WO2018043039A1 - スイッチング回路 - Google Patents
スイッチング回路 Download PDFInfo
- Publication number
- WO2018043039A1 WO2018043039A1 PCT/JP2017/028517 JP2017028517W WO2018043039A1 WO 2018043039 A1 WO2018043039 A1 WO 2018043039A1 JP 2017028517 W JP2017028517 W JP 2017028517W WO 2018043039 A1 WO2018043039 A1 WO 2018043039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- transistor
- terminal
- drive
- circuit
- turn
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
- H03K17/64—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors having inductive loads
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/12—Modifications for increasing the maximum permissible switched current
- H03K17/122—Modifications for increasing the maximum permissible switched current in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/12—Modifications for increasing the maximum permissible switched current
- H03K17/127—Modifications for increasing the maximum permissible switched current in composite switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0081—Power supply means, e.g. to the switch driver
Definitions
- the present disclosure relates to a switching circuit including a plurality of switching elements connected in parallel and a driving circuit thereof.
- FIG. 10 is a circuit diagram of the switching circuit described in Patent Document 1, in which an IGBT with a current sense emitter is used as a parallel-connected transistor to balance the current of each transistor.
- the main current flowing through the emitters of the IGBTs 131 and 132 is detected by the voltages of the sense resistors 161 and 162 connected to the respective current sense emitters.
- the operational amplifiers 151 and 152 compare the voltage difference between the sense resistors 161 and 162, that is, the main currents of the IGBTs 131 and 132. If the current of the IGBT 131 is large, the operational amplifier 151 controls the FET 141 to the on side to control the gate voltage of the IGBT 131. To reduce its main current.
- the operational amplifier 152 controls the FET 142 to the off side to increase the gate voltage of the IGBT 132 and increase its main current. Therefore, the currents of the IGBTs 131 and 132 are balanced.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a switching circuit capable of balancing main currents with a simple circuit configuration and mounting form for high-speed switching transistors connected in parallel. To do.
- a switching circuit includes a driving power source that has a positive terminal and a negative terminal and outputs a predetermined driving voltage, a first transistor and a second transistor connected in parallel.
- a drive signal source for outputting a drive pulse signal for driving on and off the first and second transistors, a power supply terminal and a ground terminal, and power is supplied from the drive power supply, and the drive pulse
- the first transistor has a drive circuit that outputs a first drive signal for driving the first transistor on and off and a second drive signal for driving the second transistor on and off
- the first transistor And the second transistor respectively include a drain electrode and a source electrode through which a main current flows when turned on, and the drain electrode and the source electrode in accordance with a power reception signal.
- the source terminal has a second source terminal connected to the source electrode for flowing a source voltage detection and a gate driving current, wherein the first source terminal is the first source terminal Connected to the source electrode with a lower impedance than the second source terminal, connected to the drain terminal of the first transistor and the drain terminal of the second transistor, and connected to the first source terminal of the first transistor and the second source terminal
- a first source terminal of the transistor is connected, a gate terminal of the first transistor receives the first drive signal, and the second transistor
- the gate terminal of the star receives the second drive signal, and the second source terminal of the first transistor and the second source terminal of the second transistor are a negative terminal of the drive power source and a ground of the drive circuit. It is connected at the connection part with the terminal.
- the influence of the source parasitic inductance through which the main current flows can be removed to prevent malfunction, and the parasitic inductance of each drive loop can be adjusted or equalized by separating the drive source path.
- first transistor and the second transistor may have the same rated current, and the first drive signal and the second drive signal of the drive circuit may be set to be equal.
- a drive power supply having a positive terminal and a negative terminal and outputting a predetermined drive voltage, a first transistor and a second transistor connected in parallel, and driving the first and second transistors on and off
- a drive signal source for outputting the drive pulse signal, a first drive signal which is supplied with electric power from the drive power supply, and drives the first transistor on and off according to the drive pulse signal, and the second transistor And a second driving signal for driving on / off of the first and second transistors, each of the first transistor and the second transistor having a drain terminal and a source terminal through which a main current flows when turned on.
- a drain terminal of the first transistor having a gate terminal that changes an impedance between the drain terminal and the source terminal according to
- the drain terminal of the second transistor is connected, the source terminal of the first transistor and the source terminal of the second transistor are connected, and the gate terminal of the first transistor receives the first drive signal.
- the gate terminal of the second transistor receives the second drive signal, and the drive circuit is configured to receive the first drive signal during a period in which the drive pulse signal indicates an on state of the first and second transistors.
- a first on-circuit that supplies an on-drive current that is a predetermined direct current from the positive terminal of the drive power source to the gate terminal of the first transistor, and the drive pulse signal is the first During the period in which the ON state of the first and second transistors is instructed, the second transistor signal is supplied as a part of the second drive signal from the positive terminal of the drive power supply.
- a second ON circuit for supplying an ON drive current, which is a predetermined DC current, to the first terminal, and one of the first drive signals when the drive pulse signal indicates turn-on of the first and second transistors.
- a first turn-on circuit for supplying a predetermined turn-on drive current from the positive terminal of the drive power source to the gate terminal of the first transistor; and the drive pulse signal turns on the first and second transistors.
- a second turn-on circuit for supplying a predetermined turn-on drive current from the positive terminal of the drive power source to the gate terminal of the second transistor as a part of the second drive signal when instructed; and the drive pulse signal When the first and second transistors turn off as a part of the first drive signal.
- a first turn-off circuit that draws a predetermined turn-off drive current from the first terminal, and the second pulse as a part of the second drive signal when the drive pulse signal indicates turn-off of the first and second transistors.
- a second turn-off circuit that draws a predetermined turn-off drive current from the gate terminal of the transistor.
- first transistor and the second transistor may be transistors that require a current to the gate terminal to maintain the on state.
- the first transistor and the second transistor have the same rated current, and the drive circuit has an ON drive current in the first ON circuit and an ON drive current in the second ON circuit set equal,
- the turn-on drive current in the first turn-on circuit and the turn-on drive current in the second turn-on circuit may be set equal, and the turn-off drive current in the first turn-off circuit and the turn-off drive current in the second turn-off circuit may be set equal.
- the first ON circuit and the second ON circuit share a first switch that is turned ON when the drive pulse signal indicates the ON state of the first and second transistors, and the first ON circuit and the second ON circuit share the first switch.
- One ON circuit includes a series circuit of the first switch and a first ON drive resistor
- the second ON circuit includes a series circuit of the first switch and a second ON drive resistor. May be.
- the series circuit of the first switch and the first on-drive resistor generates an on-drive current supplied to the gate terminal of the first transistor.
- the series circuit of the first switch and the second on-drive resistor generates an on-drive current supplied to the gate terminal of the second transistor.
- the on-resistances of the first and second transistors can be adjusted or equalized by the first and second on-drive resistors.
- the first turn-on circuit and the second turn-on circuit share a second switch that is turned on when the drive pulse signal indicates the on state of the first and second transistors, and
- One turn-on circuit may include a series circuit of the second switch and a first capacitor, and the second turn-on circuit may include a series circuit of the second switch and a second capacitor.
- the series circuit of the second switch and the first capacitor generates a turn-on drive current supplied to the gate terminal of the first transistor.
- the series circuit of the second switch and the second capacitor generates a turn-on drive current supplied to the gate terminal of the second transistor. Furthermore, the turn-on characteristics (speeds) of the first and second transistors can be adjusted or made uniform by the first and second capacitors.
- the first turn-off circuit and the second turn-off circuit are connected to the negative terminal of the drive power supply and are turned on when the drive pulse signal indicates the off state of the first and second transistors. Sharing a third switch, wherein the first turn-off circuit includes a series circuit of the third switch and a first diode, and the second turn-off circuit includes the third switch and the second diode;
- the series circuit may be included.
- the series circuit of the third switch and the first diode generates a turn-off drive current supplied to the gate terminal of the first transistor.
- the series circuit of the third switch and the second diode generates a turn-off drive current supplied to the gate terminal of the first transistor. Generation of circulating current between transistors when each transistor is turned off can be prevented by the diode.
- the driving circuit includes a negative driving power source that outputs a negative voltage having a polarity opposite to the driving voltage, and the first turn-off circuit and the second turn-off circuit are connected to the negative driving power source and A third switch that is turned on when a drive pulse signal indicates an off state of the first and second transistors is shared, and the first turn-off circuit includes the negative drive power source, the third switch, and the first switch.
- the second turn-off circuit may include a series circuit of the negative drive power source, the third switch, and a second diode.
- the first and second diodes prevent generation of circulating current between the first and second transistors when the first and second transistors are turned off. Prevents false firing due to bias and enhances turn-off characteristics.
- bypass capacitor which becomes an alternating current source of the first transistor and the second transistor, and the main current is supplied from the load via the first transistor and the second transistor.
- the first transistor, the second transistor, and the bypass capacitor are connected so as to flow to a negative electrode terminal of the capacitor, and the first source terminal of the first transistor and the negative electrode of the bypass capacitor are disposed on the wiring board.
- the impedance between the terminals may be equal to the impedance between the first source terminal of the second transistor and the negative terminal of the bypass capacitor.
- first transistor, the second transistor, and the bypass capacitor are perpendicular to a line segment connecting the source terminal of the first transistor and the source terminal of the second transistor in a plan view of the wiring board.
- a bisector may be arranged to pass through the negative terminal of the bypass capacitor.
- the switching circuit further includes a third transistor and a fourth transistor, and the third transistor and the fourth transistor each have a drain terminal and a first source terminal through which a main current flows.
- the drain terminal of the third transistor, the drain terminal of the fourth transistor, and the positive terminal of the bypass capacitor are connected to the wiring board, and the drain terminal of the first transistor and the drain terminal of the second transistor.
- a terminal, a source terminal of the third transistor, and a source terminal of the fourth transistor are connected, and the third transistor, the fourth transistor, and the bypass capacitor are connected to each other in the plan view of the wiring board.
- the drain terminal of the transistor is connected to the drain terminal of the fourth transistor.
- Line perpendicular bisector may be arranged to pass through the positive terminal of the bypass capacitor.
- the switching circuit includes the wiring board, a first connector connected to the source terminal of the first transistor in the immediate vicinity of the first transistor disposed on the wiring board, and the wiring board.
- a second connector connected to a source terminal of the second transistor in the immediate vicinity of the second transistor disposed on the first transistor, and the first transistor and the second transistor;
- a vertical bisector connecting the first connector and the second connector on the sub-wiring substrate is connected to the bypass capacitor. It may be arranged to pass through the negative terminal of the capacitor.
- the switching circuit further includes a third transistor and a fourth transistor, and the third transistor and the fourth transistor each have a drain terminal and a first source terminal through which a main current flows.
- the switching circuit further includes a third connector connected to the drain terminal of the third transistor in the immediate vicinity of the third transistor disposed on the wiring substrate, and a wiring connector disposed on the wiring substrate.
- a fourth connector connected to the drain terminal of the fourth transistor in the immediate vicinity of the fourth transistor, and the third connector and the fourth connector are connected to the sub-wiring board.
- the third connector, the fourth connector, and the bypass capacitor are arranged on the sub-wiring board in a plan view of the wiring board. Vertical bisector of a line segment connecting the third connector and the fourth connector may be arranged to pass through the positive terminal of the bypass capacitor.
- the sub wiring board may also serve as a heat sink for the first transistor and the second transistor.
- the switching circuit of the present invention it is possible to provide a switching circuit capable of balancing the main current with a simple circuit configuration and mounting form for high-speed switching transistors connected in parallel.
- FIG. 1 is a diagram illustrating a configuration example of a switching circuit according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration example of the switching circuit according to the second embodiment.
- FIG. 3 is an operation timing chart of the switching circuit according to the second embodiment.
- FIG. 4 is a diagram illustrating a configuration example of the switching circuit according to the third embodiment.
- FIG. 5 is a diagram illustrating a switching circuit and a current path of a load according to the fourth embodiment.
- FIG. 6 is a plan view showing an example of mounting the switching circuit according to the fourth embodiment on a wiring board.
- FIG. 7 is a diagram illustrating a configuration example of a switching circuit having a half-bridge configuration according to the fifth embodiment.
- FIG. 8 is a plan view showing an example of mounting the switching circuit according to the fifth embodiment on a wiring board.
- FIG. 9A is a perspective view showing an example of mounting the switching circuit according to Embodiment 6 on a wiring board and a sub wiring board.
- FIG. 9B is a side view showing an example of mounting the switching circuit according to Embodiment 6 on the wiring board and the sub wiring board.
- FIG. 9C is a plan view showing an example of mounting the switching circuit according to Embodiment 6 on a sub-wiring board.
- FIG. 10 is a circuit diagram of the switching circuit described in Patent Document 1.
- FIG. 1 is a diagram illustrating a configuration example of a switching circuit according to the first embodiment.
- the switching circuit shown in the figure includes a drive power source 1, a drive signal source 2, a drive circuit 3, a first transistor 4 and a second transistor 5.
- a first transistor 4 incorporates a semiconductor chip having a gate electrode, a drain electrode, and a source electrode, and has a drain terminal D1 connected to the drain electrode, a gate terminal G1 connected to the gate electrode, and a source, respectively.
- a first source terminal S1 and a second source terminal SS1 connected to the electrodes are included.
- the second transistor 5 incorporates a semiconductor chip having a gate electrode, a drain electrode, and a source electrode, and is connected to a drain terminal D2 connected to the drain electrode, a gate terminal G2 connected to the gate electrode, and a source electrode, respectively.
- the first source terminal S1 has a lower impedance than the second source terminal SS1, for example, by using a plurality of bonding wires connecting the source electrode and the first source terminal S1 in order to flow a main current. Connected to.
- the first source terminal S2 has a lower impedance than the second source terminal SS2, for example, by using a plurality of bonding wires connecting the source electrode and the first source terminal S2 in order to flow the main current. Connected to.
- the drive circuit 3 to which the drive voltage Vcc is supplied from the drive power supply 1 sends the first drive signal and the second drive signal corresponding to the drive pulse signal Vpls from the drive signal source 2 to the gate terminal of the first transistor 4 respectively. Output to G1 and the gate terminal G2 of the second transistor 5.
- the drain terminal D1 of the first transistor 4 and the drain terminal D2 of the second transistor 5 are connected, the first source terminal S1 of the first transistor 4 and the second source terminal S2 of the second transistor 5 are connected,
- the main currents of the first transistor 4 and the second transistor 5 that are turned on by the first drive signal and the second drive signal flow from the drain terminals D1 and D2 to the first source terminals S1 and S2.
- the first source terminals S1 and S2 through which the main current flows and the second source terminals SS1 and SS2 branched by the source electrode are connected by a connection portion between the negative terminal of the drive power supply 1 and the ground terminal of the drive circuit 3. Therefore, only the gate current associated with the first and second drive signals flows through the second source terminals SS1 and SS2, and the main current does not flow.
- FIG. 1 shows inductances Lg1 and Lg2 as representative of the parasitic impedances interposed in the respective gate drive paths, and inductances Ls1, Ls2, Ls, Lss1, and Lss2 as representative of the parasitic impedances interposed in the respective source paths.
- the problems are the characteristics of each transistor, the driving conditions, and the impedance of the current path. This is the main current imbalance due to the difference.
- the switching circuit according to the present embodiment can adjust and balance the driving conditions.
