WO2017222341A1 - 반도체 소자 및 이를 포함하는 반도체 소자 패키지 - Google Patents
반도체 소자 및 이를 포함하는 반도체 소자 패키지 Download PDFInfo
- Publication number
- WO2017222341A1 WO2017222341A1 PCT/KR2017/006661 KR2017006661W WO2017222341A1 WO 2017222341 A1 WO2017222341 A1 WO 2017222341A1 KR 2017006661 W KR2017006661 W KR 2017006661W WO 2017222341 A1 WO2017222341 A1 WO 2017222341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor layer
- layer
- conductive semiconductor
- conductive
- light emitting
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 531
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 74
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 65
- 238000000034 method Methods 0.000 claims description 23
- 230000003746 surface roughness Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 708
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 47
- 239000002019 doping agent Substances 0.000 description 40
- 239000000463 material Substances 0.000 description 34
- 239000000758 substrate Substances 0.000 description 34
- 230000031700 light absorption Effects 0.000 description 33
- 239000011787 zinc oxide Substances 0.000 description 25
- 230000007547 defect Effects 0.000 description 23
- 229910002704 AlGaN Inorganic materials 0.000 description 20
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 17
- 229960001296 zinc oxide Drugs 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- SKRWFPLZQAAQSU-UHFFFAOYSA-N stibanylidynetin;hydrate Chemical compound O.[Sn].[Sb] SKRWFPLZQAAQSU-UHFFFAOYSA-N 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 13
- 238000010586 diagram Methods 0.000 description 13
- 239000010931 gold Substances 0.000 description 13
- 229910052738 indium Inorganic materials 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 13
- 238000000605 extraction Methods 0.000 description 12
- 229910052733 gallium Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 10
- 229910052759 nickel Inorganic materials 0.000 description 10
- 150000004767 nitrides Chemical class 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 229910052709 silver Inorganic materials 0.000 description 9
- 239000002356 single layer Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 239000011651 chromium Substances 0.000 description 8
- 239000006185 dispersion Substances 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 7
- HRHKULZDDYWVBE-UHFFFAOYSA-N indium;oxozinc;tin Chemical compound [In].[Sn].[Zn]=O HRHKULZDDYWVBE-UHFFFAOYSA-N 0.000 description 7
- VRIVJOXICYMTAG-IYEMJOQQSA-L iron(ii) gluconate Chemical compound [Fe+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O VRIVJOXICYMTAG-IYEMJOQQSA-L 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 229910001887 tin oxide Inorganic materials 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 229910019897 RuOx Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 5
- -1 GaN Chemical class 0.000 description 5
- DZLPZFLXRVRDAE-UHFFFAOYSA-N [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] Chemical compound [O--].[O--].[O--].[O--].[Al+3].[Zn++].[In+3] DZLPZFLXRVRDAE-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- YZZNJYQZJKSEER-UHFFFAOYSA-N gallium tin Chemical compound [Ga].[Sn] YZZNJYQZJKSEER-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000007480 spreading Effects 0.000 description 5
- 238000003892 spreading Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910017083 AlN Inorganic materials 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- 229910052735 hafnium Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000000644 propagated effect Effects 0.000 description 3
- 229910052711 selenium Inorganic materials 0.000 description 3
- 239000011669 selenium Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 229910052712 strontium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 239000004954 Polyphthalamide Substances 0.000 description 2
- 229910020776 SixNy Inorganic materials 0.000 description 2
- 229910020781 SixOy Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 239000006089 photosensitive glass Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920006375 polyphtalamide Polymers 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- 229910018229 Al—Ga Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910020286 SiOxNy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 210000000009 suboesophageal ganglion Anatomy 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H01L33/18—
-
- H01L33/005—
-
- H01L33/145—
-
- H01L33/22—
-
- H01L33/30—
-
- H01L33/32—
-
- H01L33/36—
-
- H01L33/48—
-
- H01L33/62—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H01L33/382—
-
- H01L33/40—
Definitions
- Embodiments relate to a semiconductor device and a semiconductor device package including the same.
- a semiconductor device including a compound such as GaN, AlGaN, etc. has many advantages, such as having a wide and easy to adjust band gap energy, and can be used in various ways as a light emitting device, a light receiving device, and various diodes.
- light emitting devices such as light emitting diodes and laser diodes using semiconductors of Group 3-5 or Group 2-6 compound semiconductors have been developed through the development of thin film growth technology and device materials.
- Various colors such as blue and ultraviolet light can be realized, and efficient white light can be realized by using fluorescent materials or combining colors.Low power consumption, semi-permanent lifespan, and fast response speed compared to conventional light sources such as fluorescent and incandescent lamps can be realized. It has the advantages of safety, environmental friendliness.
- a light-receiving device such as a photodetector or a solar cell
- a group 3-5 or 2-6 compound semiconductor material of a semiconductor the development of device materials absorbs light in various wavelength ranges to generate a photocurrent.
- light in various wavelengths can be used from gamma rays to radio wavelengths. It also has the advantages of fast response speed, safety, environmental friendliness and easy control of device materials, making it easy to use in power control or microwave circuits or communication modules.
- the semiconductor device may replace a light emitting diode backlight, a fluorescent lamp, or an incandescent bulb, which replaces a cold cathode tube (CCFL) constituting a backlight module of an optical communication means, a backlight of a liquid crystal display (LCD) display device.
- CCFL cold cathode tube
- LCD liquid crystal display
- the light emitting device that emits light in the ultraviolet wavelength region may be used for curing, medical treatment, and sterilization by curing or sterilizing.
- the ultraviolet light emitting device has a problem that it is difficult to implement a vertical type, and there is a problem that the crystallinity is degraded in the process of separating the substrate.
- strain may be changed in a semiconductor layer due to lattice mismatch and thermal expansion coefficient difference between respective semiconductor layers.
- the strain change may cause dislocations or defects in the semiconductor layer.
- the dislocations or defects may cause V fits or cracks, and V fits or cracks may cause leakage currents.
- the embodiment provides a vertical ultraviolet semiconductor device.
- the semiconductor element which is excellent in crystallinity is provided.
- the embodiment can provide a semiconductor device which improves light extraction efficiency by improving back diffusion of a p dopant.
- a semiconductor device may include a first conductive semiconductor layer, a second conductive semiconductor layer, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, and the first conductive semiconductor layer.
- a light emitting structure including an intermediate layer disposed between the conductive semiconductor layer and the active layer or in the first conductive semiconductor layer, wherein the first conductive semiconductor layer, the intermediate layer, the active layer, and the second conductive semiconductor The layer includes aluminum, and the intermediate layer includes a first intermediate layer having a lower aluminum composition than the first conductive semiconductor layer.
- the intermediate layer may include the first intermediate layer and a second intermediate layer having a higher aluminum concentration than the first intermediate layer.
- the aluminum composition of the second intermediate layer may be higher than the aluminum composition of the first conductive semiconductor layer.
- the plurality of first and second intermediate layers may be alternately stacked.
- the thickness of the first intermediate layer may be thicker than the thickness of the second intermediate layer.
- the thickness ratio of the first intermediate layer and the second intermediate layer may be 2: 1 to 6: 1.
- the overall thickness of the intermediate layer may be larger than 50 nm and smaller than 1000 nm.
- the aluminum composition of the first intermediate layer may be 30% to 60%.
- the aluminum composition of the second intermediate layer may be 60% to 100%.
- the first conductive semiconductor layer includes a 1-1 conductive semiconductor layer and a 1-2 conductive semiconductor layer, wherein the intermediate layer is a 1-1 conductive semiconductor layer and a 1-2 conductive semiconductor. May be disposed between layers.
- the first-second conductive semiconductor layer may be closer to the active layer than the first-first conductive semiconductor layer.
- the aluminum composition of the 1-2 conductive semiconductor layer may be lower than the aluminum composition of the 1-1 conductive semiconductor layer.
- the thickness of the first-first conductive semiconductor layer may be thicker than the thickness of the first-second conductive semiconductor layer.
- the light emitting structure may include a plurality of recesses penetrating through the second conductive semiconductor layer and the active layer to a part of the first conductive semiconductor layer.
- the first conductive layer may include a first conductive layer disposed in the plurality of recesses, the first conductive layer including a connection electrode electrically connected to the first-second conductive semiconductor layer.
- the intermediate layer may be disposed between the first conductive semiconductor layer and the active layer.
- the light emitting structure may include a plurality of recesses disposed through the second conductive semiconductor layer, the active layer, and the intermediate layer to a part of the first conductive semiconductor layer.
- the first conductive layer may include a first conductive layer disposed in the plurality of recesses, the first conductive layer including a connection electrode electrically connected to the first conductive semiconductor layer.
- a semiconductor device package according to an embodiment of the present invention, the body; And a semiconductor device disposed in the body, wherein the semiconductor device includes: a first conductive semiconductor layer, a second conductive semiconductor layer, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer. And a light emitting structure including an intermediate layer disposed between the first conductive semiconductor layer and the active layer or within the first conductive semiconductor layer, wherein the first conductive semiconductor layer, the intermediate layer, the active layer, and The second conductive semiconductor layer may include aluminum, and the intermediate layer may include a first intermediate layer having a lower aluminum composition than the first conductive semiconductor layer.
- a semiconductor device manufacturing method the step of sequentially forming a light absorption layer and the light emitting structure according to claim 1 on a substrate; And separating the light absorbing layer and the first conductive semiconductor layer by irradiating a laser onto the substrate.
- the light absorbing layer and the intermediate layer may absorb the laser.
- the crystallinity of the ultraviolet light emitting device can be improved.
- the light output can be improved.
- the light emitting efficiency can be improved by reducing the threading dislocation density (TDD) of the final semiconductor layer.
- TDD threading dislocation density
- the back diffusion of the p dopant from the EBL to the active layer can be improved to improve the light extraction efficiency.
- FIG. 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention.
- FIG. 2 is a conceptual diagram of a light emitting structure according to another embodiment of the present invention.
- FIG. 3 is a conceptual diagram of a semiconductor device according to an embodiment of the present disclosure.
- FIG. 4 is a conceptual diagram of a semiconductor device according to another embodiment of the present disclosure.
- 5A is a conceptual diagram of a semiconductor device according to still another embodiment of the present invention.
- FIG. 5B is a modification of FIG. 5A
- 6A and 6B are plan views of a semiconductor device according to an embodiment of the present disclosure.
- FIG. 7 is a conceptual view illustrating a light emitting structure in which a light absorption layer and an intermediate layer are formed
- FIG. 10 is a view for explaining a process of separating a substrate
- FIG. 11 is a view for explaining a process of etching a light emitting structure
- FIG. 13 is a conceptual diagram of a semiconductor device package according to an embodiment of the present disclosure.
- FIG. 14 is a cross-sectional view illustrating a semiconductor device according to an embodiment
- FIG. 15 is a cross-sectional view of the semiconductor device illustrating region A of FIG. 1;
- FIG. 16 is a diagram illustrating dopant concentrations of the second-conductive semiconductor layer and the second-conductive semiconductor layer by Secondary-ion Mass Spectroscopy (SIMS).
- SIMS Secondary-ion Mass Spectroscopy
- 19 is a view showing the surface of the 2-3 conductive semiconductor layer of the embodiment.
- 20 to 23 are cross-sectional views illustrating a method of manufacturing a semiconductor device of an embodiment
- 24 is a cross-sectional view showing a light emitting device package according to the embodiment.
- the light emitting structure according to the embodiment of the present invention may output light in the ultraviolet wavelength band.
- the light emitting structure may output light in the near ultraviolet wavelength range (UV-A), may output light in the far ultraviolet wavelength range (UV-B), and emit light in the deep ultraviolet wavelength range (UV-C).
- UV-A near ultraviolet wavelength range
- UV-B far ultraviolet wavelength range
- UV-C deep ultraviolet wavelength range
- the wavelength range may be determined by the composition ratio of Al of the light emitting structure 120.
- the light (UV-A) in the near ultraviolet wavelength band may have a wavelength in the range of 320 nm to 420 nm
- the light in the far ultraviolet wavelength band (UV-B) may have a wavelength in the range of 280 nm to 320 nm
- deep ultraviolet light Light in the wavelength band (UV-C) may have a wavelength in the range of 100nm to 280nm.
- FIG. 1 is a conceptual diagram of a light emitting structure according to an embodiment of the present invention.
- the light emitting structure 120A includes the first conductive semiconductor layer 124, the second conductive semiconductor layer 127, the active layer 126, and the first conductive semiconductor layer 124 and the active layer 126. Intermediate layer 125 disposed between.
- the first conductive semiconductor layer 124, the intermediate layer 125, the active layer 126, and the second conductive semiconductor layer 127 include aluminum.
- the composition of aluminum can be adjusted according to the desired ultraviolet wavelength band.
- the first conductive semiconductor layer 124 may be formed of a compound semiconductor such as a III-V group or a II-VI group, and may be doped with a first dopant.
- the first conductive semiconductor layer 124 is a semiconductor material having a composition formula of Inx1Aly1Ga1-x1-y1N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example, GaN, AlGaN, InGaN, InAlGaN and the like can be selected.
- the first dopant may be an n-type dopant such as Si, Ge, Sn, Se, or Te. When the first dopant is an n-type dopant, the first conductive semiconductor layer 124 doped with the first dopant may be an n-type semiconductor layer.
- the active layer 126 is disposed between the first conductive semiconductor layer 124 and the second conductive semiconductor layer 127.
- the active layer 126 is a layer where electrons (or holes) injected through the first conductive semiconductor layer 124 meet holes (or electrons) injected through the second conductive semiconductor layer 127.
- the active layer 126 transitions to a low energy level as electrons and holes recombine, and may generate light having an ultraviolet wavelength.
- the active layer 126 may have any one of a single well structure, a multi well structure, a single quantum well structure, a multi quantum well (MQW) structure, a quantum dot structure, or a quantum line structure, and the active layer 126.
- the structure of is not limited to this.
- the intermediate layer 125 may be disposed between the first conductive semiconductor layer 124 and the active layer 126.
- the intermediate layer 125 includes a first intermediate layer 125a having a lower aluminum composition than the first conductive semiconductor layer 124 and a second intermediate layer 125b having a higher aluminum composition than the first conductive semiconductor layer 124.
- a plurality of first intermediate layers 125a and second intermediate layers 125b may be alternately arranged.
- the aluminum composition of the first intermediate layer 125a may be lower than that of the first conductive semiconductor layer 124.
- the first intermediate layer 125a may serve to prevent damage to the active layer 126 by absorbing a laser irradiated to the light emitting structure 120 during the LLO process. Therefore, in the semiconductor device according to the embodiment, damage to the active layer may be reduced, thereby improving light output, electrical characteristics, and reliability.
- the thickness and aluminum composition of the first intermediate layer 125a may be appropriately adjusted to absorb the laser having the wavelength of the laser irradiated to the light emitting structure 120 during the LLO process.
- the aluminum composition of the first intermediate layer 125a may be 30% to 60%, and the thickness may be 1 nm to 10 nm.
- the first intermediate layer 125a may be AlGaN, but is not limited thereto.
- the aluminum composition of the second intermediate layer 125b may be higher than that of the first conductive semiconductor layer 124. Since the second intermediate layer 125b increases the aluminum composition lowered by the first intermediate layer 125a, the direction in which the lattice defects transmitted from the lower portion of the intermediate layer 125 are transferred is the first intermediate layer 125a and the second intermediate layer 125b. Can be changed at the interface. As the plurality of lattice defects merge with each other at the interface, the lattice defects traveling to the upper portion of the intermediate layer 125 may be reduced. Therefore, lattice defects of the epitaxial layer growing on the intermediate layer 125 may be reduced and crystallinity may be improved. In addition, the light extraction efficiency may be improved due to a difference in refractive index coming from where the first conductivity-type semiconductor layer 124 and the Al content are different.
- the aluminum composition of the second intermediate layer 125b may be 60% to 100%, and the thickness may be 0.1 nm to 2.0 nm.
- the second intermediate layer 125b may be AlGaN or AlN, but is not limited thereto.
- the thickness of the first intermediate layer 125a may be thicker than the thickness of the second intermediate layer 125b.
- the thickness of the first intermediate layer 125a may be 1.0 nm to 10.0 nm
- the thickness of the second intermediate layer 125b may be 0.5 nm to 2.0 nm.
- the thickness ratio (first intermediate layer: second intermediate layer) of the first intermediate layer 125a and the second intermediate layer 125b may be 2: 1 to 6: 1.
- the thickness ratio is greater than 2: 1, the thickness of the first intermediate layer capable of sufficiently absorbing the laser may be secured.
- the thickness ratio is smaller than 6: 1, the thickness of the second intermediate layer may be secured to control the aluminum composition of the entire intermediate layer.
- the thickness ratio is less than 2: 1, the first intermediate layer 125a becomes thinner and thus it is difficult to absorb the laser sufficiently. If the thickness ratio is greater than 6: 1, the second intermediate layer 125b becomes too thin to reduce the aluminum composition of the entire intermediate layer. there is a problem.
- the overall thickness of the interlayer 125 may be larger than 50 nm and smaller than 1000 nm. If this range is satisfied, crystallinity can be maintained while absorbing the laser sufficiently. When the thickness is smaller than 50 nm, the thickness of the first intermediate layer 125a becomes thin, and thus it is difficult to sufficiently absorb the 246 nm laser. When the thickness is larger than 1000 nm, there is a problem that the aluminum composition of the intermediate layer is lowered and the crystallinity is deteriorated.
- the second conductive semiconductor layer 127 is formed on the active layer 126, and may be implemented as a compound semiconductor such as a group III-V group or a group II-VI.
- the second conductive semiconductor layer 127 may be a second semiconductor layer 127.
- Dopants may be doped.
- the second conductive semiconductor layer 127 is a semiconductor material having a composition formula of Inx5Aly2Ga1-x5-y2N (0 ⁇ x5 ⁇ 1, 0 ⁇ y2 ⁇ 1, 0 ⁇ x5 + y2 ⁇ 1) or AlInN, AlGaAs, GaP, GaAs It may be formed of a material selected from GaAsP, AlGaInP.
- the second dopant is a p-type dopant such as Mg, Zn, Ca, Sr, or Ba
- the second conductive semiconductor layer 127 doped with the second dopant may be a p-type semiconductor layer.
- the second conductive semiconductor layer 127 is AlGaN
- hole injection may not be smooth due to low electrical conductivity.
- GaN having a relatively high electrical conductivity and the same polarity as that of the second conductive semiconductor layer 126 may be disposed on the bottom surface of the second conductive semiconductor layer 127.
- the present invention is not limited thereto, and the aluminum composition of the second conductive semiconductor layer 127 may be reduced to 1% to 10% to form ohmic with the second electrode.
- FIG. 2 is a conceptual diagram of a light emitting structure according to another embodiment of the present invention.
- the light emitting structure 120B includes the first conductive semiconductor layers 124a and 124b, the second conductive semiconductor layer 127, the first conductive semiconductor layers 124a and 124b, and the second conductive semiconductor layer. And an intermediate layer 125 disposed inside the first conductive semiconductor layers 124a and 124b.
- the first conductive semiconductor layers 124a and 124b include the first-first conductive semiconductor layer 124a and the first-second conductive semiconductor layer 124b, and the intermediate layer 125 includes the first-first conductive semiconductor layer.
- the semiconductor layer 124a may be disposed between the first and second conductive semiconductor layers 124b.
- the 1-2 conductive semiconductor layer 124b may be disposed closer to the active layer 126 than the 1-1 conductive semiconductor layer 124a.
- the aluminum composition of the 1-2 conductive semiconductor layer 124b may be lower than that of the 1-1 conductive semiconductor layer 124a.
- the aluminum composition of the first conductive semiconductor layer 124b may be 40% to 70%, and the aluminum composition of the first conductive semiconductor layer 124a may be 50% to 80%.
- the thickness of the 1-2 conductive semiconductor layer 124b may be thinner than the thickness of the 1-1 conductive semiconductor layer 124a.
- the first-first conductive semiconductor layer 124a may be 130% or more of the thickness of the first-second conductive semiconductor layer 124b. According to such a configuration, since the intermediate layer 125 is formed after the first-first conductive semiconductor layer 124a having a high aluminum composition is sufficiently grown, the crystallinity of the entire light emitting structure 120 may be improved.
- the configuration (aluminum composition, thickness, etc.) of the intermediate layer 125 may be applied as it is described in FIG. If necessary, the intermediate layer 125 may be doped with a first dopant.
- FIG. 3 is a conceptual diagram of a semiconductor device according to an embodiment of the present invention
- FIG. 4 is a conceptual diagram of a semiconductor device according to another embodiment of the present invention.
- the structure described with reference to FIG. 1 may be applied to the light emitting structure 120A.
- the recess 128 may pass through the second conductive semiconductor layer 127 and the active layer 126 to a part of the intermediate layer 125.
- the first electrode 142 may be in contact with the intermediate layer 125 to be electrically connected to the first conductive semiconductor layer 124. Since the intermediate layer 125 has a lower composition of aluminum than the first conductive semiconductor layer 124, the intermediate layer 125 may be advantageous in current distribution. However, the present invention is not limited thereto, and the recess 128 may pass through the intermediate layer 125 and may be disposed in a portion of the first conductive semiconductor layer 124.
- the intermediate layer 125 may be doped with n dopants. Accordingly, the intermediate layer 125 may be defined as a first to third conductive semiconductor layer having a low composition of aluminum in the first conductive semiconductor layer 124.
- the first conductive layer 165 includes a connection electrode 167 disposed in the recess 128 and electrically connected to the first conductive semiconductor layer 124.
- the first electrode 142 may be disposed between the connection electrode 167 and the first conductive semiconductor layer 124.
- the first electrode 142 may be an ohmic electrode.
