WO2017221841A1 - Egrガスクーラ及びエンジンシステム - Google Patents
Egrガスクーラ及びエンジンシステム Download PDFInfo
- Publication number
- WO2017221841A1 WO2017221841A1 PCT/JP2017/022378 JP2017022378W WO2017221841A1 WO 2017221841 A1 WO2017221841 A1 WO 2017221841A1 JP 2017022378 W JP2017022378 W JP 2017022378W WO 2017221841 A1 WO2017221841 A1 WO 2017221841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- egr gas
- fin group
- gas cooler
- barrier
- pair
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
- F02M26/28—Layout, e.g. schematics with liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/24—Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28G—CLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
- F28G9/00—Cleaning by flushing or washing, e.g. with chemical solvents
Definitions
- the present invention relates to an EGR gas cooler and an engine system.
- Exhaust gas recirculation (EGR) technology that recirculates exhaust gas to the engine has a large NOx emission reduction effect and is widely applied to low environmental load engines. This EGR is also effective for large marine diesel engines. However, if the temperature of the exhaust gas (EGR gas) to be recirculated is high, the supply ratio of the scavenging gas is reduced and the fuel consumption is deteriorated. Therefore, an EGR gas cooler for cooling the EGR gas is required.
- a wet cleaning device that cleans EGR gas with a cleaning liquid is also required (see Patent Document 1).
- a scrubber may be comprised integrally with an EGR gas cooler (refer patent document 2). Then, in the EGR gas cooler, condensed water generated by cooling the EGR gas or a cleaning liquid for cleaning the EGR gas (hereinafter referred to as “internal fluid”) flows.
- the EGR gas cooler is of a fin tube type
- the flow of the internal liquid in the EGR gas cooler is biased. If the flow of the internal liquid is biased, the temperature of the internal liquid at the outlet of the EGR gas cooler increases, so that the temperature of the EGR gas in contact with the internal liquid also rises, and the EGR gas may not be sufficiently cooled. is there.
- the present invention has been made in view of the circumstances as described above, and an object thereof is to suppress the uneven flow of the internal liquid in the fin tube type EGR gas cooler.
- An EGR gas cooler has a pair of opposing end surfaces and a pair of opposing side surfaces, and defines a flow path through which EGR gas flows downward in the vertical direction by the pair of end surfaces and the pair of side surfaces.
- a fin group consisting of a plurality of fins positioned in the flow path and arranged in parallel to the pair of end faces, a tube that passes through the fin group and into which refrigerant flows, and along the side surface And a horizontally extending barrier.
- the barrier may be disposed at least between a vertical upper end and a vertical lower end of the fin group.
- the flow direction of the internal liquid flow that has been guided by the fins and reached the side surface can be changed again by the barrier, and the internal flow liquid can be returned to the center side of the flow path. Therefore, it is possible to efficiently suppress the uneven flow of the internal liquid flow.
- the fin group includes a first-stage fin group including a plurality of fins arranged at the same vertical position and a plurality of fins arranged at the same vertical position.
- a second-stage fin group that is vertically separated from the fin group, and the barrier may be disposed between the first-stage fin group and the second-stage fin group.
- the barrier can be disposed between the vertical upper end and the vertical lower end of the fin group without processing the fin into a complicated shape.
- the barrier may be positioned above the vertical upper end of the fin group in the vertical direction.
- the flow along the side surface of the internal fluid can be suppressed upstream of the fin group. Therefore, it is possible to efficiently suppress the uneven flow of the internal liquid flow.
- the barrier may have an inclined surface that is inclined downward in the vertical direction from the side surface toward the center of the flow path.
- the position of the flow path center side end portion of the barrier disposed along the side surfaces is the same as the position of the central axis of the tube adjacent to the side surfaces or It may be closer to the center of the flow path than the position of the central axis.
- the internal liquid liquid guided by the barrier goes to the center of the flow path through the tube close to the side surface. Therefore, it is possible to further suppress the uneven flow of the internal liquid flow.
- the EGR gas cooler may further include a cleaning nozzle that is positioned vertically above the fin group and that injects a cleaning liquid downward in the vertical direction.
- the EGR gas cooler includes the cleaning nozzle that injects the cleaning liquid, by providing the barrier as described above, it is possible to suppress the cleaning liquid (internal liquid flow) from flowing along the side surface. .
- An engine system according to an aspect of the present invention includes the EGR gas cooler described above.
- An engine system includes the above-described EGR gas cooler, and a scrubber that is located upstream of the EGR gas cooler and that cleans the EGR gas using a cleaning liquid.
- the condensed water (internal fluid) generated by cooling the EGR gas is provided on the side surface by providing the barrier as described above. It can suppress flowing along.
- FIG. 1 is a schematic configuration diagram of an engine system according to the first embodiment.
- FIG. 2 is a cross-sectional view of the EGR gas cooler shown in FIG. 3 is a cross-sectional view taken along arrow III-III in FIG.
- FIG. 4 is a diagram illustrating the flow of the cleaning liquid in the comparative example.
- FIG. 5 is a diagram illustrating the flow of the cleaning liquid in the first embodiment.
- FIG. 6 is a view showing a modification of the first embodiment.
- FIG. 7 is a schematic configuration diagram of an engine system according to the second embodiment.
- FIG. 1 is a schematic configuration diagram of an engine system 100 according to the first embodiment.
- the thick dashed line indicates the flow of exhaust gas and EGR gas
- the thick solid line indicates the flow of fresh air and scavenging gas.
- the engine system 100 is a marine engine system, which is an engine main body 10 that is a two-stroke diesel engine, a scavenging flow passage 20 that supplies scavenging gas to the engine main body 10, and exhausted from the engine main body 10.
- An exhaust passage 30 that discharges the exhaust gas to the outside, a supercharger 40 that is driven by the energy of the exhaust gas and boosts fresh air, and an EGR that extracts the exhaust gas from the exhaust passage 30 and supplies it to the scavenging passage 20 Unit 50.
- the scavenging flow path 20 is provided with an air cooler 21 that cools fresh air.
