[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017220233A1 - Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung - Google Patents

Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung Download PDF

Info

Publication number
WO2017220233A1
WO2017220233A1 PCT/EP2017/059469 EP2017059469W WO2017220233A1 WO 2017220233 A1 WO2017220233 A1 WO 2017220233A1 EP 2017059469 W EP2017059469 W EP 2017059469W WO 2017220233 A1 WO2017220233 A1 WO 2017220233A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage terminal
voltage
switching element
electrical system
motor vehicle
Prior art date
Application number
PCT/EP2017/059469
Other languages
English (en)
French (fr)
Inventor
Wolfgang Mueller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2017220233A1 publication Critical patent/WO2017220233A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • B60L9/22Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • Motor vehicle electrical system with at least two energy stores, method for operating a motor vehicle electrical system and means for its implementation
  • the present invention relates to a motor vehicle electrical system with at least two energy stores, a method for operating such a motor vehicle electrical system and means for implementing the method.
  • recuperation The recovery of braking energy in motor vehicles by recuperation is known.
  • mechanical energy is converted by an electric machine into electrical energy and stored in a battery or other energy storage during braking. If the braking power requested by the driver is less than or equal to the efficiency of the recuperation system, the braking is typically carried out exclusively by means of this. If the requested braking power is higher, a conventional braking system is additionally used.
  • the potential fuel savings through recuperation is therefore not only dependent on the driving cycle and driver behavior, but also on the performance of the recuperation system. The latter is limited by the maximum regenerative power of the electric machine and the maximum electrical capacity of the energy store or stores in the motor vehicle electrical system.
  • the sailing operation is known.
  • the internal combustion engine is decoupled from the rest of the drive train during a so-called sailing phase.
  • the engine drag does not affect the rest of the drive train and the coasting phase of the vehicle is significantly extended.
  • the electrical consumers are supplied during the sailing phase only from the or the energy storage. Sailing and recuperation are not mutually exclusive.
  • the sailing operation can be initiated when the driver operates neither gas nor brake.
  • the recuperation can be done when the driver operates the brake.
  • a motor vehicle electrical system which has an electrical machine, a first energy store and a second energy store.
  • a more efficient recuperation can be achieved by increasing the voltage at the electric machine. This results in an increase of the regenerative power, which is available as braking power.
  • Due to the variable interconnection of the energy storage results at the same time an increase in the absorption capacity of the motor vehicle electrical system. This makes it possible to feed in with higher generator power and thus an overall increase in the fuel savings in recuperation.
  • the energy storage are also redundant for the sailing operation available, which increases the reliability of the vehicle electrical system in total.
  • Machine also to operate motor or to use a corresponding electric machine.
  • mechanical power can be generated, for example for starting or assisting the internal combustion engine (for example to compensate for the turbo lag or in the so-called boost mode).
  • a corresponding electric machine is typically connected to the motor vehicle electrical system via an active power converter that can be operated as a DC and inverter, as also explained with reference to FIG.
  • the active power converter is (pulse) alternating Inverter operated in a regenerative operation as a rectifier.
  • a corresponding active power converter is typically designed as a bridge rectifier with a number of half-bridges corresponding to the number of phases of the electrical machine.
  • An active power converter differs from a passive power converter in that controllable semiconductor switching elements, for example MOS field-effect transistors, are used as rectifying elements which are designed as diodes in a passive rectifier.
  • the present invention relates to the improvement of a vehicle electrical system, as disclosed in DE 10 2013 204 894 A1. Disclosure of the invention
  • the present invention proposes a motor vehicle electrical system with at least two energy stores, a method for operating such a motor vehicle electrical system, and means for implementing the method having the features of the independent patent claims.
  • Preferred embodiments are subject of the dependent claims and the following description.
  • a vehicle electrical system which has a motor and generator electric machine, a first energy storage and a second energy storage, and are provided in the means by which either only the first energy storage or only the second energy storage, the first Energy storage and the second energy storage in parallel or the first energy storage and the second energy storage can be connected in series to the electrical machine or its power converter can be improved, that instead of a capacitive element, ie the DC link capacitor, between the DC voltage terminals of the converter used several capacitive elements are used. These are permanently, ie not switched on or off, in each case arranged parallel to the energy storage, as also explained below.
  • a motor vehicle electrical system has a generator and motor-operated electric machine, an active converter with DC voltage connections, a first energy store and a second energy store.
  • the energy stores can be, for example, regular motor vehicle batteries, for example 12V lead batteries each. However, alternatively, other electrical storage technologies can be used.
  • the electrical machine is connected with its phase connections to corresponding AC voltage connections of the power converter. concluded, as generally known.
  • means are provided which are set up to set all of the following switching states a) to c) as an alternative: a) either only the first energy store or only the second energy store is connected to the DC voltage terminals of the active converter; b) the first energy store and the second energy store are connected in parallel to the DC voltage terminals of the active power converter; and c) the first energy store and the second energy store are connected in series to the DC voltage connections of the active power converter.
  • a first capacitive element is connected to the first energy store and a second capacitive element is permanently connected in parallel to the second energy store.
  • the capacitive elements may, for example, be commercially available capacitors.
  • corresponding capacitive elements permanently connected in parallel with the respective energy storage
  • a corresponding capacitive element with one of two terminals-electrically conductive and permanently connected to a first pole of the energy storage, such as positive battery terminal, and with the second of the two terminals conductively and permanently connected to the second pole of the energy storage, for example, the negative battery terminal.
  • Such a parallel connection is, of course, also present when the first of the two terminals of the capacitive element is connected to the positive battery terminal and the second of the two terminals and the "negative" battery terminal are connected to a common ground which is a conductive connection manufactures.
  • a corresponding connection is durable if it does not take place via a switching element but via cables and corresponding connections, for example solder joints, terminals or plugs, which are not interrupted in normal operation of a corresponding motor vehicle electrical system or whose elements are not separated or isolated from one another.
  • This motor vehicle electrical system also offers fundamental advantages in sailing operation because, during a sailing phase, the motor vehicle electrical system can optionally be supplied by one of the energy stores. If one fails due to an error, you can switch to the other.
  • either one or both energy stores can feed the electric machine when the internal combustion engine is started, which then, powered by a motor, can start the internal combustion engine accordingly.
  • the other energy storage device can be connected to the electrical consumers independently of this. This creates a starter circuit and a consumer circuit.
  • the available power and thus the torque of the electric starting device can be increased by connecting at least two energy storage in parallel.
  • the available voltage and thus the producible mechanical power can also be increased by a series connection of the energy storage.
  • the invention also makes it possible to encapsulate faults in the electric machine, ie to propagate a fault from the electric machine to the electrical machine.
  • the supply network is prevented. This increases the reliability.
  • a defective battery can be decoupled from the electrical system and thus the reliability can be further increased.
  • An arithmetic unit e.g. a control device for a vehicle electrical system, as means for implementing the method according to the invention, in particular programmatically, adapted to carry out a method according to the invention.
  • control device is equipped with a suitable data carrier for storing a corresponding computer program, for example a hard disk and / or a flash memory.
  • Figure 1 illustrates a plot of maximum output power of a 14V claw pole generator over a generator speed for output voltages of 14V and 28V.
  • Figure 2 shows a motor vehicle electrical system according to an embodiment of the present invention in a simplified schematic representation.
  • FIG. 3 shows the motor vehicle electrical system according to FIG. 2 in accordance with FIG.
  • Embodiment of the invention provided switching state.
  • FIG. 4 shows the motor vehicle electrical system according to FIG. 2 in accordance with FIG.
  • Embodiment of the invention provided switching state.
  • FIG. 5 shows the motor vehicle electrical system according to FIG. 2 in accordance with FIG.
  • Embodiment of the invention provided switching state.
  • FIG. 6 shows the motor vehicle electrical system according to FIG. 2 in accordance with FIG.
  • Embodiment of the invention provided switching state.
  • the electric machine feeds a 14V vehicle electrical system, this can deliver electrical power from a speed n 0 i.
  • the same electric machine can only supply electric power when it is fed into a 28V vehicle electrical system at a speed of n 0 2 and above.