- the second source terminal SS1 of the first transistor 4 and the second source terminal SS2 of the second transistor 5 do not have a common impedance, and the connection between the negative terminal of the drive power supply 1 and the ground terminal of the drive circuit 3 is established. Therefore, as shown in FIG. 1, the impedances represented by the parasitic inductances Lss1 and Lss2 are independently provided.
- Lss1 and Lss2 can be made equal to Lss by wiring pattern design, even if there is a difference in the parasitic impedances Lg1 and Lg2 interposed in the gate drive paths of the first transistor 4 and the second transistor 5, The difference between Lg1 + Lss and Lg2 + Lss can be reduced.
- the first transistor 4 and the second transistor 5 have the same rated current. However, in order to make the characteristics uniform, it is desirable that they are the same product number of the same manufacturer. When different ones are used, it is desirable to select ones having the same characteristics such as on-resistance and gate threshold voltage.
- the source path through which the gate drive current flows is branched from the main current path, and each source path is independently wired to the connection portion between the negative terminal of the drive power supply 1 and the ground terminal of the drive circuit 3. Since the influence of the main current can be removed and the difference in the parasitic impedance of the entire gate drive path can be reduced, the difference in the driving condition, which is the main current imbalance factor, can be reduced and the main current can be balanced It becomes.
- FIG. 2 is a diagram illustrating a configuration example of the switching circuit according to the second embodiment.
- the drive circuit 3 includes a first ON circuit 31, a second ON circuit 32, a first turn-on circuit 33, a second turn-on circuit 34, a first turn-off circuit 35, and a second turn-off circuit 36. Is provided.
- the first ON circuit 31 supplies the ON drive current i1 to the gate terminal G1 of the first transistor 4 according to the drive pulse signal Vpls from the drive signal source 2.
- the second ON circuit 32 supplies an ON drive current i2 to the gate terminal G2 of the second transistor 5 according to the drive pulse signal.
- the first turn-on circuit 33 supplies the turn-on drive current i3 to the gate terminal G1 of the first transistor 4 according to the drive pulse signal Vpls.
- the second turn-on circuit 34 supplies a turn-on drive current i4 to the gate terminal G2 of the second transistor 5 in accordance with the drive pulse signal.
- the first turn-off circuit 35 supplies a turn-off drive current i5 to the gate terminal G1 of the first transistor 4 in accordance with the drive pulse signal Vpls.
- the second turn-off circuit 36 supplies a turn-off drive current i6 to the gate terminal G2 of the second transistor 5 in accordance with the drive pulse signal Vpls.
- FIG. 3 is an operation timing chart of the switching circuit according to the second embodiment.
- the figure shows waveforms of the drive pulse signal Vpls from the drive signal source 2, the on-drive current i1, the on-drive current i2, the turn-on drive current i3, the turn-on drive current i4, the turn-off drive current i5, and the turn-off drive current i6.
- the operation of the switching circuit according to Embodiment 2 of the present invention shown in FIG. 2 will be described below using FIG.
- the first and second ON circuits 31, 32 are instructed to turn on the transistor by the drive pulse signal Vpls from the drive signal source 2, that is, throughout the period in which the drive pulse signal Vpls is “H”. Then, a direct current for maintaining the on state of the transistor is supplied.
- this current is a value obtained by dividing the main current by the current amplification factor hfe (about 10 in the case of power switching).
- this current is several mA to several tens mA. It becomes.
- the required gate voltage is divided by the gate-source resistance.
- the first and second turn-on circuits 33 and 34 when the drive pulse signal Vpls from the drive signal source 2 instructs to turn on the transistor, that is, after the drive pulse signal Vpls becomes “H”.
- a surge current for rapidly charging the gate voltage to a threshold value or more is passed.
- the peak value is set to about twice the value obtained by dividing the product of the gate input capacitance and the threshold voltage by the turn-on delay time (the delay time from when the drive pulse signal Vpls rises to when it is actually turned on).
- it is several A for bipolar transistors, several hundred mA for GaN-GIT, and 1A to 2A for MOSFETs.
- the first and second turn-off circuits 35 and 36 when the drive pulse signal Vpls from the drive signal source 2 instructs to turn off the transistor, that is, after the drive pulse signal Vpls becomes “L”. In this predetermined period, a negative surge current is applied to rapidly discharge the gate voltage below the threshold value.
- the absolute value of the peak value is set equal to or higher than the turn-on drive current.
- the gate drive path is set to 1 according to the application, as the source path is branched or the wiring is separated so as not to have a common impedance, thereby reducing the difference in parasitic impedance.
- the on-drive current for maintaining the on-state is supplied.
- the transistor is a MOSFET, it may be unnecessary. This is because when the parasitic capacitance between the gate and the source of the MOSFET is sufficiently large and the switching frequency is sufficiently high, the gate voltage is hardly lowered and the on state can be maintained even without the on driving current.
- the driver circuit of this embodiment is suitable for a transistor that requires a current to the gate terminal in order to maintain an on state.
- FIG. 4 is a diagram illustrating a configuration example of the switching circuit according to the third embodiment. This figure shows a more specific circuit configuration example of the switching circuit of FIG. 2 shown in the second embodiment.
- the drive circuit 3 includes a first on-circuit 31, a second on-circuit 32, a first turn-on circuit 33, a second turn-on circuit 34, a first turn-off circuit 35, and an inverter 350.
- the first ON circuit 31 includes a series circuit of a first switch 310 and a first ON drive resistor 311. One end of the first switch 310 is connected to the positive terminal of the drive power supply 1, and the other end of the first switch 310 is connected to the first on-drive resistor 311. One end of the first on-drive resistor 311 is connected to the first switch 310, and the other end of the first on-drive resistor 311 is connected to the gate terminal G 1 of the first transistor 4.
- the first switch 310 is shared by the first on circuit 31 and the second on circuit 32 and is turned on and off in accordance with the drive pulse signal Vpls from the drive signal source 2.
- the first ON circuit 31 uses the drive power supply as a part of the first drive signal during the period when the drive pulse signal Vpls indicates the ON state of the first and second transistors 4 and 5.
- An on-drive current i1 that is a predetermined direct current is supplied from one positive terminal to the gate terminal G1 of the first transistor 4.
- the period during which the ON state is instructed is, for example, during the period when the drive pulse signal Vpls is at a high level in FIG.
- the second ON circuit 32 includes a series circuit of a first switch 310 and a second ON drive resistor 321.
- One end of the first switch 310 is connected to the positive terminal of the drive power supply 1, and the other end of the first switch 310 is connected to the second on-drive resistor 321.
- One end of the second on-drive resistor 321 is connected to the first switch 310, and the other end of the second on-drive resistor 321 is connected to the gate terminal G 2 of the second transistor 5.
- the second ON circuit 32 uses the drive power supply as a part of the second drive signal during the period when the drive pulse signal Vpls indicates the ON state of the first and second transistors 4 and 5.
- An on-drive current i2 which is a predetermined direct current, is supplied from the positive terminal of one to the gate terminal G2 of the second transistor 5.
- the first turn-on circuit 33 includes a series circuit of a second switch 330, a first capacitor 331, and a first turn-on driving resistor 332.
- One end of the second switch 330 is connected to the positive terminal of the drive power supply 1, and the other end of the second switch 330 is connected to the first capacitor 331.
- One end of the first capacitor 331 is connected to the second switch 330, and the other end of the first capacitor 331 is connected to the first turn-on driving resistor 332.
- One end of the first turn-on driving resistor 332 is connected to the first capacitor 331, and the other end of the first turn-on driving resistor 332 is connected to the gate terminal G 1 of the first transistor 4.
- the second switch 330 is shared by the first turn-on circuit 33 and the second turn-on circuit 34 and is turned on and off according to the drive pulse signal Vpls from the drive signal source 2.
- the first turn-on circuit 33 uses the drive power supply 1 as a part of the first drive signal when the drive pulse signal Vpls instructs to turn on the first and second transistors 4 and 5.
- a predetermined turn-on drive current i 3 is supplied from the positive terminal to the gate terminal G 1 of the first transistor 4.
- the timing of the rising edge of the drive pulse signal Vpls when turning on is instructed, for example, in FIG. 3, the timing of the rising edge of the drive pulse signal Vpls.
- the second turn-on circuit 34 is composed of a series circuit of a second switch 330, a second capacitor 341, and a second turn-on driving resistor 342.
- One end of the second switch 330 is connected to the positive terminal of the drive power supply 1, and the other end of the second switch 330 is connected to the second capacitor 341.
- One end of the second capacitor 341 is connected to the second switch 330, and the other end of the second capacitor 341 is connected to the second turn-on drive resistor 342.
- One end of the second turn-on driving resistor 342 is connected to the second capacitor 341, and the other end of the second turn-on driving resistor 342 is connected to the gate terminal G 2 of the second transistor 5.
- the second turn-on circuit 34 uses the drive power supply 1 as a part of the second drive signal when the drive pulse signal Vpls instructs the first and second transistors 4 and 5 to turn on.
- a predetermined turn-on drive current i4 is supplied from the positive terminal to the gate terminal G2 of the second transistor 5.
- the first turn-off circuit 35 is composed of a series circuit of a negative drive power supply 30, a third switch 360, a first diode 351, and a first turn-off drive resistor 352.
- One end of the third switch 360 is connected to the negative terminal of the negative drive power supply 30, and the other end of the third switch 360 is connected to the cathode of the first diode 351.
- the cathode of the first diode 351 is connected to the third switch 360, and the anode of the first diode 351 is connected to the first turn-off driving resistor 352.
- the negative drive power supply 30 and the third switch 360 are shared by the first turn-off circuit 35 and the second turn-off circuit 36.
- the negative drive power supply 30 outputs a voltage of ⁇ Vee
- the positive electrode of the negative drive power supply 30 is connected to the negative electrode of the drive power supply 1
- the negative electrode of the negative drive power supply 30 is connected to the third switch 360.
- Third switch 360 is turned on and off in accordance with the inverted drive pulse signal Vpls from inverter 350.
- the first turn-off circuit 35 uses the first transistor as a part of the first drive signal when the drive pulse signal Vpls instructs the first and second transistors 4 and 5 to be turned off.
- a predetermined turn-off drive current i5 is extracted from the four gate terminals G1.
- the timing of the falling edge of the drive pulse signal Vpls is extracted from the four gate terminals G1.
- the second turn-off circuit 36 is composed of a series circuit of a negative drive power supply 30, a third switch 360, a second diode 361, and a second turn-off drive resistor 362.
- One end of the third switch 360 is connected to the negative terminal of the negative drive power supply 30, and the other end of the third switch 360 is connected to the cathode of the second diode 361.
- the cathode of the second diode 361 is connected to the third switch 360, and the anode of the second diode 361 is connected to the second turn-off driving resistor 362.
- One end of the second turn-off driving resistor 362 is connected to the anode of the second diode 361, and the other end of the second turn-off driving resistor 362 is connected to the gate terminal G 2 of the second transistor 5.
- the second turn-off circuit 36 uses the second transistor as a part of the second drive signal when the drive pulse signal Vpls instructs the first and second transistors 4 and 5 to be turned off.
- a predetermined turn-off drive current i6 is extracted from the fifth gate terminal G2.
- the first ON circuit 31, the first turn-on circuit 33, and the first turn-off circuit 35 supply the first drive signal to the gate terminal G1 of the first transistor 4.
- the first drive signal is a signal obtained by synthesizing the on-drive current i1, the turn-on drive current i3, and the turn-off drive current i5.
- the second ON circuit 32, the second turn-on circuit 34, and the second turn-off circuit 36 supply the second drive signal to the gate terminal G 2 of the second transistor 5.
- the second drive signal is a signal obtained by synthesizing the on-drive current i2, the turn-on drive current i4, and the turn-off drive current i6.
- the first and second ON circuits 31 and 32 ignore the ON voltage of the first switch 310, and set the resistance values of the first ON drive resistor 311 and the second ON drive resistor 321 to R311 and R321, respectively. Assuming that the gate voltages of the first and second transistors at the time of ON are Vg1 and Vg2, respectively, the ON drive currents i1 and i2 are expressed by the following equations.
- first and second transistors 4 and 5 are bipolar transistors of the same specification or GaN-GIT, Vg1 ⁇ Vg2, and by making the resistance values of the on-driving resistors 311 and 321 equal, i1 ⁇ i2,
- the main current level can be made uniform. In other words, even if the transistors have different on-time gate voltages, by adjusting either or each of the resistance values of the on-drive resistors 311 and 321, the on-drive current is set to i1 ⁇ i2 and the on-state main current Levels can be aligned.
- the first and second turn-on circuits 33 and 34 set the gate input capacitances of the first and second transistors to Cg1 and Cg2, respectively, ignore the on-voltage of the second switch 330, and the first capacitor 331. And C331 and C341, respectively, and the initial voltage values at the time of turn-on of C331 and C341 respectively hold (Vcc-Vg1) and (Vcc-Vg2) at the end of the on period of the previous cycle.
- the resistance values of the first turn-on drive resistor 332 and the second turn-on drive resistor 342 are R332 and R342, respectively, the gate voltages of the first and second transistors immediately before the turn-on are both negative voltage ⁇ Vee. Therefore, the turn-on drive currents i3 and i4 are as follows.
- i3 ⁇ (Vg1 + Vee) / R332 ⁇ ⁇ exp ⁇ t / (C3 ⁇ R332)
- i4 ⁇ (Vg2 + Vee) / R342 ⁇ ⁇ exp ⁇ t / (C4 ⁇ R342) ⁇
- C3 Cg1 ⁇ C331 / (Cg1 + C331)
- C4 Cg2 ⁇ C341 / (Cg2 + C341)
- first and second transistors are bipolar transistors of the same specification or GaN-GIT, then Vg1 ⁇ Vg2, Cg1 ⁇ Cg2, and the capacitance of each capacitor 331, 341 and the resistance value of the turn-on drive resistance 332, 342 By making them equal, the turn-on drive current i3 ⁇ i4 and the gate voltage become equal, and the level of the main current at turn-on can be made uniform.
- the first and second turn-off circuits 35 and 36 ignore the ON voltage of the third switch 360 and the forward voltage drop of the first diode 351 and the second diode 361, and the first turn-off driving resistor 352 is ignored.
- the resistance values of the second turn-off drive resistor 362 are R352 and R362, respectively, the gate voltages of the first and second transistors immediately before the turn-off are both negative voltage ⁇ Vee. Therefore, the turn-off drive currents i5 and i6 are given by It becomes.
- i5 ⁇ ⁇ (Vg1 + Vee) / R352 ⁇ ⁇ exp ⁇ t / (Cg1 ⁇ R352)
- i6 ⁇ ⁇ (Vg2 + Vee) / R362 ⁇ ⁇ exp ⁇ t / (Cg2 ⁇ R362) ⁇
- first and second transistors are bipolar transistors of the same specification or GaN-GIT, Vg1 ⁇ Vg2 and Cg1 ⁇ Cg2, and the turn-off drive current i5 is made equal by making the resistance values of the turn-off drive resistors 352 and 362 equal. I6, gate voltages are also equal, and the main current level can be made uniform at turn-off.
- the first and second diodes 351 and 361 prevent the circulating current from flowing by short-circuiting the gate drive path separated by the on-circuit and the turn-on circuit by the first and second turn-off drive resistors 352 and 362. .