- the distance from the top surface of the first recess 128 to the top surface of the light emitting structure may be disposed to be 1um to 4um. If the upper surface of the light emitting structure and the upper surface of the recess 128 is less than 1um, the reliability of the light emitting device may be lowered. If the upper surface of the light emitting structure is greater than 4um, light extraction efficiency may be lowered due to crystal defects disposed in the light emitting structure.
- the second conductive layer 150 may be disposed on the lower surface of the second conductive semiconductor layer 127 and electrically connected to the second conductive layer 150.
- the second conductive layer 150 may be disposed in an area between the plurality of connection electrodes 167. One region of the second conductive layer 150 may be exposed to be electrically connected to the electrode pad.
- a second electrode (omic electrode) may be disposed between the second conductive layer 150 and the second conductive semiconductor layer 127.
- the first conductive layer 165 and the second conductive layer 150 may be formed of a transparent conductive oxide (TCO).
- Transparent conductive oxide films include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), AZO (Aluminum Zinc Oxide), AGZO (Aluminum Gallium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), IAZO (Indium Aluminum Zinc Oxide), IGZO (Indium Gallium Zinc Oxide), IGTO (Indium Gallium Tin Oxide), ATO (Antimony Tin Oxide), GZO (Gallium Zinc Oxide), IZON (IZO Nitride), ZnO, IrOx, RuOx and NiO.
- the first conductive layer 165 and the second conductive layer 150 may include an opaque metal such as Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, or the like.
- the first conductive layer 165 may be formed of one or a plurality of layers in which a transparent conductive oxide film and an opaque metal are mixed, but are not limited thereto.
- the insulating layer 130 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4 , SixNy, SiOxNy, Al 2 O 3 , TiO 2 , AlN, and the like, but is not limited thereto.
- the insulating layer 130 may electrically insulate the connection electrode 167 from the active layer 126 and the second conductive semiconductor layer 127.
- FIG. 4 is a conceptual diagram of a semiconductor device according to another embodiment of the present invention.
- the first conductive semiconductor layer 124 includes the first-first conductive semiconductor layer 124a and the first-second conductive semiconductor layer 124b, and the intermediate layer 125 is formed of the first conductive semiconductor layer 124a.
- the semiconductor device may be disposed between the 1-1 conductive semiconductor layer 124a and the 1-2 conductive semiconductor layer 124b.
- the recess 128 may pass through the second conductive semiconductor layer 127, the active layer 126, and the 1-2 conductive semiconductor layer 124b to be disposed to a part of the intermediate layer 125. Since the intermediate layer 125 has a lower composition of aluminum than the first conductive semiconductor layer 124, the intermediate layer 125 is advantageous for current dispersion.
- the present invention is not limited thereto, and the recess 128 may be disposed in a portion of the first-second conductive semiconductor layer 124b.
- the 1-2 conductive semiconductor layer 124b is disposed closer to the active layer 126 than the 1-1 conductive semiconductor layer 124a, and the aluminum composition of the 1-2 conductive semiconductor layer 124b The thickness may be smaller than the aluminum composition and the thickness of the first-first conductive semiconductor layer 124a.
- the thickness of the second intermediate layer 125b may be larger than 500 nm and smaller than 1000 nm.
- the thickness of the first intermediate layer 125a may be 600 nm to 1500 nm.
- the thickness of the first intermediate layer 125a may vary depending on the depth of the uneven pattern.
- the light emitting structure 120 may include a plurality of recesses 128 disposed through the second conductive semiconductor layer 127 and the active layer 126 to a part of the first-second conductive semiconductor layer 124b. Can be.
- the first conductive layer 165 is disposed in the plurality of recesses 128 and electrically connected to the 1-2 conductive semiconductor layer 124b, and the 1-2 conductive semiconductor layer. It may include a first electrode 142 disposed between the (124b) and the connection electrode 167. Since the 1-2 conductive semiconductor layer 124b has a relatively low aluminum content, it may be advantageous for current injection and dispersion. However, the present invention is not limited thereto, and the first-first conductive semiconductor layer 124a and the first-second conductive semiconductor layer 124b may have the same aluminum composition, and the recess 128 may include the first-first conductive semiconductor layer 124a. A portion of the conductive semiconductor layer 124a may be formed.
- FIG. 5A is a conceptual diagram of a semiconductor device according to still another embodiment of the present invention, and FIG. 5B is a modification of FIG. 5A.
- the light emitting structure 120 of FIG. 5A may have the same configuration as the light emitting structure 120 described with reference to FIG. 1.
- the recess 128 may pass through the second conductive semiconductor layer 127 and the active layer 126 to be disposed to a part of the intermediate layer 125.
- the present invention is not limited thereto, and the recess 128 may pass through the intermediate layer 125 and may be disposed in a portion of the first conductive semiconductor layer 124.
- the recess 128 penetrates through the second conductive semiconductor layer 127, the active layer 126, and the first-second conductive semiconductor layer 124b to a part of the intermediate layer 125. Can be.
- the intermediate layer 125 has a lower composition of aluminum than the first conductive semiconductor layer 124, the intermediate layer 125 is advantageous for current dispersion.
- the intermediate layer 125 may be doped with n dopants.
- the present invention is not limited thereto, and the recess 128 may be disposed in a portion of the first-second conductive semiconductor layer 124b.
- the first electrode 142 may be disposed on the top surface of the recess 128 to be electrically connected to the first conductive semiconductor layer 124.
- the second electrode 246 may be formed under the second conductive semiconductor layer 127.
- the first electrode 142 and the second electrode 246 may be ohmic electrodes.
- the first electrode 142 and the second electrode 246 are indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZAZO), and indium gallium zinc oxide (IGZO).
- IGTO Indium gallium tin oxide
- AZO aluminum zinc oxide
- ATO antimony tin oxide
- GZO gallium zinc oxide
- IZO IZO Nitride
- AGZO Al-Ga ZnO
- IGZO In-Ga ZnO
- ZnO IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au, or Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, At least one of Ru, Mg, Zn, Pt, Au, and Hf may be formed, but is not limited thereto.
- the second electrode pad 166 may be disposed in one corner region of the semiconductor device.
- the second electrode pad 166 may have a recessed portion and a convex portion at an upper surface thereof because the center portion thereof is recessed. Wires (not shown) may be bonded to the recesses of the upper surface. Therefore, the adhesive area is widened, and the second electrode pad 166 and the wire may be more firmly bonded.
- the second electrode pad 166 may function to reflect light, the closer the light emitting structure 120 is to the second electrode pad 166, the light extraction efficiency may be improved.
- the height of the convex portion of the second electrode pad 166 may be higher than that of the active layer 126. Accordingly, the second electrode pad 166 may reflect light emitted in the horizontal direction of the device from the active layer 126 to the top to improve light extraction efficiency and to control the direction angle.
- the first insulating layer 131 may be partially opened under the second electrode pad 166 to electrically connect the second conductive layer 150 and the second electrode 246.
- the passivation layer 180 may be formed on the top and side surfaces of the light emitting structure 120. The passivation layer 180 may contact the first insulating layer 131 in a region adjacent to the second electrode 246 or under the second electrode 246.
- the width d22 of a portion where the first insulating layer 131 is opened so that the second electrode 246 contacts the second conductive layer 150 may be, for example, 40 ⁇ m to 90 ⁇ m. If the thickness is smaller than 40 ⁇ m, the operating voltage may be increased. If the thickness is larger than 90 ⁇ m, it may be difficult to secure a process margin for not exposing the second conductive layer 150 to the outside. When the second conductive layer 150 is exposed to the outer region of the second electrode 246, the reliability of the device may be degraded. Accordingly, the width d22 may be 60% to 95% of the total width of the second electrode pad 166.
- the first insulating layer 131 may electrically insulate the first electrode 142 from the active layer 126 and the second conductive semiconductor layer 127. In addition, the first insulating layer 131 may electrically insulate the second electrode 246 and the second conductive layer 150 from the first conductive layer 165.
- the first insulating layer 131 may be formed by selecting at least one selected from the group consisting of SiO 2 , SixOy, Si 3 N 4, SixNy, SiO x Ny, Al 2 O 3 , TiO 2 , AlN, and the like, but is not limited thereto.
- the first insulating layer 131 may be formed in a single layer or multiple layers.
- the first insulating layer 131 may be a distributed Bragg reflector (DBR) having a multilayer structure including silver Si oxide or a Ti compound.
- DBR distributed Bragg reflector
- the present invention is not limited thereto, and the first insulating layer 131 may include various reflective structures.
- light extraction efficiency may be improved by reflecting light emitted from the active layer 126 toward the side upward.
- light extraction efficiency may be more effective.
- the second conductive layer 150 may cover the second electrode 246. Accordingly, the second electrode pad 166, the second conductive layer 150, and the second electrode 246 may form one electrical channel.
- the second conductive layer 150 completely surrounds the second electrode 246 and may be in contact with the side surface and the top surface of the first insulating layer 131.
- the second conductive layer 150 is made of a material having good adhesion to the first insulating layer 131, and at least one material selected from the group consisting of materials such as Cr, Al, Ti, Ni, Au, and the like. It may be made of an alloy, it may be made of a single layer or a plurality of layers.
- the thermal and electrical reliability of the second electrode 246 may be improved.
- it may have a reflection function to reflect the light emitted between the first insulating layer 131 and the second electrode 246 to the top.
- the second conductive layer 150 may also be disposed between the first insulating layer 131 and the second electrode 246 at a second separation distance, which is a region where the second conductive semiconductor layer is exposed.
- the second conductive layer 150 may contact the side and top surfaces of the second electrode 246 and the side and top surfaces of the first insulating layer 131 at the second separation distance.
- a region in which the Schottky junction is formed by contacting the second conductive layer 150 and the second conductive semiconductor layer 127 within the second separation distance may be disposed, and current is easily distributed by forming the Schottky junction. Can be done.
- the second insulating layer 132 electrically insulates the second electrode 246 and the second conductive layer 150 from the first conductive layer 165.
- the first conductive layer 165 may be electrically connected to the first electrode 142 through the second insulating layer 132.
- the first conductive layer 165 and the bonding layer 160 may be disposed along the shape of the bottom surface and the recess 128 of the light emitting structure 120.
- the first conductive layer 165 may be made of a material having excellent reflectance.
- the first conductive layer 165 may include aluminum.
- the light emitting efficiency may be improved by reflecting light emitted from the active layer 126 upward.
- the bonding layer 160 may comprise a conductive material.
- the bonding layer 160 may include a material selected from the group consisting of gold, tin, indium, aluminum, silicon, silver, nickel, and copper, or an alloy thereof.
- the substrate 170 may be made of a conductive material.
- the substrate 170 may include a metal or a semiconductor material.
- the substrate 170 may be a metal having excellent electrical conductivity and / or thermal conductivity. In this case, heat generated during the operation of the semiconductor device may be quickly released to the outside.
- the substrate 170 may include a material selected from the group consisting of silicon, molybdenum, silicon, tungsten, copper, and aluminum, or an alloy thereof.
- Unevenness may be formed on an upper surface of the light emitting structure 120. Such unevenness may improve extraction efficiency of light emitted from the light emitting structure 120.
- the unevenness may have a different average height according to the ultraviolet wavelength, and in the case of UV-C, the light extraction efficiency may be improved when the UV-C has a height of about 300 nm to 800 nm and an average of about 500 nm to 600 nm.
- 6A and 6B are plan views of semiconductor devices according to some embodiments of the inventive concept.
- the current spreading property may be lowered in the light emitting structure 120.
- the amount of light emitted to the side of the active layer 126 is increased compared to the GaN-based blue light emitting device (TM mode).
- TM mode may occur in an ultraviolet semiconductor device.
- the GaN semiconductor emitting the wavelength band of the ultraviolet region may form the first electrode 142 by forming a larger number of recesses 128 than the GaN semiconductor emitting blue for current diffusion. .
- the effective light emitting area P2 may be defined as an area up to a boundary point having a current density of 40% or less based on the current density at a nearby point of the first electrode 142 having the highest current density.
- the effective light emitting region P2 may be adjusted according to the level of the injection current and the Al composition in a region within 40 ⁇ m from the center of the recess 128.
- the low current density region P3 between the adjacent first electrodes 142 has a low current density and hardly contributes to light emission. Therefore, in the embodiment, the first electrode 142 may be further disposed in the low current density region P3 having a low current density, thereby improving light output.
- the GaN semiconductor layer since the current dispersion characteristics are relatively excellent, it is preferable to minimize the area of the recess 128 and the first electrode 142. This is because the area of the active layer 126 decreases as the area of the recess 128 and the first electrode 142 increases.
- the Al composition is high and the current spreading characteristic is relatively decreased, it is desirable to reduce the low current density region P3 by increasing the number of the first electrodes 142 even at the expense of the area of the active layer 126. Can be.
- the recesses 128 when the number of the recesses 128 is 48, the recesses 128 may not be disposed in a straight line in the horizontal and vertical directions but may be arranged in a zigzag manner. In this case, the area of the low current density region P3 is further narrowed so that most active layers can participate in light emission.
- the number of the recesses 128 is 70 to 110, the current may be more efficiently distributed, thereby lowering the operating voltage and improving the light output.
- the semiconductor device emitting UV-C when the number of the recesses 128 is less than 70, the electrical and optical properties may be degraded.
- the number of the recesses 128 is more than 110, the electrical and optical properties may be improved, but the volume of the light emitting layer is reduced, thereby the optical characteristics. This can be degraded.
- the first area where the plurality of first electrodes 142 contact the first conductive semiconductor layer 122 is not less than 7.4% and not more than 20%, or not less than 10% and not more than 20% of the horizontal maximum cross-sectional area of the light emitting structure 120. Can be.
- the first area may be the sum of the areas where each of the first electrodes 142 contacts the first conductive semiconductor layer 122.
- the first area of the plurality of first electrodes 142 is less than 7.4%, the light output may not be sufficient due to insufficient current spreading characteristics. If the first area of the plurality of first electrodes 142 is greater than 20%, the areas of the active layer and the second electrode may be excessively reduced. Therefore, there is a problem that the operating voltage rises and the light output decreases.
- the total area of the plurality of recesses 128 may be 13% or more and 30% or less of the horizontal maximum cross-sectional area of the light emitting structure 120. If the total area of the recess 128 does not satisfy the above condition, it is difficult to control the total area of the first electrode 142 to 7.4% or more and 20% or less. In addition, there is a problem that the operating voltage rises and the light output decreases.
- the second area where the second electrode 246 contacts the second conductive semiconductor layer 126 may be 35% or more and 70% or less of the horizontal maximum cross-sectional area of the light emitting structure 120.
- the second area may be a total area where the second electrode 246 contacts the second conductive semiconductor layer 126.
- the second area is less than 35%, the area of the second electrode may be excessively small, resulting in an increase in operating voltage and inferior injection efficiency. If the second area exceeds 70%, there is a problem that the first area cannot be effectively expanded, so that the electron injection efficiency is lowered.
- the first area and the second area have an inverse relationship. That is, when the number of recesses is increased to increase the number of first electrodes, the area of the second electrode is reduced. In order to increase the light output, the dispersion characteristics of electrons and holes must be balanced. Therefore, it is important to determine an appropriate ratio between the first area and the second area.
- the ratio (first area: second area) of the first area where the plurality of first electrodes contact the first conductive semiconductor layer and the second area where the second electrode contacts the second conductive semiconductor layer is 1: 3. To 1:10.
- the area ratio When the area ratio is larger than 1:10, the first area may be relatively small, which may deteriorate the current dispersion characteristic. In addition, when the area ratio is smaller than 1: 3, there is a problem that the second area is relatively small.
- FIG. 7 is a conceptual view showing a light absorbing layer and a light emitting structure having an intermediate layer
- FIG. 8 is a cross-sectional photograph of a light absorbing layer having a bulk structure
- FIG. 9 is a cross-sectional photograph of a light absorbing layer having a superlattice structure
- FIG. 11 is a view for explaining a separation process
- FIG. 11 is a view for explaining a process of etching a light emitting structure
- FIG. 12 is a view showing a manufactured semiconductor device.
- a buffer layer 122, a light absorption layer 123, a 1-1 conductive semiconductor layer 124a, an intermediate layer 125, and a 1-2 conductive semiconductor layer may be formed on the growth substrate 121. 124b), the active layer 126, and the second conductive semiconductor layer 127 may be sequentially formed.
- the light absorption layer 123 includes a first light absorption layer 123a having a low aluminum composition and a second light absorption layer 123b having a high aluminum composition.
- a plurality of first light absorbing layers 123a and second light absorbing layers 123b may be alternately disposed.
- the aluminum composition of the first light absorption layer 123a may be lower than that of the first conductive semiconductor layer 124.
- the first light absorption layer 123a may serve to absorb and separate the laser during the LLO process. Thus, the growth substrate can be removed.
- the thickness of the first light absorption layer 123a and the aluminum composition may be appropriately adjusted to absorb a laser having a wavelength of 246 nm.
- the aluminum composition of the first light absorption layer 123a may be 20% to 50%, and the thickness may be 1 nm to 10 nm.
- the first light absorption layer 123a may be AlGaN, but is not limited thereto.
- the present invention is not necessarily limited thereto, and the aluminum composition and thickness may be appropriately adjusted to absorb the laser to be used.
- the aluminum composition of the second light absorption layer 123b may be higher than that of the first conductive semiconductor layer 124.
- the second light absorption layer 123b may improve the crystallinity of the first conductive semiconductor layer 124 grown on the light absorption layer 123 by increasing the aluminum composition lowered by the first light absorption layer 123a.
- the aluminum composition of the second light absorption layer 123b may be 60% to 100%, and the thickness may be 0.1 nm to 2.0 nm.
- the second light absorption layer 123b may be AlGaN or AlN.
- the thickness of the first light absorption layer 123a may be thicker than the thickness of the second light absorption layer 123b.
- the thickness of the first light absorbing layer 123a may be 1 nm to 10 nm, and the thickness of the second light absorbing layer 123b may be 0.5 nm to 2.0 nm.
- the thickness ratio of the first light absorbing layer 123a and the second light absorbing layer 123b may be 2: 1 to 6: 1.
- the thickness ratio is smaller than 2: 1, the first light absorption layer 123a is thinner, so that it is difficult to absorb the laser sufficiently.
- the thickness ratio is larger than 6: 1, the second light absorption layer 123b is too thin, so that the total aluminum composition of the light absorption layer is low. There is a problem.
- the overall thickness of the light absorption layer 123 may be larger than 100 nm and smaller than 400 nm. If the thickness is less than 100 nm, the thickness of the first light absorption layer 123a becomes thin, and thus, it is difficult to sufficiently absorb the 246 nm laser. If the thickness is larger than 400 nm, the aluminum composition is lowered as a whole, thereby deteriorating crystallinity.
- the light absorption layer 123 having a superlattice structure may be formed to improve crystallinity.
- the light absorption layer 123 may function as a buffer layer to mitigate lattice mismatch between the growth substrate 121 and the light emitting structure 120.
- crystal defects black dots
- FIG. 9 it can be seen that crystal defects (black dots) transferred to the surface of the light absorption layer 123 of FIG. 9 are relatively reduced, so that crystallinity is better.
- the intermediate layer 125 may be disposed between the first conductive semiconductor layer 124 and the active layer 126 or inside the first conductive semiconductor layer 124.
- the intermediate layer 125 includes a first intermediate layer 125a having a lower aluminum composition than the first conductive semiconductor layer 124 and a second intermediate layer 125b having a higher aluminum composition than the first conductive semiconductor layer 124.
- the aluminum composition of the first intermediate layer 125a may be lower than that of the first conductive semiconductor layer 124.
- the first intermediate layer 125a may serve to prevent damage to the active layer 126 by absorbing a laser beam irradiated onto the semiconductor layer disposed on the light absorbing layer 123 through the light absorbing layer 123 during the LLO process. Can be. Thus, light output and electrical characteristics can be improved.
- all of the structures described with reference to FIG. 2 may be applied.
- the growth substrate 121 may be separated by irradiating the laser L1 from the growth substrate 121.
- the laser L1 may have a wavelength band that the first light absorption layer 123a can absorb.
- the laser may be a KrF laser having a wavelength range of 248 nm, but is not limited thereto.
- the growth substrate 121 and the second light absorption layer 123b do not absorb the laser L1 due to the large energy band gap.
- the first light absorption layer 123a having a low aluminum composition may be decomposed by absorbing the laser L1. Therefore, it may be separated together with the growth substrate 121.
- the intermediate layer 125 may be disposed between the first conductive semiconductor layer 124 and the active layer 126 to absorb the laser beam transmitted through the light absorbing layer 123.
- the intermediate layer 125 may not be separated even when absorbing the laser.
- the thickness of the light absorbing layer 123 or the output of the laser may be adjusted so that the intermediate layer 125 does not separate by absorbing the laser.
- the light absorption layer 123-2 remaining in the first conductive semiconductor layer 124a may be removed by leveling.
- a recess penetrating to a part of the first conductive semiconductor layer 124 of the light emitting structure 120 ( A plurality of 128) can be formed.
- the insulating layer 130 may be formed on the side surface of the recess 128 and the second conductive semiconductor layer 127.
- the first electrode 142 may be formed in the first conductive semiconductor layer 124b exposed by the recess 128.
- the first conductive layer 165 may be formed under the insulating layer 130.
- the first conductive layer 165 may be electrically insulated from the second conductive layer 150 by the insulating layer 130.
- the conductive substrate 170 may be formed below the first conductive layer 165, and the second electrode pad 166 may be formed on the second conductive layer 150 exposed by mesa etching.
- the semiconductor device package is disposed on the body 2 having the groove 2a, the semiconductor device 1 disposed on the body 2, and the body 2 to be electrically connected to the semiconductor device 1. It may include a pair of lead frames (3, 4) to be connected.
- the body 2 may include a material or a coating layer that reflects ultraviolet light.
- the mold member 5 covering the semiconductor device 1 may include a material that transmits ultraviolet light.