  • n> ni2 is significantly higher higher maximum output power than when supplying a 14V vehicle electrical system. This effect can be used to increase the output of the electric machine during recuperation.
  • the invention particularly relates to the motor operation of a corresponding electric machine which is connected via a then operated as an inverter active power converter to a motor vehicle electrical system.
  • the electrical machine can be supplied with different voltages depending on the operating state of the corresponding vehicle. Even with motorized operation of the electric machine results in a dining
  • FIG. 2 a motor vehicle electrical system according to an embodiment of the present invention in the form of a circuit diagram is shown schematically in simplified form. and 100 in total.
  • This has a first energy store Bi and a second energy store B2, which may be formed, for example, in the form of identical or different motor vehicle batteries, for example in the form of two 12V motor vehicle batteries.
  • the energy storage Bi and B2 can by means of the switching elements S1, S2, S3 and S 4 are connected variable.
  • the switching elements S1 to S 4 may be formed, for example, by MOS field-effect transistors or other electronic components.
  • Electrical 14V consumers are collectively illustrated in the form of a resistor R1.
  • An electric machine EM can be operated both as a generator and as a motor. It can thus feed electrical power into the vehicle electrical system 100 or be supplied from this with electrical power.
  • an active power converter 110 is provided, which can be operated in a regenerative operation of the electric machine, for example during recuperation, as a rectifier, and during a motor operation, for example to support the internal combustion engine, as an inverter.
  • the active power converter 110 has controllable semiconductor switching elements 11 1.
  • At DC voltage terminals B + and B- is a DC voltage.
  • the DC voltage connection B- can be grounded.
  • the controllable semiconductor switching elements 11 1 are illustrated as diodes with parallel switches. They can be designed, for example, as MOS field-effect transistors.
  • a control device 120 is designed to control the switching elements Si, S 2 , S3 and S and possibly also the semiconductor switching elements 11 1.
  • the capacitive elements C z i and C z2 are used in the illustrated embodiment of the invention instead of a single link capacitor , which is included in the prior art between the DC voltage terminals B + and B-. In this way, as already explained above, achieved that when changing between supply voltages for the electric machine EM in motor and generator operation by a corresponding control of the switching elements S1, S 2 , S3 and S no or at least no excessively high Umladeströme may occur ,
  • the switching states of the motor vehicle electrical system 100 illustrated in FIGS. 3 to 6 and explained further below are set by means of the switching elements S1 to S.
  • Energy storage B 2 supplies the consumers R1 with a voltage of 14V.
  • the switching state according to FIG. 3 can then be selected if both energy stores Bi and B 2 are to be loaded simultaneously. He is preferred Recuperation selected.
  • the higher output voltage of the electric machine EM also yields a higher output power for generator speeds n> ni 2 (see FIG.
  • the possible power consumption of the motor vehicle electrical system is doubled compared to a single energy storage Bi or B2.
  • the first energy store Bi is charged more than the second energy store B2, since the consumers R1 are connected in parallel to the second energy store B2. If the first energy store Bi has reached the upper limit of its state of charge, the first energy store must be charged.
  • the discharge of the first energy store Bi is preferably carried out by setting the switching state shown in FIG.
  • the maximum deliverable mechanical power is also increased. This can be used, for example, to assist the internal combustion engine in certain operating phases when necessary with a correspondingly high mechanical power.
  • the electric machine EM or the DC voltage connections B + and B- are connected according to FIG. 4 only with the first energy store Bi.
  • the electric machine EM feeds an electric power with a correspondingly set voltage of approximately 14V into the motor vehicle electrical system 100 or is supplied with it accordingly. If the power fed in by the electric machine is smaller than the consumer power of the load R1, the first energy store Bi is discharged. If the power is greater than the consumer power R1, the first energy store Bi is charged. In the switching state shown, the first energy Memory Bi are charged without the state of charge of the second energy storage B2 is affected.
  • the switching state according to FIG. 4 is advantageously used when, for example, due to recuperation processes with the switching state shown in FIG. 3, the first energy store B1 has reached its upper permissible charging state. In this case, the power fed into the motor vehicle electrical system 100 by the electric machine is reduced so much that the first energy store B1 is discharged by the consumers R1. In the switching state shown in FIG. 4, the first energy store B1 can again be discharged to such an extent that, with the switching state shown in FIG. 3, further recuperation processes are subsequently possible again.
  • the switching state shown in Figure 4 can also be used for recuperation at low speed n ⁇ ni2 of the electric machine EM (see Figure 1).
  • electrical recuperation power can be stored in the first energy storage B1 even at low generator speed.
  • the electric machine EM can also be supplied with only the first energy storage B1 in motor operation. This can be used, for example, to discharge a fully charged energy store B1 in order, as already described, to be able to store further recuperation energy in the energy store Bi.
  • the electric machine EM is connected according to Figure 5 only with the second energy storage B2.
  • the capacitive element C Z 2 permanently permanently connected in parallel with the second energy store B2 is connected between the DC voltage terminals B + and B-.
  • the electric machine EM feeds at an output voltage of about 14V electrical power in the motor vehicle electrical system or is supplied from this with appropriate power. If the power fed in is smaller than the power of the consumers R1, the second energy store B2 is discharged. Is the fed-in power greater than the power of the consumer Ri, the second energy storage B2 is charged.
  • the illustrated switching state can also be used for recuperation at low speed of the electric machine EM n ⁇ ni2 (see FIG. In this case, electrical recuperation power can be stored in the second energy store B2 even at low speed.
  • Both energy stores B1 and B2 are connected in parallel according to FIG. This also applies to the capacitive elements C z i and C Z 2 permanently connected in parallel with the energy stores B1 and B2.
  • This switching state can advantageously be used when both energy stores B1 and B2 are to be simultaneously charged or discharged.
  • Another possible application arises when, during engine operation, the electric machine EM requires a high electrical current in order to generate the desired mechanical torque. This application can occur, for example, during a cold start after a very cold night.
  • Another application is sailing with the internal combustion engine switched off.
  • the electrical consumers R1 are supplied only by the energy stores B1 and B2 because the electric machine EM is not driven.
  • an excessively high voltage dip can be prevented by connecting the energy stores B1 and B2 in parallel.
  • recuperation at low speeds of the electric machine EM n ⁇ ni2 see Figure 1.
  • electric recuperation power can be stored in both energy stores Bi and B2. Due to the parallel connection of the two energy stores Bi and B2, as in the case of serial operation, the maximum possible charging power is doubled compared to only one energy store Bi or B2. In the however, equal to the serial operation of the energy storage Bi and B2 now the maximum possible charging current is doubled.
  • the invention can be implemented in a large number of variants and configurations, as illustrated, for example, in FIGS. 8 to 11 of DE 10 2013 204 894 A1, with the proviso that capacitive elements are also permanently connected in parallel with the energy stores B1 and B2 ,
  • An electric supply redundant with respect to the battery function can be ensured according to an embodiment of the invention by switching between the switching states according to FIGS. 4 and 5 and the energy stores B1 and B2 if one of the energy stores Bi or B2 fails.
  • an improvement in the efficiency of the electric machine EM can be achieved both in regenerative and in motor operation by switching to another voltage.
  • a further embodiment of the motor vehicle electrical system of the invention results when, in the embodiment according to FIG. 2, the second switching element S2 is replaced by a diode.
  • the switching element S2 does not have to be controlled, this embodiment corresponds mutatis mutandis to the embodiment according to the figure 2 (ie motor vehicle electrical system 100). Again, however, the capaci- integrated elements in the illustrated arrangement.
  • motor operation is no longer possible with serial shading of the batteries (FIG. 3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Es wird ein Kraftfahrzeugbordnetz (100), das eine motorisch und generatorisch betreibbare elektrische Maschine (EM), einen aktiven Stromrichter (110) mit Gleichspannungsanschlüssen (Β+, B-), einen ersten Energiespeicher (B1) und einen zweiten Energiespeicher (B2) aufweist, vorgeschlagen. Es sind Mittel (S1 -S4, 120) vorgesehen, die dafür eingerichtet sind, sämtliche der nachfolgend angegebenen Schaltzustände a) bis c) alternativ zueinander einzustellen: a) entweder nur der erste Energiespeicher (B1) oder nur der zweite Energiespeicher (B2) ist an die Gleichspannungsanschlüsse (Β+, B-) des aktiven Stromrichters (110) angebunden; b) der erste Energiespeicher (B1) und der zweite Energiespeicher (B2) sind in Parallelschaltung an die Gleichspannungsanschlüsse (Β+, B-) des aktiven Stromrichters (110) angebunden; c) der erste Energiespeicher (B1) und der zweite Energiespeicher (B2) sind in Reihenschaltung an die Gleichspannungsanschlüsse (B+, B-) des aktiven Stromrichters (110) angebunden. Mit dem ersten Energiespeicher (B1) ist ein erstes kapazitives Element (Cz1) und mit dem zweiten Energiespeicher (B2) ein zweites kapazitives Element (CZ2) dauerhaft parallel verbunden. Ein Verfahren zum Betreiben eines entsprechenden Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung sind ebenfalls Gegenstand der Erfindung.