- the switching circuit includes the drive power supply 1 having a positive terminal and a negative terminal and outputting a predetermined drive voltage Vcc, the first transistor 4 and the second transistor connected in parallel. Power is supplied from the driving power source 1 and the driving signal source 2 that outputs the driving pulse signal Vpls for driving the transistor 5, the first and second transistors 4 and 5 to be turned on and off, and according to the driving pulse signal Vpls,
- the driving circuit 3 outputs a first driving signal for driving the first transistor 4 on and off and a second driving signal for driving the second transistor 5 on and off.
- Each of the first transistor 4 and the second transistor 5 has drain terminals D1 and D2 and source terminals S1 and S2 through which a main current flows when turned on, and changes the impedance between the drain terminal and the source terminal in accordance with a power reception signal.
- Gate terminals G1 and G2 are provided.
- the drain terminal D1 of the first transistor 4 and the drain terminal D2 of the second transistor 5 are connected, and the source terminal S1 of the first transistor 4 and the source terminal S2 of the second transistor 5 are connected.
- the gate terminal G1 of the first transistor 4 receives the first drive signal, and the gate terminal G2 of the second transistor 5 receives the second drive signal.
- the drive circuit 3 includes a first on circuit 31, a second on circuit 32, a first turn on circuit 33, a second turn on circuit 34, a first turn off circuit 35, and a second turn off circuit 36.
- the first ON circuit 31 includes a first transistor from the positive terminal of the drive power supply 1 as a part of the first drive signal during a period when the drive pulse signal Vpls indicates the ON state of the first and second transistors.
- the on-drive current which is a predetermined direct current is supplied to the four gate terminals G1.
- the second ON circuit 32 includes a second transistor from the positive terminal of the drive power supply 1 as a part of the second drive signal during a period when the drive pulse signal Vpls indicates the ON state of the first and second transistors.
- the ON drive current which is a predetermined direct current is supplied to the five gate terminals G2.
- the first turn-on circuit 33 When the drive pulse signal Vpls instructs the first and second transistors to be turned on, the first turn-on circuit 33 outputs the first transistor 4 from the positive terminal of the drive power supply 1 as a part of the first drive signal. A predetermined turn-on drive current is supplied to the gate terminal G1.
- the second turn-on circuit 34 When the drive pulse signal Vpls instructs the turn-on of the first and second transistors, the second turn-on circuit 34 outputs the second transistor 5 from the positive terminal of the drive power supply 1 as a part of the second drive signal. A predetermined turn-on drive current is supplied to the gate terminal G2.
- the first turn-off circuit 35 performs a predetermined turn-off from the gate terminal G1 of the first transistor 4 as a part of the first drive signal when the drive pulse signal Vpls instructs to turn off the first and second transistors. Pull out the drive current.
- the second turn-off circuit 36 performs a predetermined turn-off from the gate terminal G2 of the second transistor 5 as a part of the second drive signal when the drive pulse signal Vpls instructs the turn-off of the first and second transistors. Pull out the drive current.
- the first transistor 4 and the second transistor 5 may be transistors that require current to the gate terminals G1 and G2 to maintain the on state.
- the rated currents of the first transistor 4 and the second transistor 5 may be equal.
- the on drive current i1 in the first on circuit 31 and the on drive current i2 in the second on circuit 32 may be set equal.
- the turn-on drive current i3 in the first turn-on circuit 33 and the turn-on drive current i4 in the second turn-on circuit 34 may be set equal.
- the turn-off drive current i5 in the first turn-off circuit 35 and the turn-off drive current i6 in the second turn-off circuit 36 may be set equal.
- the on-voltages of the second switch 330 and the third switch 360 are ignored, but the first and second turn-on driving resistors 332 are adjusted by adjusting the on-resistance of the second switch 330. It is possible to reduce 342 or adjust the on-resistance of the third switch 360 to reduce the first and second turn-off drive resistors 352 and 362.
- FIG. 5 is a diagram showing a switching circuit and a current path of a load according to the fourth embodiment of the present invention.
- FIG. 6 is a plan view showing an example of mounting the switching circuit on the wiring board 10.
- a region surrounded by an alternate long and short dash line indicates a wiring conductor (the same applies to other drawings).
- 5 and 6 the first transistor 4 and the second transistor 5 have the same rated current, and both are connected in parallel.
- the driving circuit connected to the gate terminal and the second source terminal is as described in the first to third embodiments, and is omitted together with the second source terminal in the following embodiments.
- the bypass capacitor 8 serving as an alternating current source of each transistor has a negative terminal connected to the first source terminals S1 and S2 of the first transistor 4 and the second transistor 5, and a positive terminal connected to the load 9.
- the other end of the load 9 is connected to each drain terminal of the first transistor 4 and the second transistor 5.
- the load 9 corresponds to the primary winding of the transformer.
- the terminals are P1 and P2.
- the terminal P1 of the load 9 and the positive terminal of the bypass capacitor 8 are connected, and the terminal P2 of the load 9 and the drain terminals D1 and D2 of the first and second transistors are connected.
- the loop A shown by the broken arrow in FIG. 5 goes around the bypass capacitor 8 -load 9 -first transistor 4 -bypass capacitor 8, and the loop B shown by the solid arrow shows bypass capacitor 8 -load 9 -second
- the transistor 5-bypass capacitor 8 By turning the transistor 5-bypass capacitor 8 and matching the impedances of the loop A and loop B, variations in the main current during the transition can be suppressed.
- the vertical bisector connecting the source terminal S 1 of the first transistor 4 and the source terminal S 2 of the second transistor 5 is the negative electrode of the bypass capacitor 8.
- a bypass capacitor 8 is disposed so as to pass through the terminals, and a wiring conductor from the first source terminal S1 of the first transistor 4 and the first source terminal S2 of the second transistor 5 is coupled at the negative terminal of the bypass capacitor 8.
- the switching circuit according to the present embodiment has the bypass capacitor 8 serving as an alternating current source for the first transistor 4 and the second transistor 5.
- the first transistor 4, the second transistor 5, and the bypass capacitor 8 are connected so that the main current flows from the load 9 through the first transistor 4 and the second transistor 5 to the negative terminal of the bypass capacitor 8. Is done.
- the first transistor 4, the second transistor 5, and the bypass capacitor 8 are arranged on the wiring board with an impedance between the first source terminal S 1 of the first transistor 4 and the negative electrode terminal of the bypass capacitor 8, The first source terminal S2 of the transistor 5 and the negative terminal of the bypass capacitor 8 are arranged to be equal in impedance.
- the switching circuit includes a first transistor 4, a second transistor 5, and a bypass capacitor 8, in the plan view of the wiring substrate 10, the source terminal S 1 of the first transistor 4 and the second transistor A vertical bisector connecting the five source terminals S ⁇ b> 2 is disposed so as to pass through the negative electrode terminal of the bypass capacitor 8.
- the impedance including the parasitic inductances from the negative electrode terminal of the bypass capacitor 8 to the first source terminals of the first and second transistors becomes substantially equal. Accordingly, the main current that flows during a transient such as when the switching circuit is turned on or off is balanced by the first and second transistors.
- FIG. 7 is a diagram illustrating a configuration example of a switching circuit having a half-bridge configuration according to the fifth embodiment of the present invention.
- FIG. 8 is a plan view showing an example of mounting the switching circuit on a wiring board. 7 and 8, the first transistor 4 and the second transistor 5 are connected in parallel to form a low-side switch, and the third transistor 6 and the fourth transistor 7 are connected in parallel to form a high-side switch. To do.
- a bypass capacitor 8 serving as an alternating current source of each transistor is connected to the source terminal and the negative electrode terminal of the first transistor 4 and the second transistor 5 constituting the low-side switch, and is a third transistor constituting the high-side switch. 6 and the fourth transistor 7 are connected to each drain terminal and the positive terminal.
- a load 9 is connected to a connection point between the high side switch and the low side switch.
- a loop A indicated by a broken line arrow in FIG. 7 goes around the bypass capacitor 8-third transistor 6-first transistor 4-bypass capacitor 8, and a loop B indicated by a solid line arrow indicates bypass capacitor 8-fourth.
- the transistor 7-the second transistor 5-the bypass capacitor 8 are routed and the impedances of the loop A and the loop B are made uniform so that variations in the main current during the transition can be suppressed.
- the vertical bisector connecting the source terminal S1 of the first transistor 4 and the source terminal S2 of the second transistor 5 is the negative electrode of the bypass capacitor 8.
- the bypass capacitor 8 is disposed so that the vertical bisector of the line connecting the drain terminal D3 of the third transistor 6 and the drain terminal D4 of the fourth transistor 7 passes through the positive terminal of the bypass capacitor 8 through the terminal.
- the wiring conductors from the source terminal S1 of the first transistor 4 and the source terminal S2 of the second transistor 5 are coupled by the negative terminal of the bypass capacitor 8, and the drain terminal D3 of the third transistor 6 and the fourth transistor 7 is connected at the positive terminal of the bypass capacitor 8.
- the switching circuit in the present embodiment further includes the third transistor 6 and the fourth transistor 7 as shown in FIG. 7 as compared with the switching circuit of FIG.
- the third transistor 6 and the fourth transistor 7 have drain terminals D3 and D4 through which a main current flows and first source terminals S3 and S4, respectively, and the drain terminal D3 of the third transistor 6 on the wiring substrate 10.
- the drain terminal D4 of the fourth transistor 7 and the positive terminal of the bypass capacitor 8 are connected.
- the drain terminal D1 of the first transistor 4, the drain terminal D2 of the second transistor 5, the source terminal S3 of the third transistor 6, and the source terminal S4 of the fourth transistor 7 are connected. As shown in FIG.
- the third transistor, the fourth transistor, and the bypass capacitor are connected to the drain terminal D3 of the third transistor 6 and the drain terminal D4 of the fourth transistor 7 in a plan view of the wiring board 10, respectively.
- a perpendicular bisector of the connecting line segment is disposed so as to pass through the positive electrode terminal of the bypass capacitor 8.
- the impedance including the parasitic inductances of the negative electrode terminal of the bypass capacitor 8 to the first source terminals of the first and second transistors is substantially equal, and further, the positive terminal of the bypass capacitor 8 to the first terminal.
- Impedances including parasitic inductances of the drain terminals of the third and fourth transistors are also substantially equal. Therefore, the main current that flows during a transition such as when the switching circuit is turned on or off is balanced by the first and second transistors, and is also balanced by the third and fourth transistors.
- FIG. 9A is a perspective view showing an example of mounting the switching circuit according to Embodiment 6 on a wiring board and a sub wiring board.
- FIG. 9B is a side view of the same.
- the switching circuit according to the present embodiment includes a low side switch composed of a first transistor 4 and a second transistor 5 connected in parallel, and a high side composed of a third transistor 6 and a fourth transistor 7 connected in parallel.
- a wiring board 10 provided with a third connector 12c connected in proximity to the drain terminal of the third transistor 6 and a fourth connector 12d connected in proximity to the drain terminal of the fourth transistor 7 And a bypass capacitor 8 serving as an alternating current source of the transistor is disposed and connected to the wiring board 10 via the first to fourth connectors 12a to 12d. Composed of the sub-circuit board 11 for the connection.
- FIG. 9C is a plan view showing an example of mounting the switching circuit according to Embodiment 6 on a wiring board and a sub wiring board.
- a vertical bisector connecting the first connector 12a and the second connector 12b passes through the negative electrode terminal of the bypass capacitor 8, and the third connector 12c.
- the bypass capacitor 8 is arranged so that the vertical bisector connecting the line connecting the first connector 12d and the fourth connector 12d passes through the positive terminal of the bypass capacitor 8, and the wiring conductors from the first connector 12a and the second connector 12b Are coupled at the negative terminal of the bypass capacitor 8, and the wiring conductors from the third connector 12 c and the fourth connector 12 d are coupled at the positive terminal of the bypass capacitor 8.
- the switching circuit according to the present embodiment is arranged in the immediate vicinity of the wiring substrate 10 and the first transistor 4 provided on the wiring substrate 10 as shown in FIGS. 9A, 9B, and 9C.
- the first connector 12a connected to the source terminal S1 of the first transistor 4 and the source terminal S2 of the second transistor 5 connected in the immediate vicinity of the second transistor 5 disposed on the wiring board 10
- a sub-wiring board 11 connected to the wiring board 10 by the first connector 12a and the second connector 12b on the second connector 12b, the first transistor and the second transistor, and provided with a bypass capacitor 8. And have.
- the first connector, the second connector, and the bypass capacitor 8 are divided into two equal parts on the sub-wiring board 11 in the plan view of the wiring board 10 by connecting the first connector 12a and the second connector 12b.
- a line is arranged to pass through the negative terminal of the bypass capacitor 8.
- the switching circuit further includes a third transistor 6 and a fourth transistor 7.
- the third transistor 6 and the fourth transistor 7 have drain terminals D3 and D4 through which main current flows and first source terminals S3 and S4, respectively.
- This switching circuit is provided on the wiring board 10 and the third connector 12c connected to the drain terminal D3 of the third transistor 6 in the immediate vicinity of the third transistor 6 provided on the wiring board 10.
- a fourth connector 12d connected to the drain terminal D4 of the fourth transistor 7 in the immediate vicinity of the fourth transistor 7.
- the third connector 12c and the fourth connector 12d are connected to the sub wiring board 11.
- the third connector, the fourth connector, and the bypass capacitor 8 are vertically divided into two equal parts on the sub-wiring board 11 in the line connecting the third connector 12c and the fourth connector 12d in the plan view of the wiring board 10.
- a line is arranged to pass through the positive terminal of the bypass capacitor 8.
- the impedance including the parasitic inductances of the negative electrode terminal of the bypass capacitor 8 to the first source terminals of the first and second transistors is substantially equal, and further, the positive terminal of the bypass capacitor 8 to the first terminal.
- Impedances including parasitic inductances of the drain terminals of the third and fourth transistors are also substantially equal. Therefore, the main current that flows during a transition such as when the switching circuit is turned on or off is balanced by the first and second transistors, and is also balanced by the third and fourth transistors.
- the first to fourth connectors 12a, 12b, 12c, and 12d, which are impedance factors, are made of the same material and have the same shape.
- a three-dimensional structure using a sub-wiring board for compact and high-density mounting is disclosed in addition to balancing the main current at the time of transition. It is possible to have other functions.
- the wiring conductor on the sub wiring board on which the bypass capacitor 8 is mounted is relatively stable with little potential fluctuation, and a shielding effect for suppressing radiation noise can be expected.
- At least one of the first to fourth transistors 4 to 7 may be used as a heat sink for heat dissipation, so that it can be applied to higher current switching, or the temperature can be suppressed to increase the life.
- a high heat-dissipating ceramic substrate is used for the sub-wiring board 11
- a high gap such as silicon grease is used between the sub-wiring board and the transistor. For example, filling with heat dissipation material.
- the switching circuit of the present disclosure has been described based on the embodiments.
- the switching circuit of the present disclosure is not limited to the first to sixth embodiments.
- the switching circuit according to the present invention is useful for a switching power supply, an inverter, and the like.
