[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017221652A1 - Vehicular electrical component, method for manufacturing vehicular electrical component, and electrical-conduction-path-forming device - Google Patents

Vehicular electrical component, method for manufacturing vehicular electrical component, and electrical-conduction-path-forming device Download PDF

Info

Publication number
WO2017221652A1
WO2017221652A1 PCT/JP2017/020244 JP2017020244W WO2017221652A1 WO 2017221652 A1 WO2017221652 A1 WO 2017221652A1 JP 2017020244 W JP2017020244 W JP 2017020244W WO 2017221652 A1 WO2017221652 A1 WO 2017221652A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
conductive path
electrical component
conductive material
material supply
Prior art date
Application number
PCT/JP2017/020244
Other languages
French (fr)
Japanese (ja)
Inventor
神谷 敏文
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2018523639A priority Critical patent/JPWO2017221652A1/en
Publication of WO2017221652A1 publication Critical patent/WO2017221652A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C9/00Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important
    • B05C9/08Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation
    • B05C9/12Apparatus or plant for applying liquid or other fluent material to surfaces by means not covered by any preceding group, or in which the means of applying the liquid or other fluent material is not important for applying liquid or other fluent material and performing an auxiliary operation the auxiliary operation being performed after the application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/02Arrangements of circuit components or wiring on supporting structure
    • H05K7/06Arrangements of circuit components or wiring on supporting structure on insulating boards, e.g. wiring harnesses

