surface of the first cylindrical portion 16b and extends upward.
  • the first convex portion 161 is the same member as the first cylindrical portion 16a.
  • the first convex portion 161 may be a separate member from the first cylindrical portion 16a.
  • the first convex portion 161 has a regular hexagonal column shape extending in the axial direction.
  • the central axis A passes through the center of the first convex portion 161 having a regular hexagonal column shape.
  • the first convex portion 161 has a circular opening in plan view. The opening continues to the through hole 16a. As shown in FIG.
  • the rotor core 12 is placed on the upper surface of the first convex portion 161.
  • the lower surface of the rotor core 12 is in contact with the upper surface of the first convex portion 161.
  • the 1st convex part 161 positions the position of the circumferential direction and radial direction of the several magnet 13 attached to the rotor core 12 and the rotor core 12. As shown in FIG. This will be described below. *
  • the outer peripheral surface of the rotor core 12 is provided with a plurality of projecting portions 12a that are arranged at intervals in the circumferential direction and project in the radial direction.
  • the number of protrusions 12a is six, and they are arranged at equal intervals in the circumferential direction.
  • the protrusion 12a has a trapezoidal shape in a plan view and extends in the vertical direction.
  • the magnet 13 is disposed between the adjacent protrusions 12a. In this embodiment, the magnet 13 is arrange
  • the plurality of magnets 13 are attached to the rotor core 12 with their circumferential positions positioned.
  • the plurality of protrusions 12a can be attached while positioning the circumferential positions of the plurality of magnets 13, thereby improving the workability of the assembly operation of the rotating unit 10. it can.
  • the surface where the rotor core 12 and the magnet 13 oppose is the same shape.
  • the surfaces where the rotor core 12 and the magnet 13 are opposed are in a state where the planes are opposed to each other. For this reason, the gap between the rotor core 12 and the magnet 13 can be eliminated and the magnet 13 can be arranged efficiently.
  • the surface where the rotor core 12 and the magnet 13 are opposed may be in a state where the same curved surfaces are opposed to each other, for example. Also in this case, the gap between the rotor core 12 and the magnet 13 can be eliminated.
  • FIG. 6 is a plan view schematically showing the relationship between the first convex portion 161 and the protruding portion 13 a of the magnet 13.
  • the radially inner surface of the protruding portion 13 a contacts the outer peripheral surface of the first convex portion 161.
  • the radially inner plane of each protrusion 13 a comes into contact with the plane that forms the outer periphery of the first convex portion 161.
  • the rotor core 12 and the six magnets 13 are positioned in the radial direction. Moreover, since the plane of the protrusion 13a and the plane of the first protrusion 161 are in contact with each other, the rotation of the rotor core 12 with respect to the first base 16 is suppressed. For this reason, the rotor core 12 and the six magnets 13 positioned in the circumferential direction with respect to the rotor core 12 are positioned in the circumferential direction by the first convex portion 161.
  • the first convex portion 161 has a regular hexagonal prism shape corresponding to the number of magnets 13 being six, but this is merely an example.
  • the shape of the 1st convex part 161 may be changed into various shapes according to the number or shape of the magnet 13, for example.
  • FIG. 7 is an enlarged cross-sectional view schematically showing the relationship between the first convex portion 161 and the protruding portion 13 a of the magnet 13.
  • the lower surface of the magnet 13 is separated from the first base 16 in the axial direction.
  • This gap may be filled with resin.
  • Positioning of the stator core 12 in the axial direction is not performed by the magnet 13, but is performed by contact between the stator core 12 body and the first convex portion 161. In this configuration, it is possible to avoid an axial force from being applied to the magnet 13 from the first base 16 when the rotating unit 10 is assembled. For this reason, it can suppress that the magnet 13 remove
  • FIG. 8 is an enlarged cross-sectional view schematically showing the relationship between the cover member 15 and the first base 16.
  • a flange portion 162 protruding in the radial direction is provided on the outer periphery of the first base 16.
  • the flange portion 162 is an annular portion protruding in the radial direction from the outer peripheral surface of the first cylindrical portion 16b.
  • the lower surface of the cover member 15 contacts the flange portion 162.
  • the cover member 15 is positioned in the axial direction by a radial step formed by the flange portion 162. *
  • An annular groove may be provided on the upper surface of the flange portion 162, and the cover member 15 may be positioned by fitting the lower portion of the cover member 15 into the groove.
  • the outer peripheral surface of the first cylindrical portion 16b and the inner peripheral surface of the cover member 15 are in contact with each other, and the cover member 15 is positioned in the radial direction by the first cylindrical portion 16b. . *
  • the rotor core 12 is formed by laminating magnetic steel plates.
  • a plurality of magnets 13 are attached to the outer peripheral surface of the rotor core 12 with an adhesive.
  • Each of the plurality of magnets 13 is positioned in the circumferential direction by the protrusion 12 a of the rotor core 12 and attached to the outer peripheral surface of the rotor core 12.
  • Each of the plurality of magnets 13 protrudes downward from the lower surface of the rotor core 12 by a predetermined amount and is attached to the rotor core 12.
  • the part protruded by the predetermined amount is the above-described protrusion 13a.
  • the rotor core 12 to which the magnet 13 is attached is placed on the first convex portion 161.
  • the radial inner plane of the protruding portion 13 a is brought into contact with the plane constituting the outer peripheral surface of the first convex portion 161 to adjust the position.
  • the rotor core 12 and the magnet 16 are positioned by the first convex portion 161.
  • the cover member 15 is attached to the first base 16.
  • the rotor core 12 integrated with the first base 16 and the cover member 15 and the shaft 11 are positioned by a mold to perform a molding process.
  • resin is poured into the cover member 15.
  • the upper cover 14 is attached to the upper side of the cover member 15, and the assembly of the rotating unit 10 is completed.
  • the magnet 13 is magnetized.
  • the molding process is performed. For this reason, the rotating part 10 can be assembled with the positional relationship of each component in an appropriate state.
  • the magnet 13 is magnetized while the magnet 13 is covered by the cover member 15.
  • the first base 16 has a position confirmation unit that allows confirmation of the position of the magnet 13 from the outside. Since the position of the magnet 13 covered with the cover member 15 can be confirmed by the position confirmation unit, the magnet 13 can be appropriately magnetized.
  • the position confirmation unit may be, for example, a marking such as a figure, a character, or a symbol formed on the first base 16, but in this embodiment, the structure formed on the first base 16 is used as the position confirmation unit.
  • the position confirmation unit has a surface parallel to the surface of the first convex portion 161 that is in contact with the radially inner surface of the protrusion 13a. According to this configuration, the position confirmation unit can be used as the positioning unit when setting the rotating unit 10 in the magnetizing machine that magnetizes the magnet 13, and the workability of magnetizing the magnet 13 is improved. Can be improved.
  • a more specific structure of the position confirmation unit of this embodiment will be described.
  • FIG. 9 is a schematic perspective view of the first base 16 included in the pump motor 1 according to the embodiment of the present invention.
  • FIG. 9 is a view of the first base 16 as viewed obliquely from below.
  • the first base 16 has an annular second convex portion 163 that extends downward on the lower surface.
  • the second convex portion 163 is the same member as the third cylindrical portion 16d.
  • the second convex portion 163 may be a separate member from the third cylindrical portion 16d. *
  • the inner peripheral surface of the second convex portion 163 is circular in plan view.
  • the inner peripheral surface of the second convex portion 163 surrounds the periphery of the through hole 16a.
  • the central axis A passes through the center of the second convex portion 163.
  • the 2nd convex part 163 has the 1st D cut surface 163a.
  • the first D-cut surface 163a is a planar portion provided on the outer peripheral surface of the annular second convex portion 163.
  • the first D-cut surface 163a is parallel to the central axis A.
  • two first D-cut surfaces 163a are provided.
  • the two first D-cut surfaces 163a are arranged symmetrically with respect to the central axis A.
  • the number of first D-cut surfaces 163a is not limited to two, and the number may be changed as appropriate. *
  • the position confirmation part is the first D-cut surface 163a of the second convex part 163.
  • the first D-cut surface 163a is parallel to two of the six planes constituting the outer peripheral surface of the first convex portion 161.
  • these two planes are surfaces which contact the surface of the 1st convex part 161 on the radial inside of the protrusion part 13a.
  • Each magnet 13 is in contact with one of six planes constituting the outer peripheral surface of the first convex portion 161 in a positioned state. For this reason, it is possible to grasp how the six magnets 13 are arranged by confirming the position of the first D-cut surface 163a. Since the D-cut surface of the second convex portion 163 is easily formed corresponding to the shape of the first convex portion 161, the position confirmation portion can be easily formed.
  • the first D-cut surface 163a is preferably used as a positioning surface when the rotating unit 10 is set in a magnetizer for magnetizing the magnet 13. According to this, since the positioning using the first D-cut surface 163a also serves to confirm the position of the magnet 13, workability is improved.
  • the structure of the position confirmation part demonstrated above is an illustration,
  • the structure of a position confirmation part may be changed suitably with the shape of the 1st convex part 161, the structure of a magnetizer, etc.
  • the pump motor 1 includes a thrust bearing 40 that supports the shaft 11.
  • the thrust bearing 40 includes a rotating plate 41 and a stationary plate 42.
  • the rotating plate 41 is attached to the lower side of the first base 16.
  • the rotating plate 41 rotates together with the rotating unit 10.
  • the stationary plate 42 is disposed to face the rotating plate 41 in the axial direction.
  • the stationary plate 42 is disposed below the rotating plate 41. Water that functions as a lubricant is interposed between the rotating plate 41 and the stationary plate 42.
  • the thrust bearing 40 can smoothly rotate the rotating unit 10 that receives the axial force. *
  • the rotating plate 41 and the stationary plate 42 are made of silicon carbide (SiC).
  • SiC silicon carbide
  • the materials constituting the rotating plate 41 and the stationary plate 42 may be appropriately changed.
  • the rotating plate 41 and the stationary plate 42 may be made of carbon or the like.
  • FIG. 10 is a schematic perspective view showing the relationship between the first base 16 and the rotating plate 41.
  • the first D-cut surface 163a is in contact with the inner peripheral surface of the rotating plate 42 provided in an annular shape.
  • the rotating plate 41 has an annular shape.
  • a first flat surface portion 41 a extending in a direction parallel to the central axis A is provided on the inner peripheral surface of the rotating plate 41.
  • Two first flat portions 41a are provided, and the two first flat portions 41a are arranged symmetrically with the central axis A in between.
  • the first D-cut surface 163a is disposed to face the first flat surface portion 41a, and both are in contact with each other. *
  • the first D-cut surface 163 a is paired with the first flat surface portion 41 a to prevent the rotating plate 41 from rotating with respect to the first base 16.
  • the rotating plate 41 is positioned in the radial direction and the circumferential direction when the inner peripheral surface is in contact with the outer peripheral surface of the second convex portion 163. That is, the first base 16 can be fixed in a state where the rotary plate 41 is positioned.
  • an adhesive is used to fix the rotating plate 41 to the first base 16.
  • the rotation stopper using the D-cut surface can be easily formed even when the rotating plate 41 is formed of a material such as SiC having excellent wear resistance. *
  • FIG. 11 is a schematic perspective view showing the relationship between the second base 43 and the stationary plate 42.
  • FIG. 12 is a schematic perspective view of the second base 43 with the stationary part 42 removed.
