[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2018045819A1 - 3d显示装置及其制备方法 - Google Patents

3d显示装置及其制备方法 Download PDF

Info

Publication number
WO2018045819A1
WO2018045819A1 PCT/CN2017/092477 CN2017092477W WO2018045819A1 WO 2018045819 A1 WO2018045819 A1 WO 2018045819A1 CN 2017092477 W CN2017092477 W CN 2017092477W WO 2018045819 A1 WO2018045819 A1 WO 2018045819A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
forming
display device
display
Prior art date
Application number
PCT/CN2017/092477
Other languages
English (en)
French (fr)
Inventor
马伟杰
丁贤林
谢涛峰
贾平平
张翼
陈璀
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/773,782 priority Critical patent/US20180329220A1/en
Publication of WO2018045819A1 publication Critical patent/WO2018045819A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • G02B30/36Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers using refractive optical elements, e.g. prisms, in the optical path between the images and the observer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating

Definitions

  • Embodiments of the present application relate to the field of display technologies, and in particular, to a 3D display device and a method of fabricating the same.
  • 3D stereoscopic display technology includes assisted 3D display and naked eye 3D display.
  • the naked eye 3D display is a display that does not require any visual aid device to view the 3D effect.
  • liquid crystal grating-based 3D display devices are attracting attention due to their simple structure, compatibility with liquid crystal processes, and good performance.
  • liquid crystal grating-based 3D display devices are usually based on binocular parallax and grating spectrometry. The principle is to realize a 3D stereoscopic display effect, which generally includes a display device and a liquid crystal grating disposed on a light exiting side of the display device.
  • the 3D display device in the prior art has a relatively thick thickness and a complicated process.
  • Embodiments of the present application provide a 3D display device and a method of fabricating the same to at least partially thin the thickness of a 3D display device and simplify the process.
  • a 3D display device provided by the embodiment of the present application includes: a display device and a liquid crystal grating disposed on a light emitting side of the display device, the liquid crystal grating comprising: a substrate, a filling on the substrate, and the A liquid crystal layer between the display devices, and a 3D display control device located only on a side of the substrate facing the liquid crystal layer.
  • the 3D display control device includes: a common electrode, and a plurality of strip-shaped slit electrodes disposed between the common electrode and the liquid crystal layer and arranged in parallel with each other and arranged at a set distance.
  • the slit electrode is located in a region of the liquid crystal grating for forming dark stripes;
  • the slit electrode is located in a region of the liquid crystal grating for forming bright stripes.
  • the 3D display control device comprises: a plurality of pairs of electrode groups arranged parallel to each other and arranged at a set distance; wherein each of the electrode groups comprises parallel to each other, opposite in polarity, and arranged in a direction and a plurality of pairs of electrode groups
  • the first strip electrode and the second strip electrode are arranged in the same direction.
  • the electrode group is located in an area of the liquid crystal grating for forming dark stripes;
  • the electrode group is located in a region of the liquid crystal grating for forming bright stripes.
  • the liquid crystal grating further includes a touch detection device, and the touch detection device is located between the substrate and the 3D display control device or between the 3D display control device and the liquid crystal layer.
  • the touch detection device comprises a touch electrode layer of a metal grid structure.
  • the embodiment of the present application further provides a method for fabricating a 3D display device, the method comprising: forming a display device and forming a liquid crystal grating on a light emitting side of the display device; wherein the liquid crystal grating is formed on a light emitting side of the display device, include:
  • the 3D display control device of the substrate on which the 3D display control device is formed is directed toward the light exit side of the display device, and a liquid crystal layer is formed between the substrate on which the 3D display control device is formed and the display device.
  • the forming a 3D display control device includes:
  • forming the slit electrode includes forming a slit electrode in a region of the liquid crystal grating for forming dark stripes or a region for forming bright stripes in the liquid crystal grating.
  • the forming a 3D display control device includes:
  • each of the electrode groups includes a first strip electrode that is parallel to each other, has opposite polarities, and has an alignment direction that is aligned with a plurality of pairs of electrode groups
  • the second strip electrode is
  • forming the electrode group includes forming an electrode group in a region for forming dark stripes in the liquid crystal grating or a region for forming bright stripes in the liquid crystal grating.
  • the forming a liquid crystal grating on the light emitting side of the display device further includes:
  • a touch detection device is formed between the substrate and the 3D display control device or between the 3D display control device and the liquid crystal layer.
  • the forming the touch detection device includes: forming a touch electrode layer of a metal grid structure.
  • FIG. 1 is a schematic structural view of a 3D display device in the related art
  • FIG. 2 is a schematic structural view of a strip electrode located inside a first substrate in the related art
  • FIG. 3 is a schematic structural diagram of a 3D display device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a 3D display control device in the 3D display device provided by the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of a touch electrode layer in a 3D display device according to the embodiment shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of a touch electrode layer in a 3D display device according to the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic structural diagram of a 3D display device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a 3D display control device in the 3D display device provided by the embodiment shown in FIG. 6; FIG.
  • FIG. 8 is a schematic structural diagram of a 3D display device according to an embodiment of the present application.
  • FIG. 9 is a structure of a 3D display control device in the 3D display device provided by the embodiment shown in FIG. schematic diagram;
  • FIG. 10 is a schematic structural diagram of a 3D display device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a 3D display control device in the 3D display device provided by the embodiment shown in FIG. 10;
  • 12(a) to 12(g) are schematic diagrams showing a process flow for preparing a 3D display device according to an embodiment of the present application.
  • a 3D display device includes a display device 01 and a liquid crystal grating 02 disposed on a light emitting side of the display device 01 (shown by a double-headed arrow in FIG. 1).
  • the liquid crystal grating 02 includes a first substrate 021 and a second substrate. 022, a liquid crystal layer 023 filled between the first substrate 021 and the second substrate 022, strip electrodes 024 located on the side of the first substrate 021 facing the liquid crystal layer 023 and arranged in parallel with each other at a set distance, and
  • the two substrates 022 face the surface electrode 025 on the side of the liquid crystal layer 023; wherein the structure of the strip electrode 024 located inside the first substrate 021 can be as shown in FIG. 2 .
  • the liquid crystal grating is a twisted nematic (TN) type liquid crystal grating. Since the liquid crystal grating on the light emitting side of the display device uses two substrates in the above-described 3D display device, the above 3D display device has a relatively thick thickness. Moreover, in the above-mentioned 3D display device, the 3D display control device for realizing the 3D display function in the liquid crystal grating on the light-emitting side of the display device is distributed on both sides of the liquid crystal layer, so that when the liquid crystal grating is fabricated, it is required to be on two substrates. Each production part is used for a 3D display control device that implements a 3D display function, and the process is relatively complicated.