- the fresh air cooled by the air cooler 21 merges with the EGR gas supplied from the EGR unit 50 at the merge point 22.
- the scavenging gas is generated by the combination of the fresh air and the EGR gas, and the generated scavenging gas is supplied to the engine body 10 via the water mist catcher 23. Note that the water mist catcher 23 collects condensed water or the like generated when fresh air is cooled by the air cooler 21.
- the EGR unit 50 includes an EGR flow path 51 that connects the scavenging flow path 20 and the exhaust flow path 30, an EGR gas cooler 53 that is provided in the EGR flow path 51 and cools EGR gas, and an EGR gas cooler 53 that is provided in the EGR flow path 51. It has an EGR water mist catcher 54 that collects the condensed water and washing water that is discharged, and an EGR blower 55 that is provided in the EGR flow path 51 and boosts the exhaust gas and adjusts the flow rate of the EGR gas.
- FIG. 2 is a cross-sectional view of the EGR gas cooler 53
- FIG. 3 is a cross-sectional view taken along arrows III-III in FIG.
- the upper side of the paper is the upper side in the vertical direction
- the lower side of the paper is the lower side in the vertical direction.
- the EGR gas cooler 53 of this embodiment is a so-called fin tube type cooler, and includes a case 61, a fin group 62, a tube 63, a barrier 64, and a cleaning nozzle 65. ,have.
- the case 61 divides the rectangular outer frame member 70 in the horizontal sectional view, the first partition member 71 that partitions the inner space of the outer frame member 70, and the inner space of the outer frame member 70.
- the case 61 has a pair of opposed end surfaces 73 and a pair of opposed side surfaces 74.
- One of the end surfaces 73 is an inner surface of the first partition member 71, and the other is an inner surface of the second partition member 72.
- the side surface 74 is a portion located between the first partition member 71 and the second partition member 72 in the inner surface of the outer frame member 70.
- the pair of end surfaces 73 and the pair of side surfaces 74 define a rectangular channel 75 in a horizontal sectional view.
- the EGR gas flows through the channel 75 downward in the vertical direction (downward in the drawing of FIG. 2).
- a refrigerant supply chamber 76 is defined by the outer surface of the first partition member 71 and the inner surface of the outer frame member 70
- a refrigerant discharge chamber 77 is defined by the outer surface of the second partition member 72 and the inner surface of the outer frame member 70. Yes.
- the fin group 62 is located in the flow path 75 and includes a plurality of fins 80 arranged in parallel to the end face 73. As shown in FIG. 2, the fin group 62 includes a first-stage fin group 81, a second-stage fin group 82, and a third-stage fin group 83 in order from the upper side in the vertical direction. The first stage fin group 81 and the second stage fin group 82 are separated in the vertical direction, and the second stage fin group 82 and the third stage fin group 83 are separated in the vertical direction.
- the first-stage fin group 81 is composed of a plurality of fins 80 arranged at the same vertical position.
- the second-stage fin group 82 includes a plurality of fins 80 arranged at the same vertical position
- the third-stage fin group 83 includes a plurality of fins arranged at the same vertical position. 80.
- the tube 63 passes through the plurality of fins 80 constituting the fin group 62 and extends from one end surface 73 to the other end surface 73.
- the tube 63 has one end opened to the refrigerant supply chamber 76 and the other end opened to the refrigerant discharge chamber 77.
- the refrigerant supply room 76 and the refrigerant discharge room 77 are filled with a refrigerant for cooling the EGR gas.
- the pressure in the refrigerant supply chamber 76 is higher than the pressure in the refrigerant discharge chamber 77. Therefore, the refrigerant flows from the refrigerant supply chamber 76 through the inside of the tube 63 toward the refrigerant discharge chamber 77.
- the barrier 64 extends in the horizontal direction from one end surface 73 to the other end surface 73 and is disposed along both side surfaces 74.
- the barrier 64 is located above the upper end in the vertical direction of the fin group 62 and below the lower end in the vertical direction of the fin group 62. Further, the barrier 64 is located between the upper end in the vertical direction and the lower end in the vertical direction of the fin group 62.
- the barrier 64 is disposed between the first-stage fin group 81 and the second-stage fin group 82, and is disposed between the second-stage fin group 82 and the third-stage fin group 83. .
- the barrier 64 of the present embodiment is a rod-shaped member having a rectangular cross section, and is fixed to the side surface 74.
- the barrier 64 may have a shape other than a rectangular cross section, as will be described in a later-described modification.
- the barrier 64 may be formed in a straight line shape, or may be formed in a shape other than a straight line shape such as a wave shape.
- the barrier 64 may be divided at a plurality of locations. Further, the barrier 64 may be fixed to the fin group 62 instead of being fixed to the side surface 74.
- the position of the end of the barrier 64 on the channel center side is closest to the side surface 74 to which the barrier 64 is fixed. It is the same as the position of the central axis of the tube 63 to be performed.
- the flow path center side edge part of the barrier 64 may be located near the center of the flow path rather than the central axis of the tube 63 closest to the side face 74 to which the barrier 64 is fixed.
- the cleaning nozzle 65 is positioned above the fin group 62 in the vertical direction, and sprays the cleaning liquid 101 downward in the vertical direction.
- the cleaning nozzle 65 is attached to a cleaning pipe 66 that extends from one side surface 74 to the other side surface 74.
- the cleaning liquid 101 is supplied from a cleaning tank (not shown) to the cleaning pipe 66 and is sprayed from the cleaning pipe 66 through the cleaning nozzle 65.
- a plurality of cleaning pipes 66 are arranged between both end faces 73.
- FIG. 4 is a diagram illustrating the flow of the cleaning liquid 101 in the comparative example.
- the EGR gas cooler 53 of the comparative example does not have the barrier 64.
- the fin group 62 is not divided in the vertical direction. That is, the fin group 62 of the comparative example does not have the first-stage fin group 81, the second-stage fin group 82, and the third-stage fin group 83.