Description

Beschreibung Titel
Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
Die vorliegende Erfindung betrifft ein Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, ein Verfahren zum Betreiben eines derartigen Kraftfahrzeugbordnetzes sowie Mittel zur Implementierung des Verfahrens.
Stand der Technik
Die Rückgewinnung von Bremsenergie in Kraftfahrzeugen durch Rekuperation ist bekannt. In Rekuperationssystemen wird während einer Bremsung mechanische Energie durch eine elektrische Maschine in elektrische Energie umgewandelt und in einer Batterie oder einem anderen Energiespeicher gespeichert. Ist die durch den Fahrer angeforderte Bremsleistung kleiner oder gleich der Leistungsfähigkeit des Rekuperationssystems, erfolgt die Bremsung typischerweise ausschließlich mittels diesem. Ist die angeforderte Bremsleistung höher, wird zusätzlich ein konventionelles Bremssystem eingesetzt. Die mögliche Kraftstoffeinsparung durch die Rekuperation ist daher nicht nur vom Fahrzyklus und dem Fahrerverhalten, sondern auch von der Leistungsfähigkeit des Rekuperationssystems abhängig. Letztere wird von der maximalen generatorischen Leistung der elektrischen Maschine und der maximalen elektrischen Aufnahmefähigkeit des oder der Energiespeicher im Kraftfahrzeugbordnetz begrenzt.
Ferner ist als kraftstoffsparende Maßnahme der Segelbetrieb bekannt. Hierbei wird der Verbrennungsmotor während einer sogenannten Segelphase vom restlichen Antriebsstrang abgekoppelt. Hierdurch wirkt das Motorschleppmoment nicht mehr auf den restlichen Antriebstrang und die Ausrollphase des Fahrzeugs wird wesentlich verlängert. Bei Fahrzeugen mit konventionellem Antriebsstrang werden die elektrischen Verbraucher während der Segelphase ausschließlich aus dem oder den Energiespeichern versorgt. Segeln und Rekuperation schließen einander nicht aus. Beispielsweise kann der Segelbetrieb eingeleitet werden, wenn der Fahrer weder Gas noch Bremse betätigt. Die Rekuperation kann dann erfolgen, wenn der Fahrer die Bremse betätigt.
Aus der DE 10 2013 204 894 A1 ist ein Kraftfahrzeugbordnetz bekannt, das eine elektrische Maschine, einen ersten Energiespeicher und einen zweiten Energie- Speicher aufweist. Es sind Mittel vorgesehen, mittels derer wahlweise nur einer der Energiespeicher, beide Energiespeicher in Parallelschaltung oder der beide Energiespeicher in Reihenschaltung an die elektrische Maschine angebunden werden können. In einem derartigen Kraftfahrzeugbordnetz kann eine leistungsfähigere Rekuperation durch eine Erhöhung der Spannung an der elektrischen Maschine erzielt werden. Durch diese ergibt sich eine Erhöhung der generatorischen Leistung, die als Bremsleistung zur Verfügung steht. Durch die variable Verschaltung der Energiespeicher ergibt sich zugleich eine Erhöhung der Aufnahmekapazität des Kraftfahrzeugbordnetzes. Diese ermöglicht die Einspeisung bei höherer Generatorleistung und damit insgesamt eine Erhöhung der Kraftstof- feinsparung bei der Rekuperation. Die Energiespeicher stehen ferner redundant für den Segelbetrieb zur Verfügung, wodurch sich die Ausfallsicherheit des Kraftfahrzeugbordnetzes insgesamt erhöht.
Es ist in bestimmten Fällen wünschenswert, in einem Kraftfahrzeugbordnetz, wie es beispielsweise in der DE 10 2013 204 894 A1 offenbart ist, die elektrische
Maschine auch motorisch zu betreiben bzw. eine entsprechende elektrische Maschine einzusetzen. Auf diese Weise kann mechanische Leistung, beispielsweise zum Starten oder zur Unterstützung des Verbrennungsmotors (z.B. zum Ausgleich des Turbolochs oder im sogenannten Boostbetrieb) generiert werden.
Eine entsprechende elektrische Maschine ist typischerweise über einen als Gleich- und Wechselrichter betreibbaren aktiven Stromrichter an das Kraftfahrzeugbordnetz angebunden, wie auch zu Figur 2 erläutert. In einem motorischen Betrieb der elektrischen Maschine wird der aktive Stromrichter als (Puls-)Wech- selrichter, in einem generatorischen Betrieb als Gleichrichter betrieben. Ein entsprechender aktiver Stromrichter ist typischerweise als Brückengleichrichter mit einer der Phasenzahl der elektrischen Maschine entsprechenden Anzahl an Halbbrücken ausgebildet. Ein aktiver Stromrichter unterscheidet sich von einem passiven Stromrichter dadurch, dass als Gleichrichtelemente, die in einem passiven Gleichrichter als Dioden ausgebildet sind, ansteuerbare Halbleiterschaltelemente, beispielsweise MOS-Feldeffekttransistoren, verwendet werden.
Zum Ausgleich von Spannungs- und Stromspitzen und zur Glättung der an den Gleichspannungsanschlüssen (üblicherweise mit B+ und B- bezeichnet) des aktiven Stromrichters im generatorischen und motorischen Betrieb der elektrischen Maschine anliegenden Spannung ist in einer entsprechenden Anordnung aus elektrischer Maschine und aktivem Stromrichter zwischen diesen Gleichspannungsanschlüssen entsprechend dem Stand der Technik ein kapazitives Ele- ment, der sogenannte Zwischenkreiskondensator, eingebunden.
Ferner ist es wünschenswert, in einem Kraftfahrzeugbordnetz, wie es beispielsweise in der DE 10 2013 204 894 A1 offenbart ist, die elektrische Maschine im motorischen Betrieb mit unterschiedlichen Spannungen betreiben zu können, die durch die erläuterten Verschaltungen der Energiespeicher bereitgestellt werden können. Hierdurch lassen sich je nach Bedarf unterschiedliche mechanische Leistungen durch die elektrische Maschine abgeben. Allerdings kommt es beim Umschalten zwischen diesen unterschiedlichen Spannungen in einem entsprechenden Kraftfahrzeugbordnetz mit Zwischenkreiskondensator zu sehr hohen Lade- bzw. Entladeströmen an diesem. Der Zwischenkreiskondensator kann durch diese hohen Lade- bzw. Entladeströme beschädigt werden.
Es besteht daher der Bedarf nach entsprechenden Kraftfahrzeugbordnetzen, die es ermöglichen, die motorisch oder generatorisch betriebene elektrische Maschi- ne mit unterschiedlichen Spannungen betreiben zu können, ohne dass es zu
Schäden aufgrund der Umschaltung zwischen diesen unterschiedlichen Spannungen bzw. aufgrund hierdurch hervorgerufener hoher Stromflüsse kommen kann. Insbesondere betrifft die vorliegende Erfindung die Verbesserung eines Kraftfahrzeugbordnetzes, wie es in der DE 10 2013 204 894 A1 offenbart ist. Offenbarung der Erfindung
Vor diesem Hintergrund schlägt die vorliegende Erfindung ein Kraftfahrzeug- bordnetz mit wenigstens zwei Energiespeichern, ein Verfahren zum Betreiben eines derartigen Kraftfahrzeugbordnetzes sowie Mittel zur Implementierung des Verfahrens mit den Merkmalen der unabhängigen Patentansprüche vor. Bevorzugte Ausgestaltungen sind Gegenstand der abhängigen Patentansprüche sowie der nachfolgenden Beschreibung.
Vorteile der Erfindung
Erfindungsgemäß wurde erkannt, dass ein Kraftfahrzeugbordnetz, das eine motorisch und generatorisch betreibbare elektrische Maschine, einen ersten Ener- giespeicher und einen zweiten Energiespeicher aufweist, und in dem Mittel vorgesehen sind, mittels derer wahlweise nur der erste Energiespeicher oder nur der zweite Energiespeicher, der erste Energiespeicher und der zweite Energiespeicher in Parallelschaltung oder der erste Energiespeicher und der zweite Energiespeicher in Reihenschaltung an die elektrische Maschine bzw. deren Stromrichter angebunden werden können, dadurch verbessert werden kann, dass anstelle eines kapazitiven Elements, also des Zwischenkreiskondensators, zwischen den Gleichspannungsanschlüssen des verwendeten Stromrichters mehrere kapazitive Elemente verwendet werden. Diese werden dabei dauerhaft, also nicht zu- oder abschaltbar, jeweils parallel zu den Energiespeichern ange- ordnet, wie auch nachfolgend noch erläutert.