  • TN twisted nematic
  • the embodiment of the present application provides a 3D display device and a preparation method thereof for thinning the thickness of the 3D display device and simplifying the process.
  • a 3D display device provided by an embodiment of the present application includes: a display device 1 (shown by a double-headed arrow in FIG. 3) and a liquid crystal grating 2 disposed on a light-emitting side of the display device 1 (see the double-headed arrow in FIG. 3).
  • the liquid crystal grating 2 includes: a substrate 21, a liquid crystal layer 22 filled between the substrate 21 and the display device 1, and a 3D display control device 23 located only on the side of the substrate 21 facing the liquid crystal layer 22 (see FIG. 3). In the dotted line box).
  • the display device 1 may be a liquid crystal display (LCD), an organic electroluminescent display (OLED), a plasma display (PDP), or a cathode ray display (CRT), etc., which is not limited in this embodiment.
  • LCD liquid crystal display
  • OLED organic electroluminescent display
  • PDP plasma display
  • CRT cathode ray display
  • the thickness of the 3D display device can be thinned, and the 3D display control device 23 is located only on the side of the substrate 21 facing the liquid crystal layer 22, thus, in the fabrication In the case of the liquid crystal grating 2, it is only necessary to form the 3D display control device 23 for realizing the 3D display function on one substrate 21, and therefore, the process can be simplified.
  • the display device 1 includes a first polarizer 24 disposed on a light emitting side of the display device 1.
  • the liquid crystal grating 2 may further include: a second polarizer 25 located on a side of the substrate 21 facing away from the liquid crystal layer 22, as shown in FIG. Show.
  • the display device 1 may not include the first polarizer disposed on the light-emitting side of the display device 1.
  • the liquid crystal grating 2 may further include: a first polarizer disposed between the liquid crystal layer 22 and the display device 1 and located on the substrate 21 a second polarizer facing away from the side of the liquid crystal layer 22.
  • the light transmitting axis directions of the first polarizer and the second polarizer are perpendicular or parallel to each other.
  • the 3D display control device 23 (shown by a broken line in FIG. 4) includes: a common electrode 231, and a plurality of mutually parallel and arranged between the common electrode 231 and the liquid crystal layer 22.
  • a strip-shaped slit electrode 232 arranged at a distance from each other; wherein the slit electrode 232 is located in a region of the liquid crystal grating 2 for forming dark stripes.
  • the common electrode 231 is insulated from the slit electrode 232.
  • an insulating layer may be disposed between the common electrode 231 and the slit electrode 232, so that the common electrode 231 and the narrow electrode
  • the slit electrodes 232 are insulated from each other.
  • the common electrode 231 may be a plate-shaped electrode or a slit-shaped electrode, which is not limited in the embodiment of the present application; the set distance may be set according to actual needs.
  • the liquid crystal grating at this time may be referred to as an advanced super-dimensional field conversion (ADS) type liquid crystal grating, and the liquid crystal grating is a normally bright liquid crystal grating.
  • ADS advanced super-dimensional field conversion
  • the liquid crystal grating is in a 3D working state, it is generated due to the edge of the slit electrode in the same plane.
  • the electric field and the electric field generated between the common electrode and the slit electrode form a multi-dimensional electric field, which can cause the liquid crystal molecules facing the slit electrode to rotate, and the light cannot be transmitted, thereby corresponding to the region where the slit electrode is located.
  • the region forms dark stripes, and in the region between adjacent slit electrodes, the corresponding liquid crystal molecules do not rotate, so that a region corresponding to a region between adjacent slit electrodes forms a bright stripe, that is, It is possible to form a raster stripe between light and dark, and when a 3D display signal is input, a 3D display effect can be achieved.
  • a 3D/2D conversion function may also be provided.
  • a control switch may be provided, and when the liquid crystal grating is in a 3D working state, the working voltage is applied to the common electrode and the slit electrode.
  • the working voltage is not applied to the common electrode and the slit electrode, so that the liquid crystal molecules are not Rotation will occur, so that no light and dark grating stripes will be formed.
  • the liquid crystal grating is equivalent to a transparent glass, and when a 2D display signal is input, the effect of 2D display can be realized.
  • the distance between the adjacent slit electrodes 232 is the width of the pixels of at least two display devices, and it can be said that adjacent one dark stripe and one bright stripe cover at least the pixels of the two rows of display devices.
  • the liquid crystal grating 2 may further include: a touch detection device 26; the touch detection device 26 may be located between the substrate 21 and the 3D display control device 23 (as shown in FIG. 3), of course, The touch detection device 26 can also be located between the 3D display control device 23 and the liquid crystal layer 22, which is not limited in the embodiment of the present application.
  • the touch detection device 26 is located on the substrate 21 and the 3D display control device 23 At this time, the distance from the light-emitting side substrate of the 3D display device is closer, which makes the touch sensitivity higher.
  • the touch detection device 26 is insulated from the 3D display control device 23, for example, an insulating layer may be disposed between the touch detection device 26 and the 3D display control device 23, such that the touch detection device 26 and the 3D display control device 23 are disposed. insulation.
  • the touch detection device 26 may include a touch electrode layer of a metal grid structure.
  • the touch electrode layer is a touch electrode layer of a metal grid structure
  • the electrode in the touch electrode layer of the metal grid structure is a metal electrode
  • the resistance is low, and the area occupied by the metal grid structure is small. Therefore, the sensing capacitance between the touch electrode and the 3D display electrode (ie, the electrode in the 3D display control device) can be reduced, thereby reducing interference
  • the metal grid touch electrode is more than the existing indium tin oxide (ITO)
  • ITO indium tin oxide
  • the touch electrode layer 261 (shown by a broken line in FIG. 5) includes: a plurality of first metal electrodes 2611 extending in a first direction, and a plurality of extending in a second direction a second metal electrode 2612 and a bridge point 2613; wherein the bridge point 2613 is located at an intersection of the first metal electrode 2611 and the second metal electrode 2612 such that the first metal electrode 2611 is insulated from the second metal electrode 2612; any two adjacent The first metal electrode 2611 and any two adjacent second metal electrodes 2612 together define a grid 2614; the first direction is not parallel to the second direction (eg, may be vertical).
  • the metal touch electrodes ie, the first metal electrode and the second metal electrode
  • the metal touch electrodes may be disposed at positions corresponding to the gaps between adjacent pixels of the display device, that is, the display device
  • the pixels are set at positions corresponding to the grid.
  • a metal touch electrode whose extending direction is consistent with or similar to the extending direction of the slit electrode 232 may be disposed in the liquid crystal grating 2 for forming a dark Striped area.
  • the liquid crystal grating 2 may further include: disposed between the substrate 21 and the touch electrode layer of the metal grid structure for defining each display device.