  • FIG. 12 is a view as seen obliquely from above. *
  • the stationary plate 42 is provided in an annular shape. More specifically, the stationary plate 42 has a second D-cut surface 42a on the outer periphery.
  • the second D-cut surface 42 a is a flat portion provided on the outer periphery of the annular stationary plate 42.
  • the second D-cut surface 42a is parallel to the central axis A.
  • two second D-cut surfaces 42a are provided.
  • the two second D-cut surfaces 42a are arranged symmetrically with respect to the central axis A.
  • the number of second D-cut surfaces 42a is not limited to two, and the number may be changed as appropriate. *
  • the second base 43 is provided in an annular shape.
  • an annular wall portion 43b extending upward is provided.
  • the second base 43 has a rotation preventing portion 43c.
  • the rotation stopper 43c is provided at the outer edge and extends upward.
  • the rotation preventing portion 43c is provided with a second flat surface portion 43d.
  • the second plane portion 43d is parallel to the central axis A.
  • two second flat portions 43d are provided.
  • the two second flat portions 43d are arranged symmetrically with the central axis A in between. *
  • the inner peripheral surface of the stationary plate 42 attached to the second base 43 is in contact with the outer peripheral surface of the wall portion 43b. Further, the second flat surface portion 43d is in contact with the second D-cut surface 42a. Specifically, the second flat surface portion 43d is disposed opposite to the second D-cut surface 42a, and both are in contact with each other. Accordingly, the stationary plate 42 can be fixed in a state of being positioned with respect to the second base 43.
  • an adhesive is used for fixing the stationary plate 42 to the second base 43. Even when the stationary plate 42 is formed of a material such as SiC having excellent wear resistance, it is easy to form the D-cut surface on the stationary plate 42. In the present embodiment, nothing is arranged on the upper surface of the rotation stopper 43c, but a part of the stationary plate 42 may be arranged. Thereby, the surface which slides with the rotating plate 41 can be increased.
  • the stationary plate 42 has unevenness arranged in the circumferential direction on the surface facing the rotating plate 41.
  • the irregularities may be arranged at equal intervals, but in this embodiment, the irregularities are not arranged at equal intervals.
  • the convex portion is of one type
  • the concave portion 42b includes two types of a pair of wide concave portions and a pair of narrow concave portions.
  • the pair of wide recesses and the pair of narrow recesses are arranged symmetrically with respect to the central axis A, respectively.
  • the recess 42 b formed in the stationary part 42 can efficiently guide water between the rotating plate 41 and the stationary plate 42.
  • the recessed part 42b can discharge
  • FIG. 13 is a schematic perspective view of the second base 43 to which the stationary plate 42 is attached as viewed from below.
  • a pair of pin holes 43 e are formed on the lower surface of the second base 43.
  • the pin hole 43e is a spherical recess.
  • the pair of pin holes 43e are arranged symmetrically with the central axis A in between.
  • the upper ends of the pair of pins 44 are inserted into the pair of pin holes 43e.
  • the pair of pins 44 supports the lower surface of the second base 43 and is disposed symmetrically with the central axis A interposed therebetween.
  • the pair of pins 44 are provided at locations facing the recesses 42 b provided in the stationary plate 42. *
  • the stationary plate 42 can be tilted with the pair of pins 44 as fulcrums, so that the rotating unit 10 can be automatically aligned.
  • the pair of pins 44 and the concave portion 42 b face each other, the convex portion of the stationary plate 42 can be appropriately brought into contact with the rotating plate 41.
  • the present invention is suitable for a motor used for, for example, a submersible pump.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This pump motor is provided with: a rotating part which rotates around a central axis that extends in the vertical direction; and a stationary part which is provided outside the rotating part in the radial direction. The rotating part is provided with: a shaft which is provided along the central axis; a rotor core which is provided outside the shaft in the radial direction; a magnet which is attached to the outer circumferential surface of the rotor core; and a first base which is in contact with the lower surface of the rotor core, and which is provided outside the shaft in the radial direction. The magnet is provided with a protruding part which protrudes further downwards than the lower surface of the rotor core. The first base is provided with a first protrusion of which the upper surface is in contact with the lower surface of the rotor core, and of which the outer circumferential surface is in contact with the inner surface of the protruding part in the radial direction.

Description

ポンプ用モータPump motor
本発明はポンプ用モータに関する。 The present invention relates to a pump motor.
特開2010-220473号公報には、複数の略円弧状の永久磁石を、鉄などの高透磁率材からなるロータヨークの表面に、樹脂モールドにより貼り付けてなるロータが開示される。特開2010-220473号公報に開示されるロータにおいては、永久磁石の円周方向中心付近が樹脂で覆われていない。すなわち、当該ロータにおいては、マグネットが露出しており、外部からマグネットの位置を簡単に把握することができる。 Japanese Patent Application Laid-Open No. 2010-220473 discloses a rotor in which a plurality of substantially arc-shaped permanent magnets are bonded to the surface of a rotor yoke made of a high permeability material such as iron by a resin mold. In the rotor disclosed in Japanese Patent Application Laid-Open No. 2010-220473, the vicinity of the center in the circumferential direction of the permanent magnet is not covered with resin. That is, in the rotor, the magnet is exposed, and the position of the magnet can be easily grasped from the outside.
特開2010-220473号公報JP 2010-220473 A
モールド工程においては、金型にロータコア及びマグネットがセットされる場合に、それらが適切な位置に配置される必要がある。また、例えばポンプ用モータでは、ロータコア及びマグネットがカバー部材に覆われることがある。カバー部材によってロータコア及びマグネットが覆われた状態でモールド及び着磁が行われる場合、カバー部材で覆われたマグネット及びロータコアの位置を外部から把握することが難しくなる。  In the molding process, when the rotor core and the magnet are set in the mold, they need to be arranged at appropriate positions. For example, in a pump motor, a rotor core and a magnet may be covered with a cover member. When molding and magnetization are performed in a state where the rotor core and the magnet are covered with the cover member, it is difficult to grasp the positions of the magnet and the rotor core covered with the cover member from the outside. *
以上の点に鑑みて、本発明は、ロータコア及びマグネットの位置を適切に位置決めすることができるポンプ用モータを提供することを目的とする。また、本発明は、カバー部材によって覆われたロータコア及びマグネットの位置を適切に把握することができるポンプ用モータを提供することを目的とする。 In view of the above, it is an object of the present invention to provide a pump motor that can appropriately position the rotor core and the magnet. Moreover, an object of this invention is to provide the motor for pumps which can grasp | ascertain appropriately the position of the rotor core and magnet covered with the cover member.
本発明の例示的なポンプ用モータは、上下方向に延びる中心軸を中心として回転する回転部と、前記回転部の径方向外側に配置される静止部と、を有する。前記回転部は、前記中心軸に沿って配置されるシャフトと、前記シャフトの径方向外側に配置されるロータコアと、前記ロータコアの外周面に取り付けられるマグネットと、前記ロータコアの下面と接触し、前記シャフトの径方向外側に配置される第1のベースと、を有する。前記マグネットは、前記ロータコアの下面よりも下側に突出する突出部を有する。前記第1のベースは、上面に前記ロータコアの下面が接触し外周面に前記突出部の径方向内側の面が接触する第1の凸部を有する。 An exemplary pump motor of the present invention includes a rotating portion that rotates about a central axis that extends in the up-down direction, and a stationary portion that is disposed radially outside the rotating portion. The rotating portion is in contact with a shaft disposed along the central axis, a rotor core disposed on a radially outer side of the shaft, a magnet attached to an outer peripheral surface of the rotor core, and a lower surface of the rotor core, And a first base disposed on a radially outer side of the shaft. The magnet has a protruding portion that protrudes below the lower surface of the rotor core. The first base has a first convex portion whose upper surface is in contact with the lower surface of the rotor core and whose outer peripheral surface is in contact with the radially inner surface of the protruding portion.
例示的な本発明によれば、ロータコア及びマグネットの位置を適切に位置決めすることができるポンプ用モータを提供できる。また、例示的な本発明によれば、カバー部材によって覆われたロータコア及びマグネットの位置を適切に把握することができるポンプ用モータを提供できる。 According to the exemplary present invention, it is possible to provide a pump motor that can appropriately position the rotor core and the magnet. Further, according to the present invention, it is possible to provide a pump motor that can appropriately grasp the positions of the rotor core and the magnet covered by the cover member.
図1は、本発明の実施形態に係るポンプシステムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a pump system according to an embodiment of the present invention. 図2は、本発明の実施形態に係るポンプ用モータの概略断面図である。FIG. 2 is a schematic cross-sectional view of the pump motor according to the embodiment of the present invention. 図3は、図2に示される回転部を拡大して示した拡大図である。FIG. 3 is an enlarged view showing the rotating unit shown in FIG. 2 in an enlarged manner. 図4は、図3におけるX-X位置における概略断面図である。4 is a schematic cross-sectional view taken along the line XX in FIG. 図5は、本発明の実施形態に係るポンプ用モータが有する第1のベースの概略斜視図である。FIG. 5 is a schematic perspective view of a first base included in the pump motor according to the embodiment of the present invention. 図6は、第1の凸部とマグネットの突出部との関係を模式的に示す平面図である。FIG. 6 is a plan view schematically showing the relationship between the first convex portion and the protruding portion of the magnet. 図7は、第1の凸部とマグネットの突出部との関係を模式的に示す拡大断面図である。FIG. 7 is an enlarged cross-sectional view schematically showing the relationship between the first convex portion and the protruding portion of the magnet. 図8は、カバー部材と第1のベースとの関係を模式的に示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view schematically showing the relationship between the cover member and the first base. 図9は、本発明の実施形態に係るポンプ用モータが有する第1のベースの概略斜視図である。FIG. 9 is a schematic perspective view of a first base included in the pump motor according to the embodiment of the present invention. 図10は、第1のベースと回転板との関係を示す概略斜視図である。FIG. 10 is a schematic perspective view showing the relationship between the first base and the rotating plate. 図11は、第2のベースと静止板との関係を示す概略斜視図である。FIG. 11 is a schematic perspective view showing the relationship between the second base and the stationary plate. 図12は、静止部を取り外した第2のベースの概略斜視図である。FIG. 12 is a schematic perspective view of the second base with the stationary part removed. 図13は、静止板が取り付けられた第2のベースを下側から見た概略斜視図である。FIG. 13 is a schematic perspective view of the second base to which the stationary plate is attached as viewed from below.