- the EGR gas cooler 53 of the comparative example has the same configuration as the EGR gas cooler 53 of the present embodiment.
- the cleaning nozzle 65 provided in the EGR gas cooler 53 injects the cleaning liquid 101 downward in the vertical direction.
- the sprayed cleaning liquid 101 changes the flow direction in a plane perpendicular to the tube 63 by contacting the tube 63.
- the EGR gas cooler 53 does not have the fins 80, the cleaning liquid 101 in contact with the tube 63 flows along the outer peripheral surface of the tube 63, and then falls downward in the vertical direction by gravity.
- the surface tension acts on the cleaning liquid 101 passing between the fins 80, and flows slowly between the fins 80 while the flow direction is changed by the tubes 63.
- the cleaning liquid 101 that is guided to the side surface 74 and flows along the side surface 74 hardly comes into contact with the fins 80 and does not come into contact with the tubes 63, so that the velocity of flowing downward in the vertical direction is high.
- the cleaning liquid 101 in the vicinity of the side surface 74 is easily drawn into the side surface, and the cleaning liquid 101 is more easily collected on the side surface 74.
- a large amount of the cleaning liquid 101 flows along the side surface 7, and the flow of the cleaning liquid 101 is biased.
- FIG. 5 is a view showing the flow of the cleaning liquid 101 in the EGR gas cooler 53 of the present embodiment. Also in the EGR gas cooler 53 of the present embodiment, the cleaning liquid 101 ejected downward from the cleaning nozzle 65 in the vertical direction changes in the flow direction by coming into contact with the tube 63 and easily collects on the side surface 74 having a small fluid resistance.
- the EGR gas cooler 53 of this embodiment includes a barrier 64 provided along the side surface 74. Therefore, the cleaning liquid 101 that flows downward in the vertical direction along the side surface 74 is blocked by the barrier 64. Thereby, in this embodiment, it can suppress that the washing
- the position of the flow path center side end portion of the barrier 64 is the central axis of the tube 63 closest to the side surface 74 to which the barrier 64 is fixed. The position is the same. Therefore, the cleaning liquid 101 blocked by the barrier 64 is guided toward the center of the flow path 75 beyond the tube 63 closest to the side surface 74. As a result, the uneven flow of the cleaning liquid 101 can be further suppressed.
- the barrier 64 positioned above the fin group 62 in the vertical direction blocks the cleaning liquid 101 sprayed directly from the cleaning nozzle 65 onto the side surface 74 before reaching the fin group 62. be able to. Further, the barrier 64 positioned below the fin group 62 in the vertical direction can suppress the flow rate of the cleaning liquid 101 toward the vertical direction. Thereby, it can suppress that the washing
- a notch may be formed in a predetermined portion of the fin 80, and the barrier 64 may be inserted into the notch.
- the fin group 62 is separated in the vertical direction, and the vertical direction of the separated fin groups (first-stage fin group 81, second-stage fin group 82, third-stage fin group 83) is vertically If the barrier 64 is provided on the fin 80, it is not necessary to process the fin 80 into a complicated shape.
- the cross-sectional shape of the barrier 64 is rectangular has been described, but the cross-sectional shape of the barrier 64 is not limited thereto.
- the cross-sectional shape of the barrier 64 may be triangular, and may have an inclined surface 67 that is inclined downward in the vertical direction from the side surface 74 toward the center of the flow path 75. According to this configuration, the flow direction of the cleaning liquid 101 flowing along the side surface 74 can be changed to the direction toward the center of the flow path 75 by the inclined surface 67. For this reason, the uneven flow of the cleaning liquid 101 can be further suppressed.
- the inclined surface 67 may have a shape that is curved in a cross-sectional view. Even in this case, the flow direction of the cleaning liquid 101 can be changed to a direction toward the center of the flow path 75. Further, the barrier 64 may be formed in a plate shape and may be installed so as to be inclined downward in the vertical direction from the side surface 74 toward the center of the flow path 75. Even in this case, the barrier 64 has the inclined surface 67 inclined downward in the vertical direction from the side surface 74 toward the center of the flow path 75.
- the tube 63 is linear and extends from one end surface 73 to the other end surface 73 has been described, but the shape of the tube 63 is not limited thereto.
- the tube 63 may have a shape in which S-shapes are connected, and may be formed so as to be folded back multiple times in the flow path 75, and one tube 63 may penetrate a plurality of locations of the fin group 62.
- FIG. 7 is a schematic configuration diagram of an engine system 200 according to the second embodiment.
- the engine system 200 according to the present embodiment has a scrubber 52 upstream of the EGR gas cooler 53.
- the scrubber 52 the EGR gas is cleaned using the cleaning liquid 101. That is, the EGR gas that has been cleaned is supplied to the EGR gas cooler 53 of the present embodiment.
- the EGR gas cooler 53 does not have the cleaning nozzle 65 for injecting the cleaning liquid 101, and does not perform cleaning of the EGR gas.
- the EGR gas cooler 53 of the present embodiment and the EGR gas cooler 53 of the first embodiment have the same configuration.
- the EGR gas containing a large amount of moisture by the scrubber 52 is cooled by the EGR gas cooler 53, so that a large amount of condensed water is generated in the EGR gas cooler 53.