  • the black matrix layer 27 of the pixel may further include: disposed between the substrate 21 and the touch electrode layer of the metal grid structure for defining each display device.
  • the black matrix layer 27 is disposed between the substrate 21 and the touch electrode layer 261 of the metal grid structure, and is used to define each pixel, and the pixel is disposed at a position corresponding to the grid, it can be seen that the metal touch The electrodes are disposed at positions corresponding to the black matrix layer 27, which can prevent the metal touch electrodes from reflecting external light, thereby affecting the display effect.
  • FIG. 6 is a 3D display device according to an embodiment of the present disclosure, which is similar to the 3D display device provided in the embodiment shown in FIG. 3 , and the same portions are not described herein again. .
  • the liquid crystal grating 2 in the 3D display device includes: a substrate 21, a liquid crystal layer 22 filled between the substrate 21 and the display device 1, and only a side of the substrate 21 facing the liquid crystal layer 22.
  • the 3D display controls the device 33 (shown in phantom in Figure 6).
  • the 3D display control device 33 (shown by the dashed box in FIG. 7) includes: a common electrode 331, and a plurality of mutually parallel and at a set distance between the common electrode 331 and the liquid crystal layer 22. Strip-shaped slit electrodes 332 are arranged at intervals; wherein the slit electrodes 332 are located in a region of the liquid crystal grating 2 for forming bright stripes.
  • the liquid crystal grating at this time may be referred to as an advanced super-dimensional field conversion (ADS) type liquid crystal grating, and the liquid crystal grating is a normally dark liquid crystal grating.
  • ADS advanced super-dimensional field conversion
  • the liquid crystal grating is in a 3D working state, it is generated due to the edge of the slit electrode in the same plane.
  • the electric field and the electric field generated between the common electrode and the slit electrode form a multi-dimensional electric field, which can cause the liquid crystal molecules of the slit electrode to rotate, and the light energy is transmitted, thereby corresponding to the region where the slit electrode is located.
  • the regions form bright stripes, and in the region between the adjacent slit electrodes, the corresponding liquid crystal molecules do not rotate, so that dark stripes are formed in the regions corresponding to the regions between the adjacent slit electrodes, that is, It is possible to form a raster stripe between light and dark, and when a 3D display signal is input, a 3D display effect can be achieved.
  • liquid crystal grating is a normally dark liquid crystal grating
  • the effect of 3D display can be realized, and the effect of 2D display cannot be realized, that is, the 3D/2D conversion function cannot be set.
  • the distance between adjacent slit electrodes 332 is the width of pixels of at least two display devices, and it can be said that adjacent one dark stripe and one bright stripe cover at least two rows of display device images. Prime.
  • FIG. 8 is a 3D display device according to an embodiment of the present disclosure, which is similar to the 3D display device provided in the embodiment shown in FIG. 3 , and the same portions are not described herein again. .
  • the liquid crystal grating 2 in the 3D display device includes: a substrate 21, a liquid crystal layer 22 filled between the substrate 21 and the display device 1, and only a side of the substrate 21 facing the liquid crystal layer 22.
  • the 3D display controls the device 43 (shown in phantom in Figure 8).
  • the 3D display control device 43 includes: a plurality of pairs of electrode groups 431 arranged in parallel with each other and arranged at a set distance (as indicated by a broken line in FIG. 9); wherein each electrode group 431 includes each other a first strip electrode 4311 and a second strip electrode 4312 which are parallel, opposite in polarity, and arranged in a direction matching the arrangement direction of the plurality of pairs of electrode groups 431; wherein the electrode group 431 is located in the liquid crystal grating 2 for forming dark stripes
  • the area, the set distance can be set according to actual needs.
  • the liquid crystal grating at this time may be referred to as a planar conversion (IPS) type liquid crystal grating, and the liquid crystal grating is a normally bright liquid crystal grating.
  • IPS planar conversion
  • the liquid crystal grating is in a 3D operating state, the first one of the pair of electrode groups 431 in the same plane A planar electric field is formed between the shaped electrode 4311 and the second strip-shaped electrode 4312.
  • the planar electric field can cause the liquid crystal molecules of the opposite electrode group 431 to rotate, and the light cannot be transmitted, thereby forming a region corresponding to the region where the electrode group 431 is located.
  • a 3D/2D conversion function may also be provided.
  • a control switch may be disposed.
  • the working voltage is applied to the electrode group 431 for Forming the light and dark grating stripe, when inputting the 3D display signal, the effect of 3D display can be realized;
  • the working voltage is not applied to the electrode group 431, so that the liquid crystal molecules do not rotate, and thus A light-dark-to-dark grating strip is formed, and the liquid crystal grating at this time is equivalent to a transparent glass, and when a 2D display signal is input, a 2D display can be realized. Effect.
  • the distance between adjacent electrode groups 431 is the width of the pixels of at least two display devices, and it can be said that adjacent one dark stripes and one bright stripes cover at least the pixels of the two rows of display devices.
  • FIG. 10 is a 3D display device according to an embodiment of the present invention, which is similar to the 3D display device provided in the embodiment shown in FIG. 8. The same portions are not described herein again, and only the different portions are described below. .
  • the liquid crystal grating 2 in the 3D display device includes: a substrate 21, a liquid crystal layer 22 filled between the substrate 21 and the display device 1, and only a side of the substrate 21 facing the liquid crystal layer 22.
  • the 3D display controls the device 53 (shown in phantom in Figure 10).
  • the 3D display control device 53 includes: a plurality of pairs of electrode groups 531 which are parallel to each other and arranged at intervals of a set distance (as indicated by a broken line in FIG. 11); wherein each electrode group 531 includes each other a first strip electrode 5311 and a second strip electrode 5312 which are parallel, opposite in polarity, and arranged in a direction matching the arrangement direction of the plurality of pairs of electrode groups 531; wherein the electrode group 531 is located in the liquid crystal grating 2 for forming bright stripes Area.
  • the liquid crystal grating at this time may be referred to as a planar conversion (IPS) type liquid crystal grating, and the liquid crystal grating is a normally dark liquid crystal grating.
  • IPS planar conversion
  • the liquid crystal grating is in a 3D operating state, the first one of the pair of electrode groups 531 in the same plane A planar electric field is formed between the shape electrode 5311 and the second strip electrode 5312, and the plane electric field can cause the liquid crystal molecules of the opposite electrode group 531 to rotate, and the light energy is transmitted, thereby forming a region corresponding to the region where the electrode group 531 is located.
  • the corresponding liquid crystal molecules do not rotate, so that dark stripes are formed in the regions corresponding to the regions between the adjacent electrode groups 531, that is, they can be formed.
  • the light and dark grating stripes when inputting the 3D display signal, can achieve the effect of 3D display.
  • the distance between the adjacent electrode groups 531 is the width of the pixels of at least two display devices, and it can be said that adjacent one dark stripes and one bright stripes cover at least the pixels of the two rows of display devices.
  • an embodiment of the present application further provides a method for fabricating a 3D display device, the method comprising the steps of: forming a display device and forming a liquid crystal grating on a light exit side of the display device.