以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。本明細書では、図2に示すモータの中心軸Aの延びる方向を単に「軸方向」と呼び、モータの中心軸Aを中心とする径方向及び周方向を単に「径方向」及び「周方向」と呼ぶことにする。本明細書では、図2に示す方向にモータを配置した場合の軸方向を上下方向と定義する。なお、上下方向は単に説明のために用いられる名称であって、実際の位置関係や方向を限定しない。  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the extending direction of the central axis A of the motor shown in FIG. 2 is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis A of the motor are simply “radial direction” and “circumferential direction”. I will call it. In this specification, the axial direction when the motor is arranged in the direction shown in FIG. 2 is defined as the vertical direction. The vertical direction is simply a name used for explanation, and does not limit the actual positional relationship or direction. *
<1.ポンプシステムの概略構成> まず、例示的な本発明のポンプ用モータを有するポンプシステムの概略構成について説明する。図1は、本発明の実施形態に係るポンプシステム100の概略構成を示す模式図である。図1に示すように、ポンプシステム100は、ポンプ部101と、流水ケーブル102と、貯水槽103とを有する。  <1. Schematic Configuration of Pump System> First, a schematic configuration of a pump system having an exemplary pump motor of the present invention will be described. FIG. 1 is a schematic diagram showing a schematic configuration of a pump system 100 according to an embodiment of the present invention. As shown in FIG. 1, the pump system 100 includes a pump unit 101, a running water cable 102, and a water storage tank 103. *
ポンプ部101は、例えば地中の水源に浸される。ポンプ部101は、例えば地上から50~100m程度の深さの水源に浸される。ポンプ部101は、ポンプ用モータ1と、インペラ部2と、を有する。インペラ部2は、ポンプ用モータ1に接続される。インペラ部2は、ポンプ用モータ1の駆動によって回転する羽根(不図示)を有する。  The pump unit 101 is immersed in a ground water source, for example. The pump unit 101 is immersed in a water source having a depth of about 50 to 100 m from the ground, for example. The pump unit 101 includes a pump motor 1 and an impeller unit 2. The impeller unit 2 is connected to the pump motor 1. The impeller unit 2 has blades (not shown) that rotate by driving the pump motor 1. *
ポンプ用モータ1の駆動によって、インペラ部2の羽根が回転する。インペラ部2の羽根の回転によって、水が吸い上げられる。インペラ部2によって吸い上げられた水は、流水ケーブル102を通って地上に汲み上げられる。汲み上げられた水は、貯水槽103に貯められる。  By driving the pump motor 1, the blades of the impeller portion 2 are rotated. The water is sucked up by the rotation of the impeller 2 blades. The water sucked up by the impeller unit 2 is pumped to the ground through the running water cable 102. The pumped water is stored in the water storage tank 103. *
<2.ポンプ用モータの概略構成> 図2は、本発明の実施形態に係るポンプ用モータ1の概略断面図である。なお、図2は、モータ1の中心軸Aを含む切断面により切断した図である。図2に示すように、モータ1は、回転部10と、静止部20と、を有する。回転部10は、上下方向に延びる中心軸Aを中心として回転する。静止部20は、回転部10の径方向外側に配置される。  <2. Schematic Configuration of Pump Motor> FIG. 2 is a schematic cross-sectional view of the pump motor 1 according to the embodiment of the present invention. FIG. 2 is a view cut along a cut surface including the central axis A of the motor 1. As shown in FIG. 2, the motor 1 includes a rotating unit 10 and a stationary unit 20. The rotating unit 10 rotates about a central axis A extending in the vertical direction. The stationary part 20 is disposed on the radially outer side of the rotating part 10. *
回転部10は、中心軸Aに沿って配置されるシャフト11を有する。シャフト11は、回転部10の回転中心に配置される。本実施形態では、シャフト11は、軸方向に延びる円柱状の部材である。シャフト11は出力軸として機能する。シャフト11の上端部には、上述のインペラ部2が連結される。  The rotating unit 10 includes a shaft 11 disposed along the central axis A. The shaft 11 is disposed at the rotation center of the rotating unit 10. In the present embodiment, the shaft 11 is a columnar member extending in the axial direction. The shaft 11 functions as an output shaft. The impeller portion 2 described above is connected to the upper end portion of the shaft 11. *
回転部10は、シャフト11の径方向外側に配置されるロータコア12を有する。ロータコア12は、上下方向に延びる円筒状の部材である。本実施形態では、ロータコア12は、例えばケイ素鋼板等の磁性鋼板が軸方向に複数積層された構成である。なお、ロータコア12は、複数のコアピースを接合して形成する構成でもよい。  The rotating unit 10 includes a rotor core 12 that is disposed on the radially outer side of the shaft 11. The rotor core 12 is a cylindrical member that extends in the vertical direction. In the present embodiment, the rotor core 12 has a configuration in which a plurality of magnetic steel plates such as silicon steel plates are laminated in the axial direction. The rotor core 12 may be formed by joining a plurality of core pieces. *
回転部10は、ロータコア12の外周面に取り付けられるマグネット13を有する。本実施形態では、マグネット13は、ロータコア12の外周面に接着剤で固定される。マグネット13は界磁用の永久磁石であり、例えば焼結磁石又はボンド磁石等であってよい。本実施形態では、マグネット13は周方向に複数配列される。  The rotating unit 10 has a magnet 13 attached to the outer peripheral surface of the rotor core 12. In the present embodiment, the magnet 13 is fixed to the outer peripheral surface of the rotor core 12 with an adhesive. The magnet 13 is a permanent magnet for a field, and may be, for example, a sintered magnet or a bonded magnet. In the present embodiment, a plurality of magnets 13 are arranged in the circumferential direction. *
静止部20は、ステータコア21と、コイル22と、インシュレータ23と、を有する。ステータコア21は、例えばケイ素鋼板等の磁性鋼板が軸方向に複数積層された構成である。なお、ステータコア21は、複数のコアピースを接合して形成する構成でもよい。ステータコア21は、詳細には、円環状のコアバックと、コアバックから径方向内側に突出する複数のティースと、を有する。コイル22は、インシュレータ23を介して、各ティースに巻かれる。インシュレータ23は、ステータコア21とコイル22とを電気的に絶縁する絶縁部材である。コイル22に駆動電流を供給すれば、磁心であるティースに径方向の磁束が発生する。これにより、回転部10に周方向のトルクが発生して、回転部10が中心軸Aを中心として回転する。  The stationary part 20 includes a stator core 21, a coil 22, and an insulator 23. The stator core 21 has a configuration in which a plurality of magnetic steel plates such as silicon steel plates are laminated in the axial direction. The stator core 21 may be formed by joining a plurality of core pieces. Specifically, the stator core 21 has an annular core back and a plurality of teeth protruding radially inward from the core back. The coil 22 is wound around each tooth via an insulator 23. The insulator 23 is an insulating member that electrically insulates the stator core 21 and the coil 22 from each other. When a drive current is supplied to the coil 22, a magnetic flux in the radial direction is generated in the teeth that are magnetic cores. As a result, circumferential torque is generated in the rotating unit 10, and the rotating unit 10 rotates about the central axis A. *
本実施形態では、静止部20は、ステータキャン24を更に有する。ステータキャン24は、上下方向に延びる円筒状の部材である。本実施形態では、ステータキャン24は、ステンレス等の金属によって構成されている。ステータキャン24は、回転部10の径方向外側、且つ、ステータコア21の径方向内側に配置される。ステータキャン24は、軸方向上部で上側ブラケット32に保持されている。回転部10とステータキャン24との間には、隙間が形成される。この隙間には、潤滑剤が存在する。この潤滑剤は、例えば水であり、プロピレングリコースなどの防腐剤等を含有させても良い。静止部20は、その他、ステータコア21、コイル22、インシュレータ23、及び、ステータキャン24の少なくとも一部を覆う樹脂25を有する。  In the present embodiment, the stationary part 20 further includes a stator can 24. The stator can 24 is a cylindrical member extending in the vertical direction. In the present embodiment, the stator can 24 is made of a metal such as stainless steel. The stator can 24 is disposed on the radially outer side of the rotating unit 10 and on the radially inner side of the stator core 21. The stator can 24 is held by the upper bracket 32 at the upper part in the axial direction. A gap is formed between the rotating unit 10 and the stator can 24. A lubricant is present in this gap. This lubricant is water, for example, and may contain a preservative such as propylene glycolose. In addition, the stationary part 20 includes a resin 25 that covers at least a part of the stator core 21, the coil 22, the insulator 23, and the stator can 24. *
モータ1は、回転部10及び静止部20を収容するケーシング30を更に有する。本実施形態では、ケーシング30は、フレーム31と、上側ブラケット32と、下側ブラケット33とを有する。フレーム31は、上下方向に延びる円筒状の金属部材である。フレーム31は、静止部20の径方向外側に配置される。静止部20はフレーム31に固定される。上側ブラケット32は、フレーム31の上端に取り付けられる。下側ブラケット33は、フレーム31の下端に取り付けられる。  The motor 1 further includes a casing 30 that houses the rotating unit 10 and the stationary unit 20. In the present embodiment, the casing 30 includes a frame 31, an upper bracket 32, and a lower bracket 33. The frame 31 is a cylindrical metal member that extends in the vertical direction. The frame 31 is disposed on the radially outer side of the stationary part 20. The stationary part 20 is fixed to the frame 31. The upper bracket 32 is attached to the upper end of the frame 31. The lower bracket 33 is attached to the lower end of the frame 31. *
シャフト11は、上側ブラケット32に設けられる上側軸受34と、下側ブラケット33に設けられる下側軸受35とによって回転可能に支持される。本実施形態では、上側軸受34及び下側軸受35はスリーブ軸受で構成される。なお、上側軸受34及び下側軸受35は、他の軸受で構成されてもよく、例えば玉軸受であってもよい。上側軸受34及び下側軸受35はラジアル軸受として機能する。ポンプ用モータ1は、スラスト方向の荷重を受けるスラスト軸受も有する。これについては後述する。本実施形態では、シャフト11の上端部は、上側ブラケット32から上方に突出する。シャフト11の突出した部分は、上述のインペラ部2に連結される。  The shaft 11 is rotatably supported by an upper bearing 34 provided on the upper bracket 32 and a lower bearing 35 provided on the lower bracket 33. In the present embodiment, the upper bearing 34 and the lower bearing 35 are constituted by sleeve bearings. The upper bearing 34 and the lower bearing 35 may be composed of other bearings, for example, ball bearings. The upper bearing 34 and the lower bearing 35 function as radial bearings. The pump motor 1 also has a thrust bearing that receives a load in the thrust direction. This will be described later. In the present embodiment, the upper end portion of the shaft 11 protrudes upward from the upper bracket 32. The protruding portion of the shaft 11 is connected to the impeller portion 2 described above. *
<3.回転部の詳細><3-1.樹脂部の構造> 図3は、図2に示される回転部10を拡大して示した拡大図である。図4は、図3におけるX-X位置における概略断面図である。  <3. Details of Rotating Unit> <3-1. Structure of Resin Part> FIG. 3 is an enlarged view showing the rotating part 10 shown in FIG. 2 in an enlarged manner. 4 is a schematic cross-sectional view taken along the line XX in FIG. *
図3及び図4に示すように、回転部10は、シャフト11とロータコア12との間に介在して両者を固定する第1の樹脂部R1を有する。第1の樹脂部R1は、シャフト11の外周面に接触するとともに、ロータコア12の内周面に接触する。第1の樹脂部R1は、上下方向に延びる環状構造を有する。本実施形態では、図4に示すように、第1の樹脂部R1は、径方向に突出する突起部R1aを有する。突起部R1aは、ロータコアの上下方向に延びる。突起部R1aは、周方向に等間隔に複数配列される。また、第1の樹脂部R1は、外周にシャフト11を挟んで対向配置される一対の平面部R1bを有する。一対の平面部R1bは上下方向に延びる。複数の突起部R1a及び一対の平面部R1bは、ロータコア12の回り止めとしての役割を果たすことができる。  As shown in FIGS. 3 and 4, the rotating portion 10 includes a first resin portion R <b> 1 that is interposed between the shaft 11 and the rotor core 12 and fixes them. The first resin portion R <b> 1 contacts the outer peripheral surface of the shaft 11 and contacts the inner peripheral surface of the rotor core 12. The first resin portion R1 has an annular structure that extends in the vertical direction. In the present embodiment, as shown in FIG. 4, the first resin portion R1 has a protrusion R1a protruding in the radial direction. The protrusion R1a extends in the vertical direction of the rotor core. A plurality of protrusions R1a are arranged at equal intervals in the circumferential direction. In addition, the first resin portion R1 has a pair of flat surface portions R1b disposed to face each other with the shaft 11 interposed therebetween on the outer periphery. A pair of plane part R1b is extended in an up-down direction. The plurality of protrusions R1a and the pair of flat surfaces R1b can serve as a detent for the rotor core 12. *
回転部10は、シャフト11とロータコア12との間に第1の樹脂部R1が介在した状態で一体化されている。このために、回転部10が水圧によって変形される可能性を低減することができる。また、金型を用いたモールド工程によってシャフト1とロータコア12とを一体化できるために、手作業による圧入等によってシャフト11とロータコア12とを組み付ける工程を省くことができる。このために、回転部10の組み立て時における作業性を向上することができる。  The rotating part 10 is integrated with the first resin part R1 interposed between the shaft 11 and the rotor core 12. For this reason, possibility that the rotation part 10 will be deform | transformed with a hydraulic pressure can be reduced. Further, since the shaft 1 and the rotor core 12 can be integrated by a molding process using a mold, a process of assembling the shaft 11 and the rotor core 12 by manual press-fitting or the like can be omitted. For this reason, workability | operativity at the time of the assembly of the rotation part 10 can be improved. *
図3に示すように、回転部10は、マグネット13の上側に配置される第2の樹脂部R2を有する。本実施形態においては、第2の樹脂部R2は、マグネット13の上面全てを覆い、マグネット13の上面に接触する。第2の樹脂部R2は、上下方向に延びる円筒状である。図4に示すように、本実施形態では、マグネット13は、周方向に等間隔で6つ配置される。第2の樹脂部R2は、6つのマグネット13全ての上面を覆う。なお、マグネット13の数は例示であり、その数は適宜変更されてよい。第
2の樹脂部R2は、第1の樹脂部R1に繋がる。第2の樹脂部R2によって、マグネット13の上面が露出することを防ぎ、マグネット13が錆びることを防止することができる。 
As shown in FIG. 3, the rotating part 10 has a second resin part R <b> 2 arranged on the upper side of the magnet 13. In the present embodiment, the second resin portion R <b> 2 covers the entire top surface of the magnet 13 and contacts the top surface of the magnet 13. The second resin portion R2 has a cylindrical shape extending in the vertical direction. As shown in FIG. 4, in the present embodiment, six magnets 13 are arranged at equal intervals in the circumferential direction. The second resin portion R2 covers the upper surfaces of all six magnets 13. The number of magnets 13 is an example, and the number may be changed as appropriate. The second resin portion R2 is connected to the first resin portion R1. The second resin portion R2 can prevent the upper surface of the magnet 13 from being exposed and prevent the magnet 13 from rusting.