Definitions

  • the present disclosure relates to a vehicle electrical component mounted on a vehicle, a method for manufacturing the vehicle electrical component, and a conductive path forming apparatus.
  • various electrical components are mounted on vehicle electrical components.
  • various electrical components such as an electric actuator that drives a door disposed in the housing, an electric motor that drives a fan, and a sensor are mounted.
  • the electrical component mounted in the electric component for vehicles is electrically connected with respect to a control apparatus, a power supply device, etc. via a wire harness as shown, for example in patent document 1.
  • the present inventors have formed an existing wire harness by forming a conductive path with respect to an electrical component (for example, a casing) of an electrical component for a vehicle by a method such as printing, plating, or pressing of a conductive material. We are considering reducing it.
  • the present disclosure relates to an electrical component for a vehicle, a method for manufacturing the electrical component for a vehicle, and formation of an electrical pathway that can prevent the electrical component from being melted by heat generated by the electrical pathway formed on the electrical component to which the electrical component is attached.
  • An object is to provide an apparatus.
  • an electrical component for a vehicle on which an electrical component is mounted is an electrical component to which the electrical component is attached, and at least one that is formed on the electrical component and is electrically connected to the electrical component.
  • a conductive path of a book. And the conductive path is comprised including the laminated body on which the electroconductive material was laminated
  • the conductive path is made of a laminate of conductive materials as in the present disclosure, the thickness of the conductive path can be increased and the electrical resistance of the conductive path can be suppressed. Thus, the melting damage of the electrical member can be suppressed.
  • the conductive path is composed of a cured body obtained by curing a conductive material laminated on the surface of the electrical component member, and unevenness is formed on a part of the surface.
  • a conductive path is comprised with the hardening body of the electroconductive material laminated
  • the conductive path is configured such that irregularities are formed on a part of the surface, the surface area of the conductive path can be increased and the heat dissipation of the conductive path during energization can be improved.
  • an electrical component for a vehicle including an electrical component having at least one conductive path electrically connected to the electrical component formed on a surface
  • the electrical component A conductive material having fluidity is supplied to the surface of the substrate.
  • a conductive material laminate is formed by supplying a new conductive material to the surface of the conductive material supplied to the surface of the electrical member at least once. Furthermore, in the above-described manufacturing method, the laminated body is cured by at least one of drying, baking, and chemical reaction, thereby forming a conductive path having irregularities on a part of the surface.
  • a conductive path having a large thickness and a low electrical resistance can be formed on the surface of the electrical member.
  • stacking a conductive material since an unevenness
  • the manufacturing method of the present disclosure it is possible to manufacture a vehicular electrical component that can prevent the electrical component from being melted by heat generated by the conductive path formed in the electrical component.
  • a conductive path forming device that forms at least one conductive path electrically connected to an electrical component on a surface of an electrical component includes a material supply device, a material curing device, .
  • the material supply device has a plurality of material supply units for supplying a conductive material to the surface of the electrical component. Moreover, the material curing device has an energy output unit that outputs energy for curing the conductive material.
  • some of the material supply units are configured to supply a conductive material to the surface of the electrical component. Further, among the plurality of material supply units, the other material supply units excluding a part of the material supply units are configured to supply the conductive material to the surface of the conductive material already supplied to the surface of the electrical component member. ing.
  • the conductive path is composed of a laminate of conductive materials supplied from a plurality of material supply units, and unevenness is formed on a part of the surface.
  • the conductive material is formed on the surface of the electrical component by the material supply device, and the conductive material is cured by the material curing device, so that the conductive path having a large thickness and a low electrical resistance is obtained. Can be formed on the surface. And when laminating
  • the conductive path forming device of the present disclosure it is possible to suppress the electrical component member from being melted by heat generated by the conductive path formed in the electrical component of the vehicle electrical component.
  • the conductive path forming apparatus of the present disclosure is configured to supply the conductive material from the other material supply unit to the surface of the conductive material supplied from the partial material supply unit to the surface of the electrical component. Yes. According to this, since it is not necessary to reciprocate the same material supply section many times when forming a laminate of conductive materials, a laminate of conductive materials can be formed on the surface of the electrical component in a short time. Is possible.
  • FIG. 2 is a sectional view taken along the line II-II in FIG. It is sectional drawing which shows the cross-sectional shape of the electrically conductive path which concerns on the comparative example of 1st Embodiment. It is sectional drawing which shows the cross-sectional shape of the electrically conductive path which concerns on 1st Embodiment. It is a block diagram which shows the flow of the manufacturing process of the electrically conductive path which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the flow of the manufacturing process of the electrically conductive path which concerns on 1st Embodiment.
  • FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG. 13. It is a typical block diagram which shows the principal part structure of the conductive path formation apparatus which concerns on 2nd Embodiment. It is a typical block diagram which shows the principal part structure of the conductive path formation apparatus which concerns on 3rd Embodiment.
  • FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 4th Embodiment. It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 5th Embodiment. It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 6th Embodiment. It is a block diagram which shows the manufacturing process of the electrically conductive path which concerns on 7th Embodiment. It is a block diagram which shows the manufacturing process of the electrically conductive path which concerns on 8th Embodiment. It is typical sectional drawing of the electrically conductive path which concerns on other embodiment.
  • a vehicle air conditioner is an apparatus that air-conditions a vehicle interior.
  • the vehicle air conditioner includes an air conditioning unit 1 that adjusts the temperature of air blown into the passenger compartment.
  • the air conditioning unit 1 is disposed, for example, inside the foremost instrument panel in the passenger compartment.
  • the air conditioning unit 1 includes an air conditioning case 10 constituting an outer shell.
  • the air conditioning case 10 is formed with an air passage for air toward the vehicle interior.
  • the air conditioning unit 1 constitutes an electrical component for a vehicle
  • the air conditioning case 10 constitutes an electrical component to which an electrical component is attached.
  • the air conditioning case 10 is molded of an insulating resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • the air conditioning case 10 is actually configured by fastening a plurality of divided case bodies with fastening elements such as screws and clips for convenience in resin molding, assembly of built-in components, and the like.
  • the air conditioning case 10 houses a blower 11 that blows air into the passenger compartment.
  • the blower 11 is an electric blower that drives a centrifugal fan (for example, a sirocco fan or a turbo fan) 111 with an electric motor 112.
  • the electric motor 112 is attached to the air conditioning case 10.
  • an inside air introduction port 121 for introducing air inside the vehicle interior (that is, inside air) to the air suction side of the air blower 11, and air outside the vehicle compartment (ie, outside air). ) is formed.
  • an inside / outside air door that adjusts the ratio of the opening area of the inside air introduction port 121 and the opening area of the outside air introduction port 122 is arranged.
  • the inside / outside air door is driven by an electric actuator 13 attached to the outside of the air conditioning case 10.
  • An evaporator 14 for cooling the air blown from the blower 11 is disposed on the air blowing side of the blower 11 in the air conditioning case 10.
  • the evaporator 14 is a cooling heat exchanger that cools the air flowing inside the air conditioning case 10 by an endothermic effect when the refrigerant is vaporized.
  • the evaporator 14 constitutes a vapor compression refrigeration cycle together with a compressor, a radiator, an expansion valve, and the like (not shown).
  • a heater core 15 that heats the air that has passed through the evaporator 14 is disposed on the downstream side of the air flow of the evaporator 14 in the air conditioning case 10.
  • the heater core 15 is a heat exchanger for heating that heats the air that has passed through the evaporator 14 by heat exchange with engine coolant (not shown).
  • the air conditioning case 10 is formed with a bypass passage that bypasses the heater core 15 and flows air. Further, an air mix door that adjusts the air volume ratio between the air volume passing through the heater core 15 and the air volume passing through the bypass passage is disposed inside the air conditioning case 10. The air mix door is driven by an electric actuator 16 attached to the outside of the air conditioning case 10.
  • the air conditioning case 10 is provided with a plurality of outlet openings for blowing air after passing through the heater core 15 or the bypass passage to the vehicle interior side, on the most downstream side of the air flow.
  • the air blown out from the blowout opening is supplied into the vehicle compartment from a blowout portion provided in the vehicle compartment via a duct (not shown).
  • the air conditioning unit 1 of the present embodiment includes a control device and a power source (not shown) on the surface of the air conditioning case 10 that is an electrical component, such as the electric motor 112 of the blower 11 and the electric actuators 13 and 16 for driving the door.
  • a conductive path 100 connected to the device is formed.
  • This conductive path 100 replaces the wire harness that has been used in the air conditioning unit 1 until now. Specifically, as shown in FIG. 2, a plurality of conductive paths 100 are formed on the surface of the air conditioning case 10 of the present embodiment.
  • the conductive path 100 includes a laminated body in which conductive materials are laminated. Specifically, the conductive path 100 is configured by a cured body obtained by curing a conductive material that is stacked several times on the surface of the air conditioning case 10. The surface of the conductive path 100 is covered with a protective film 110 having an insulating property. Thus, if it is set as the structure which covers the surface of the conductive path 100 with the protective film 110, the corrosion of the conductive path 100, a disconnection, a short circuit, etc. can be suppressed.
  • FIG. 3 shows a cross-sectional shape of a conductive path CE which is a comparative example of the conductive path 100 of the present embodiment.
  • the conductive path CE shown in FIG. 3 is a cured body obtained by curing the conductive material supplied to the surface of the air conditioning case 10 at one time.
  • the conductive material spreads in the surface direction of the air conditioning case 10 due to surface tension in the process of forming the conductive path CE. That is, if it is attempted to sufficiently secure the thickness Lt1 in the conductive path CE, the width Lw1 of the conductive path CE is increased as shown in FIG. For this reason, when the conductive path CE of the comparative example is formed for the air conditioning case 10, it is necessary to secure a sufficient area for forming the conductive path CE on the surface of the air conditioning case 10.
  • the conductive path 100 is formed of a cured body obtained by curing a laminated body of conductive materials in which the conductive paths 100 are laminated several times, the conductive material is printed on the surface of the air conditioning case 10 or The influence of the surface tension of the conductive material during application can be suppressed.
  • the conductive path 100 of the present embodiment has a thickness Lt2 equivalent to the conductive path CE of the comparative example, and the width Lw2 of the conductive path 100 is the conductive path CE of the comparative example.
  • the width Lw1 can be reduced.
  • the surface of the air conditioning case 10 is compared with the case where the conductive path CE of the comparative example is formed for the air conditioning case 10. A region for forming the conductive path 100 can be reduced.
  • the conductive path 100 of the present embodiment irregularities are formed on a part of the surface in the process of laminating the conductive material.
  • the conductive path 100 according to the present embodiment has irregularities formed on the side surface standing on the surface of the air conditioning case 10.
  • the conductive path 100 according to the present embodiment has sufficient surface area compared to the conductive path CE of the comparative example by forming irregularities on the surface. That is, the conductive path 100 of the present embodiment can improve heat dissipation during energization compared to the conductive path CE of the comparative example.
  • a plurality of divided case bodies constituting the air conditioning case 10 are manufactured by injection molding or the like.
  • the conductive path 100 is formed at a predetermined location of the plurality of divided case bodies.
  • the air-conditioning case 10 is manufactured by fastening a plurality of divided case bodies with fastening elements such as screws and clips.
  • components, such as the evaporator 14 and the heater core 15, are attached inside the air conditioning case 10.
  • the air conditioning unit 1 is manufactured by obtaining the above-described series of steps.
  • the manufacturing process of the air-conditioning unit 1 of this embodiment is only an example, For example, a part of each process mentioned above may move back and forth.
  • FIG. 5 is a block diagram showing the flow of the manufacturing process of the conductive path 100.
  • FIG. 6 is an explanatory diagram for explaining the flow of the manufacturing process of the conductive path 100.
  • FIG. 6 schematically shows the state of the conductive material and the like in each step shown in FIG. 5 and FIG. 6 exemplify the process when the conductive tree material is laminated five times on the surface of the air conditioning case 10, but the present invention is not limited to this.
  • the number of times the conductive material is stacked can be appropriately changed according to the required thickness of the conductive path 100.
  • a conductive material having fluidity is supplied to the surface of the air conditioning case 10 (for example, the surface of the split case body).
  • the conductive material is supplied by a technique such as printing or coating.
  • the conductive material of the present embodiment is at least one conductive material among metal (for example, metal powder such as silver and lead), carbon (for example, carbon black), and conductive resin (for example, conductive polyacetylene). It is comprised with the solvent (namely, electrically conductive ink) containing the active substance. Thereby, the fluidity
  • metal for example, metal powder such as silver and lead
  • carbon for example, carbon black
  • conductive resin for example, conductive polyacetylene
  • the conductive material of the present embodiment is composed of a conductive ink having photocurability that is cured by irradiation with light (that is, infrared rays, visible rays, and ultraviolet rays).
  • the conductive material may be formed of a paste-like material (that is, a conductive paste) containing at least one conductive substance among metal, carbon, and conductive resin.
  • the conductive material of the present embodiment is made of a material that has good hydrophobicity with respect to the surface of the air conditioning case 10.
  • the conductive material of the present embodiment is made of a material whose contact angle ⁇ 1 is an obtuse angle when supplied to the surface of the air conditioning case 10.
  • the contact angle ⁇ may be adjusted by applying a water repellent treatment to the surface of the air conditioning case 10.
  • the conductive material of the present embodiment is made of a material having good hydrophobicity with respect to the surface of the cured conductive material. Specifically, as shown by MP3 in FIG. 6, the conductive material of the present embodiment is made of a material that has an obtuse angle of contact angle ⁇ 2 when supplied to the surface of the cured conductive material.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material and sintering the conductive material by firing.
  • the conductive material is irradiated with light having a predetermined wavelength. Thereby, a part of solvent evaporates and an electroconductive substance is condensed. Further, in this step, the temperature of the conductive material is raised to the temperature at which the conductive substance is sintered by irradiation with light. As a result, the conductive material has enhanced shape retention and conductivity by strengthening the bond between the conductive substances.
  • the volume of the conductive material decreases with the volatilization of the solvent, so that its thickness becomes thinner than the thickness in MP1 in the previous step.
  • the conductive material has a thickness of about several ⁇ m to several tens of ⁇ m, for example, by this step.
  • a conductive material is newly supplied to the surface of the conductive material supplied to the surface of the air conditioning case 10. Specifically, in this step, a conductive material is newly supplied to the surface of the conductive material cured in MP2 in the previous step. Note that the conductive material newly supplied in this step is made of a material equivalent to the conductive material supplied in the first step.
  • the newly supplied solvent of the conductive material is dried and the conductive substance is sintered by firing. Thereby, the conductive material supplied to the surface of the already supplied conductive material is cured.
  • MP5, MP7, MP9, which are the same steps as MP3, and MP6, MP8, MP10, which are the same steps as MP4, are alternately repeated. That is, in the subsequent steps, the supply of the conductive material to the surface of the conductive material supplied to the surface of the air conditioning case 10 and the curing of the conductive material are repeated alternately. Through these steps, a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10.
  • the insulating material which has insulation with respect to the laminated body of an electroconductive material is supplied, and the surface of the laminated body of an electroconductive material is covered with the protective film 110.
  • FIG. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
  • the contact angle ⁇ 1 between the conductive material and the air conditioning case 10 and the contact angle ⁇ 2 between the cured conductive material and the newly supplied conductive material are obtuse angles.
  • corrugation is formed in the side surface standingly arranged from the surface of the air-conditioning case 10.
  • the conductive path forming apparatus 2 for forming the conductive path 100 will be described with reference to FIGS.
  • the conductive path forming device 2 includes a work stage 20, a conductive path forming machine 30, a drive mechanism 40, and a controller 50.
  • the work stage 20 is a pedestal on which the divided case body of the air conditioning case 10 serving as a work is placed.
  • the work stage 20 includes a mounting plate 21, a posture adjustment mechanism 22, a base plate 23 that supports the mounting plate 21 via the posture adjustment mechanism 22, and the like.
  • the mounting plate 21 has a mounting surface on which the split case body of the air conditioning case 10 is installed. Although not shown, the mounting plate 21 is provided with a holding mechanism for holding the divided case body of the air conditioning case 10.
  • the attitude adjustment mechanism 22 is a mechanism for adjusting the attitude and position of the air conditioning case 10 mounted on the mounting plate 21 in the vertical and horizontal directions. The operation of the attitude adjustment mechanism 22 is controlled by a control signal from the controller 50 described later.
  • the conductive path forming machine 30 is a device that supplies a conductive material to the surface of the air conditioning case 10 and hardens the conductive material.
  • the conductive path forming machine 30 of this embodiment includes a material supply device 31, a material curing device 32, and a film forming device 33 that forms a protective film.
  • the material supply device 31 includes a plurality of material supply units 311 that supply conductive materials.
  • Each material supply unit 311 is provided with a tank 311a for holding a conductive material, and a nozzle unit 311b for injecting the conductive material in the tank 311a.
  • the material curing device 32 includes a plurality of energy output units 321 that output energy for curing the conductive material.
  • Each energy output unit 321 includes a light irradiation unit 321a that emits light of a predetermined wavelength.
  • the film forming device 33 is a device that forms the protective film 110 with an insulating material.
  • the film forming apparatus 33 includes a single material output unit 331 that outputs an insulating material.
  • the material output unit 331 includes a tank 331a that holds the insulating material, an injection unit 331b that injects the insulating material, and a squeegee 331c that extends so that the insulating material injected from the injection unit 331b has a uniform thickness. ing.
  • the material supply unit 311 and the energy output unit 321 are connected to be aligned in a line along the traveling direction via the connecting member 34. Specifically, the material supply unit 311 and the energy output unit 321 are connected so that the energy output unit 321 is positioned behind the material supply unit 311 in the traveling direction.
  • a film forming device 33 is connected to the energy output unit 321 located at the end in the traveling direction.
  • the other material supply units 311 and the energy output so as to follow the movement trajectory of a part of the material supply units 311 located at the head in the traveling direction.
  • the part 321 and the material output part 331 are connected to each other via the connecting member 34.
  • the connecting member 34 has the energy output unit 321 on the rear side in the traveling direction. It is possible to follow the movement trajectory of the material supply unit 311 on the front side. Further, as shown in FIGS. 11 and 12, when the material supply unit 311 on the front side in the traveling direction turns in the connecting member 34, the energy output unit 321 on the rear side in the traveling direction proceeds. It is configured to be able to follow the movement trajectory of the material supply unit 311 on the front side in the direction.
  • the drive mechanism 40 is a drive unit that drives the devices 31 to 33 of the conductive path forming machine 30 so that the conductive path 100 having a predetermined shape is formed on the surface of the air conditioning case 10.
  • the drive mechanism 40 of this embodiment is configured to move a part of the material supply unit 311 according to a predetermined shape of the conductive path 100.
  • the drive mechanism 40 of the present embodiment moves a part of the material supply unit 311 on the guide rail 41 that holds each device 31 to 33 of the conductive path forming machine 30 movably.
  • An electric actuator 42 is provided.
  • the guide rail 41 is configured to match the shape of the conductive path 100 so that the devices 31 to 33 of the conductive path forming machine 30 can be moved along the conductive path 100 formed on the surface of the air conditioning case 10. Has been.
  • the electric actuator 42 is attached to some of the material supply units 311 among the plurality of material supply units 311. The operation of the electric actuator 42 is controlled by a control signal from the controller 50 described later.
  • the controller 50 includes a microcomputer including a storage unit such as a CPU, ROM, and RAM and its peripheral circuits.
  • the controller 50 performs various calculations and processes based on the control program stored in the storage unit. And the controller 50 controls the action
  • the storage unit of the controller 50 is configured by a non-transitional tangible storage medium.
  • a conductive material is supplied to the surface of the air conditioning case 10 from the material supply unit 311 located at the head in the traveling direction.
  • the electroconductive material supplied to the surface of the air-conditioning case 10 is hardened
  • the other material supply units 311 except for the material supply unit 311 located at the head in the traveling direction newly supply the conductive material to the surface of the conductive material already supplied to the surface of the air conditioning case 10.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by light emitted from the energy output unit 321 located on the rear side in the traveling direction of each material supply unit 311.
  • a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10.
  • a protective film 110 is formed on the surface of the conductive path 100 by an insulating material output from the material output unit 331 of the film forming device 33 located at the end in the traveling direction. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
  • the air conditioning unit 1 of the present embodiment described above has a plurality of conductive paths 100 that are electrically connected to electrical components such as the door driving electric actuators 13 and 16 with respect to the air conditioning case 10 constituting the outer shell. Are integrally formed.
  • the conductive path 100 includes a laminated body in which conductive materials are laminated.
  • the conductive path 100 is configured by a cured body obtained by curing a conductive material laminated on the surface of the air conditioning case 10. For this reason, the electrical resistance of the conductive path 100 can be suppressed by increasing the thickness of the conductive path 100.
  • irregularities are formed on a part of the surface of the conductive path 100 in the process of laminating the conductive material.
  • Such a conductive path 100 can improve the heat dissipation of the conductive path 100 when energized by increasing the surface area.
  • the electrical resistance of the conductive path 100 can be suppressed and the heat dissipation of the conductive path 100 can be improved. For this reason, it becomes possible to suppress that a part of air-conditioning case 10 melt
  • a new conductive material is supplied to the surface of the cured conductive material. Yes. According to this, it can suppress that a conductive material spreads in the surface direction of the air-conditioning case 10 by the influence of surface tension. That is, the conductive material can be laminated in a state where the shape of the conductive material supplied to the air conditioning case 10 is maintained.
  • the thickness can be increased without increasing the width of the conductive path 100. For this reason, it can suppress that the area
  • the conductive path forming apparatus 2 of the present embodiment forms a laminate of conductive material on the surface of the air conditioning case 10 by the material supply device 31 and hardens the conductive material by the material curing device 32.
  • the conductive path 100 having a large thickness and a low electrical resistance can be formed on the surface of the air conditioning case 10.
  • the surface area of the conductive path 100 can be increased and the heat dissipation of the conductive path 100 at the time of electricity supply can be improved. it can.
  • the conductive material is supplied from the other material supply unit 311 to the surface of the conductive material supplied from the partial material supply unit 311 to the surface of the air conditioning case 10. It is the composition to do. According to this, since it is not necessary to reciprocate the same material supply part 311 many times when forming the laminated body of conductive material, the laminated body of conductive material is formed on the surface of the air conditioning case 10 in a short time. It becomes possible to do.
  • the conductive path forming apparatus 2 of the present embodiment includes a drive mechanism 40 that drives the material supply device 31 and the material curing device 32.
  • the electrically conductive path 100 is appropriately set with respect to the surface of the air-conditioning case 10 which has a three-dimensional structure (namely, three-dimensional structure). It becomes possible to form.
  • a part of the material supply unit 311 is moved by the drive mechanism 40, and the other material supply unit 311, the energy output unit 321, and the like are partially connected via the connecting member 34. It is configured to be connected to the material supply unit 311.
  • the number of parts of the drive element can be reduced as compared with the configuration in which some of the material supply units 311, the other material supply units 311, and the energy output unit 321 are individually moved by the drive mechanism 40. Further, simplification of the conductive path forming device 2 can be achieved.
  • the conductive material of the present embodiment is composed of a conductive ink that is cured by irradiation with light (that is, infrared rays, visible rays, and ultraviolet rays).
  • the energy output part 321 of this embodiment becomes a structure which has the light irradiation part 321a which irradiates the light of a predetermined wavelength. According to this, the conductive material can be appropriately cured by the light irradiated from the energy output unit 321.
  • the energy output unit 321 of the present embodiment shown in FIG. 15 has a radio wave irradiation unit 321b that radiates radio waves instead of the light irradiation unit 321a of the first embodiment so that the conductive material can be cured. It has become.
  • the energy output unit 321 of the present embodiment is provided with an electromagnetic shield 322 as a diffusion suppressing unit that suppresses the diffusion of energy for curing the conductive material.
  • the energy output unit 321 of the present embodiment is provided with an electromagnetic shield 322 as a diffusion suppressing unit that suppresses the diffusion of energy for curing the conductive material.
  • the energy output from the energy output unit 321 by the electromagnetic shield 322 can be concentrated on the curing of the conductive material, so that the energy efficiency of the conductive path forming device 2 can be improved. Moreover, it can also suppress that the energy from the energy output part 321 is output to the site
  • the film forming device 33 of the conductive path forming machine 30 of this embodiment has two material output portions 331.
  • One of the two material output portions 331 is connected to the energy output portion 321 located at the end in the traveling direction via a connecting member 34.
  • the other of the two material output units 331 is a connecting member 34 between the energy output unit 321 positioned in the middle of the traveling direction and the material supply unit 311 positioned behind the energy output unit 321 in the traveling direction. Connected through.
  • Other configurations are the same as those of the conductive path forming apparatus 2 of the first embodiment.
  • a conductive material is supplied to the surface of the air conditioning case 10 from the material supply unit 311 located at the head in the traveling direction.
  • the electroconductive material supplied to the surface of the air-conditioning case 10 is hardened
  • the material supply unit 311 located on the rear side in the traveling direction supplies a new conductive material to the surface of the conductive material already supplied to the surface of the air conditioning case 10.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
  • a first-layer conductive path 100A is formed on the surface of the air conditioning case 10.
  • a protective film 110A is formed on the surface of the conductive path 100A by an insulating material output from the material output unit 331 of the film forming device 33 located in the middle of the traveling direction. Thereby, corrosion, disconnection, a short circuit, etc. of the conductive path 100A are suppressed.
  • a conductive material is supplied to the surface of the protective film 110A from the material supply unit 311 located on the rear side in the traveling direction of the material output unit 331 of the film forming device 33.
  • the conductive material supplied to the surface of the protective film 110 ⁇ / b> A is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
  • the material supply unit 311 located on the rear side in the traveling direction supplies a new conductive material to the surface of the conductive material already supplied to the surface of the protective film 110A.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
  • a protective film 110 ⁇ / b> B is formed on the surface of the conductive path 100 with an insulating material output from the material output unit 331 of the film forming device 33 located at the end in the traveling direction. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
  • the conductive path forming apparatus 2 of the present embodiment can obtain the operational configuration produced from the configuration common to the first embodiment, similarly to the first embodiment.
  • the conductive path forming apparatus 2 of the present embodiment can form two layers of conductive paths 100 ⁇ / b> A and 100 ⁇ / b> B formed of a laminate of conductive materials on the surface of the air conditioning case 10.
  • the conductive path forming apparatus 2 of the present embodiment is suitable when a plurality of conductive paths 100A and 100B need to intersect the surface of the air conditioning case 10.
  • the conductive path forming apparatus 2 capable of forming the two-layer conductive paths 100A and 100B is illustrated, but the present invention is not limited thereto, and the conductive path forming apparatus 2 includes the conductive paths 100 having three or more layers. You may be comprised so that formation is possible.
  • a conductive path forming device 2 capable of forming a plurality of conductive paths 100 arranged in parallel at a predetermined interval on the surface of the air conditioning case 10 will be described.
  • each of the material supply units 311 of the present embodiment is provided with a plurality of nozzle units 311b for injecting a conductive material so as to line up in a direction intersecting the traveling direction.
  • each energy output part 321 of this embodiment the same number of light irradiation parts 321a as the plurality of nozzle parts 311b of the material supply part 311 are provided so as to be arranged in a direction intersecting the traveling direction.
  • the same number of injection units 331b as the plurality of nozzle units 311b of the material supply unit 311 are provided so as to be arranged in a direction intersecting the traveling direction.
  • the conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the first embodiment, similarly to the first embodiment.
  • the conductive path forming apparatus 2 has a configuration in which the material supply unit 311 is provided with a plurality of nozzle units 311b arranged in a direction intersecting the traveling direction. According to this, when the plurality of conductive paths 100 close to the surface of the air conditioning case 10 are formed, it is not necessary to reciprocate the material supply unit 311 many times.
  • the conductive path 100 can be formed.
  • each of the energy output units 321 according to the present embodiment is configured to output energy to the entire conductive material injected from the plurality of nozzle units 311 b of the material supply unit 311. That is, each energy output unit 321 of the present embodiment is configured to output energy to the entire conductive material ejected from the plurality of nozzle units 311b by a single light irradiation unit 321a.
  • the conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the fourth embodiment, similarly to the fourth embodiment.
  • the conductive path forming apparatus 2 of the present embodiment is configured such that each energy output unit 321 outputs energy to the entire conductive material injected from the plurality of nozzle units 311b of the material supply unit 311. Yes. According to this, since it is not necessary to provide the light irradiation part 321a of the energy output part 321 of the number corresponding to the some nozzle part 311b of the material supply part 311, simplification of the conductive path formation apparatus 2 can be achieved.
  • the material output portion 331 of the film forming apparatus 33 of the present embodiment is configured to cover the entire plurality of conductive paths 100. That is, the film forming apparatus 33 of the present embodiment is configured to cover the entire plurality of conductive paths 100 with the protective film 110 by the single material output unit 331.
  • the conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the fifth embodiment, similarly to the fifth embodiment.
  • the conductive path forming apparatus 2 of the present embodiment is configured such that the material output unit 331 of the film forming apparatus 33 covers the entire plurality of conductive paths 100. According to this, since it is not necessary to provide the number of material output portions 331 of the film forming devices 33 corresponding to the plurality of nozzle portions 311b of the material supply portion 311, the conductive path forming device 2 can be simplified.
  • a conductive material having fluidity is supplied to the surface of the air conditioning case 10.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material.
  • the temperature of the conductive material is higher than the temperature at which a part of the solvent volatilizes and is lower than the sintering temperature of the conductive material. Irradiate with light.
  • the conductive material has a high shape retention property because part of the solvent is volatilized and the conductive substance is condensed.
  • the supply of the conductive material to the surface of the conductive material supplied to the surface of the air conditioning case 10 and the drying of the conductive material are repeated alternately.
  • the solvent of the conductive material is dried and the conductive material is sintered by firing.
  • a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10.
  • an insulating material having an insulating property is supplied to the stacked body of conductive materials, so that the surface of the stacked body of conductive materials is covered with the protective film 110. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
  • sintering is performed by firing the conductive material of the conductive material, so that it is necessary to form the conductive path 100 on the surface of the air conditioning case 10. It is possible to shorten the time required.
  • a conductive material having fluidity is supplied to the surface of the air conditioning case 10.
  • a conductive material is newly supplied to the surface of the conductive material supplied to the surface of the air conditioning case 10.
  • the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material. That is, in the method for manufacturing the conductive path 100 of the present embodiment, the conductive material is cured after the conductive material is supplied a plurality of times.
  • the supply of the conductive material and the drying of the conductive material are repeated alternately.
  • the solvent of the conductive material is dried and the conductive material is sintered by firing.
  • a conductive path 100 formed of a laminate of conductive materials is formed on the surface of the air conditioning case 10.
  • an insulating material having an insulating property is supplied to the laminate of conductive materials, so that the surface of the laminate of conductive materials is covered with a protective film. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
  • the thickness can be increased without increasing the width of the conductive path 100.
  • the manufacturing method or the like when forming the plurality of conductive paths 100 on the surface of the air conditioning case 10 has been described.
  • the manufacturing method or the like includes a single conductive path 100 on the surface of the air conditioning case 10. It is also effective when forming.
  • the protective film 110 covering the surface of the conductive path 100 has been exemplified as having a substantially constant thickness.
  • the present invention is not limited to this, and the protective film 110 may have an indefinite thickness.
  • the protective film 110 may be formed such that a portion between adjacent conductive paths 100 is thicker than a portion on the conductive path 100.
  • the present invention is not limited to this. That is, the conductive path 100 may not be covered with the protective film 110.
  • the present invention is not limited to this.
  • a method for curing the conductive material for example, a method in which an ultraviolet curable resin is used as the conductive material and the conductive material is cured by a chemical reaction by irradiation with ultraviolet rays can be employed.
  • a method of curing the conductive material a method of curing a mixture of the main agent and the curing agent as a conductive material by mixing a conductive main agent and a curing agent that cures the main agent by a chemical reaction. It can be adopted.
  • the conductive path forming apparatus 2 of each of the above-described embodiments has been described with respect to the example in which the devices 31 to 33 of the conductive path forming machine 30 are moved on the guide rail 41, the present invention is not limited thereto.
  • the conductive path forming device 2 may be configured, for example, to move the devices 31 to 33 of the conductive path forming machine 30 using a movable arm or the like.
  • the conductive path forming device 2 may be configured to fix the positions of the devices 31 to 33 of the conductive path forming machine 30 and change the posture and position of the air conditioning case 10.
  • the air conditioning case 10 constituting the outer shell is an electrical component and the conductive path 100 is formed on the surface of the air conditioning case 10 has been described.
  • the conductive path 100 can be formed on, for example, a casing other than the air conditioning case 10, a plate-shaped member, a block-shaped member, or the like as long as it is an electrical member to which an electrical component is attached.
  • the conductive path 100 may be formed in an electrical component of an electrical component for a vehicle other than the air conditioning case 10 of the air conditioning unit 1.
  • the electrical component for vehicles at least 1 conductive path is formed in the electrical component to which an electrical component is attached.
  • the conductive path is comprised including the laminated body on which the electroconductive material was laminated
  • the conductive path of the vehicle electrical component is formed of a cured body obtained by curing a conductive material laminated on the surface of the electrical component, and unevenness is formed on a part of the surface. .
  • a method for manufacturing an electrical component for a vehicle wherein a conductive material laminate is newly supplied at least once to the surface of the conductive material supplied to the surface of the electrical component.
  • corrugation in a part of surface is formed by hardening a laminated body by at least 1 of drying, baking, and a chemical reaction.
  • the fourth aspect in the method for manufacturing an electrical component for a vehicle, when the supply of the conductive material to the surface of the conductive material supplied to the surface of the electrical component member is repeated a plurality of times, drying is performed at least once.
  • the conductive material already supplied is cured by at least one of baking and chemical reaction.
  • the conductive material can be stacked while maintaining the shape of the conductive material.
  • the thickness can be increased without increasing the width of the conductive path, it is possible to suppress an increase in the area for forming the conductive path on the surface of the electrical member. it can.
  • the surface of the conductive path is covered with a protective film that protects the conductive path. According to this, since the surface of the conductive path is covered with the protective film, corrosion, disconnection, short circuit, and the like of the conductive path formed on the surface of the electrical member can be suppressed.
  • the conductive material used for forming the conductive path is a solvent or paste containing at least one conductive substance among metal, carbon, and conductive resin. It is composed of a material. According to this, the fluidity of the conductive material can be ensured.
  • the conductive path forming apparatus is configured such that a part of the plurality of material supply units supplies a conductive material to the surface of the electrical member. Further, among the plurality of material supply units, the other material supply units excluding a part of the material supply units are configured to supply the conductive material to the surface of the conductive material already supplied to the surface of the electrical component member. ing.
  • the conductive path is composed of a laminate of conductive materials supplied from a plurality of material supply units, and unevenness is formed on a part of the surface.
  • the conductive path forming device includes a drive unit that drives the material supply device and the material curing device so that a predetermined shape of the conductive path is formed on the surface of the electrical member.
  • a drive unit that drives the material supply device and the material curing device so that a predetermined shape of the conductive path is formed on the surface of the electrical member.
  • the conductive path forming apparatus is configured such that the drive unit moves a part of the material supply unit in accordance with a predetermined shape of the conductive path.
  • the other material supply unit and the energy output unit are coupled to a part of the material supply unit via a coupling member so as to follow the movement trajectory of the part of the material supply unit.
  • the conductive path formation It is possible to simplify the apparatus.
  • the conductive material includes a conductive substance and is composed of a solvent or a paste-like material that is cured by light irradiation.
  • the energy output part has a light irradiation part which irradiates the light of a predetermined wavelength. According to this, a conductive material can be appropriately hardened with the light irradiated from the light irradiation part of an energy output part.
  • the conductive material includes a conductive substance and is composed of a solvent or paste-like material that is cured by irradiation with radio waves.
  • the energy output unit includes a radio wave irradiation unit that radiates radio waves. According to this, a conductive material can be appropriately hardened with the radio wave irradiated from the radio wave irradiation part of an energy output part.
  • the energy output unit is provided with a diffusion suppressing unit that suppresses diffusion of energy for curing the conductive material. According to this, since the energy output from the energy output unit can be concentrated on the curing of the conductive material by the diffusion suppressing unit, the energy efficiency of the conductive path forming apparatus can be improved. Moreover, it can also suppress that the energy from an energy output part is output to the site
  • the conductive path forming device is conductive so that a plurality of conductive paths arranged in parallel with a predetermined interval are formed on the surface of the electrical component member in each of the plurality of material supply units.
  • a plurality of nozzles for injecting material are provided.
  • the conductive path forming apparatus is configured such that the energy output unit outputs energy to the entire conductive material injected from the plurality of nozzle units. According to this, since it is not necessary to provide the energy output part of the number corresponding to a some nozzle part, simplification of a conductive path formation apparatus can be achieved.
  • the conductive path forming apparatus includes at least one film forming device for forming a protective film for protecting the conductive path on the surface of the conductive path. According to this, since the protective film is formed on the surface of the conductive path by the film forming device, corrosion, disconnection, short circuit, and the like of the conductive path formed on the surface of the electrical member can be suppressed.
  • the conductive path forming apparatus includes a film forming device for forming a protective film for protecting the conductive path on the surface of the conductive path. And the film formation apparatus is comprised so that the whole several conductive path may be covered with a protective film. According to this, since it is not necessary to provide a number of film forming devices corresponding to the plurality of nozzle portions, it is possible to simplify the conductive path forming device.
  • the conductive path forming device includes an attitude adjustment mechanism that adjusts the attitude and position of the electrical member. According to this, it is possible to form a conductive path on the surface of the electrical member by changing the posture and position of the electrical member in a state where the position of each device of the conductive path forming device is fixed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Coating Apparatus (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

A vehicular electrical component (1) is provided with an electrical member (10) to which are attached electric parts (112, 13, 16), and at least one electrical conduction path (100, 100A, 100B) that is electrically connected to the electric parts. This electrical conduction path is configured to include a laminated body in which electrically conductive materials are laminated. Also, a method for manufacturing a vehicular electrical component comprises performing at least one of drying, baking, and carrying out a chemical reaction to cure a laminated body of electrically conductive materials, thereby forming an electrical conduction path having recesses and projections on a portion of the surface. Furthermore, an electrical-conduction-path-forming device (2) is provided with a material-supplying apparatus (31) that has a plurality of material supply parts (311), and a material-curing apparatus (32) that has an energy output part (321). Of the plurality of material supply parts, some of the material supply parts supply an electrically conductive material to the surface of an electrical member, and the other material supply parts supply an electrically conductive material to the surface of the electrically conducive material that has already been supplied to the surface of the electrical member.