  • forming a liquid crystal grating on the light emitting side of the display device comprises:
  • the 3D display control device of the substrate on which the 3D display control device is formed is directed toward the light exit side of the display device, and a liquid crystal layer is formed between the substrate on which the 3D display control device is formed and the display device.
  • the method for forming the display device is the same as the related art, and details are not described herein again.
  • step of forming the display device and the step of forming the 3D display control device may be performed simultaneously, or one of them may be performed first, which is not limited by the embodiment of the present application.
  • a 3D display device prepared by the method includes a display device and a liquid crystal grating disposed on a light exiting side of the display device, the liquid crystal grating comprising: a substrate, a liquid crystal layer filled between the substrate and the display device, and only The 3D display control device located on the side of the substrate facing the liquid crystal layer, since only one substrate is used for the liquid crystal grating in the 3D display device, the thickness of the 3D display device can be thinned, and the 3D display control device is only located on the substrate
  • the side facing the liquid crystal layer is such that when the liquid crystal grating is fabricated, it is only necessary to fabricate a 3D display control device for realizing a 3D display function on one substrate, and therefore, the process can be simplified.
  • the display device is configured to include a first polarizer disposed on a light exiting side of the display device, the forming a liquid crystal grating on the light emitting side of the display device, further comprising: forming a second polarized light on a side of the substrate facing away from the liquid crystal layer sheet.
  • the method for forming the second polarizer may be performed before the step of forming the 3D display control device on the substrate only, or after the step, which is not limited by the embodiment of the present application.
  • the liquid crystal grating is formed on the light-emitting side of the display device, and further includes:
  • a second polarizer is formed on a side of the substrate facing away from the liquid crystal layer.
  • the forming the 3D display control device may include:
  • a plurality of strip-shaped slit electrodes which are parallel to each other and are arranged at intervals of a set distance are formed on the common electrode.
  • forming the slit electrode may include forming a slit electrode in a region of the liquid crystal grating for forming dark stripes or a region for forming bright stripes in the liquid crystal grating.
  • the forming the 3D display control device may also include:
  • each of the electrode groups includes a first strip electrode that is parallel to each other, has opposite polarities, and has an alignment direction that is aligned with a plurality of pairs of electrode groups
  • the second strip electrode is
  • forming the electrode group may include forming an electrode group in a region for forming dark stripes in the liquid crystal grating or a region for forming bright stripes in the liquid crystal grating.
  • the forming a liquid crystal grating on the light emitting side of the display device may further include:
  • a touch detection device is formed between the substrate and the 3D display control device or between the 3D display control device and the liquid crystal layer.
  • forming the touch detection device may include: forming a touch electrode layer of a metal grid structure.
  • the touch electrode layer prepared by the method is a touch electrode layer of a metal grid structure
  • the electrode in the touch electrode layer of the metal grid structure is a metal electrode
  • the resistance is low
  • the metal grid The structure occupies a small area, so the sensing capacitance between the touch electrode and the 3D display electrode can be reduced, thereby reducing interference.
  • the metal grid touch electrode is lower in cost than the existing indium tin oxide (ITO) electrode, Therefore, the production cost can be reduced.
  • the forming the liquid crystal grating on the light emitting side of the display device may further include:
  • a black matrix layer for defining pixels of each display device is formed between the substrate and the touch electrode layer of the metal grid structure.
  • the display device in the 3D display device is an LCD
  • the liquid crystal grating is an ADS type and a normally bright liquid crystal grating
  • the liquid crystal grating includes a touch grid layer of a metal grid structure as an example, and the drawing is combined with the drawing. 12 (a) ⁇ 12 (g) to specifically describe the preparation process of the 3D display device provided by the embodiment of the present application.
  • Step 1 Referring to FIG. 12(a), the LCD 101 is formed (as indicated by the double-headed arrow in FIG. 12(a));
  • the LCD 101 includes a first polarizer 102 disposed on the light exit side of the LCD 101.
  • Step 2 referring to FIG. 12 (b), forming a black matrix layer 104 for defining pixels of each LCD on the substrate 103;
  • Step 3 referring to FIG. 12(c), a metal grid structure is used to form a metal grid structure touch electrode layer 105 on the black matrix layer 104;
  • the touch electrode layer 105 includes: a plurality of first metal electrodes extending in a first direction, a plurality of second metal electrodes extending in a second direction, and a bridge point; wherein the bridge point is located at the first metal electrode
  • the intersection of the second metal electrodes is such that the first metal electrode is insulated from the second metal electrode; any two adjacent first metal electrodes and any two adjacent second metal electrodes together define a grid; The direction is not parallel to the second direction; the pixels of the LCD are placed at positions corresponding to the grid.
  • Step 4 see Figure 12 (d), forming a common electrode 106 on the touch grid layer 105 of the metal grid structure;
  • the insulating layer between the touch electrode layer 105 and the common electrode 106 is disposed between the touch electrode layer 105 and the common electrode 106 to insulate between the touch electrode layer 105 and the common electrode 106.
  • Step 5 referring to FIG. 12 (e), a region on the common electrode 106 for forming dark stripes forms a plurality of strip-shaped slit electrodes 107 which are parallel to each other and arranged at a set distance;
  • the slit electrode 107 is insulated from the common electrode 106.
  • an insulating layer may be disposed between the slit electrode 107 and the common electrode 106 to insulate between the slit electrode 107 and the common electrode 106.
  • Step 6 Referring to FIG. 12(f), the slit electrode 107 of the substrate on which the slit electrode 107 is formed faces the first polarizer 102, and a liquid crystal layer 108 is formed between the slit electrode 107 and the first polarizer 102. ;
  • Step 7 Referring to FIG. 12(g), a second polarizer 109 is formed on the side of the substrate 103 facing away from the liquid crystal layer 108.
  • a 3D display device includes a display device and a liquid crystal grating disposed on a light exiting side of the display device, and the liquid crystal grating includes: a substrate, and is filled in the substrate and the The liquid crystal layer between the display devices and the 3D display control device located only on the side of the substrate facing the liquid crystal layer, since only one substrate is used for the liquid crystal grating in the 3D display device, the 3D display device can be thinned The thickness and the 3D display control device are located only on the side of the substrate facing the liquid crystal layer, so that when the liquid crystal grating is fabricated, only the 3D display control device for realizing the 3D display function needs to be fabricated on one substrate, thereby simplifying the process. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种3D显示装置及其制备方法,3D显示装置包括:显示器件(1)和设置于显示器件(1)出光侧的液晶光栅(2),液晶光栅(2)包括基板(21)、填充在基板(21)和显示器件(1)之间的液晶层(22)、以及仅位于基板(21)面向液晶层(22)一侧的3D显示控制器件(23、33、43、53)。由于显示器件(1)与液晶光栅(2)共用液晶光栅(2)的上基板,该3D显示装置具有更薄的厚度,并且制备工艺得以简化。