- FIG. 14 is a cross-sectional view illustrating a semiconductor device according to an embodiment
- FIG. 15 is a cross-sectional view of a semiconductor device illustrating region A of FIG. 1
- FIG. 16 is a 2-2 conductive semiconductor layer and a 2-3 conductive semiconductor.
- Dopant concentration of the layer was analyzed by Secondary-ion Mass Spectroscopy (SIMS), and FIGS. 17 and 18 are graphs comparing RSM DATA of Comparative Examples and Examples.
- SIMS. 17 and 18 are graphs comparing RSM DATA of Comparative Examples and Examples.
- the semiconductor device of the embodiment may improve crystallinity by improving semiconductor layer dislocations.
- the semiconductor device of the embodiment can improve the luminous efficiency by improving the potential due to the lattice constant difference between the semiconductor layers to maintain a uniform dopant concentration as a whole.
- the semiconductor device of the embodiment may include a light emitting structure 210 to improve the potential.
- the embodiment will be described as an example of the ultraviolet light emitting device 200 having a wavelength range of 200nm to 400nm.
- the light emitting device 200 may include a substrate 201, a light emitting structure 210, and first and second electrodes 251 and 253.
- the light emitting structure 210 includes an AlN template 211, a first conductivity type semiconductor layer 212, an active layer 214, an electron blocking layer 230, and a 2-1 conductivity type on a substrate 201.
- the semiconductor layer 216a, the second-second conductive semiconductor layer 218a, and the second-three conductive semiconductor layer 218b may be included.
- the 2-1 conductive semiconductor layer is the second conductive first semiconductor layer
- the 2-2 conductive semiconductor layer is the second conductive second semiconductor layer
- the 2-3 conductive semiconductor layer is the second semiconductor layer. It may be referred to as a second conductive third semiconductor layer.
- the substrate 201 may be formed of a material having excellent thermal conductivity, and may be a conductive substrate or an insulating substrate.
- the substrate 201 may include sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga 2 0 3 At least one of may be used.
- An uneven structure may be formed on the substrate 201, but is not limited thereto.
- the AlN template 211 may be formed on the substrate 201.
- the AlN template 211 may include a buffer function.
- the AlN template 211 may mitigate lattice mismatch between the material of the light emitting structure 210 and the substrate 201 formed on the AlN template 211, and the AlN template 211 may be a group III-5 group other than AlN.
- the group 2-6 compound semiconductor may be formed of at least one of GaN, InN, InGaN, AlGaN, InAlGaN, and AlInN.
- the first conductivity type semiconductor layer 212 may be implemented as at least one of a semiconductor compound, for example, a compound semiconductor of Groups 3-5 or 2-6.
- the first conductivity type semiconductor layer 212 may be formed in a single layer or multiple layers.
- the first conductive semiconductor layer 212 may be doped with a first conductive dopant.
- the first conductive semiconductor layer 212 when it is an n-type semiconductor layer, it may include an n-type dopant.
- the n-type dopant may include Si, Ge, Sn, Se, Te, but is not limited thereto.
- the first conductive semiconductor layer 212 of the embodiment may include a semiconductor material having a composition formula of Al x Ga 1 - x N (0 ⁇ x ⁇ 1), but is not limited thereto.
- the first conductive semiconductor layer 212 may be formed of any one or more of AlGaP, InGaP, AlInGaP, InP, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, and GaP.
- the active layer 214 may be disposed on the first conductivity type semiconductor layer 212.
- the active layer 214 may be formed of at least one of a single quantum well structure, a multi quantum well structure (MQW), a quantum-wire structure, or a quantum dot structure.
- MQW multi quantum well structure
- quantum-wire structure a quantum-wire structure
- quantum dot structure a quantum dot structure.
- the active layer 214 may be composed of a compound semiconductor.
- the active layer 214 may be implemented as at least one of compound semiconductors such as Groups 3-5 or 2-6, for example.
- the active layer 214 may include a quantum well and a quantum wall. When the active layer 214 is implemented in a multi-quantum well structure, quantum wells and quantum walls may be alternately disposed.
- the quantum well and the quantum wall may be formed of one or more pair structures of AlGaN / GaN, AlGaN / AlGaN, InGaN / GaN, InGaN / InGaN, InAlGaN / GaN, GaAs / AlGaAs, InGaAs / AlGaAs, GaP / AlGaP, InGaP AlGaP.
- the present invention is not limited thereto.
- EBL 230 may be disposed on active layer 214.
- the embodiment of the EBL 230 may have a single layer or a multilayer structure.
- the EBL 230 may be implemented with at least one of Group 3-Group 5 or Group 2-6 compound semiconductors, but is not limited thereto.
- the EBL 230 may be doped with a second conductivity type dopant.
- the second conductivity type dopant may include Mg, Zn, Ca, Sr, Ba, or the like as the p-type dopant.
- the second conductive semiconductor layers 216, 218a, and 218b may include the 2-1 conductive semiconductor layer 216, the 2-1 conductive semiconductor layer 218a, and the 2-1 conductive semiconductor layer 218b. It may include.
- the 2-1 conductivity type semiconductor layer 216 may be disposed on the EBL 230.
- the 2-1 conductive semiconductor layer 216 may be implemented as a compound semiconductor, such as Group 3-Group 5 or Group 2-6.
- the 2-1 conductive semiconductor layer 216 may be formed of any one or more of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP. have.
- the 2-1 conductive semiconductor layer 216 of the embodiment may include an AlGaN-based semiconductor material.
- the second conductivity type semiconductor layer 216 may be doped with a second conductivity type dopant.
- the second conductivity type dopant may include Mg, Zn, Ca, Sr, Ba, or the like as a p type dopant.
- the 2-2 conductivity type semiconductor layer 218a may be disposed on the 2-1 conductivity type semiconductor layer 216.
- the 2-2 conductivity type semiconductor layer 218a may include a function of bending the potential D from the 2-1 conductivity type semiconductor layer 216.
- the second-second conductive semiconductor layer 218a may be grown in three dimensions.
- the second-second conductive semiconductor layer 218a may have a buffer function of the second-third conductive semiconductor layer 218b grown thereafter.
- the 2-2 conductivity type semiconductor layer 218a improves the defect by bending the potential D from the 2-1 conductivity type semiconductor layer 216 to thereby form a second conductivity from the EBL 230 to the active layer 214. Back diffusion of the type dopant can be improved.
- the second conductivity type dopant Mg of the 2-1 conductivity type semiconductor layer 216 may be constantly doped. That is, the embodiment may implement stable doping of the 2-1 conductivity type semiconductor layer 216.
- the bending of the potential D is performed by the straight line connecting the start point DS and the end point DT of the potential D from the 2-1 conductivity type semiconductor layer 216 and the 2-1 conductivity type semiconductor layer ( An angle ⁇ formed by the upper surface of the 216 may be 45 ° or less.
- the angle ⁇ formed between the straight line and the top surface of the second conductive semiconductor layer 218a is greater than 45 ⁇ , the second conductive semiconductor layer 218a is formed from the second conductive semiconductor layer 218a.
- Dislocation D may propagate to 218b.
- the second-second conductive semiconductor layer 218a may be GaN including the second conductive dopant, but is not limited thereto.
- the 2-2 conductivity type semiconductor layer 218a may bend the potential D from the 2-1 conductivity type semiconductor layer 216 to 3D growth. That is, the 2-2 conductivity type semiconductor layer 218a bends the potential D from the 2-1 conductivity type semiconductor layer 216 in the A-plane direction from the C-plane direction to thereby form the 2-3-3 conductivity.
- the propagation of the potential D to the type semiconductor layer 218b can be improved, and the threading dislocation density (TDD) can be reduced at the interface with the 2-3 conductive semiconductor layer 218b.
- TDD threading dislocation density
- the x-axis is inversely proportional to the A-plane lattice constant difference (2 / A-plane lattice constant difference), and the Y-axis is inversely proportional to the C-plane lattice constant difference (2 / C-plane lattice constant difference).
- the embodiment has a horizontal mismatch between the 2-1 conductivity type semiconductor layer 216 of AlGaN and the 2-2 conductivity type semiconductor layer 218a of 3D mode P-GaN in the x-axis direction than the comparative example. Can be reduced by more than%
- the horizontal mismatch is a strain dispersion variable indicating the degree of strain maintained during growth of the 2-1 conductive semiconductor layer 216 and the 2-2 conductive semiconductor layer 218a of 3D mode P-GaN. , Dislocation D and defects can be improved.
- the strain may be defined as the change in the x-axis is smaller, and the change in strain may be defined as the strain is maintained or the strain is not solved.
- the maintenance of strain may result in a small difference in the A-plane lattice constant between the 2-1 conductive semiconductor layer 216 of AlGaN and the 2-2 conductive semiconductor layer 218a of 3D mode P-GaN. have.
- the thickness of the second-2 conductivity type semiconductor layer 218a may be 10 nm to 50 nm.
- the thickness of the second-2 conductivity-type semiconductor layer 218a is less than 10 nm, bending of the potential D from the second-first conductivity-type semiconductor layer 216 is difficult, and the potential D is the second-3 conductivity. It may propagate to the type semiconductor layer 218b.
- the V-pits or the cracks may occur in the potential D propagated to the 2-3 conductive semiconductor layer 218b. V fits or cracks can cause leakage currents.
- the thickness of the second conductive semiconductor layer 218a is greater than 50 nm, a defect may occur from inside the second conductive semiconductor layer 218a which is 3D grown in an island shape.
- a root mean square (RMS) between the second-conductive semiconductor layer 218a and the second-conductive semiconductor layer 218b may be 1.0 nm or more, for example, 1.0 nm to 5.0 nm.
- Embodiment 2-2 conductive semiconductor layer 218a is 3D-grown in an island shape to form a roughness at the interface between the second-conductive semiconductor layer 218a and the second-conductive semiconductor layer 218b of 1.0 nm or more. (RMS).
- the doping concentration of the 2-2 conductivity type semiconductor layer 218a may correspond to the 2-1 conductivity type semiconductor layer 216 and the EBL 230.
- the doping concentration of the second-conductive semiconductor layer 218a may be 1E19 to 5E19.
- the second-conductive semiconductor layer 218a may have a lower doping concentration than the second-conductive semiconductor layer 218b.
- the doping concentration of the 2-3 conductive semiconductor layer 218b may be higher than that of the 2-2 conductive semiconductor layer 218a, the 2-1 conductive semiconductor layer 216, and the EBL 230.
- the doping concentration of the 2-3 conductive semiconductor layer 218b may be 5E19 to 1E20.
- the second conductive semiconductor layer 218b includes a second doping concentration higher than that of the second conductive semiconductor layer 218a, the second conductive semiconductor layer 216, and the EBL 230. Ohmic contact with the electrode 253 may be implemented.
- the 2-3 conductive semiconductor layer 218b may be disposed on the 2-2 conductive semiconductor layer 218a.
- the 2-3 conductive semiconductor layer 218b may be GaN including a second conductive dopant for ohmic the 2-1 conductive semiconductor layer 216 and the second electrode 253, but is not limited thereto. no.
- the surface of the second-conductive semiconductor layer 218b that is in direct contact with the second electrode 253 may be flat.
- the 2-3 conductive semiconductor layer 218b may be formed by a 3D mode growth method.
- 19 is a view showing the surface of the second conductive semiconductor layer 218b of the embodiment.
- the second conductive semiconductor layer 218b of the embodiment may have a thickness of about 100 nm to about 300 nm.
- the thickness of the 2-3 conductive semiconductor layer 218b is less than 100 nm, ohmic contact with the second electrode 253 may be difficult, and the thickness of the 2-3 conductive semiconductor layer 218b is greater than 300 nm. In this case, new defects may occur in the 2-3 conductive semiconductor layer 218b.
- the second conductive semiconductor layer 218b may have a surface roughness RMS of 1 nm or less, for example, 0.1 nm to 1.0 nm.
- the second-second conductive semiconductor layer 216b of the embodiment may include a surface roughness RMS of 1 nm or less, thereby improving contact reliability with the second electrode 253 formed thereafter.
- the above-described configurations of the 2-1 to 2-3 conductive semiconductor layers may be applied to the embodiments of FIGS. 1 and 2 as they are.
- the first conductive semiconductor layer 212 may be an n-type semiconductor layer, a 2-1 conductive semiconductor layer 216, a 2-2 conductive semiconductor layer 218a, and a 2-3 conductive semiconductor layer ( 218b) is described as a p-type semiconductor layer, but is not limited thereto.
- the light emitting structure 210 may be implemented as any one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.
- the first electrode 251 may be disposed on the first conductivity type semiconductor layer 212.
- the first electrode 251 may be electrically connected to the first conductivity type semiconductor layer 212.
- the first electrode 251 may be electrically insulated from the second electrode 253.
- the first electrode 251 may be a conductive oxide, a conductive nitride, or a metal.
- the first electrode 251 may be formed of indium tin oxide (ITO), indium zinc oxide (ITO), indium zinc oxide (IZO), indium zinc oxide (IZON), aluminum zinc oxide (AZO), aluminum gallium zinc oxide (AGZO), or IZTO.
- Indium Zinc Tin Oxide IAZO (Indium Aluminum Zinc Oxide), IGZO (Indium Gallium Zinc Oxide), IGTO (Indium Gallium Tin Oxide), Antimony Tin Oxide (ATO), Gallium Zinc Oxide (GZO), IZO (IZO Nitride) , ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo may include at least one of the materials, and may be formed in a single layer or multiple layers. .
- the second electrode 253 may be disposed on the 2-3 conductive semiconductor layer 218b.
- the second electrode 253 may be in ohmic contact with the 2-3 conductive semiconductor layer 218b.
- the second electrode 253 may be a conductive oxide, a conductive nitride or a metal.
- the second electrode 253 may be formed of indium tin oxide (ITO), indium zinc oxide (ITO), indium zinc oxide (IZO), indium zinc oxide (IZON), aluminum zinc oxide (AZO), aluminum gallium zinc oxide (AGZO), or IZTO.
- Indium Zinc Tin Oxide IAZO (Indium Aluminum Zinc Oxide), IGZO (Indium Gallium Zinc Oxide), IGTO (Indium Gallium Tin Oxide), Antimony Tin Oxide (ATO), Gallium Zinc Oxide (GZO), IZO (IZO Nitride) , ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo may include at least one of the materials, and may be formed in a single layer or multiple layers. .
- defects may be improved by bending the potential D from the 2-1 conductivity type semiconductor layer 216 by the 3D grown 2-2 conductivity type semiconductor layer 218a. That is, in the embodiment, the second-second conductivity-type semiconductor layer 218a prevents the potential D from propagating to the later-grown 2-3-conduction-type semiconductor layer 218b, thereby providing the second-second conductivity-type semiconductor.
- a threading dislocation density (TDD) may be reduced at the interface between the layer 218a and the second conductive semiconductor layer 218b.
- the 2-2 conductivity type semiconductor layer 218a grown in 3D mode on the 2-1 conductivity type semiconductor layer 216 is disposed, and thus the potential D from the 2-1 conductivity type semiconductor layer 216 is removed. ) Can be bent to improve crystallinity.
- the luminous efficiency may be improved by reducing the threading dislocation density (TDD) of the final semiconductor layer.
- TDD threading dislocation density
- the embodiment improves the back diffusion of the p dopant from the EBL to the active layer by maintaining a constant doping concentration of the second conductivity type dopant of the 2-1 conductivity type semiconductor layer 216 and the EBL 230.
- the light extraction efficiency can be improved.
- the embodiment can improve electrical potential due to leakage current by improving a potential D or a defect.
- the embodiment may implement fully TE polarization of the ultraviolet light emitting device by improving the potential D or the defect.
- 20 to 23 are cross-sectional views illustrating a method of manufacturing the semiconductor device of the embodiment.
- an AlN template 211, a first conductive semiconductor layer 212, an active layer 214, and an EBL 230 are disposed on a substrate 201.
- the 2-1 conductive semiconductor layer 216, the 2-2 conductive semiconductor layer 218a, and the 2-3 conductive semiconductor layer 218b may be formed.
- connection relationship between materials and configurations of the substrate 201, the AlN template 211, the first conductive semiconductor layer 212, the active layer 214, the EBL 230, and the 2-1 conductive semiconductor layer 216 may be employed.
- MOCVD Metal Organic Chemical Vapor Deposition
- CVD Chemical Vapor Deposition
- PECVD Plasma-Enhanced Chemical Vapor Deposition
- MBE Molecular Beam Epitaxy
- HVPE Water Hydride Vapor Phase Epitaxy
- the 2-2 conductivity type semiconductor layer 218a may be formed on the 2-1 conductivity type semiconductor layer 216.
- the 2-2 conductivity type semiconductor layer 218a may include a function of bending a potential from the 2-1 conductivity type semiconductor layer 216.
- the 2-2 conductivity type semiconductor layer 218a may be grown in 3D.
- the second-second conductive semiconductor layer 218a may have a buffer function of the second-third conductive semiconductor layer 218b grown thereafter.
- the 2-2 conductivity type semiconductor layer 218a improves defects by bending the potential from the 2-1 conductivity type semiconductor layer 216 to thereby remove the second conductivity type dopant from the EBL 230 to the active layer 214. Back diffusion can be improved.
- the embodiment may implement stable doping of the 2-1 conductivity type semiconductor layer 216.
- the second-second conductive semiconductor layer 218a may be GaN including the second conductive dopant, but is not limited thereto.
- the 2-2 conductivity type semiconductor layer 218a may bend the potential from the 2-1 conductivity type semiconductor layer 216 to 3D growth. That is, the 2-2 conductivity type semiconductor layer 218a is bent in the A-plane direction from the C-plane direction by dislocations from the 2-1 conductivity-type semiconductor layer 216. Dislocation propagation to 218b can be improved, and the threading dislocation density (TDD) can be reduced at the interface with the 2-3 conductive semiconductor layer 218b.
- TDD threading dislocation density
- the thickness of the second-2 conductivity type semiconductor layer 218a may be 10 nm to 50 nm.
- the thickness of the second-second conductive semiconductor layer 218a is less than 10 nm, it is difficult to bend the potential from the second-first conductive semiconductor layer 216, and the potential is the second-third conductive semiconductor layer 218b. Can be propagated to.
- V fit or crack may occur in the electric potential propagated to the 2-3 conductive semiconductor layer 218b.
- V fits or cracks can cause leakage currents.
- the thickness of the second conductive semiconductor layer 218a is greater than 50 nm, a defect may occur from inside the second conductive semiconductor layer 218a which is 3D grown in an island shape.
- a root mean square (RMS) between the second-conductive semiconductor layer 218a and the second-conductive semiconductor layer 218b may be 1.0 nm or more, for example, 1.0 nm to 5.0 nm.
- Embodiment 2-2 conductive semiconductor layer 218a is 3D-grown in an island shape to form a roughness at the interface between the second-conductive semiconductor layer 218a and the second-conductive semiconductor layer 218b of 1.0 nm or more. (RMS).
- the doping concentration of the 2-2 conductivity type semiconductor layer 218a may correspond to the 2-1 conductivity type semiconductor layer 216 and the EBL 230.
- the doping concentration of the second-conductive semiconductor layer 218a may be 1E19 to 5E19.
- the second-conductive semiconductor layer 218a may have a lower doping concentration than the second-conductive semiconductor layer 218b.
- the doping concentration of the 2-3 conductive semiconductor layer 218b may be higher than that of the 2-2 conductive semiconductor layer 218a, the 2-1 conductive semiconductor layer 216, and the EBL 230.
- the doping concentration of the 2-3 conductive semiconductor layer 218b may be 5E19 to 1E20.
- the second conductive semiconductor layer 218b includes a second doping concentration higher than that of the second conductive semiconductor layer 218a, the second conductive semiconductor layer 216, and the EBL 230. Ohmic contact with the electrode 253 may be implemented.
- the 2-3 conductive semiconductor layer 218b may be disposed on the 2-2 conductive semiconductor layer 218a.
- the 2-3 conductive semiconductor layer 218b may be GaN including a second conductive dopant for ohmic the 2-1 conductive semiconductor layer 216 and the second electrode 253, but is not limited thereto. no.
- the surface of the second-conductive semiconductor layer 218b that is in direct contact with the second electrode 253 may be flat.
- the 2-3 conductive semiconductor layer 218b may be formed by a 2D growth method.
- 19 is a view showing the surface of the second conductive semiconductor layer 218b of the embodiment.
- the second conductive semiconductor layer 218b of the embodiment may have a thickness of about 100 nm to about 300 nm.
- the thickness of the 2-3 conductive semiconductor layer 218b is less than 100 nm, ohmic contact with the second electrode 253 may be difficult, and the thickness of the 2-3 conductive semiconductor layer 218b is greater than 300 nm. In this case, new defects may occur in the 2-3 conductive semiconductor layer 218b.
- the second conductivity-type semiconductor layer 218b may have a surface roughness RMS of 1 nm or less, for example, 0.1 nm to 1.0 nm.
- the second-second conductive semiconductor layer 216b of the embodiment may include a surface roughness RMS of 1 nm or less, thereby improving contact reliability with the second electrode 253 formed thereafter.
- the first conductive semiconductor layer 212 may be an n-type semiconductor layer, a 2-1 conductive semiconductor layer 216, a 2-2 conductive semiconductor layer 218a, and a 2-3 conductive semiconductor layer ( 218b) is described as a p-type semiconductor layer, but is not limited thereto.
- the light emitting structure 210 may be implemented as any one of an n-p junction structure, a p-n junction structure, an n-p-n junction structure, and a p-n-p junction structure.
- first and second electrodes 251 and 253 may be formed on the light emitting structure 210.
- a part of the first conductivity type semiconductor layer 212 is formed by mesa etching, and an active layer 214, an EBL 230, a 2-1 conductivity type semiconductor layer 216, and a 2-2 conductivity type are used.
- the semiconductor layer 218a and the second conductive semiconductor layer 218b may be exposed.