Description

車両用電装部品、車両用電装部品の製造方法、導電路形成装置ELECTRIC VEHICLE COMPONENT, METHOD FOR PRODUCING ELECTRIC EQUIPMENT FOR VEHICLE, AND CONDUCTIVE CIRCUIT 関連出願への相互参照Cross-reference to related applications
 本出願は、2016年6月21日に出願された日本出願番号2016-122836号に基づくものであって、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2016-122836 filed on June 21, 2016, the contents of which are incorporated herein by reference.
 本開示は、車両に搭載される車両用電装部品、車両用電装部品の製造方法、および導電路形成装置に関する。 The present disclosure relates to a vehicle electrical component mounted on a vehicle, a method for manufacturing the vehicle electrical component, and a conductive path forming apparatus.
 従来、車両用電装部品には、各種電気部品が搭載される。例えば、車両用空調装置の空調ユニットでは、筐体の内部に配設されたドアを駆動する電動アクチュエータ、ファンを駆動する電動モータ、センサ等の各種電気部品が搭載される。そして、車両用電動部品に搭載された電気部品は、例えば、特許文献1に示すように、ワイヤハーネスを介して制御装置、電源装置等に対して電気的に接続される。 Conventionally, various electrical components are mounted on vehicle electrical components. For example, in an air conditioning unit of a vehicle air conditioner, various electrical components such as an electric actuator that drives a door disposed in the housing, an electric motor that drives a fan, and a sensor are mounted. And the electrical component mounted in the electric component for vehicles is electrically connected with respect to a control apparatus, a power supply device, etc. via a wire harness as shown, for example in patent document 1. FIG.
特開2004-175266号公報JP 2004-175266 A
 現状、ワイヤハーネスの筐体等の電装部材への配策は、ロボットによる自動化が難しく、人間が行うことが多い。ワイヤハーネスの配策を人間が行う場合、電装部材への組み付け時に、ワイヤハーネスに傷がつかないこと、ワイヤハーネスの張力が過度とならないこと等に注意する必要があり、その複雑な作業が生産効率の低下を引き起こす要因となっている。 Currently, it is difficult for robots to automate wiring components such as the housing of wire harnesses, and humans often do it. When manipulating the wiring harness, it is necessary to pay attention to the fact that the wiring harness will not be damaged and the tension of the wiring harness will not be excessive when assembled to the electrical component. This is a factor causing a decrease in efficiency.
 そこで、本発明者らは、導電性材料の印刷、メッキ、プレス等の手法によって、車両用電装部品の電装部材(例えば、筐体)に対して導電路を形成することで既存のワイヤハーネスを削減することを検討している。 Therefore, the present inventors have formed an existing wire harness by forming a conductive path with respect to an electrical component (for example, a casing) of an electrical component for a vehicle by a method such as printing, plating, or pressing of a conductive material. We are considering reducing it.
 ところが、本発明者らが検討したところ、導電性材料の印刷、メッキ、プレス等の手法によって車両用電装部品の電装部材に導電路を形成する場合、導電路の断面積が小さく、導電路の電気抵抗が大きくなってしまうことが判った。この場合、導電路に大電流が流れた際に、導電路が発熱することで、電装部材が溶損してしまう虞がある。 However, as a result of studies by the present inventors, when a conductive path is formed on an electrical component of a vehicle electrical component by a method such as printing, plating, or pressing of a conductive material, the cross-sectional area of the conductive path is small. It turns out that the electrical resistance increases. In this case, when a large current flows through the conductive path, the conductive path may generate heat, and the electrical member may be melted.
 電装部材の溶損を抑えるためには、例えば、導電路の断面積を確保して、導電路の電気抵抗を低下させる必要がある。そして、導電路の断面積を確保する手法としては、導電路の幅を大きくすることが考えられる。 In order to suppress the melting damage of the electrical member, for example, it is necessary to secure the cross-sectional area of the conductive path and reduce the electrical resistance of the conductive path. As a method for securing the cross-sectional area of the conductive path, it is conceivable to increase the width of the conductive path.
 しかしながら、導電路の幅を大きくして導電路の断面積を確保する場合、電装部材の表面に対して導電路を形成するための領域を充分に確保する必要があり、実際の製品上では実現困難である。 However, when ensuring the cross-sectional area of the conductive path by increasing the width of the conductive path, it is necessary to secure a sufficient area for forming the conductive path on the surface of the electrical component, which is realized on an actual product. Have difficulty.
 本開示は、電気部品が取り付けられる電装部材に形成される導電路の発熱によって、電装部材が溶損してしまうことを抑制可能な車両用電装部品、車両用電装部品の製造方法、および導電路形成装置を提供することを目的とする。 The present disclosure relates to an electrical component for a vehicle, a method for manufacturing the electrical component for a vehicle, and formation of an electrical pathway that can prevent the electrical component from being melted by heat generated by the electrical pathway formed on the electrical component to which the electrical component is attached. An object is to provide an apparatus.
 本開示の1つの観点によれば、電気部品が搭載される車両用電装部品は、電気部品が取り付けられる電装部材と、電装部材に形成され、電気部品に対して電気的に接続される少なくとも一本の導電路と、を備える。そして、導電路は、導電性材料が積層された積層体を含んで構成されている。 According to one aspect of the present disclosure, an electrical component for a vehicle on which an electrical component is mounted is an electrical component to which the electrical component is attached, and at least one that is formed on the electrical component and is electrically connected to the electrical component. A conductive path of a book. And the conductive path is comprised including the laminated body on which the electroconductive material was laminated | stacked.
 このように、電装部材に対して導電路を形成する構成とすれば、電装部材に対してワイヤハーネスを配策する構成に比べて、複雑な作業を削減することができる。この結果、車両用電装部品の生産効率の向上を図ることができる。 As described above, when the conductive path is formed on the electrical member, complicated work can be reduced as compared with the configuration in which the wire harness is arranged on the electrical member. As a result, the production efficiency of vehicle electrical components can be improved.
 さらに、本開示の如く、導電路を導電性材料の積層体で構成すれば、導電路の厚みを大きくして、導電路の電気抵抗を抑えることができるので、通電時に導電路の発熱を抑制して、電装部材の溶損を抑えることができる。 Furthermore, if the conductive path is made of a laminate of conductive materials as in the present disclosure, the thickness of the conductive path can be increased and the electrical resistance of the conductive path can be suppressed. Thus, the melting damage of the electrical member can be suppressed.
 従って、電装部材に形成される導電路の発熱によって電装部材が溶損してしまうことを抑制可能な車両用電装部品を実現することができる。 Therefore, it is possible to realize an electrical component for a vehicle that can suppress the electrical component member from being melted by heat generated by the conductive path formed in the electrical component member.
 また、車両用電装部品は、導電路が、電装部材の表面に積層した導電性材料を硬化させた硬化体で構成されると共に、表面の一部に凹凸が形成されている。このように、導電路を電装部材の表面に積層された導電性材料の硬化体で構成すれば、導電路の厚みを大きくして、導電路の電気抵抗を抑えることができる。さらに、導電路を表面の一部に凹凸が形成される構成とすれば、導電路の表面積を増やして、通電時における導電路の放熱性を向上させることができる。 Further, in the vehicle electrical component, the conductive path is composed of a cured body obtained by curing a conductive material laminated on the surface of the electrical component member, and unevenness is formed on a part of the surface. Thus, if a conductive path is comprised with the hardening body of the electroconductive material laminated | stacked on the surface of the electrical equipment member, the thickness of a conductive path can be enlarged and the electrical resistance of a conductive path can be suppressed. Furthermore, if the conductive path is configured such that irregularities are formed on a part of the surface, the surface area of the conductive path can be increased and the heat dissipation of the conductive path during energization can be improved.
 従って、電装部材に形成される導電路の発熱によって電装部材が溶損してしまうことを充分に抑制可能な車両用電装部品を実現することができる。 Therefore, it is possible to realize an electrical component for a vehicle that can sufficiently suppress melting of the electrical component due to heat generated in the conductive path formed in the electrical component.
 本開示の別の観点によれば、電気部品に対して電気的に接続される少なくとも一本の導電路が表面に形成された電装部材を備える車両用電装部品の製造方法では、まず、電装部材の表面に流動性を有する導電性材料を供給する。 According to another aspect of the present disclosure, in a method for manufacturing an electrical component for a vehicle including an electrical component having at least one conductive path electrically connected to the electrical component formed on a surface, first, the electrical component A conductive material having fluidity is supplied to the surface of the substrate.
 また、上述の製造方法では、電装部材の表面に供給された導電性材料の表面に新たに導電性材料を少なくとも一度供給することで導電性材料の積層体を形成する。さらに、上述の製造方法では、乾燥、焼成、化学反応の少なくとも1つにより積層体を硬化させることで、表面の一部に凹凸を有する導電路を形成する。 In the manufacturing method described above, a conductive material laminate is formed by supplying a new conductive material to the surface of the conductive material supplied to the surface of the electrical member at least once. Furthermore, in the above-described manufacturing method, the laminated body is cured by at least one of drying, baking, and chemical reaction, thereby forming a conductive path having irregularities on a part of the surface.
 このように、電装部材の表面に導電性材料の積層体を形成し、当該積層体を硬化させることで、厚みが大きく、電気抵抗が低い導電路を電装部材の表面に形成することができる。そして、導電性材料を積層する際に、導電路の表面の一部に凹凸が形成されるので、導電路の表面積を増やして、通電時における導電路の放熱性を向上させることができる。 Thus, by forming a laminate of a conductive material on the surface of the electrical member and curing the laminate, a conductive path having a large thickness and a low electrical resistance can be formed on the surface of the electrical member. And when laminating | stacking a conductive material, since an unevenness | corrugation is formed in a part of surface of a conductive path, the surface area of a conductive path can be increased and the heat dissipation of the conductive path at the time of electricity supply can be improved.
 従って、本開示の製造方法によれば、電装部材に形成される導電路の発熱によって電装部材が溶損してしまうことを抑制可能な車両用電装部品を製造することができる。 Therefore, according to the manufacturing method of the present disclosure, it is possible to manufacture a vehicular electrical component that can prevent the electrical component from being melted by heat generated by the conductive path formed in the electrical component.
 本開示の別の観点によれば、電装部材の表面に電気部品に対して電気的に接続される少なくとも一本の導電路を形成する導電路形成装置は、材料供給機器と、材料硬化機器と、を備える。 According to another aspect of the present disclosure, a conductive path forming device that forms at least one conductive path electrically connected to an electrical component on a surface of an electrical component includes a material supply device, a material curing device, .
 材料供給機器は、電装部材の表面に導電性材料を供給する複数の材料供給部を有している。また、材料硬化機器は、導電性材料を硬化させるエネルギを出力するエネルギ出力部を有している。 The material supply device has a plurality of material supply units for supplying a conductive material to the surface of the electrical component. Moreover, the material curing device has an energy output unit that outputs energy for curing the conductive material.
 複数の材料供給部のうち、一部の材料供給部は、電装部材の表面に導電性材料を供給するように構成されている。また、複数の材料供給部のうち、一部の材料供給部を除く他の材料供給部は、電装部材の表面に既に供給された導電性材料の表面に導電性材料を供給するように構成されている。そして、導電路は、複数の材料供給部から供給された導電性材料の積層体で構成されると共に、表面の一部に凹凸が形成されている。 Among the plurality of material supply units, some of the material supply units are configured to supply a conductive material to the surface of the electrical component. Further, among the plurality of material supply units, the other material supply units excluding a part of the material supply units are configured to supply the conductive material to the surface of the conductive material already supplied to the surface of the electrical component member. ing. The conductive path is composed of a laminate of conductive materials supplied from a plurality of material supply units, and unevenness is formed on a part of the surface.
 このように、材料供給機器によって電装部材の表面に導電性材料の積層体を形成する共に、材料硬化機器によって導電性材料を硬化させることで、厚みが大きく、電気抵抗が低い導電路を電装部材の表面に形成することができる。そして、導電性材料を積層する際に、導電路の表面の一部に凹凸が形成されるので、導電路の表面積を増やして、通電時における導電路の放熱性を向上させることができる。 As described above, the conductive material is formed on the surface of the electrical component by the material supply device, and the conductive material is cured by the material curing device, so that the conductive path having a large thickness and a low electrical resistance is obtained. Can be formed on the surface. And when laminating | stacking a conductive material, since an unevenness | corrugation is formed in a part of surface of a conductive path, the surface area of a conductive path can be increased and the heat dissipation of the conductive path at the time of electricity supply can be improved.
 従って、本開示の導電路形成装置によれば、車両用電装部品の電装部材に形成される導電路の発熱によって電装部材が溶損してしまうことを抑制可能することができる。 Therefore, according to the conductive path forming device of the present disclosure, it is possible to suppress the electrical component member from being melted by heat generated by the conductive path formed in the electrical component of the vehicle electrical component.
 特に、本開示の導電路形成装置では、一部の材料供給部から電装部材の表面に供給した導電性材料の表面に対して、他の材料供給部から導電性材料を供給する構成となっている。これによれば、導電性材料の積層体を形成する際に、同じ材料供給部を何度も往復させる必要がないので、電装部材の表面に短時間で導電性材料の積層体を形成することが可能となる。 In particular, the conductive path forming apparatus of the present disclosure is configured to supply the conductive material from the other material supply unit to the surface of the conductive material supplied from the partial material supply unit to the surface of the electrical component. Yes. According to this, since it is not necessary to reciprocate the same material supply section many times when forming a laminate of conductive materials, a laminate of conductive materials can be formed on the surface of the electrical component in a short time. Is possible.
第1実施形態に係る空調ユニットの模式的な全体構成図である。It is a typical whole block diagram of the air-conditioning unit which concerns on 1st Embodiment. 図1のII-II断面図である。FIG. 2 is a sectional view taken along the line II-II in FIG. 第1実施形態の比較例に係る導電路の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the electrically conductive path which concerns on the comparative example of 1st Embodiment. 第1実施形態に係る導電路の断面形状を示す断面図である。It is sectional drawing which shows the cross-sectional shape of the electrically conductive path which concerns on 1st Embodiment. 第1実施形態に係る導電路の製造工程の流れを示すブロック図である。It is a block diagram which shows the flow of the manufacturing process of the electrically conductive path which concerns on 1st Embodiment. 第1実施形態に係る導電路の製造工程の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the manufacturing process of the electrically conductive path which concerns on 1st Embodiment. 第1実施形態に係る導電路形成装置の模式的な全体構成図である。It is a typical whole block diagram of the conductive path formation apparatus which concerns on 1st Embodiment. 材料供給部およびエネルギ出力部の移動軌跡を説明するための説明図である。It is explanatory drawing for demonstrating the movement locus | trajectory of a material supply part and an energy output part. 材料供給部およびエネルギ出力部の連結状態を示す側面図である。It is a side view which shows the connection state of a material supply part and an energy output part. 進行方向の後側のエネルギ出力部が進行方向の前側の材料供給部の移動軌跡を追従する様子を示す側面図である。It is a side view which shows a mode that the energy output part of the back side of the advancing direction follows the movement locus | trajectory of the material supply part of the front side of the advancing direction. 材料供給部およびエネルギ出力部の連結状態を示す下面図である。It is a bottom view which shows the connection state of a material supply part and an energy output part. 進行方向の後側のエネルギ出力部が進行方向の前側の材料供給部の移動軌跡を追従する様子を示す下面図である。It is a bottom view which shows a mode that the energy output part of the back side of the advancing direction follows the movement locus | trajectory of the material supply part of the front side of the advancing direction. 第1実施形態に係る導電路形成装置の作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation of the conductive path formation apparatus which concerns on 1st Embodiment. 図13のXIV-XIV断面図である。FIG. 14 is a cross-sectional view taken along the line XIV-XIV in FIG. 13. 第2実施形態に係る導電路形成装置の要部構成を示す模式的な構成図である。It is a typical block diagram which shows the principal part structure of the conductive path formation apparatus which concerns on 2nd Embodiment. 第3実施形態に係る導電路形成装置の要部構成を示す模式的な構成図である。It is a typical block diagram which shows the principal part structure of the conductive path formation apparatus which concerns on 3rd Embodiment. 第3実施形態に係る導電路形成装置の作動を説明するための説明図である。It is explanatory drawing for demonstrating the action | operation of the electrically conductive path formation apparatus which concerns on 3rd Embodiment. 図17のXVIII-XVIII断面図である。FIG. 18 is a sectional view taken along line XVIII-XVIII in FIG. 第4実施形態に係る導電路形成装置の要部構成を示す模式的な斜視図である。It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 4th Embodiment. 第5実施形態に係る導電路形成装置の要部構成を示す模式的な斜視図である。It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 5th Embodiment. 第6実施形態に係る導電路形成装置の要部構成を示す模式的な斜視図である。It is a typical perspective view which shows the principal part structure of the conductive path formation apparatus which concerns on 6th Embodiment. 第7実施形態に係る導電路の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of the electrically conductive path which concerns on 7th Embodiment. 第8実施形態に係る導電路の製造工程を示すブロック図である。It is a block diagram which shows the manufacturing process of the electrically conductive path which concerns on 8th Embodiment. 他の実施形態に係る導電路の模式的な断面図である。It is typical sectional drawing of the electrically conductive path which concerns on other embodiment.
 以下、本開示の実施形態について図面を参照して説明する。なお、以下の実施形態において、先行する実施形態で説明した事項と同一もしくは均等である部分には、同一の参照符号を付し、その説明を省略する場合がある。また、実施形態において、構成要素の一部だけを説明している場合、構成要素の他の部分に関しては、先行する実施形態において説明した構成要素を適用することができる。以下の実施形態は、特に組み合わせに支障が生じない範囲であれば、特に明示していない場合であっても、各実施形態同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, the same or equivalent parts as those described in the preceding embodiments are denoted by the same reference numerals, and the description thereof may be omitted. Further, in the embodiment, when only a part of the constituent elements are described, the constituent elements described in the preceding embodiment can be applied to the other parts of the constituent elements. The following embodiments can be partially combined with each other even if they are not particularly specified as long as they do not cause any trouble in the combination.
 (第1実施形態)
 本実施形態について、図1~図14を参照して説明する。本実施形態では、本開示の車両用電装部品を車両用空調装置に適用した例について説明する。車両用空調装置は、車室内の空調を行う装置である。
(First embodiment)
This embodiment will be described with reference to FIGS. In the present embodiment, an example in which the vehicle electrical component of the present disclosure is applied to a vehicle air conditioner will be described. A vehicle air conditioner is an apparatus that air-conditions a vehicle interior.
 車両用空調装置は、車室内に送風する空気の温度を調整する空調ユニット1を備える。空調ユニット1は、例えば、車室内の最前部のインストルメントパネルの内側に配置される。 The vehicle air conditioner includes an air conditioning unit 1 that adjusts the temperature of air blown into the passenger compartment. The air conditioning unit 1 is disposed, for example, inside the foremost instrument panel in the passenger compartment.
 図1に示すように、空調ユニット1は、外殻を構成する空調ケース10を備える。空調ケース10は、その内部に車室内に向かう空気の空気通路が形成されている。本実施形態では、空調ユニット1が車両用電装部品を構成し、空調ケース10が、電気部品が取り付けられる電装部材を構成している。 As shown in FIG. 1, the air conditioning unit 1 includes an air conditioning case 10 constituting an outer shell. The air conditioning case 10 is formed with an air passage for air toward the vehicle interior. In the present embodiment, the air conditioning unit 1 constitutes an electrical component for a vehicle, and the air conditioning case 10 constitutes an electrical component to which an electrical component is attached.
 空調ケース10は、ある程度の弾性を有し、強度的にも優れた絶縁性樹脂(例えば、ポリプロピレン)にて成形されている。空調ケース10は、樹脂成形上の都合、内蔵部品の組付上の都合等から、実際には複数の分割ケース体をネジやクリップ等の締結要素によって締結することで構成されている。 The air conditioning case 10 is molded of an insulating resin (for example, polypropylene) having a certain degree of elasticity and excellent strength. The air conditioning case 10 is actually configured by fastening a plurality of divided case bodies with fastening elements such as screws and clips for convenience in resin molding, assembly of built-in components, and the like.
 空調ケース10には、車室内へ空気を送風する送風機11が収容されている。送風機11は、遠心ファン(例えば、シロッコファン、ターボファン)111を電動モータ112で駆動する電動送風機で構成されている。電動モータ112は、空調ケース10に対して取り付けられている。 The air conditioning case 10 houses a blower 11 that blows air into the passenger compartment. The blower 11 is an electric blower that drives a centrifugal fan (for example, a sirocco fan or a turbo fan) 111 with an electric motor 112. The electric motor 112 is attached to the air conditioning case 10.
 空調ケース10における送風機11の空気流れ上流側には、送風機11の空気吸入側に、車室内の空気(すなわち、内気)を導入するための内気導入口121と、車室外の空気(すなわち、外気)を導入するための外気導入口122とが形成されている。 On the air flow upstream side of the blower 11 in the air-conditioning case 10, an inside air introduction port 121 for introducing air inside the vehicle interior (that is, inside air) to the air suction side of the air blower 11, and air outside the vehicle compartment (ie, outside air). ) Is formed.
 空調ケース10の内部には、図示しないが、内気導入口121の開口面積と外気導入口122の開口面積との割合を調整する内外気ドアが配置されている。内外気ドアは、空調ケース10の外側に取り付けられた電動アクチュエータ13によって駆動される。 Inside the air conditioning case 10, although not shown, an inside / outside air door that adjusts the ratio of the opening area of the inside air introduction port 121 and the opening area of the outside air introduction port 122 is arranged. The inside / outside air door is driven by an electric actuator 13 attached to the outside of the air conditioning case 10.
 空調ケース10における送風機11の空気吹出側には、送風機11から送風された空気を冷却する蒸発器14が配置されている。蒸発器14は、冷媒が気化する際の吸熱作用によって空調ケース10の内部を流れる空気を冷却する冷却用熱交換器である。蒸発器14は、図示しない圧縮機、放熱器、膨張弁等と共に、蒸気圧縮式の冷凍サイクルを構成している。 An evaporator 14 for cooling the air blown from the blower 11 is disposed on the air blowing side of the blower 11 in the air conditioning case 10. The evaporator 14 is a cooling heat exchanger that cools the air flowing inside the air conditioning case 10 by an endothermic effect when the refrigerant is vaporized. The evaporator 14 constitutes a vapor compression refrigeration cycle together with a compressor, a radiator, an expansion valve, and the like (not shown).
 空調ケース10における蒸発器14の空気流れ下流側には、蒸発器14を通過した空気を加熱するヒータコア15が配置されている。ヒータコア15は、図示しないエンジンの冷却水との熱交換によって、蒸発器14を通過した空気を加熱する加熱用熱交換器である。 A heater core 15 that heats the air that has passed through the evaporator 14 is disposed on the downstream side of the air flow of the evaporator 14 in the air conditioning case 10. The heater core 15 is a heat exchanger for heating that heats the air that has passed through the evaporator 14 by heat exchange with engine coolant (not shown).
 ここで、図示しないが、空調ケース10には、ヒータコア15を迂回して空気を流すバイパス通路が形成されている。また、空調ケース10の内部には、ヒータコア15を通過する風量とバイパス通路を通過する風量との風量割合を調整するエアミックスドアが配置されている。エアミックスドアは、空調ケース10の外側に取り付けられた電動アクチュエータ16によって駆動される。 Here, although not shown, the air conditioning case 10 is formed with a bypass passage that bypasses the heater core 15 and flows air. Further, an air mix door that adjusts the air volume ratio between the air volume passing through the heater core 15 and the air volume passing through the bypass passage is disposed inside the air conditioning case 10. The air mix door is driven by an electric actuator 16 attached to the outside of the air conditioning case 10.
 空調ケース10には、図示しないが、空気流れの最下流側に、ヒータコア15またはバイパス通路を通過した後の空気を車室内側へ吹き出すための複数の吹出開口部が設けられている。この吹出開口部から吹き出された空気は、図示しないダクトを介して、車室内に設けられた吹出部から車室内へ供給される。 Although not shown, the air conditioning case 10 is provided with a plurality of outlet openings for blowing air after passing through the heater core 15 or the bypass passage to the vehicle interior side, on the most downstream side of the air flow. The air blown out from the blowout opening is supplied into the vehicle compartment from a blowout portion provided in the vehicle compartment via a duct (not shown).