Description

3D显示装置及其制备方法
相关申请的交叉引用
本申请要求于2016年9月12日递交的中国专利申请CN201610819417.X的权益,其全部内容通过参考并入本文中。
技术领域
本申请的实施例涉及显示技术领域,特别是涉及一种3D显示装置及其制备方法。
背景技术
随着液晶显示技术的不断发展,三维(Three Dimension,3D)立体显示技术已经备受关注,成为显示领域的一个重要的前沿科技领域。3D立体显示技术包括助视3D显示和裸眼3D显示。其中,裸眼3D显示为不需要任何助视设备观看到3D效果的显示。在裸眼3D显示技术中,基于液晶光栅的3D显示装置由于结构简单、与液晶工艺较为兼容以及性能良好等优点备受关注,其中,基于液晶光栅的3D显示装置通常是基于双目视差和光栅分光原理来实现3D立体显示效果的,其一般包括显示器件和设置于该显示器件出光侧的液晶光栅。
现有技术中的3D显示装置厚度比较厚,工艺比较复杂。
发明内容
本申请实施例提供了一种3D显示装置及其制备方法,用以至少部分地减薄3D显示装置的厚度,以及简化工艺。
本申请实施例提供的一种3D显示装置,包括:显示器件和设置于所述显示器件出光侧的液晶光栅,所述液晶光栅包括:基板、填充在所述基板和所述 显示器件之间的液晶层、以及仅位于所述基板面向所述液晶层一侧的3D显示控制器件。
可选地,所述3D显示控制器件包括:公共电极、以及位于所述公共电极与所述液晶层之间的多个相互平行且按照设定距离间隔排列的条形的狭缝电极。
可选地,所述狭缝电极位于所述液晶光栅中用于形成暗条纹的区域;或
所述狭缝电极位于所述液晶光栅中用于形成明条纹的区域。
可选地,所述3D显示控制器件包括:多对相互平行且按照设定距离间隔排列的电极组;其中,每一所述电极组包括相互平行、极性相反且排列方向与多对电极组的排列方向一致的第一条形电极和第二条形电极。
可选地,所述电极组位于所述液晶光栅中用于形成暗条纹的区域;或
所述电极组位于所述液晶光栅中用于形成明条纹的区域。
可选地,所述液晶光栅还包括触控检测器件,所述触控检测器件位于所述基板和所述3D显示控制器件之间或位于所述3D显示控制器件与所述液晶层之间。
可选地,所述触控检测器件包括金属网格结构的触控电极层。
本申请实施例还提供了一种3D显示装置的制备方法,该方法包括:形成显示器件和在所述显示器件出光侧形成液晶光栅;其中,所述在所述显示器件出光侧形成液晶光栅,包括:
仅在基板上形成3D显示控制器件;
将形成有3D显示控制器件的基板的所述3D显示控制器件朝向所述显示器件的出光侧,并在所述形成有3D显示控制器件的基板与所述显示器件之间形成液晶层。
可选地,所述形成3D显示控制器件,包括:
形成公共电极;
在所述公共电极上形成多个相互平行且按照设定距离间隔排列的条形的 狭缝电极。
可选地,形成狭缝电极包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成狭缝电极。
可选地,所述形成3D显示控制器件,包括:
形成多对相互平行且按照设定距离间隔排列的电极组;其中,每一所述电极组包括相互平行、极性相反且排列方向与多对电极组的排列方向一致的第一条形电极和第二条形电极。
可选地,形成电极组包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成电极组。
可选地,所述在所述显示器件出光侧形成液晶光栅,还包括:
在所述基板和所述3D显示控制器件之间或在所述3D显示控制器件与所述液晶层之间形成触控检测器件。
可选地,所述形成触控检测器件,包括:形成金属网格结构的触控电极层。
附图说明
图1为相关技术中3D显示装置的结构示意图;
图2为相关技术中位于第一基板内侧的条形电极的结构示意图;
图3为本申请实施例提供的3D显示装置的结构示意图;
图4为图3所示的实施例提供的3D显示装置中3D显示控制器件的结构示意图;
图5为图3所示的实施例提供的3D显示装置中触控电极层的结构示意图;
图6为本申请实施例提供的3D显示装置的结构示意图;
图7为图6所示的实施例提供的3D显示装置中3D显示控制器件的结构示意图;
图8为本申请实施例提供的3D显示装置的结构示意图;
图9为图8所示的实施例提供的3D显示装置中3D显示控制器件的结构 示意图;
图10为本申请实施例提供的3D显示装置的结构示意图;
图11为图10所示的实施例提供的3D显示装置中3D显示控制器件的结构示意图;
图12(a)~12(g)为本申请实施例提供的3D显示装置的制备工艺流程示意图。
具体实施方式
参见图1,3D显示装置包括显示器件01和设置于该显示器件01出光侧的液晶光栅02(如图1中双向箭头所示);其中,液晶光栅02包括:第一基板021、第二基板022、填充于第一基板021与第二基板022之间的液晶层023、位于第一基板021面向液晶层023一侧的相互平行且按照设定距离间隔排列的条形电极024、以及位于第二基板022面向液晶层023一侧的面电极025;其中,位于第一基板021内侧的条形电极024的结构示意图可以如图2所示。在上述的3D显示装置中液晶光栅是扭曲向列(TN)型液晶光栅,由于上述的3D显示装置中显示器件出光侧的液晶光栅使用了两块基板,因此,上述的3D显示装置厚度比较厚,而且上述的3D显示装置中显示器件出光侧的液晶光栅中用于实现3D显示功能的3D显示控制器件分布于液晶层的两侧,这样,在制作液晶光栅时,就需要在两块基板上各制作部分用于实现3D显示功能的3D显示控制器件,工艺比较复杂。
本申请实施例提供了一种3D显示装置及其制备方法,用以减薄3D显示装置的厚度,以及简化工艺。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请附图中各层的厚度和形状不反映真实比例,目的只是示意说明本申请内容。
参见图3,本申请实施例提供的一种3D显示装置,包括:显示器件1(如图3中双向箭头所示)和设置于显示器件1出光侧的液晶光栅2(如图3中双向箭头所示);其中,液晶光栅2包括:基板21、填充在基板21和显示器件1之间的液晶层22、以及仅位于基板21面向液晶层22一侧的3D显示控制器件23(如图3中虚线框所示)。
其中,显示器件1可以为液晶显示器(LCD)、有机电致发光显示器(OLED)、等离子体显示器(PDP)或阴极射线显示器(CRT)等,本申请实施例对此不作任何限定。
由于上述3D显示装置中液晶光栅2仅使用了一块基板21,因此,可以减薄3D显示装置的厚度,并且,3D显示控制器件23仅位于基板21面向液晶层22的一侧,这样,在制作液晶光栅2时,只需要在一块基板21上制作用于实现3D显示功能的3D显示控制器件23,因此,可以简化工艺。
可选地,显示器件1包括设置在显示器件1出光侧的第一偏光片24,液晶光栅2还可以包括:位于基板21背向液晶层22一侧的第二偏光片25,如图3所示。
当然,显示器件1也可以不包括设置在显示器件1出光侧的第一偏光片,此时液晶光栅2还可以包括:设置在液晶层22与显示器件1之间的第一偏光片和位于基板21背向液晶层22一侧的第二偏光片。
其中,第一偏光片和第二偏光片的光透过轴方向相互垂直或平行。
可选地,如图4所示,3D显示控制器件23(如图4中虚线框所示)包括:公共电极231、以及位于公共电极231与液晶层22之间的多个相互平行且按照设定距离间隔排列的条形的狭缝电极232;其中,狭缝电极232位于液晶光栅2中用于形成暗条纹的区域。公共电极231与狭缝电极232之间绝缘,例如可以在公共电极231与狭缝电极232之间设置一绝缘层,使得公共电极231与狭 缝电极232之间绝缘。
其中,公共电极231可以是板状的电极,也可以是狭缝状的电极,本申请实施例并不对其进行限定;设定距离可以根据实际需要进行设置。
此时的液晶光栅可以称为高级超维场转换(ADS)型的液晶光栅,且液晶光栅为常亮型液晶光栅,当液晶光栅处于3D工作状态时,由于同一平面内狭缝电极边缘所产生的电场以及公共电极与狭缝电极间产生的电场形成多维电场,该多维电场可使得正对狭缝电极的液晶分子产生旋转,光不能透射出去,从而在与狭缝电极所在的区域相对应的区域形成暗条纹,而在相邻的狭缝电极之间的区域,其对应的液晶分子不会产生旋转,故在与相邻的狭缝电极之间的区域相对应的区域形成明条纹,即可以形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果。
可选地,在液晶光栅为常亮型液晶光栅时,还可设置3D/2D转换功能,例如可以设置一控制开关,当液晶光栅处于3D工作状态时,给公共电极和狭缝电极加载工作电压,用于形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果;当液晶光栅处于2D工作状态时,不给公共电极和狭缝电极加载工作电压,这样液晶分子不会产生旋转,从而不会形成明暗相间的光栅条纹,此时的液晶光栅相当于一块透明玻璃,当输入2D显示信号时,就能够实现2D显示的效果。
需要指出的是,相邻的狭缝电极232之间的距离为至少两个显示器件的像素的宽度,也可以说相邻的一暗条纹和一明条纹至少覆盖两排显示器件的像素。