- This condensed water flows in the EGR gas cooler 53 in the same manner as the cleaning liquid 101 of the first embodiment. And since the EGR gas cooler 53 of this embodiment also has the barrier 64 mentioned above, it can suppress that the condensed water which flows along the side surface 74 is dammed up by the barrier 64, and that the flow of condensed water arises unevenly. it can. As a result, the EGR gas is prevented from being heated by the condensed water in the vicinity of the outlet of the EGR gas cooler 53, and the EGR gas can be sufficiently cooled.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
本発明の一態様に係るEGRガスクーラは、対向する一対の端面及び対向する一対の側面を有し、一対の端面及び一対の側面によってEGRガスが鉛直方向下方に向かって流れる流路を区画するケースと、流路内に位置し一対の端面に対して平行に並んだ複数のフィンからなるフィン群と、フィン群のフィンを貫通し、内部に冷媒が流れるチューブと、側面に沿って配置され水平方向に延びる障壁と、を備えている。
Description
本発明はEGRガスクーラ及びエンジンシステムに関する。
排気ガスをエンジンに再循環させる排気再循環(Exhaust Gas Recirculation;EGR)技術は、NOx排出低減効果が大きく、低環境負荷エンジンに広く適用されている。このEGRは、舶用の大型ディーゼルエンジンにおいても有効である。ただし、再循環させる排気ガス(EGRガス)の温度が高いと、掃気ガスの給気比が低下して燃費が悪化することから、EGRガスを冷却するEGRガスクーラが必要となる。
また、舶用の大型ディーゼルエンジンは重油を燃料とすることから、排気ガスに硫黄酸化物(SOx)及び粒子状物質(PM)が多く含まれる。そのため、EGRガスを洗浄液で洗浄する湿式洗浄装置(スクラバ)も必要となる(特許文献1参照)。なお、EGRガスに含まれるSOx及びPMが少ない場合には、スクラバがEGRガスクーラと一体に構成される場合もある(特許文献2参照)。そうすると、EGRガスクーラの内部では、EGRガスの冷却により発生した凝縮水、又は、EGRガスを洗浄するための洗浄液(以下、これらを「内部流液」という)が流れる。
ここで、EGRガスクーラがフィンチューブ式である場合、EGRガスクーラ内における内部流液の流れに偏りが生じることが判明した。内部流液の流れに偏りが生じると、EGRガスクーラ出口における内部流液の温度が高くなることから、この内部流液と接触するEGRガスの温度も上昇し、EGRガスが十分に冷却されないおそれがある。
本発明は、以上のような事情に鑑みてなされたものであり、フィンチューブ式のEGRガスクーラにおいて内部流液の流れの偏りを抑制することを目的としている。
本発明の一態様に係るEGRガスクーラは、対向する一対の端面及び対向する一対の側面を有し、前記一対の端面及び前記一対の側面によってEGRガスが鉛直方向下方に向かって流れる流路を区画するケースと、前記流路内に位置し前記一対の端面に対して平行に並んだ複数のフィンからなるフィン群と、前記フィン群を貫通し、内部に冷媒が流れるチューブと、前記側面に沿って配置され水平方向に延びる障壁と、を備えている。
フィンチューブ式のEGRガスクーラを流れる内部流液は、フィン間を通過する際、表面張力が働きゆっくり流れ落ちる。また、チューブに接触する度に流れ方向が変化する。そのため、内部流液は、フィンチューブが無い側面に集中し、そのまま側面に沿って鉛直方向下方に向かって積極的に流れる。その結果、内部流液の流れに偏りが生じる。
これに対し、上記のEGRガスクーラでは、側面に沿って流れる内部流液を障壁によってせき止めることができるため、内部流液が側面に沿って流れるのを抑制することができ、ひいては内部流液の流れの偏りを抑制することができる。
上記のEGRガスクーラにおいて、前記障壁は、少なくとも前記フィン群の鉛直方向上端と鉛直方向下端との間に配置されていてもよい。
この構成によれば、フィンに案内されて側面に達した内部流液の流れ方向を障壁によって再度変化させ、内部流液を流路の中央側に戻すことができる。そのため、内部流液の流れの偏りを効率よく抑制することができる。
上記のEGRガスクーラにおいて、前記フィン群は、互いに同じ鉛直方向位置に配置された複数のフィンからなる第1段フィン群と、互いに同じ鉛直方向位置に配置された複数のフィンからなり前記第1段フィン群に対して鉛直方向に離間する第2段フィン群とを含み、前記障壁は、前記第1段フィン群と前記第2段フィン群の間に配置されていてもよい。
この構成によれば、フィンを複雑な形状に加工することなく、フィン群の鉛直方向上端と鉛直方向下端との間に障壁を配置することができる。
上記のEGRガスクーラにおいて、前記障壁は、前記フィン群の鉛直方向上端よりも鉛直方向上方に位置していてもよい。
この構成によれば、内部流液の側面に沿う流れをフィン群の上流において抑制することができる。そのため、内部流液の流れの偏りを効率よく抑制することができる。
上記のEGRガスクーラにおいて、前記障壁は、前記側面から前記流路の中央に向かって鉛直方向下方に傾斜する傾斜面を有していてもよい。
この構成によれば、傾斜面が側面に沿って流れる内部流液を流路の中央に向かって案内することができる。そのため、内部流液の流れの方向を大きく変えることができ、内部流液の流れの偏りを抑制することができる。
上記のEGRガスクーラにおいて、前記一対の側面の対向方向において、前記側面に沿って配置された前記障壁の流路中央側端部の位置は、当該側面に近接するチューブの中心軸の位置と同じ又は当該中心軸の位置よりも流路中央に近くてもよい。
この構成によれば、障壁によって案内された内部流液は、側面に近接するチューブを越えて流路の中央に向かうことになる。そのため、内部流液の流れの偏りを一層抑制することができる。
上記のEGRガスクーラにおいて、前記フィン群よりも鉛直方向上方に位置し、鉛直方向下方に向かって洗浄液を噴射する洗浄ノズルをさらに備えていてもよい。
このように、EGRガスクーラが洗浄液を噴射する洗浄ノズルを備える場合であっても、上記のように障壁を備えることにより、洗浄液(内部流液)が側面に沿って流れるのを抑制することができる。
本発明の一態様に係るエンジンシステムは、上記のEGRガスクーラを備えている。