 ここで、本実施形態の空調ユニット1は、電装部材である空調ケース10の表面に、送風機11の電動モータ112、ドア駆動用の電動アクチュエータ13、16等の電気部品を図示しない制御装置および電源装置に対して接続する導電路100が形成されている。 Here, the air conditioning unit 1 of the present embodiment includes a control device and a power source (not shown) on the surface of the air conditioning case 10 that is an electrical component, such as the electric motor 112 of the blower 11 and the electric actuators 13 and 16 for driving the door. A conductive path 100 connected to the device is formed.
 この導電路100は、従来まで空調ユニット1で使用されてきたワイヤハーネスを代替するものである。具体的には、本実施形態の空調ケース10の表面には、図2に示すように、複数本の導電路100が形成されている。 This conductive path 100 replaces the wire harness that has been used in the air conditioning unit 1 until now. Specifically, as shown in FIG. 2, a plurality of conductive paths 100 are formed on the surface of the air conditioning case 10 of the present embodiment.
 導電路100は、導電性材料が積層された積層体を含んで構成されている。具体的には、導電路100は、空調ケース10の表面に幾重にも積層された導電性材料を硬化させた硬化体で構成されている。そして、導電路100は、その表面が絶縁性を有する保護膜110で覆われている。このように、導電路100の表面を保護膜110で覆う構成とすれば、導電路100の腐食、断線、短絡等を抑制することができる。 The conductive path 100 includes a laminated body in which conductive materials are laminated. Specifically, the conductive path 100 is configured by a cured body obtained by curing a conductive material that is stacked several times on the surface of the air conditioning case 10. The surface of the conductive path 100 is covered with a protective film 110 having an insulating property. Thus, if it is set as the structure which covers the surface of the conductive path 100 with the protective film 110, the corrosion of the conductive path 100, a disconnection, a short circuit, etc. can be suppressed.
 ここで、図3は、本実施形態の導電路100の比較例となる導電路CEの断面形状を示している。図3に示す導電路CEは、空調ケース10の表面に一度に供給した導電性材料を硬化させた硬化体である。 Here, FIG. 3 shows a cross-sectional shape of a conductive path CE which is a comparative example of the conductive path 100 of the present embodiment. The conductive path CE shown in FIG. 3 is a cured body obtained by curing the conductive material supplied to the surface of the air conditioning case 10 at one time.
 空調ケース10の表面に一度に多くの導電性材料を供給すると、導電路CEの形成過程において、導電性材料が表面張力によって空調ケース10の面方向に拡がってしまう。すなわち、導電路CEにおいて厚みLt1を充分に確保しようとすると、図3に示すように、導電路CEの幅Lw1が大きくなってしまう。このため、比較例の導電路CEを空調ケース10に対して形成する場合には、空調ケース10の表面に対して導電路CEを形成するための領域を充分に確保する必要がある。 If many conductive materials are supplied to the surface of the air conditioning case 10 at once, the conductive material spreads in the surface direction of the air conditioning case 10 due to surface tension in the process of forming the conductive path CE. That is, if it is attempted to sufficiently secure the thickness Lt1 in the conductive path CE, the width Lw1 of the conductive path CE is increased as shown in FIG. For this reason, when the conductive path CE of the comparative example is formed for the air conditioning case 10, it is necessary to secure a sufficient area for forming the conductive path CE on the surface of the air conditioning case 10.
 これに対して、本実施形態では、導電路100を幾重にも積層した導電性材料の積層体を硬化させた硬化体で構成しているので、空調ケース10の表面に導電性材料を印刷または塗布する際の導電性材料の表面張力の影響を抑えることができる。 On the other hand, in the present embodiment, since the conductive path 100 is formed of a cured body obtained by curing a laminated body of conductive materials in which the conductive paths 100 are laminated several times, the conductive material is printed on the surface of the air conditioning case 10 or The influence of the surface tension of the conductive material during application can be suppressed.
 このため、本実施形態の導電路100は、図4に示すように、その厚みLt2を比較例の導電路CEと同等の厚みLt1としても、導電路100の幅Lw2を比較例の導電路CEの幅Lw1に比べて小さくすることができる。 For this reason, as shown in FIG. 4, the conductive path 100 of the present embodiment has a thickness Lt2 equivalent to the conductive path CE of the comparative example, and the width Lw2 of the conductive path 100 is the conductive path CE of the comparative example. The width Lw1 can be reduced.
 従って、本実施形態の導電路100を空調ケース10に対して形成する場合には、比較例の導電路CEを空調ケース10に対して形成する場合に比べて、空調ケース10の表面に対して導電路100を形成するための領域を小さくすることができる。 Therefore, when the conductive path 100 of the present embodiment is formed for the air conditioning case 10, the surface of the air conditioning case 10 is compared with the case where the conductive path CE of the comparative example is formed for the air conditioning case 10. A region for forming the conductive path 100 can be reduced.
 さらに、本実施形態の導電路100には、導電性材料の積層過程において、表面の一部に凹凸が形成される。具体的には、本実施形態の導電路100には、空調ケース10の表面に対して立設する側面に凹凸が形成される。 Furthermore, in the conductive path 100 of the present embodiment, irregularities are formed on a part of the surface in the process of laminating the conductive material. Specifically, the conductive path 100 according to the present embodiment has irregularities formed on the side surface standing on the surface of the air conditioning case 10.
 このため、本実施形態の導電路100は、表面に凹凸が形成されることで、比較例の導電路CEに比べて、表面積を充分に確保することができる。すなわち、本実施形態の導電路100は、比較例の導電路CEに比べて、通電時における放熱性を向上させることができる。 For this reason, the conductive path 100 according to the present embodiment has sufficient surface area compared to the conductive path CE of the comparative example by forming irregularities on the surface. That is, the conductive path 100 of the present embodiment can improve heat dissipation during energization compared to the conductive path CE of the comparative example.
 次に、導電路100が表面に形成された空調ケース10を備える空調ユニット1の製造方法について説明する。本実施形態では、空調ユニット1の製造過程の概要を説明した後、導電路100の製造方法について説明する。 Next, a method for manufacturing the air conditioning unit 1 including the air conditioning case 10 having the conductive path 100 formed on the surface will be described. In this embodiment, after explaining the outline of the manufacturing process of the air conditioning unit 1, the manufacturing method of the conductive path 100 will be described.
 空調ユニット1の製造工程では、まず、射出成形等によって、空調ケース10を構成する複数の分割ケース体を製造する。次の工程では、複数の分割ケース体の所定の箇所に導電路100を形成する。また、次の工程では、複数の分割ケース体をネジやクリップ等の締結要素によって締結して、空調ケース10を製造する。そして、最後の工程では、空調ケース10の内部に蒸発器14、ヒータコア15等の構成部品を取り付ける。 In the manufacturing process of the air conditioning unit 1, first, a plurality of divided case bodies constituting the air conditioning case 10 are manufactured by injection molding or the like. In the next step, the conductive path 100 is formed at a predetermined location of the plurality of divided case bodies. In the next step, the air-conditioning case 10 is manufactured by fastening a plurality of divided case bodies with fastening elements such as screws and clips. And in the last process, components, such as the evaporator 14 and the heater core 15, are attached inside the air conditioning case 10.
 本実施形態では、前述の一連の工程を得て空調ユニット1を製造する。なお、本実施形態の空調ユニット1の製造工程は、一例に過ぎず、例えば、前述の各工程の一部が前後したりしていてもよい。 In the present embodiment, the air conditioning unit 1 is manufactured by obtaining the above-described series of steps. In addition, the manufacturing process of the air-conditioning unit 1 of this embodiment is only an example, For example, a part of each process mentioned above may move back and forth.
 続いて、導電路100の製造方法について、図5および図6を参照して説明する。図5は、導電路100の製造工程の流れを示すブロック図である。また、図6は、導電路100の製造工程の流れを説明するための説明図である。図6では、図5に示す各工程における導電性材料の状態等を模式的に図示している。なお、図5および図6では、空調ケース10の表面に対して導電性樹材料を5回積層する際の工程を例示しているが、これに限定されない。導電性材料の積層回数は、必要となる導電路100の厚みに応じて適宜変更可能である。 Subsequently, a method for manufacturing the conductive path 100 will be described with reference to FIGS. 5 and 6. FIG. 5 is a block diagram showing the flow of the manufacturing process of the conductive path 100. FIG. 6 is an explanatory diagram for explaining the flow of the manufacturing process of the conductive path 100. FIG. 6 schematically shows the state of the conductive material and the like in each step shown in FIG. 5 and FIG. 6 exemplify the process when the conductive tree material is laminated five times on the surface of the air conditioning case 10, but the present invention is not limited to this. The number of times the conductive material is stacked can be appropriately changed according to the required thickness of the conductive path 100.
 図5および図6に示すように、最初の工程であるMP1では、空調ケース10の表面(例えば、分割ケース体の表面)に流動性を有する導電性材料を供給する。導電性材料の供給は、印刷、塗布等の手法によって行われる。 As shown in FIG. 5 and FIG. 6, in MP1, which is the first step, a conductive material having fluidity is supplied to the surface of the air conditioning case 10 (for example, the surface of the split case body). The conductive material is supplied by a technique such as printing or coating.
 ここで、本実施形態の導電性材料は、金属(例えば、銀、鉛等の金属粉末)、炭素(例えば、カーボンブラック)、導電性樹脂(例えば、導電性ポリアセチレン)のうち、少なくとも1つの導電性物質を含有した溶剤(すなわち、導電インク)で構成されている。これにより、導電性材料の流動性が確保されている。 Here, the conductive material of the present embodiment is at least one conductive material among metal (for example, metal powder such as silver and lead), carbon (for example, carbon black), and conductive resin (for example, conductive polyacetylene). It is comprised with the solvent (namely, electrically conductive ink) containing the active substance. Thereby, the fluidity | liquidity of an electroconductive material is ensured.
 また、本実施形態の導電性材料は、光(すなわち、赤外線、可視光線、紫外線)の照射によって硬化する光硬化性を有する導電インクで構成されている。なお、導電性材料は、金属、炭素、導電性樹脂のうち、少なくとも1つの導電性物質を含有したペースト状の材料(すなわち、導電ペースト)で構成されていてもよい。 Further, the conductive material of the present embodiment is composed of a conductive ink having photocurability that is cured by irradiation with light (that is, infrared rays, visible rays, and ultraviolet rays). Note that the conductive material may be formed of a paste-like material (that is, a conductive paste) containing at least one conductive substance among metal, carbon, and conductive resin.
 また、本実施形態の導電性材料は、空調ケース10の表面に対する疎水性が良好な材料で構成されている。具体的には、本実施形態の導電性材料は、図6のMP1に示すように、空調ケース10の表面に供給された際の接触角θ1が鈍角となる材料で構成されている。なお、接触角θは、空調ケース10の表面に撥水処理を施すことによって調整してもよい。 Further, the conductive material of the present embodiment is made of a material that has good hydrophobicity with respect to the surface of the air conditioning case 10. Specifically, as shown by MP1 in FIG. 6, the conductive material of the present embodiment is made of a material whose contact angle θ1 is an obtuse angle when supplied to the surface of the air conditioning case 10. The contact angle θ may be adjusted by applying a water repellent treatment to the surface of the air conditioning case 10.
 さらに、本実施形態の導電性材料は、硬化した導電性材料の表面に対する疎水性が良好な材料で構成されている。具体的には、本実施形態の導電性材料は、図6のMP3に示すように、硬化した導電性材料の表面に供給された際の接触角θ2が鈍角となる材料で構成されている。 Furthermore, the conductive material of the present embodiment is made of a material having good hydrophobicity with respect to the surface of the cured conductive material. Specifically, as shown by MP3 in FIG. 6, the conductive material of the present embodiment is made of a material that has an obtuse angle of contact angle θ2 when supplied to the surface of the cured conductive material.
 次の工程であるMP2では、導電性材料の溶剤を乾燥させると共に、導電性物質を焼成により焼結させることで、空調ケース10の表面に供給された導電性材料を硬化させる。 In MP2, which is the next step, the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material and sintering the conductive material by firing.
 具体的には、本工程では、導電性材料に対して所定の波長の光を照射する。これにより、溶剤の一部が揮発して、導電性物質が凝縮される。さらに、本工程では、光の照射によって、導電性材料の温度を導電性物質が焼結される温度まで上昇させる。これにより、導電性材料は、導電性物質同士の結合が強化されることで、形状保持性および導電性が高くなる。 Specifically, in this step, the conductive material is irradiated with light having a predetermined wavelength. Thereby, a part of solvent evaporates and an electroconductive substance is condensed. Further, in this step, the temperature of the conductive material is raised to the temperature at which the conductive substance is sintered by irradiation with light. As a result, the conductive material has enhanced shape retention and conductivity by strengthening the bond between the conductive substances.
 ここで、導電性材料は、溶剤の揮発に伴って体積が減少することで、その厚みが前工程のMP1における厚みよりも薄くなる。なお、本工程によって導電性材料は、例えば、数μm~数十μm程度の厚みとなる。 Here, the volume of the conductive material decreases with the volatilization of the solvent, so that its thickness becomes thinner than the thickness in MP1 in the previous step. Note that the conductive material has a thickness of about several μm to several tens of μm, for example, by this step.
 次の工程であるMP3では、空調ケース10の表面に供給された導電性材料の表面に新たに導電性材料を供給する。具体的には、本工程では、前工程のMP2にて硬化された導電性材料の表面に対して、新たに導電性材料を供給する。なお、本工程にて新たに供給する導電性材料は、最初の工程にて供給された導電性材料と同等の材料で構成されている。 In MP3, which is the next step, a conductive material is newly supplied to the surface of the conductive material supplied to the surface of the air conditioning case 10. Specifically, in this step, a conductive material is newly supplied to the surface of the conductive material cured in MP2 in the previous step. Note that the conductive material newly supplied in this step is made of a material equivalent to the conductive material supplied in the first step.
 次の工程であるMP4では、新たに供給した導電性材料の溶剤を乾燥させると共に、導電性物質を焼成により焼結させる。これにより、既に供給された導電性材料の表面に供給された導電性材料が硬化する。 In the next step, MP4, the newly supplied solvent of the conductive material is dried and the conductive substance is sintered by firing. Thereby, the conductive material supplied to the surface of the already supplied conductive material is cured.
 その後の工程では、MP3と同様の工程であるMP5、MP7、MP9と、MP4と同様の工程であるMP6、MP8、MP10を交互に繰り返す。すなわち、以降の工程では、空調ケース10の表面に供給された導電性材料の表面への導電性材料の供給と、導電性材料の硬化とを交互に繰り返す。これらの工程によって、空調ケース10の表面には、導電性材料の積層体で構成される導電路100が形成される。 In subsequent steps, MP5, MP7, MP9, which are the same steps as MP3, and MP6, MP8, MP10, which are the same steps as MP4, are alternately repeated. That is, in the subsequent steps, the supply of the conductive material to the surface of the conductive material supplied to the surface of the air conditioning case 10 and the curing of the conductive material are repeated alternately. Through these steps, a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10.
 そして、最後の工程であるMP11では、導電性材料の積層体に対して絶縁性を有する絶縁性材料を供給することで、導電性材料の積層体の表面を保護膜110で覆う。これにより、導電路100の腐食、断線、短絡等が抑制される。 And in MP11 which is the last process, the insulating material which has insulation with respect to the laminated body of an electroconductive material is supplied, and the surface of the laminated body of an electroconductive material is covered with the protective film 110. FIG. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
 ここで、本実施形態では、導電性材料と空調ケース10との接触角θ1、および硬化した導電性材料と新たに供給する導電性材料との接触角θ2が、それぞれ鈍角となる。このため、導電性材料の積層体で構成される導電路100は、空調ケース10の表面から立設する側面に凹凸が形成される。 Here, in the present embodiment, the contact angle θ1 between the conductive material and the air conditioning case 10 and the contact angle θ2 between the cured conductive material and the newly supplied conductive material are obtuse angles. For this reason, as for the conductive path 100 comprised with the laminated body of an electroconductive material, an unevenness | corrugation is formed in the side surface standingly arranged from the surface of the air-conditioning case 10. FIG.
 次に、導電路100を形成する導電路形成装置2について、図7~図11を参照して説明する。図7に示すように、導電路形成装置2は、ワークステージ20、導電路形成機30、駆動機構40、およびコントローラ50を備えている。 Next, the conductive path forming apparatus 2 for forming the conductive path 100 will be described with reference to FIGS. As shown in FIG. 7, the conductive path forming device 2 includes a work stage 20, a conductive path forming machine 30, a drive mechanism 40, and a controller 50.
 ワークステージ20は、ワークとなる空調ケース10の分割ケース体を載せる台座である。ワークステージ20は、搭載プレート21、姿勢調整機構22、姿勢調整機構22を介して搭載プレート21を支持するベースプレート23等を備える。 The work stage 20 is a pedestal on which the divided case body of the air conditioning case 10 serving as a work is placed. The work stage 20 includes a mounting plate 21, a posture adjustment mechanism 22, a base plate 23 that supports the mounting plate 21 via the posture adjustment mechanism 22, and the like.
 搭載プレート21は、空調ケース10の分割ケース体が設置される搭載面を有する。図示しないが、搭載プレート21には、空調ケース10の分割ケース体を保持する保持機構が設けられている。 The mounting plate 21 has a mounting surface on which the split case body of the air conditioning case 10 is installed. Although not shown, the mounting plate 21 is provided with a holding mechanism for holding the divided case body of the air conditioning case 10.
 姿勢調整機構22は、搭載プレート21に搭載された空調ケース10の上下、左右、前後の姿勢および位置を調整する機構である。姿勢調整機構22は、後述するコントローラ50からの制御信号によって、その作動が制御される。 The attitude adjustment mechanism 22 is a mechanism for adjusting the attitude and position of the air conditioning case 10 mounted on the mounting plate 21 in the vertical and horizontal directions. The operation of the attitude adjustment mechanism 22 is controlled by a control signal from the controller 50 described later.
 導電路形成機30は、空調ケース10の表面に対して導電性材料を供給すると共に、導電性材料を硬化させる機器である。本実施形態の導電路形成機30は、材料供給機器31、材料硬化機器32、保護膜を形成する膜形成機器33を備える。 The conductive path forming machine 30 is a device that supplies a conductive material to the surface of the air conditioning case 10 and hardens the conductive material. The conductive path forming machine 30 of this embodiment includes a material supply device 31, a material curing device 32, and a film forming device 33 that forms a protective film.
 材料供給機器31は、導電性材料を供給する複数の材料供給部311を有する。材料供給部311それぞれは、導電性材料を保持するタンク311a、およびタンク311a内の導電性材料を射出するノズル部311bが設けられている。 The material supply device 31 includes a plurality of material supply units 311 that supply conductive materials. Each material supply unit 311 is provided with a tank 311a for holding a conductive material, and a nozzle unit 311b for injecting the conductive material in the tank 311a.
 材料硬化機器32は、導電性材料を硬化させるエネルギを出力する複数のエネルギ出力部321を有する。エネルギ出力部321それぞれは、所定の波長光を照射する光照射部321aを有している。 The material curing device 32 includes a plurality of energy output units 321 that output energy for curing the conductive material. Each energy output unit 321 includes a light irradiation unit 321a that emits light of a predetermined wavelength.
 膜形成機器33は、絶縁性材料によって保護膜110を形成する機器である。膜形成機器33は、絶縁性材料を出力する単一の材料出力部331を有する。材料出力部331は、絶縁性材料を保持するタンク331a、絶縁性材料を射出する射出部331b、および射出部331bから射出された絶縁性材料が均一な厚みとなるように延ばすスキージ331cを有している。 The film forming device 33 is a device that forms the protective film 110 with an insulating material. The film forming apparatus 33 includes a single material output unit 331 that outputs an insulating material. The material output unit 331 includes a tank 331a that holds the insulating material, an injection unit 331b that injects the insulating material, and a squeegee 331c that extends so that the insulating material injected from the injection unit 331b has a uniform thickness. ing.
 ここで、本実施形態の導電路形成機30では、材料供給部311とエネルギ出力部321とが、連結部材34を介して進行方向に沿って一列に並ぶように連結されている。具体的には、材料供給部311およびエネルギ出力部321は、進行方向において材料供給部311の後にエネルギ出力部321が位置するように連結されている。なお、進行方向の最後尾に位置するエネルギ出力部321には、膜形成機器33が連結されている。 Here, in the conductive path forming machine 30 of the present embodiment, the material supply unit 311 and the energy output unit 321 are connected to be aligned in a line along the traveling direction via the connecting member 34. Specifically, the material supply unit 311 and the energy output unit 321 are connected so that the energy output unit 321 is positioned behind the material supply unit 311 in the traveling direction. A film forming device 33 is connected to the energy output unit 321 located at the end in the traveling direction.
 本実施形態の導電路形成機30では、図8に示すように、進行方向の先頭に位置する一部の材料供給部311の移動軌跡を追従するように、他の材料供給部311、エネルギ出力部321、および材料出力部331が連結部材34を介して互いに連結されている。 In the conductive path forming machine 30 of the present embodiment, as shown in FIG. 8, the other material supply units 311 and the energy output so as to follow the movement trajectory of a part of the material supply units 311 located at the head in the traveling direction. The part 321 and the material output part 331 are connected to each other via the connecting member 34.
 具体的には、連結部材34は、図9および図10に示すように、進行方向の前側の材料供給部311が左右方向にターンする場合、進行方向の後側のエネルギ出力部321が進行方向の前側の材料供給部311の移動軌跡に追従可能に構成されている。また、連結部材34は、図11および図12に示すように、進行方向の前側の材料供給部311が上下方向に交差する方向にターンする場合、進行方向の後側のエネルギ出力部321が進行方向の前側の材料供給部311の移動軌跡に追従可能に構成されている。 Specifically, as shown in FIG. 9 and FIG. 10, when the material supply unit 311 on the front side in the traveling direction turns in the left-right direction, the connecting member 34 has the energy output unit 321 on the rear side in the traveling direction. It is possible to follow the movement trajectory of the material supply unit 311 on the front side. Further, as shown in FIGS. 11 and 12, when the material supply unit 311 on the front side in the traveling direction turns in the connecting member 34, the energy output unit 321 on the rear side in the traveling direction proceeds. It is configured to be able to follow the movement trajectory of the material supply unit 311 on the front side in the direction.
 駆動機構40は、空調ケース10の表面に所定の形状の導電路100が形成されるように、導電路形成機30の各機器31~33を駆動させる駆動部である。本実施形態の駆動機構40は、予め定められた導電路100の形状に合わせて一部の材料供給部311を移動させるように構成されている。 The drive mechanism 40 is a drive unit that drives the devices 31 to 33 of the conductive path forming machine 30 so that the conductive path 100 having a predetermined shape is formed on the surface of the air conditioning case 10. The drive mechanism 40 of this embodiment is configured to move a part of the material supply unit 311 according to a predetermined shape of the conductive path 100.
 具体的には、本実施形態の駆動機構40は、導電路形成機30の各機器31~33を移動可能に保持するガイドレール41、ガイドレール41上で一部の材料供給部311を移動させる電動アクチュエータ42を備える。 Specifically, the drive mechanism 40 of the present embodiment moves a part of the material supply unit 311 on the guide rail 41 that holds each device 31 to 33 of the conductive path forming machine 30 movably. An electric actuator 42 is provided.
 ガイドレール41は、空調ケース10の表面に形成する導電路100に沿って導電路形成機30の各機器31~33を移動させることが可能なように、導電路100の形状に合う形状に構成されている。 The guide rail 41 is configured to match the shape of the conductive path 100 so that the devices 31 to 33 of the conductive path forming machine 30 can be moved along the conductive path 100 formed on the surface of the air conditioning case 10. Has been.
 電動アクチュエータ42は、複数の材料供給部311のうち、一部の材料供給部311に取り付けられている。電動アクチュエータ42は、後述するコントローラ50からの制御信号によって、その作動が制御される。 The electric actuator 42 is attached to some of the material supply units 311 among the plurality of material supply units 311. The operation of the electric actuator 42 is controlled by a control signal from the controller 50 described later.
 コントローラ50は、CPU、ROMおよびRAM等の記憶部を含むマイクロコンピュータとその周辺回路から構成される。コントローラ50は、記憶部に記憶された制御プログラムに基づいて各種演算、処理を行う。そして、コントローラ50は、出力側に接続された各種機器22、42の作動を制御する。なお、コントローラ50の記憶部は、非遷移的実体的記憶媒体で構成される。 The controller 50 includes a microcomputer including a storage unit such as a CPU, ROM, and RAM and its peripheral circuits. The controller 50 performs various calculations and processes based on the control program stored in the storage unit. And the controller 50 controls the action | operation of the various apparatuses 22 and 42 connected to the output side. Note that the storage unit of the controller 50 is configured by a non-transitional tangible storage medium.
 次に、本実施形態の導電路形成装置2の作動について図13を参照して説明する。図13に示すように、導電路形成装置2では、進行方向の先頭に位置する材料供給部311から空調ケース10の表面に導電性材料が供給される。そして、空調ケース10の表面に供給された導電性材料は、進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Next, the operation of the conductive path forming apparatus 2 of the present embodiment will be described with reference to FIG. As shown in FIG. 13, in the conductive path forming device 2, a conductive material is supplied to the surface of the air conditioning case 10 from the material supply unit 311 located at the head in the traveling direction. And the electroconductive material supplied to the surface of the air-conditioning case 10 is hardened | cured with the light irradiated from the energy output part 321 located in the back side of the advancing direction.