可选地,为了实现触控功能,液晶光栅2还可以包括:触控检测器件26;触控检测器件26可以位于基板21和3D显示控制器件23之间(如图3所示),当然,触控检测器件26还可以位于3D显示控制器件23与液晶层22之间,本申请实施例并不对其进行限定。
需要指出的是,若触控检测器件26位于基板21和3D显示控制器件23 之间,此时距离3D显示装置的出光侧基板更近,会使得触控灵敏度更高。
触控检测器件26与3D显示控制器件23之间绝缘,例如可以在触控检测器件26与3D显示控制器件23之间设置一绝缘层,使得触控检测器件26与3D显示控制器件23之间绝缘。
可选地,为了降低触控电极与3D显示电极间的感应电容,减少干扰,触控检测器件26可以包括金属网格结构的触控电极层。
由于触控电极层为金属网格结构的触控电极层,这样,一方面,由于金属网格结构的触控电极层中的电极为金属电极,电阻低,并且金属网格结构占用的面积小,因此可以降低触控电极与3D显示电极(即3D显示控制器件中的电极)间的感应电容,从而减少干扰,另一方面,由于金属网格触控电极比现有的氧化铟锡(ITO)电极成本低,因此可以降低生产成本。
可选地,如图5所示,触控电极层261(如图5中虚线框所示)包括:多条沿第一方向延伸的第一金属电极2611、多条沿第二方向延伸的第二金属电极2612和桥点2613;其中,桥点2613位于第一金属电极2611与第二金属电极2612的交叠处,使得第一金属电极2611与第二金属电极2612绝缘;任意两条相邻的第一金属电极2611与任意两条相邻的第二金属电极2612共同定义一网格2614;第一方向与第二方向不平行(例如可以垂直)。
可选地,为了不影响显示的开口率,可以将金属触控电极(即第一金属电极与第二金属电极)设置在显示器件的相邻像素之间的空隙对应的位置上,即将显示器件的像素设置在与网格对应的位置上。
可选地,为了尽可能的减少金属触控电极对3D显示效果的影响,可将延伸方向与狭缝电极232的延伸方向一致或相近的金属触控电极设置在液晶光栅2中用于形成暗条纹的区域。
可选地,为了防止金属触控电极反射外界的光线而影响显示效果,液晶光栅2还可以包括:设置在基板21与金属网格结构的触控电极层之间用于限定每一显示器件的像素的黑矩阵层27。
由于黑矩阵层27设置在基板21与金属网格结构的触控电极层261之间,且用于限定每一像素,而像素设置在与网格对应的位置上,由此可知,金属触控电极设置在黑矩阵层27对应的位置上,这样可以防止金属触控电极反射外界的光线,从而影响显示效果。
参见图6,图6为本申请实施例提供的一种3D显示装置,与图3所示的实施例提供的3D显示装置相类似,相同的部分在此不再赘述,下面只说明不同的部分。
如图6所示,本申请实施例提供的3D显示装置中液晶光栅2包括:基板21、填充在基板21和显示器件1之间的液晶层22、以及仅位于基板21面向液晶层22一侧的3D显示控制器件33(如图6中虚线框所示)。
可选地,参见图7,3D显示控制器件33(如图7中虚线框所示)包括:公共电极331、以及位于公共电极331与液晶层22之间的多个相互平行且按照设定距离间隔排列的条形的狭缝电极332;其中,狭缝电极332位于液晶光栅2中用于形成明条纹的区域。
此时的液晶光栅可以称为高级超维场转换(ADS)型的液晶光栅,且液晶光栅为常暗型液晶光栅,当液晶光栅处于3D工作状态时,由于同一平面内狭缝电极边缘所产生的电场以及公共电极与狭缝电极间产生的电场形成多维电场,该多维电场可使得正对狭缝电极的液晶分子产生旋转,光能透射出去,从而在与狭缝电极所在的区域相对应的区域形成明条纹,而在相邻的狭缝电极之间的区域,其对应的液晶分子不会产生旋转,故在与相邻的狭缝电极之间的区域相对应的区域形成暗条纹,即可以形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果。
需要说明的是,在液晶光栅为常暗型液晶光栅时,只可实现3D显示的效果,而不能实现2D显示的效果,即不能设置3D/2D转换功能。
需要指出的是,相邻的狭缝电极332之间的距离为至少两个显示器件的像素的宽度,也可以说相邻的一暗条纹和一明条纹至少覆盖两排显示器件的像 素。
参见图8,图8为本申请实施例提供的一种3D显示装置,与图3所示的实施例提供的3D显示装置相类似,相同的部分在此不再赘述,下面只说明不同的部分。
如图8所示,本申请实施例提供的3D显示装置中液晶光栅2包括:基板21、填充在基板21和显示器件1之间的液晶层22、以及仅位于基板21面向液晶层22一侧的3D显示控制器件43(如图8中虚线框所示)。
可选地,参见图9,3D显示控制器件43包括:多对相互平行且按照设定距离间隔排列的电极组431(如图9中虚线框所示);其中,每一电极组431包括相互平行、极性相反且排列方向与多对电极组431的排列方向一致的一个第一条形电极4311和一个第二条形电极4312;其中,电极组431位于液晶光栅2中用于形成暗条纹的区域,设定距离可以根据实际需要进行设置。
此时的液晶光栅可以称为平面转换(IPS)型的液晶光栅,且液晶光栅为常亮型液晶光栅,当液晶光栅处于3D工作状态时,由于同一平面内一对电极组431中第一条形电极4311和第二条形电极4312间形成平面电场,该平面电场可使得正对电极组431的液晶分子产生旋转,光不能透射出去,从而在与电极组431所在的区域相对应的区域形成暗条纹,而在相邻的电极组431之间的区域,其对应的液晶分子不会产生旋转,故在与相邻的电极组431之间的区域相对应的区域形成明条纹,即可以形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果。
可选地,在液晶光栅为常亮型液晶光栅时,还可设置3D/2D转换功能,例如可以设置一控制开关,当液晶光栅处于3D工作状态时,给电极组431加载工作电压,用于形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果;当液晶光栅处于2D工作状态时,不给电极组431加载工作电压,这样液晶分子不会产生旋转,从而不会形成明暗相间的光栅条纹,此时的液晶光栅相当于一块透明玻璃,当输入2D显示信号时,就能够实现2D显示 的效果。
需要指出的是,相邻的电极组431之间的距离为至少两个显示器件的像素的宽度,也可以说相邻的一暗条纹和一明条纹至少覆盖两排显示器件的像素。
参见图10,图10为本申请实施例提供的一种3D显示装置,与图8所示的实施例提供的3D显示装置相类似,相同的部分在此不再赘述,下面只说明不同的部分。
如图10所示,本申请实施例提供的3D显示装置中液晶光栅2包括:基板21、填充在基板21和显示器件1之间的液晶层22、以及仅位于基板21面向液晶层22一侧的3D显示控制器件53(如图10中虚线框所示)。
可选地,参见图11,3D显示控制器件53包括:多对相互平行且按照设定距离间隔排列的电极组531(如图11中虚线框所示);其中,每一电极组531包括相互平行、极性相反且排列方向与多对电极组531的排列方向一致的一个第一条形电极5311和一个第二条形电极5312;其中,电极组531位于液晶光栅2中用于形成明条纹的区域。
此时的液晶光栅可以称为平面转换(IPS)型的液晶光栅,且液晶光栅为常暗型液晶光栅,当液晶光栅处于3D工作状态时,由于同一平面内一对电极组531中第一条形电极5311和第二条形电极5312间形成平面电场,该平面电场可使得正对电极组531的液晶分子产生旋转,光能透射出去,从而在与电极组531所在的区域相对应的区域形成明条纹,而在相邻的电极组531之间的区域,其对应的液晶分子不会产生旋转,故在与相邻的电极组531之间的区域相对应的区域形成暗条纹,即可以形成明暗相间的光栅条纹,当输入3D显示信号时,则可实现3D显示的效果。
需要指出的是,相邻的电极组531之间的距离为至少两个显示器件的像素的宽度,也可以说相邻的一暗条纹和一明条纹至少覆盖两排显示器件的像素。
基于同一发明构思,本申请实施例还提供了一种3D显示装置的制备方法,该方法包括以下步骤:形成显示器件和在所述显示器件出光侧形成液晶光栅。
其中,所述在所述显示器件出光侧形成液晶光栅,包括:
仅在基板上形成3D显示控制器件;
将形成有3D显示控制器件的基板的所述3D显示控制器件朝向所述显示器件的出光侧,并在所述形成有3D显示控制器件的基板与所述显示器件之间形成液晶层。
而形成显示器件的方法与相关技术相同,在此不再赘述。
需要说明的是,上述形成显示器件的步骤与形成3D显示控制器件的步骤可以同时进行,也可以其中之一先进行,本申请实施例对此并不进行限定。
采用该方法制备的3D显示装置包括显示器件和设置于所述显示器件出光侧的液晶光栅,所述液晶光栅包括:基板、填充在所述基板和所述显示器件之间的液晶层、以及仅位于所述基板面向所述液晶层一侧的3D显示控制器件,由于3D显示装置中液晶光栅仅使用了一块基板,因此,可以减薄3D显示装置的厚度,并且,3D显示控制器件仅位于基板面向液晶层的一侧,这样,在制作液晶光栅时,只需要在一块基板上制作用于实现3D显示功能的3D显示控制器件,因此,可以简化工艺。