Landscapes
- Power Conversion In General (AREA)
- Electronic Switches (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
Abstract
駆動電源(1)と駆動回路(3)と第1のトランジスタ(4)と第2のトランジスタ(5)で構成されたスイッチング回路であって、第1及び第2のトランジスタ(4及び5)は、それぞれゲート端子(G1、G2)と、ドレイン端子(D1、D2)と、主電流が流れる第1ソース端子(S1、S2)及び第2ソース端子(SS1、SS2)とを有し、第2ソース端子(SS1、SS2)は、駆動電源(1)の負極端子と駆動回路(3)のグランド端子との結線部で接続される構成を有することにより、第1及び第2のトランジスタ(4及び5)の各ゲート駆動経路への主電流の影響を除去するとともに、各ゲート駆動経路を分離することにより、寄生インピーダンスを揃えて主電流を均衡化することができる。
Description
本開示は、複数並列接続されるスイッチング素子及びその駆動回路からなるスイッチング回路に関する。
スイッチング電源やインバータに代表される電力変換装置は、そのスイッチング周波数を高くするとLC部品を小型化できることから、より高周波スイッチングが可能なスイッチング回路の開発が望まれている。一方、スイッチング電流が1つのスイッチングトランジスタの定格を越える場合、トランジスタを並列接続することが行われる。トランジスタを並列運転する場合の課題は、各トランジスタに流れる主電流の均衡化である。
図10は、特許文献1に記載されたスイッチング回路の回路図であり、並列接続のトランジスタとして、電流センスエミッタ付IGBTを用いて、各トランジスタの電流を均衡化させている。図10において、IGBT131、132の各エミッタに流れる主電流は夫々の電流センスエミッタに接続されたセンス抵抗161、162の電圧によって検出される。オペアンプ151、152はセンス抵抗161、162の電圧差、即ちIGBT131、132の各主電流を比較し、仮にIGBT131の電流が大きいと、オペアンプ151はFET141をオン側に制御してIGBT131のゲート電圧を下げ、その主電流を減少させる。またオペアンプ152はFET142をオフ側に制御してIGBT132のゲート電圧を上げ、その主電流を増加させる。従ってIGBT131、132の電流が均衡化する。
しかしながら、上記の従来の構成のスイッチング回路では、各トランジスタの主電流を検出する必要があり、その検出信号処理のために回路規模が増大する。また、電流検出結果を駆動回路へ帰還する方式には遅延時間が発生するので、トランジスタのターンオンやターンオフといった過渡時や、スイッチング周波数が高周波化した場合の主電流の均衡化は困難であるといった課題がある。
本発明は、上記課題に鑑みてなされたものであり、並列接続される高速スイッチングトランジスタに対し、簡易な回路構成及び実装形態によって主電流の均衡化が可能なスイッチング回路を提供することを目的とする。
上記課題を解決するために、本開示の一形態に係るスイッチング回路は、正極端子と負極端子を有して所定の駆動電圧を出力する駆動電源と、並列接続される第1のトランジスタ及び第2のトランジスタと、前記第1及び第2のトランジスタをオンオフ駆動するための駆動パルス信号を出力する駆動信号源と、電源端子とグランド端子を有して前記駆動電源から電力を供給され、前記駆動パルス信号に応じて、前記第1のトランジスタをオンオフ駆動する第1の駆動信号と、前記第2のトランジスタをオンオフ駆動する第2の駆動信号とを出力する駆動回路を有し、前記第1のトランジスタと前記第2のトランジスタはそれぞれ、オン時に主電流が流れるドレイン電極及びソース電極と、受電信号に応じて前記ドレイン電極と前記ソース電極間のインピーダンスを変化させるゲート電極とを内蔵し、前記ゲート電極に接続されるゲート端子と、前記ドレイン電極に接続されるドレイン端子と、主電流を流すために前記ソース電極と接続される第1ソース端子と、前記第1ソース端子とは別に、ソース電圧検出及びゲート駆動電流を流す為に前記ソース電極に接続される第2ソース端子とを有し、ここで、前記第1ソース端子は前記第2ソース端子より低インピーダンスで前記ソース電極に接続され、前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子は接続され、前記第1のトランジスタの第1ソース端子と第2のトランジスタの第1ソース端子は接続され、前記第1のトランジスタのゲート端子は前記第1の駆動信号を受電し、前記第2のトランジスタのゲート端子は前記第2の駆動信号を受電し、前記第1のトランジスタの第2ソース端子および前記第2のトランジスタの第2ソース端子は、前記駆動電源の負極端子と前記駆動回路のグランド端子との結線部で接続される。
上記構成によれば、主電流が流れるソース寄生インダクタンスの影響を除去して誤動作を防止でき、さらに、駆動ソース経路の分離による各駆動ループの寄生インダクタンスの調整または均一化が可能となる。
また、前記第1のトランジスタと第2のトランジスタは定格電流が等しく、前記駆動回路の第1の駆動信号と第2の駆動信号が等しく設定されてもよい。
これにより、トランジスタの定格電流を略倍化できる。
また、正極端子と負極端子を有して所定の駆動電圧を出力する駆動電源と、並列接続される第1のトランジスタ及び第2のトランジスタと、前記第1及び第2のトランジスタをオンオフ駆動するための駆動パルス信号を出力する駆動信号源と、前記駆動電源から電力を供給され、前記駆動パルス信号に応じて、前記第1のトランジスタをオンオフ駆動する第1の駆動信号と、前記第2のトランジスタ5をオンオフ駆動する第2の駆動信号とを出力する駆動回路を有し、前記第1のトランジスタと前記第2のトランジスタはそれぞれオン時に主電流が流れるドレイン端子及びソース端子を有し、受電信号に応じて前記ドレイン端子と前記ソース端子間のインピーダンスを変化させるゲート端子を有し、前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子は接続され、前記第1のトランジスタのソース端子と第2のトランジスタのソース端子は接続され、前記第1のトランジスタのゲート端子は前記第1の駆動信号を受電し、前記第2のトランジスタのゲート端子は前記第2の駆動信号を受電し、前記駆動回路は、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する期間中、前記第1の駆動信号の一部として、前記駆動電源の正極端子から前記第1のトランジスタのゲート端子へ所定の直流電流であるオン駆動電流を供給する第1のオン回路と、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する期間中、前記第2の駆動信号の一部として、前記駆動電源の正極端子から前記第2のトランジスタのゲート端子へ所定の直流電流であるオン駆動電流を供給する第2のオン回路と、前記駆動パルス信号が前記第1及び第2のトランジスタのターンオンを指示する時に、前記第1の駆動信号の一部として、前記駆動電源の正極端子から前記第1のトランジスタのゲート端子へ所定のターンオン駆動電流を供給する第1のターンオン回路と、前記駆動パルス信号が前記第1及び第2のトランジスタのターンオンを指示する時に、前記第2の駆動信号の一部として、前記駆動電源の正極端子から前記第2のトランジスタのゲート端子へ所定のターンオン駆動電流を供給する第2のターンオン回路と、前記駆動パルス信号が前記第1及び第2のトランジスタのターンオフを指示する時に、前記第1の駆動信号の一部として、前記第1のトランジスタのゲート端子から所定のターンオフ駆動電流を引き抜く第1のターンオフ回路と、前記駆動パルス信号が前記第1及び第2のトランジスタのターンオフを指示する時に、第2の駆動信号の一部として、前記第2のトランジスタのゲート端子から所定のターンオフ駆動電流を引き抜く第2のターンオフ回路とを有していてもよい。
これにより、各駆動条件の調整によって主電流の調整及び均衡化ができる。
また、前記第1のトランジスタと前記第2のトランジスタは、オン状態の維持にゲート端子への電流が必要なトランジスタであってもよい。
これにより、高速・低損失なスイッチング特性を有するスイッチング回路が提供できる。
また、前記第1のトランジスタと第2のトランジスタは定格電流が等しく、前記駆動回路は、前記第1のオン回路におけるオン駆動電流と前記第2のオン回路におけるオン駆動電流が等しく設定され、第1のターンオン回路におけるターンオン駆動電流と第2のターンオン回路におけるターンオン駆動電流が等しく設定され、第1のターンオフ回路におけるターンオフ駆動電流と第2のターンオフ回路におけるターンオフ駆動電流が等しく設定されてもよい。
これにより、トランジスタの定格電流を略倍化できる。
また、前記第1のオン回路と前記第2のオン回路は、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する時にオンとなる第1のスイッチを共有し、前記第1のオン回路は前記第1のスイッチと第1のオン駆動抵抗との直列回路を含み、前記第2のオン回路は前記第1のスイッチと第2のオン駆動抵抗との直列回路を含んでいてもよい。
これにより、前記第1のスイッチと前記第1のオン駆動抵抗との直列回路は、前記第1のトランジスタのゲート端子に供給されるオン駆動電流を生成する。また、前記第1のスイッチと前記第2のオン駆動抵抗との直列回路は、前記第2のトランジスタのゲート端子に供給されるオン駆動電流を生成する。さらに、前記第1および第2のオン駆動抵抗によって第1および第2のトランジスタのオン抵抗を調整または均一化することができる。
また、前記第1のターンオン回路と前記第2のターンオン回路は、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する時にオンとなる第2のスイッチを共有し、前記第1のターンオン回路は前記第2のスイッチと第1のコンデンサとの直列回路を含み、前記第2のターンオン回路は前記第2のスイッチと第2のコンデンサの直列回路を含んでいてもよい。
これにより、前記第2のスイッチと前記第1のコンデンサとの直列回路は、前記第1のトランジスタのゲート端子に供給されるターンオン駆動電流を生成する。また、前記第2のスイッチと前記第2のコンデンサとの直列回路は、前記第2のトランジスタのゲート端子に供給されるターンオン駆動電流を生成する。さらに、第1および第2のコンデンサによって第1および第2のトランジスタのターンオン特性(速度)を調整または均一化することができる。
また、前記第1のターンオフ回路と前記第2のターンオフ回路は、前記駆動電源の負極端子に接続されて前記駆動パルス信号が前記第1及び第2のトランジスタのオフ状態を指示する時にオンとなる第3のスイッチを共有し、前記第1のターンオフ回路は前記第3のスイッチと第1のダイオードとの直列回路を含み、前記第2のターンオフ回路は前記第3のスイッチと第2のダイオードとの直列回路を含んでいてもよい。
これにより、前記第3のスイッチと前記第1のダイオードとの直列回路は、前記第1のトランジスタのゲート端子に供給されるターンオフ駆動電流を生成する。また、前記第3のスイッチと前記第2のダイオードとの直列回路は、前記第1のトランジスタのゲート端子に供給されるターンオフ駆動電流を生成する。ダイオードによって各トランジスタのターンオフ時のトランジスタ間循環電流の発生を防止することができる。
また、前記駆動回路は、前記駆動電圧と逆極性の負電圧を出力する負駆動電源を有し、前記第1のターンオフ回路と前記第2のターンオフ回路は、前記負駆動電源に接続されて前記駆動パルス信号が前記第1及び第2のトランジスタのオフ状態を指示する時にオンとなる第3のスイッチを共有し、前記第1のターンオフ回路は前記負駆動電源と前記第3のスイッチと第1のダイオードとの直列回路を含み、前記第2のターンオフ回路は前記負駆動電源と前記第3のスイッチと第2のダイオードとの直列回路を含んでいてもよい。
これにより、前記第1および前記第2のダイオードによって前記第1および前記第2のトランジスタのターンオフ時の前記第1および前記第2のトランジスタ間循環電流の発生を防止するとともに、負駆動電源の負バイアスによる誤点弧防止とターンオフ特性の強化ができる。
また、さらに、前記第1のトランジスタと前記第2のトランジスタの交流電流源となるバイパスコンデンサを有し、前記主電流が、負荷から前記第1のトランジスタと前記第2のトランジスタを介して前記バイパスコンデンサの負極端子へと流れるように結線され、前記第1のトランジスタと前記第2のトランジスタと前記バイパスコンデンサは、配線基板上に、前記第1のトランジスタの第1ソース端子と前記バイパスコンデンサの負極端子の間のインピーダンスと前記第2のトランジスタの第1ソース端子と前記バイパスコンデンサの負極端子の間のインピーダンスが等しくなるように配設されてもよい。
これにより、配線基板上に実装されたスイッチング回路の過渡時の電流均衡化された並列スイッチング動作が可能となる。
また、前記第1のトランジスタと前記第2のトランジスタと前記バイパスコンデンサは、前記配線基板の平面視において、前記第1のトランジスタのソース端子と前記第2のトランジスタのソース端子を結ぶ線分の垂直2等分線が、前記バイパスコンデンサの負極端子を通るように配設されてもよい。
これにより、配線基板上に実装されたスイッチング回路の過渡時の電流均衡化された並列スイッチング動作が可能となる。
また、前記スイッチング回路は、さらに、第3のトランジスタと第4のトランジスタを有し、前記第3のトランジスタと前記第4のトランジスタは、それぞれ主電流が流れるドレイン端子及び第1ソース端子を有し、配線基板上に、前記第3のトランジスタのドレイン端子と前記第4のトランジスタのドレイン端子と前記バイパスコンデンサの正極端子が接続され、前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子と前記第3のトランジスタのソース端子と第4のトランジスタのソース端子が接続され、前記第3のトランジスタと前記第4のトランジスタと前記バイパスコンデンサは、前記配線基板の平面視において、前記第3のトランジスタのドレイン端子と前記第4のトランジスタのドレイン端子を結ぶ線分の垂直2等分線が、前記バイパスコンデンサの正極端子を通るように配設されてもよい。
これにより、配線基板上に実装されたハーフブリッジ構成のスイッチング回路の過渡時の電流均衡化された並列スイッチング動作が可能となる。
また、前記スイッチング回路は、前記配線基板と、前記配線基板上に配設された前記第1のトランジスタの直近で前記第1のトランジスタのソース端子に接続された第1のコネクタと、前記配線基板上に配設された前記第2のトランジスタの直近で前記第2のトランジスタのソース端子に接続された第2のコネクタと、前記第1のトランジスタと前記第2のトランジスタの上に、前記第1のコネクタと前記第2のコネクタによって前記配線基板と接続され、前記バイパスコンデンサを配設したサブ配線基板とを有し、前記第1のコネクタと前記第2のコネクタと前記バイパスコンデンサは、前記配線基板の平面視において、前記サブ配線基板上で、前記第1のコネクタと前記第2のコネクタを結ぶ線分の垂直2等分線が、前記バイパスコンデンサの負極端子を通るように配設されてもよい。
これにより、電流均衡化された並列運転に加え、立体構成による高密度実装も可能となったスイッチング回路を提供できる。
また、前記スイッチング回路は、さらに、第3のトランジスタと第4のトランジスタを有し、前記第3のトランジスタと前記第4のトランジスタは、それぞれ主電流が流れるドレイン端子及び第1ソース端子を有し、前記スイッチング回路は、さらに、前記配線基板上に配設された前記第3のトランジスタの直近で前記第3のトランジスタのドレイン端子に接続された第3のコネクタと、前記配線基板上に配設された前記第4のトランジスタの直近で前記第4のトランジスタのドレイン端子に接続された第4のコネクタとを有し、前記第3のコネクタと前記第4のコネクタは前記サブ配線基板に接続され、前記第3のコネクタと前記第4のコネクタと前記バイパスコンデンサは、前記配線基板の平面視において、前記サブ配線基板上で、前記第3のコネクタと前記第4のコネクタを結ぶ線分の垂直2等分線が、前記バイパスコンデンサの正極端子を通るように配設されてもよい。
これにより、電流均衡化された並列運転に加え、立体構成による高密度実装も可能となったハーフブリッジ構成のスイッチング回路を提供できる。