Es wird dabei ein Kraftfahrzeugbordnetz vorgeschlagen, das eine generatorisch und motorisch betreibbare elektrische Maschine, einen aktiven Stromrichter mit Gleichspannungsanschlüssen, einen ersten Energiespeicher und einen zweiten Energiespeicher aufweist. Bei den Energiespeichern kann es sich beispielsweise um reguläre Kraftfahrzeugbatterien, beispielsweise jeweils um 12V-Blei- Batterien, handeln. Es sind jedoch wahlweise auch andere elektrische Speichertechnologien einsetzbar. Die elektrische Maschine ist mit ihren Phasenanschlüssen an entsprechende Wechselspannungsanschlüsse des Stromrichters ange- schlössen, wie grundsätzlich bekannt. Ferner sind im Rahmen der vorliegenden Erfindung Mittel vorgesehen, die dafür eingerichtet sind, sämtliche der nachfolgend angegebenen Schaltzustände a) bis c) alternativ zueinander einzustellen: a) entweder nur der erste Energiespeicher oder nur der zweite Energiespeicher ist an die Gleichspannungsanschlüsse des aktiven Stromrichters angebunden; b) der erste Energiespeicher und der zweite Energiespeicher sind in Parallelschaltung an die Gleichspannungsanschlüsse des aktiven Stromrichters angebunden; und c) der erste Energiespeicher und der zweite Energiespeicher sind in Reihenschaltung an die an die Gleichspannungsanschlüsse des aktiven Stromrichters angebunden.
Erfindungsgemäß ist mit dem ersten Energiespeicher ein erstes kapazitives Element und mit dem zweiten Energiespeicher ein zweites kapazitives Element dauerhaft parallel verbunden. Bei den kapazitiven Elementen kann es sich bei- spielsweise um kommerziell erhältliche Kondensatoren handeln.
Ist hier davon die Rede, dass entsprechende kapazitive Elemente "dauerhaft parallel" mit den jeweiligen Energiespeichern verbunden sind, sei darunter verstanden, dass ein entsprechendes kapazitives Element mit einem von zwei An- Schlüssen elektrisch leitend und dauerhaft mit einem ersten Pol des Energiespeichers, beispielsweise dem positiven Batteriepol, und mit dem zweiten der zwei Anschlüsse leitend und dauerhaft mit dem zweiten Pol des Energiespeichers, beispielsweise dem negativen Batteriepol, verbunden ist. Eine derartige parallele Verbindung liegt selbstverständlich auch dann vor, wenn der erste der zwei An- Schlüsse des kapazitiven Elements mit dem positiven Batteriepol verbunden ist und der zweite der zwei Anschlüsse und der "negative" Batteriepol mit einer gemeinsamen Masse verbunden sind, die eine leitende Verbindung herstellt.
Dauerhaft ist eine entsprechende Verbindung dann, wenn sie nicht über ein Schaltelement erfolgt, sondern über Kabel und entsprechende Verbindungen, beispielsweise Lötstellen, Klemmen oder Stecker, die in einem Normalbetrieb eines entsprechenden Kraftfahrzeugbordnetzes nicht unterbrochen bzw. deren Elemente nicht voneinander getrennt bzw. isoliert werden. Zu den grundsätzlichen Vorteilen des erfindungsgemäß vorgeschlagenen Kraftfahrzeugbordnetzes bezüglich der Rekuperation sei auf die obigen Erläuterungen verwiesen. Auch im Segelbetrieb bietet dieses Kraftfahrzeugbordnetz grundsätzliche Vorteile, weil während einer Segelphase das Kraftfahrzeugbordnetz wahl- weise durch einen der Energiespeicher versorgt werden kann. Fällt einer aufgrund eines Fehlers aus, kann auf den anderen umgeschaltet werden.
Durch die variable Verschaltung der wenigstens zwei Energiespeicher können beim Start des Verbrennungsmotors entweder einer oder beide Energiespeicher die elektrische Maschine speisen, die dann, motorisch betrieben, den Verbrennungsmotor entsprechend starten kann.
Wird nur einer der Energiespeicher dazu eingesetzt, kann der andere Energiespeicher unabhängig hiervon an die elektrischen Verbraucher angebunden wer- den. Damit werden ein Starterkreis und ein Verbraucherkreis geschaffen. Beim
Start des Verbrennungsmotors, beispielsweise mit Hilfe eines in der beigefügten Figur 2 aus Übersichtsgründen nicht eingezeichneten Ritzelstarters oder mit der bereits beschriebenen elektrischen Maschine, ergibt sich dann aufgrund des entkoppelten Starterkreises kein störender Spannungseinbruch im Verbraucher- kreis. Dies ist insbesondere in den bekannten Start-Stopp-Systemen im Warmstart mit Hilfe eines Ritzelstarters oder mit der beschriebenen elektrischen Maschine (z.B. nach einem Ampelhalt im Stadtverkehr) von Vorteil.
Bei einem Kaltstart, bei dem Spannungseinbrüche typischerweise als weniger störend empfunden werden und ein höheres mechanisches Drehmoment erforderlich ist, kann hingegen der verfügbare Strom und damit das Drehmoment der elektrischen Startvorrichtung durch Parallelschaltung wenigstens zweier Energiespeicher erhöht werden. Die verfügbare Spannung und damit die erzeugbare mechanische Leistung kann auch durch eine Reihenschaltung der Energiespeicher erhöht werden.
Die Erfindung ermöglicht auch eine Kapselung von Fehlern der elektrischen Maschine, d.h. eine Fehlerausbreitung von der elektrischen Maschine in das Ver- sorgungsnetz wird verhindert. Hierdurch erhöht sich die Ausfallsicherheit. Zusätzlich kann auch eine defekte Batterie vom Bordnetz abgekoppelt werden und damit die Ausfallsicherheit weiter erhöht werden.
Die Vorteile der erfindungsgemäß vorgesehenen, parallel zu den Energiespeichern vorgesehenen kapazitiven Elementen besteht darin, dass bei einer gewünschten Umschaltung zwischen Versorgungsspannungen für die motorisch oder generatorisch betriebene elektrische Maschine es nicht zu hohen Umlade- strömen in und aus dem Zwischenkreiskondensator und entsprechenden Schäden kommen kann, weil dieser durch die kapazitiven Elemente ersetzt ist.
Eine erfindungsgemäße Recheneinheit, z.B. eine Steuereinrichtung für ein Kraftfahrzeugbordnetz, ist als Mittel zur Implementierung des erfindungsgemäßen Verfahrens, insbesondere programmtechnisch, dazu eingerichtet, ein erfindungsgemäßes Verfahren durchzuführen.
Auch die Implementierung des Verfahrens in Form von Software ist vorteilhaft, da dies besonders geringe Kosten verursacht, insbesondere wenn eine ausführende Steuereinrichtung noch für weitere Aufgaben genutzt wird und daher ohnehin vorhanden ist. Eine derartige Steuereinrichtung ist mit einem geeigneten Datenträger zur Speicherung eines entsprechenden Computerprogramms, beispielsweise einer Festplatte und/oder einem Flashspeicher, ausgestattet.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung und der beiliegenden Zeichnung.
Es versteht sich, dass die vorstehend genannten und die nachfolgend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Die Erfindung ist anhand von Ausführungsbeispielen in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben. Kurze Beschreibung der Zeichnungen
Figur 1 veranschaulicht einen Verlauf einer maximalen Ausgangsleistung eines 14V-Klauenpolgenerators über eine Generatordrehzahl für Ausgangsspannungen von 14V und 28V.
Figur 2 zeigt ein Kraftfahrzeugbordnetz gemäß einer Ausführungsform der vorliegenden Erfindung in vereinfachter schematischer Darstellung.