なお、第2の樹脂部R2は、マグネット13の上面を全て覆い、マグネット13の上面は露出しないのが好ましい。ただし、場合によっては、マグネット13の上面の一部が露出してもよい。また、本実施形態では、第2の樹脂部R2の上には、上カバー14が配置される。上カバー14は、例えばステンレス等の金属によって構成できる。上カバー14は、場合によっては設けられなくてもよい。  The second resin portion R2 preferably covers the entire top surface of the magnet 13 and does not expose the top surface of the magnet 13. However, in some cases, a part of the upper surface of the magnet 13 may be exposed. In the present embodiment, the upper cover 14 is disposed on the second resin portion R2. The upper cover 14 can be made of a metal such as stainless steel. The upper cover 14 may not be provided depending on circumstances. *
図3及び図4に示すように、回転部10は、マグネット13の径方向外側に配置される第3の樹脂部R3を有する。本実施形態においては、第3の樹脂部R3は、マグネット13の外周面全てを覆う。第3の樹脂部R3は、上下方向に延びる円筒状であり、6つのマグネット13の外周面全てを覆う。より詳細には、第3の樹脂部R3は、周方向に隣り合うマグネット13の間の隙間を埋める。第3の樹脂部R3は、第2の樹脂部R2に繋がる。第3の樹脂部R3によって、マグネット13の外周面が露出することを防ぎ、マグネット13が錆びることを防止することができる。  As shown in FIGS. 3 and 4, the rotating portion 10 includes a third resin portion R <b> 3 that is disposed on the radially outer side of the magnet 13. In the present embodiment, the third resin portion R3 covers the entire outer peripheral surface of the magnet 13. The third resin portion R <b> 3 has a cylindrical shape extending in the vertical direction and covers all the outer peripheral surfaces of the six magnets 13. More specifically, the third resin portion R3 fills a gap between the magnets 13 adjacent in the circumferential direction. The third resin portion R3 is connected to the second resin portion R2. The third resin portion R3 can prevent the outer peripheral surface of the magnet 13 from being exposed and prevent the magnet 13 from rusting. *
なお、第3の樹脂部R3は、マグネット13の外周面を全て覆い、マグネット13の外周面は露出しないのが好ましい。ただし、場合によっては、マグネット13の外周面の一部が露出してもよい。  The third resin portion R3 preferably covers the entire outer peripheral surface of the magnet 13 and does not expose the outer peripheral surface of the magnet 13. However, in some cases, a part of the outer peripheral surface of the magnet 13 may be exposed. *
図3及び図4に示すように、回転部10は、マグネット13の径方向外側に配置される筒状のカバー部材15を有する。本実施形態では、カバー部材15は、上下方向に延びる円筒状の部材である。カバー部材15は、例えばステンレス等の金属によって構成される。第3の樹脂部R3は、マグネット13の外周面とカバー部材15の内周面とに接触する。第3の樹脂部R3によって、マグネット13とカバー部材15とが一体化されるために、モールド工程によってカバー部材15の組み付けを簡単に行うことができる。  As shown in FIGS. 3 and 4, the rotating unit 10 includes a cylindrical cover member 15 disposed on the radially outer side of the magnet 13. In the present embodiment, the cover member 15 is a cylindrical member extending in the vertical direction. The cover member 15 is made of a metal such as stainless steel. The third resin portion R3 is in contact with the outer peripheral surface of the magnet 13 and the inner peripheral surface of the cover member 15. Since the magnet 13 and the cover member 15 are integrated by the third resin portion R3, the cover member 15 can be easily assembled by a molding process. *
図3に示すように、回転部10は、ロータコア12の下面と接触し、シャフト11の径方向外側に配置される第1のベース16を有する。本実施形態においては、第1のベース16は金属によって構成される。第1のベース16は、中央部に上下方向に延びる貫通孔16aを有する。平面視において、貫通孔16aは円形状である。中心軸Aは、貫通孔16aの中心を通る。シャフト11は、貫通孔16aに挿入される。  As shown in FIG. 3, the rotating unit 10 has a first base 16 that is in contact with the lower surface of the rotor core 12 and is arranged on the radially outer side of the shaft 11. In the present embodiment, the first base 16 is made of metal. The first base 16 has a through hole 16a extending in the vertical direction at the center. In a plan view, the through hole 16a has a circular shape. The central axis A passes through the center of the through hole 16a. The shaft 11 is inserted into the through hole 16a. *
回転部10は、シャフト11と第1のベース16との間に介在する第4の樹脂部R4を有する。本実施形態では、第4の樹脂部R4は、上下方向に延びる円筒状である。第4の樹脂部R4は、シャフト11の外周面と、第1のベース16の内周面とに接触する。第4の樹脂部R4は、第1の樹脂部R1と繋がる。以上からわかるように、第1の樹脂部R1、第2の樹脂部R2、第3の樹脂部R3、及び、第4の樹脂部R4は、一つながりになっている。このために、第1の樹脂部R1、第2の樹脂部R2、第3の樹脂部R3、及び、第4の樹脂部R4は、1回の樹脂注入によって形成することができる。本構成では、金型を用いたモールド工程によって、シャフト11と第1のベース16とを一体化することができる。このために、本構成によれば、手作業による圧入等によって第1のベース16にシャフト11を組み付ける工程を省くことができ、回転部10の組み立て時における作業性を向上することができる。  The rotating part 10 has a fourth resin part R4 interposed between the shaft 11 and the first base 16. In the present embodiment, the fourth resin portion R4 has a cylindrical shape extending in the vertical direction. The fourth resin portion R4 is in contact with the outer peripheral surface of the shaft 11 and the inner peripheral surface of the first base 16. The fourth resin portion R4 is connected to the first resin portion R1. As can be seen from the above, the first resin portion R1, the second resin portion R2, the third resin portion R3, and the fourth resin portion R4 are connected. Therefore, the first resin portion R1, the second resin portion R2, the third resin portion R3, and the fourth resin portion R4 can be formed by a single resin injection. In this configuration, the shaft 11 and the first base 16 can be integrated by a molding process using a mold. For this reason, according to this configuration, the step of assembling the shaft 11 to the first base 16 by manual press-fitting or the like can be omitted, and workability at the time of assembling the rotating unit 10 can be improved. *
図3に示すように、回転部10は、第1のベース16の下部に設けられるシール部17を有する。シール部17は、第1のベース16の内周面及びシャフト11の外周面と周方向の一周に亘って接触する。詳細には、第1のベース16は、後述のように、下面に下方に延びる環状の第2の凸部163を有する。シール部17は、第2の凸部163の内周面とシャフト11の外周面に接触する。シール部17によって、第1のベース16の下面側から、水が回転部10の内部に浸入することを防止できる。  As shown in FIG. 3, the rotating part 10 has a seal part 17 provided at the lower part of the first base 16. The seal portion 17 is in contact with the inner peripheral surface of the first base 16 and the outer peripheral surface of the shaft 11 over one circumference in the circumferential direction. Specifically, the first base 16 has an annular second convex portion 163 that extends downward on the lower surface, as will be described later. The seal portion 17 is in contact with the inner peripheral surface of the second convex portion 163 and the outer peripheral surface of the shaft 11. The seal portion 17 can prevent water from entering the inside of the rotating portion 10 from the lower surface side of the first base 16. *
<3-2.位置決め構造> 図5は、本発明の実施形態に係るポンプ用モータ1が有する第1のベース16の概略斜視図である。なお、図5は、第1のベース16を斜め上方から見た図である。図3及び図5に示すように、第1のベース16は、上下方向に並ぶ3つの円筒部16b、16c、16dを有する。3つの円筒部16b~16dは同一部材である。一番上の第1の円筒部16bに比べて、中間に位置する第2の円筒部16cは径方向のサイズが小さい。また、一番下の第3の円筒部16dは、第1の円筒部16b及び第2の円筒部16cよりも径方向のサイズが大きい。  <3-2. Positioning Structure> FIG. 5 is a schematic perspective view of the first base 16 included in the pump motor 1 according to the embodiment of the present invention. FIG. 5 is a view of the first base 16 as viewed obliquely from above. As shown in FIGS. 3 and 5, the first base 16 has three cylindrical portions 16b, 16c, and 16d arranged in the vertical direction. The three cylindrical portions 16b to 16d are the same member. Compared to the uppermost first cylindrical portion 16b, the second cylindrical portion 16c located in the middle has a smaller radial size. Further, the lowermost third cylindrical portion 16d has a larger radial size than the first cylindrical portion 16b and the second cylindrical portion 16c. *
図3及び図5に示すように、第1のベース16は第1の凸部161を有する。第1の凸部161は、詳細には、第1の円筒部16bの上面に形成され、上方に延びる。第1の凸部161は、第1の円筒部16aと同一部材である。なお、第1の凸部161は、第1の円筒部16aと別部材でもよい。本実施形態においては、第1の凸部161は、軸方向に延びる正六角柱状である。中心軸Aは、正六角柱状の第1の凸部161の中心を通る。第1の凸部161は、平面視において円形状の開口を有する。当該開口は、貫通孔16aに連続する。図3に示すように、ロータコア12は、第1の凸部161の上面に載置される。換言すると、第1の凸部161の上面にロータコア12の下面が接触する。第1の凸部161は、ロータコア12及びロータコア12に取り付けられた複数のマグネット13の周方向及び径方向の位置を位置決めする。これについて、以下に説明する。  As shown in FIGS. 3 and 5, the first base 16 has a first convex portion 161. Specifically, the first convex portion 161 is formed on the upper surface of the first cylindrical portion 16b and extends upward. The first convex portion 161 is the same member as the first cylindrical portion 16a. The first convex portion 161 may be a separate member from the first cylindrical portion 16a. In the present embodiment, the first convex portion 161 has a regular hexagonal column shape extending in the axial direction. The central axis A passes through the center of the first convex portion 161 having a regular hexagonal column shape. The first convex portion 161 has a circular opening in plan view. The opening continues to the through hole 16a. As shown in FIG. 3, the rotor core 12 is placed on the upper surface of the first convex portion 161. In other words, the lower surface of the rotor core 12 is in contact with the upper surface of the first convex portion 161. The 1st convex part 161 positions the position of the circumferential direction and radial direction of the several magnet 13 attached to the rotor core 12 and the rotor core 12. As shown in FIG. This will be described below. *
図4に示すように、ロータコア12の外周面には、周方向に間隔をあけて配置され、径方向に突出する複数の突起部12aが設けられる。本実施形態では、突起部12aの数は6つであり、周方向に等間隔に配置される。突起部12aは、平面視において台形状であり、上下方向に延びる。マグネット13は、隣り合う突起部12aの間に配置される。本実施形態では、隣り合う突起部12aの全ての間にマグネット13が配置される。各マグネット13の周方向の両端部は、それぞれ、突起部12aに接触する。すなわち、複数のマグネット13は、ロータコア12に対して周方向の位置を位置決めされた状態で取り付けられる。本実施形態の構成によれば、複数の突起部12aによって、複数のマグネット13の周方向の位置を位置決めしながら取り付けることができるために、回転部10の組み立て作業の作業性を向上することができる。  As shown in FIG. 4, the outer peripheral surface of the rotor core 12 is provided with a plurality of projecting portions 12a that are arranged at intervals in the circumferential direction and project in the radial direction. In the present embodiment, the number of protrusions 12a is six, and they are arranged at equal intervals in the circumferential direction. The protrusion 12a has a trapezoidal shape in a plan view and extends in the vertical direction. The magnet 13 is disposed between the adjacent protrusions 12a. In this embodiment, the magnet 13 is arrange | positioned between all the adjacent protrusion parts 12a. Both end portions in the circumferential direction of each magnet 13 are in contact with the protrusion 12a. That is, the plurality of magnets 13 are attached to the rotor core 12 with their circumferential positions positioned. According to the configuration of the present embodiment, the plurality of protrusions 12a can be attached while positioning the circumferential positions of the plurality of magnets 13, thereby improving the workability of the assembly operation of the rotating unit 10. it can. *