- the first electrode 251 may be formed on the exposed first conductive semiconductor layer 212.
- the first electrode 251 may be electrically connected to the first conductivity type semiconductor layer 212.
- the first electrode 251 may be electrically insulated from the second electrode 253.
- the second electrode 253 may be formed on the 2-1 conductive semiconductor layer 216.
- the second electrode 253 may be electrically connected to the 2-1 conductive semiconductor layer 216.
- the first and second electrodes 251 and 253 may be conductive oxides, conductive nitrides, or metals.
- the first and second electrodes 251 and 253 may include indium tin oxide (ITO), indium zinc oxide (ITO), indium zinc oxide (IZO), indium zinc oxide (IZON), aluminum zinc oxide (AZO), and aluminum gallium (AGZO).
- Zinc Oxide Zinc Oxide, IZTO (Indium Zinc Tin Oxide), IAZO (Indium Aluminum Zinc Oxide), IGZO (Indium Gallium Zinc Oxide), IGTO (Indium Gallium Tin Oxide), ATO (Antimony Tin Oxide), GZO (Gallium Zinc Oxide), IZON (IZO Nitride), ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo material may include at least one, and may be a single layer or a multilayer It can be formed as.
- an embodiment may have a flip chip structure in which first and second electrodes 251 and 253 are disposed below.
- the first insulating layer 261 may expose portions of the lower surfaces of the first and second electrodes 251 and 253 and may be formed on the light emitting structure 210.
- the first insulating layer 261 may contact the bottom of the light emitting structure 210 in which the first and second electrodes 251 and 253 are disposed.
- First and second connection electrodes 271 and 273 may be formed on lower surfaces of the first and second electrodes 251 and 253 exposed from the first insulating layer 261.
- the first and second connection electrodes 271 and 273 may be formed by a plating process, but are not limited thereto.
- the first insulating layer 261 may be an oxide or a nitride.
- at least one first insulating layer 261 is selected from the group consisting of SiO 2 , Si x O y , Si 3 N 4 , Si x N y , SiO x N y , Al 2 O 3 , TiO 2 , AlN, and the like. Can be.
- the first and second connection electrodes 271 and 273 may be metals or alloys including at least one of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, and Hf. .
- the first and second connection electrodes 271 and 273 may be formed of a metal or an alloy, and an indium-tin-oxide (ITO), indium-zinc-oxide (IZO), indium-zinc-tin-oxide (IZTO), or indium-oxide (AZO).
- ITO indium-tin-oxide
- IZO indium-zinc-oxide
- IZTO indium-zinc-tin-oxide
- AZO indium-oxide
- Transparent conductivity of Aluminum-Zinc-Oxide IGZO
- Indium-Gallium-Zinc-Oxide IGZO
- Indium-Gallium-Tin-Oxide IGTO
- Aluminum-Zinc-Oxide AZO
- Antimony-Tin-Oxide ATO It can be a single layer or multiple layers of material.
- the second insulating layer 263 may be formed under the first insulating layer 261, and may directly contact the first insulating layer 261.
- the second insulating layer 263 may expose lower portions of the first and second connection electrodes 271 and 273 and may be formed on the side portions of the first and second connection electrodes 271 and 273.
- the second insulating layer 263 may be formed by adding a heat spreading agent to a resin such as silicon or epoxy.
- the heat spreader may include at least one of oxides, nitrides, fluorides, and sulfides having a material such as Al, Cr, Si, Ti, Zn, Zr, for example, a ceramic material.
- the heat spreader may be defined as powder particles, granules, fillers, additives of a predetermined size.
- the second insulating layer 263 may be omitted.
- the first and second pads 281 and 283 may be formed on the first and second connection electrodes 271 and 273 exposed from the second insulating layer 263.
- the first and second pads 281 and 283 may be metals or alloys including at least one of Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, and Hf.
- the first and second pads 281 and 283 may be formed of a metal or an alloy and an indium-tin-oxide (ITO), indium-zinc-oxide (IZO), indium-zinc-tin-oxide (IZTO), and indium-aluminum (AZO).
- Transparent conductive materials such as -Zinc-Oxide), Indium-Gallium-Zinc-Oxide (IGZO), Indium-Gallium-Tin-Oxide (IGTO), Aluminum-Zinc-Oxide (AZO), and Antimony-Tin-Oxide (ATO) It may be monolayer or multilayer.
- the embodiment includes, but is not limited to, a substrate 201 disposed on the first conductivity type semiconductor layer 212.
- the substrate 201 may be removed by a laser lift off (LLO) process.
- LLO laser lift-off
- the laser lift-off process (LLO) is a process of peeling the substrate 201 and the light emitting structure 210 by irradiating a laser on the lower surface of the substrate 201.
- the 2-2 conductivity type semiconductor layer 218a grown in the 3D mode on the 2-1 conductivity type semiconductor layer 216 is disposed so that the potential from the 2-1 conductivity type semiconductor layer 216 may be reduced. It can be bent to improve crystallinity.
- the embodiment can improve the luminous efficiency by reducing the spreading dislocation density (TDD) of the final semiconductor layer by improving propagation of dislocations.
- TDD spreading dislocation density
- the embodiment improves the back diffusion of the p dopant from the EBL to the active layer by maintaining a constant doping concentration of the second conductivity type dopant of the 2-1 conductivity type semiconductor layer 216 and the EBL 230.
- the light extraction efficiency can be improved.
- the embodiment can improve electrical potential caused by leakage current by improving potential or defect.
- the embodiment can implement fully TE polarization of the ultraviolet light emitting device by improving potential or defect.
- 24 is a cross-sectional view showing a light emitting device package according to the embodiment.
- the light emitting device package 300 of the embodiment includes the light emitting device 200, the package body 301, the heat dissipation frame 310, the protection device 360, and the first and second lead frames 320. , 330).
- the package body 301 may include at least one of a light transmissive material, a reflective material, and an insulating material.
- the package body 301 may include a material having a reflectance higher than that of light transmitted from the light emitting device 200.
- the package body 301 may be a resin-based insulating material.
- the package body 301 may be made of polyphthalamide (PPA), resin such as epoxy or silicon, silicon (Si), metal, photo sensitive glass (PSG), sapphire (Al 2 O 3 ), printed circuit It may be formed of at least one of the substrate (PCB).
- PPA polyphthalamide
- resin such as epoxy or silicon, silicon (Si), metal, photo sensitive glass (PSG), sapphire (Al 2 O 3 ), printed circuit It may be formed of at least one of the substrate (PCB).
- the package body 301 may have a square top view shape, for example, but is not limited thereto.
- the top view of the package body 301 may have a circular or polygonal shape.
- the package body 301 may be combined with the first and second lead frames 320 and 330.
- the body 220 may include a cavity 303 exposing portions of the upper surfaces of the first and second lead frames 320 and 330.
- the cavity 303 may expose a portion of the upper surface of the first lead frame 320 and may expose a portion of the upper surface of the second lead frame 330.
- the first and second lead frames 320 and 330 may be coupled to the package body 301 at regular intervals.
- the light emitting device 200 and the protection device 360 may be disposed on the second lead frame 330, and the first wire 200W1 and the protection device 360 of the light emitting device 200 may be disposed on the first lead frame 320.
- the wire 360W) may be connected, but is not limited thereto.
- the first and second lead frames 320 and 330 may include a conductive material.
- the first and second lead frames 320 and 330 may include titanium (Ti), copper (Cu), nickel (Ni), gold (Au), chromium (Cr), tantalum (Ta), platinum (Pt), It may include at least one of tin (Sn), silver (Ag), phosphorus (P), iron (Fe), tin (Sn), zinc (Zn), and aluminum (Al), and may be formed of a plurality of layers.
- the first and second lead frames 320 and 330 may be formed of a base layer including copper (Cu) and an antioxidant layer including silver (Ag) covering the base layer, but is not limited thereto. .
- the second lead frame 330 is diagonally symmetrical with the first lead part 331a and the first lead frame 320 exposed to the center area of the cavity 303 to correspond to the shape of the first lead frame 320.
- the second lead part 331b and the protection element 360 may include a third lead part 331c disposed in an edge region and a diagonal edge region of the cavity 303.
- the first to third lead parts 331a, 331b, and 331c are upper surfaces of the second lead frames 330 exposed to the bottom surface of the cavity 303, and may include various shapes including an area and a width thereof.
- the first lead frame 320 may have a curved structure on a diagonal line symmetrical with the second lead portion 331b, but is not limited thereto.
- the heat dissipation frame 310 includes first and second heat dissipation electrodes 311 and 313, and the first heat dissipation electrode 311 includes a first pad part 311a connected to the first wire 200W1.
- the second heat dissipation electrode 313 may include a second pad part 313a connected to the second wire 200W2.
- the light emitting device 200 may be mounted on the heat radiation frame 310.
- the light emitting device package including the heat dissipation frame 310 is limited, but the heat dissipation frame 310 may be omitted.
- the light emitting device 200 may be disposed on the package body 301.
- the light emitting device 200 may include technical features of FIGS. 1 to 23.
- the protection device 360 may be disposed on the third lead portion 331c.
- the protection device 360 may be disposed on an upper surface of the second lead frame 330 exposed from the package body 301.
- the protection device 360 may be a zener diode, a thyristor, a transient voltage suppression (TVS), or the like, but is not limited thereto.
- the protection device 360 according to the embodiment will be described as a Zener diode protecting the light emitting device 200 from electrostatic discharge (ESD) as an example.
- ESD electrostatic discharge
- the protection device 360 may be connected to the first lead frame 310 through a wire.
- the light emitting device package according to the embodiment may include a light emitting device 200 that improves the lattice constant difference between the semiconductor layers, and in particular, may implement fully TE polarization of the ultraviolet light emitting device.
- the above-described light emitting device is composed of a light emitting device package, it can be used as a light source of the lighting system.
- the light emitting device package may include, for example, a body having a cavity and a lead electrode coupled to the body, and the light emitting device may be disposed on the body and electrically connected to the lead electrode.
- the light emitting element may be used as a light source of an image display device or a light source, for example.
- a backlight unit of an image display device When used as a backlight unit of an image display device, it can be used as an edge type backlight unit or a direct type backlight unit, when used as a light source of a lighting device can be used as a luminaire or bulb type, and also used as a light source of a mobile terminal It may be.
- the light emitting device includes a laser diode in addition to the light emitting diode described above.
- the laser diode may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure.
- an electro-luminescence phenomenon is used in which light is emitted when a current flows, but the direction of emitted light is used.
- a laser diode may emit light having a specific wavelength (monochromatic beam) in the same direction with the same phase by using a phenomenon called stimulated emission and a constructive interference phenomenon. Due to this, it can be used for optical communication, medical equipment and semiconductor processing equipment.
- a photodetector may be a photodetector, which is a type of transducer that detects light and converts its intensity into an electrical signal.
- Such photodetectors include photovoltaic cells (silicon, selenium), photoconductive elements (cadmium sulfide, cadmium selenide), photodiodes (eg PDs with peak wavelengths in visible blind or true blind spectral regions), phototransistors , Photomultipliers, phototubes (vacuum, gas encapsulation), infrared detectors (IR) detectors, and the like, but embodiments are not limited thereto.
- a semiconductor device such as a photodetector may generally be manufactured using a direct bandgap semiconductor having excellent light conversion efficiency.
- the photodetector has various structures, and the most common structures include a pin photodetector using a pn junction, a Schottky photodetector using a Schottky junction, a metal semiconductor metal (MSM) photodetector, and the like. have.
- MSM metal semiconductor metal
- a photodiode may include a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer having the above-described structure, and have a pn junction or pin structure.
- the photodiode operates by applying a reverse bias or zero bias. When light is incident on the photodiode, electrons and holes are generated and current flows. In this case, the magnitude of the current may be approximately proportional to the intensity of light incident on the photodiode.
- Photovoltaic cells or solar cells are a type of photodiodes that can convert light into electrical current.
- the solar cell may include the first conductive semiconductor layer, the active layer, and the second conductive semiconductor layer having the above-described structure, similarly to the light emitting device.
- a general diode using a p-n junction it may be used as a rectifier of an electronic circuit, it may be applied to an ultra-high frequency circuit and an oscillation circuit.
- the semiconductor device described above is not necessarily implemented as a semiconductor and may further include a metal material in some cases.
- a semiconductor device such as a light receiving device may be implemented using at least one of Ag, Al, Au, In, Ga, N, Zn, Se, P, or As, and may be implemented by a p-type or n-type dopant. It may also be implemented using a doped semiconductor material or an intrinsic semiconductor material.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Led Devices (AREA)
- Led Device Packages (AREA)
Abstract
실시 예는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 제2도전형 반도체층 사이에 배치되는 활성층, 및 상기 제1도전형 반도체층과 상기 활성층 사이, 또는 상기 제1도전형 반도체층의 내부에 배치되는 중간층을 포함하는 발광구조물을 포함하고, 상기 제1도전형 반도체층, 중간층, 활성층, 및 제2도전형 반도체층은 알루미늄을 포함하고, 상기 중간층은 상기 제1도전형 반도체층보다 알루미늄 조성이 낮은 제1중간층을 포함하는 반도체 소자, 반도체 소자 패키지, 및 반도체 소자 제조방법을 개시한다.
Description
실시 예는 반도체 소자, 및 이를 포함하는 반도체 소자 패키지에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
특히, 자외선 파장 영역의 광을 방출하는 발광소자는 경화작용이나 살균 작용을 하여 경화용, 의료용, 및 살균용으로 사용될 수 있다
최근 자외선 발광소자에 대한 연구가 활발하나, 아직까지 자외선 발광소자는 수직형으로 구현하기 어려운 문제가 있으며, 기판을 분리하는 과정에서 결정성이 저하되는 문제가 있다.
일반적인 반도체 소자는 각각의 반도체층들 사이의 격자 불일치 및 열팽창 계수 차이에 의해 반도체층에 스트레인(strain)이 변화될 수 있다. 상기 스트레인 변화는 반도체층 내에 전위(dislocation)나 결함(defect)을 야기할 수 있다. 상기 전위 또는 결함은 V핏이나 크랙(crack) 발생의 원인이 될 수 있고, V핏이나 크랙은 누설전류를 발생시키는 문제가 있다.
실시 예는 수직형 자외선 반도체 소자를 제공한다.
또한, 결정성이 우수한 반도체 소자를 제공한다.
또한, 광 출력이 향상된 반도체 소자를 제공한다.
실시 예는 p 도펀트의 후방 확산(back diffusion)을 개선하여 광 추출 효율을 향상시키는 반도체 소자를 제공할 수 있다.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.
본 발명의 일 실시 예에 따른 반도체 소자는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 제2도전형 반도체층 사이에 배치되는 활성층, 및 상기 제1도전형 반도체층과 상기 활성층 사이, 또는 상기 제1도전형 반도체층의 내부에 배치되는 중간층을 포함하는 발광구조물을 포함하고, 상기 제1도전형 반도체층, 중간층, 활성층, 및 제2도전형 반도체층은 알루미늄을 포함하고, 상기 중간층은 상기 제1도전형 반도체층보다 알루미늄 조성이 낮은 제1중간층을 포함한다.
상기 중간층은 상기 제1중간층, 및 상기 제1중간층보다 알루미늄 농도가 높은 제2중간층을 포함할 수 있다.
상기 제2중간층의 알루미늄 조성은 상기 제1도전형 반도체층의 알루미늄 조성보다 높을 수 있다.
상기 제1중간층과 제2중간층은 교대로 복수개 적층될 수 있다.
상기 제1중간층의 두께는 상기 제2중간층의 두께보다 두꺼울 수 있다.
상기 제1중간층과 제2중간층의 두께비는 2:1 내지 6:1일 수 있다.
상기 중간층의 전체 두께는 50nm보다 크고 1000nm보다 작을 수 있다.
상기 제1중간층의 알루미늄 조성은 30% 내지 60%일 수 있다.
상기 제2중간층의 알루미늄 조성은 60% 내지 100%일 수 있다.
상기 제1도전형 반도체층은 제1-1도전형 반도체층, 및 제1-2도전형 반도체층을 포함하고, 상기 중간층은 제1-1도전형 반도체층, 및 제1-2도전형 반도체층 사이에 배치될 수 있다.
상기 제1-2도전형 반도체층은 상기 제1-1도전형 반도체층보다 상기 활성층에 가까울 수 있다.
상기 제1-2도전형 반도체층의 알루미늄 조성은 상기 제1-1도전형 반도체층의 알루미늄 조성보다 낮을 수 있다.
상기 제1-1도전형 반도체층의 두께는 상기 제1-2도전형 반도체층의 두께보다 두꺼울 수 있다.
상기 발광구조물은 상기 제2도전형 반도체층과 활성층을 관통하여 상기 제1-2도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함할 수 있다.
상기 복수 개의 리세스 내부에 배치되어 상기 제1-2도전형 반도체층과 전기적으로 연결되는 연결전극을 포함하는 제1도전층을 포함할 수 있다.
상기 중간층은 상기 제1도전형 반도체층과 활성층 사이에 배치될 수 있다.
상기 발광구조물은 상기 제2도전형 반도체층, 활성층, 및 중간층을 관통하여 상기 제1도전형 반도체층의 일부 영역까지 배치되는 복수 개의 리세스를 포함할 수 있다.
상기 복수 개의 리세스 내부에 배치되어 상기 제1도전형 반도체층과 전기적으로 연결되는 연결전극을 포함하는 제1도전층을 포함할 수 있다.
본 발명의 일 실시 예에 따른 반도체 소자 패키지는, 몸체; 및 상기 몸체에 배치되는 반도체 소자를 포함하고, 상기 반도체 소자는, 제1도전형 반도체층, 제2도전형 반도체층, 상기 제1도전형 반도체층과 제2도전형 반도체층 사이에 배치되는 활성층, 및 상기 제1도전형 반도체층과 상기 활성층 사이, 또는 상기 제1도전형 반도체층의 내부에 배치되는 중간층을 포함하는 발광구조물을 포함하고, 상기 제1도전형 반도체층, 중간층, 활성층, 및 제2도전형 반도체층은 알루미늄을 포함하고, 상기 중간층은 상기 제1도전형 반도체층보다 알루미늄 조성이 낮은 제1중간층을 포함할 수 있다.
본 발명의 일 실시 예에 따른 반도체 소자 제조방법은, 기판상에 광흡수층과 상기 제1항에 따른 발광구조물을 순차적으로 형성하는 단계; 및 상기 기판에 레이저를 조사하여 상기 광흡수층과 상기 제1도전형 반도체층을 분리하는 단계를 포함하고, 상기 분리하는 단계에서, 상기 광흡수층과 상기 중간층은 상기 레이저를 흡수할 수 있다.
실시 예에 따르면 수직형 자외선 발광소자를 제조할 수 있다.
또한, 자외선 발광소자의 결정성을 향상시킬 수 있다.
또한, 광 출력을 향상시킬 수 있다.
또한, 전위의 전파를 개선함으로써, 최종 반도체층의 TDD(Threading dislocation Density)를 줄여 발광효율을 개선할 수 있다.
또한, 제2 도전형 반도체층, EBL의 제2 도전형 도펀트의 도핑 농도를 일정하게 유지함으로써, EBL로부터 활성층으로의 p 도펀트의 뒤로 확산(back diffusion)을 개선하여 광 추출 효율을 향상시킬 수 있다.
또한, 전위나 결함을 개선하여 누설전류에 의한 전기적 특성저하를 개선할 수 있다.
또한, 전위나 결함을 개선하여 자외선 발광소자의 fully TE 편광을 구현할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 발광구조물의 개념도이고,
도 2는 본 발명의 다른 실시 예에 따른 발광구조물의 개념도이고,
도 3은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고,
도 4는 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이고,
도 5a는 본 발명의 또 다른 실시 예에 따른 반도체 소자의 개념도이고,
도 5b는 도 5a의 변형예이고,
도 6a 및 도 6b는 본 발명의 실시 예에 따른 반도체 소자의 평면도이고,
도 7은 광흡수층, 및 중간층이 형성된 발광구조물을 개념도이고,
도 8은 벌크 구조를 갖는 광흡수층의 단면 사진이고,
도 9는 초격자 구조를 갖는 광흡수층의 단면 사진이고,
도 10은 기판을 분리하는 과정을 설명하기 위한 도면이고,
도 11은 발광구조물을 식각하는 과정을 설명하기 위한 도면이고,
도 12는 제조된 반도체 소자를 보여주는 도면이고,
도 13은 본 발명의 일 실시 예에 따른 반도체 소자 패키지의 개념도이고,
도 14는 실시 예에 따른 반도체 소자를 나타낸 단면도이고,
도 15는 도 1의 A 영역을 도시한 반도체 소자의 단면도이고,
도 16은 제2-2 도전형 반도체층 및 제2-3 도전형 반도체층의 도펀트 농도를 SIMS(Secondary-ion mass spectroscopy)로 분석한 도면이고,
도 17 및 도 18은 비교 예와 실시 예의 RSM DATA를 비교한 그래프이고,
도 19는 실시 예의 제2-3 도전형 반도체층의 표면을 도시한 도면이고,
도 20 내지 도 23은 실시 예의 반도체 소자의 제조방법을 도시한 단면도이고,
도 24는 실시 예에 따른 발광소자 패키지를 도시한 단면도이다.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 반대되거나 모순되는 설명이 없는 한, 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.
실시 예의 설명에 있어서, 어느 한 element가 다른 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
본 발명의 실시 예에 따른 발광구조물은 자외선 파장대의 광을 출력할 수 있다. 예시적으로 발광구조물은 근자외선 파장대의 광(UV-A)을 출력할 수도 있고, 원자외선 파장대의 광(UV-B)을 출력할 수 도 있고, 심자외선 파장대의 광(UV-C)을 출력할 수 있다. 파장범위는 발광구조물(120)의 Al의 조성비에 의해 결정될 수 있다.