Figur 3 zeigt das Kraftfahrzeugbordnetz gemäß Figur 2 in einem gemäß einer
Ausführungsform der Erfindung vorgesehenen Schaltzustand.
Figur 4 zeigt das Kraftfahrzeugbordnetz gemäß Figur 2 in einem gemäß einer
Ausführungsform der Erfindung vorgesehenen Schaltzustand.
Figur 5 zeigt das Kraftfahrzeugbordnetz gemäß Figur 2 in einem gemäß einer
Ausführungsform der Erfindung vorgesehenen Schaltzustand.
Figur 6 zeigt das Kraftfahrzeugbordnetz gemäß Figur 2 in einem gemäß einer
Ausführungsform der Erfindung vorgesehenen Schaltzustand.
Ausführungsform(en) der Erfindung
In Figur 1 ist der typische Verlauf der maximalen Ausgangsleistung P einer generatorisch betriebenen elektrischen Maschine, beispielsweise eines 14V-Klauen- polgenerators, die an einen passiven B6-Brückengleichrichter angebunden ist, auf der Ordinate über die Generatordrehzahl n auf der Abszisse für die beispielhaften Ausgangsspannungen Ui = 14V und U2 = 28V dargestellt. Speist die elektrische Maschine ein 14V-Kraftfahrzeugbordnetz, kann diese ab einer Drehzahl n0i elektrische Leistung liefern. Hingegen kann dieselbe elektrische Maschine bei einer Einspeisung in ein 28V-Kraftfahrzeugbordnetz erst ab einer Drehzahl von n02 elektrische Leistung liefern. Bei einer Ausgangsspannung der elektrischen Maschine von U2 = 28V ergibt sich ab einer Drehzahl n > ni2 eine deutlich höhere maximale Ausgangsleistung als bei Versorgung eines 14V- Kraftfahrzeugbordnetzes. Dieser Effekt kann genutzt werden, um während der Rekuperation die Ausgangsleistung der elektrischen Maschine zu erhöhen. Die Erfindung betrifft jedoch insbesondere den motorischen Betrieb einer entsprechenden elektrischen Maschine, die über einen dann als Wechselrichter betriebenen aktiven Stromrichter an ein Kraftfahrzeugbordnetz angebunden ist. Die elektrische Maschine kann je nach dem Betriebszustand des entsprechenden Fahrzeugs mit unterschiedlichen Spannungen versorgt werden. Auch bei moto- rischem Betrieb der elektrischen Maschine ergibt sich bei einer speisenden
Spannung von 28V eine höhere maximale Ausgangsleistung als bei einer Versorgung mit 14V.
In Figur 2 ist ein Kraftfahrzeugbordnetz gemäß einer Ausführungsform der vorlie- genden Erfindung in Form eines Schaltplans vereinfacht schematisch dargestellt. und insgesamt mit 100 bezeichnet. Dieses weist einen ersten Energiespeicher Bi und einen zweiten Energiespeicher B2, die beispielsweise in Form gleichartiger oder unterschiedlicher Kraftfahrzeugbatterien, z.B. in Form zweier 12V-Kraft- fahrzeugbatterien, ausgebildet sein können, auf. Mit dem ersten Energiespeicher Bi ist ein erstes kapazitives Element Czi und mit dem zweiten Energiespeicher B2 ein zweites kapazitives Element CZ2 im oben erläuterten Sinn dauerhaft parallel verbunden. Die Energiespeicher Bi und B2 können mittels der Schaltelemente S1 , S2, S3 und S4 variabel verschaltet werden. Die Schaltelemente S1 bis S4 können beispielsweise durch MOS-Feldeffekttransistoren oder andere elektronische Bauelemente gebildet sein. Elektrische 14V- Verbraucher sind kollektiv in Form eines Widerstands R1 veranschaulicht.
Eine elektrische Maschine EM kann sowohl generatorisch als auch motorisch betrieben werden. Sie kann damit elektrische Leistung in das Kraftfahrzeugbordnetz 100 einspeisen oder aus diesem mit elektrischer Leistung versorgt werden. Hierzu ist ein aktiver Stromrichter 110 vorgesehen, der in einem generatorischen Betrieb der elektrischen Maschine, beispielsweise während einer Rekuperation, als Gleichrichter, und während eines motorischen Betriebs, beispielsweise zur Unterstützung des Verbrennungsmotors, als Wechselrichter betrieben werden kann. Der aktive Stromrichter 110 weist ansteuerbare Halbleiterschaltelemente 11 1 auf. An Gleichspannungsanschlüssen B+ und B- liegt eine Gleichspannung an. Der Gleichspannungsanschluss B- kann auf Masse liegen. Die ansteuerbaren Halbleiterschaltelemente 11 1 sind als Dioden mit parallelen Schaltern veranschau- licht. Sie können beispielsweise als MOS-Feldeffekttransistoren ausgebildet sein.
Eine Steuereinrichtung 120 ist zur Ansteuerung der Schaltelemente Si , S2, S3 und S und ggf. auch der Halbleiterschaltelemente 11 1 ausgebildet.
Die kapazitiven Elemente Czi und Cz2 werden im Rahmen der dargestellten Aus- führungsform der Erfindung anstelle eines einzigen Zwischenkreiskondensators eingesetzt, der im Stand der Technik zwischen den Gleichspannungsanschlüssen B+ und B- eingebunden ist. Auf diese Weise wird, wie bereits zuvor erläutert, erreicht, dass beim Wechsel zwischen Versorgungsspannungen für die elektrische Maschine EM im motorischen und generatorischen Betrieb durch eine entsprechende Ansteuerung der Schaltelemente S1 , S2, S3 und S keine oder zumindest keine übermäßig hohen Umladeströme auftreten können.
Im Folgenden wird mit Sn = 0 ein geöffnetes, mit Sn = 1 ein geschlossenes Schaltelement S1 bis S bezeichnet. Die in den Figuren 3 bis 6 dargestellten und nachfolgend weiter erläuterten Schaltzustände des Kraftfahrzeugbordnetzes 100 werden mittels der Schaltelemente S1 bis S eingestellt.
Mit S1 = 0, S2 = 1 , S3 = 0 und S = 1 ergibt sich ein Schaltzustand gemäß Figur 3. Beide Energiespeicher B1 und B2 sind gemäß Figur 3 in Reihe geschaltet. Damit sind auch die mit den Energiespeichern B1 und B2 dauerhaft parallel verbundenen kapazitiven Elemente Czi und Cz2 in Reihe geschaltet. Die elektrische Maschine EM speist hier entweder elektrische Leistung mit einer Ausgangsspannung von ca. 28V in das Kraftfahrzeugbordnetz 100 ein oder wird aus dem Kraft- fahrzeugbordnetz 100 mit einer entsprechenden Spannung versorgt. Der zweite
Energiespeicher B2 versorgt die Verbraucher R1 mit einer Spannung von 14V.
Der Schaltzustand gemäß Figur 3 kann dann gewählt werden, wenn beide Energiespeicher Bi und B2 gleichzeitig geladen werden sollen. Er wird bevorzugt bei Rekuperation ausgewählt. Die höhere Ausgangsspannung der elektrischen Maschine EM ergibt für Generatordrehzahlen n > ni2 auch eine höhere Ausgangsleistung (vgl. Figur 1). Durch die Reihenschaltung der zwei Energiespeicher Bi und B2 wird die mögliche Leistungsaufnahme des Kraftfahrzeugbordnetzes ge- genüber einem einzigen Energiespeicher Bi oder B2 verdoppelt.
Während der Rekuperation wird der erste Energiespeicher Bi stärker aufgeladen als der zweite Energiespeicher B2, da parallel zu dem zweiten Energiespeicher B2 die Verbraucher R1 geschaltet sind. Ist der erste Energiespeicher Bi an der oberen Grenze seines Ladezustands angelangt, muss der erste Energiespeicher
Bi wieder entladen werden, um weitere Rekuperationsvorgänge zu ermöglichen. Die Entladung des ersten Energiespeichers Bi erfolgt vorzugsweise durch Einstellen des in der Figur 4 gezeigten Schaltzustands. Durch eine Versorgung der elektrischen Maschine EM im motorischen Betrieb mit einer entsprechend hohen Spannung wird die maximal abgebbare mechanische Leistung ebenfalls erhöht. Dies kann beispielsweise dazu genutzt werden, um den Verbrennungsmotor in bestimmten Betriebsphasen bei Bedarf mit einer entsprechend hohen mechanischen Leistung zu unterstützen.
Mit S1 = 1 , S2 = 0, S3 = 1 und S = 0 ergibt sich ein Schaltzustand gemäß Figur 4.