なお、図4に示すように、本実施形態では、ロータコア12とマグネット13とが対向する面は同一形状である。詳細には、ロータコア12とマグネット13とが対向する面は、互いの平面同士を対向させた状態になっている。このために、ロータコア12とマグネット13との間の隙間を無くして、マグネット13を効率良く配置することができる。なお、ロータコア12とマグネット13が対向する面は、平面同士ではなく、例えば同一の湾曲面同士を対向させた状態であってもよい。この場合にも、ロータコア12とマグネット13との間の隙間を無くすことができる。  In addition, as shown in FIG. 4, in this embodiment, the surface where the rotor core 12 and the magnet 13 oppose is the same shape. In detail, the surfaces where the rotor core 12 and the magnet 13 are opposed are in a state where the planes are opposed to each other. For this reason, the gap between the rotor core 12 and the magnet 13 can be eliminated and the magnet 13 can be arranged efficiently. In addition, the surface where the rotor core 12 and the magnet 13 are opposed may be in a state where the same curved surfaces are opposed to each other, for example. Also in this case, the gap between the rotor core 12 and the magnet 13 can be eliminated. *
図3に示すように、マグネット13は、ロータコア12の下面よりも下側に突出する突出部13aを有する。本実施形態では、マグネット13は6つあるが、いずれのマグネット13も突出部13aを有する。図6は、第1の凸部161とマグネット13の突出部13aとの関係を模式的に示す平面図である。図6に示すように、第1の凸部161の外周面に、突出部13aの径方向内側の面が接触する。詳細には、各突出部13aの径方向内側の平面が、第1の凸部161の外周を構成する平面と接触する。これにより、ロータコア12及び6つのマグネット13は、径方向の位置を位置決めされる。また、突出部13aの平面と、第1の凸部161の平面とが接触するために、ロータコア12の第1のベース16に対する回転が抑制される。このために、ロータコア12、及び、ロータコア12に対する周方向の位置決めがなされた6つのマグネット13は、第1の凸部161によって周方向の位置を位置決めされる。  As shown in FIG. 3, the magnet 13 has a protruding portion 13 a that protrudes below the lower surface of the rotor core 12. In the present embodiment, there are six magnets 13, but each magnet 13 has a protruding portion 13a. FIG. 6 is a plan view schematically showing the relationship between the first convex portion 161 and the protruding portion 13 a of the magnet 13. As shown in FIG. 6, the radially inner surface of the protruding portion 13 a contacts the outer peripheral surface of the first convex portion 161. Specifically, the radially inner plane of each protrusion 13 a comes into contact with the plane that forms the outer periphery of the first convex portion 161. Thereby, the rotor core 12 and the six magnets 13 are positioned in the radial direction. Moreover, since the plane of the protrusion 13a and the plane of the first protrusion 161 are in contact with each other, the rotation of the rotor core 12 with respect to the first base 16 is suppressed. For this reason, the rotor core 12 and the six magnets 13 positioned in the circumferential direction with respect to the rotor core 12 are positioned in the circumferential direction by the first convex portion 161. *
なお、本実施形態では、第1の凸部161は、マグネット13の数が6つであることに対応して正六角柱状とされたが、これは例示である。第1の凸部161の形状は、例えばマグネット13の数又は形状に合わせて、種々の形状に変更されてよい。  In the present embodiment, the first convex portion 161 has a regular hexagonal prism shape corresponding to the number of magnets 13 being six, but this is merely an example. The shape of the 1st convex part 161 may be changed into various shapes according to the number or shape of the magnet 13, for example. *
図7は、第1の凸部161とマグネット13の突出部13aとの関係を模式的に示す拡大断面図である。図7に示すように、マグネット13の下面は、軸方向において、第1のベース16から離れている。換言すると、マグネット13の下面と第1のベース16との間には隙間がある。この隙間には、樹脂が充填されてもよい。ステータコア12の軸方向の位置決めは、マグネット13によって行われず、ステータコア12本体と第1の凸部161との接触によって行われる。本構成では、回転部10の組み立て時において、マグネット13に第1のベース16から軸方向の力が加わることを避けることができる。このために、回転部10の組み立て作業中に、マグネット13がロータコア12から外れたり損傷したりすることを抑制することができる。  FIG. 7 is an enlarged cross-sectional view schematically showing the relationship between the first convex portion 161 and the protruding portion 13 a of the magnet 13. As shown in FIG. 7, the lower surface of the magnet 13 is separated from the first base 16 in the axial direction. In other words, there is a gap between the lower surface of the magnet 13 and the first base 16. This gap may be filled with resin. Positioning of the stator core 12 in the axial direction is not performed by the magnet 13, but is performed by contact between the stator core 12 body and the first convex portion 161. In this configuration, it is possible to avoid an axial force from being applied to the magnet 13 from the first base 16 when the rotating unit 10 is assembled. For this reason, it can suppress that the magnet 13 remove | deviates from the rotor core 12, or is damaged during the assembly operation of the rotation part 10. FIG. *
図8は、カバー部材15と第1のベース16との関係を模式的に示す拡大断面図である。図8においては、カバー部材15及び第1のベース16は、片側半分だけが示されている。図8に示すように、第1のベース16の外周には、径方向に突出するフランジ部162が設けられる。フランジ部162は、詳細には、第1の円筒部16bの外周面から径方向に突出する円環状の部分である。カバー部材15の下面は、フランジ部162に接触する。カバー部材15は、フランジ部162が形成する径方向の段差によって、軸方向の位置決めが行われる。  FIG. 8 is an enlarged cross-sectional view schematically showing the relationship between the cover member 15 and the first base 16. In FIG. 8, only one half of the cover member 15 and the first base 16 is shown. As shown in FIG. 8, a flange portion 162 protruding in the radial direction is provided on the outer periphery of the first base 16. Specifically, the flange portion 162 is an annular portion protruding in the radial direction from the outer peripheral surface of the first cylindrical portion 16b. The lower surface of the cover member 15 contacts the flange portion 162. The cover member 15 is positioned in the axial direction by a radial step formed by the flange portion 162. *
なお、フランジ部162の上面には、円環状の溝が設けられてよく、カバー部材15の下部が当該溝に嵌め込まれることによって、カバー部材15の位置決めが行われてもよい。また、本実施形態では、第1の円筒部16bの外周面とカバー部材15の内周面とは接触しており、カバー部材15は、第1の円筒部16bによって径方向の位置決めを行われる。  An annular groove may be provided on the upper surface of the flange portion 162, and the cover member 15 may be positioned by fitting the lower portion of the cover member 15 into the groove. In the present embodiment, the outer peripheral surface of the first cylindrical portion 16b and the inner peripheral surface of the cover member 15 are in contact with each other, and the cover member 15 is positioned in the radial direction by the first cylindrical portion 16b. . *
<3-3.回転部の組み立て手順> ここで、以上のように構成される回転部10の例示的な組み立て手順を説明する。まず、磁性鋼板を積層してロータコア12を形成する。次に、ロータコア12の外周面に、複数のマグネット13を接着剤で貼り付ける。複数のマグネット13のそれぞれは、ロータコア12の突起部12aによって周方向の位置決めを行われ、ロータコア12の外周面に取り付けられる。また、複数のマグネット13のそれぞれは、ロータコア12の下面より所定量だけ下側に突出されてロータコア12に取り付けられる。なお、所定量突出された部分が、上述の突出部13aである。  <3-3. Assembly Procedure of Rotating Unit> Here, an exemplary assembly procedure of the rotating unit 10 configured as described above will be described. First, the rotor core 12 is formed by laminating magnetic steel plates. Next, a plurality of magnets 13 are attached to the outer peripheral surface of the rotor core 12 with an adhesive. Each of the plurality of magnets 13 is positioned in the circumferential direction by the protrusion 12 a of the rotor core 12 and attached to the outer peripheral surface of the rotor core 12. Each of the plurality of magnets 13 protrudes downward from the lower surface of the rotor core 12 by a predetermined amount and is attached to the rotor core 12. In addition, the part protruded by the predetermined amount is the above-described protrusion 13a. *
マグネット13が取り付けられたロータコア12は、第1の凸部161に載置される。この際、突出部13aの径方向内側の平面が、第1の凸部161の外周面を構成する平面と接触して位置調整がなされる。ロータコア12及びマグネット16は、第1の凸部161によって位置決めされる。この後、カバー部材15が第1のベース16に取り付けられる。  The rotor core 12 to which the magnet 13 is attached is placed on the first convex portion 161. At this time, the radial inner plane of the protruding portion 13 a is brought into contact with the plane constituting the outer peripheral surface of the first convex portion 161 to adjust the position. The rotor core 12 and the magnet 16 are positioned by the first convex portion 161. Thereafter, the cover member 15 is attached to the first base 16. *
第1のベース16及びカバー部材15と一体にされたロータコア12と、シャフト11とを、金型によって位置決めしてモールド工程が行われる。モールド工程では、樹脂がカバー部材15の内側に流し込まれる。モールド工程終了後、カバー部材15の上側に上カバー14が取り付けられ、回転部10の組み立てが終了する。この後、マグネット13の着磁が行われる。本実施形態の構成では、第1の凸部161によって、ロータコア12及びマグネット13の位置決めが行われた後、モールド工程が行われる。このために、各部品の位置関係を適切な状態として、回転部10の組み立てを行うことができる。  The rotor core 12 integrated with the first base 16 and the cover member 15 and the shaft 11 are positioned by a mold to perform a molding process. In the molding process, resin is poured into the cover member 15. After the molding process is completed, the upper cover 14 is attached to the upper side of the cover member 15, and the assembly of the rotating unit 10 is completed. Thereafter, the magnet 13 is magnetized. In the configuration of the present embodiment, after the rotor core 12 and the magnet 13 are positioned by the first convex portion 161, the molding process is performed. For this reason, the rotating part 10 can be assembled with the positional relationship of each component in an appropriate state. *
<3-4.マグネットの位置確認構
造> 本実施形態では、カバー部材15によってマグネット13が覆われた状態で、マグネット13の着磁が行われる。この点を考慮して、第1のベース16は、マグネット13の位置を外部から確認可能とする位置確認部を有する。位置確認部よって、カバー部材15に覆われたマグネット13の位置を確認できるために、マグネット13の着磁を適切に行うことができる。 
<3-4. Magnet Position Confirmation Structure> In the present embodiment, the magnet 13 is magnetized while the magnet 13 is covered by the cover member 15. Considering this point, the first base 16 has a position confirmation unit that allows confirmation of the position of the magnet 13 from the outside. Since the position of the magnet 13 covered with the cover member 15 can be confirmed by the position confirmation unit, the magnet 13 can be appropriately magnetized.