예시적으로, 근자외선 파장대의 광(UV-A)는 320nm 내지 420nm 범위의 파장을 가질 수 있고, 원자외선 파장대의 광(UV-B)은 280nm 내지 320nm 범위의 파장을 가질 수 있으며, 심자외선 파장대의 광(UV-C)은 100nm 내지 280nm 범위의 파장을 가질 수 있다.
도 1은 본 발명의 일 실시 예에 따른 발광구조물의 개념도이다.
실시 예에 따른 발광구조물(120A)은 제1도전형 반도체층(124), 제2도전형 반도체층(127), 활성층(126), 및 제1도전형 반도체층(124)과 활성층(126) 사이에 배치되는 중간층(125)을 포함한다.
제1도전형 반도체층(124), 중간층(125), 활성층(126), 및 제2도전형 반도체층(127)은 알루미늄을 포함한다. 알루미늄의 조성은 원하는 자외선 파장대에 따라 조절될 수 있다.
제1도전형 반도체층(124)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1도펀트가 도핑될 수 있다. 제1도전형 반도체층(124)은 Inx1Aly1Ga1-x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제1도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제1도펀트가 n형 도펀트인 경우, 제1도펀트가 도핑된 제1도전형 반도체층(124)은 n형 반도체층일 수 있다.
활성층(126)은 제1도전형 반도체층(124)과 제2도전형 반도체층(127) 사이에 배치된다. 활성층(126)은 제1도전형 반도체층(124)을 통해서 주입되는 전자(또는 정공)와 제2도전형 반도체층(127)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(126)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 자외선 파장을 가지는 빛을 생성할 수 있다.
활성층(126)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(126)의 구조는 이에 한정하지 않는다.
중간층(125)은 제1도전형 반도체층(124)과 활성층(126) 사이에 배치될 수 있다. 중간층(125)은 제1도전형 반도체층(124)보다 알루미늄 조성이 낮은 제1중간층(125a) 및 제1도전형 반도체층(124)보다 알루미늄 조성이 높은 제2중간층(125b)을 포함한다. 제1중간층(125a)과 제2중간층(125b)은 교대로 복수 개가 배치될 수 있다.
제1중간층(125a)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 제1중간층(125a)은 LLO 공정시 발광구조물(120)에 조사되는 레이저를 흡수하여 활성층(126)의 손상을 방지하는 역할을 수행할 수 있다. 따라서, 실시 예에 따른 반도체 소자는 활성층의 손상이 감소되어 광 출력 및 전기적 특성과 신뢰성이 향상될 수 있다.
제1중간층(125a)의 두께와 알루미늄 조성은 LLO 공정 시 발광구조물(120)에 조사되는 레이저의 파장을 갖는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 제1중간층(125a)의 알루미늄 조성은 30% 내지 60%이고, 두께는 1nm 내지 10nm일 수 있다. 예시적으로 제1중간층(125a)은 AlGaN일 수 있으나 반드시 이에 한정하지 않는다.
제2중간층(125b)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 높을 수 있다. 제2중간층(125b)은 제1중간층(125a)에 의해 낮아진 알루미늄 조성을 높임으로써, 중간층(125)의 하부에서 전달되는 격자 결함의 진행 방향이 그 제1 중간층(125a)와 제2 중간층(125b)의 계면에서 바뀔 수 있다. 복수의 격자 결함이 계면에서 서로 병합되면서 중간층(125) 상부로 진행하는 격자 결함이 줄어들 수 있다. 따라서, 중간층(125) 위에 성장하는 에피층의 격자결함을 줄이고 결정성이 향상될 수 있다. 또한, 제1 도전형 반도체층(124)와 Al 함량이 다른 데에서 오는 굴절률 차이로 인해 광추출 효율을 향상시킬 수 있다.
예시적으로 제2중간층(125b)의 알루미늄 조성은 60% 내지 100%이고, 두께는 0.1nm 내지 2.0nm일 수 있다. 제2중간층(125b)은 AlGaN 또는 AlN일 수 있으나 반드시 이에 한정하지 않는다.
예시적으로 246nm의 파장의 레이저를 흡수하기 위해, 제1중간층(125a)의 두께는 제2중간층(125b)의 두께보다 두꺼울 수 있다. 제1중간층(125a)의 두께는 1.0nm 내지 10.0nm일 수 있고, 제2중간층(125b)의 두께는 0.5nm 내지 2.0nm일 수 있다.
제1중간층(125a)과 제2중간층(125b)의 두께비(제1중간층:제2중간층)는 2:1 내지 6:1일 수 있다. 두께비가 2:1보다 커지면 레이저를 충분히 흡수할 수 있는 제1중간층 두께를 확보할 수 있고, 두께비가 6:1보다 작게 하는 경우 제2중간층의 두께를 확보하여 전체 중간층의 알루미늄 조성을 조절할 수 있다.
만약, 두께비가 2:1보다 작은 경우 제1중간층(125a)이 얇아져 레이저를 충분히 흡수하기 어렵고, 두께비가 6:1보다 큰 경우 제2중간층(125b)이 너무 얇아져 전체 중간층의 알루미늄 조성이 낮아지는 문제가 있다.
중간층(125)의 전체 두께는 50nm보다 크고 1000nm보다 작을 수 있다. 이 범위를 만족하는 경우 레이저를 충분히 흡수하면서도 결정성을 유지할 수 있다. 두께가 50nm보다 작은 경우 제1중간층(125a)의 두께가 얇아져 246nm 레이저를 충분히 흡수하기 어려운 문제가 있으며, 두께가 1000nm보다 커지는 경우 중간층의 알루미늄 조성이 낮아져 결정성이 악화되는 문제가 있다.
제2도전형 반도체층(127)은 활성층(126) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2도전형 반도체층(127)에 제2도펀트가 도핑될 수 있다. 제2도전형 반도체층(127)은 Inx5Aly2Ga1-x5-y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제2도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제2도펀트가 도핑된 제2도전형 반도체층(127)은 p형 반도체층일 수 있다.
제2도전형 반도체층(127)이 AlGaN인 경우, 낮은 전기 전도도에 의해 정공 주입이 원활하지 않을 수 있다. 따라서, 상대적으로 전기 전도도가 우수하며 제2 도전형 반도체층(126)과 같은 극성의 GaN을 제2도전형 반도체층(127)의 저면에 배치할 수도 있다. 그러나, 반드시 이에 한정하는 것은 아니고 제2도전형 반도체층(127)의 알루미늄 조성을 1% 내지 10%까지 줄여 제2전극과 오믹을 이룰 수도 있다.
도 2는 본 발명의 다른 실시 예에 따른 발광구조물의 개념도이다.
실시 예에 따른 발광구조물(120B)은 제1도전형 반도체층(124a, 124b), 제2도전형 반도체층(127), 제1도전형 반도체층(124a, 124b)과 제2도전형 반도체층(127) 사이에 배치되는 활성층(126)을 포함하고, 제1도전형 반도체층(124a, 124b)의 내부에 배치되는 중간층(125)을 포함한다.
제1도전형 반도체층(124a, 124b)은 제1-1도전형 반도체층(124a)과 제1-2도전형 반도체층(124b)을 포함하고, 중간층(125)은 제1-1도전형 반도체층(124a)과 제1-2도전형 반도체층(124b) 사이에 배치될 수 있다.
제1-2도전형 반도체층(124b)은 제1-1도전형 반도체층(124a) 보다 활성층(126)에 가까이 배치될 수 있다. 제1-2도전형 반도체층(124b)의 알루미늄 조성은 제1-1도전형 반도체층(124a) 보다 낮을 수 있다. 제1-2도전형 반도체층(124b)의 알루미늄 조성은 40% 내지 70%이고, 제1-1도전형 반도체층(124a)의 알루미늄 조성은 50% 내지 80%일 수 있다.
제1-2도전형 반도체층(124b)의 두께는 제1-1도전형 반도체층(124a)의 두께보다 얇을 수 있다. 제1-1도전형 반도체층(124a)은 제1-2도전형 반도체층(124b)의 두께의 130%이상일 수 있다. 이러한 구성에 의하면 알루미늄 조성이 높은 제1-1도전형 반도체층(124a)이 충분히 성장한 후에 중간층(125)이 형성되므로 전체 발광구조물(120)의 결정성이 향상될 수 있다.
중간층(125)의 구성(알루미늄 조성, 두께 등)은 도 1에서 설명한 구성이 그대로 적용될 수 있다. 필요에 따라 중간층(125)에는 제1도펀트가 도핑될 수도 있다.
도 3은 본 발명의 일 실시 예에 따른 반도체 소자의 개념도이고, 도 4는 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이다.
발광구조물(120A)의 구조는 도 1에서 설명한 구조가 그대로 적용될 수 있다. 도 3을 참고하면, 리세스(128)는 제2도전형 반도체층(127), 활성층(126)를 관통하여 중간층(125)의 일부 영역까지 배치될 수 있다.
제1전극(142)는 중간층(125)과 접촉하여 제1도전형 반도체층(124)과 전기적으로 연결될 수 있다. 중간층(125)은 제1도전형 반도체층(124)에 비해 알루미늄의 조성이 낮으므로 전류 분산에 유리할 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 리세스(128)는 중간층(125)을 관통하여 제1도전형 반도체층(124)의 일부 영역에 배치될 수도 있다.
중간층(125)은 n 도펀트가 도핑될 수 있다. 따라서, 중간층(125)은 제1도전형 반도체층(124) 내에서 알루미늄의 조성이 낮은 제1-3도전형 반도체층으로 정의할 수도 있다.
제1도전층(165)은 리세스(128) 내에 배치되어 제1도전형 반도체층(124)과 전기적으로 연결되는 연결전극(167)을 포함한다. 연결전극(167)과 제1도전형 반도체층(124) 사이에는 제1전극(142)이 배치될 수 있다. 제1전극(142)는 오믹 전극일 수 있다.
제1리세스(128)의 상면에서 발광구조물의 상면까지의 거리가 1um 내지 4um가 되도록 배치할 수 있다. 발광구조물의 상면과 리세스(128)의 상면이 1um 미만일 경우 발광 소자의 신뢰성이 저하될 수 있고, 4um를 초과하는 경우 발광구조물 내부에 배치되는 결정 결함 등에 의해 광 추출효율이 저하될 수도 있다.
제2도전층(150)은 제2도전형 반도체층(127)의 하부면에 배치되어 전기적으로 연결될 수 있다. 제2도전층(150)은 복수 개의 연결전극(167)의 사이 영역에 배치될 수 있다. 제2도전층(150)은 일 영역이 노출되어 전극패드와 전기적으로 연결될 수 있다. 도시되지는 않았으나 제2도전층(150)과 제2도전형 반도체층(127) 사이에는 제2전극(오믹 전극)이 배치될 수 있다.
제1도전층(165)과 제2도전층(150)은 투명 전도성 산화막(Tranparent Conductive Oxide; TCO)으로 형성될 수 있다. 투명 전도성 산화막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), AZO(Aluminum Zinc Oxide), AGZO(Aluminum Gallium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminum Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), ATO(Antimony Tin Oxide), GZO(Gallium Zinc Oxide), IZON(IZO Nitride), ZnO, IrOx, RuOx 및 NiO 등에서 선택될 수 있다.
제1도전층(165)과 제2도전층(150)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 등과 같은 불투명 금속을 포함할 수도 있다. 또한, 제1도전층(165)은 투명 전도성 산화막과 불투명 금속이 혼합된 하나 또는 복수 개의 층으로 형성될 수 있으며, 이에 한정하지 않는다.
절연층(130)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으며, 이에 한정하지 않는다. 절연층(130)은 연결전극(167)을 활성층(126), 및 제2도전형 반도체층(127)과 전기적으로 절연할 수 있다.
도 4는 본 발명의 다른 실시 예에 따른 반도체 소자의 개념도이다.
발광구조물(120B)의 구조는 도 2에서 설명한 구조가 그대로 적용될 수 있다. 도 4를 참고하면, 제1도전형 반도체층(124)은 제1-1도전형 반도체층(124a), 및 제1-2도전형 반도체층(124b)을 포함하고, 중간층(125)은 제1-1도전형 반도체층(124a), 및 제1-2도전형 반도체층(124b) 사이에 배치될 수 있다.
리세스(128)는 제2도전형 반도체층(127), 활성층(126), 제1-2도전형 반도체층(124b)을 관통하여 중간층(125)의 일부 영역까지 배치될 수 있다. 중간층(125)은 제1도전형 반도체층(124)에 비해 알루미늄의 조성이 낮으므로 전류 분산에 유리하다.
그러나, 반드시 이에 한정되는 것은 아니고 리세스(128)는 제1-2도전형 반도체층(124b)의 일부 영역에 배치될 수도 있다.
이때, 제1-2도전형 반도체층(124b)은 제1-1도전형 반도체층(124a)보다 활성층(126)에 가까이 배치되고, 제1-2도전형 반도체층(124b)의 알루미늄 조성 및 두께는 제1-1도전형 반도체층(124a)의 알루미늄 조성 및 두께보다 작을 수 있다.
제2중간층(125b)의 두께는 500nm보다 크고 1000nm보다 작을 수 있다. 제1중간층(125a)의 두께는 600nm 내지 1500nm일 수 있다. 제1중간층(125a)의 두께는 요철 패턴의 깊이에 따라 달라질 수 있다.
발광구조물(120)은 제2도전형 반도체층(127)과 활성층(126)을 관통하여 제1-2도전형 반도체층(124b)의 일부 영역까지 배치되는 복수 개의 리세스(128)를 포함할 수 있다.
제1도전층(165)은 복수 개의 리세스(128) 내부에 배치되어 제1-2도전형 반도체층(124b)과 전기적으로 연결되는 연결전극(167), 및 제1-2도전형 반도체층(124b)과 연결전극(167) 사이에 배치되는 제1전극(142)을 포함할 수 있다. 제1-2도전형 반도체층(124b)은 상대적으로 알루미늄 함량이 낮으므로 전류 주입 및 분산에 유리할 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 제1-1도전형 반도체층(124a)과 제1-2도전형 반도체층(124b)은 알루미늄 조성이 동일할 수도 있고, 리세스(128)는 제1-1도전형 반도체층(124a)의 일부 영역까지 형성될 수도 있다.
도 5a는 본 발명의 또 다른 실시 예에 따른 반도체 소자의 개념도이고, 도 5b는 도 5a의 변형예이다.
도 5a의 발광구조물(120)은 도 1에서 설명한 발광구조물(120)의 구성이 그대로 적용될 수 있다. 리세스(128)는 제2도전형 반도체층(127), 활성층(126)를 관통하여 중간층(125)의 일부 영역까지 배치될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 리세스(128)는 중간층(125)을 관통하여 제1도전형 반도체층(124)의 일부 영역에 배치될 수도 있다.
도 5b를 참고하면, 리세스(128)는 제2도전형 반도체층(127), 활성층(126), 제1-2도전형 반도체층(124b)을 관통하여 중간층(125)의 일부 영역까지 배치될 수 있다.
중간층(125)은 제1도전형 반도체층(124)에 비해 알루미늄의 조성이 낮으므로 전류 분산에 유리하다. 중간층(125)은 n 도펀트가 도핑될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 리세스(128)는 제1-2도전형 반도체층(124b)의 일부 영역에 배치될 수도 있다.
제1전극(142)은 리세스(128)의 상면에 배치되어 제1도전형 반도체층(124)과 전기적으로 연결될 수 있다. 제2전극(246)은 제2도전형 반도체층(127)의 하부에 형성될 수 있다.
제1전극(142)과 제2전극(246)은 오믹전극일 수 있다. 제1전극(142)과 제2전극(246)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다.
반도체 소자의 일측 모서리 영역에는 제2전극패드(166)가 배치될 수 있다. 제2전극패드(166)는 중앙 부분이 함몰되어 상면이 오목부와 볼록부를 가질 수 있다. 상면의 오목부에는 와이어(미도시)가 본딩될 수 있다. 따라서, 접착 면적이 넓어져 제2전극패드(166)와 와이어가 더 견고히 본딩될 수 있다.
제2전극패드(166)는 광을 반사하는 작용을 할 수 있으므로, 제2전극패드(166)는 발광구조물(120)과 가까울수록 광 추출효율이 향상될 수 있다.
제2전극패드(166)의 볼록부의 높이는 활성층(126)보다 높을 수 있다. 따라서 제2전극패드(166)는 활성층(126)에서 소자의 수평방향으로 방출되는 광을 상부로 반사하여 광 추출효율을 향상시키고, 지향각을 제어할 수 있다.
제2전극패드(166)의 하부에서 제1절연층(131)이 일부 오픈되어 제2도전층(150)과 제2전극(246)이 전기적으로 연결될 수 있다. 패시베이션층(180)은 발광구조물(120)의 상부면과 측면에 형성될 수 있다. 패시베이션층(180)은 제2전극(246)과 인접한 영역이나 제2전극(246)의 하부에서 제1절연층(131)과 접촉할 수 있다.
제1절연층(131)이 오픈되어 제2전극(246)이 제2도전층(150)과 접촉하는 부분의 폭(d22)은 예를 들면 40㎛ 내지 90㎛일 수 있다. 40㎛보다 작으면 동작 전압이 상승하는 문제가 있고, 90㎛보다 크면 제2도전층(150)을 외부로 노출시키지 않기 위한 공정 마진 확보가 어려울 수 있다. 제2도전층(150)이 제2전극(246)의 바깥 영역으로 노출되면, 소자의 신뢰성이 저하될 수 있다. 따라서, 바람직하게 폭(d22)는 제2전극패드(166)의 전체 폭의 60% 내지 95%일 수 있다.
제1절연층(131)은 제1전극(142)을 활성층(126) 및 제2도전형 반도체층(127)과 전기적으로 절연시킬 수 있다. 또한, 제1절연층(131)은 제2전극(246)과 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킬 수 있다.
제1절연층(131)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택되어 형성될 수 있으나, 이에 한정하지 않는다. 제1절연층(131)은 단층 또는 다층으로 형성될 수 있다. 예시적으로 제1절연층(131)은 은 Si 산화물이나 Ti 화합물을 포함하는 다층 구조의 DBR(distributed Bragg reflector) 일 수도 있다. 그러나, 반드시 이에 한정하지 않고 제1절연층(131)은 다양한 반사 구조를 포함할 수 있다.
제1절연층(131)이 절연기능을 수행하는 경우, 활성층(126)에서 측면을 향해 방출되는 광을 상향 반사시켜 광 추출 효율을 향상시킬 수 있다. 후술하는 바와 같이 자외선 반도체 소자에서는 리세스(128)의 개수가 많아질수록 광 추출 효율은 더 효과적일 수 있다.
제2도전층(150)은 제2전극(246)을 덮을 수 있다. 따라서, 제2전극패드(166)와, 제2도전층(150), 및 제2전극(246)은 하나의 전기적 채널을 형성할 수 있다.
제2도전층(150)은 제2전극(246)을 완전히 감싸며 제1절연층(131)의 측면과 상면에 접할 수 있다. 제2도전층(150)은 제1절연층(131)과의 접착력이 좋은 물질로 이루어지며, Cr, Al, Ti, Ni, Au 등의 물질로 구성되는 군으로부터 선택되는 적어도 하나의 물질 및 이들의 합금으로 이루어질 수 있으며, 단일층 혹은 복수의 층으로 이루어질 수 있다.
제2도전층(150)이 제1절연층(131)의 측면과 상면과 접하는 경우, 제2전극(246)의 열적, 전기적 신뢰성이 향상될 수 있다. 또한, 제1절연층(131)과 제2전극(246) 사이로 방출되는 광을 상부로 반사하는 반사 기능을 가질 수 있다.
제2도전층(150)은 제1절연층(131)과 제2전극(246) 사이에 제2도전형 반도체층이 노출되는 영역인 제2이격거리에도 배치될 수 있다. 제2도전층(150)은 제2이격 거리에서 제2전극(246)의 측면과 상면 및 제1절연층(131)의 측면과 상면에 접할 수 있다.
또한, 제2 이격 거리 내에서 제2도전층(150)과 제2도전형 반도체층(127)이 접하여 쇼트키 접합이 형성되는 영역이 배치될 수 있으며, 쇼트키 접합을 형성함으로써 전류 분산이 용이해질 수 있다.
제2절연층(132)은 제2전극(246), 제2도전층(150)을 제1도전층(165)과 전기적으로 절연시킨다. 제1도전층(165)은 제2절연층(132)을 관통하여 제1전극(142)과 전기적으로 연결될 수 있다.
발광구조물(120)의 하부면과 리세스(128)의 형상을 따라 제1도전층(165)과 접합층(160)이 배치될 수 있다. 제1도전층(165)은 반사율이 우수한 물질로 이루어질 수 있다. 예시적으로 제1도전층(165)은 알루미늄을 포함할 수 있다. 제1도전층(165)이 알루미늄을 포함하는 경우, 활성층(126)에서 방출되는 광을 상부로 반사하는 역할을 하여 광 추출 효율을 향상할 수 있다.
접합층(160)은 도전성 재료를 포함할 수 있다. 예시적으로 접합층(160)은 금, 주석, 인듐, 알루미늄, 실리콘, 은, 니켈, 및 구리로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
기판(170)은 도전성 물질로 이루어질 수 있다. 예시적으로 기판(170)은 금속 또는 반도체 물질을 포함할 수 있다. 기판(170)은 전기 전도도 및/또는 열 전도도가 우수한 금속일 수 있다. 이 경우 반도체 소자 동작시 발생하는 열을 신속이 외부로 방출할 수 있다.
기판(170)은 실리콘, 몰리브덴, 실리콘, 텅스텐, 구리 및 알루미늄으로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금을 포함할 수 있다.