Die elektrische Maschine EM bzw. die Gleichspannungsanschlüsse B+ und B- sind gemäß Figur 4 nur mit dem ersten Energiespeicher Bi verbunden. Damit ist auch nur das mit dem ersten Energiespeicher Bi dauerhaft parallel verbundene kapazitive Element Czi zwischen den Gleichspannungsanschlüssen B+ und B- eingebunden. Die elektrische Maschine EM speist eine elektrische Leistung mit einer entsprechend eingestellten Spannung von ca. 14V in das Kraftfahrzeugbordnetz 100 ein bzw. wird aus diesem entsprechend versorgt. Ist die durch die elektrische Maschine eingespeiste Leistung kleiner als die Verbraucherleistung der Verbraucher R1 , wird der erste Energiespeicher Bi entladen. Ist die Leistung größer als die Verbraucherleistung der Verbraucher R1 , wird der erste Energiespeicher Bi geladen. In dem gezeigten Schaltzustand kann der erste Energie- Speicher Bi geladen werden, ohne dass der Ladezustand des zweiten Energiespeichers B2 beeinflusst wird.
Der Schaltzustand gemäß Figur 4 wird vorteilhafterweise dann genutzt, wenn beispielsweise auf Grund von Rekuperationsvorgängen mit dem in Figur 3 gezeigten Schaltzustand der erste Energiespeicher B1 seinen oberen zulässigen Ladezustand erreicht hat. In diesem Fall wird die durch die elektrische Maschine in das Kraftfahrzeugbordnetz 100 eingespeiste Leistung so weit reduziert, dass der erste Energiespeicher B1 durch die Verbraucher R1 entladen wird. Der erste Energiespeicher B1 kann in dem in Figur 4 gezeigten Schaltzustand wieder so weit entladen werden, dass mit dem in Figur 3 gezeigten Schaltzustand anschließend wieder weitere Rekuperationsvorgänge möglich sind.
Der in Figur 4 gezeigte Schaltzustand kann auch zur Rekuperation bei niedriger Drehzahl n < ni2 der elektrischen Maschine EM verwendet werden (vgl. Figur 1).
In diesem Fall kann auch bei niedriger Generatordrehzahl elektrische Rekupera- tionsleistung in dem ersten Energiespeicher B1 gespeichert werden.
Die elektrische Maschine EM kann wahlweise auch im motorischen Betrieb nur mit dem ersten Energiespeicher B1 versorgt werden. Dies kann beispielsweise dazu genützt werden, einen voll geladenen Energiespeicher B1 zu entladen um, wie bereits beschrieben, dann weitere Rekuperationsenergie in dem Energiespeicher Bi speichern zu können. Mit S1 = 1 , S2 = 0, S3 = 0 und S = 1 ergibt sich ein Schaltzustand gemäß Figur 5.
Die elektrische Maschine EM ist gemäß Figur 5 nur mit dem zweiten Energiespeicher B2 verbunden. Damit ist auch nur das mit dem zweiten Energiespeicher B2 dauerhaft parallel verbundene kapazitive Element CZ2 zwischen den Gleich- spannungsanschlüssen B+ und B- eingebunden. Die elektrische Maschine EM speist bei einer Ausgangsspannung von ca. 14V elektrische Leistung in das Kraftfahrzeugbordnetz ein oder wird aus diesem mit entsprechender Leistung versorgt. Ist die eingespeiste Leistung kleiner als die Leistung der Verbraucher R1 , wird der zweite Energiespeicher B2 entladen. Ist die eingespeiste Leistung größer als die Leistung der Verbraucher Ri , wird der zweite Energiespeicher B2 geladen. Der dargestellte Schaltzustand kann auch zur Rekuperation bei niedriger Drehzahl der elektrischen Maschine EM n < ni2 genutzt werden (vgl. Figur 1). In diesem Fall kann auch bei niedriger Drehzahl elektrische Rekuperationsleis- tung in dem zweiten Energiespeicher B2 gespeichert werden.
Die elektrische Maschine EM kann auch im Schaltzustand gemäß Figur 5 wahlweise im motorisch betrieben werden. Mit S1 = 1 , S2 = 0, S3 = 1 und S = 1 ergibt sich ein Schaltzustand gemäß Figur 6.
Beide Energiespeicher B1 und B2 sind gemäß Figur 6 parallel geschaltet. Dies gilt damit auch für die mit den Energiespeichern B1 und B2 dauerhaft parallel verbundenen kapazitiven Elemente Czi und CZ2. Dieser Schaltzustand kann mit Vorteil dann verwendet werden, wenn beide Energiespeicher B1 und B2 gleichzeitig geladen oder entladen werden sollen. Ein weiterer möglicher Anwendungsfall ergibt sich dann, wenn im motorischen Betrieb die elektrische Maschine EM eine hohen elektrischen Strom benötigt, um das gewünschte mechanische Drehmoment zu erzeugen Dieser Anwendungsfall kann beispielsweise bei einem Kaltstart nach einer sehr kalten Nacht eintreten.
Ein weiterer Anwendungsfall ist der Segelbetrieb mit abgeschaltetem Verbrennungsmotor. In diesem Fall werden die elektrischen Verbraucher R1 wie erläutert, nur durch die Energiespeicher B1 und B2 versorgt, weil die elektrische Maschine EM nicht angetrieben wird. Bei Fahrzeugen mit elektrischen Verbrauchern R1 hoher Leistung kann ein zu hoher Spannungseinbruch verhindert werden, indem die Energiespeicher B1 und B2 parallel geschaltet werden.
Ein weiterer Anwendungsfall ist die Rekuperation bei niedrigen Drehzahlen der elektrischen Maschine EM n < ni2 (vgl. Figur 1 ). In diesem Fall kann auch bei niedriger Drehzahl elektrische Rekuperationsleistung in beiden Energiespeichern Bi und B2 gespeichert werden. Durch die Parallelschaltung beider Energiespeicher Bi und B2 wird, wie auch beim seriellen Betrieb, die maximal mögliche Ladeleistung gegenüber nur einem Energiespeicher Bi oder B2 verdoppelt. Im Ver- gleich zum seriellen Betrieb der Energiespeicher Bi und B2 wird nun jedoch der maximal mögliche Ladestrom verdoppelt.
Die Erfindung kann in einer Vielzahl von Varianten und Ausgestaltungen realisiert werden, wie beispielsweise in den Figuren 8 bis 1 1 der DE 10 2013 204 894 A1 veranschaulicht, mit der Maßgabe, dass auch hier mit den Energiespeichern B1 und B2 kapazitive Elemente dauerhaft parallel verbunden sind.
Eine hinsichtlich der Batteriefunktion redundante elektrische Versorgung, z.B. während einer Segelphase, kann gemäß einer Ausführungsform der Erfindung durch Umschalten zwischen den Schaltzuständen gemäß den Figuren 4 und 5 sowie der Energiespeicher B1 und B2 sichergestellt werden, falls einer der Energiespeicher Bi bzw. B2 ausfällt. Bei Fehlern in der elektrischen Maschine EM oder Fehlern im aktiven Stromrichter, die beispielsweise zu einer zu hohen Ausgangsspannung führen, kann die elektrische Versorgung der Verbraucher R1 von der elektrischen Maschine entkoppelt werden, so dass diese nicht geschädigt werden. Dies wird mit S1 = 0, S2 = 0, S3 = 1 und S4 = 1 oder mit S1 = 0, S2 = 0, S3 = 0 und S4 = 1 gemäß der Figur 2 möglich.
Abhängig vom jeweiligen Betriebspunkt der elektrischen Maschine EM, beispielsweise von Drehzahl und Ausgangsleistung, kann eine Verbesserung des Wirkungsgrads der elektrischen Maschine EM sowohl im generatorischen als auch im motorischen Betrieb durch Umschaltung auf eine andere Spannung erzielt werden.
Eine weitere Ausführungsform des Kraftfahrzeugbordnetzes der Erfindung ergibt sich, wenn in der Ausführungsform gemäß Figur 2 das zweite Schaltelement S2 durch eine Diode ersetzt wird. In dieser Ausführungsform werden vorteilhafterweise nur noch die drei Schaltelemente S1 , S3 und S4 benötigt. Mit dem Unterschied, dass das Schaltelement S2 nicht mehr angesteuert werden muss, entspricht diese Ausführungsform sinngemäß der Ausführungsform gemäß der Figur 2 (also Kraftfahrzeugbordnetz 100). Auch hier sind jedoch die genannten kapazi- tiven Elemente in der erläuterten Anordnung eingebunden. Bei einer entsprechend modifizierten Ausführungsform gemäß Figur 2 ist jedoch bei serieller Verschattung der Batterien (Figur 3) kein motorischer Betrieb mehr möglich.