 また、進行方向の先頭に位置する材料供給部311を除く他の材料供給部311は、空調ケース10の表面に既に供給された導電性材料の表面に新たに導電性材料を供給する。そして、空調ケース10の表面に供給された導電性材料は、各材料供給部311の進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Further, the other material supply units 311 except for the material supply unit 311 located at the head in the traveling direction newly supply the conductive material to the surface of the conductive material already supplied to the surface of the air conditioning case 10. The conductive material supplied to the surface of the air conditioning case 10 is cured by light emitted from the energy output unit 321 located on the rear side in the traveling direction of each material supply unit 311.
 これにより、空調ケース10の表面には、図14に示すように、導電性材料の積層体で構成される導電路100が形成される。この導電路100の表面には、進行方向の最後尾に位置する膜形成機器33の材料出力部331から出力された絶縁性材料によって保護膜110が形成される。これにより、導電路100の腐食、断線、短絡等が抑制される。 Thereby, as shown in FIG. 14, a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10. A protective film 110 is formed on the surface of the conductive path 100 by an insulating material output from the material output unit 331 of the film forming device 33 located at the end in the traveling direction. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
 以上説明した本実施形態の空調ユニット1は、外殻を構成する空調ケース10に対して、ドア駆動用の電動アクチュエータ13、16等の電気部品に電気的に接続される複数本の導電路100が一体に形成されている。 The air conditioning unit 1 of the present embodiment described above has a plurality of conductive paths 100 that are electrically connected to electrical components such as the door driving electric actuators 13 and 16 with respect to the air conditioning case 10 constituting the outer shell. Are integrally formed.
 導電路100は、導電性材料が積層された積層体を含んで構成されている。具体的には、本実施形態では、導電路100が空調ケース10の表面に積層した導電性材料を硬化させた硬化体で構成されている。このため、導電路100の厚みを大きくして、導電路100の電気抵抗を抑えることができる。 The conductive path 100 includes a laminated body in which conductive materials are laminated. Specifically, in this embodiment, the conductive path 100 is configured by a cured body obtained by curing a conductive material laminated on the surface of the air conditioning case 10. For this reason, the electrical resistance of the conductive path 100 can be suppressed by increasing the thickness of the conductive path 100.
 また、本実施形態では、導電性材料を積層する過程で導電路100の表面の一部に凹凸が形成される。このような導電路100は、その表面積が増加することで、通電時における導電路100の放熱性を向上させることができる。 Further, in this embodiment, irregularities are formed on a part of the surface of the conductive path 100 in the process of laminating the conductive material. Such a conductive path 100 can improve the heat dissipation of the conductive path 100 when energized by increasing the surface area.
 このように、本実施形態の空調ユニット1では、導電路100の電気抵抗を抑えると共に導電路100の放熱性を向上させることができる。このため、空調ケース10に形成される導電路100の発熱によって、空調ケース10の一部が溶損してしまうことを抑制することが可能となる。 Thus, in the air conditioning unit 1 of the present embodiment, the electrical resistance of the conductive path 100 can be suppressed and the heat dissipation of the conductive path 100 can be improved. For this reason, it becomes possible to suppress that a part of air-conditioning case 10 melt | dissolves by the heat_generation | fever of the conductive path 100 formed in the air-conditioning case 10. FIG.
 特に、本実施形態では、導電路100の製造過程において、空調ケース10の表面に供給された導電性材料を硬化させた後、硬化した導電性材料の表面に新たに導電性材料を供給している。これによれば、導電性材料が表面張力の影響によって空調ケース10の面方向に拡がってしまうことを抑えることができる。つまり、空調ケース10に供給された導電性材料の形状を保持した状態で、導電性材料を積層することができる。 In particular, in the present embodiment, in the process of manufacturing the conductive path 100, after the conductive material supplied to the surface of the air conditioning case 10 is cured, a new conductive material is supplied to the surface of the cured conductive material. Yes. According to this, it can suppress that a conductive material spreads in the surface direction of the air-conditioning case 10 by the influence of surface tension. That is, the conductive material can be laminated in a state where the shape of the conductive material supplied to the air conditioning case 10 is maintained.
 従って、本実施形態の空調ケース10の表面に導電路100が形成された空調ユニット1の製造方法によれば、導電路100の幅を大きくすることなく、厚みを大きくすることができる。このため、空調ケース10の表面における導電路100を形成するための領域が大きくなってしまうことを抑えることができる。 Therefore, according to the manufacturing method of the air conditioning unit 1 in which the conductive path 100 is formed on the surface of the air conditioning case 10 of the present embodiment, the thickness can be increased without increasing the width of the conductive path 100. For this reason, it can suppress that the area | region for forming the conductive path 100 in the surface of the air-conditioning case 10 becomes large.
 また、本実施形態の導電路形成装置2は、材料供給機器31によって空調ケース10の表面に導電性材料の積層体を形成する共に、材料硬化機器32によって導電性材料を硬化させる。これによれば、厚みが大きく、電気抵抗が低い導電路100を空調ケース10の表面に形成することができる。そして、導電性材料を積層する際に、導電路100の表面の一部に凹凸が形成されるので、導電路100の表面積を増やして、通電時における導電路100の放熱性を向上させることができる。 Further, the conductive path forming apparatus 2 of the present embodiment forms a laminate of conductive material on the surface of the air conditioning case 10 by the material supply device 31 and hardens the conductive material by the material curing device 32. According to this, the conductive path 100 having a large thickness and a low electrical resistance can be formed on the surface of the air conditioning case 10. And when laminating | stacking a conductive material, since an unevenness | corrugation is formed in a part of surface of the conductive path 100, the surface area of the conductive path 100 can be increased and the heat dissipation of the conductive path 100 at the time of electricity supply can be improved. it can.
 特に、本実施形態の導電路形成装置2では、一部の材料供給部311から空調ケース10の表面に供給した導電性材料の表面に対して、他の材料供給部311から導電性材料を供給する構成となっている。これによれば、導電性材料の積層体を形成する際に、同じ材料供給部311を何度も往復させる必要がないので、空調ケース10の表面に短時間で導電性材料の積層体を形成することが可能となる。 In particular, in the conductive path forming apparatus 2 of the present embodiment, the conductive material is supplied from the other material supply unit 311 to the surface of the conductive material supplied from the partial material supply unit 311 to the surface of the air conditioning case 10. It is the composition to do. According to this, since it is not necessary to reciprocate the same material supply part 311 many times when forming the laminated body of conductive material, the laminated body of conductive material is formed on the surface of the air conditioning case 10 in a short time. It becomes possible to do.
 また、本実施形態の導電路形成装置2は、材料供給機器31および材料硬化機器32を駆動させる駆動機構40を備えている。このように、駆動機構40によって材料供給機器31および材料硬化機器32を駆動する構成とすれば、立体構造(すなわち、三次元構造)を有する空調ケース10の表面に対して導電路100を適切に形成することが可能となる。 Further, the conductive path forming apparatus 2 of the present embodiment includes a drive mechanism 40 that drives the material supply device 31 and the material curing device 32. Thus, if it is set as the structure which drives the material supply apparatus 31 and the material hardening apparatus 32 by the drive mechanism 40, the electrically conductive path 100 is appropriately set with respect to the surface of the air-conditioning case 10 which has a three-dimensional structure (namely, three-dimensional structure). It becomes possible to form.
 また、本実施形態の導電路形成装置2は、駆動機構40によって一部の材料供給部311を移動させ、他の材料供給部311、エネルギ出力部321等が連結部材34を介して一部の材料供給部311に連結される構成となっている。 Further, in the conductive path forming apparatus 2 of the present embodiment, a part of the material supply unit 311 is moved by the drive mechanism 40, and the other material supply unit 311, the energy output unit 321, and the like are partially connected via the connecting member 34. It is configured to be connected to the material supply unit 311.
 これによれば、一部の材料供給部311、他の材料供給部311、エネルギ出力部321それぞれを個別に駆動機構40で移動させる構成に比べて、駆動要素の部品点数を減らすことができるので、導電路形成装置2の簡素化を図ることができる。 According to this, since the number of parts of the drive element can be reduced as compared with the configuration in which some of the material supply units 311, the other material supply units 311, and the energy output unit 321 are individually moved by the drive mechanism 40. Further, simplification of the conductive path forming device 2 can be achieved.
 ここで、本実施形態の導電性材料は、光(すなわち、赤外線、可視光線、紫外線)の照射によって硬化する導電インクで構成されている。そして、本実施形態のエネルギ出力部321は、所定の波長の光の照射する光照射部321aを有する構成となっている。これによれば、エネルギ出力部321から照射する光によって導電性材料を適切に硬化させることができる。 Here, the conductive material of the present embodiment is composed of a conductive ink that is cured by irradiation with light (that is, infrared rays, visible rays, and ultraviolet rays). And the energy output part 321 of this embodiment becomes a structure which has the light irradiation part 321a which irradiates the light of a predetermined wavelength. According to this, the conductive material can be appropriately cured by the light irradiated from the energy output unit 321.
 (第2実施形態)
 次に、第2実施形態について、図15を参照して説明する。本実施形態では、導電性材料を電波(例えば、マイクロ波)の照射によって硬化する導電性インクで構成した例について説明する。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. In the present embodiment, an example in which a conductive material is composed of conductive ink that is cured by irradiation with radio waves (for example, microwaves) will be described.
 図15に示す本実施形態のエネルギ出力部321は、導電性材料を硬化させることが可能なように、第1実施形態の光照射部321aではなく、電波を照射する電波照射部321bを有する構成となっている。また、本実施形態のエネルギ出力部321には、導電性材料を硬化させるエネルギの拡散を抑える拡散抑制部として電磁シールド322が設けられている。 The energy output unit 321 of the present embodiment shown in FIG. 15 has a radio wave irradiation unit 321b that radiates radio waves instead of the light irradiation unit 321a of the first embodiment so that the conductive material can be cured. It has become. In addition, the energy output unit 321 of the present embodiment is provided with an electromagnetic shield 322 as a diffusion suppressing unit that suppresses the diffusion of energy for curing the conductive material.
 その他の構成は、第1実施形態と同様である。本実施形態によれば、第1実施形態と共通の構成および方法から奏される作用構成を、第1実施形態と同様に得ることができる。 Other configurations are the same as those in the first embodiment. According to the present embodiment, the operational configuration produced by the configuration and method common to the first embodiment can be obtained similarly to the first embodiment.
 特に、本実施形態のエネルギ出力部321には、導電性材料を硬化させるエネルギの拡散を抑える拡散抑制部として電磁シールド322が設けられている。 Particularly, the energy output unit 321 of the present embodiment is provided with an electromagnetic shield 322 as a diffusion suppressing unit that suppresses the diffusion of energy for curing the conductive material.
 これによれば、電磁シールド322によってエネルギ出力部321が出力するエネルギを導電性材料の硬化に集中させることができるので、導電路形成装置2のエネルギ効率の向上を図ることができる。また、エネルギ出力部321からのエネルギが意図しない部位に出力されることも抑制することができる。なお、本実施形態の電磁シールド322は、第1実施形態で説明したエネルギ出力部321に対して設けてもよい。 According to this, the energy output from the energy output unit 321 by the electromagnetic shield 322 can be concentrated on the curing of the conductive material, so that the energy efficiency of the conductive path forming device 2 can be improved. Moreover, it can also suppress that the energy from the energy output part 321 is output to the site | part which is not intended. In addition, you may provide the electromagnetic shield 322 of this embodiment with respect to the energy output part 321 demonstrated in 1st Embodiment.
 (第3実施形態)
 次に、第3実施形態について、図16~図18を参照して説明する。本実施形態では、空調ケース10の表面に2層の導電路100A、100Bを形成可能な導電路形成装置2について説明する。
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In the present embodiment, a conductive path forming apparatus 2 capable of forming two layers of conductive paths 100A and 100B on the surface of the air conditioning case 10 will be described.
 図16に示すように、本実施形態の導電路形成機30の膜形成機器33は、2つの材料出力部331を有している。2つの材料出力部331の一方は、進行方向の最後尾に位置するエネルギ出力部321に対して連結部材34を介して接続されている。 As shown in FIG. 16, the film forming device 33 of the conductive path forming machine 30 of this embodiment has two material output portions 331. One of the two material output portions 331 is connected to the energy output portion 321 located at the end in the traveling direction via a connecting member 34.
 また、2つの材料出力部331の他方は、進行方向の中間に位置するエネルギ出力部321と当該エネルギ出力部321よりも進行方向の後側に位置する材料供給部311との間に連結部材34を介して接続されている。その他の構成は、第1実施形態の導電路形成装置2と同様である。 The other of the two material output units 331 is a connecting member 34 between the energy output unit 321 positioned in the middle of the traveling direction and the material supply unit 311 positioned behind the energy output unit 321 in the traveling direction. Connected through. Other configurations are the same as those of the conductive path forming apparatus 2 of the first embodiment.
 次に、本実施形態の導電路形成装置2の作動について図17を参照して説明する。図17に示すように、導電路形成装置2では、進行方向の先頭に位置する材料供給部311から空調ケース10の表面に導電性材料が供給される。そして、空調ケース10の表面に供給された導電性材料は、進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Next, the operation of the conductive path forming device 2 of the present embodiment will be described with reference to FIG. As shown in FIG. 17, in the conductive path forming device 2, a conductive material is supplied to the surface of the air conditioning case 10 from the material supply unit 311 located at the head in the traveling direction. And the electroconductive material supplied to the surface of the air-conditioning case 10 is hardened | cured with the light irradiated from the energy output part 321 located in the back side of the advancing direction.
 続いて、進行方向の後側に位置する材料供給部311は、空調ケース10の表面に既に供給された導電性材料の表面に新たに導電性材料を供給する。そして、空調ケース10の表面に供給された導電性材料は、材料供給部311の進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Subsequently, the material supply unit 311 located on the rear side in the traveling direction supplies a new conductive material to the surface of the conductive material already supplied to the surface of the air conditioning case 10. The conductive material supplied to the surface of the air conditioning case 10 is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
 これにより、空調ケース10の表面には、一層目の導電路100Aが形成される。この導電路100Aの表面には、進行方向の中間に位置する膜形成機器33の材料出力部331から出力された絶縁性材料によって保護膜110Aが形成される。これにより、導電路100Aの腐食、断線、短絡等が抑制される。 As a result, a first-layer conductive path 100A is formed on the surface of the air conditioning case 10. A protective film 110A is formed on the surface of the conductive path 100A by an insulating material output from the material output unit 331 of the film forming device 33 located in the middle of the traveling direction. Thereby, corrosion, disconnection, a short circuit, etc. of the conductive path 100A are suppressed.
 続いて、膜形成機器33の材料出力部331の進行方向の後側に位置する材料供給部311から、保護膜110Aの表面に導電性材料が供給される。そして、保護膜110Aの表面に供給された導電性材料は、材料供給部311の進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Subsequently, a conductive material is supplied to the surface of the protective film 110A from the material supply unit 311 located on the rear side in the traveling direction of the material output unit 331 of the film forming device 33. The conductive material supplied to the surface of the protective film 110 </ b> A is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
 続いて、進行方向の後側に位置する材料供給部311は、保護膜110Aの表面に既に供給された導電性材料の表面に新たに導電性材料を供給する。そして、空調ケース10の表面に供給された導電性材料は、材料供給部311の進行方向の後側に位置するエネルギ出力部321から照射される光によって硬化する。 Subsequently, the material supply unit 311 located on the rear side in the traveling direction supplies a new conductive material to the surface of the conductive material already supplied to the surface of the protective film 110A. The conductive material supplied to the surface of the air conditioning case 10 is cured by light irradiated from the energy output unit 321 located on the rear side in the traveling direction of the material supply unit 311.
 これにより、本実施形態の空調ケース10の表面には、図18に示すように、導電性材料の積層体で構成される2層の導電路100A、100Bが形成される。この導電路100の表面には、進行方向の最後尾に位置する膜形成機器33の材料出力部331から出力された絶縁性材料によって保護膜110Bが形成される。これにより、導電路100の腐食、断線、短絡等が抑制される。 Thereby, on the surface of the air conditioning case 10 of the present embodiment, as shown in FIG. 18, two layers of conductive paths 100A and 100B made of a laminate of conductive materials are formed. A protective film 110 </ b> B is formed on the surface of the conductive path 100 with an insulating material output from the material output unit 331 of the film forming device 33 located at the end in the traveling direction. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
 以上説明した本実施形態の導電路形成装置2は、第1実施形態と共通の構成から奏される作用構成を、第1実施形態と同様に得ることができる。特に、本実施形態の導電路形成装置2は、空調ケース10の表面に導電性材料の積層体で構成される2層の導電路100A、100Bを形成可能となっている。本実施形態の導電路形成装置2は、空調ケース10の表面に複数の導電路100A、100Bを交差させる必要がある場合に好適である。 As described above, the conductive path forming apparatus 2 of the present embodiment can obtain the operational configuration produced from the configuration common to the first embodiment, similarly to the first embodiment. In particular, the conductive path forming apparatus 2 of the present embodiment can form two layers of conductive paths 100 </ b> A and 100 </ b> B formed of a laminate of conductive materials on the surface of the air conditioning case 10. The conductive path forming apparatus 2 of the present embodiment is suitable when a plurality of conductive paths 100A and 100B need to intersect the surface of the air conditioning case 10.
 ここで、本実施形態では、2層の導電路100A、100Bを形成可能な導電路形成装置2を例示したが、これに限らず、導電路形成装置2は、3層以上の導電路100を形成可能に構成されていてもよい。 Here, in the present embodiment, the conductive path forming apparatus 2 capable of forming the two-layer conductive paths 100A and 100B is illustrated, but the present invention is not limited thereto, and the conductive path forming apparatus 2 includes the conductive paths 100 having three or more layers. You may be comprised so that formation is possible.
 (第4実施形態)
 次に、第4実施形態について、図19を参照して説明する。本実施形態では、空調ケース10の表面に所定の間隔をあけて並列に並ぶ複数本の導電路100が形成可能な導電路形成装置2について説明する。
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIG. In the present embodiment, a conductive path forming device 2 capable of forming a plurality of conductive paths 100 arranged in parallel at a predetermined interval on the surface of the air conditioning case 10 will be described.
 図19に示すように、本実施形態の材料供給部311それぞれには、導電性材料を射出する複数のノズル部311bが進行方向に対して交差する方向に並ぶように設けられている。 As shown in FIG. 19, each of the material supply units 311 of the present embodiment is provided with a plurality of nozzle units 311b for injecting a conductive material so as to line up in a direction intersecting the traveling direction.
 なお、本実施形態のエネルギ出力部321それぞれには、材料供給部311の複数のノズル部311bと同数の光照射部321aが進行方向に対して交差する方向に並ぶように設けられている。また、本実施形態の材料出力部331それぞれには、材料供給部311の複数のノズル部311bと同数の射出部331bが進行方向に対して交差する方向に並ぶように設けられている。 In addition, in each energy output part 321 of this embodiment, the same number of light irradiation parts 321a as the plurality of nozzle parts 311b of the material supply part 311 are provided so as to be arranged in a direction intersecting the traveling direction. In addition, in each of the material output units 331 of the present embodiment, the same number of injection units 331b as the plurality of nozzle units 311b of the material supply unit 311 are provided so as to be arranged in a direction intersecting the traveling direction.
 その他の構成は、第1実施形態の導電路形成装置2と同様である。本実施形態の導電路形成装置2は、第1実施形態と共通の構成から奏される作用構成を、第1実施形態と同様に得ることができる。 Other configurations are the same as those of the conductive path forming apparatus 2 of the first embodiment. The conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the first embodiment, similarly to the first embodiment.
 特に、本実施形態の導電路形成装置2は、材料供給部311に対して、進行方向に対して交差する方向に並ぶ複数のノズル部311bを設ける構成としている。これによれば、空調ケース10の表面に近接する複数本の導電路100形成する際に、材料供給部311を何度も往復させる必要がないので、空調ケース10の表面に短時間で複数本の導電路100を形成することが可能となる。 In particular, the conductive path forming apparatus 2 according to the present embodiment has a configuration in which the material supply unit 311 is provided with a plurality of nozzle units 311b arranged in a direction intersecting the traveling direction. According to this, when the plurality of conductive paths 100 close to the surface of the air conditioning case 10 are formed, it is not necessary to reciprocate the material supply unit 311 many times. The conductive path 100 can be formed.
 (第5実施形態)
 次に、第5実施形態について、図20を参照して説明する。図20に示すように、本実施形態のエネルギ出力部321それぞれは、材料供給部311の複数のノズル部311bから射出された導電性材料の全体にエネルギが出力されるように構成されている。すなわち、本実施形態のエネルギ出力部321それぞれは、単一の光照射部321aによって、複数のノズル部311bから射出された導電性材料の全体にエネルギを出力する構成となっている。
(Fifth embodiment)
Next, a fifth embodiment will be described with reference to FIG. As shown in FIG. 20, each of the energy output units 321 according to the present embodiment is configured to output energy to the entire conductive material injected from the plurality of nozzle units 311 b of the material supply unit 311. That is, each energy output unit 321 of the present embodiment is configured to output energy to the entire conductive material ejected from the plurality of nozzle units 311b by a single light irradiation unit 321a.
 その他の構成は、第4実施形態の導電路形成装置2と同様である。本実施形態の導電路形成装置2は、第4実施形態と共通の構成から奏される作用構成を、第4実施形態と同様に得ることができる。 Other configurations are the same as those of the conductive path forming apparatus 2 of the fourth embodiment. The conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the fourth embodiment, similarly to the fourth embodiment.
 特に、本実施形態の導電路形成装置2は、エネルギ出力部321それぞれが、材料供給部311の複数のノズル部311bから射出された導電性材料の全体にエネルギが出力されるように構成されている。これによれば、材料供給部311の複数のノズル部311bに対応する数のエネルギ出力部321の光照射部321aを設ける必要がないので、導電路形成装置2の簡素化を図ることができる。 In particular, the conductive path forming apparatus 2 of the present embodiment is configured such that each energy output unit 321 outputs energy to the entire conductive material injected from the plurality of nozzle units 311b of the material supply unit 311. Yes. According to this, since it is not necessary to provide the light irradiation part 321a of the energy output part 321 of the number corresponding to the some nozzle part 311b of the material supply part 311, simplification of the conductive path formation apparatus 2 can be achieved.
 (第6実施形態)
 次に、第6実施形態について、図21を参照して説明する。図21に示すように、本実施形態の膜形成機器33の材料出力部331は、複数本の導電路100の全体を被覆するように構成されている。すなわち、本実施形態の膜形成機器33は、単一の材料出力部331によって、複数本の導電路100の全体を保護膜110で覆う構成となっている。
(Sixth embodiment)
Next, a sixth embodiment will be described with reference to FIG. As shown in FIG. 21, the material output portion 331 of the film forming apparatus 33 of the present embodiment is configured to cover the entire plurality of conductive paths 100. That is, the film forming apparatus 33 of the present embodiment is configured to cover the entire plurality of conductive paths 100 with the protective film 110 by the single material output unit 331.
 その他の構成は、第5実施形態の導電路形成装置2と同様である。本実施形態の導電路形成装置2は、第5実施形態と共通の構成から奏される作用構成を、第5実施形態と同様に得ることができる。 Other configurations are the same as those of the conductive path forming apparatus 2 of the fifth embodiment. The conductive path forming apparatus 2 of the present embodiment can obtain an operational configuration produced from a configuration common to the fifth embodiment, similarly to the fifth embodiment.
 特に、本実施形態の導電路形成装置2は、膜形成機器33の材料出力部331が、複数本の導電路100の全体を被覆するように構成されている。これによれば、材料供給部311の複数のノズル部311bに対応する数の膜形成機器33の材料出力部331を設ける必要がないので、導電路形成装置2の簡素化を図ることができる。 In particular, the conductive path forming apparatus 2 of the present embodiment is configured such that the material output unit 331 of the film forming apparatus 33 covers the entire plurality of conductive paths 100. According to this, since it is not necessary to provide the number of material output portions 331 of the film forming devices 33 corresponding to the plurality of nozzle portions 311b of the material supply portion 311, the conductive path forming device 2 can be simplified.
 (第7実施形態)
 次に、第7実施形態について、図22を参照して説明する。本実施形態では、導電路100の製造方法が、第1実施形態で説明した方法と異なっている。
(Seventh embodiment)
Next, a seventh embodiment will be described with reference to FIG. In the present embodiment, the method for manufacturing the conductive path 100 is different from the method described in the first embodiment.