可选地,若制作的显示器件包括设置在显示器件出光侧的第一偏光片,所述在所述显示器件出光侧形成液晶光栅,还包括:在基板背向液晶层一侧形成第二偏光片。
其中,形成第二偏光片可以在仅在基板上形成3D显示控制器件的步骤之前,也可在此步骤之后,本申请实施例并不对其进行限定。
当然,若制作的显示器件并不包括设置在显示器件出光侧的第一偏光片,所述在所述显示器件出光侧形成液晶光栅,还包括:
在将所述形成有3D显示控制器件的基板的所述3D显示控制器件朝向所述显示器件的出光侧之前,在显示器件的出光侧形成第一偏光片;
在基板背向液晶层一侧形成第二偏光片。
可选地,所述形成3D显示控制器件,可以包括:
形成公共电极;
在所述公共电极上形成多个相互平行且按照设定距离间隔排列的条形的狭缝电极。
可选地,形成狭缝电极可以包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成狭缝电极。
可选地,所述形成3D显示控制器件,也可以包括:
形成多对相互平行且按照设定距离间隔排列的电极组;其中,每一所述电极组包括相互平行、极性相反且排列方向与多对电极组的排列方向一致的第一条形电极和第二条形电极。
可选地,形成电极组可以包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成电极组。
可选地,所述在所述显示器件出光侧形成液晶光栅,还可以包括:
在所述基板和所述3D显示控制器件之间或在所述3D显示控制器件与所述液晶层之间形成触控检测器件。
可选地,形成触控检测器件,可以包括:形成金属网格结构的触控电极层。
由于采用该方法制备的触控电极层为金属网格结构的触控电极层,这样,一方面,由于金属网格结构的触控电极层中的电极为金属电极,电阻低,并且金属网格结构占用的面积小,因此可以降低触控电极与3D显示电极间的感应电容,从而减少干扰,另一方面,由于金属网格触控电极比现有的氧化铟锡(ITO)电极成本低,因此可以降低生产成本。
可选地,为了防止金属触控电极反射外界的光线而影响显示效果,上述在所述显示器件出光侧形成液晶光栅,还可以包括:
在基板与金属网格结构的触控电极层之间形成用于限定每一显示器件的像素的黑矩阵层。
下面以3D显示装置中显示器件为LCD,液晶光栅为ADS型且常亮型的液晶光栅,并且该液晶光栅包含金属网格结构的触控电极层为例,结合附图 12(a)~12(g)来具体说明本申请实施例提供的3D显示装置的制备工艺流程。
步骤一、参见图12(a),形成LCD101(如图12(a)中双向箭头所示);
其中,LCD101包括设置在LCD101出光侧的第一偏光片102。
步骤二、参见图12(b),在基板103上形成用于限定每一LCD的像素的黑矩阵层104;
步骤三、参见图12(c),采用金属网格技术在黑矩阵层104上形成金属网格结构的触控电极层105;
其中,形成的触控电极层105包括:多条沿第一方向延伸的第一金属电极、多条沿第二方向延伸的第二金属电极和桥点;其中,桥点位于第一金属电极与第二金属电极的交叠处,使得第一金属电极与第二金属电极绝缘;任意两条相邻的第一金属电极与任意两条相邻的第二金属电极共同定义一网格;第一方向与第二方向不平行;LCD的像素设置在与网格对应的位置上。
步骤四、参见图12(d),在金属网格结构的触控电极层105上形成公共电极106;
其中,触控电极层105与公共电极106之间绝缘,例如可以在触控电极层105与公共电极106之间设置一绝缘层,使得触控电极层105与公共电极106之间绝缘。
步骤五、参见图12(e),在公共电极106上用于形成暗条纹的区域形成多个相互平行且按照设定距离间隔排列的条形的狭缝电极107;
其中,狭缝电极107与公共电极106之间绝缘,例如可以在狭缝电极107与公共电极106之间设置一绝缘层,使得狭缝电极107与公共电极106之间绝缘。
步骤六、参见图12(f),将上述形成有狭缝电极107的基板的狭缝电极107朝向第一偏光片102,并在狭缝电极107与第一偏光片102之间形成液晶层108;
步骤七、参见图12(g),在基板103背向液晶层108一侧形成第二偏光片109。
综上所述,本申请实施例提供的技术方案中,3D显示装置,包括显示器件和设置于所述显示器件出光侧的液晶光栅,所述液晶光栅包括:基板、填充在所述基板和所述显示器件之间的液晶层、以及仅位于所述基板面向所述液晶层一侧的3D显示控制器件,由于3D显示装置中液晶光栅仅使用了一块基板,因此,可以减薄3D显示装置的厚度,并且,3D显示控制器件仅位于基板面向液晶层的一侧,这样,在制作液晶光栅时,只需要在一块基板上制作用于实现3D显示功能的3D显示控制器件,因此,可以简化工艺。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种3D显示装置,包括:显示器件和设置于所述显示器件出光侧的液晶光栅,其中,所述液晶光栅包括:基板、填充在所述基板和所述显示器件之间的液晶层、以及仅位于所述基板面向所述液晶层一侧的3D显示控制器件。
  2. 根据权利要求1所述的3D显示装置,其中,所述3D显示控制器件包括:公共电极、以及位于所述公共电极与所述液晶层之间的多个相互平行且按照设定距离间隔排列的条形的狭缝电极。
  3. 根据权利要求2所述的3D显示装置,其中,所述狭缝电极位于所述液晶光栅中用于形成暗条纹的区域;或
    所述狭缝电极位于所述液晶光栅中用于形成明条纹的区域。
  4. 根据权利要求1所述的3D显示装置,其中,所述3D显示控制器件包括:多对相互平行且按照设定距离间隔排列的电极组;其中,每一所述电极组包括相互平行、极性相反且排列方向与多对电极组的排列方向一致的第一条形电极和第二条形电极。
  5. 根据权利要求4所述的3D显示装置,其中,所述电极组位于所述液晶光栅中用于形成暗条纹的区域;或
    所述电极组位于所述液晶光栅中用于形成明条纹的区域。
  6. 根据权利要求1~5任一项所述的3D显示装置,其中,所述液晶光栅还包括触控检测器件,所述触控检测器件位于所述基板和所述3D显示控制器件之间或位于所述3D显示控制器件与所述液晶层之间。
  7. 根据权利要求6所述的3D显示装置,其中,所述触控检测器件包括金属网格结构的触控电极层。
  8. 一种3D显示装置的制备方法,包括:形成显示器件和在所述显示器件出光侧形成液晶光栅,其中,所述在所述显示器件出光侧形成液晶光栅,包括:
    仅在基板上形成3D显示控制器件;
    将形成有3D显示控制器件的基板的所述3D显示控制器件朝向所述显示器件的出光侧,并在所述形成有3D显示控制器件的基板与所述显示器件之间形成液晶层。
  9. 根据权利要求8所述的方法,其中,所述形成3D显示控制器件,包括:
    形成公共电极;
    在所述公共电极上形成多个相互平行且按照设定距离间隔排列的条形的狭缝电极。
  10. 根据权利要求9所述的方法,其中,形成狭缝电极包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成狭缝电极。
  11. 根据权利要求8所述的方法,其中,所述形成3D显示控制器件,包括:
    形成多对相互平行且按照设定距离间隔排列的电极组;其中,每一所述电极组包括相互平行、极性相反且排列方向与多对电极组的排列方向一致的第一条形电极和第二条形电极。
  12. 根据权利要求11所述的方法,其中,形成电极组包括:在所述液晶光栅中用于形成暗条纹的区域或在所述液晶光栅中用于形成明条纹的区域形成电极组。
  13. 根据权利要求8~12任一项所述的方法,其中,所述在所述显示器件出光侧形成液晶光栅,还包括:
    在所述基板和所述3D显示控制器件之间或在所述3D显示控制器件与所述液晶层之间形成触控检测器件。
  14. 根据权利要求13所述的方法,其中,所述形成触控检测器件,包括:形成金属网格结构的触控电极层。
PCT/CN2017/092477 2016-09-12 2017-07-11 3d显示装置及其制备方法 WO2018045819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/773,782 US20180329220A1 (en) 2016-09-12 2017-07-11 3d display device and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610819417.X 2016-09-12
CN201610819417.XA CN106154657B (zh) 2016-09-12 2016-09-12 一种3d显示装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2018045819A1 true WO2018045819A1 (zh) 2018-03-15