Claims

Ansprüche
1. Kraftfahrzeugbordnetz (100), das eine motorisch und generatorisch betreibbare elektrische Maschine (EM), einen aktiven Stromrichter (110) mit Gleichspannungsanschlüssen (B+, B-), einen ersten Energiespeicher (Bi) und ei- nen zweiten Energiespeicher (B2) aufweist, und in dem Mittel (S1 - S , 120) vorgesehen sind, die dafür eingerichtet sind, sämtliche der nachfolgend angegebenen Schaltzustände a) bis c) alternativ zueinander einzustellen: a) entweder nur der erste Energiespeicher (B1) oder nur der zweite Ener- giespeicher (B2) ist an die Gleichspannungsanschlüsse (Β+, B-) des aktiven
Stromrichters (1 10) angebunden; b) der erste Energiespeicher (B1) und der zweite Energiespeicher (B2) sind in Parallelschaltung an die Gleichspannungsanschlüsse (Β+, B-) des aktiven Stromrichters (110) angebunden; c) der erste Energiespeicher (B1) und der zweite Energiespeicher (B2) sind in Reihenschaltung an die Gleichspannungsanschlüsse (Β+, B-) des aktiven Stromrichters (110) angebunden; wobei mit dem ersten Energiespeicher (B1) ein erstes kapazitives Element (Czi) und mit dem zweiten Energiespeicher (B2) ein zweites kapazitives Element (CZ2) dauerhaft parallel verbunden ist. 2. Kraftfahrzeugbordnetz (100) nach Anspruch 1 , das für einen Betrieb in einem ersten und in einem zweiten Betriebsmodus eingerichtet ist, wobei die elektrische Maschine (EM) in dem ersten und dem zweiten Betriebsmodus motorisch oder generatorisch betrieben und in dem ersten Betriebsmodus durch Einstellen des Schaltzustands a) oder b) mit einer ersten, geringeren Spannung und in dem zweiten Betriebsmodus durch Einstellen des Schaltzustands c) mit einer zweiten, höheren Spannung über den als Wechselrichter oder Gleichrichter betriebenen aktiven Stromrichter (1 10) gespeist wird.
Kraftfahrzeugbordnetz (100) nach Anspruch 1 oder 2, das zumindest einen elektrischen Verbraucher (Ri) aufweist, der wahlweise mittels einer Ausgangsspannung des ersten Energiespeichers (Bi), mittels einer Ausgangsspannung des zweiten Energiespeichers (B2) oder mittels einer Ausgangsspannung beider parallel geschalteter Energiespeicher (Bi , B2) speispar ist.
Kraftfahrzeugbordnetz (100) nach einem der vorstehenden Ansprüche, bei dem die Mittel (S1 , S2, S3, S , 120), mittels derer die Schaltzustände a) bis c) einstellbar sind, ein erstes Schaltelement (S1), ein zweites Schaltelement oder eine Diode (S2,), ein drittes Schaltelement (S3) und ein viertes Schaltelement (S ) mit jeweils ersten und zweiten Spannungsanschlüssen sowie eine Steuereinrichtung (120) umfassen, und wobei, wenn eine Diode (S2) vorgesehen ist, diese einen Strom zwischen ihrem ersten und ihrem zweiten Spannungsanschluss durchläset und umgekehrt sperrt.
Kraftfahrzeugbordnetz (100) nach Anspruch 4, bei dem jeweils die folgenden Spannungsanschlüsse leitend miteinander verbunden sind: ein erster Gleichspannungsanschluss (B+) des aktiven Stromrichters (110), der erste Spannungsanschluss des ersten Energiespeichers (Bi), ein erster Spannungsanschluss des ersten kapazitiven Elements (Czi) und der erste Spannungsanschluss des ersten Schaltelements (S1); ein zweiter Gleichspannungsanschluss (B-) des aktiven Stromrichters (110), der zweite Spannungsanschluss des zweiten Energiespeichers (B2), ein zweiter Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der zweite Spannungsanschluss des dritten Schaltelements (S3); der zweite Spannungsanschluss des ersten Energiespeichers (Bi), der erste Spannungsanschluss des zweiten Schaltelements oder der Diode (S2) der erste Spannungsanschluss des dritten Schaltelements (S3) und ein zweiter Spannungsanschluss des ersten kapazitiven Elements (Czi); der zweite Spannungsanschluss des ersten Schaltelements (S1), der zweite Spannungsanschluss des zweiten Schaltelements oder der Diode (S2) und der erste Spannungsanschluss des vierten Schaltelements (S ); der zweite Spannungsanschluss des vierten Schaltelements (S ), ein erster Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der erste Spannungsanschluss des zweiten Energiespeichers (B2).
Kraftfahrzeugbordnetz nach Anspruch 4, wobei jeweils die folgenden Spannungsanschlüsse leitend miteinander verbunden sind: ein erster Gleichspannungsanschluss (B+) des aktiven Stromrichters (1 10), der erste Spannungsanschluss des ersten Energiespeichers (B1), ein erster Spannungsanschluss des ersten kapazitiven Elements (Czi) und der erste Spannungsanschluss des ersten Schaltelements (S1); ein zweiter Gleichspannungsanschluss (B-) des aktiven Stromrichters (110), der zweite Spannungsanschluss des dritten Schaltelements (S3) und der zweite Spannungsanschluss des vierten Schaltelements (S ); der zweite Spannungsanschluss des ersten Energiespeichers (B1), der erste Spannungsanschluss des zweiten Schaltelements oder der Diode (S2), ein zweiter Spannungsanschluss des ersten kapazitiven Elements (Czi) und der erste Spannungsanschluss des dritten Schaltelements (S3); der zweite Spannungsanschluss des ersten Schaltelements (S1), der zweite Spannungsanschluss des zweiten Schaltelements oder der Diode (S2), ein erster Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der erste Spannungsanschluss des zweiten Energiespeichers (B2); der erste Spannungsanschluss des vierten Schaltelements (S ), ein zweiter Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der zweite Spannungsanschluss des zweiten Energiespeichers (B2).
Kraftfahrzeugbordnetz nach einem der Ansprüche 1 bis 3, bei dem die Mittel (Si , S2, S3, S4, 120), mittels derer die Schaltzustände a) bis c) einstellbar sind, zumindest ein erstes Schaltelement (S1), ein zweites Schaltelement (S2), ein drittes Schaltelement oder eine Diode (S3) und ein viertes Schaltelement (S4) mit jeweils ersten und zweiten Spannungsanschlüssen sowie eine Steuereinrichtung (120) umfassen, und wobei, wenn eine Diode (S3) vorgesehen ist, diese einen Strom zwischen dem ersten und dem zweiten Spannungsanschluss durchläset und umgekehrt sperrt.
Kraftfahrzeugbordnetz nach Anspruch 7, bei dem jeweils die folgenden Spannungsanschlüsse leitend miteinander verbunden sind: ein erster Gleichspannungsanschluss (B+) des aktiven Stromrichters (1 10), der erste Spannungsanschluss des ersten Energiespeichers (B1), ein erster Spannungsanschluss des ersten kapazitiven Elements (Czi) und der erste Spannungsanschluss des ersten Schaltelements (S1); ein zweiter Gleichspannungsanschluss (B-) des aktiven Stromrichters (110), der zweite Spannungsanschluss des zweiten Energiespeichers (B2), ein zweiter Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der zweite Spannungsanschluss des vierten Schaltelements (S4); der zweite Spannungsanschluss des ersten Energiespeichers (B1), der erste Spannungsanschluss des dritten Schaltelements oder der Diode (S3), ein zweiter Spannungsanschluss des ersten kapazitiven Elements (Czi) und der erste Spannungsanschluss des vierten Schaltelements (S4); der erste Spannungsanschluss des zweiten Energiespeichers (B2), der zweite Spannungsanschluss des dritten Schaltelements oder der Diode (S3), ein erster Spannungsanschluss des zweiten kapazitiven Elements (Cz2) und der erste Spannungsanschluss des zweiten Schaltelements (S2); der zweite Spannungsanschluss des ersten Schaltelements (Si) und der zweite Spannungsanschluss des zweiten Schaltelements (S2).
9. Kraftfahrzeugbordnetz (100) nach einem der Ansprüche 4 bis 8, bei dem die Schaltelemente (S1 - S ) mittels der Steuereinrichtung (120) zur Einstellung der Schaltzustände a) bis c) einstellbar sind.
10. Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes (100) nach einem der vorstehenden Ansprüche, das umfasst, wahlweise die Schaltzustände a) bis c) einzustellen.
1 1. Verfahren nach Anspruch 10, bei dem die elektrische Maschine (EM) in einem ersten und in einem zweiten Betriebsmodus betrieben wird, wobei die elektrische Maschine (EM) in dem ersten und dem zweiten Betriebsmodus motorisch oder generatorisch betrieben und in dem ersten Betriebsmodus durch Einstellen des Schaltzustands a) oder b) mit einer ersten, geringeren Spannung und in dem zweiten Betriebsmodus durch Einstellen des Schaltzustands c) mit einer zweiten, höheren Spannung über den als Wechselrich- ter oder Gleichrichter betriebenen aktiven Stromrichter (1 10) angesteuert wird.
12. Steuereinrichtung (120) für ein Kraftfahrzeugbordnetz (100) nach einem der vorstehenden Ansprüche, das dazu eingerichtet ist, ein Verfahren nach An- spruch 10 oder 11 durchzuführen.
13. Computerprogramm mit Programmcodemitteln, die eine Recheneinheit dazu veranlassen, ein Verfahren nach Anspruch 10 oder 1 1 durchzuführen, wenn sie auf der Recheneinheit, insbesondere auf der Steuereinrichtung (10) nach Anspruch 12, ausgeführt werden.
14. Maschinenlesbares Speichermedium mit einem darauf gespeicherten Computerprogramm nach Anspruch 13.
PCT/EP2017/059469 2016-06-22 2017-04-21 Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung WO2017220233A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016211164.7A DE102016211164A1 (de) 2016-06-22 2016-06-22 Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
DE102016211164.7 2016-06-22