 図22に示すように、最初の工程では、空調ケース10の表面に流動性を有する導電性材料を供給する。そして、次の工程では、導電性材料の溶剤を乾燥させることで空調ケース10の表面に供給された導電性材料を硬化させる。 As shown in FIG. 22, in the first step, a conductive material having fluidity is supplied to the surface of the air conditioning case 10. In the next step, the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material.
 具体的には、本工程では、導電性材料の温度が、溶剤の一部が揮発する温度以上であって、導電性物質の焼結温度よりも低い温度になるように、導電性材料に対して光を照射する。導電性材料は、溶剤の一部が揮発して導電性物質が凝縮されることで、形状保持性が高くなる。 Specifically, in this step, the temperature of the conductive material is higher than the temperature at which a part of the solvent volatilizes and is lower than the sintering temperature of the conductive material. Irradiate with light. The conductive material has a high shape retention property because part of the solvent is volatilized and the conductive substance is condensed.
 その後の工程では、空調ケース10の表面に供給された導電性材料の表面への導電性材料の供給と、導電性材料の乾燥とを交互に繰り返す。この際、各工程での導電性材料の供給が完了した後、導電性材料の溶剤を乾燥させると共に、導電性物質を焼成により焼結させる。 In the subsequent steps, the supply of the conductive material to the surface of the conductive material supplied to the surface of the air conditioning case 10 and the drying of the conductive material are repeated alternately. At this time, after the supply of the conductive material in each step is completed, the solvent of the conductive material is dried and the conductive material is sintered by firing.
 この工程によって、空調ケース10の表面には、導電性材料の積層体で構成される導電路100が形成される。そして、最後の工程では、導電性材料の積層体に対して絶縁性を有する絶縁性材料を供給することで、導電性材料の積層体の表面を保護膜110で覆う。これにより、導電路100の腐食、断線、短絡等が抑制される。 Through this process, a conductive path 100 made of a laminate of conductive materials is formed on the surface of the air conditioning case 10. In the last step, an insulating material having an insulating property is supplied to the stacked body of conductive materials, so that the surface of the stacked body of conductive materials is covered with the protective film 110. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
 以上説明した本実施形態の導電路100の製造方法によれば、導電性材料の導電性物質の焼成による焼結を一度に行うので、空調ケース10の表面に導電路100を形成するのに必要な時間を短くすることが可能となる。 According to the manufacturing method of the conductive path 100 of the present embodiment described above, sintering is performed by firing the conductive material of the conductive material, so that it is necessary to form the conductive path 100 on the surface of the air conditioning case 10. It is possible to shorten the time required.
 (第8実施形態)
 次に、第8実施形態について、図23を参照して説明する。本実施形態では、導電路100の製造方法が、第1実施形態で説明した方法と異なっている。
(Eighth embodiment)
Next, an eighth embodiment will be described with reference to FIG. In the present embodiment, the method for manufacturing the conductive path 100 is different from the method described in the first embodiment.
 図23に示すように、最初の工程では、空調ケース10の表面に流動性を有する導電性材料を供給する。続く工程では、空調ケース10の表面に供給された導電性材料の表面に新たに導電性材料を供給する。そして、次の工程では、導電性材料の溶剤を乾燥させることで空調ケース10の表面に供給された導電性材料を硬化させる。すなわち、本実施形態の導電路100の製造方法では、導電性材料の供給を複数回行った後に、導電性材料を硬化させる。 23, in the first step, a conductive material having fluidity is supplied to the surface of the air conditioning case 10. In the subsequent process, a conductive material is newly supplied to the surface of the conductive material supplied to the surface of the air conditioning case 10. In the next step, the conductive material supplied to the surface of the air conditioning case 10 is cured by drying the solvent of the conductive material. That is, in the method for manufacturing the conductive path 100 of the present embodiment, the conductive material is cured after the conductive material is supplied a plurality of times.
 その後の工程では、複数回の導電性材料の供給と、導電性材料の乾燥とを交互に繰り返す。この際、各工程での導電性材料の供給が完了した後、導電性材料の溶剤を乾燥させると共に、導電性物質を焼成により焼結させる。この工程によって、空調ケース10の表面には、導電性材料の積層体で構成される導電路100が形成される。そして、最後の工程では、導電性材料の積層体に対して絶縁性を有する絶縁性材料を供給することで、導電性材料の積層体の表面を保護膜で覆う。これにより、導電路100の腐食、断線、短絡等が抑制される。 In the subsequent process, the supply of the conductive material and the drying of the conductive material are repeated alternately. At this time, after the supply of the conductive material in each step is completed, the solvent of the conductive material is dried and the conductive material is sintered by firing. Through this step, a conductive path 100 formed of a laminate of conductive materials is formed on the surface of the air conditioning case 10. In the last step, an insulating material having an insulating property is supplied to the laminate of conductive materials, so that the surface of the laminate of conductive materials is covered with a protective film. Thereby, corrosion of the conductive path 100, disconnection, a short circuit, etc. are suppressed.
 以上説明した本実施形態では、導電路100の製造過程において、空調ケース10の表面に供給された導電性材料を硬化させた後、硬化した導電性材料の表面に新たに導電性材料を供給している。従って、本実施形態の空調ユニット1の製造方法によれば、導電路100の幅を大きくすることなく、厚みを大きくすることができる。 In the present embodiment described above, after the conductive material supplied to the surface of the air conditioning case 10 is cured in the manufacturing process of the conductive path 100, a new conductive material is supplied to the surface of the cured conductive material. ing. Therefore, according to the manufacturing method of the air conditioning unit 1 of the present embodiment, the thickness can be increased without increasing the width of the conductive path 100.
 (他の実施形態)
 以上、本開示の代表的な実施形態について説明したが、本開示は、上述の実施形態に限定されることなく、例えば、以下のように種々変形可能である。
(Other embodiments)
As mentioned above, although typical embodiment of this indication was described, this indication is not limited to the above-mentioned embodiment, for example, can be variously changed as follows.
 上述の各実施形態では、空調ケース10の表面に複数本の導電路100を形成する際の製造方法等について説明したが、当該製造方法等は、空調ケース10の表面に一本の導電路100を形成する際にも有効である。 In each of the above-described embodiments, the manufacturing method or the like when forming the plurality of conductive paths 100 on the surface of the air conditioning case 10 has been described. However, the manufacturing method or the like includes a single conductive path 100 on the surface of the air conditioning case 10. It is also effective when forming.
 上述の各実施形態では、導電路100の表面を覆う保護膜110として、略一定の厚みを有するものを例示したが、これに限らず、保護膜110は、不定な厚みとなっていてもよい。例えば、保護膜110は、図24に示すように、隣り合う導電路100の間の部位が、導電路100上の部位よりも厚みが大きくなるように形成されていてもよい。 In each of the above-described embodiments, the protective film 110 covering the surface of the conductive path 100 has been exemplified as having a substantially constant thickness. However, the present invention is not limited to this, and the protective film 110 may have an indefinite thickness. . For example, as shown in FIG. 24, the protective film 110 may be formed such that a portion between adjacent conductive paths 100 is thicker than a portion on the conductive path 100.
 上述の各実施形態の如く、導電路100の表面を保護膜110で覆うことが望ましいが、これに限定されない。すなわち、導電路100は、保護膜110で覆われていなくともよい。 Although it is desirable to cover the surface of the conductive path 100 with the protective film 110 as in the above-described embodiments, the present invention is not limited to this. That is, the conductive path 100 may not be covered with the protective film 110.
 上述の各実施形態では、光や電波の熱エネルギによって導電性材料を硬化させる例(例えば、光焼成による焼結)について説明したが、これに限定されない。導電性材料を硬化させる方法としては、例えば、導電性材料として紫外線硬化樹脂を用いて、紫外線の照射による化学反応よって導電性材料を硬化させる方法を採用することができる。また、導電性材料を硬化させる方法としては、導電性を有する主剤と主剤を化学反応によって硬化させる硬化剤とを混合させることで、主剤と硬化剤との混合物を導電性材料として硬化させる方法を採用可能である。 In each of the above-described embodiments, the example in which the conductive material is cured by the thermal energy of light or radio waves (for example, sintering by light firing) has been described, but the present invention is not limited to this. As a method for curing the conductive material, for example, a method in which an ultraviolet curable resin is used as the conductive material and the conductive material is cured by a chemical reaction by irradiation with ultraviolet rays can be employed. Moreover, as a method of curing the conductive material, a method of curing a mixture of the main agent and the curing agent as a conductive material by mixing a conductive main agent and a curing agent that cures the main agent by a chemical reaction. It can be adopted.
 上述の各実施形態の導電路形成装置2は、導電路形成機30の各機器31~33を、ガイドレール41上で移動させる構成となっている例について説明したが、これ限定されない。導電路形成装置2は、例えば、導電路形成機30の各機器31~33を可動アーム等によって移動させる構成となっていてもよい。また、導電路形成装置2は、導電路形成機30の各機器31~33の位置を固定し、空調ケース10の姿勢や位置を変更する構成となっていてもよい。 Although the conductive path forming apparatus 2 of each of the above-described embodiments has been described with respect to the example in which the devices 31 to 33 of the conductive path forming machine 30 are moved on the guide rail 41, the present invention is not limited thereto. The conductive path forming device 2 may be configured, for example, to move the devices 31 to 33 of the conductive path forming machine 30 using a movable arm or the like. In addition, the conductive path forming device 2 may be configured to fix the positions of the devices 31 to 33 of the conductive path forming machine 30 and change the posture and position of the air conditioning case 10.
 上述の各実施形態では、外殻を構成する空調ケース10を電装部材とし、当該空調ケース10の表面に導電路100を形成する例について説明したが、これに限定されない。導電路100は、電気部品が取り付けられる電装部材であれば、例えば、空調ケース10以外の筐体、板形状の部材、ブロック形状の部材等に対しても形成可能である。 In each of the above-described embodiments, an example in which the air conditioning case 10 constituting the outer shell is an electrical component and the conductive path 100 is formed on the surface of the air conditioning case 10 has been described. However, the present invention is not limited to this. The conductive path 100 can be formed on, for example, a casing other than the air conditioning case 10, a plate-shaped member, a block-shaped member, or the like as long as it is an electrical member to which an electrical component is attached.
 上述の各実施形態では、空調ユニット1の空調ケース10に対して導電路100を形成する例について説明したが、これに限定されない。導電路100は、空調ユニット1の空調ケース10以外の車両用電装部品の電装部材に形成してもよい。 In each of the above-described embodiments, the example in which the conductive path 100 is formed with respect to the air conditioning case 10 of the air conditioning unit 1 has been described. However, the present invention is not limited to this. The conductive path 100 may be formed in an electrical component of an electrical component for a vehicle other than the air conditioning case 10 of the air conditioning unit 1.
 上述の実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 In the above-described embodiment, it is needless to say that elements constituting the embodiment are not necessarily indispensable except for the case where it is clearly indicated that the element is essential and the case where the element is clearly considered to be essential in principle.
 上述の実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されない。 In the above-described embodiment, when numerical values such as the number, numerical value, quantity, range, etc. of the constituent elements of the embodiment are mentioned, it is particularly limited to a specific number when clearly indicated as essential and in principle. Except in some cases, the number is not limited.
 上述の実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されない。 In the above embodiment, when referring to the shape, positional relationship, etc. of the component, etc., the shape, positional relationship, etc. unless otherwise specified and in principle limited to a specific shape, positional relationship, etc. It is not limited to etc.
 (まとめ)
 上述の実施形態の一部または全部で示された第1の観点によれば、車両用電装部品は、電気部品が取り付けられる電装部材に、少なくとも一本の導電路が形成されている。そして、導電路は、導電性材料が積層された積層体を含んで構成されている。
(Summary)
According to the 1st viewpoint shown by one part or all part of the above-mentioned embodiment, as for the electrical component for vehicles, at least 1 conductive path is formed in the electrical component to which an electrical component is attached. And the conductive path is comprised including the laminated body on which the electroconductive material was laminated | stacked.
 第2の観点によれば、車両用電装部品の導電路は、電装部材の表面に積層した導電性材料を硬化させた硬化体で構成されると共に、表面の一部に凹凸が形成されている。 According to the second aspect, the conductive path of the vehicle electrical component is formed of a cured body obtained by curing a conductive material laminated on the surface of the electrical component, and unevenness is formed on a part of the surface. .
 第3の観点によれば、車両用電装部品の製造方法は、電装部材の表面に供給された導電性材料の表面に新たに導電性材料を少なくとも一度供給することで導電性材料の積層体を形成する。そして、当該製造方法では、乾燥、焼成、および化学反応の少なくとも1つにより積層体を硬化させることで、表面の一部に凹凸を有する導電路を形成する。 According to a third aspect of the present invention, there is provided a method for manufacturing an electrical component for a vehicle, wherein a conductive material laminate is newly supplied at least once to the surface of the conductive material supplied to the surface of the electrical component. Form. And in the said manufacturing method, the electrically conductive path which has an unevenness | corrugation in a part of surface is formed by hardening a laminated body by at least 1 of drying, baking, and a chemical reaction.
 第4の観点によれば、車両用電装部品の製造方法では、電装部材の表面に供給された導電性材料の表面への導電性材料の供給を複数回繰り返す場合、少なくとも一回は、乾燥、焼成、および化学反応の少なくとも1つにより既に供給された導電性材料を硬化させる。 According to the fourth aspect, in the method for manufacturing an electrical component for a vehicle, when the supply of the conductive material to the surface of the conductive material supplied to the surface of the electrical component member is repeated a plurality of times, drying is performed at least once. The conductive material already supplied is cured by at least one of baking and chemical reaction.
 このように、電装部材の表面積に既に供給された導電性材料を適宜硬化させることで、導電性材料が表面張力の影響によって電装部材の面方向に拡がってしまうことを抑えることができる。すなわち、導電性材料の形状を保持した状態で導電性材料を積層することができる。 Thus, by appropriately curing the conductive material already supplied to the surface area of the electrical member, it is possible to prevent the conductive material from spreading in the surface direction of the electrical member due to the influence of the surface tension. That is, the conductive material can be stacked while maintaining the shape of the conductive material.
 従って、本製造方法によれば、導電路の幅を大きくすることなく厚みを大きくすることができるので、電装部材の表面における導電路を形成するための領域が大きくなってしまうことを抑えることができる。 Therefore, according to this manufacturing method, since the thickness can be increased without increasing the width of the conductive path, it is possible to suppress an increase in the area for forming the conductive path on the surface of the electrical member. it can.
 第5の観点によれば、車両用電装部品の製造方法では、積層体を硬化させた後に、導電路を保護する保護膜を導電路の表面に被覆する。これによれば、導電路の表面が保護膜で被覆されるので、電装部材の表面に形成された導電路の腐食、断線、短絡等を抑制することができる。 According to the fifth aspect, in the method of manufacturing an electrical component for a vehicle, after the laminate is cured, the surface of the conductive path is covered with a protective film that protects the conductive path. According to this, since the surface of the conductive path is covered with the protective film, corrosion, disconnection, short circuit, and the like of the conductive path formed on the surface of the electrical member can be suppressed.
 第6の観点によれば、車両用電装部品の製造方法では、導電路の形成に用いる導電性材料は、金属、炭素、導電性樹脂のうち、少なくとも1つの導電性物質を含有した溶剤またはペースト状の材料で構成されている。これによると、導電性材料の流動性を確保することができる。 According to a sixth aspect, in the method of manufacturing an electrical component for a vehicle, the conductive material used for forming the conductive path is a solvent or paste containing at least one conductive substance among metal, carbon, and conductive resin. It is composed of a material. According to this, the fluidity of the conductive material can be ensured.
 第7の観点によれば、導電路形成装置は、複数の材料供給部のうち、一部の材料供給部が、電装部材の表面に導電性材料を供給するように構成されている。また、複数の材料供給部のうち、一部の材料供給部を除く他の材料供給部は、電装部材の表面に既に供給された導電性材料の表面に導電性材料を供給するように構成されている。そして、導電路は、複数の材料供給部から供給された導電性材料の積層体で構成されると共に、表面の一部に凹凸が形成されている。 According to the seventh aspect, the conductive path forming apparatus is configured such that a part of the plurality of material supply units supplies a conductive material to the surface of the electrical member. Further, among the plurality of material supply units, the other material supply units excluding a part of the material supply units are configured to supply the conductive material to the surface of the conductive material already supplied to the surface of the electrical component member. ing. The conductive path is composed of a laminate of conductive materials supplied from a plurality of material supply units, and unevenness is formed on a part of the surface.
 第8の観点によれば、導電路形成装置は、電装部材の表面に所定の形状の導電路が形成されるように、材料供給機器および材料硬化機器を駆動させる駆動部を備える。このように、駆動部によって材料供給機器および材料硬化機器を駆動する構成とすれば、立体構造(すなわち、三次元構造)を有する電装部材の表面に対して導電路を適切に形成することが可能となる。 According to an eighth aspect, the conductive path forming device includes a drive unit that drives the material supply device and the material curing device so that a predetermined shape of the conductive path is formed on the surface of the electrical member. Thus, if it is set as the structure which drives a material supply apparatus and a material hardening apparatus with a drive part, it is possible to form a conductive path appropriately with respect to the surface of the electrical component which has a three-dimensional structure (namely, three-dimensional structure) It becomes.
 第9の観点によれば、導電路形成装置は、駆動部が、予め定められた導電路の形状に合わせて一部の材料供給部を移動させるように構成されている。そして、他の材料供給部およびエネルギ出力部は、一部の材料供給部の移動軌跡を追従するように、連結部材を介して一部の材料供給部に連結されている。 According to the ninth aspect, the conductive path forming apparatus is configured such that the drive unit moves a part of the material supply unit in accordance with a predetermined shape of the conductive path. The other material supply unit and the energy output unit are coupled to a part of the material supply unit via a coupling member so as to follow the movement trajectory of the part of the material supply unit.
 これによれば、一部の材料供給部、他の材料供給部、エネルギ出力部それぞれを個別に駆動部で移動させる構成に比べて、駆動要素の部品点数を減らすことができるので、導電路形成装置の簡素化を図ることが可能となる。 According to this, since the number of parts of the drive element can be reduced compared to the configuration in which some of the material supply units, other material supply units, and the energy output unit are individually moved by the drive unit, the conductive path formation It is possible to simplify the apparatus.
 第10の観点によれば、導電路形成装置は、導電性材料が、導電性物質を含有し、光の照射によって硬化する溶剤またはペースト状の材料で構成されている。そして、エネルギ出力部は、所定の波長の光を照射する光照射部を有している。これによれば、エネルギ出力部の光照射部から照射する光によって導電性材料を適切に硬化させることができる。 According to a tenth aspect, in the conductive path forming apparatus, the conductive material includes a conductive substance and is composed of a solvent or a paste-like material that is cured by light irradiation. And the energy output part has a light irradiation part which irradiates the light of a predetermined wavelength. According to this, a conductive material can be appropriately hardened with the light irradiated from the light irradiation part of an energy output part.
 第11の観点によれば、導電路形成装置は、導電性材料が、導電性物質を含有し、電波の照射によって硬化する溶剤またはペースト状の材料で構成されている。そして、エネルギ出力部は、電波を照射する電波照射部を有している。これによれば、エネルギ出力部の電波照射部から照射する電波によって導電性材料を適切に硬化させることができる。 According to an eleventh aspect, in the conductive path forming apparatus, the conductive material includes a conductive substance and is composed of a solvent or paste-like material that is cured by irradiation with radio waves. The energy output unit includes a radio wave irradiation unit that radiates radio waves. According to this, a conductive material can be appropriately hardened with the radio wave irradiated from the radio wave irradiation part of an energy output part.
 第12の観点によれば、導電路形成装置は、エネルギ出力部に、導電性材料を硬化させるエネルギの拡散を抑える拡散抑制部が設けられている。これによれば、拡散抑制部によってエネルギ出力部が出力するエネルギを導電性材料の硬化に集中させることができるので、導電路形成装置のエネルギ効率の向上を図ることができる。また、エネルギ出力部からのエネルギが意図しない部位に出力されることも抑制することができる。 According to a twelfth aspect, in the conductive path forming device, the energy output unit is provided with a diffusion suppressing unit that suppresses diffusion of energy for curing the conductive material. According to this, since the energy output from the energy output unit can be concentrated on the curing of the conductive material by the diffusion suppressing unit, the energy efficiency of the conductive path forming apparatus can be improved. Moreover, it can also suppress that the energy from an energy output part is output to the site | part which is not intended.
 第13の観点によれば、導電路形成装置は、複数の材料供給部それぞれに、電装部材の表面に所定の間隔をあけて並列に並ぶ複数本の導電路が形成されるように、導電性材料を射出する複数のノズル部が設けられている。 According to the thirteenth aspect, the conductive path forming device is conductive so that a plurality of conductive paths arranged in parallel with a predetermined interval are formed on the surface of the electrical component member in each of the plurality of material supply units. A plurality of nozzles for injecting material are provided.
 これによれば、電装部材の表面に近接する複数本の導電路を形成する際に、材料供給部を何度も往復させる必要がないので、電装部材の表面に短時間で複数本の導電路を形成することが可能となる。 According to this, when forming a plurality of conductive paths close to the surface of the electrical member, it is not necessary to reciprocate the material supply section many times. Can be formed.
 第14の観点によれば、導電路形成装置は、エネルギ出力部が、複数のノズル部から射出された導電性材料の全体にエネルギが出力されるように構成されている。これによれば、複数のノズル部に対応する数のエネルギ出力部を設ける必要がないので、導電路形成装置の簡素化を図ることができる。 According to the fourteenth aspect, the conductive path forming apparatus is configured such that the energy output unit outputs energy to the entire conductive material injected from the plurality of nozzle units. According to this, since it is not necessary to provide the energy output part of the number corresponding to a some nozzle part, simplification of a conductive path formation apparatus can be achieved.
 第15の観点によれば、導電路形成装置は、導電路を保護する保護膜を導電路の表面に形成する少なくとも1つの膜形成機器を備えている。これによれば、膜形成機器によって導電路の表面に保護膜が形成されるので、電装部材の表面に形成された導電路の腐食、断線、短絡等を抑制することができる。 According to the fifteenth aspect, the conductive path forming apparatus includes at least one film forming device for forming a protective film for protecting the conductive path on the surface of the conductive path. According to this, since the protective film is formed on the surface of the conductive path by the film forming device, corrosion, disconnection, short circuit, and the like of the conductive path formed on the surface of the electrical member can be suppressed.
 第16の観点によれば、導電路形成装置は、導電路を保護する保護膜を導電路の表面に形成する膜形成機器を備えている。そして、膜形成機器は、複数本の導電路の全体を保護膜で覆うように構成されている。これによれば、複数のノズル部に対応する数の膜形成機器を設ける必要がないので、導電路形成装置の簡素化を図ることができる。 According to a sixteenth aspect, the conductive path forming apparatus includes a film forming device for forming a protective film for protecting the conductive path on the surface of the conductive path. And the film formation apparatus is comprised so that the whole several conductive path may be covered with a protective film. According to this, since it is not necessary to provide a number of film forming devices corresponding to the plurality of nozzle portions, it is possible to simplify the conductive path forming device.
 第17の観点によれば、導電路形成装置は、電装部材の姿勢および位置を調整する姿勢調整機構を備えている。これによれば、導電路形成装置の各機器の位置を固定した状態で、電装部材の姿勢や位置を変更することで、電装部材の表面に導電路を形成することが可能である。 According to the seventeenth aspect, the conductive path forming device includes an attitude adjustment mechanism that adjusts the attitude and position of the electrical member. According to this, it is possible to form a conductive path on the surface of the electrical member by changing the posture and position of the electrical member in a state where the position of each device of the conductive path forming device is fixed.