また、前記サブ配線基板は、前記第1のトランジスタと前記第2のトランジスタとに対するヒートシンクも兼ねてもよい。
これにより、トランジスタの高温化を抑制することができ、より大きな電流を扱える、もしくは長寿命化が可能なスイッチング回路を提供できる。
本発明に係るスイッチング回路によれば、並列接続される高速スイッチングトランジスタに対し、簡易な回路構成及び実装形態によって主電流の均衡化が可能なスイッチング回路を提供できる。
以下、本開示の実施の形態に係るスイッチング回路について、図面を参照しながら説明する。なお、以下の実施の形態は、いずれも本発明の一具体例を示すものであり、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは、一例であり、本発明を限定するものではない。
(実施の形態1)
図1は、実施の形態1に係るスイッチング回路の構成例を示す図である。同図に示されたスイッチング回路は、駆動電源1、駆動信号源2、駆動回路3、第1のトランジスタ4及び第2のトランジスタ5から構成される。
図1は、実施の形態1に係るスイッチング回路の構成例を示す図である。同図に示されたスイッチング回路は、駆動電源1、駆動信号源2、駆動回路3、第1のトランジスタ4及び第2のトランジスタ5から構成される。
図1において、第1のトランジスタ4は、ゲート電極とドレイン電極とソース電極とを有する半導体チップを内蔵し、それぞれドレイン電極に接続されるドレイン端子D1、ゲート電極に接続されるゲート端子G1、ソース電極に接続される第1ソース端子S1及び第2ソース端子SS1を有する。第2のトランジスタ5は、ゲート電極とドレイン電極とソース電極とを有する半導体チップを内蔵し、それぞれドレイン電極に接続されるドレイン端子D2、ゲート電極に接続されるゲート端子G2、ソース電極に接続される第1ソース端子S2及び第2ソース端子SS2を有する。ここで、第1ソース端子S1は主電流を流す為に、例えばソース電極-第1ソース端子S1間を繋ぐボンディングワイヤを複数本にするなどして、第2ソース端子SS1より低インピーダンスでソース電極に接続される。
同様に、第1ソース端子S2は主電流を流す為に、例えばソース電極-第1ソース端子S2間を繋ぐボンディングワイヤを複数本にするなどして、第2ソース端子SS2より低インピーダンスでソース電極に接続される。
駆動電源1から駆動電圧Vccを供給される駆動回路3は、駆動信号源2からの駆動パルス信号Vplsに応じた第1の駆動信号及び第2の駆動信号をそれぞれ第1のトランジスタ4のゲート端子G1及び第2のトランジスタ5のゲート端子G2へ出力する。第1のトランジスタ4のドレイン端子D1と第2のトランジスタ5のドレイン端子D2は接続され、第1のトランジスタ4の第1ソース端子S1と第2のトランジスタ5の第2ソース端子S2は接続され、第1の駆動信号及び第2の駆動信号によってオン状態となった第1のトランジスタ4及び第2のトランジスタ5の主電流は各ドレイン端子D1、D2から各第1ソース端子S1、S2へ流れる。主電流の流れる第1ソース端子S1、S2とソース電極で分枝された第2ソース端子SS1、SS2は、駆動電源1の負極端子と駆動回路3のグランド端子との結線部で接続される。このため第2ソース端子SS1、SS2には、第1及び第2の駆動信号に伴うゲート電流のみが流れ、主電流は流れない。
図1には各ゲート駆動経路に介在する寄生インピーダンスを代表してインダクタンスLg1及びLg2を、各ソース経路に介在する寄生インピーダンスを代表してインダクタンスLs1、Ls2、Ls、Lss1、Lss2を記している。ソース端子が分枝されていないと、ソース経路の寄生インダクタンスLs1、Ls2、Lsに主電流が流れることによって誘起される電圧はゲート駆動電圧に重畳されるので、駆動条件の不均衡の要因となる。ところが、本実施の形態に係るスイッチング回路では、ソース端子が分枝されているので、主電流とゲート駆動電流が分離され、駆動条件への主電流の影響が排除される。
第1のトランジスタ4と第2のトランジスタ5に定格電流の等しいものを選び、全体として定格電流能力を2倍にしたい場合、問題となるのは各トランジスタの特性、駆動条件、及び電流経路のインピーダンスの差異による、主電流の不均衡である。このうち本実施の形態に係るスイッチング回路は駆動条件の調整及び均衡化が可能である。さらに、第1のトランジスタ4の第2ソース端子SS1と第2のトランジスタ5の第2ソース端子SS2は、共通インピーダンスを有することなく、駆動電源1の負極端子と駆動回路3のグランド端子との結線部で接続されるので、図1に示したように、それぞれLss1、Lss2という寄生インダクタンスに代表されるインピーダンスを独立に有することになる。配線パターン設計によりLss1とLss2を等しくLssとすることができれば、仮に第1のトランジスタ4と第2のトランジスタ5の各ゲート駆動経路に介在する寄生インピーダンスLg1とLg2に差異があったとしても、全体としてはLg1+LssとLg2+Lssとの差異となり、その影響が低減できる。
なお、上記で第1のトランジスタ4と第2のトランジスタ5は定格電流が等しいとしたが、特性を揃えるためにも同一メーカーの同一品番のものであることが望ましい。異なるものを使用する場合、オン抵抗やゲート閾値電圧などの特性が等しいものを選択することが望ましい。
以上のようにゲート駆動電流の流れるソース経路を主電流経路から分枝し、且つ、各ソース経路を駆動電源1の負極端子と駆動回路3のグランド端子との結線部まで独立に配線することにより、主電流の影響を除去するとともに、ゲート駆動経路全体の寄生インピーダンスの差異を低減することができるので、主電流の不均衡要因である駆動条件の差異を低減し、主電流の均衡化が可能となる。
なお、以降の実施の形態の図面及び説明では、図1に示したような寄生インピーダンスとしてのインダクタンスLg1~Lss2は煩雑となるので省略する。
(実施の形態2)
図2は、実施の形態2に係るスイッチング回路の構成例を示す図である。
図2は、実施の形態2に係るスイッチング回路の構成例を示す図である。
図2において、駆動回路3は、第1のオン回路31、第2のオン回路32、第1のターンオン回路33、第2のターンオン回路34、第1のターンオフ回路35および第2のターンオフ回路36を備える。
第1のオン回路31は、駆動信号源2からの駆動パルス信号Vplsに応じてオン駆動電流i1を第1のトランジスタ4のゲート端子G1に供給する。第2のオン回路32は、駆動パルス信号に応じてオン駆動電流i2を第2のトランジスタ5のゲート端子G2に供給する。
第1のターンオン回路33は、駆動パルス信号Vplsに応じてターンオン駆動電流i3を第1のトランジスタ4のゲート端子G1に供給する。第2のターンオン回路34は、駆動パルス信号に応じてターンオン駆動電流i4を第2のトランジスタ5のゲート端子G2に供給する。
第1のターンオフ回路35は、駆動パルス信号Vplsに応じてターンオフ駆動電流i5を第1のトランジスタ4のゲート端子G1に供給する。第2のターンオフ回路36は、駆動パルス信号Vplsに応じてターンオフ駆動電流i6を第2のトランジスタ5のゲート端子G2に供給する。
図3は、実施の形態2に係るスイッチング回路の動作タイミングチャートである。同図は、駆動信号源2からの駆動パルス信号Vpls、オン駆動電流i1、オン駆動電流i2、ターンオン駆動電流i3、ターンオン駆動電流i4、ターンオフ駆動電流i5、ターンオフ駆動電流i6の各波形を示す。以下、図3を用いて図2に示した本発明の実施の形態2に係るスイッチング回路の動作を説明する。
第1及び第2のオン回路31、32は、駆動信号源2からの駆動パルス信号Vplsがトランジスタをオンするように指示している時、即ち、駆動パルス信号Vplsが“H”である期間を通して、トランジスタのオン状態を維持するための直流電流を流す。この電流は、例えばトランジスタがバイポーラトランジスタのような場合には、主電流を電流増幅率hfe(電力スイッチングの場合約10)で除した値であり、GaN-GITであれば数mA~数十mAとなる。電圧駆動型のMOSFETの場合には必要なゲート電圧をゲート-ソース間抵抗で除した値になる。
第1及び第2のターンオン回路33、34は、駆動信号源2からの駆動パルス信号Vplsがトランジスタをターンオンするように指示している時、即ち、駆動パルス信号Vplsが“H”になってからの所定期間に、ゲート電圧を閾値以上に急速充電するためのサージ状電流を流す。そのピーク値は、ゲート入力容量と閾値電圧の積をターンオン遅延時間(駆動パルス信号Vplsが立ち上がってから実際にターンオンするまでの遅延時間)で除した値の2倍程度に設定される。スイッチング回路の扱う電力にもよるが、バイポーラトランジスタの場合数A、GaN-GITで数百mA、MOSFETで1A~2Aである。
第1及び第2のターンオフ回路35、36は、駆動信号源2からの駆動パルス信号Vplsがトランジスタをターンオフするように指示している時、即ち、駆動パルス信号Vplsが“L”になってからの所定期間に、ゲート電圧を閾値以下に急速放電するための負のサージ状電流を流す。そのピーク値の絶対値は、ターンオン駆動電流と同等かそれ以上に設定される。
以上のように、実施の形態1においてソース経路を分枝したり、共通インピーダンスを持たないように配線を分離することによって寄生インピーダンスの差異を低減したように、ゲート駆動経路も用途に応じて1トランジスタに付き3経路に分離して、それぞれ調整できるようにすることにより、各トランジスタに流れる主電流を調整し、あるいは並列運転時であれば均衡化することが可能となる。
なお、第1及び第2のオン回路の説明で、オン状態を維持するためのオン駆動電流を供給するものとしたが、トランジスタがMOSFETであれば不要となる場合もある。MOSFETのゲート-ソース間の寄生容量が充分大きく、スイッチング周波数が充分高い場合、ゲート電圧の低下は少なく、オン駆動電流が無くてもオン状態を維持することができるからである。即ち、本実施の形態の駆動回路は、オン状態を維持する為にゲート端子への電流が必要なトランジスタに好適である。
(実施の形態3)
図4は、実施の形態3に係るスイッチング回路の構成例を示す図である。同図は、実施の形態2で示した図2のスイッチング回路のより具体的な回路構成例を示す図である。
図4は、実施の形態3に係るスイッチング回路の構成例を示す図である。同図は、実施の形態2で示した図2のスイッチング回路のより具体的な回路構成例を示す図である。
図4において、駆動回路3は、第1のオン回路31、第2のオン回路32、第1のターンオン回路33、第2のターンオン回路34、第1のターンオフ回路35およびインバータ350を備える。
第1のオン回路31は、第1のスイッチ310と第1のオン駆動抵抗311との直列回路からなる。第1のスイッチ310の一端は、駆動電源1の正極端子に、第1のスイッチ310の他端は、第1のオン駆動抵抗311に接続される。第1のオン駆動抵抗311の一端は、第1のスイッチ310に接続され、第1のオン駆動抵抗311の他端は、第1のトランジスタ4のゲート端子G1に接続される。第1のスイッチ310は、第1のオン回路31と第2のオン回路32とにより共有され、駆動信号源2からの駆動パルス信号Vplsに従ってオンおよびオフする。
この構成によれば、第1のオン回路31は、駆動パルス信号Vplsが第1及び第2のトランジスタ4及び5のオン状態を指示する期間中、第1の駆動信号の一部として、駆動電源1の正極端子から第1のトランジスタ4のゲート端子G1へ所定の直流電流であるオン駆動電流i1を供給する。オン状態を指示する期間中というのは、例えば、図3では駆動パルス信号Vplsがハイレベルの期間中である。
第2のオン回路32は、第1のスイッチ310と第2のオン駆動抵抗321との直列回路からなる。第1のスイッチ310の一端は、駆動電源1の正極端子に、第1のスイッチ310の他端は、第2のオン駆動抵抗321に接続される。第2のオン駆動抵抗321の一端は、第1のスイッチ310に接続され、第2のオン駆動抵抗321の他端は、第2のトランジスタ5のゲート端子G2に接続される。
この構成によれば、第2のオン回路32は、駆動パルス信号Vplsが第1及び第2のトランジスタ4及び5のオン状態を指示する期間中、第2の駆動信号の一部として、駆動電源1の正極端子から第2のトランジスタ5のゲート端子G2へ所定の直流電流であるオン駆動電流i2を供給する。
第1のターンオン回路33は、第2のスイッチ330と第1のコンデンサ331と第1のターンオン駆動抵抗332との直列回路からなる。第2のスイッチ330の一端は駆動電源1の正極端子に接続され、第2のスイッチ330の他端は第1のコンデンサ331に接続される。第1のコンデンサ331の一端は第2のスイッチ330に接続され、第1のコンデンサ331の他端は第1のターンオン駆動抵抗332に接続される。第1のターンオン駆動抵抗332の一端は第1のコンデンサ331に接続され、第1のターンオン駆動抵抗332の他端は第1のトランジスタ4のゲート端子G1に接続される。第2のスイッチ330は、第1のターンオン回路33と第2のターンオン回路34とにより共有され、駆動信号源2からの駆動パルス信号Vplsに従ってオンおよびオフする。この構成によれば、第1のターンオン回路33は、駆動パルス信号Vplsが第1及び第2のトランジスタ4及び5のターンオンを指示する時に、第1の駆動信号の一部として、駆動電源1の正極端子から第1のトランジスタ4のゲート端子G1へ所定のターンオン駆動電流i3を供給する。ここで、ターンオンを指示する時というのは、例えば、図3では駆動パルス信号Vplsの立ち上がりエッジのタイミングをいう。
第2のターンオン回路34は、第2のスイッチ330と第2のコンデンサ341と第2のターンオン駆動抵抗342との直列回路からなる。第2のスイッチ330の一端は駆動電源1の正極端子に接続され、第2のスイッチ330の他端は第2のコンデンサ341に接続される。第2のコンデンサ341の一端は第2のスイッチ330に接続され、第2のコンデンサ341の他端は第2のターンオン駆動抵抗342に接続される。第2のターンオン駆動抵抗342の一端は第2のコンデンサ341に接続され、第2のターンオン駆動抵抗342の他端は第2のトランジスタ5のゲート端子G2に接続される。この構成によれば、第2のターンオン回路34は、駆動パルス信号Vplsが第1及び第2のトランジスタ4及び5のターンオンを指示する時に、第2の駆動信号の一部として、駆動電源1の正極端子から第2のトランジスタ5のゲート端子G2へ所定のターンオン駆動電流i4を供給する。
第1のターンオフ回路35は、負駆動電源30と第3のスイッチ360と第1のダイオード351と第1のターンオフ駆動抵抗352との直列回路からなる。第3のスイッチ360の一端は負駆動電源30の負極端子に接続され、第3のスイッチ360の他端は第1のダイオード351のカソードに接続される。第1のダイオード351のカソードは第3のスイッチ360に接続され、第1のダイオード351のアノードは第1のターンオフ駆動抵抗352に接続される。第1のターンオフ駆動抵抗352の一端は第1のダイオード351のアノードに接続され、第1のターンオフ駆動抵抗352の他端は第1のトランジスタ4のゲート端子G1に接続される。負駆動電源30および第3のスイッチ360は、第1のターンオフ回路35と第2のターンオフ回路36とにより共有される。負駆動電源30は-Veeの電圧を出力し、負駆動電源30の正極は駆動電源1の負極に接続され、負駆動電源30の負極は第3のスイッチ360に接続される。第3のスイッチ360は、インバータ350からの反転した駆動パルス信号Vplsに従ってオンおよびオフする。
この構成によれば、第1のターンオフ回路35は、駆動パルス信号Vplsが第1及び第2のトランジスタ4および5のターンオフを指示する時に、第1の駆動信号の一部として、第1のトランジスタ4のゲート端子G1から所定のターンオフ駆動電流i5を引き抜く。ここで、ターンオフを指示する時というのは、例えば、図3では駆動パルス信号Vplsの立ち下がりエッジのタイミングをいう。
第2のターンオフ回路36は、負駆動電源30と第3のスイッチ360と第2のダイオード361と第2のターンオフ駆動抵抗362との直列回路からなる。第3のスイッチ360の一端は負駆動電源30の負極端子に接続され、第3のスイッチ360の他端は第2のダイオード361のカソードに接続される。第2のダイオード361のカソードは第3のスイッチ360に接続され、第2のダイオード361のアノードは第2のターンオフ駆動抵抗362に接続される。第2のターンオフ駆動抵抗362の一端は第2のダイオード361のアノードに接続され、第2のターンオフ駆動抵抗362の他端は第2のトランジスタ5のゲート端子G2に接続される。