本発明の他の態様に係るエンジンシステムは、上記のEGRガスクーラと、当該EGRガスクーラよりも上流に位置し、洗浄液を用いて前記EGRガスを洗浄するスクラバと、を備えている。
このように、エンジンシステムがEGRガスクーラの上流に位置するスクラバを備える場合であっても、上記のように障壁を備えることにより、EGRガスを冷却することにより生じる凝縮水(内部流液)が側面に沿って流れるのを抑制することができる。
上記のEGRガスクーラによれば、内部流液の偏りを抑制することができる。
以下、本発明の実施形態について図を参照しながら説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。
(第1実施形態)
<エンジンシステム>
はじめに、第1実施形態に係るエンジンシステム100の概略構成について説明する。図1は、第1実施形態に係るエンジンシステム100の概略構成図である。図1において、太く描いた破線は排気ガス及びEGRガスの流れを示しており、太く描いた実線は新気及び掃気ガスの流れを示している。
<エンジンシステム>
はじめに、第1実施形態に係るエンジンシステム100の概略構成について説明する。図1は、第1実施形態に係るエンジンシステム100の概略構成図である。図1において、太く描いた破線は排気ガス及びEGRガスの流れを示しており、太く描いた実線は新気及び掃気ガスの流れを示している。
本実施形態に係るエンジンシステム100は舶用のエンジンシステムであって、2ストロークディーゼルエンジンであるエンジン本体10と、エンジン本体10に掃気ガスを供給する掃気流路20と、エンジン本体10から排出された排気ガスを外部に放出する排気流路30と、排気ガスのエネルギにより駆動し新気を昇圧する過給機40と、排気流路30から排気ガスを抽出して掃気流路20に供給するEGRユニット50と、を備えている。
掃気流路20には、新気を冷却するエアクーラ21が設けられている。エアクーラ21で冷却された新気は、合流点22においてEGRユニット50から供給されたEGRガスと合流する。新気とEGRガスが合流することで掃気ガスが生成され、生成された掃気ガスはウォータミストキャッチャ23を介してエンジン本体10に供給される。なお、ウォータミストキャッチャ23では、新気をエアクーラ21で冷却したときに発生する凝縮水等が捕集される。
EGRユニット50は、掃気流路20と排気流路30をつなぐEGR流路51と、EGR流路51に設けられEGRガスを冷却するEGRガスクーラ53と、EGR流路51に設けられEGRガスクーラ53から排出される凝縮水及び洗浄水を捕集するEGRウォータミストキャッチャ54と、EGR流路51に設けられ排気ガスを昇圧するとともにEGRガスの流量を調整するEGRブロワ55と、を有している。
<EGRガスクーラ>
次に、EGRガスクーラ53の詳細構成について説明する。図2はEGRガスクーラ53の断面図であり、図3は図2におけるIII-III矢視断面図である。図2において、紙面上方が鉛直方向上方であり、紙面下方が鉛直方向下方である。図2及び図3に示すように、本実施形態のEGRガスクーラ53は、いわゆるフィンチューブ式のクーラであって、ケース61と、フィン群62と、チューブ63と、障壁64と、洗浄ノズル65と、を有している。
次に、EGRガスクーラ53の詳細構成について説明する。図2はEGRガスクーラ53の断面図であり、図3は図2におけるIII-III矢視断面図である。図2において、紙面上方が鉛直方向上方であり、紙面下方が鉛直方向下方である。図2及び図3に示すように、本実施形態のEGRガスクーラ53は、いわゆるフィンチューブ式のクーラであって、ケース61と、フィン群62と、チューブ63と、障壁64と、洗浄ノズル65と、を有している。
ケース61は、図3に示すように、水平断面視において矩形状の外枠部材70と、外枠部材70の内部空間を仕切る第1仕切部材71と、同じく外枠部材70の内部空間を仕切る第2仕切部材72と、を有している。また、ケース61は、対向する一対の端面73と、対向する一対の側面74とを有している。端面73の一方は第1仕切部材71の内面であり、他方は第2仕切部材72の内面である。また、側面74は、外枠部材70の内面のうち第1仕切部材71と第2仕切部材72の間に位置する部分である。
これら一対の端面73及び一対の側面74によって水平断面視において矩形状の流路75が区画されている。EGRガスは、この流路75を鉛直方向下方(図2の紙面下方)に向かって流れる。また、第1仕切部材71の外面と外枠部材70の内面によって冷媒供給部屋76が区画されており、第2仕切部材72の外面と外枠部材70の内面によって冷媒排出部屋77が区画されている。
フィン群62は、流路75内に位置しており、端面73に対して平行に並んだ複数のフィン80によって構成されている。図2に示すように、フィン群62は、鉛直方向上方側から順に、第1段フィン群81と、第2段フィン群82と、第3段フィン群83と、を有している。第1段フィン群81と第2段フィン群82は鉛直方向に離間しており、第2段フィン群82と第3段フィン群83は鉛直方向に離間している。
第1段フィン群81は、互いに同じ鉛直方向位置に配置された複数のフィン80で構成されている。同様に、第2段フィン群82は、互いに同じ鉛直方向位置に配置された複数のフィン80で構成されており、第3段フィン群83は、互いに同じ鉛直方向位置に配置された複数のフィン80で構成されている。
チューブ63は、図3に示すように、フィン群62を構成する複数のフィン80を貫通し、一方の端面73から他方の端面73にまで延びている。チューブ63は、一方の端部が冷媒供給部屋76に開口しており、他方の端部が冷媒排出部屋77に開口している。冷媒供給部屋76及び冷媒排出部屋77には、EGRガスを冷却するための冷媒が満たされている。そして、冷媒供給部屋76の圧力は、冷媒排出部屋77の圧力より高い。そのため、冷媒は、冷媒供給部屋76からチューブ63の内部を通過して冷媒排出部屋77に向かって流れる。
障壁64は、一方の端面73から他方の端面73にまで水平方向に延び、両方の側面74に沿って配置されている。また、障壁64は、フィン群62の鉛直方向上端よりも上方と、フィン群62の鉛直方向下端よりも下方とに位置している。さらに、障壁64は、フィン群62の鉛直方向上端と鉛直方向下端との間にも位置している。具体的には、障壁64は、第1段フィン群81と第2段フィン群82の間に配置されており、第2段フィン群82と第3段フィン群83の間に配置されている。
本実施形態の障壁64は、断面が矩形である棒状の部材であって、側面74に固定されている。ただし、障壁64は、後述の変形例で説明するように断面が矩形以外の形状を有していてもよい。また、障壁64は、直線状に形成されていてもよく、波形状などの直線状以外の形状に形成されていてもよい。また、障壁64は複数箇所で分断されていてもよい。さらに、障壁64は、側面74に固定されるのではなく、フィン群62に固定されていてもよい。