Claims (17)

  1.  電気部品(112、13、16)が搭載される車両用電装部品であって、
     前記電気部品が取り付けられる電装部材(10)と、
     前記電装部材に形成され、前記電気部品に対して電気的に接続される少なくとも一本の導電路(100、100A、100B)と、を備え、
     前記導電路は、導電性材料が積層された積層体を含んで構成されている車両用電装部品。
    An electrical component for a vehicle on which electrical components (112, 13, 16) are mounted,
    An electrical component (10) to which the electrical component is attached;
    And at least one conductive path (100, 100A, 100B) formed on the electrical component and electrically connected to the electrical component,
    The conductive path is an electrical component for a vehicle configured to include a laminate in which conductive materials are laminated.
  2.  前記導電路は、前記電装部材の表面に積層した前記導電性材料を硬化させた硬化体で構成されると共に、表面の一部に凹凸が形成されている請求項1に記載の車両用電装部品。 2. The vehicle electrical component according to claim 1, wherein the conductive path is configured by a cured body obtained by curing the conductive material laminated on a surface of the electrical component, and unevenness is formed on a part of the surface. .
  3.  電気部品(112、13、16)に対して電気的に接続される少なくとも一本の導電路(100、100A、100B)が表面に形成された電装部材(10)を備える車両用電装部品の製造方法であって、
     前記電装部材の表面に流動性を有する導電性材料を供給し、
     前記電装部材の表面に供給された導電性材料の表面に新たに導電性材料を少なくとも一度供給することで、導電性材料の積層体を形成し、
     乾燥、焼成、および化学反応の少なくとも1つにより前記積層体を硬化させることで、表面の一部に凹凸を有する前記導電路を形成する車両用電装部品の製造方法。
    Manufacture of an electrical component for a vehicle comprising an electrical component (10) having at least one conductive path (100, 100A, 100B) electrically connected to the electrical component (112, 13, 16) formed on a surface thereof A method,
    Supplying a conductive material having fluidity to the surface of the electrical component;
    A conductive material laminate is formed by supplying a new conductive material to the surface of the conductive material supplied to the surface of the electrical component member at least once,
    A method for manufacturing an electrical component for a vehicle, wherein the conductive path having irregularities on a part of the surface is formed by curing the laminate by at least one of drying, firing, and chemical reaction.
  4.  前記電装部材の表面に供給された導電性材料の表面への導電性材料の供給を複数回繰り返す場合、少なくとも一回は、乾燥、焼成、および化学反応の少なくとも1つにより既に供給された導電性材料を硬化させる請求項3に記載の車両用電装部品の製造方法。 When the supply of the conductive material to the surface of the conductive material supplied to the surface of the electrical component is repeated a plurality of times, the conductivity already supplied at least once by at least one of drying, firing, and chemical reaction The manufacturing method of the electrical component for vehicles of Claim 3 which hardens material.
  5.  前記積層体を硬化させた後に、前記導電路を保護する保護膜(110)を前記導電路の表面に被覆する請求項3または4に記載の車両用電装部品の製造方法。 The method for manufacturing an electrical component for a vehicle according to claim 3 or 4, wherein the surface of the conductive path is covered with a protective film (110) for protecting the conductive path after the laminate is cured.
  6.  前記導電路の形成に用いる導電性材料は、金属、炭素、導電性樹脂のうち、少なくとも1つの導電性物質を含有した溶剤またはペースト状の材料で構成されている請求項3ないし5のいずれか1つに記載の車両用電装部品の製造方法。 6. The conductive material used for forming the conductive path is made of a solvent or a paste-like material containing at least one conductive substance among metal, carbon, and conductive resin. The manufacturing method of the electrical component for vehicles as described in one.
  7.  電装部材(10)の表面に電気部品(112、13、16)に対して電気的に接続される少なくとも一本の導電路(100、100A、100B)を形成する導電路形成装置であって、
     前記電装部材の表面に流動性を有する導電性材料を供給する複数の材料供給部(311)を有する材料供給機器(31)と、
     前記導電性材料を硬化させるエネルギを出力するエネルギ出力部(321)を少なくとも1つ有する材料硬化機器(32)と、を備え、
     前記複数の材料供給部のうち、一部の材料供給部は、前記電装部材の表面に導電性材料を供給するように構成されており、
     前記複数の材料供給部のうち、前記一部の材料供給部を除く他の材料供給部は、前記電装部材の表面に既に供給された導電性材料の表面に導電性材料を供給するように構成されており、
     前記導電路は、前記複数の材料供給部から供給された導電性材料の積層体で構成されると共に、表面の一部に凹凸が形成されている導電路形成装置。
    A conductive path forming device for forming at least one conductive path (100, 100A, 100B) electrically connected to an electrical component (112, 13, 16) on a surface of an electrical component (10),
    A material supply device (31) having a plurality of material supply parts (311) for supplying a conductive material having fluidity to the surface of the electrical component;
    A material curing device (32) having at least one energy output unit (321) for outputting energy for curing the conductive material,
    Among the plurality of material supply units, some of the material supply units are configured to supply a conductive material to the surface of the electrical component,
    Of the plurality of material supply units, the other material supply units excluding the part of the material supply units are configured to supply the conductive material to the surface of the conductive material already supplied to the surface of the electrical component. Has been
    The conductive path forming apparatus, wherein the conductive path is configured by a laminate of conductive materials supplied from the plurality of material supply units, and unevenness is formed on a part of the surface.
  8.  前記電装部材の表面に所定の形状の前記導電路が形成されるように、前記材料供給機器および前記材料硬化機器を駆動させる駆動部(40)を備える請求項7に記載の導電路形成装置。 The conductive path forming apparatus according to claim 7, further comprising a drive unit (40) for driving the material supply device and the material curing device so that the conductive path having a predetermined shape is formed on a surface of the electrical component member.
  9.  前記駆動部は、予め定められた前記導電路の形状に合わせて前記一部の材料供給部を移動させるように構成されており、
     前記他の材料供給部および前記エネルギ出力部は、前記一部の材料供給部の移動軌跡を追従するように、連結部材(34)を介して前記一部の材料供給部に連結されている請求項8に記載の導電路形成装置。
    The drive unit is configured to move the part of the material supply unit in accordance with a predetermined shape of the conductive path,
    The other material supply unit and the energy output unit are connected to the part of the material supply unit via a connection member (34) so as to follow the movement trajectory of the part of the material supply unit. Item 9. The conductive path forming device according to Item 8.
  10.  前記導電性材料は、導電性物質を含有し、光の照射によって硬化する溶剤またはペースト状の材料で構成されており、
     前記エネルギ出力部は、所定の波長の光を照射する光照射部(321a)を有する請求項7ないし9のいずれか1つに記載の導電路形成装置。
    The conductive material contains a conductive substance, and is composed of a solvent or paste-like material that is cured by light irradiation,
    The said energy output part is a conductive path formation apparatus as described in any one of Claim 7 thru | or 9 which has a light irradiation part (321a) which irradiates the light of a predetermined wavelength.
  11.  前記導電性材料は、導電性物質を含有し、電波の照射によって硬化する溶剤またはペースト状の材料で構成されており、
     前記エネルギ出力部は、前記電波を照射する電波照射部(321b)を有する請求項7ないし9のいずれか1つに記載の導電路形成装置。
    The conductive material contains a conductive substance, and is composed of a solvent or paste-like material that is cured by irradiation with radio waves,
    The said energy output part is a conductive path formation apparatus as described in any one of Claim 7 thru | or 9 which has a radio wave irradiation part (321b) which irradiates the said electromagnetic wave.
  12.  前記エネルギ出力部には、前記導電性材料を硬化させるエネルギの拡散を抑える拡散抑制部(322)が設けられている請求項10または11に記載の導電路形成装置。 The conductive path forming apparatus according to claim 10 or 11, wherein the energy output unit is provided with a diffusion suppression unit (322) that suppresses diffusion of energy for curing the conductive material.
  13.  前記複数の材料供給部それぞれには、前記電装部材の表面に所定の間隔をあけて並列に並ぶ複数本の前記導電路が形成されるように、前記導電性材料を射出する複数のノズル部(311b)が設けられている請求項7ないし12のいずれか1つに記載の導電路形成装置。 In each of the plurality of material supply parts, a plurality of nozzle parts for injecting the conductive material are formed so that a plurality of the conductive paths arranged in parallel with a predetermined interval are formed on the surface of the electrical component member. The conductive path forming apparatus according to any one of claims 7 to 12, wherein 311b) is provided.
  14.  前記エネルギ出力部は、前記複数のノズル部から射出された前記導電性材料の全体にエネルギが出力されるように構成されている請求項13に記載の導電路形成装置。 14. The conductive path forming apparatus according to claim 13, wherein the energy output unit is configured to output energy to the entirety of the conductive material injected from the plurality of nozzle units.
  15.  前記導電路を保護する保護膜(110)を前記導電路の表面に形成する少なくとも1つの膜形成機器(33)を備える請求項7ないし14のいずれか1つに記載の導電路形成装置。 The conductive path forming apparatus according to any one of claims 7 to 14, further comprising at least one film forming device (33) for forming a protective film (110) for protecting the conductive path on a surface of the conductive path.
  16.  前記導電路を保護する保護膜(110)を前記導電路の表面に形成する膜形成機器(33)を備え、
     前記膜形成機器は、前記複数本の導電路の全体を前記保護膜で覆うように構成されている請求項7ないし14のいずれか1つに記載の導電路形成装置。
    A film forming device (33) for forming a protective film (110) for protecting the conductive path on the surface of the conductive path;
    The conductive film forming apparatus according to claim 7, wherein the film forming device is configured to cover the whole of the plurality of conductive paths with the protective film.
  17.  前記電装部材の姿勢および位置を調整する姿勢調整機構(22)を備える請求項7ないし16のいずれか1つに記載の導電路形成装置。 The conductive path forming device according to any one of claims 7 to 16, further comprising a posture adjusting mechanism (22) for adjusting a posture and a position of the electric component.
PCT/JP2017/020244 2016-06-21 2017-05-31 Vehicular electrical component, method for manufacturing vehicular electrical component, and electrical-conduction-path-forming device WO2017221652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018523639A JPWO2017221652A1 (en) 2016-06-21 2017-05-31 ELECTRIC VEHICLE COMPONENT, METHOD FOR PRODUCING ELECTRIC EQUIPMENT FOR VEHICLE, CONDUCTIVE CIRCUIT FORMING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016122836 2016-06-21
JP2016-122836 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221652A1 true WO2017221652A1 (en) 2017-12-28