Family

ID=57340709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092477 WO2018045819A1 (zh) 2016-09-12 2017-07-11 3d显示装置及其制备方法

Country Status (3)

Country Link
US (1) US20180329220A1 (zh)
CN (1) CN106154657B (zh)
WO (1) WO2018045819A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154657B (zh) * 2016-09-12 2023-09-01 合肥鑫晟光电科技有限公司 一种3d显示装置及其制备方法
CN108957830B (zh) * 2018-07-06 2020-06-09 京东方科技集团股份有限公司 显示装置和显示装置的控制方法、显示设备
CN109031757A (zh) * 2018-08-08 2018-12-18 京东方科技集团股份有限公司 显示装置及电子设备
WO2021149389A1 (ja) * 2020-01-20 2021-07-29 ソニーセミコンダクタソリューションズ株式会社 発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087499A1 (en) * 2004-10-23 2006-04-27 Lg.Philips Lcd Co., Ltd. Autostereoscopic 3D display device and fabrication method thereof
CN102830555A (zh) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 一种触控液晶光栅及3d触控显示装置
CN103941469A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN204925519U (zh) * 2015-07-31 2015-12-30 天津宝兴威科技有限公司 一种裸眼立体电驱动液晶透镜
CN106154657A (zh) * 2016-09-12 2016-11-23 合肥鑫晟光电科技有限公司 一种3d显示装置及其制备方法
CN206057762U (zh) * 2016-09-12 2017-03-29 合肥鑫晟光电科技有限公司 一种3d显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI350401B (en) * 2006-11-27 2011-10-11 Chimei Innolux Corp Liquid crystal display device
CN101424817B (zh) * 2008-12-17 2010-07-21 友达光电股份有限公司 制作彩色滤光触控基板的方法
JP5705420B2 (ja) * 2009-07-03 2015-04-22 株式会社ジャパンディスプレイ 液晶パララックスバリア、表示装置及び液晶表示装置
KR101900372B1 (ko) * 2011-07-19 2018-11-05 삼성디스플레이 주식회사 표시장치 및 이의 제조방법
WO2013065580A1 (ja) * 2011-10-31 2013-05-10 シャープ株式会社 表示装置
JP2014048605A (ja) * 2012-09-04 2014-03-17 Sony Corp 表示装置および電子機器
CN203133450U (zh) * 2013-03-29 2013-08-14 北京京东方光电科技有限公司 一种液晶光栅及3d触控显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060087499A1 (en) * 2004-10-23 2006-04-27 Lg.Philips Lcd Co., Ltd. Autostereoscopic 3D display device and fabrication method thereof
CN102830555A (zh) * 2012-08-31 2012-12-19 北京京东方光电科技有限公司 一种触控液晶光栅及3d触控显示装置
CN103941469A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN204925519U (zh) * 2015-07-31 2015-12-30 天津宝兴威科技有限公司 一种裸眼立体电驱动液晶透镜
CN106154657A (zh) * 2016-09-12 2016-11-23 合肥鑫晟光电科技有限公司 一种3d显示装置及其制备方法
CN206057762U (zh) * 2016-09-12 2017-03-29 合肥鑫晟光电科技有限公司 一种3d显示装置

Also Published As

Publication number Publication date
US20180329220A1 (en) 2018-11-15
CN106154657B (zh) 2023-09-01
CN106154657A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US9195081B2 (en) Touch liquid crystal grating, 3D touch display device and driving method of touch liquid crystal grating
US9261993B2 (en) Touch liquid crystal grating, manufacturing method thereof and touch 3D display device
CN103033996B (zh) 主动式光栅及其制造方法、显示装置及主动快门眼镜
US9405144B2 (en) Liquid crystal grating, 3D touch display device and driving method of liquid crystal grating
US9057909B2 (en) Liquid crystal lens and 3D display device
KR102017203B1 (ko) 액정 렌즈 및 이를 포함하는 표시 장치
EP2730971B1 (en) Liquid crystal slit grating and stereoscopic display device
WO2018045819A1 (zh) 3d显示装置及其制备方法
EP2988160B1 (en) Switching barrier and 3d display device having the same
CN202948233U (zh) 主动式光栅、显示装置及主动快门眼镜
WO2016045110A1 (zh) 一种液晶透镜及液晶显示装置
US10795217B2 (en) Liquid crystal grating and fabrication method thereof, and naked eye 3D display device
US9535290B2 (en) Parallax barrier and display device
WO2015100918A1 (zh) 一种显示装置及其制备方法
TW201423236A (zh) 可切換二維顯示模式與三維顯示模式之顯示裝置及其液晶透鏡
CN106200204B (zh) 裸眼三维显示面板及其制造方法、裸眼三维显示装置
US9575326B2 (en) Stereoscopic image display apparatus
CN202794716U (zh) 一种3d显示装置
US9996200B2 (en) Touch screen, display device and manufacturing method thereof usable for realizing 3D display
KR101931331B1 (ko) 입체 영상 표시 장치
WO2013088804A1 (ja) 表示装置
WO2014187041A1 (zh) 触摸式裸眼3d光栅及显示装置
CN206057762U (zh) 一种3d显示装置
JP5782144B2 (ja) 液晶パララックスバリア、表示装置及び液晶表示装置
US20160147090A1 (en) Liquid crystal lens unit and 3d display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15773782

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17847992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.07.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17847992

Country of ref document: EP

Kind code of ref document: A1