この構成によれば、第2のターンオフ回路36は、駆動パルス信号Vplsが第1及び第2のトランジスタ4及び5のターンオフを指示する時に、第2の駆動信号の一部として、第2のトランジスタ5のゲート端子G2から所定のターンオフ駆動電流i6を引き抜く。
第1のオン回路31と第1のターンオン回路33と第1のターンオフ回路35とが第1のトランジスタ4のゲート端子G1へ第1の駆動信号を供給する。言い換えれば、第1の駆動信号は、オン駆動電流i1、ターンオン駆動電流i3およびターンオフ駆動電流i5を合成した信号である。また、第2のオン回路32と第2のターンオン回路34と第2のターンオフ回路36とが第2のトランジスタ5のゲート端子G2へ第2の駆動信号を供給する。言い換えれば、第2の駆動信号は、オン駆動電流i2、ターンオン駆動電流i4およびターンオフ駆動電流i6を合成した信号である。
続いて、駆動回路3のより具体的な動作について説明する。
まず、第1及び第2のオン回路31、32は、第1のスイッチ310のオン電圧を無視し、第1のオン駆動抵抗311と第2のオン駆動抵抗321の抵抗値をそれぞれR311、R321とし、オン時の第1及び第2のトランジスタのゲート電圧をそれぞれVg1、Vg2とすると、オン駆動電流i1、i2は、次式となる。
i1=(Vcc-Vg1)/R311
i2=(Vcc-Vg2)/R321
i2=(Vcc-Vg2)/R321
第1及び第2のトランジスタ4及び5が同一仕様のバイポーラトランジスタやGaN-GITであるならVg1≒Vg2であり、各オン駆動抵抗311、321の抵抗値を等しくすることでi1≒i2となり、オン時主電流のレベルを揃えることができる。逆言すれば、オン時ゲート電圧の異なるトランジスタであっても、オン駆動抵抗311、321の抵抗値のいずれかもしくはそれぞれを調整することにより、オン駆動電流をi1≒i2としてオン時主電流のレベルを揃えることができる。
次に第1及び第2のターンオン回路33、34は、第1及び第2のトランジスタのゲート入力容量をそれぞれCg1、Cg2とし、第2のスイッチ330のオン電圧を無視し、第1のコンデンサ331と第2のコンデンサ341の静電容量をそれぞれC331、C341とし、C331、C341それぞれのターンオン時の初期電圧値は前周期のオン期間終了時の(Vcc-Vg1)、(Vcc-Vg2)を保持しているとし、第1のターンオン駆動抵抗332と第2のターンオン駆動抵抗342の抵抗値をそれぞれR332、R342とすると、ターンオン直前の第1及び第2のトランジスタのゲート電圧はともに負電圧-Veeなので、ターンオン駆動電流i3、i4は、次式となる。
i3={(Vg1+Vee)/R332}・exp{-t/(C3・R332)}
i4={(Vg2+Vee)/R342}・exp{-t/(C4・R342)}
i4={(Vg2+Vee)/R342}・exp{-t/(C4・R342)}
ここで、C3、C4は次式である。
C3=Cg1・C331/(Cg1+C331)
C4=Cg2・C341/(Cg2+C341)
C4=Cg2・C341/(Cg2+C341)
第1及び第2のトランジスタが同一仕様のバイポーラトランジスタやGaN-GITであるならVg1≒Vg2、Cg1≒Cg2であり、各コンデンサ331、341の静電容量とターンオン駆動抵抗332、342の抵抗値を等しくすることにより、ターンオン駆動電流i3≒i4、ゲート電圧も等しくなり、ターンオン時主電流のレベルを揃えることができる。
さらに第1及び第2のターンオフ回路35、36は、第3のスイッチ360のオン電圧と第1のダイオード351と第2のダイオード361の順方向電圧降下を無視し、第1のターンオフ駆動抵抗352と第2のターンオフ駆動抵抗362の抵抗値をそれぞれR352、R362とすると、ターンオフ直前の第1及び第2のトランジスタのゲート電圧はともに負電圧-Veeなので、ターンオフ駆動電流i5、i6は、次式となる。
i5=-{(Vg1+Vee)/R352}・exp{-t/(Cg1・R352)}
i6=-{(Vg2+Vee)/R362}・exp{-t/(Cg2・R362)}
i6=-{(Vg2+Vee)/R362}・exp{-t/(Cg2・R362)}
第1及び第2のトランジスタが同一仕様のバイポーラトランジスタやGaN-GITであるならVg1≒Vg2、Cg1≒Cg2であり、各ターンオフ駆動抵抗352、362の抵抗値を等しくすることにより、ターンオフ駆動電流i5≒i6、ゲート電圧も等しくなり、ターンオフ時主電流のレベルを揃えることができる。
また、第1及び第2のダイオード351、361は、オン回路及びターンオン回路で分離したゲート駆動経路を第1及び第2のターンオフ駆動抵抗352、362で短絡して循環電流が流れることを防止する。
以上説明してきたように本実施の形態におけるスイッチング回路は、正極端子と負極端子を有して所定の駆動電圧Vccを出力する駆動電源1と、並列接続される第1のトランジスタ4及び第2のトランジスタ5と、第1及び第2のトランジスタ4及び5をオンオフ駆動するための駆動パルス信号Vplsを出力する駆動信号源2と、駆動電源1から電力を供給され、駆動パルス信号Vplsに応じて、第1のトランジスタ4をオンオフ駆動する第1の駆動信号と、第2のトランジスタ5をオンオフ駆動する第2の駆動信号とを出力する駆動回路3を有する。
第1のトランジスタ4と第2のトランジスタ5はそれぞれオン時に主電流が流れるドレイン端子D1、D2及びソース端子S1、S2を有し、受電信号に応じてドレイン端子とソース端子間のインピーダンスを変化させるゲート端子G1、G2を有する。
第1のトランジスタ4のドレイン端子D1と第2のトランジスタ5のドレイン端子D2は接続され、第1のトランジスタ4のソース端子S1と第2のトランジスタ5のソース端子S2は接続される。第1のトランジスタ4のゲート端子G1は第1の駆動信号を受電し、第2のトランジスタ5のゲート端子G2は第2の駆動信号を受電する。
駆動回路3は、第1のオン回路31、第2のオン回路32、第1のターンオン回路33、第2のターンオン回路34、第1のターンオフ回路35および第2のターンオフ回路36を有する。
第1のオン回路31は、駆動パルス信号Vplsが第1及び第2のトランジスタのオン状態を指示する期間中、第1の駆動信号の一部として、駆動電源1の正極端子から第1のトランジスタ4のゲート端子G1へ所定の直流電流であるオン駆動電流を供給する。
第2のオン回路32は、駆動パルス信号Vplsが第1及び第2のトランジスタのオン状態を指示する期間中、第2の駆動信号の一部として、駆動電源1の正極端子から第2のトランジスタ5のゲート端子G2へ所定の直流電流であるオン駆動電流を供給する。
第1のターンオン回路33は、駆動パルス信号Vplsが第1及び第2のトランジスタのターンオンを指示する時に、第1の駆動信号の一部として、駆動電源1の正極端子から第1のトランジスタ4のゲート端子G1へ所定のターンオン駆動電流を供給する。
第2のターンオン回路34は、駆動パルス信号Vplsが第1及び第2のトランジスタのターンオンを指示する時に、第2の駆動信号の一部として、駆動電源1の正極端子から第2のトランジスタ5のゲート端子G2へ所定のターンオン駆動電流を供給する。
第1のターンオフ回路35は、駆動パルス信号Vplsが第1及び第2のトランジスタのターンオフを指示する時に、第1の駆動信号の一部として、第1のトランジスタ4のゲート端子G1から所定のターンオフ駆動電流を引き抜く。
第2のターンオフ回路36は、駆動パルス信号Vplsが第1及び第2のトランジスタのターンオフを指示する時に、第2の駆動信号の一部として、第2のトランジスタ5のゲート端子G2から所定のターンオフ駆動電流を引き抜く。なお、第1のトランジスタ4と第2のトランジスタ5は、オン状態の維持にゲート端子G1、G2への電流が必要なトランジスタであってもよい。
また、第1のトランジスタ4と第2のトランジスタ5は定格電流が等しくてもよい。駆動回路3は、第1のオン回路31におけるオン駆動電流i1と第2のオン回路32におけるオン駆動電流i2が等しく設定されてもよい。第1のターンオン回路33におけるターンオン駆動電流i3と第2のターンオン回路34におけるターンオン駆動電流i4が等しく設定されてもよい。第1のターンオフ回路35におけるターンオフ駆動電流i5と第2のターンオフ回路36におけるターンオフ駆動電流i6が等しく設定されてもよい。
なお、本実施の形態において、第2のスイッチ330と第3のスイッチ360のオン電圧は無視したが、第2のスイッチ330のオン抵抗を調整して第1及び第2のターンオン駆動抵抗332、342を削減することや、第3のスイッチ360のオン抵抗を調整して第1及び第2のターンオフ駆動抵抗352、362を削減することは可能である。
(実施の形態4)
実施の形態1~3は並列運転するトランジスタの駆動回路の構成について開示した。駆動回路のパラメータ設定や配線方法といった駆動条件では、主電流の直流レベルの調整や均衡化が可能であるが、特に、トランジスタのターンオンやターンオフといった過渡時の主電流の均衡化には、交流電流源も含めた部品配置や主電流の流れる配線パターンなどの実装形態が重要となる。
実施の形態1~3は並列運転するトランジスタの駆動回路の構成について開示した。駆動回路のパラメータ設定や配線方法といった駆動条件では、主電流の直流レベルの調整や均衡化が可能であるが、特に、トランジスタのターンオンやターンオフといった過渡時の主電流の均衡化には、交流電流源も含めた部品配置や主電流の流れる配線パターンなどの実装形態が重要となる。
図5は、本発明の実施の形態4に係る、スイッチング回路および負荷の電流経路を示す図である。図6はスイッチング回路の配線基板10への実装例を示す平面図である。なお、図6において、一点鎖線で囲まれた領域は、配線導体を示す(他の図についても同様)。図5及び図6において、第1のトランジスタ4と第2のトランジスタ5は同じ定格電流で、両者は並列接続される。ゲート端子及び第2ソース端子に接続される駆動回路は、実施の形態1~3で示した通りであり、以降の実施の形態では第2ソース端子とともに省略した。各トランジスタの交流電流源となるバイパスコンデンサ8は、負極端子が第1のトランジスタ4と第2のトランジスタ5の各第1ソース端子S1、S2と接続され、正極端子が負荷9と接続される。負荷9の他端は第1のトランジスタ4と第2のトランジスタ5の各ドレイン端子に接続される。スイッチング電源では負荷9にはトランスの1次巻線が相当し、図6においては負荷9としてトランスの1次巻線を想定して、端子をP1及びP2とした。負荷9の端子P1とバイパスコンデンサ8の正極端子とが接続され、負荷9の端子P2と第1及び第2のトランジスタの各ドレイン端子D1、D2とが接続されるものとした。
図5の破線の矢印で示したループAは、バイパスコンデンサ8-負荷9-第1のトランジスタ4-バイパスコンデンサ8を廻り、実線矢印で示したループBは、バイパスコンデンサ8-負荷9-第2のトランジスタ5-バイパスコンデンサ8を廻り、これらループAとループBのインピーダンスを揃えることで過渡時の主電流のばらつきを抑制することができる。
ループAとループBのインピーダンスを揃えるため、図6において、第1のトランジスタ4のソース端子S1と第2のトランジスタ5のソース端子S2を結ぶ線分の垂直2等分線がバイパスコンデンサ8の負極端子を通るようにバイパスコンデンサ8を配設し、第1のトランジスタ4の第1ソース端子S1と第2のトランジスタ5の第1ソース端子S2からの配線導体がバイパスコンデンサ8の負極端子で結合される。
以上説明してきたように本実施の形態におけるスイッチング回路は、第1のトランジスタ4と第2のトランジスタ5の交流電流源となるバイパスコンデンサ8を有している。第1のトランジスタ4と第2のトランジスタ5とバイパスコンデンサ8は、主電流が、負荷9から第1のトランジスタ4と第2のトランジスタ5を介してバイパスコンデンサ8の負極端子へと流れるように結線される。第1のトランジスタ4と第2のトランジスタ5とバイパスコンデンサ8は、配線基板上に、第1のトランジスタ4の第1ソース端子S1とバイパスコンデンサ8の負極端子との間のインピーダンスと、第2のトランジスタ5の第1ソース端子S2とバイパスコンデンサ8の負極端子との間のインピーダンスとが等しくなるように配設されている。
さらに、スイッチング回路は、図6のように第1のトランジスタ4と第2のトランジスタ5とバイパスコンデンサ8は、配線基板10の平面視において、第1のトランジスタ4のソース端子S1と第2のトランジスタ5のソース端子S2を結ぶ線分の垂直2等分線が、バイパスコンデンサ8の負極端子を通るように配設される。
以上のような構成とすることにより、バイパスコンデンサ8の負極端子~第1及び第2のトランジスタの各第1ソース端子の寄生インダクタンスを含むインピーダンスはほぼ等しくなる。従って、スイッチング回路のターンオンやターンオフ時のような過渡時に流れる主電流が、第1及び第2のトランジスタで均衡化する。
(実施の形態5)
図7は、本発明の実施の形態5に係るハーフブリッジ構成のスイッチング回路の構成例を示す図である。図8はそのスイッチング回路の配線基板への実装例を示す平面図である。図7及び図8において、第1のトランジスタ4と第2のトランジスタ5は並列接続されてローサイドスイッチを構成し、第3のトランジスタ6と第4のトランジスタ7は並列接続されてハイサイドスイッチを構成する。各トランジスタの交流電流源となるバイパスコンデンサ8は、ローサイドスイッチを構成する第1のトランジスタ4と第2のトランジスタ5の各ソース端子と負極端子が接続され、ハイサイドスイッチを構成する第3のトランジスタ6と第4のトランジスタ7の各ドレイン端子と正極端子が接続される。ハイサイドスイッチとローサイドスイッチの接続点に負荷9が接続される。
図7は、本発明の実施の形態5に係るハーフブリッジ構成のスイッチング回路の構成例を示す図である。図8はそのスイッチング回路の配線基板への実装例を示す平面図である。図7及び図8において、第1のトランジスタ4と第2のトランジスタ5は並列接続されてローサイドスイッチを構成し、第3のトランジスタ6と第4のトランジスタ7は並列接続されてハイサイドスイッチを構成する。各トランジスタの交流電流源となるバイパスコンデンサ8は、ローサイドスイッチを構成する第1のトランジスタ4と第2のトランジスタ5の各ソース端子と負極端子が接続され、ハイサイドスイッチを構成する第3のトランジスタ6と第4のトランジスタ7の各ドレイン端子と正極端子が接続される。ハイサイドスイッチとローサイドスイッチの接続点に負荷9が接続される。
図7の破線の矢印で示したループAは、バイパスコンデンサ8-第3のトランジスタ6-第1のトランジスタ4-バイパスコンデンサ8を廻り、実線矢印で示したループBは、バイパスコンデンサ8-第4のトランジスタ7-第2のトランジスタ5-バイパスコンデンサ8を廻り、これらループAとループBのインピーダンスを揃えることで過渡時の主電流のばらつきを抑制することができる。
ループAとループBのインピーダンスを揃えるため、図8において、第1のトランジスタ4のソース端子S1と第2のトランジスタ5のソース端子S2を結ぶ線分の垂直2等分線がバイパスコンデンサ8の負極端子を通り、第3のトランジスタ6のドレイン端子D3と第4のトランジスタ7のドレイン端子D4を結ぶ線分の垂直2等分線がバイパスコンデンサ8の正極端子を通るようにバイパスコンデンサ8を配設し、第1のトランジスタ4のソース端子S1と第2のトランジスタ5のソース端子S2からの配線導体がバイパスコンデンサ8の負極端子で結合され、第3のトランジスタ6のドレイン端子D3と第4のトランジスタ7のドレイン端子D4からの配線導体がバイパスコンデンサ8の正極端子で結合される。
以上説明してきたように本実施の形態におけるスイッチング回路は、図7に示したように図5のスイッチング回路と比べて、さらに、第3のトランジスタ6と第4のトランジスタ7を有する。第3のトランジスタ6と第4のトランジスタ7は、それぞれ主電流が流れるドレイン端子D3、D4及び第1ソース端子S3、S4を有し、配線基板10上で、第3のトランジスタ6のドレイン端子D3と第4のトランジスタ7のドレイン端子D4とバイパスコンデンサ8の正極端子が接続される。また、第1のトランジスタ4のドレイン端子D1と第2のトランジスタ5のドレイン端子D2と第3のトランジスタ6のソース端子S3と第4のトランジスタ7のソース端子S4が接続される。第3のトランジスタと第4のトランジスタとバイパスコンデンサは、図8に示したように、配線基板10の平面視において、第3のトランジスタ6のドレイン端子D3と第4のトランジスタ7のドレイン端子D4を結ぶ線分の垂直2等分線が、バイパスコンデンサ8の正極端子を通るように配設される。