Family

ID=60783257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020244 WO2017221652A1 (en) 2016-06-21 2017-05-31 Vehicular electrical component, method for manufacturing vehicular electrical component, and electrical-conduction-path-forming device

Country Status (2)

Country Link
JP (1) JPWO2017221652A1 (en)
WO (1) WO2017221652A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073561A (en) * 2004-08-31 2006-03-16 Seiko Epson Corp Circuit board
JP2008073647A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Liquid discharge apparatus and method of forming resist pattern
JP2015230255A (en) * 2014-06-05 2015-12-21 太平洋工業株式会社 Tire state detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH118042A (en) * 1997-02-28 1999-01-12 Toshiba Lighting & Technol Corp Ion generation substrate and electrophotography recording device
JP2000207938A (en) * 1999-01-13 2000-07-28 Murata Mfg Co Ltd Insulative glass paste and thick-film circuit parts
JP4366054B2 (en) * 2001-08-03 2009-11-18 キヤノン株式会社 Matrix wiring manufacturing method, electron source, and image forming apparatus manufacturing method
JP2006035184A (en) * 2004-07-30 2006-02-09 Seiko Epson Corp Method and apparatus for applying droplet, electrooptical device, and electronic equipment
JP2006056348A (en) * 2004-08-19 2006-03-02 Denso Corp Air-conditioner for vehicle
JP2008300388A (en) * 2007-05-29 2008-12-11 Konica Minolta Holdings Inc Conductive pattern, and manufacturing method of conductive pattern
JP2011525716A (en) * 2008-06-24 2011-09-22 エックスジェット・リミテッド Method and system for non-contact material deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073561A (en) * 2004-08-31 2006-03-16 Seiko Epson Corp Circuit board
JP2008073647A (en) * 2006-09-22 2008-04-03 Fujifilm Corp Liquid discharge apparatus and method of forming resist pattern
JP2015230255A (en) * 2014-06-05 2015-12-21 太平洋工業株式会社 Tire state detector

Also Published As

Publication number Publication date
JPWO2017221652A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US20040252986A1 (en) Electrical heater, heating heat exchanger and vehicle air conditioner
US7626124B2 (en) Wiring board
JP5964832B2 (en) EMF shielded plastic-organic sheet hybrid structural member
US10343356B2 (en) Method and apparatus for repairing honeycomb core sandwich panel
CN106183453A (en) Light irradiation device
US8317113B2 (en) Electrostatic atomization device
CN105276552A (en) Light irradiation apparatus
KR20170004521A (en) Radiant heater for vehicle
JP2005212556A (en) Radiation heating device for vehicle
WO2017208659A1 (en) Electric heater and air conditioning device provided with electric heater
KR20140077738A (en) Air conditioning apparatus for electric vehicle
US10059306B2 (en) Defroster and a vehicle having the same
JP6164034B2 (en) Planar heating element for window and window for vehicle
WO2017221652A1 (en) Vehicular electrical component, method for manufacturing vehicular electrical component, and electrical-conduction-path-forming device
KR101124424B1 (en) Pre-heater for vehicle
JP5392213B2 (en) Electronic control device and its cooling device
JP2015008225A (en) Electronic apparatus
KR101832636B1 (en) Electric thermal fluid conditioning device for a motor vehicle and corresponding heating and/or air-conditioning facility
JP6604002B2 (en) Additive manufacturing apparatus and additive manufacturing method
KR102011670B1 (en) Heater for vehicle
KR101311155B1 (en) Controller for heater
CN102254493A (en) Ventilation and heat dissipation box body of LED (Light Emitting Diode) display screen
JP2018085306A (en) Electric heater, air conditioner including electric heater, and method of manufacturing electric heater
JP2008121952A (en) Electric heater, air conditioner for vehicle, and method of manufacturing electric heater
KR101097921B1 (en) Controller for motor and making method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523639

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815121

Country of ref document: EP

Kind code of ref document: A1