位置確認部は、例えば、第1のベース16に形成した図形、文字、記号等のマーキングでもよいが、本実施形態では、第1のベース16に形成された構造が、位置確認部として利用される。本実施形態では、位置確認部は、第1の凸部161の、突出部13aの径方向内側の面と接触する面に平行な面を有する。本構成によれば、マグネット13を着磁する着磁機に回転部10をセットする際の位置決め部として、位置確認部を利用することが可能であり、マグネット13を着磁する作業の作業性を向上することができる。以下に、本実施形態の位置確認部のより具体的な構造を説明する  The position confirmation unit may be, for example, a marking such as a figure, a character, or a symbol formed on the first base 16, but in this embodiment, the structure formed on the first base 16 is used as the position confirmation unit. The In the present embodiment, the position confirmation unit has a surface parallel to the surface of the first convex portion 161 that is in contact with the radially inner surface of the protrusion 13a. According to this configuration, the position confirmation unit can be used as the positioning unit when setting the rotating unit 10 in the magnetizing machine that magnetizes the magnet 13, and the workability of magnetizing the magnet 13 is improved. Can be improved. Hereinafter, a more specific structure of the position confirmation unit of this embodiment will be described.
図9は、本発明の実施形態に係るポンプ用モータ1が有する第1のベース16の概略斜視図である。なお、図9は、第1のベース16を斜め下方から見た図である。図9に示すように、第1のベース16は、下面に下方に延びる環状の第2の凸部163を有する。第2の凸部163は、第3の円筒部16dと同一部材である。なお、第2の凸部163は、第3の円筒部16dと別部材であってもよい。  FIG. 9 is a schematic perspective view of the first base 16 included in the pump motor 1 according to the embodiment of the present invention. FIG. 9 is a view of the first base 16 as viewed obliquely from below. As shown in FIG. 9, the first base 16 has an annular second convex portion 163 that extends downward on the lower surface. The second convex portion 163 is the same member as the third cylindrical portion 16d. The second convex portion 163 may be a separate member from the third cylindrical portion 16d. *
第2の凸部163の内周面は、平面視において円形である。第2の凸部163の内周面は、貫通孔16aの周囲を囲む。中心軸Aは、第2の凸部163の中心を通る。第2の凸部163は、第1のDカット面163aを有する。第1のDカット面163aは、円環状の第2の凸部163の外周面に設けられた平面状の部分である。第1のDカット面163aは、中心軸Aと平行である。なお、本実施形態では、第1のDカット面163aは、2つ設けられている。2つの第1のDカット面163aは、中心軸Aを挟んで対称配置される。第1のDカット面163aの数は2つに限らず、その数は適宜変更されてよい。  The inner peripheral surface of the second convex portion 163 is circular in plan view. The inner peripheral surface of the second convex portion 163 surrounds the periphery of the through hole 16a. The central axis A passes through the center of the second convex portion 163. The 2nd convex part 163 has the 1st D cut surface 163a. The first D-cut surface 163a is a planar portion provided on the outer peripheral surface of the annular second convex portion 163. The first D-cut surface 163a is parallel to the central axis A. In the present embodiment, two first D-cut surfaces 163a are provided. The two first D-cut surfaces 163a are arranged symmetrically with respect to the central axis A. The number of first D-cut surfaces 163a is not limited to two, and the number may be changed as appropriate. *
本実施形態では、位置確認部は、第2の凸部163が有する第1のDカット面163aである。第1のDカット面163aは、第1の凸部161の外周面を構成する6つの平面のうちの2つと平行になっている。なお、この2つの平面は、第1の凸部161の、突出部13aの径方向内側の面と接触する面である。各マグネット13は、第1の凸部161の外周面を構成する6つの平面のうちの一つと、位置決めされた状態で接触する。このために、第1のDカット面163aの位置を確認することによって、6つのマグネット13がどのように配置されているかを把握することができる。第2の凸部163のDカット面は、第1の凸部161の形状に対応させて形成し易いために、位置確認部を簡単に形成することができる。  In the present embodiment, the position confirmation part is the first D-cut surface 163a of the second convex part 163. The first D-cut surface 163a is parallel to two of the six planes constituting the outer peripheral surface of the first convex portion 161. In addition, these two planes are surfaces which contact the surface of the 1st convex part 161 on the radial inside of the protrusion part 13a. Each magnet 13 is in contact with one of six planes constituting the outer peripheral surface of the first convex portion 161 in a positioned state. For this reason, it is possible to grasp how the six magnets 13 are arranged by confirming the position of the first D-cut surface 163a. Since the D-cut surface of the second convex portion 163 is easily formed corresponding to the shape of the first convex portion 161, the position confirmation portion can be easily formed. *
第1のDカット面163aは、マグネット13を着磁するための着磁機に回転部10をセットする際に、位置決め面として使用されるのが好ましい。これによれば、第1のDカット面163aを利用した位置決めを行うことがマグネット13の位置確認を兼ねるために、作業性が向上する。  The first D-cut surface 163a is preferably used as a positioning surface when the rotating unit 10 is set in a magnetizer for magnetizing the magnet 13. According to this, since the positioning using the first D-cut surface 163a also serves to confirm the position of the magnet 13, workability is improved. *
なお、以上に説明した位置確認部の構造は例示であり、例えば第1の凸部161の形状又は着磁機の構造等によって、位置確認部の構造は適宜変更されてよい。  In addition, the structure of the position confirmation part demonstrated above is an illustration, For example, the structure of a position confirmation part may be changed suitably with the shape of the 1st convex part 161, the structure of a magnetizer, etc. FIG. *
<4.スラスト軸受の詳細> 図2に示すように、ポンプ用モータ1は、シャフト11を支持するスラスト軸受40を有する。スラスト軸受40は、回転板41と静止板42とを有する。回転板41は、第1のベース16の下側に取り付けられる。回転板41は、回転部10と共に回転する。静止板42は、回転板41と軸方向に対向して配置される。本実施形態では、静止板42は、回転板41の下側に配置される。回転板41と静止板42との間には、潤滑剤として機能する水が介在する。スラスト軸受40により、軸方向の力を受ける回転部10を滑らかに回転させることができる。  <4. Details of Thrust Bearing> As shown in FIG. 2, the pump motor 1 includes a thrust bearing 40 that supports the shaft 11. The thrust bearing 40 includes a rotating plate 41 and a stationary plate 42. The rotating plate 41 is attached to the lower side of the first base 16. The rotating plate 41 rotates together with the rotating unit 10. The stationary plate 42 is disposed to face the rotating plate 41 in the axial direction. In the present embodiment, the stationary plate 42 is disposed below the rotating plate 41. Water that functions as a lubricant is interposed between the rotating plate 41 and the stationary plate 42. The thrust bearing 40 can smoothly rotate the rotating unit 10 that receives the axial force. *
本実施形態では、回転板41及び静止板42は、炭化ケイ素(SiC)によって構成される。ただし、これは例示であり、回転板41及び静止板42を構成する材料は適宜変更されてよい。例えば、回転板41及び静止板42はカーボン等で構成されてよい。炭化ケイ素が使用されることにより、モータ1の高速運転時の摩耗を低減できる。また、炭化ケイ素が使用されることにより、軸方向に負荷がかかって回転板41と静止板42とが接触した場合における、回転板41及び静止板42の摩耗を低減できる。  In the present embodiment, the rotating plate 41 and the stationary plate 42 are made of silicon carbide (SiC). However, this is an exemplification, and the materials constituting the rotating plate 41 and the stationary plate 42 may be appropriately changed. For example, the rotating plate 41 and the stationary plate 42 may be made of carbon or the like. By using silicon carbide, wear during high-speed operation of the motor 1 can be reduced. Further, by using silicon carbide, it is possible to reduce wear of the rotating plate 41 and the stationary plate 42 when a load is applied in the axial direction and the rotating plate 41 and the stationary plate 42 contact each other. *
図10は、第1のベース16と回転板41との関係を示す概略斜視図である。図10に示すように、第1のDカット面163aは環状に設けられる回転板42の内周面に接触する。本実施形態では、回転板41は円環状である。また、回転板41の内周面には、中心軸Aと平行な方向に延びる第1の平面部41aが設けられる。第1の平面部41aは2つ設けられ、2つの第1の平面部41aは、中心軸Aを挟んで対称配置される。第1のDカット面163aは、第1の平面部41aと対向配置され、両者は互いに接触する。  FIG. 10 is a schematic perspective view showing the relationship between the first base 16 and the rotating plate 41. As shown in FIG. 10, the first D-cut surface 163a is in contact with the inner peripheral surface of the rotating plate 42 provided in an annular shape. In the present embodiment, the rotating plate 41 has an annular shape. A first flat surface portion 41 a extending in a direction parallel to the central axis A is provided on the inner peripheral surface of the rotating plate 41. Two first flat portions 41a are provided, and the two first flat portions 41a are arranged symmetrically with the central axis A in between. The first D-cut surface 163a is disposed to face the first flat surface portion 41a, and both are in contact with each other. *
第1のDカット面163aは、第1の平面部41aと対になって、回転板41が第1のベース16に対して回転することを防止する。回転板41は、内周面が第2の凸部163の外周面と接触することによって、径方向及び周方向の位置決めを行われる。すなわち、第1のベース16は、回転板41を位置決めした状態で固定することができる。なお、回転板41の第1のベース16に対する固定には、例えば接着剤が用いられる。Dカット面を利用した回り止めは、回転板41を耐摩耗性に優れるSiC等の素材で形成する場合でも簡単に形成することができる。  The first D-cut surface 163 a is paired with the first flat surface portion 41 a to prevent the rotating plate 41 from rotating with respect to the first base 16. The rotating plate 41 is positioned in the radial direction and the circumferential direction when the inner peripheral surface is in contact with the outer peripheral surface of the second convex portion 163. That is, the first base 16 can be fixed in a state where the rotary plate 41 is positioned. For example, an adhesive is used to fix the rotating plate 41 to the first base 16. The rotation stopper using the D-cut surface can be easily formed even when the rotating plate 41 is formed of a material such as SiC having excellent wear resistance. *