また、図2に示すように、両側面74の対向方向(図2の紙面左右方向)において、障壁64の流路中央側端部の位置は、その障壁64が固定された側面74に最も近接するチューブ63の中心軸の位置と同じである。ただし、障壁64の流路中央側端部は、その障壁64が固定された側面74に最も近接するチューブ63の中心軸よりも流路中央の近くに位置していてもよい。
洗浄ノズル65は、フィン群62よりも鉛直方向上方に位置し、鉛直方向下方に向かって洗浄液101を噴射する。洗浄ノズル65は、一方の側面74から他方の側面74にまで延びる洗浄パイプ66に取り付けられている。洗浄液101は、図外の洗浄タンクから洗浄パイプ66に供給され、洗浄パイプ66から洗浄ノズル65を介して噴射される。洗浄パイプ66は、両方の端面73の間に複数配置されている。
<洗浄液の流れ>
次に、EGRガスクーラ53内における洗浄液101の流れについて説明する。まず、比較例のEGRガスクーラ53内における洗浄液101の流れについて説明する。図4は、比較例における洗浄液101の流れを示した図である。比較例のEGRガスクーラ53は、障壁64を有していない。また、比較例のEGRガスクーラ53は、フィン群62が鉛直方向に分割されていない。つまり、比較例のフィン群62は、第1段フィン群81、第2段フィン群82、及び第3段フィン群83を有していない。ただし、以上の点以外については、比較例のEGRガスクーラ53は、本実施形態のEGRガスクーラ53と同じ構成を有している。
次に、EGRガスクーラ53内における洗浄液101の流れについて説明する。まず、比較例のEGRガスクーラ53内における洗浄液101の流れについて説明する。図4は、比較例における洗浄液101の流れを示した図である。比較例のEGRガスクーラ53は、障壁64を有していない。また、比較例のEGRガスクーラ53は、フィン群62が鉛直方向に分割されていない。つまり、比較例のフィン群62は、第1段フィン群81、第2段フィン群82、及び第3段フィン群83を有していない。ただし、以上の点以外については、比較例のEGRガスクーラ53は、本実施形態のEGRガスクーラ53と同じ構成を有している。
前述のとおり、EGRガスクーラ53に設けられた洗浄ノズル65は、鉛直方向下方に向かって洗浄液101を噴射する。噴射された洗浄液101は、チューブ63に接触することにより、チューブ63に対して垂直な面内における流れ方向が変化する。ここで、仮にEGRガスクーラ53がフィン80を有していなければ、チューブ63に接触した洗浄液101はチューブ63の外周面に沿って流れた後、重力によって鉛直方向下方に向かって落下する。
しかしながら、フィン80を有するEGRガスクーラ53の場合、フィン80間を通過する洗浄液101には表面張力が働き、フィン80間をチューブ63によって流れ方向が変化しながらゆっくり流れる。一方、側面74に導かれて、側面74に沿って流れる洗浄液101は、ほとんどフィン80と接触せず、また、チューブ63とも接触しないため、鉛直方向下方に向かって流れる速度が大きい。これにより、側面74付近の洗浄液101が側面側に引き込まれやすくなり、側面74に洗浄液101が一層集まりやすくなる。その結果、図4に示すように、側面7に沿って大量の洗浄液101が流れ、洗浄液101の流れに偏りが生じる。
続いて、本実施形態のEGRガスクーラ53内における洗浄液101の流れについて説明する。図5は、本実施形態のEGRガスクーラ53内における洗浄液101の流れを示した図である。本実施形態のEGRガスクーラ53においても、洗浄ノズル65から鉛直方向下方に向かって噴射された洗浄液101は、チューブ63に接触することで流れ方向が変化し、流体抵抗が小さい側面74に集まりやすい。
しかしながら、本実施形態のEGRガスクーラ53は、側面74に沿って設けられた障壁64を備えている。そのため、側面74に沿って鉛直方向下方に向かって流れる洗浄液101は、障壁64によってせき止められることになる。これにより、本実施形態では、洗浄液101が側面74に沿って流れるのを抑制することができ、洗浄液101の流れの偏りを抑制することができる。その結果、EGRガスクーラ53の出口付近でEGRガスが洗浄液101によって暖められるのが抑制され、ひいてはEGRガスを十分に冷却することができる。
また、前述のとおり、本実施形態では、両側面74の対向方向において、障壁64の流路中央側端部の位置は、その障壁64が固定された側面74に最も近接するチューブ63の中心軸の位置と同じである。そのため、障壁64によってせき止められた洗浄液101は、側面74に最も近接するチューブ63を越えて流路75の中央に向かって案内される。その結果、洗浄液101の流れの偏りを一層抑制することができる。
なお、複数箇所に設けられた障壁64のうち、フィン群62よりも鉛直方向上方に位置する障壁64は、洗浄ノズル65から側面74に直接噴射された洗浄液101をフィン群62に至る前にせき止めることができる。さらに、フィン群62よりも鉛直方向下方に位置する障壁64は、鉛直方向下方に向う洗浄液101の流れの速度を抑えることができる。これにより、側面74付近の洗浄液101が側面74側に引き込まれるのを抑制することができる。
なお、各障壁64を設置するために、フィン80の所定個所に切欠きを形成し、その切欠きに障壁64を挿入するなどしてもよい。ただし、本実施形態のように、フィン群62を鉛直方向に分離して、分離したフィン群(第1段フィン群81、第2段フィン群82、第3段フィン群83)の鉛直方向上下に障壁64を設置すれば、フィン80を複雑な形状に加工する必要がない。
また、以上では、障壁64の断面形状が矩形である場合について説明したが、障壁64の断面形状はこれに限られない。例えば、図6に示すように、障壁64の断面形状が三角形状であって、側面74から流路75の中央に向かって鉛直方向下方に傾斜する傾斜面67を有していてもよい。この構成によれば、側面74に沿って流れる洗浄液101の流れ方向を、傾斜面67によって流路75の中央に向かう方向に変更することができる。そのため、洗浄液101の流れの偏りを一層抑制することができる。
なお、上記の傾斜面67は断面視において湾曲する形状を有していてもよい。この場合であっても、洗浄液101の流れ方向を流路75の中央に向かう方向に変更することができる。さらに、障壁64は板状に形成され、側面74から流路75の中央に向かって鉛直方向下方に傾斜するように設置されていてもよい。この場合であっても、障壁64は側面74から流路75の中央に向かって鉛直方向下方に傾斜する傾斜面67を有することになる。
また、以上では、チューブ63が直線状であって、一方の端面73から他方の端面73にまで延びる場合について説明したが、チューブ63の形状はこれに限らない。例えば、チューブ63はS字をつなげたような形状であって流路75内を複数回折り返すように形成され、1つのチューブ63がフィン群62の複数箇所を貫通していてもよい。
(第2実施形態)