발광구조물(120)의 상면에는 요철이 형성될 수 있다. 이러한 요철은 발광구조물(120)에서 출사되는 광의 추출 효율을 향상시킬 수 있다. 요철은 자외선 파장에 따라 평균 높이가 다를 수 있으며, UV-C의 경우 300 nm 내지 800 nm 정도의 높이를 갖고, 평균 500nm 내지 600nm 정도의 높이를 가질 때 광 추출 효율이 향상될 수 있다.
도 6a 및 도 6b는 본 발명의 실시 예에 따른 반도체 소자의 평면도이다.
발광구조물(120)은 Al 조성이 높아지면, 발광구조물(120) 내에서 전류 확산 특성이 저하될 수 있다. 또한, 활성층(126)은 GaN 기반의 청색 발광 소자에 비하여 측면으로 방출하는 광량이 증가하게 된다(TM 모드). 이러한 TM모드는 자외선 반도체 소자에서 발생할 수 있다.
실시 예에 따르면, 자외선 영역의 파장대를 발광하는 GaN 반도체는 전류 확산을 위해 청색 발광하는 GaN 반도체에 비해 상대적으로 많은 개수의 리세스(128)를 형성하여 제1전극(142)을 배치할 수 있다.
도 6a를 참고하면, Al의 조성이 높아지면 전류 분산 특성이 악화될 수 있다. 따라서, 각각의 제1전극(142)에 인근지점에만 전류가 분산되며, 거리가 먼 지점에서는 전류밀도가 급격히 낮아질 수 있다. 따라서, 유효 발광 영역(P2)이 좁아질 수 있다. 유효 발광 영역(P2)은 전류 밀도가 가장 높은 제1전극(142)의 인근 지점에서의 전류 밀도를 기준으로 전류 밀도가 40%이하인 경계지점까지의 영역으로 정의할 수 있다. 예를 들어, 유효 발광 영역(P2)은 리세스(128)의 중심으로부터 40um 이내의 영역에서 주입 전류의 레벨, Al 조성에 따라 조절될 수 있다.
특히, 이웃한 제1전극(142) 사이인 저전류밀도영역(P3)은 전류밀도가 낮아서 발광에 거의 기여하지 못한다. 따라서, 실시 예는 전류밀도가 낮은 저전류밀도영역(P3)에 제1전극(142)을 더 배치하여 광 출력을 향상시킬 수 있다.
일반적으로 GaN 반도체층의 경우 상대적으로 전류 분산 특성이 우수하므로 리세스(128) 및 제1전극(142)의 면적을 최소화하는 것이 바람직하다. 리세스(128)와 제1전극(142)의 면적이 커질수록 활성층(126)의 면적이 작아지기 때문이다. 그러나, 실시 예의 경우 Al의 조성이 높아 전류 확산 특성이 상대적으로 떨어지므로 활성층(126)의 면적을 희생하더라도 제1전극(142)의 개수를 증가시켜 저전류밀도영역(P3)을 줄이는 것이 바람직할 수 있다.
도 6b를 참고하면, 리세스(128)의 개수가 48개인 경우에는 리세스(128)가 가로 세로 방향으로 일직선으로 배치되지 못하고, 지그재그로 배치될 수 있다. 이 경우 저전류밀도영역(P3)의 면적은 더욱 좁아져 대부분의 활성층이 발광에 참여할 수 있다. 리세스(128)의 개수가 70개 내지 110개가 되는 경우 전류가 더 효율적으로 분산되어 동작 전압이 더 낮아지고 광 출력은 향상될 수 있다. UV-C를 발광하는 반도체 소자에서는 리세스(128)의 개수가 70개보다 적을 경우 전기적 광학적 특성이 저하될 수 있고, 110개보다 많을 경우 전기적 특성은 향상될 수 있지만 발광층의 부피가 줄어들어 광학적 특성이 저하될 수 있다.
복수 개의 제1전극(142)이 제1도전형 반도체층(122)과 접촉하는 제1면적은 발광구조물(120)의 수평방향 최대 단면적의 7.4% 이상 20% 이하, 또는 10% 이상 20%이하일 수 있다. 제1면적은 각각의 제1전극(142)이 제1도전형 반도체층(122)과 접촉하는 면적의 합일 수 있다.
복수 개의 제1전극(142)의 제1면적이 7.4% 미만인 경우에는 충분한 전류 확산 특성을 가질 수 없어 광 출력이 감소하며, 20%를 초과하는 경우에는 활성층 및 제2전극의 면적이 과도하게 감소하여 동작 전압이 상승하고 광 출력이 감소하는 문제가 있다.
또한, 복수 개의 리세스(128)의 총면적은 발광구조물(120)의 수평방향 최대 단면적의 13% 이상 30% 이하일 수 있다. 리세스(128)의 총면적이 상기 조건을 만족하기 못하면 제1전극(142)의 총면적을 7.4% 이상 20% 이하로 제어하기 어렵다. 또한, 동작 전압이 상승하고 광 출력이 감소하는 문제가 있다.
제2전극(246)이 제2도전형 반도체층(126)과 접촉하는 제2면적은 발광구조물(120)의 수평방향 최대 단면적의 35% 이상 70% 이하일 수 있다. 제2면적은 제2전극(246)이 제2도전형 반도체층(126)과 접촉하는 총면적일 수 있다.
제2면적이 35% 미만인 경우에는 제2전극의 면적이 과도하게 작아져 동작 전압이 상승하고, 홀의 주입 효율이 떨어지는 문제가 있다. 제2면적이 70%를 초과하는 경우에는 제1면적을 효과적으로 넓힐 수 없어 전자의 주입 효율이 떨어지는 문제가 있다.
제1면적과 제2면적은 반비례 관계를 갖는다. 즉, 제1전극의 개수를 늘리기 위해서 리세스의 개수를 늘리는 경우 제2전극의 면적이 감소하게 된다. 광 출력을 높이기 위해서는 전자와 홀의 분산 특성이 균형을 이루어야 한다. 따라서, 제1면적과 제2면적의 적정한 비율을 정하는 것이 중요하다.
복수 개의 제1전극이 제1도전형 반도체층에 접촉하는 제1면적과 제2전극이 제2도전형 반도체층에 접촉하는 제2면적의 비(제1면적:제2면적)는 1:3 내지 1:10일 수 있다.
면적비가 1:10보다 커지는 경우에는 제1면적이 상대적으로 작아 전류 분산 특성이 악화될 수 있다. 또한, 면적비가 1:3보다 작아지는 경우 상대적으로 제2면적이 작아지는 문제가 있다.
도 7은 광흡수층, 및 중간층이 형성된 발광구조물을 개념도이고, 도 8은 벌크 구조를 갖는 광흡수층의 단면 사진이고, 도 9는 초격자 구조를 갖는 광흡수층의 단면 사진이고, 도 10은 기판을 분리하는 과정을 설명하기 위한 도면이고, 도 11은 발광구조물을 식각하는 과정을 설명하기 위한 도면이고, 도 12는 제조된 반도체 소자를 보여주는 도면이다.
도 7을 참고하면, 성장기판(121) 상에 버퍼층(122), 광흡수층(123), 제1-1도전형 반도체층(124a), 중간층(125), 제1-2도전형 반도체층(124b), 활성층(126), 제2도전형 반도체층(127)을 순차로 형성할 수 있다.
광흡수층(123)은 알루미늄 조성이 낮은 제1광흡수층(123a) 및 알루미늄 조성이 높은 제2광흡수층(123b)을 포함한다. 제1광흡수층(123a)과 제2광흡수층(123b)은 교대로 복수 개가 배치될 수 있다.
제1광흡수층(123a)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 제1광흡수층(123a)은 LLO 공정시 레이저를 흡수하여 분리되는 역할을 수행할 수 있다. 따라서, 성장기판을 제거할 수 있다.
제1광흡수층(123a)의 두께와 알루미늄 조성은 246nm의 파장을 갖는 레이저를 흡수하기 위해 적절히 조절될 수 있다. 제1광흡수층(123a)의 알루미늄 조성은 20% 내지 50%이고, 두께는 1nm 내지 10nm일 수 있다. 예시적으로 제1광흡수층(123a)은 AlGaN일 수 있으나 이에 한정하지 않는다. 그러나, 반드시 이에 한정하는 것은 아니고, 사용하는 레이저를 흡수할 수 있도록 알루미늄 조성과 두께는 적절히 조절될 수 있다.
제2광흡수층(123b)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 높을 수 있다. 제2광흡수층(123b)은 제1광흡수층(123a)에 의해 낮아진 알루미늄 조성을 높여 광흡수층(123) 위에 성장하는 제1도전형 반도체층(124)의 결정성을 향상시킬 수 있다.
예시적으로 제2광흡수층(123b)의 알루미늄 조성은 60% 내지 100%이고, 두께는 0.1nm 내지 2.0nm일 수 있다. 제2광흡수층(123b)은 AlGaN 또는 AlN일 수도 있다.
246nm의 파장의 레이저를 흡수하기 위해, 제1광흡수층(123a)의 두께는 제2광흡수층(123b)의 두께보다 두꺼울 수 있다. 제1광흡수층(123a)의 두께는 1nm 내지 10nm일 수 있고, 제2광흡수층(123b)의 두께는 0.5nm 내지 2.0nm일 수 있다.
제1광흡수층(123a)과 제2광흡수층(123b)의 두께비는 2:1 내지 6:1일 수 있다. 두께비가 2:1보다 작은 경우 제1광흡수층(123a)이 얇아져 레이저를 충분히 흡수하기 어렵고, 두께비가 6:1보다 큰 경우 제2광흡수층(123b)이 너무 얇아져 광흡수층의 알루미늄 전체 조성이 낮아지는 문제가 있다.
광흡수층(123)의 전체 두께는 100nm보다 크고 400nm보다 작을 수 있다. 두께가 100nm보다 작은 경우 제1광흡수층(123a)의 두께가 얇아져 246nm 레이저를 충분히 흡수하기 어려운 문제가 있으며, 두께가 400nm보다 커지는 경우 알루미늄 조성이 전체적으로 낮아져 결정성이 악화되는 문제가 있다.
실시 예에 따르면, 초격자 구조의 광흡수층(123)을 형성하여 결정성을 향상시킬 수 있다. 이러한 구성에 의하여 광흡수층(123)은 성장기판(121)과 발광구조물(120) 사이의 격자 부정합을 완화하는 버퍼층으로 기능할 수 있다. 도 8에 비해 도 9의 광흡수층(123)의 표면까지 전이된 결정 결함(검은색 도트)이 상대적으로 줄어들어 결정성이 더 우수한 것을 알 수 있다.
중간층(125)은 제1도전형 반도체층(124)과 활성층(126) 사이, 또는 제1도전형 반도체층(124)의 내부에 배치될 수 있다. 중간층(125)은 제1도전형 반도체층(124)보다 알루미늄 조성이 낮은 제1중간층(125a) 및 제1도전형 반도체층(124)보다 알루미늄 조성이 높은 제2중간층(125b)을 포함한다.
제1중간층(125a)의 알루미늄 조성은 제1도전형 반도체층(124)의 알루미늄 조성보다 낮을 수 있다. 제1중간층(125a)은 LLO 공정시 광흡수층(123)을 투과하여 광흡수층(123)의 상부에 배치되는 반도체층에 조사되는 레이저를 흡수하여 활성층(126)의 손상을 방지하는 역할을 수행할 수 있다. 따라서, 광 출력 및 전기적 특성이 향상될 수 있다. 중간층(125)의 구성은 도 2에서 설명한 구조가 모두 적용될 수 있다.
도 10을 참고하면, 성장기판(121)을 제거하는 단계는 성장기판(121) 측에서 레이저(L1)를 조사하여 성장기판(121)을 분리할 수 있다. 레이저(L1)는 제1광흡수층(123a)이 흡수할 수 있는 파장대를 가질 수 있다. 일 예로, 레이저는 248nm 파장대를 갖는 KrF 레이저일 수 있으나 반드시 이에 한정하지 않는다.
성장기판(121), 제2광흡수층(123b)은 에너지 밴드갭이 커서 레이저(L1)를 흡수하지 않는다. 그러나, 알루미늄 조성이 낮은 제1광흡수층(123a)은 레이저(L1)를 흡수하여 분해될 수 있다. 따라서, 성장기판(121)과 함께 분리될 수 있다.
이때, 레이저의 일부가 광흡수층(123)을 투과하여 활성층(126)에 인가되면 발광구조물(120)에 데미지가 발생하여 광 출력이 감소할 수 있다. 따라서, 실시 예에 따르면 제1도전형 반도체층(124)과 활성층(126) 사이에 중간층(125)이 배치되어 광흡수층(123)을 투과한 레이저를 흡수할 수 있다.
이때, 레이저는 대부분 광흡수층에 흡수되므로 중간층(125)을 분리시킬 만큼의 에너지가 없다. 따라서, 중간층(125)은 레이저를 흡수하여도 분리되지 않을 수 있다. 또한, 중간층(125)이 레이저를 흡수하여 분리되지 않도록 광흡수층(123)의 두께 또는 레이저의 출력을 조절할 수 있다.
이후, 제1도전형 반도체층(124a)에 잔존하는 광흡수층(123-2)은 레벨링에 의해 제거될 수 있다.
도 11을 참고하면, 제2도전형 반도체층(127)상에 제2도전층(150)을 형성한 후 발광구조물(120)의 제1도전형 반도체층(124) 일부까지 관통하는 리세스(128)를 복수 개 형성할 수 있다. 이후, 절연층(130)을 리세스(128)의 측면 및 제2도전형 반도체층(127)상에 형성할 수 있다. 이후, 리세스(128)에 의해 노출된 제1도전형 반도체층(124b)에 제1전극(142)을 형성할 수 있다.
도 12를 참고하면, 제1도전층(165)은 절연층(130)의 하부에 형성될 수 있다. 제1도전층(165)은 절연층(130)에 의해 제2도전층(150)과 전기적으로 절연될 수 있다.
이후, 제1도전층(165)의 하부에 도전성 기판(170)을 형성하고, 메사 식각에 의해 노출된 제2도전층(150)상에는 제2전극패드(166)를 형성할 수 있다.
반도체 소자는 패키지로 구성되어, 수지(resin)나 레지스트(resist)나 SOD 또는 SOG의 경화용으로 사용될 수 있다. 또는, 반도체 소자는 치료용 의료용으로 사용되거나 공기 청정기나 정수기 등의 살균에 사용될 수도 있다.
도 13을 참고하면, 반도체 소자 패키지는 홈(2a)이 형성된 몸체(2), 몸체(2)에 배치되는 반도체 소자(1), 및 몸체(2)에 배치되어 반도체 소자(1)와 전기적으로 연결되는 한 쌍의 리드 프레임(3, 4)을 포함할 수 있다.
몸체(2)는 자외선 광을 반사하는 재질 또는 코팅층을 포함할 수 있다. 또한, 반도체 소자(1)를 덮는 몰드부재(5)는 자외선 광을 투과하는 재질을 포함할 수 있다.
도 14는 실시 예에 따른 반도체 소자를 나타낸 단면도이고, 도 15는 도 1의 A 영역을 도시한 반도체 소자의 단면도이고, 도 16은 제2-2 도전형 반도체층 및 제2-3 도전형 반도체층의 도펀트 농도를 SIMS(Secondary-ion mass spectroscopy)로 분석한 도면이고, 도 17 및 도 18은 비교 예와 실시 예의 RSM DATA를 비교한 그래프이다.
도 14 및 도 15에 도시된 바와 같이, 실시 예의 반도체 소자는 반도체층 전위(dislocation)를 개선하여 결정성을 향상시킬 수 있다. 실시 예의 반도체 소자는 반도체층 간의 격자 상수 차이에 의한 전위를 개선하여 전체적으로 균일하 도펀트 농도를 유지하므로 발광 효율을 향상시킬 수 있다. 이를 위해 실시 예의 반도체 소자는 전위를 개선하는 발광구조물(210)를 포함할 수 있다.
실시 예는 200㎚~400㎚ 파장대를 갖는 자외선 발광소자(200)를 일 예로 설명하도록 한다.
발광소자(200)는 기판(201), 발광구조물(210), 제1 및 제2 전극(251, 253)을 포함할 수 있다.
발광구조물(210)은 기판(201) 상에 AlN 템플릿(Template, 211), 제1 도전형 반도체층(212), 활성층(214), EBL(electron blocking layer, 230), 제2-1 도전형 반도체층(216a), 제2-2 도전형 반도체층(218a), 제2-3 도전형 반도체층(218b)를 포함할 수 있다. 이때, 제2-1 도전형 반도체층은 제2 도전형 제1반도체층으로, 제2-2 도전형 반도체층은 제2 도전형 제2 반도체층으로, 제2-3 도전형 반도체층은 제2 도전형 제3반도체층으로 명명될 수 있다.
기판(201)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일 수 있다. 예를 들어, 기판(201)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203
중 적어도 하나를 사용할 수 있다. 기판(201) 위에는 요철 구조가 형성될 수 있으며, 이에 대해 한정되는 것은 아니다.
AlN 템플릿(211)은 기판(201) 위에 형성될 수 있다. AlN 템플릿(211)은 버퍼 기능을 포함할 수 있다. AlN 템플릿(211)은 AlN 템플릿(211) 위에 형성되는 발광구조물(210)의 재료와 기판(201)의 격자 부정합을 완화시켜 줄 수 있으며, AlN 템플릿(211)은 AlN외에 3족-5족 또는 2-6족 화합물 반도체 예컨대, GaN, InN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다.
AlN 템플릿(211)은 기판(201)상에 성장되어 이후 성장되는 AlGaN 계열 반도체층들의 격자 상수 차이에 의한 결함을 개선할 수 있다. AlN 템플릿(211)은 fully-strain 에피 구조를 가질 수 있고, 이로 인해 자외선 파장의 반도체층 성장에서 발광 효율을 향상시킬 수 있다. 즉, AlN 템플릿(211)은 이후 성장되는 AlGaN 계열 반도체층들의 결정성을 향상시켜 자외선 발광소자(200)의 발광 효율을 향상시킬 수 있다.
제1 도전형 반도체층(212)은 반도체 화합물, 예컨대 3족-5족 또는 2족-6족의 화합물 반도체 중 적어도 하나로 구현될 수 있다. 제1 도전형 반도체층(212)은 단층 또는 다층으로 형성될 수 있다. 제1 도전형 반도체층(212)은 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 제1 도전형 반도체층(212)이 n형 반도체층인 경우, n형 도펀트를 포함할 수 있다. 예컨대 n형 도펀트는 Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
실시 예의 제1 도전형 반도체층(212)은 AlxGa1
-
xN (0<x<1)의 조성식을 갖는 반도체 물질을 포함할 수 있으나, 이에 한정되는 것은 아니다. 예컨대 제1 도전형 반도체층(212)은 AlGaP, InGaP, AlInGaP, InP, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP 중 어느 하나 이상으로 형성될 수 있다.
활성층(214)은 제1 도전형 반도체층(212) 상에 배치될 수 있다. 활성층(214)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다. 활성층(214)은 제1 도전형 반도체층(212)을 통해서 주입되는 전자(또는 정공)와 제2-1 도전형 반도체층(216a)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층(214)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
활성층(214)는 화합물 반도체로 구성될 수 있다. 활성층(214)는 예로서 3족-5족 또는 2-6족 등의 화합물 반도체중에서 적어도 하나로 구현될 수 있다. 활성층(214)은 양자우물과 양자벽을 포함할 수 있다. 활성층(214)이 다중 양자 우물 구조로 구현된 경우, 양자우물과 양자벽이 교대로 배치될 수 있다. 양자우물과 양자벽은 AlGaN/GaN, AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, InAlGaN/GaN, GaAs/AlGaAs, InGaAs/AlGaAs, GaP/AlGaP, InGaP AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다.
EBL(230)은 활성층(214) 상에 배치될 수 있다. 실시 예의 EBL(230)은 단층 또는 다층 구조일 수 있다. EBL(230)은 3족-5족 또는 2-6족 화합물 반도체중에서 적어도 하나로 구현될 수 있으나 이에 한정되지 않는다. EBL(230)은 제2 도전형 도펀트가 도핑될 수 있다. 예컨대 EBL(230)이 p형 반도체층인 경우, 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
제2 도전형 반도체층(216, 218a, 218b)은 제2-1 도전형 반도체층(216), 제2-1 도전형 반도체층(218a), 제2-1 도전형 반도체층(218b)을 포함할 수 있다.
제2-1 도전형 반도체층(216)은 EBL(230) 상에 배치될 수 있다. 제2-1 도전형 반도체층(216)은 3족-5족 또는 2-6족 등의 화합물 반도체로 구현될 수 있다. 예컨대 제2-1 도전형 반도체층(216)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다. 실시 예의 제2-1 도전형 반도체층(216)은 AlGaN계 반도체 물질을 포함할 수 있다. 제2-1 도전형 반도체층(216)은 제2 도전형 도펀트가 도핑될 수 있다. 제2-1 도전형 반도체층(216)이 p형 반도체층인 경우, 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216) 상에 배치될 수 있다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위(D)를 벤딩시키는 기능을 포함할 수 있다. 이를 위해 제2-2 도전형 반도체층(218a)은 3차원(3 dimensional)으로 성장될 수 있다. 제2-2 도전형 반도체층(218a)은 이후에 성장되는 제2-3 도전형 반도체층(218b)의 버퍼 기능을 가질 수 있다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위(D)를 벤딩시켜 결함을 개선함으로써, EBL(230)으로부터 활성층(214)으로 제2 도전형 도펀트의 뒤로 확산(back diffusion)을 개선할 수 있다. 도 16을 참조하면 실시 예는 제2-1 도전형 반도체층(216)의 제2 도전형 도펀트(Mg)가 일정하게 도핑될 수 있다. 즉, 실시 예는 제2-1 도전형 반도체층(216)의 안정적인 도핑을 구현할 수 있다.