以上のような構成とすることにより、バイパスコンデンサ8の負極端子~第1及び第2のトランジスタの各第1ソース端子の寄生インダクタンスを含むインピーダンスはほぼ等しくなり、さらにバイパスコンデンサ8の正極端子~第3及び第4のトランジスタの各ドレイン端子の寄生インダクタンスを含むインピーダンスもほぼ等しくなる。従って、スイッチング回路のターンオンやターンオフ時のような過渡時に流れる主電流が、第1及び第2のトランジスタで均衡化し、第3及び第4のトランジスタでも均衡化する。
(実施の形態6)
図9Aは、実施の形態6に係るスイッチング回路の配線基板およびサブ配線基板への実装例を示す斜視図である。図9Bは、同じく側面図である。本実施の形態に係るスイッチング回路は、並列接続された第1のトランジスタ4と第2のトランジスタ5からなるローサイドスイッチと、並列接続された第3のトランジスタ6と第4のトランジスタ7からなるハイサイドスイッチと、第1のトランジスタ4の第1ソース端子に近接して接続された第1のコネクタ12aと第2のトランジスタ5の第1ソース端子に近接して接続された第2のコネクタ12bと、第3のトランジスタ6のドレイン端子に近接して接続された第3のコネクタ12cと第4のトランジスタ7のドレイン端子に近接して接続された第4のコネクタ12dとが配設された配線基板10と、トランジスタの交流電流源となるバイパスコンデンサ8が配設されて第1~第4のコネクタ12a~12dを介して配線基板10と接続されるサブ配線基板11とから構成される。
図9Aは、実施の形態6に係るスイッチング回路の配線基板およびサブ配線基板への実装例を示す斜視図である。図9Bは、同じく側面図である。本実施の形態に係るスイッチング回路は、並列接続された第1のトランジスタ4と第2のトランジスタ5からなるローサイドスイッチと、並列接続された第3のトランジスタ6と第4のトランジスタ7からなるハイサイドスイッチと、第1のトランジスタ4の第1ソース端子に近接して接続された第1のコネクタ12aと第2のトランジスタ5の第1ソース端子に近接して接続された第2のコネクタ12bと、第3のトランジスタ6のドレイン端子に近接して接続された第3のコネクタ12cと第4のトランジスタ7のドレイン端子に近接して接続された第4のコネクタ12dとが配設された配線基板10と、トランジスタの交流電流源となるバイパスコンデンサ8が配設されて第1~第4のコネクタ12a~12dを介して配線基板10と接続されるサブ配線基板11とから構成される。
図9Cは、実施の形態6に係るスイッチング回路の配線基板およびサブ配線基板への実装例を示す平面図である。配線基板10の平面視においてサブ配線基板11上では、第1のコネクタ12aと第2のコネクタ12bを結ぶ線分の垂直2等分線がバイパスコンデンサ8の負極端子を通り、第3のコネクタ12cと第4のコネクタ12dを結ぶ線分の垂直2等分線がバイパスコンデンサ8の正極端子を通るようにバイパスコンデンサ8を配設し、第1のコネクタ12aと第2のコネクタ12bからの配線導体がバイパスコンデンサ8の負極端子で結合され、第3のコネクタ12cと第4のコネクタ12dからの配線導体がバイパスコンデンサ8の正極端子で結合される。
以上説明してきたように本実施の形態におけるスイッチング回路は、図9A、図9B、図9Cに示したように配線基板10と、配線基板10上に配設された第1のトランジスタ4の直近で第1のトランジスタ4のソース端子S1に接続された第1のコネクタ12aと、配線基板10上に配設された第2のトランジスタ5の直近で第2のトランジスタ5のソース端子S2に接続された第2のコネクタ12bと、第1のトランジスタと第2のトランジスタの上に、第1のコネクタ12aと第2のコネクタ12bによって配線基板10と接続され、バイパスコンデンサ8を配設したサブ配線基板11とを有する。第1のコネクタと第2のコネクタとバイパスコンデンサ8は、配線基板10の平面視において、サブ配線基板11上で、第1のコネクタ12aと第2のコネクタ12bを結ぶ線分の垂直2等分線が、バイパスコンデンサ8の負極端子を通るように配設される。
また、スイッチング回路は、さらに、第3のトランジスタ6と第4のトランジスタ7を有している。第3のトランジスタ6と第4のトランジスタ7は、それぞれ主電流が流れるドレイン端子D3、D4及び第1ソース端子S3、S4を有する。このスイッチング回路は、配線基板10上に配設された第3のトランジスタ6の直近で第3のトランジスタ6のドレイン端子D3に接続された第3のコネクタ12cと、配線基板10上に配設された第4のトランジスタ7の直近で第4のトランジスタ7のドレイン端子D4に接続された第4のコネクタ12dとを有する。第3のコネクタ12cと第4のコネクタ12dはサブ配線基板11に接続される。第3のコネクタと第4のコネクタとバイパスコンデンサ8は、配線基板10の平面視において、サブ配線基板11上で、第3のコネクタ12cと第4のコネクタ12dを結ぶ線分の垂直2等分線が、バイパスコンデンサ8の正極端子を通るように配設される。
以上のような構成とすることにより、バイパスコンデンサ8の負極端子~第1及び第2のトランジスタの各第1ソース端子の寄生インダクタンスを含むインピーダンスはほぼ等しくなり、さらにバイパスコンデンサ8の正極端子~第3及び第4のトランジスタの各ドレイン端子の寄生インダクタンスを含むインピーダンスもほぼ等しくなる。従って、スイッチング回路のターンオンやターンオフ時のような過渡時に流れる主電流が、第1及び第2のトランジスタで均衡化し、第3及び第4のトランジスタでも均衡化する。もちろん、インピーダンス要因ともなる第1~第4のコネクタ12a、12b、12c、12dが同一素材で同一形状であることが望ましい。
なお、本実施の形態6では、過渡時の主電流均衡化のために加えて、小型高密度実装のためにサブ配線基板を用いた立体的な構造を開示したが、このサブ配線基板にさらに別な機能を持たせることが可能である。例えば、バイパスコンデンサ8が実装されるサブ配線基板上の配線導体は電位変動が少なく比較的安定しており、放射雑音を抑制するシールド効果も期待できる。
また、第1~第4のトランジスタ4~7の少なくとも1つの放熱用ヒートシンクを兼ねさせて、より大電流スイッチングに適用する、あるいは温度上昇を抑制して長寿命化を図っても良い。具体的には、サブ配線基板11の放熱性を高める為に両面全体に配線導体を施す、サブ配線基板11に高放熱なセラミック基板を使用する、サブ配線基板とトランジスタ間をシリコングリス等の高放熱材で充填する等がある。
(その他の実施の形態)
以上、本開示のスイッチング回路について、実施の形態に基づいて説明してきたが、本開示のスイッチング回路は、実施の形態1~6に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示のスイッチング回路を内蔵した各種機器も本発明に含まれる。
以上、本開示のスイッチング回路について、実施の形態に基づいて説明してきたが、本開示のスイッチング回路は、実施の形態1~6に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本開示のスイッチング回路を内蔵した各種機器も本発明に含まれる。
本発明に係るスイッチング回路は、スイッチング電源やインバータ等に有用である。
1 駆動電源
2 駆動信号源
3 駆動回路
4 第1のトランジスタ
5 第2のトランジスタ
6 第3のトランジスタ
7 第4のトランジスタ
8 バイパスコンデンサ
9 負荷
10 配線基板
11 サブ配線基板
2 駆動信号源
3 駆動回路
4 第1のトランジスタ
5 第2のトランジスタ
6 第3のトランジスタ
7 第4のトランジスタ
8 バイパスコンデンサ
9 負荷
10 配線基板
11 サブ配線基板
Claims (15)
- 正極端子と負極端子を有して所定の駆動電圧を出力する駆動電源と、
並列接続される第1のトランジスタ及び第2のトランジスタと、
前記第1及び第2のトランジスタをオンオフ駆動するための駆動パルス信号を出力する駆動信号源と、
電源端子とグランド端子を有して前記駆動電源から電力を供給され、前記駆動パルス信号に応じて、前記第1のトランジスタをオンオフ駆動する第1の駆動信号と、前記第2のトランジスタをオンオフ駆動する第2の駆動信号とを出力する駆動回路を有し、
前記第1のトランジスタと前記第2のトランジスタはそれぞれ、オン時に主電流が流れるドレイン電極及びソース電極と、受電信号に応じて前記ドレイン電極と前記ソース電極間のインピーダンスを変化させるゲート電極とを内蔵し、前記ゲート電極に接続されるゲート端子と、前記ドレイン電極に接続されるドレイン端子と、主電流を流すために前記ソース電極と接続される第1ソース端子と、前記第1ソース端子とは別に、ソース電圧検出及びゲート駆動電流を流す為に前記ソース電極に接続される第2ソース端子とを有し、
ここで、前記第1ソース端子は前記第2ソース端子より低インピーダンスで前記ソース電極に接続され、
前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子は接続され、前記第1のトランジスタの第1ソース端子と第2のトランジスタの第1ソース端子は接続され、前記第1のトランジスタのゲート端子は前記第1の駆動信号を受電し、前記第2のトランジスタのゲート端子は前記第2の駆動信号を受電し、
前記第1のトランジスタの第2ソース端子および前記第2のトランジスタの第2ソース端子は、前記駆動電源の負極端子と前記駆動回路のグランド端子との結線部で接続される、
スイッチング回路。 - 前記第1のトランジスタと第2のトランジスタは定格電流が等しく、
前記駆動回路の第1の駆動信号と第2の駆動信号が等しく設定された、
請求項1記載のスイッチング回路。 - 正極端子と負極端子を有して所定の駆動電圧を出力する駆動電源と、
並列接続される第1のトランジスタ及び第2のトランジスタと、
前記第1及び第2のトランジスタをオンオフ駆動するための駆動パルス信号を出力する駆動信号源と、
前記駆動電源から電力を供給され、前記駆動パルス信号に応じて、前記第1のトランジスタをオンオフ駆動する第1の駆動信号と、前記第2のトランジスタをオンオフ駆動する第2の駆動信号とを出力する駆動回路を有し、
前記第1のトランジスタと前記第2のトランジスタはそれぞれ、オン時に主電流が流れるドレイン端子及びソース端子を有し、受電信号に応じて前記ドレイン端子と前記ソース端子間のインピーダンスを変化させるゲート端子を有し、
前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子は接続され、前記第1のトランジスタのソース端子と第2のトランジスタのソース端子は接続され、前記第1のトランジスタのゲート端子は前記第1の駆動信号を受電し、前記第2のトランジスタのゲート端子は前記第2の駆動信号を受電し、
前記駆動回路は、
前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する期間中、前記第1の駆動信号の一部として、前記駆動電源の正極端子から前記第1のトランジスタのゲート端子へ所定の直流電流であるオン駆動電流を供給する第1のオン回路と、
前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する期間中、前記第2の駆動信号の一部として、前記駆動電源の正極端子から前記第2のトランジスタのゲート端子へ所定の直流電流であるオン駆動電流を供給する第2のオン回路と、
前記駆動パルス信号が前記第1及び第2のトランジスタのターンオンを指示する時に、前記第1の駆動信号の一部として、前記駆動電源の正極端子から前記第1のトランジスタのゲート端子へ所定のターンオン駆動電流を供給する第1のターンオン回路と、
前記駆動パルス信号が前記第1及び第2のトランジスタのターンオンを指示する時に、前記第2の駆動信号の一部として、前記駆動電源の正極端子から前記第2のトランジスタのゲート端子へ所定のターンオン駆動電流を供給する第2のターンオン回路と、
前記駆動パルス信号が前記第1及び第2のトランジスタのターンオフを指示する時に、前記第1の駆動信号の一部として、前記第1のトランジスタのゲート端子から所定のターンオフ駆動電流を引き抜く第1のターンオフ回路と、
前記駆動パルス信号が前記第1及び第2のトランジスタのターンオフを指示する時に、前記第2の駆動信号の一部として、前記第2のトランジスタのゲート端子から所定のターンオフ駆動電流を引き抜く第2のターンオフ回路と、
を有するスイッチング回路。 - 前記第1のトランジスタと前記第2のトランジスタは、オン状態の維持にゲート端子への電流が必要なトランジスタである、
請求項3記載のスイッチング回路。 - 前記第1のトランジスタと第2のトランジスタは定格電流が等しく、
前記駆動回路は、
前記第1のオン回路におけるオン駆動電流と前記第2のオン回路におけるオン駆動電流が等しく設定され、
第1のターンオン回路におけるターンオン駆動電流と第2のターンオン回路におけるターンオン駆動電流が等しく設定され、
第1のターンオフ回路におけるターンオフ駆動電流と第2のターンオフ回路におけるターンオフ駆動電流が等しく設定された、
請求項3記載のスイッチング回路。 - 前記第1のオン回路と前記第2のオン回路は、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する時にオンとなる第1のスイッチを共有し、
前記第1のオン回路は前記第1のスイッチと第1のオン駆動抵抗との直列回路を含み、
前記第2のオン回路は前記第1のスイッチと第2のオン駆動抵抗との直列回路を含む、
請求項3記載のスイッチング回路。 - 前記第1のターンオン回路と前記第2のターンオン回路は、前記駆動パルス信号が前記第1及び第2のトランジスタのオン状態を指示する時にオンとなる第2のスイッチを共有し、
前記第1のターンオン回路は前記第2のスイッチと第1のコンデンサとの直列回路を含み、
前記第2のターンオン回路は前記第2のスイッチと第2のコンデンサの直列回路を含む、
請求項3記載のスイッチング回路。 - 前記第1のターンオフ回路と前記第2のターンオフ回路は、前記駆動電源の負極端子に接続されて前記駆動パルス信号が前記第1及び第2のトランジスタのオフ状態を指示する時にオンとなる第3のスイッチを共有し、
前記第1のターンオフ回路は前記第3のスイッチと第1のダイオードとの直列回路を含み、前記第2のターンオフ回路は前記第3のスイッチと第2のダイオードとの直列回路を含む、
請求項3記載のスイッチング回路。 - 前記駆動回路は、前記駆動電圧と逆極性の負電圧を出力する負駆動電源を有し、
前記第1のターンオフ回路と前記第2のターンオフ回路は、前記負駆動電源に接続されて前記駆動パルス信号が前記第1及び第2のトランジスタのオフ状態を指示する時にオンとなる第3のスイッチを共有し、
前記第1のターンオフ回路は前記負駆動電源と前記第3のスイッチと第1のダイオードとの直列回路を含み、
前記第2のターンオフ回路は前記負駆動電源と前記第3のスイッチと第2のダイオードとの直列回路を含む、
請求項3記載のスイッチング回路。 - さらに、前記第1のトランジスタと前記第2のトランジスタの交流電流源となるバイパスコンデンサを有し、
前記主電流が、負荷から前記第1のトランジスタと前記第2のトランジスタを介して前記バイパスコンデンサの負極端子へと流れるように結線され、
前記第1のトランジスタと前記第2のトランジスタと前記バイパスコンデンサは、配線基板上に、前記第1のトランジスタの第1ソース端子と前記バイパスコンデンサの負極端子の間のインピーダンスと前記第2のトランジスタの第1ソース端子と前記バイパスコンデンサの負極端子の間のインピーダンスが等しくなるように配設された、
請求項2記載のスイッチング回路。 - 前記第1のトランジスタと前記第2のトランジスタと前記バイパスコンデンサは、前記配線基板の平面視において、前記第1のトランジスタのソース端子と前記第2のトランジスタのソース端子を結ぶ線分の垂直2等分線が、前記バイパスコンデンサの負極端子を通るように配設された、
請求項10記載のスイッチング回路。 - さらに、第3のトランジスタと第4のトランジスタを有し、
前記第3のトランジスタと前記第4のトランジスタは、それぞれ、主電流が流れるドレイン端子及び第1ソース端子を有し、
配線基板上に、
前記第3のトランジスタのドレイン端子と前記第4のトランジスタのドレイン端子と前記バイパスコンデンサの正極端子が接続され、
前記第1のトランジスタのドレイン端子と前記第2のトランジスタのドレイン端子と前記第3のトランジスタのソース端子と第4のトランジスタのソース端子が接続され、