次に、第2実施形態に係るエンジンシステム200について説明する。図7は、第2実施形態に係るエンジンシステム200の概略構成図である。図7に示すように、本実施形態に係るエンジンシステム200では、EGRガスクーラ53の上流にスクラバ52を有している。スクラバ52では、洗浄液101を用いてEGRガスが洗浄される。つまり、本実施形態のEGRガスクーラ53には洗浄が終了したEGRガスが供給される。
次に、第2実施形態に係るエンジンシステム200について説明する。図7は、第2実施形態に係るエンジンシステム200の概略構成図である。図7に示すように、本実施形態に係るエンジンシステム200では、EGRガスクーラ53の上流にスクラバ52を有している。スクラバ52では、洗浄液101を用いてEGRガスが洗浄される。つまり、本実施形態のEGRガスクーラ53には洗浄が終了したEGRガスが供給される。
また、本実施形態ではEGRガスクーラ53は、洗浄液101を噴射する洗浄ノズル65を有しておらず、EGRガスの洗浄は行わない。ただし、これら以外の点については、本実施形態のEGRガスクーラ53と第1実施形態のEGRガスクーラ53は同じ構成を有している。このように、本実施形態では、スクラバ52での洗浄によって水分を多く含んだEGRガスが、EGRガスクーラ53に冷却されるため、EGRガスクーラ53内には多量の凝縮水が発生する。
この凝縮水は、第1実施形態の洗浄液101と同じようにしてEGRガスクーラ53内を流れる。そして、本実施形態のEGRガスクーラ53も前述した障壁64を有しているため、側面74に沿って流れる凝縮水が障壁64によってせき止められ、凝縮水の流れに偏りが生じるのを抑制することができる。その結果、EGRガスクーラ53の出口付近でEGRガスが凝縮水によって暖められるのが抑制され、EGRガスを十分に冷却することができる。
52 スクラバ
53 EGRガスクーラ
61 ケース
62 フィン群
63 チューブ
64 障壁
65 洗浄ノズル
66 洗浄パイプ
67 傾斜面
73 端面
74 側面
75 流路
80 フィン
81 第1段フィン群
82 第2段フィン群
83 第3段フィン群
100、200 エンジンシステム
101 洗浄液(内部流液)
53 EGRガスクーラ
61 ケース
62 フィン群
63 チューブ
64 障壁
65 洗浄ノズル
66 洗浄パイプ
67 傾斜面
73 端面
74 側面
75 流路
80 フィン
81 第1段フィン群
82 第2段フィン群
83 第3段フィン群
100、200 エンジンシステム
101 洗浄液(内部流液)
Claims (9)
- 対向する一対の端面及び対向する一対の側面を有し、前記一対の端面及び前記一対の側面によってEGRガスが鉛直方向下方に向かって流れる流路を区画するケースと、
前記流路内に位置し前記一対の端面に対して平行に並んだ複数のフィンからなるフィン群と、
前記フィン群のフィンを貫通し、内部に冷媒が流れるチューブと、
前記側面に沿って配置され水平方向に延びる障壁と、を備えたEGRガスクーラ。 - 前記障壁は、少なくとも前記フィン群の鉛直方向上端と鉛直方向下端との間に配置されている、請求項1に記載のEGRガスクーラ。
- 前記フィン群は、互いに同じ鉛直方向位置に配置された複数のフィンからなる第1段フィン群と、互いに同じ鉛直方向位置に配置された複数のフィンからなり前記第1段フィン群に対して鉛直方向に離間する第2段フィン群とを含み、
前記障壁は、前記第1段フィン群と前記第2段フィン群の間に配置されている、請求項2に記載のEGRガスクーラ。 - 前記障壁は、前記フィン群の鉛直方向上端よりも鉛直方向上方に位置している、請求項1ないし3のうちいずれか一の項に記載のEGRガスクーラ。
- 前記障壁は、前記側面から前記流路の中央に向かって鉛直方向下方に傾斜する傾斜面を有する、請求項1乃至4のうちいずれか一の項に記載のEGRガスクーラ。
- 前記一対の側面の対向方向において、前記側面に沿って配置された前記障壁の流路中央側端部の位置は、当該側面に近接するチューブの中心軸の位置と同じ又は当該中心軸の位置よりも流路中央に近い、請求項1乃至5のうちいずれか一の項に記載のEGRガスクーラ。
- 前記フィン群よりも鉛直方向上方に位置し、鉛直方向下方に向かって洗浄液を噴射する洗浄ノズルをさらに備える、請求項1乃至6のうちいずれか一の項に記載のEGRガスクーラ。
- 請求項7に記載のEGRガスクーラを備えたエンジンシステム。
- 請求項1乃至6に記載のEGRガスクーラと、当該EGRガスクーラよりも上流に位置し、洗浄液を用いて前記EGRガスを洗浄するスクラバと、を備えたエンジンシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020197000175A KR102073795B1 (ko) | 2016-06-21 | 2017-06-16 | Egr 가스 쿨러 및 엔진 시스템 |
CN201780036648.6A CN109312694B (zh) | 2016-06-21 | 2017-06-16 | Egr气体冷却器以及发动机系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016122818A JP6749150B2 (ja) | 2016-06-21 | 2016-06-21 | Egrガスクーラ及びエンジンシステム |
JP2016-122818 | 2016-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017221841A1 true WO2017221841A1 (ja) | 2017-12-28 |
Family
ID=60784795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022378 WO2017221841A1 (ja) | 2016-06-21 | 2017-06-16 | Egrガスクーラ及びエンジンシステム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6749150B2 (ja) |
KR (1) | KR102073795B1 (ja) |
CN (1) | CN109312694B (ja) |
WO (1) | WO2017221841A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022060659A (ja) * | 2020-10-05 | 2022-04-15 | 川崎重工業株式会社 | 配管装置 |
CN113482808B (zh) * | 2021-06-30 | 2022-11-01 | 东风汽车集团股份有限公司 | 一种egr冷却器及egr系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136661U (ja) * | 1978-03-16 | 1979-09-21 | ||