전위(D)의 벤딩은 제2-1 도전형 반도체층(216)으로부터의 전위(D)의 시작지점(DS)과 끝지점(DT)을 연결하는 직선과 제2-1 도전형 반도체층(216)의 상부면이 이루는 각도(θ)가 45º 이하일 수 있다. 여기서, 직선과 제2-2 도전형 반도체층(218a)의 상부면이 이루는 각도(θ)가 45Ω 초과일 경우, 제2-2 도전형 반도체층(218a)으로부터 제2-3 도전형 반도체층(218b)으로 전위(D)가 전파될 수 있다.
제2-2 도전형 반도체층(218a)은 제2 도전형 도펀트를 포함하는 GaN일 수 있으나, 이에 한정되는 것은 아니다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)로부터의 전위(D)를 3D 성장으로 벤딩시킬 수 있다. 즉, 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위(D)를 C-면 방향에서 A-면 방향으로 벤딩시킴으로써, 제2-3 도전형 반도체층(218b)으로의 전위(D) 전파를 개선할 수 있고, 제2-3 도전형 반도체층(218b)과의 계면에서 TDD(Threading dislocation Density)를 줄일 수 있다.
구체적으로 도 17 및 도 18를 참조하면, 도 17은 제2-2 도전형 반도체층(218a)이 생략된 비교 예의 RSM DATA이고, 도 18은 제2-2 도전형 반도체층(218a)를 포함한 실시 예의 RSM DATA이다. 여기서, RSM DATA는 스트레인 분산 변수(strain relaxation parameter)로써, 비교 예는 AlGaN의 제2-1 도전형 반도체층과 2D 모드 P-GaN을 나타내고, 실시 예는 AlGaN의 제2-1 도전형 반도체층(216)과 3D 모드 P-GaN의 제2-2 도전형 반도체층(218a)을 나타낸다.
여기서, x축은 A-면 격자상수 차이와 반비례(2/A-면 격자상수 차이)하고, Y축은 C-면 격자상수 차이와 반비례(2/C-면 격자상수 차이)하다.
실시 예는 비교 예보다 x축 방향으로 AlGaN의 제2-1 도전형 반도체층(216)과 3D 모드 P-GaN의 제2-2 도전형 반도체층(218a)의 수평 불일치(parallel mismatch)를 10%이상 줄일 수 있다. 수평 불일치는 제2-1 도전형 반도체층(216) 및 3D 모드 P-GaN의 제2-2 도전형 반도체층(218a)의 성장 시에 스트레인(strain)을 유지되는 정도를 나타내는 스트레인 분산 변수로써, 전위(D) 및 결함을 개선할 수 있다. 여기서, 스트레인(strain)는 x축의 변화량이 적을수록 스트레인(strain)의 변화를 최소화할 수 있고, 스트레인(strain) 변화의 최소화는 스트레인(strain)이 유지됨 또는 스트레인(strain)이 풀리지 않음으로 정의할 수 있다. 스트레인(strain)의 유지는 AlGaN의 제2-1 도전형 반도체층(216)과 3D 모드 P-GaN의 제2-2 도전형 반도체층(218a) 사이의 A-면 격자상수 차이가 작아질 수 있다.
제2-2 도전형 반도체층(218a)의 두께는 10㎚ 내지 50㎚일 수 있다. 제2-2 도전형 반도체층(218a)의 두께가 10㎚ 미만인 경우, 제2-1 도전형 반도체층(216)으로부터 전위(D)의 벤딩이 어렵고, 전위(D)는 제2-3 도전형 반도체층(218b)으로 전파될 수 있다. 여기서, 제2-3 도전형 반도체층(218b)으로 전파된 전위(D)는 V핏(V-pits)이나 크랙이 발생할 수 있다. V핏이나 크랙은 누설전류를 발생시킬 수 있다. 제2-2 도전형 반도체층(218a)의 두께가 50㎚ 초과인 경우, 아일랜드 형태로 3D 성장되는 제2-2 도전형 반도체층(218a) 내부로부터 결함이 발생할 수 있다.
제2-2 도전형 반도체층(218a)과 제2-3 도전형 반도체층(218b) 사이의 경계면 거칠기(RMS: root mean square)는 1.0㎚이상, 예컨대 1.0㎚~5.0㎚일 수 있다. 실시 예의 제2-2 도전형 반도체층(218a)은 아일랜드 형태로 3D 성장되어 1.0㎚이상의 제2-2 도전형 반도체층(218a)과 제2-3 도전형 반도체층(218b) 사이의 경계면 거칠기(RMS)를 포함할 수 있다.
제2-2 도전형 반도체층(218a)의 도핑 농도는 제2-1 도전형 반도체층(216) 및 EBL(230)과 대응될 수 있다. 예컨대 제2-2 도전형 반도체층(218a)의 도핑 농도는 1E19 내지 5E19일 수 있다. 제2-2 도전형 반도체층(218a)는 제2-3 도전형 반도체층(218b)보다 낮은 도핑 농도를 가질 수 있다. 제2-3 도전형 반도체층(218b)의 도핑 농도는 제2-2 도전형 반도체층(218a), 제2-1 도전형 반도체층(216) 및 EBL(230) 보다 높을 수 있다. 예컨대 제2-3 도전형 반도체층(218b)의 도핑 농도는 5E19 내지 1E20일 수 있다. 제2-3 도전형 반도체층(218b)는 제2-2 도전형 반도체층(218a), 제2-1 도전형 반도체층(216) 및 EBL(230) 보다 높은 도핑 농도를 포함하여, 제2 전극(253)과의 오믹 접촉을 구현할 수 있다.
제2-3 도전형 반도체층(218b)은 제2-2 도전형 반도체층(218a) 상에 배치될 수 있다. 제2-3 도전형 반도체층(218b)은 제2-1 도전형 반도체층(216)과 제2 전극(253) 오믹을 위해 제2 도전형 도펀트를 포함하는 GaN일 수 있으나, 이에 한정되는 것은 아니다. 제2-3 도전형 반도체층(218b)은 제2 전극(253)과 직접 접하는 표면이 평평할 수 있다. 이를 위해 제2-3 도전형 반도체층(218b)은 3D(3 dimensional) 모드 성장 방법으로 형성될 수 있다. 도 19는 실시 예의 제2-3 도전형 반도체층(218b)의 표면을 도시한 도면이다. 실시 예의 제2-3 도전형 반도체층(218b)은 100㎚ 내지 300㎚의 두께를 가질 수 있다.
제2-3 도전형 반도체층(218b)의 두께가 100㎚ 미만인 경우, 제2 전극(253)과 오믹 접촉이 어려울 수 있고, 제2-3 도전형 반도체층(218b)의 두께가 300㎚ 초과인 경우, 제2-3 도전형 반도체층(218b) 내부에서 새로운 결함 발생할 수 있다.
제2-3 도전형 반도체층(218b)은 표면 거칠기(RMS)를 1㎚이하, 예컨대 0.1㎚~1.0㎚일 수 있다. 실시 예의 제2-2 도전형 반도체층(216b)은 1㎚이하의 표면 거칠기(RMS)를 포함하여 이후 형성되는 제2 전극(253)과의 접촉 신뢰도를 향상시킬 수 있다. 전술한 제2-1 내지 제2-3 도전형 반도체층의 구성은 도 1 및 도 2의 실시 예에서도 그대로 적용될 수 있다.
여기서, 제1 도전형 반도체층(212)은 n형 반도체층, 제2-1 도전형 반도체층(216), 제2-2 도전형 반도체층(218a) 및 제2-3 도전형 반도체층(218b)은 p형 반도체층으로 설명하고 있지만, 이에 한정되는 것은 아니다. 발광구조물(210)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
제1 전극(251)은 제1 도전형 반도체층(212) 상에 배치될 수 있다. 제1 전극(251)은 제1 도전형 반도체층(212)와 전기적으로 연결될 수 있다. 제1 전극(251)은 제2 전극(253)과 전기적으로 절연될 수 있다. 제1 전극(251)은 전도성 산화물, 전도성 질화물 또는 금속일 수 있다. 예컨대 제1 전극(251)은 ITO(Indium Tin Oxide), ITON(ITO Nitride), IZO(Indium Zinc Oxide), IZON(IZO Nitride), AZO(Aluminum Zinc Oxide), AGZO(Aluminum Gallium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminum Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), ATO(Antimony Tin Oxide), GZO(Gallium Zinc Oxide), IZON(IZO Nitride), ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
제2 전극(253)은 제2-3 도전형 반도체층(218b) 상에 배치될 수 있다. 제2 전극(253)은 제2-3 도전형 반도체층(218b)과 오믹 접촉될 수 있다. 제2 전극(253)은 전도성 산화물, 전도성 질화물 또는 금속일 수 있다. 예컨대 제2 전극(253)은 ITO(Indium Tin Oxide), ITON(ITO Nitride), IZO(Indium Zinc Oxide), IZON(IZO Nitride), AZO(Aluminum Zinc Oxide), AGZO(Aluminum Gallium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminum Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), ATO(Antimony Tin Oxide), GZO(Gallium Zinc Oxide), IZON(IZO Nitride), ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
실시 예는 3D(3 dimensional) 성장된 제2-2 도전형 반도체층(218a)에 의해 제2-1 도전형 반도체층(216)으로부터의 전위(D)를 벤딩시켜 결함을 개선할 수 있다. 즉, 실시 예는 제2-2 도전형 반도체층(218a)은 이후에 성장되는 제2-3 도전형 반도체층(218b)으로 전위(D)가 전파되지 않도록 함으로써, 제2-2 도전형 반도체층(218a)과 제2-3 도전형 반도체층(218b) 계면에서 TDD(Threading dislocation Density)를 줄일 수 있다.
실시 예는 제2-1 도전형 반도체층(216) 상에 3D 모드 성장된 제2-2 도전형 반도체층(218a)가 배치되어 제2-1 도전형 반도체층(216)으로부터의 전위(D)를 벤딩시켜 결정성을 향상시킬 수 있다.
실시 예는 전위(D)의 전파를 개선함으로써, 최종 반도체층의 TDD(Threading dislocation Density)를 줄여 발광효율을 개선할 수 있다.
실시 예는 제2-1 도전형 반도체층(216), EBL(230)의 제2 도전형 도펀트의 도핑 농도를 일정하게 유지함으로써, EBL로부터 활성층으로의 p 도펀트의 뒤로 확산(back diffusion)을 개선하여 광 추출 효율을 향상시킬 수 있다.
실시 예는 전위(D)나 결함을 개선하여 누설전류에 의한 전기적 특성저하를 개선할 수 있다.
실시 예는 전위(D)나 결함을 개선하여 자외선 발광소자의 fully TE 편광을 구현할 수 있다.
도 20 내지 도 23은 실시 예의 반도체 소자의 제조방법을 도시한 단면도이다.
도 20 및 도 21을 참조하면, 실시 예의 발광소자의 제조방법은 먼저, 기판(201) 상에 AlN 템플릿(211), 제1 도전형 반도체층(212), 활성층(214), EBL(230), 제2-1 도전형 반도체층(216), 제2-2 도전형 반도체층(218a) 및 제2-3 도전형 반도체층(218b)이 형성될 수 있다.
기판(201), AlN 템플릿(211), 제1 도전형 반도체층(212), 활성층(214), EBL(230), 제2-1 도전형 반도체층(216)의 재료 및 구성간의 연결관계는 도 14 및 도 15의 기술적 특징을 채용할 수 있다.
AlN 템플릿(211), 제1 도전형 반도체층(212), 활성층(214), EBL(230), 제2-1 도전형 반도체층(216) 및 제2-2 도전형 반도체층(218a)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216) 상에 형성될 수 있다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위를 벤딩시키는 기능을 포함할 수 있다. 이를 위해 제2-2 도전형 반도체층(218a)은 3D 성장될 수 있다. 제2-2 도전형 반도체층(218a)은 이후에 성장되는 제2-3 도전형 반도체층(218b)의 버퍼 기능을 가질 수 있다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위를 벤딩시켜 결함을 개선함으로써, EBL(230)으로부터 활성층(214)으로 제2 도전형 도펀트의 뒤로 확산(back diffusion)을 개선할 수 있다. 실시 예는 제2-1 도전형 반도체층(216)의 안정적인 도핑을 구현할 수 있다.
제2-2 도전형 반도체층(218a)은 제2 도전형 도펀트를 포함하는 GaN일 수 있으나, 이에 한정되는 것은 아니다. 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)로부터의 전위를 3D 성장으로 벤딩시킬 수 있다. 즉, 제2-2 도전형 반도체층(218a)은 제2-1 도전형 반도체층(216)으로부터의 전위를 C-면 방향에서 A-면 방향으로 벤딩시킴으로써, 제2-3 도전형 반도체층(218b)으로의 전위 전파를 개선할 수 있고, 제2-3 도전형 반도체층(218b)과의 계면에서 TDD(Threading dislocation Density)를 줄일 수 있다.
제2-2 도전형 반도체층(218a)의 두께는 10㎚ 내지 50㎚일 수 있다. 제2-2 도전형 반도체층(218a)의 두께가 10㎚ 미만인 경우, 제2-1 도전형 반도체층(216)으로부터 전위의 벤딩이 어렵고, 전위는 제2-3 도전형 반도체층(218b)으로 전파될 수 있다. 여기서, 제2-3 도전형 반도체층(218b)으로 전파된 전위는 V핏이나 크랙이 발생할 수 있다. V핏이나 크랙은 누설전류를 발생시킬 수 있다. 제2-2 도전형 반도체층(218a)의 두께가 50㎚ 초과인 경우, 아일랜드 형태로 3D 성장되는 제2-2 도전형 반도체층(218a) 내부로부터 결함이 발생할 수 있다.
제2-2 도전형 반도체층(218a)과 제2-3 도전형 반도체층(218b) 사이의 경계면 거칠기(RMS: root mean square)는 1.0㎚이상, 예컨대 1.0㎚~5.0㎚일 수 있다. 실시 예의 제2-2 도전형 반도체층(218a)은 아일랜드 형태로 3D 성장되어 1.0㎚이상의 제2-2 도전형 반도체층(218a)과 제2-3 도전형 반도체층(218b) 사이의 경계면 거칠기(RMS)를 포함할 수 있다.
제2-2 도전형 반도체층(218a)의 도핑 농도는 제2-1 도전형 반도체층(216) 및 EBL(230)과 대응될 수 있다. 예컨대 제2-2 도전형 반도체층(218a)의 도핑 농도는 1E19 내지 5E19일 수 있다. 제2-2 도전형 반도체층(218a)는 제2-3 도전형 반도체층(218b)보다 낮은 도핑 농도를 가질 수 있다. 제2-3 도전형 반도체층(218b)의 도핑 농도는 제2-2 도전형 반도체층(218a), 제2-1 도전형 반도체층(216) 및 EBL(230) 보다 높을 수 있다. 예컨대 제2-3 도전형 반도체층(218b)의 도핑 농도는 5E19 내지 1E20일 수 있다. 제2-3 도전형 반도체층(218b)는 제2-2 도전형 반도체층(218a), 제2-1 도전형 반도체층(216) 및 EBL(230) 보다 높은 도핑 농도를 포함하여, 제2 전극(253)과의 오믹 접촉을 구현할 수 있다.
제2-3 도전형 반도체층(218b)은 제2-2 도전형 반도체층(218a) 상에 배치될 수 있다. 제2-3 도전형 반도체층(218b)은 제2-1 도전형 반도체층(216)과 제2 전극(253) 오믹을 위해 제2 도전형 도펀트를 포함하는 GaN일 수 있으나, 이에 한정되는 것은 아니다. 제2-3 도전형 반도체층(218b)은 제2 전극(253)과 직접 접하는 표면이 평평할 수 있다. 이를 위해 제2-3 도전형 반도체층(218b)은 2D 성장 방법으로 형성될 수 있다. 도 19는 실시 예의 제2-3 도전형 반도체층(218b)의 표면을 도시한 도면이다. 실시 예의 제2-3 도전형 반도체층(218b)은 100㎚ 내지 300㎚의 두께를 가질 수 있다.
제2-3 도전형 반도체층(218b)의 두께가 100㎚ 미만인 경우, 제2 전극(253)과 오믹 접촉이 어려울 수 있고, 제2-3 도전형 반도체층(218b)의 두께가 300㎚ 초과인 경우, 제2-3 도전형 반도체층(218b) 내부에서 새로운 결함 발생할 수 있다.
제2-3 도전형 반도체층(218b)은 표면 거칠기(RMS)를 1㎚이하, 예컨대 0.1㎚ 내지 1.0㎚일 수 있다. 실시 예의 제2-2 도전형 반도체층(216b)은 1㎚이하의 표면 거칠기(RMS)를 포함하여 이후 형성되는 제2 전극(253)과의 접촉 신뢰도를 향상시킬 수 있다.
여기서, 제1 도전형 반도체층(212)은 n형 반도체층, 제2-1 도전형 반도체층(216), 제2-2 도전형 반도체층(218a) 및 제2-3 도전형 반도체층(218b)은 p형 반도체층으로 설명하고 있지만, 이에 한정되는 것은 아니다. 발광구조물(210)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
도 22를 참조하면, 제1 및 제2 전극(251, 253)은 발광구조물(210) 상에 형성될 수 있다. 발광구조물(210)은 메사 에칭을 통해서 제1 도전형 반도체층(212)의 일부가 활성층(214), EBL(230), 제2-1 도전형 반도체층(216), 제2-2 도전형 반도체층(218a) 및 제2-3 도전형 반도체층(218b)으로부터 노출될 수 있다.
제1 전극(251)은 노출된 제1 도전형 반도체층(212) 상에 형성될 수 있다. 제1 전극(251)은 제1 도전형 반도체층(212)과 전기적으로 연결될 수 있다. 제1 전극(251)은 제2 전극(253)과 전기적으로 절연될 수 있다.
제2 전극(253)은 제2-1 도전형 반도체층(216) 상에 형성될 수 있다. 제2 전극(253)은 제2-1 도전형 반도체층(216)와 전기적으로 연결될 수 있다.
제1 및 제2 전극(251, 253)은 전도성 산화물, 전도성 질화물 또는 금속일 수 있다. 예컨대 제1 및 제2 전극(251, 253)은 ITO(Indium Tin Oxide), ITON(ITO Nitride), IZO(Indium Zinc Oxide), IZON(IZO Nitride), AZO(Aluminum Zinc Oxide), AGZO(Aluminum Gallium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), IAZO(Indium Aluminum Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), IGTO(Indium Gallium Tin Oxide), ATO(Antimony Tin Oxide), GZO(Gallium Zinc Oxide), IZON(IZO Nitride), ZnO, IrOx, RuOx, NiO, Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
도 23을 참조하면, 실시 예는 제1 및 제2 전극(251, 253)이 하부에 배치되는 플립칩 구조일 수 있다. 제1 절연층(261)은 제1 및 제2 전극(251, 253)의 하부면 일부를 노출시키고, 발광구조물(210)과 상에 형성될 수 있다. 제1 절연층(261)은 제1 및 제2 전극(251, 253)이 배치된 발광구조물(210)의 아래와 접할 수 있다.
제1 절연층(261)으로부터 노출된 제1 및 제2 전극(251, 253)의 하부면 상에 제1 및 제2 연결전극(271, 273)이 형성될 수 있다. 제1 및 제2 연결전극(271, 273)은 도금공정으로 형성될 수 있으나, 이에 한정되는 것은 아니다. 제1 절연층(261)은 산화물 또는 질화물일 수 있다. 예컨대 제1 절연층(261)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택될 수 있다.
제1 및 제2 연결전극(271, 273)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, Hf 중 적어도 하나를 포함하는 금속 또는 합금일 수 있다. 제1 및 제2 연결전극(271, 273)은 금속 또는 합금과 ITO(Indium-Tin-Oxide), IZO(Indium-Zinc-Oxide), IZTO(Indium-Zinc-Tin-Oxide), IAZO(Indium-Aluminum-Zinc-Oxide), IGZO(Indium-Gallium-Zinc-Oxide), IGTO(Indium-Gallium-Tin-Oxide), AZO(Aluminum-Zinc-Oxide), ATO(Antimony-Tin-Oxide) 등의 투명 전도성 물질의 단층 또는 다층일 수 있다.
제2 절연층(263)은 제1 절연층(261) 아래에 형성될 수 있고, 제1 절연층(261)과 직접 접할 수 있다. 제2 절연층(263)은 제1 및 제2 연결전극(271, 273)의 하부를 노출시키고, 제1 및 제2 연결전극(271, 273)의 측부 상에 형성될 수 있다. 제2 절연층(263)은 실리콘 또는 에폭시와 같은 수지물 내에 열 확산제를 첨가하여 형성될 수 있다. 열 확산제는 Al, Cr, Si, Ti, Zn, Zr과 같은 물질을 갖는 산화물, 질화물, 불화물, 황화물 중 적어도 하나의 물질 예컨대, 세라믹 재질을 포함할 수 있다. 열 확산제는 소정 크기의 분말 입자, 알갱이, 필러(filler), 첨가제로 정의될 수 있다. 제2 절연층(263)은 생략 될 수도 있다.
제1 및 제2 패드(281, 283)은 제2 절연층(263)으로부터 노출된 제1 및 제2 연결전극(271, 273) 상에 형성될 수 있다. 제1 및 제2 패드(281, 283)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, Hf 중 적어도 하나를 포함하는 금속 또는 합금일 수 있다. 제1 및 제2 패드(281, 283)은 금속 또는 합금과 ITO(Indium-Tin-Oxide), IZO(Indium-Zinc-Oxide), IZTO(Indium-Zinc-Tin-Oxide), IAZO(Indium-Aluminum-Zinc-Oxide), IGZO(Indium-Gallium-Zinc-Oxide), IGTO(Indium-Gallium-Tin-Oxide), AZO(Aluminum-Zinc-Oxide), ATO(Antimony-Tin-Oxide) 등의 투명 전도성 물질의 단층 또는 다층일 수 있다.