図2に示すように、静止板42の下側には、第2のベース43が取り付けられる。図11は、第2のベース43と静止板42との関係を示す概略斜視図である。図12は、静止部42を取り外した第2のベース43の概略斜視図である。図12は、斜め上方から見た図である。  As shown in FIG. 2, a second base 43 is attached to the lower side of the stationary plate 42. FIG. 11 is a schematic perspective view showing the relationship between the second base 43 and the stationary plate 42. FIG. 12 is a schematic perspective view of the second base 43 with the stationary part 42 removed. FIG. 12 is a view as seen obliquely from above. *
図11に示すように、静止板42は、円環状に設けられる。より詳細には、静止板42は、外周に第2のDカット面42aを有する。第2のDカット面42aは、円環状の静止板42の外周に設けた平面状の部分である。第2のDカット面42aは、中心軸Aと平行である。なお、本実施形態では、第2のDカット面42aは、2つ設けられている。2つの第2のDカット面42aは、中心軸Aを挟んで対称配置される。第2のDカット面42aの数は2つに限らず、その数は適宜変更されてよい。  As shown in FIG. 11, the stationary plate 42 is provided in an annular shape. More specifically, the stationary plate 42 has a second D-cut surface 42a on the outer periphery. The second D-cut surface 42 a is a flat portion provided on the outer periphery of the annular stationary plate 42. The second D-cut surface 42a is parallel to the central axis A. In the present embodiment, two second D-cut surfaces 42a are provided. The two second D-cut surfaces 42a are arranged symmetrically with respect to the central axis A. The number of second D-cut surfaces 42a is not limited to two, and the number may be changed as appropriate. *
図12に示すように、第2のベース43は円環状に設けられる。第2のベース43の中央開口43aの周囲には、上方に延びる円環状の壁部43bが設けられる。また、第2のベース43は回り止め部43cを有する。回り止め部43cは、外縁部に設けられ、上方に延びる。回り止め部43cには、第2の平面部43dが設けられる。第2の平面部43dは、中心軸Aに平行である。本実施形態では、第2の平面部43dは2つ設けられている。2つの第2の平面部43dは、中心軸Aを挟んで対称配置される。  As shown in FIG. 12, the second base 43 is provided in an annular shape. Around the central opening 43a of the second base 43, an annular wall portion 43b extending upward is provided. Further, the second base 43 has a rotation preventing portion 43c. The rotation stopper 43c is provided at the outer edge and extends upward. The rotation preventing portion 43c is provided with a second flat surface portion 43d. The second plane portion 43d is parallel to the central axis A. In the present embodiment, two second flat portions 43d are provided. The two second flat portions 43d are arranged symmetrically with the central axis A in between. *
第2のベース43に取り付けられた静止板42の内周面は、壁部43bの外周面に接触する。また、第2の平面部43dは、第2のDカット面42aに接触する。詳細には、第2の平面部43dは、第2のDカット面42aと対向配置され、両者は互いに接触する。これらにより、静止板42は第2のベース43に対して位置決めされた状態で固定することができる。なお、静止板42の第2のベース43に対する固定には、例えば接着剤が用いられる。静止板42を耐摩耗性に優れるSiC等の素材で形成する場合でも、静止板42にDカット面を形成することは簡単にできる。なお、本実施形態では、回り止め部43cの上面には何も配置されていないが、静止板42の一部が配置されてもよい。これによって、回転板41と摺動する面を増やすことができる。  The inner peripheral surface of the stationary plate 42 attached to the second base 43 is in contact with the outer peripheral surface of the wall portion 43b. Further, the second flat surface portion 43d is in contact with the second D-cut surface 42a. Specifically, the second flat surface portion 43d is disposed opposite to the second D-cut surface 42a, and both are in contact with each other. Accordingly, the stationary plate 42 can be fixed in a state of being positioned with respect to the second base 43. For example, an adhesive is used for fixing the stationary plate 42 to the second base 43. Even when the stationary plate 42 is formed of a material such as SiC having excellent wear resistance, it is easy to form the D-cut surface on the stationary plate 42. In the present embodiment, nothing is arranged on the upper surface of the rotation stopper 43c, but a part of the stationary plate 42 may be arranged. Thereby, the surface which slides with the rotating plate 41 can be increased. *
図11に示すように、静止板42は、回転板41と対向する面に、周方向に並ぶ凹凸を有する。凹凸は等間隔に配置されてもよいが、本実施形態では、凹凸は等間隔に配置されていない。凸部は1種類であるが、凹部42bは、一対の幅の広い凹部と、一対の幅の狭い凹部との2種類で構成される。一対の幅の広い凹部、及び、一対の幅の狭い凹部は、それぞれ、中心軸Aを挟んで対称配置される。静止部42に形成される凹部42bは、回転板41と静止板42との間に効率良く水を導くことができる。また、凹部42bは、回転板41と静止板42との間にある砂等の異物を外部に効率良く排出することができる。  As shown in FIG. 11, the stationary plate 42 has unevenness arranged in the circumferential direction on the surface facing the rotating plate 41. The irregularities may be arranged at equal intervals, but in this embodiment, the irregularities are not arranged at equal intervals. Although the convex portion is of one type, the concave portion 42b includes two types of a pair of wide concave portions and a pair of narrow concave portions. The pair of wide recesses and the pair of narrow recesses are arranged symmetrically with respect to the central axis A, respectively. The recess 42 b formed in the stationary part 42 can efficiently guide water between the rotating plate 41 and the stationary plate 42. Moreover, the recessed part 42b can discharge | emit foreign substances, such as sand between the rotating plate 41 and the stationary plate 42, efficiently outside. *
図2に示すように、第2のベース43は、一対のピン44により支持される。一対のピン44は、下側ブラケット33に固定される。図13は、静止板42が取り付けられた第2のベース43を下側から見た概略斜視図である。図13に示すように、第2のベース43の下面には一対のピン穴43eが形成される。本実施形態では、ピン穴43eは、球面状の窪みである。一対のピン穴43eは、中心軸Aを挟んで対称配置される。一対のピン穴43eには、一対のピン44の上端部が挿入される。これにより、一対のピン44は、第2のベース43の下面を支持し、中心軸Aを挟んで対称配置される。一対のピン44は、静止板42に設けられる凹部42bと対向する箇所に設けられる。  As shown in FIG. 2, the second base 43 is supported by a pair of pins 44. The pair of pins 44 are fixed to the lower bracket 33. FIG. 13 is a schematic perspective view of the second base 43 to which the stationary plate 42 is attached as viewed from below. As shown in FIG. 13, a pair of pin holes 43 e are formed on the lower surface of the second base 43. In the present embodiment, the pin hole 43e is a spherical recess. The pair of pin holes 43e are arranged symmetrically with the central axis A in between. The upper ends of the pair of pins 44 are inserted into the pair of pin holes 43e. Accordingly, the pair of pins 44 supports the lower surface of the second base 43 and is disposed symmetrically with the central axis A interposed therebetween. The pair of pins 44 are provided at locations facing the recesses 42 b provided in the stationary plate 42. *
本実施形態の構成によれば、一対のピン44を支点として静止板42を傾けることができるために、回転部10の調心を自動的に行うことができる。なお、上述のように、一対のピン44と凹部42bとが対向しているために、静止板42の凸部を回転板41と適切に接触させることができる。  According to the configuration of the present embodiment, the stationary plate 42 can be tilted with the pair of pins 44 as fulcrums, so that the rotating unit 10 can be automatically aligned. As described above, since the pair of pins 44 and the concave portion 42 b face each other, the convex portion of the stationary plate 42 can be appropriately brought into contact with the rotating plate 41. *
<5.その他> 以上に示した実施形態や適宜説明した変形例の構成は、本発明の例示にすぎない。実施形態や変形例の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、以上に示した実施形態及び複数の変形例は、可能な範囲で組み合わせて実施されてよい。 <5. Others> The configuration of the embodiment described above and the modified example described as appropriate is merely an example of the present invention. The configuration of the embodiment and the modification may be changed as appropriate without departing from the technical idea of the present invention. In addition, the above-described embodiment and a plurality of modification examples may be combined and implemented within a possible range.
本発明は、例えば水中ポンプに使用されるモータに好適である。 The present invention is suitable for a motor used for, for example, a submersible pump.
1    ポンプ用モータ  10   回転部    11   シャフト  12   ロータコア  12a  突起部  13   マグネット  13a  突出部  15   カバー部材  16   第1のベース  17   シール部  20   静止部  40   スラスト軸受  41   回転板  42   静止板  42a  第2のDカット面  43   第2のベース  43c  回り止め部  43d  第2の平面部  44   ピン  161  第1の凸部  162  フランジ部  163  第2の凸部  163a 第1のDカット面(位置確認部)  A    中心軸  R1   第1の樹脂部  R2   第2の樹脂部  R3   第3の樹脂部  R4   第4の樹脂部 1 Pump motor 10 Rotating part 11 Shaft 12 Rotor core 12a Protruding part 13 Magnet Protruding part 15 Covering member 16 First part 17 Sealing part 20 Rotating part 41 Thrust bearing 41 Second base 43c Non-rotating part 43d Second flat part 44 Pin 161 161 First convex part 162 Flange part 163 Second convex part 163a First D-cut surface (position confirmation part) A Central axis R1 Resin part R2 Second resin part R3 Third resin part R4 4 of the resin portion

Claims (19)

  1. ポンプ用モータであって、
     上下方向に延びる中心軸を中心として回転する回転部と、
     前記回転部の径方向外側に配置される静止部と、
    を有し、
     前記回転部は、
      前記中心軸に沿って配置されるシャフトと、
      前記シャフトの径方向外側に配置されるロータコアと、
      前記ロータコアの外周面に取り付けられるマグネットと、
      前記ロータコアの下面と接触し、前記シャフトの径方向外側に配置される第1のベースと、
     を有し、
    前記マグネットは、前記ロータコアの下面よりも下側に突出する突出部を有し、
     前記第1のベースは、上面に前記ロータコアの下面が接触し外周面に前記突出部の径方向内側の面が接触する第1の凸部を有する、ポンプ用モータ。
    A pump motor,
    A rotating part that rotates about a central axis extending in the vertical direction;
    A stationary part disposed radially outside the rotating part;
    Have
    The rotating part is
    A shaft disposed along the central axis;
    A rotor core disposed radially outside the shaft;
    A magnet attached to the outer peripheral surface of the rotor core;
    A first base that is in contact with the lower surface of the rotor core and is disposed on a radially outer side of the shaft;
    Have
    The magnet has a protruding portion that protrudes below the lower surface of the rotor core,
    The first base has a first convex portion having a first convex portion whose upper surface is in contact with the lower surface of the rotor core and whose outer surface is in contact with a radially inner surface of the protruding portion.