JPH0771893A (ja) * | 1993-06-11 | 1995-03-17 | Atlas Copco Airpower Nv | 熱交換器 |
JP2005331217A (ja) * | 2003-06-11 | 2005-12-02 | Usui Kokusai Sangyo Kaisha Ltd | ガス冷却装置 |
JP2007224786A (ja) * | 2006-02-22 | 2007-09-06 | Komatsu Ltd | 排気ガス再循環装置 |
US20150068716A1 (en) * | 2012-05-15 | 2015-03-12 | Behr Gmbh & Co. Kg | Exhaust gas heat exchanger |
JP2015116529A (ja) * | 2013-12-18 | 2015-06-25 | 川崎重工業株式会社 | スクラバーの浄水システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4997336B2 (ja) | 2010-01-29 | 2012-08-08 | エムエーエヌ・ディーゼル・アンド・ターボ・フィリアル・アフ・エムエーエヌ・ディーゼル・アンド・ターボ・エスイー・ティスクランド | 排ガス再循環システムを備える大型2サイクルディーゼル機関 |
KR101698440B1 (ko) * | 2012-12-28 | 2017-01-20 | 카와사키 주코교 카부시키 카이샤 | Egr 유닛 및 선박 엔진 시스템 |
JP5940727B2 (ja) * | 2013-03-18 | 2016-06-29 | 川崎重工業株式会社 | 洗浄冷却装置、egrユニット、及びエンジンシステム |
JP6280328B2 (ja) * | 2013-08-20 | 2018-02-14 | 川崎重工業株式会社 | Egrユニット及びエンジンシステム |
CN203627006U (zh) * | 2013-10-31 | 2014-06-04 | 长城汽车股份有限公司 | 车辆egr系统 |
JP6284409B2 (ja) * | 2014-04-09 | 2018-02-28 | 株式会社神戸製鋼所 | ガスクーラ |
-
2016
- 2016-06-21 JP JP2016122818A patent/JP6749150B2/ja active Active
-
2017
- 2017-06-16 CN CN201780036648.6A patent/CN109312694B/zh active Active
- 2017-06-16 KR KR1020197000175A patent/KR102073795B1/ko active IP Right Grant
- 2017-06-16 WO PCT/JP2017/022378 patent/WO2017221841A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136661U (ja) * | 1978-03-16 | 1979-09-21 | ||
JPH0771893A (ja) * | 1993-06-11 | 1995-03-17 | Atlas Copco Airpower Nv | 熱交換器 |
JP2005331217A (ja) * | 2003-06-11 | 2005-12-02 | Usui Kokusai Sangyo Kaisha Ltd | ガス冷却装置 |
JP2007224786A (ja) * | 2006-02-22 | 2007-09-06 | Komatsu Ltd | 排気ガス再循環装置 |
US20150068716A1 (en) * | 2012-05-15 | 2015-03-12 | Behr Gmbh & Co. Kg | Exhaust gas heat exchanger |
JP2015116529A (ja) * | 2013-12-18 | 2015-06-25 | 川崎重工業株式会社 | スクラバーの浄水システム |
Also Published As
Publication number | Publication date |
---|---|
CN109312694B (zh) | 2021-02-12 |
KR102073795B1 (ko) | 2020-02-05 |
JP6749150B2 (ja) | 2020-09-02 |
CN109312694A (zh) | 2019-02-05 |
KR20190012257A (ko) | 2019-02-08 |
JP2017227153A (ja) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102047914B1 (ko) | 배기 가스 냉각기 | |
JP5940727B2 (ja) | 洗浄冷却装置、egrユニット、及びエンジンシステム | |
KR101869176B1 (ko) | 데미스터 유닛 및 이것을 구비한 egr시스템 | |
WO2017221841A1 (ja) | Egrガスクーラ及びエンジンシステム | |
KR20180055881A (ko) | 데미스터 유닛 및 egr 시스템 | |
JP5141585B2 (ja) | 冷却器付き異物捕集装置 | |
US9581064B2 (en) | Truck provided with a device for lowering the temperature of exhaust gas | |
JP6413746B2 (ja) | インタークーラ | |
JP7104833B2 (ja) | スクラバ及びegrユニット | |
KR102173379B1 (ko) | 차량용 egr 쿨러 | |
JP2003004389A (ja) | Egrガス冷却装置 | |
JP6389496B2 (ja) | 船舶用egr装置 | |
JP2006144576A (ja) | 窒素酸化物浄化装置 | |
CN107201974B (zh) | 内燃机系统 | |
JP6382636B2 (ja) | Egrシステム | |
KR102463201B1 (ko) | 수냉식 이지알 쿨러 | |
KR20180029708A (ko) | 차량용 egr 쿨러 | |
JP2006348873A (ja) | Egrクーラ | |
JP2017160798A (ja) | エンジンシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17815309 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197000175 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17815309 Country of ref document: EP Kind code of ref document: A1 |