실시 예는 제1 도전형 반도체층(212) 위에 배치된 기판(201)을 포함하고 있지만, 이에 한정되는 것은 아니다. 예컨대 기판(201)은 레이저 리프트 오프(LLO: Laser Lift Off) 공정에 의해 제거될 수 있다. 여기서, 레이저 리프트 오프 공정(LLO)은 기판(201)의 하부면에 레이저를 조사하여, 기판(201)과 발광구조물(210)을 서로 박리시키는 공정이다.
실시 예는 제2-1 도전형 반도체층(216) 상에 3D 모드로 성장된 제2-2 도전형 반도체층(218a)가 배치되어 제2-1 도전형 반도체층(216)으로부터의 전위를 벤딩시켜 결정성을 향상시킬 수 있다.
실시 예는 전위의 전파를 개선함으로써, 최종 반도체층의 TDD(Threading dislocation Density)를 줄여 발광효율을 개선할 수 있다.
실시 예는 제2-1 도전형 반도체층(216), EBL(230)의 제2 도전형 도펀트의 도핑 농도를 일정하게 유지함으로써, EBL로부터 활성층으로의 p 도펀트의 뒤로 확산(back diffusion)을 개선하여 광 추출 효율을 향상시킬 수 있다.
실시 예는 전위나 결함을 개선하여 누설전류에 의한 전기적 특성저하를 개선할 수 있다.
실시 예는 전위나 결함을 개선하여 자외선 발광소자의 fully TE 편광을 구현할 수 있다.
도 24는 실시 예에 따른 발광소자 패키지를 도시한 단면도이다.
도 24에 도시된 바와 같이, 실시 예의 발광소자 패키지(300)는 발광소자(200), 패키지 몸체(301), 방열 프레임(310), 보호소자(360), 제1 및 제2 리드프레임(320, 330)을 포함할 수 있다.
패키지 몸체(301)는 투광성 재질, 반사성 재질, 절연성 재질 중 적어도 하나를 포함할 수 있다. 패키지 몸체(301)는 발광소자(200)로부터 방출된 광에 대해, 반사율이 투과율보다 더 높은 물질을 포함할 수 있다. 패키지 몸체(301)는 수지 계열의 절연 물질일 수 있다. 예컨대 패키지 몸체(301)는 폴리프탈아미드(PPA: Polyphthalamide), 에폭시 또는 실리콘 재질과 같은 수지 재질, 실리콘(Si), 금속 재질, PSG(photo sensitive glass), 사파이어(Al2O3), 인쇄회로기판(PCB) 중 적어도 하나로 형성될 수 있다. 패키지 몸체(301)는 예컨대 탑뷰 형상이 정사각형 일 수 있으나, 이에 한정되는 것은 아니다. 패키지 몸체(301)의 탑뷰형상은 원형 또는 다각형 형상일 수 있다.
패키지 몸체(301)는 제1 및 제2 리드 프레임(320, 330)과 결합될 수 있다. 몸체(220)는 제1 및 제2 리드 프레임(320, 330)의 상부면 일부를 노출시키는 캐비티(303)를 포함할 수 있다. 캐비티(303)는 제1 리드 프레임(320)의 상부면 일부를 노출시킬 수 있고, 제2 리드 프레임(330)의 상부면 일부를 노출시킬 수 있다.
제1 및 제2 리드 프레임(320, 330)은 일정 간격 이격되어 패키지 몸체(301)와 결합될 수 있다. 제2 리드 프레임(330)은 발광소자(200) 및 보호소자(360)가 배치될 수 있고, 제1 리드 프레임(320)에는 발광소자(200)의 제1 와이어(200W1) 및 보호소자(360)의 와이어(360W)가 접속될 수 있으나, 이에 한정되는 것은 아니다. 제1 및 제2 리드 프레임(320, 330)은 도전성 물질을 포함할 수 있다. 예컨대 제1 및 제2 리드 프레임(320, 330)은 티타늄(Ti), 구리(Cu), 니켈(Ni), 금(Au), 크롬(Cr), 탄탈늄(Ta), 백금(Pt), 주석(Sn), 은(Ag), 인(P), 철(Fe), 주석(Sn), 아연(Zn), 알루미늄(Al) 중 적어도 하나를 포함할 수 있으며, 복수의 층으로 형성될 수 있다. 예컨대 실시 예의 제1 및 제2 리드 프레임(320, 330)은 구리(Cu)를 포함하는 베이스층과 베이스층을 덮는 은(Ag)을 포함하는 산화 방지층으로 구성될 수 있으나, 이에 한정되는 것은 아니다.
제2 리드 프레임(330)은 캐비티(303)의 중심영역에 노출되는 제1 리드부(331a), 제1 리드 프레임(320)과 대각선으로 대칭되어 제1 리드 프레임(320)의 형상과 대응되는 제2 리드부(331b), 보호소자(360)가 실장되는 캐비티(303)의 모서리 영역 및 대각선 모서리 영역에 배치된 제3 리드부(331c)를 포함할 수 있다. 제1 내지 제3 리드부(331a, 331b, 331c)는 캐비티(303) 바닥면에 노출되는 제2 리드 프레임(330)의 상부면으로 면적 및 너비를 포함하는 형상은 다양하게 변경될 수 있다.
제1 리드 프레임(320)은 제2 리드부(331b)와 대칭되는 대각선에 굴곡구조를 가질 수 있으나, 이에 한정되는 것은 아니다.
방열 프레임(310)은 제1 및 제2 방열전극(311, 313)을 포함하고, 제1 방열전극(311)은 제1 와이어(200W1)와 연결되는 제1 패드부(311a)를 포함하고, 제2 방열전극(313)은 제2 와이어(200W2)와 연결되는 제2 패드부(313a)를 포함할 수 있다.
발광소자(200)는 방열 프레임(310) 상에 실장될 수 있다. 실시 예에서는 방열 프레임(310)을 포함하는 발광소자 패키지를 한정하고 있지만, 방열 프레임(310)은 생략될 수 있다. 상시 방열 프레임(310)이 생략된 경우, 발광소자(200)는 패키지 몸체(301)상에 배치될 수도 있다. 발광소자(200)는 도 1 내지 도 23의 기술적 특징을 포함할 수 있다.
보호소자(360)는 제3 리드부(331c) 상에 배치될 수 있다. 보호소자(360)는 패키지 몸체(301)로부터 노출된 제2 리드 프레임(330)의 상부면 상에 배치될 수 있다. 보호소자(360)는 제너 다이오드, 사이리스터(Thyristor), TVS(Transient Voltage Suppression) 등일 수 있으나, 이에 한정되는 것은 아니다. 실시 예의 보호소자(360)는 ESD(Electro Static Discharge)로부터 발광소자(200)를 보호하는 제너 다이오드를 일 예로 설명하도록 한다. 보호소자(360)는 와이어를 통해서 제1 리드 프레임(310)과 연결될 수 있다.
실시 예의 발광소자 패키지는 반도체층 간의 격자상수 차이를 개선하는 발광소자(200)를 포함하여, 특히 자외선 발광소자의 fully TE 편광을 구현할 수 있다.
상술한 발광소자는 발광소자 패키지로 구성되어, 조명 시스템의 광원으로 사용될 수 있다. 발광소자 패키지는 예컨대 캐비티를 갖는 몸체와, 몸체에 결합된 리드전극을 포함할 수 있고, 발광소자는 몸체 상에 배치되어 리드전극과 전기적으로 연결될 수 있다.
발광소자는 예컨대 영상표시장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.
영상표시장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.
발광소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.
레이저 다이오드는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제1 도전형 반도체와 n-형의 제2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광도전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제1 도전형 반도체층과 활성층 및 제2 도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다. 이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (10)
- 제1도전형 반도체층,제2도전형 반도체층,상기 제1도전형 반도체층과 제2도전형 반도체층 사이에 배치되는 활성층, 및상기 제1도전형 반도체층과 상기 활성층 사이, 또는 상기 제1도전형 반도체층의 내부에 배치되는 중간층을 포함하는 발광구조물을 포함하고,상기 제1도전형 반도체층, 중간층, 활성층, 및 제2도전형 반도체층은 알루미늄을 포함하고,상기 중간층은 상기 제1도전형 반도체층보다 알루미늄 조성이 낮은 제1중간층을 포함하는 반도체 소자.
- 제1항에 있어서,상기 중간층은 상기 제1중간층, 및 상기 제1중간층보다 알루미늄 조성이 높은 제2중간층을 포함하고,상기 제2중간층의 알루미늄 조성은 상기 제1도전형 반도체층의 알루미늄 조성보다 높은 반도체 소자.
- 제2항에 있어서,상기 제1중간층과 제2중간층은 교대로 복수개 적층되고,상기 제1중간층의 두께는 상기 제2중간층의 두께보다 두꺼운 반도체 소자.
- 제3항에 있어서,상기 제1중간층과 제2중간층의 두께비는 2:1 내지 6:1이고,상기 중간층의 전체 두께는 50nm보다 크고 1000nm보다 작은 반도체 소자.
- 제2항에 있어서,상기 제1중간층의 알루미늄 조성은 30% 내지 60%이고,상기 제2중간층의 알루미늄 조성은 60% 내지 100%인 반도체 소자.
- 제1항에 있어서,상기 제1도전형 반도체층은 제1-1도전형 반도체층, 및 제1-2도전형 반도체층을 포함하고,상기 중간층은 제1-1도전형 반도체층, 및 제1-2도전형 반도체층 사이에 배치되는 반도체 소자.
- 제6항에 있어서,상기 제1-2도전형 반도체층은 상기 제1-1도전형 반도체층보다 상기 활성층에 가깝게 배치되고,상기 제1-2도전형 반도체층의 알루미늄 조성은 상기 제1-1도전형 반도체층의 알루미늄 조성보다 낮고,상기 제1-1도전형 반도체층의 두께는 상기 제1-2도전형 반도체층의 두께보다 두꺼운 반도체 소자.
- 제7항에 있어서,상기 발광구조물은 상기 제2도전형 반도체층과 활성층, 및 제1-2도전형 반도체층을 관통하여 상기 중간층의 일부 영역까지 배치되는 복수 개의 리세스를 포함하는 반도체 소자.
- 제1항에 있어서,상기 제2도전형 반도체층은,제2-1 도전형 반도체층;상기 제2-1 도전형 반도체층상에 배치되는 제2-2 도전형 반도체층, 및상기 제2-2 도전형 반도체층상에 배치되는 제2-3 도전형 반도체층을 포함하고,상기 제2-2 도전형 반도체층과 상기 제2-3 도전형 반도체층의 경계면 거칠기(RMS: root mean square)는 상기 제2-3 도전형 반도체층의 표면 거칠기보다 큰 반도체 소자.
- 몸체; 및상기 몸체에 배치되는 반도체 소자를 포함하고,상기 반도체 소자는,제1도전형 반도체층,제2도전형 반도체층,상기 제1도전형 반도체층과 제2도전형 반도체층 사이에 배치되는 활성층, 및상기 제1도전형 반도체층과 상기 활성층 사이, 또는 상기 제1도전형 반도체층의 내부에 배치되는 중간층을 포함하는 발광구조물을 포함하고,상기 제1도전형 반도체층, 중간층, 활성층, 및 제2도전형 반도체층은 알루미늄을 포함하고,상기 중간층은 상기 제1도전형 반도체층보다 알루미늄 조성이 낮은 제1중간층을 포함하는 반도체 소자 패키지.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/312,937 US10734547B2 (en) | 2016-06-24 | 2017-06-23 | Semiconductor device and semiconductor device package comprising same |
JP2018567743A JP7022997B2 (ja) | 2016-06-24 | 2017-06-23 | 半導体素子およびこれを含む半導体素子パッケージ |
CN202210649550.0A CN115101641A (zh) | 2016-06-24 | 2017-06-23 | 半导体器件和包括半导体器件的半导体器件封装 |
CN201780039190.XA CN109417112B (zh) | 2016-06-24 | 2017-06-23 | 半导体器件和包括半导体器件的半导体器件封装 |
JP2022010291A JP7281231B2 (ja) | 2016-06-24 | 2022-01-26 | 半導体素子および半導体素子パッケージ |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0079489 | 2016-06-24 | ||
KR1020160079489A KR20180001009A (ko) | 2016-06-24 | 2016-06-24 | 반도체 소자 및 이를 갖는 발광소자 패키지 |
KR1020160112146A KR102552889B1 (ko) | 2016-08-31 | 2016-08-31 | 반도체 소자, 반도체 소자 패키지, 및 반도체 소자 제조방법 |
KR10-2016-0112146 | 2016-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017222341A1 true WO2017222341A1 (ko) | 2017-12-28 |
Family
ID=60784367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/006661 WO2017222341A1 (ko) | 2016-06-24 | 2017-06-23 | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10734547B2 (ko) |
JP (2) | JP7022997B2 (ko) |
CN (2) | CN115101641A (ko) |
WO (1) | WO2017222341A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138146A1 (ja) * | 2018-12-28 | 2020-07-02 | 丸文株式会社 | 深紫外led装置及びその製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114093994A (zh) * | 2016-06-20 | 2022-02-25 | 苏州乐琻半导体有限公司 | 半导体器件以及半导体器件封装 |
US10340415B2 (en) | 2016-09-01 | 2019-07-02 | Lg Innotek Co., Ltd. | Semiconductor device and semiconductor device package including the same |
WO2018048275A1 (ko) * | 2016-09-10 | 2018-03-15 | 엘지이노텍 주식회사 | 반도체 소자 |
CN115566116A (zh) | 2016-09-13 | 2023-01-03 | 苏州立琻半导体有限公司 | 半导体器件和包括该半导体器件的半导体器件封装 |
US10903395B2 (en) | 2016-11-24 | 2021-01-26 | Lg Innotek Co., Ltd. | Semiconductor device having varying concentrations of aluminum |
KR101982177B1 (ko) * | 2017-07-25 | 2019-05-24 | 포항공과대학교 산학협력단 | 압력센서, 그를 포함하는 압력센서 매트릭스 어레이 및 그의 제조방법 |
KR102390828B1 (ko) | 2017-08-14 | 2022-04-26 | 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 | 반도체 소자 |
JP6352573B1 (ja) * | 2018-04-20 | 2018-07-04 | 株式会社三重ロボット外装技術研究所 | 接触検出装置 |
TWI676303B (zh) * | 2018-07-10 | 2019-11-01 | 聯勝光電股份有限公司 | 發光晶片及其製造方法 |
CN109374440A (zh) * | 2018-10-25 | 2019-02-22 | 浙江大学 | 一种可考虑土体渗蚀作用的界面环剪仪 |
US11015990B2 (en) * | 2019-09-04 | 2021-05-25 | Bradley Davis | Grip sensor |
JP7336767B2 (ja) * | 2019-10-03 | 2023-09-01 | 株式会社小糸製作所 | 半導体発光素子および半導体発光素子の製造方法 |
US11784280B2 (en) | 2020-03-20 | 2023-10-10 | Sensor Electronic Technology, Inc. | Optoelectronic device with reduced optical loss |
TWI762234B (zh) * | 2021-03-12 | 2022-04-21 | 錼創顯示科技股份有限公司 | 發光元件及顯示面板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110023166A (ko) * | 2009-08-28 | 2011-03-08 | 서울옵토디바이스주식회사 | 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법 |
KR20120005385A (ko) * | 2010-07-08 | 2012-01-16 | 삼성엘이디 주식회사 | 반도체 발광소자 및 이의 제조방법 |
US20130082237A1 (en) * | 2011-10-04 | 2013-04-04 | Palo Alto Research Center Incorporated | Ultraviolet light emitting devices having enhanced light extraction |
KR20150048337A (ko) * | 2013-10-28 | 2015-05-07 | 서울바이오시스 주식회사 | 근자외선 발광 소자 |
WO2015151471A1 (ja) * | 2014-03-31 | 2015-10-08 | パナソニック株式会社 | 紫外線発光素子及びそれを用いた電気機器 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3470074B2 (ja) | 1999-02-05 | 2003-11-25 | 日本電信電話株式会社 | 光半導体装置 |
JP2003059948A (ja) * | 2001-08-20 | 2003-02-28 | Sanken Electric Co Ltd | 半導体装置及びその製造方法 |
WO2005106972A1 (de) * | 2004-04-29 | 2005-11-10 | Osram Opto Semiconductors Gmbh | Verfahren zum herstellen eines strahlungsemittierenden halbleiterchips |
US8368100B2 (en) * | 2007-11-14 | 2013-02-05 | Cree, Inc. | Semiconductor light emitting diodes having reflective structures and methods of fabricating same |
DE102008032318A1 (de) | 2008-03-31 | 2009-10-01 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines solchen |
JP2010166023A (ja) * | 2008-09-30 | 2010-07-29 | Sanyo Electric Co Ltd | 半導体レーザ装置および表示装置 |
KR100969131B1 (ko) * | 2010-03-05 | 2010-07-07 | 엘지이노텍 주식회사 | 발광 소자 제조방법 |
KR101761385B1 (ko) * | 2010-07-12 | 2017-08-04 | 엘지이노텍 주식회사 | 발광 소자 |
CN103078040B (zh) | 2011-08-22 | 2016-12-21 | Lg伊诺特有限公司 | 发光器件封装件和光装置 |
WO2013147552A1 (en) | 2012-03-29 | 2013-10-03 | Seoul Opto Device Co., Ltd. | Near uv light emitting device |
KR20130120615A (ko) | 2012-04-26 | 2013-11-05 | 엘지이노텍 주식회사 | 발광 소자 및 발광 소자 패키지 |
KR20140090801A (ko) * | 2013-01-10 | 2014-07-18 | 엘지이노텍 주식회사 | 발광소자 |
JP6259286B2 (ja) * | 2013-12-27 | 2018-01-10 | シャープ株式会社 | 窒化物半導体発光素子 |
-
2017
- 2017-06-23 CN CN202210649550.0A patent/CN115101641A/zh active Pending
- 2017-06-23 CN CN201780039190.XA patent/CN109417112B/zh active Active
- 2017-06-23 WO PCT/KR2017/006661 patent/WO2017222341A1/ko active Application Filing
- 2017-06-23 JP JP2018567743A patent/JP7022997B2/ja active Active
- 2017-06-23 US US16/312,937 patent/US10734547B2/en active Active
-
2022
- 2022-01-26 JP JP2022010291A patent/JP7281231B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110023166A (ko) * | 2009-08-28 | 2011-03-08 | 서울옵토디바이스주식회사 | 고전위 밀도의 중간층을 갖는 발광 다이오드 및 그것을 제조하는 방법 |
KR20120005385A (ko) * | 2010-07-08 | 2012-01-16 | 삼성엘이디 주식회사 | 반도체 발광소자 및 이의 제조방법 |
US20130082237A1 (en) * | 2011-10-04 | 2013-04-04 | Palo Alto Research Center Incorporated | Ultraviolet light emitting devices having enhanced light extraction |
KR20150048337A (ko) * | 2013-10-28 | 2015-05-07 | 서울바이오시스 주식회사 | 근자외선 발광 소자 |
WO2015151471A1 (ja) * | 2014-03-31 | 2015-10-08 | パナソニック株式会社 | 紫外線発光素子及びそれを用いた電気機器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020138146A1 (ja) * | 2018-12-28 | 2020-07-02 | 丸文株式会社 | 深紫外led装置及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019519123A (ja) | 2019-07-04 |
JP2022058766A (ja) | 2022-04-12 |
US10734547B2 (en) | 2020-08-04 |
CN115101641A (zh) | 2022-09-23 |
US20190326473A1 (en) | 2019-10-24 |
CN109417112B (zh) | 2022-06-21 |
CN109417112A (zh) | 2019-03-01 |
JP7022997B2 (ja) | 2022-02-21 |
JP7281231B2 (ja) | 2023-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017222341A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
WO2017179944A1 (ko) | 발광소자, 발광소자 패키지 및 발광모듈 | |
WO2017030396A1 (ko) | 발광 소자, 이 소자를 포함하는 발광 소자 패키지 및 이 패키지를 포함하는 발광 장치 | |
WO2017191966A1 (ko) | 반도체 소자 패키지 | |
WO2015156588A1 (ko) | 발광소자 및 조명시스템 | |
WO2013183888A1 (ko) | 발광소자 | |
WO2019088763A1 (ko) | 반도체 소자 | |
WO2016209015A1 (ko) | 자외선 발광소자, 발광소자 패키지 및 조명장치 | |
WO2018117699A1 (ko) | 반도체 소자 | |
WO2017034356A1 (ko) | 발광소자 및 이를 포함하는 발광소자 패키지 | |
WO2016137220A1 (ko) | 발광 소자 및 이를 구비한 라이트 유닛 | |
WO2017135763A1 (ko) | 발광소자 및 이를 포함하는 발광소자 패키지 | |
WO2018106030A9 (ko) | 발광소자 | |
WO2017213455A1 (ko) | 반도체 소자 | |
WO2018097649A1 (ko) | 반도체 소자 및 이를 포함하는 반도체 소자 패키지 | |
WO2016117905A1 (ko) | 광원 모듈 및 조명 장치 | |
WO2017138779A1 (ko) | 발광 소자 패키지 및 이를 포함하는 조명 장치 | |
WO2018088851A1 (ko) | 반도체 소자 | |
WO2015156504A1 (ko) | 발광소자 및 이를 구비하는 조명 시스템 | |
WO2017078441A1 (ko) | 반도체 소자 | |
WO2017034212A1 (ko) | 발광소자 및 이를 구비한 발광 소자 패키지 | |
WO2018128419A1 (ko) | 반도체 소자 및 이를 포함하는 발광소자 패키지 | |
WO2015030391A1 (ko) | 발광 소자 | |
WO2020040449A1 (ko) | 반도체 소자 | |
WO2018139803A1 (ko) | 반도체 소자 패키지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815754 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018567743 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815754 Country of ref document: EP Kind code of ref document: A1 |