Publications (1)

Publication Number Publication Date
WO2017220233A1 true WO2017220233A1 (de) 2017-12-28

Family

ID=58579175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/059469 WO2017220233A1 (de) 2016-06-22 2017-04-21 Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung

Country Status (2)

Country Link
DE (1) DE102016211164A1 (de)
WO (1) WO2017220233A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831640A1 (de) * 2019-12-02 2021-06-09 Bombardier Transportation GmbH Elektrisches system zur energieversorgung in einem fahrzeug, fahrzeug und verfahren zum betreiben eines elektrischen systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055531A1 (de) * 2000-07-04 2002-01-17 Continental Teves Ag & Co Ohg Elektronische Schaltungsanordnung zur Spannungsversorgung in Kraftfahrzeugen, deren Verwendung und Verfahren zum Betreiben einer Spannungsversorgung
EP1245452A1 (de) * 2001-03-30 2002-10-02 Siemens Aktiengesellschaft Fahrzeug-Bordnetzsystem, insbesondere für einen Lastkraftwagen
DE102013211140A1 (de) * 2012-06-20 2013-12-24 Honda Motor Co., Ltd. Elektrische Energieversorgungseinrichtung
DE102013218517A1 (de) * 2012-09-21 2014-03-27 Honda Motor Co., Ltd. Energieversorgungsvorrichtung
DE102013204894A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
EP2919382A1 (de) * 2012-11-09 2015-09-16 Honda Motor Co., Ltd. Stromquellenvorrichtung
DE102015217191A1 (de) * 2014-09-11 2016-03-17 Toyota Jidosha Kabushiki Kaisha Stromzuführsystem

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004045248A1 (de) * 2004-09-17 2006-03-23 Robert Bosch Gmbh Vorrichtung zur Energieversorgung des Bordnetzes eines Kraftfahrzeugs
US8154242B2 (en) * 2008-03-26 2012-04-10 GM Global Technology Operations LLC Method of fully charging an electrical energy storage device using a lower voltage fuel cell system
DE102012009738B4 (de) * 2012-05-16 2017-10-05 Audi Ag Elektrische Schaltungsanordnung
DE102014223227A1 (de) * 2014-11-13 2015-05-21 Schaeffler Technologies AG & Co. KG Antriebseinrichtung und Verfahren zum Betrieb einer Antriebseinrichtung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055531A1 (de) * 2000-07-04 2002-01-17 Continental Teves Ag & Co Ohg Elektronische Schaltungsanordnung zur Spannungsversorgung in Kraftfahrzeugen, deren Verwendung und Verfahren zum Betreiben einer Spannungsversorgung
EP1245452A1 (de) * 2001-03-30 2002-10-02 Siemens Aktiengesellschaft Fahrzeug-Bordnetzsystem, insbesondere für einen Lastkraftwagen
DE102013211140A1 (de) * 2012-06-20 2013-12-24 Honda Motor Co., Ltd. Elektrische Energieversorgungseinrichtung
DE102013218517A1 (de) * 2012-09-21 2014-03-27 Honda Motor Co., Ltd. Energieversorgungsvorrichtung
EP2919382A1 (de) * 2012-11-09 2015-09-16 Honda Motor Co., Ltd. Stromquellenvorrichtung
DE102013204894A1 (de) 2013-03-20 2014-09-25 Robert Bosch Gmbh Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
DE102015217191A1 (de) * 2014-09-11 2016-03-17 Toyota Jidosha Kabushiki Kaisha Stromzuführsystem

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3831640A1 (de) * 2019-12-02 2021-06-09 Bombardier Transportation GmbH Elektrisches system zur energieversorgung in einem fahrzeug, fahrzeug und verfahren zum betreiben eines elektrischen systems

Also Published As

Publication number Publication date
DE102016211164A1 (de) 2017-12-28

Similar Documents

Publication Publication Date Title
EP2460253B1 (de) Schaltungsanordnung für ein bordnetz
DE102013204894A1 (de) Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
EP2501588B1 (de) Bordnetz und verfahren und vorrichtung zum betreiben des bordnetzes
DE102010001250B4 (de) Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
EP2528766B1 (de) Batteriesystem für mikro-hybridfahrzeuge mit hochleistungsverbrauchern
DE102014201358A1 (de) Bordnetz und Verfahren zum Betrieb eines Bordnetzes
EP2953227A1 (de) Bordnetz für ein kraftfahrzeug
WO2015110591A1 (de) Bordnetz und verfahren zum betrieb eines bordnetzes
DE102004057693A1 (de) Vorrichtung zur schnellen Entladung eines Kondensators
DE102011109709A1 (de) Verfahren und System zur Spannungsversorgung eines Bordnetzes eines Fahrzeugs
WO2017202537A1 (de) Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung
EP3067240B1 (de) Verfahren zur spannungsversorgung eines bordnetzes eines kraftfahrzeugs
WO2015172924A1 (de) Vorrichtung und verfahren zum laden zweier energiespeicher
DE102012203467A1 (de) Bordnetz für ein Fahrzeug
EP2528767B1 (de) Batteriesystem für mikro-hybridfahrzeuge mit hochleistungsverbrauchern
EP2941363B2 (de) Versorgung von elektrischen traktionsmotoren eines schienenfahrzeugs mit elektrischer energie unter verwendung einer mehrzahl von verbrennungsmotoren
WO2019137707A1 (de) Verfahren zum betreiben eines kraftfahrzeugbordnetzes
DE102017222554A1 (de) Verfahren zur Übertragung von elektrischer Leistung von einer Ladebuchse an einen elektrischen Energiespeicher eines Fahrzeugbordnetzes, Verwenden einer elektrischen Maschine eines Fahrzeugs und Fahrzeugbordnetz
DE10256704B3 (de) Schaltungs für ein KFZ-Bordnetz und zugehöriges Betriebsverfahren
DE102011083255B4 (de) Verfahren zum Betrieb eines Zweispeicherbordnetzes
DE102013206296A1 (de) Verfahren zum Betreiben einer Energieversorgungseinheit für ein Kraftfahrzeugbordnetz
DE102004043129A1 (de) Vorrichtung zur Spannungsversorgung
WO2013182385A1 (de) Kraftfahrzeugbordnetz mit einer elektrischen maschine und wenigstens zwei energiespeichern mit unterschiedlichen ladespannungen sowie verfahren zum betreiben desselben
WO2017220233A1 (de) Kraftfahrzeugbordnetz mit wenigstens zwei energiespeichern, verfahren zum betreiben eines kraftfahrzeugbordnetzes und mittel zu dessen implementierung
DE102018218312A1 (de) Energieversorgungsanordnung zur Versorgung eines elektrischen Verbrauchers eines Niedervolt-Bordnetzes eines Kraftfahrzeugs, Bordnetz und Verfahren zum Betreiben einer Energieversorgungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17718531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17718531

Country of ref document: EP

Kind code of ref document: A1