前記第3のトランジスタと前記第4のトランジスタと前記バイパスコンデンサは、前記配線基板の平面視において、前記第3のトランジスタのドレイン端子と前記第4のトランジスタのドレイン端子を結ぶ線分の垂直2等分線が、前記バイパスコンデンサの正極端子を通るように配設される、
請求項11記載のスイッチング回路。 - さらに、
前記配線基板と、
前記配線基板上に配設された前記第1のトランジスタの直近で前記第1のトランジスタのソース端子に接続された第1のコネクタと、
前記配線基板上に配設された前記第2のトランジスタの直近で前記第2のトランジスタのソース端子に接続された第2のコネクタと、
前記第1のトランジスタと前記第2のトランジスタの上に、前記第1のコネクタと前記第2のコネクタによって前記配線基板と接続され、前記バイパスコンデンサを配設したサブ配線基板とを有し、
前記第1のコネクタと前記第2のコネクタと前記バイパスコンデンサは、前記配線基板の平面視において、前記サブ配線基板上で、前記第1のコネクタと前記第2のコネクタを結ぶ線分の垂直2等分線が、前記バイパスコンデンサの負極端子を通るように配設される、
請求項10記載のスイッチング回路。 - さらに、第3のトランジスタと第4のトランジスタを有し、
前記第3のトランジスタと前記第4のトランジスタは、それぞれ主電流が流れるドレイン端子及び第1ソース端子を有し、
前記スイッチング回路は、さらに、
前記配線基板上に配設された前記第3のトランジスタの直近で前記第3のトランジスタのドレイン端子に接続された第3のコネクタと、
前記配線基板上に配設された前記第4のトランジスタの直近で前記第4のトランジスタのドレイン端子に接続された第4のコネクタとを有し、
前記第3のコネクタと前記第4のコネクタは前記サブ配線基板に接続され、
前記第3のコネクタと前記第4のコネクタと前記バイパスコンデンサは、前記配線基板の平面視において、前記サブ配線基板上で、前記第3のコネクタと前記第4のコネクタを結ぶ線分の垂直2等分線が、前記バイパスコンデンサの正極端子を通るように配設される、
請求項13記載のスイッチング回路。 - 前記サブ配線基板は、前記第1のトランジスタと前記第2のトランジスタとに対するヒートシンクも兼ねる、
請求項13記載のスイッチング回路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018537073A JP6868809B2 (ja) | 2016-08-31 | 2017-08-07 | スイッチング回路 |
US15/925,104 US10205449B2 (en) | 2016-08-31 | 2018-03-19 | Switching circuit |
US16/226,081 US10483966B2 (en) | 2016-08-31 | 2018-12-19 | Switching circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016170127 | 2016-08-31 | ||
JP2016-170127 | 2016-08-31 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/925,104 Continuation US10205449B2 (en) | 2016-08-31 | 2018-03-19 | Switching circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018043039A1 true WO2018043039A1 (ja) | 2018-03-08 |
Family
ID=61300451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028517 WO2018043039A1 (ja) | 2016-08-31 | 2017-08-07 | スイッチング回路 |
Country Status (3)
Country | Link |
---|---|
US (2) | US10205449B2 (ja) |
JP (2) | JP6868809B2 (ja) |
WO (1) | WO2018043039A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020061856A (ja) * | 2018-10-09 | 2020-04-16 | 株式会社デンソー | スイッチの駆動回路 |
JP2020109909A (ja) * | 2019-01-04 | 2020-07-16 | 株式会社東芝 | 半導体装置及び半導体パッケージ |
WO2021010353A1 (ja) * | 2019-07-17 | 2021-01-21 | パナソニックIpマネジメント株式会社 | ゲート駆動回路および半導体遮断器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7516392B2 (ja) * | 2019-08-21 | 2024-07-16 | ローム株式会社 | パワーモジュール |
US11451226B2 (en) * | 2020-09-15 | 2022-09-20 | Qorvo Us, Inc. | Radio frequency switch circuitry |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211813A (ja) * | 1987-02-27 | 1988-09-02 | Hitachi Ltd | トランジスタの直接並列接続回路 |
JPH07131314A (ja) * | 1993-10-29 | 1995-05-19 | Amada Co Ltd | 高周波インバータのスイッチング素子の配置方法 |
JPH08162935A (ja) * | 1994-12-08 | 1996-06-21 | Origin Electric Co Ltd | 半導体装置及び半導体回路 |
JPH1023744A (ja) * | 1996-07-02 | 1998-01-23 | Toshiba Corp | 電力変換器及びその制御装置 |
JP2001068498A (ja) * | 1999-08-27 | 2001-03-16 | Toshiba Corp | 半導体装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08126331A (ja) | 1994-10-28 | 1996-05-17 | Mita Ind Co Ltd | 直流安定化電源回路 |
JPH098075A (ja) * | 1995-06-23 | 1997-01-10 | Toshiba Corp | 半導体装置 |
JP3580025B2 (ja) | 1996-02-20 | 2004-10-20 | 富士電機デバイステクノロジー株式会社 | 並列接続・可制御半導体素子の電流バランス回路 |
JPH10155272A (ja) | 1996-11-20 | 1998-06-09 | Matsushita Electric Ind Co Ltd | 電源装置 |
US7276954B2 (en) * | 2002-06-26 | 2007-10-02 | Kabushiki Kaisha Toyota Jidoshokki | Driver for switching device |
JP4288702B2 (ja) | 2004-03-31 | 2009-07-01 | Tdkラムダ株式会社 | スイッチング電源装置 |
WO2011096232A1 (ja) * | 2010-02-05 | 2011-08-11 | パナソニック株式会社 | 電力変換装置 |
WO2013032906A1 (en) | 2011-08-29 | 2013-03-07 | Efficient Power Conversion Corporation | Parallel connection methods for high performance transistors |
JP5811108B2 (ja) * | 2013-01-22 | 2015-11-11 | 株式会社デンソー | 電子装置 |
US8847656B1 (en) * | 2013-07-03 | 2014-09-30 | Honeywell International Inc. | Approach for driving multiple MOSFETs in parallel for high power solid state power controller applications |
US9484908B1 (en) * | 2015-06-19 | 2016-11-01 | Hella Corporate Center Usa, Inc. | Gate drive circuit |
-
2017
- 2017-08-07 WO PCT/JP2017/028517 patent/WO2018043039A1/ja active Application Filing
- 2017-08-07 JP JP2018537073A patent/JP6868809B2/ja active Active
-
2018
- 2018-03-19 US US15/925,104 patent/US10205449B2/en active Active
- 2018-12-19 US US16/226,081 patent/US10483966B2/en active Active
-
2021
- 2021-01-27 JP JP2021011540A patent/JP7113381B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211813A (ja) * | 1987-02-27 | 1988-09-02 | Hitachi Ltd | トランジスタの直接並列接続回路 |
JPH07131314A (ja) * | 1993-10-29 | 1995-05-19 | Amada Co Ltd | 高周波インバータのスイッチング素子の配置方法 |
JPH08162935A (ja) * | 1994-12-08 | 1996-06-21 | Origin Electric Co Ltd | 半導体装置及び半導体回路 |
JPH1023744A (ja) * | 1996-07-02 | 1998-01-23 | Toshiba Corp | 電力変換器及びその制御装置 |
JP2001068498A (ja) * | 1999-08-27 | 2001-03-16 | Toshiba Corp | 半導体装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020061856A (ja) * | 2018-10-09 | 2020-04-16 | 株式会社デンソー | スイッチの駆動回路 |
CN111106742A (zh) * | 2018-10-09 | 2020-05-05 | 株式会社电装 | 用于开关的驱动电路 |
JP7103139B2 (ja) | 2018-10-09 | 2022-07-20 | 株式会社デンソー | スイッチの駆動回路 |
CN111106742B (zh) * | 2018-10-09 | 2024-03-29 | 株式会社电装 | 用于开关的驱动电路 |
JP2020109909A (ja) * | 2019-01-04 | 2020-07-16 | 株式会社東芝 | 半導体装置及び半導体パッケージ |
JP7224918B2 (ja) | 2019-01-04 | 2023-02-20 | 株式会社東芝 | 半導体装置及び半導体パッケージ |
WO2021010353A1 (ja) * | 2019-07-17 | 2021-01-21 | パナソニックIpマネジメント株式会社 | ゲート駆動回路および半導体遮断器 |
Also Published As
Publication number | Publication date |
---|---|
US10205449B2 (en) | 2019-02-12 |
US10483966B2 (en) | 2019-11-19 |
JPWO2018043039A1 (ja) | 2019-06-24 |
US20190149148A1 (en) | 2019-05-16 |
JP2021078349A (ja) | 2021-05-20 |
US20180212509A1 (en) | 2018-07-26 |
JP7113381B2 (ja) | 2022-08-05 |
JP6868809B2 (ja) | 2021-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7113381B2 (ja) | スイッチング回路 | |
CN107851661B (zh) | 功率转换器的物理拓扑结构 | |
WO2012153836A1 (ja) | スイッチング回路及び半導体モジュール | |
CN102893525B (zh) | 对电压驱动型元件进行驱动的驱动装置 | |
JP6729693B2 (ja) | 駆動装置 | |
EP3284173A1 (en) | Paralleling power switches using a differential mode choke in the gate drive loop | |
US10574223B1 (en) | Paralleled power semiconductors with chokes in gate path | |
CN111656658B (zh) | 负电压生成电路和使用该负电压生成电路的电力转换装置 | |
JP5619673B2 (ja) | スイッチング回路及び半導体モジュール | |
US9843318B2 (en) | Buffer circuit | |
US11050358B2 (en) | Power module with built-in drive circuit | |
EP3652857B1 (en) | Power semiconductor module gate driver with input common mode choke | |
KR102055461B1 (ko) | 전력 반도체 회로 | |
JP4768476B2 (ja) | 自己消弧型半導体素子の駆動装置 | |
JP5843535B2 (ja) | 半導体モジュール | |
TWI806913B (zh) | 一種功率並聯的均流電路 | |
KR101681499B1 (ko) | 표류 인덕턴스 감쇄 프레임 구조를 갖는 반도체 파워 모듈 | |
JP3696211B2 (ja) | パワースイッチング装置 | |
US6756825B2 (en) | Power device driving circuit | |
US10587181B2 (en) | Power semiconductor device with built-in resistor between control electrode and control terminal, and power semiconductor drive system | |
CN113765339A (zh) | 避免并联式半导体开关中的寄生振荡的方法及对应的装置 | |
JP4487604B2 (ja) | 電力変換装置 | |
KR20070026612A (ko) | 높고 그리고 넓은 동작 전압 범위를 위한 바이어스 회로를구비한 게이트 드라이버 출력 단 | |
WO2023162032A1 (ja) | ゲート駆動回路およびこれを用いた電力変換装置 | |
US20240235412A1 (en) | A power converter device and a system comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018537073 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17846048 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17846048 Country of ref document: EP Kind code of ref document: A1 |