  2.  前記回転部は、前記マグネットの径方向外側に配置される筒状のカバー部材を更に有し、
    前記第1のベースは、前記マグネットの位置を外部から確認可能とする位置確認部を有する、請求項1に記載のポンプ用モータ。
    The rotating portion further includes a cylindrical cover member disposed on the radially outer side of the magnet,
    The pump motor according to claim 1, wherein the first base includes a position confirmation unit that allows confirmation of the position of the magnet from the outside.
  3.  前記位置確認部は、前記第1の凸部の、前記突出部の径方向内側の面と接触する面に平行な面を有する、請求項2に記載のポンプ用モータ。 3. The pump motor according to claim 2, wherein the position confirmation portion has a surface parallel to a surface of the first convex portion that contacts a radially inner surface of the protruding portion.
  4.  前記第1のベースは、下面に下方に延びる環状の第2の凸部を有し、
     前記位置確認部は、前記第2の凸部が有する第1のDカット面である、請求項2又は3に記載のポンプ用モータ。
    The first base has an annular second convex portion extending downward on the lower surface;
    The pump motor according to claim 2 or 3, wherein the position confirmation unit is a first D-cut surface of the second convex portion.
  5.  前記ロータコアと前記マグネットが対向する面は互いに同一形状である、請求項1から4のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 4, wherein surfaces of the rotor core and the magnet facing each other have the same shape.
  6.  前記ロータコアの外周面には、周方向に間隔をあけて配置される径方向に突出する複数の突起部が設けられ、
     前記マグネットは、隣り合う前記突起部の間に配置される、請求項1から5のいずれか1項に記載のポンプ用モータ。
    The outer peripheral surface of the rotor core is provided with a plurality of projecting portions projecting in the radial direction arranged at intervals in the circumferential direction,
    The pump motor according to claim 1, wherein the magnet is disposed between the adjacent protrusions.
  7.  前記マグネットの下面は、軸方向において、前記第1のベースから離れている、請求項1から6のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 6, wherein a lower surface of the magnet is separated from the first base in an axial direction.
  8.  前記回転部は、前記マグネットの径方向外側に配置される筒状のカバー部材を更に有し、
     前記第1のベースの外周には、径方向に突出するフランジ部が設けられ、
     前記筒状部材の下面は、前記フランジ部に接触する、請求項1から7のいずれか1項に記載のポンプ用モータ。
    The rotating portion further includes a cylindrical cover member disposed on the radially outer side of the magnet,
    A flange portion protruding in the radial direction is provided on the outer periphery of the first base,
    The pump motor according to any one of claims 1 to 7, wherein a lower surface of the cylindrical member is in contact with the flange portion.
  9.  前記回転部は、前記シャフトと前記ロータコアとの間に介在して両者を固定する第1の樹脂部を更に有する、請求項1から8のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 8, wherein the rotating portion further includes a first resin portion that is interposed between the shaft and the rotor core and fixes the both.
  10.  前記回転部は、前記マグネットの上側に配置される第2の樹脂部を更に有する、請求項1から9のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 9, wherein the rotating portion further includes a second resin portion disposed on the upper side of the magnet.
  11.  前記回転部は、前記マグネットの径方向外側に配置される第3の樹脂部を更に有する、請求項1から10のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 10, wherein the rotating portion further includes a third resin portion disposed on a radially outer side of the magnet.
  12.  前記回転部は、前記マグネットの径方向外側に配置される筒状のカバー部材を更に有し、
     前記第3の樹脂部は、前記マグネットの外周面と前記筒状部材の内周面とに接触している、請求項11に記載のポンプ用モータ。
    The rotating portion further includes a cylindrical cover member disposed on the radially outer side of the magnet,
    The pump motor according to claim 11, wherein the third resin portion is in contact with an outer peripheral surface of the magnet and an inner peripheral surface of the cylindrical member.
  13.  前記回転部は、前記シャフトと前記第1のベースとの間に介在する第4の樹脂部を更に有する、請求項1から12のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 1 to 12, wherein the rotating portion further includes a fourth resin portion interposed between the shaft and the first base.
  14.  前記回転部は、前記第1のベースの下部に設けられ、前記第1のベースの内周面及び前記シャフトの外周面と周方向の一周に亘って接触するシール部を更に有する、請求項1から13のいずれか1項に記載のポンプ用モータ。 The rotating portion further includes a seal portion provided at a lower portion of the first base and in contact with an inner peripheral surface of the first base and an outer peripheral surface of the shaft over a circumferential circumference. The motor for pumps of any one of 1-13.
  15.  前記シャフトを支持するスラスト軸受を更に有し、
     前記スラスト軸受は、
      前記第1のベースの下側に取り付けられ、前記回転部と共に回転する回転板と、
      前記回転板と軸方向に対向して配置される静止板と、
     を有する、請求項1から14のいずれか1項に記載のポンプ用モータ。
    A thrust bearing for supporting the shaft;
    The thrust bearing is
    A rotating plate attached to the lower side of the first base and rotating together with the rotating part;
    A stationary plate disposed opposite to the rotating plate in the axial direction;
    The motor for pumps of any one of Claim 1 to 14 which has these.
  16.  前記第1のベースは、下面に下方に伸びる環状の第2の凸部を有し、
     前記第2の凸部は、第1のDカット面を有し、
     前記第1のDカット面は、環状に設けられる前記回転板の内周面と接触する、請求項15に記載のポンプ用モータ。
    The first base has an annular second convex portion extending downward on the lower surface,
    The second convex portion has a first D-cut surface,
    The pump motor according to claim 15, wherein the first D-cut surface is in contact with an inner peripheral surface of the rotating plate provided in an annular shape.
  17.  前記静止板の下側には、第2のベースが取り付けられ、
     前記静止板は、外周に第2のDカット面を有し、
     前記第2のベースは、前記第2のDカット面に接触する平面部が設けられた回り止め部を有する、請求項15又は16に記載のポンプ用モータ。
    A second base is attached to the lower side of the stationary plate,
    The stationary plate has a second D-cut surface on the outer periphery,
    17. The pump motor according to claim 15, wherein the second base has a rotation stopper portion provided with a flat portion that contacts the second D-cut surface.
  18.  前記第2のベースは、一対のピンにより支持され、
     前記一対のピンは、前記第2のベースの下面を支持し、前記中心軸を挟んで対称配置されている、請求項17に記載のポンプ用モータ。
    The second base is supported by a pair of pins,
    18. The pump motor according to claim 17, wherein the pair of pins support a lower surface of the second base and are arranged symmetrically with respect to the central axis.
  19.  前記静止板は、前記回転板と対向する面に、周方向に並ぶ凹凸を有する、請求項15から18のいずれか1項に記載のポンプ用モータ。 The pump motor according to any one of claims 15 to 18, wherein the stationary plate has irregularities arranged in a circumferential direction on a surface facing the rotating plate.
PCT/JP2017/029604 2016-09-09 2017-08-18 Pump motor WO2018047603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016176755A JP2019198132A (en) 2016-09-09 2016-09-09 Motor for pump
JP2016-176755 2016-09-09

Publications (1)

Publication Number Publication Date
WO2018047603A1 true WO2018047603A1 (en) 2018-03-15

Family

ID=61562623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029604 WO2018047603A1 (en) 2016-09-09 2017-08-18 Pump motor

Country Status (2)

Country Link
JP (1) JP2019198132A (en)
WO (1) WO2018047603A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004570A (en) * 2019-06-26 2021-01-14 日本電産株式会社 Canned motor pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315245A (en) * 1993-04-27 1994-11-08 Japan Servo Co Ltd Permanent magnet rotor for canned motor pump
JP2000023401A (en) * 1998-07-03 2000-01-21 Sumitomo Special Metals Co Ltd Rotating machine
JP2004150577A (en) * 2002-10-31 2004-05-27 Toshiba Corp Thrust bearing and its manufacturing method
JP2014003894A (en) * 2010-08-24 2014-01-09 Dyson Technology Ltd Rotor for electrical machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315245A (en) * 1993-04-27 1994-11-08 Japan Servo Co Ltd Permanent magnet rotor for canned motor pump
JP2000023401A (en) * 1998-07-03 2000-01-21 Sumitomo Special Metals Co Ltd Rotating machine
JP2004150577A (en) * 2002-10-31 2004-05-27 Toshiba Corp Thrust bearing and its manufacturing method
JP2014003894A (en) * 2010-08-24 2014-01-09 Dyson Technology Ltd Rotor for electrical machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021004570A (en) * 2019-06-26 2021-01-14 日本電産株式会社 Canned motor pump

Also Published As

Publication number Publication date
JP2019198132A (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6343127B2 (en) motor
US8304946B2 (en) Spindle motor
JP2013017337A (en) Motor and method for manufacturing motor
US9837867B2 (en) Electric machine, rotor and associated method
JP2013021776A (en) Rotary electric machine
WO2018180924A1 (en) Rotor and motor
US20150369248A1 (en) Rotor structure and electric fluid pump
US9667108B2 (en) Brushless motor and disk drive apparatus
US8867166B2 (en) Spindle motor and disk drive apparatus
JP6925818B2 (en) Motor rotors, motors, and pumping equipment
KR101009205B1 (en) A brushless dc motor
WO2018047603A1 (en) Pump motor
WO2018047601A1 (en) Pump motor
JP6745674B2 (en) Rotor and rotating electric machine
JP2019198131A (en) Motor for pump
JP2010110096A (en) Rotor, rotating electric machine and method for manufacturing the rotor
JP2010239858A (en) Motor
KR101018232B1 (en) Hydrodynamic bearing and motor including the same
JPWO2019003800A1 (en) Rotor and motor
US11289963B2 (en) Rotor, motor, and electric power steering device
US9318928B2 (en) Brushless motor, disk drive apparatus and brushless motor manufacturing method
JP2020178386A (en) Rotor and surface magnet type rotary electric machine
JP2016086558A (en) Spindle motor
US20150214792A1 (en) Spindle motor and recording disk driving device including the same
US20140285921A1 (en) Spindle motor and recording disk driving device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17848546

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP