WO2017217685A1 - Magnesium secondary battery - Google Patents
Magnesium secondary battery Download PDFInfo
- Publication number
- WO2017217685A1 WO2017217685A1 PCT/KR2017/005879 KR2017005879W WO2017217685A1 WO 2017217685 A1 WO2017217685 A1 WO 2017217685A1 KR 2017005879 W KR2017005879 W KR 2017005879W WO 2017217685 A1 WO2017217685 A1 WO 2017217685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- secondary battery
- active material
- magnesium
- negative electrode
- magnesium secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/387—Tin or alloys based on tin
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
- H01M4/466—Magnesium based
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a magnesium secondary battery, and more particularly, to a magnesium secondary battery having high efficiency and capable of long-term stable driving.
- next-generation secondary battery it is more environmentally friendly, more stable, richer in resources, and higher in capacity than conventional secondary batteries such as lithium secondary batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel zinc.
- conventional secondary batteries such as lithium secondary batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel zinc.
- Research on magnesium secondary battery that can be used as a battery has been made.
- a magnesium secondary battery is a secondary battery in which magnesium ions are inserted and detached into a cathode active material and charged and discharged by moving electrons.
- a magnesium plate as a cathode a magnesium plate as a cathode, a Chevrel-phase cathode active material as a cathode, and a Grignard solution, which is an alkyl magnesium halide electrolyte as an electrolyte, have been attracting attention in terms of commercialization possibility.
- An object of the present invention is to provide a magnesium secondary battery having excellent battery capacity and improved cycle characteristics.
- Magnesium secondary battery according to the present invention, a positive electrode, Mg-Sn alloy containing a transition metal compound capable of reversible insertion and desorption of magnesium ions as a positive electrode active material in an as-synthesized state, without charge and discharge It includes a cathode and an electrolyte containing (alloy) as a cathode active material.
- Magnesium secondary battery according to an embodiment of the present invention can be driven at room temperature. That is, the magnesium secondary battery according to an embodiment of the present invention may be for room temperature, and in this case, the room temperature is a temperature in which a separate thermal energy is not applied to the secondary battery from the outside, for example, a temperature of 10 to 35 ° C. It may mean.
- the cathode active material may not contain magnesium. That is, in the magnesium secondary battery according to an embodiment of the present invention, in the as-synthesized state in which charge and discharge are not performed, the cathode active material of the cathode may not contain magnesium.
- the cathode active material is scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt ( Oxides, halides, chalcogens of one or more transition metals selected from Co, nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), niobium (Nb), and ruthenium (Ru) It may be a cargo or a cyanide.
- Magnesium secondary battery according to an embodiment of the present invention may be in a charged state.
- the negative electrode active material may be Mg 2 Sn.
- the negative electrode active material may be made of Mg 2 Sn particles.
- the average diameter of the Mg 2 Sn particles may be 5nm to 20 ⁇ m.
- the electrolyte may be a non-aqueous electrolyte containing magnesium ions.
- the magnesium secondary battery according to an embodiment of the present invention may further include a separator.
- Magnesium secondary battery according to the present invention in the state immediately after the manufacturing without charging and discharging, as the negative electrode contains the Mg-Sn alloy, even if repeated charging and discharging is carried out stably maintain the battery capacity and can have an improved lifetime In addition, there is an advantage of having a very high coulombic efficiency of 99% or more even in 20 charge and discharge cycles.
- Example 1 is a view showing the results of X-ray diffraction measurement of Mg 2 Sn alloy prepared in Example 1 of the present invention
- Example 2 is a view showing the charge and discharge cycle characteristics of the half-cell manufactured in Example 1 of the present invention
- Example 3 is a view showing the capacity (mAh / g) according to the charge and discharge of the complete cell produced in Example 2 of the present invention.
- an alloy of Mg and Sn including Mg 2 Sn in the negative electrode may be generated by the following Scheme 1 during charging.
- Applicant has a large specific surface area and can realize a particle-based negative electrode rather than a plate or thin film-based negative electrode having a large active area in which an electrochemical reaction is performed, difficult to handle, and relatively expensive, and can be easily manufactured at low cost.
- Much research has been conducted on magnesium secondary batteries that can be driven at room temperature and have stable cycle characteristics for a longer period of time to improve battery life.
- a magnesium secondary battery includes a positive electrode including a transition metal compound capable of reversible insertion and detachment of magnesium ions as an anode active material in an as-synthesized state in which charging and discharging are not performed.
- a cathode and an electrolyte including an Mg-Sn alloy as an anode active material are included.
- the electrolyte may be located between the positive electrode and the negative electrode.
- the magnesium secondary battery according to the present invention is a cathode and a metal including a transition metal compound capable of reversible insertion and desorption of magnesium ions as an anode active material in an as-synthesized state in which charging and discharging are not performed. It includes a negative electrode and an electrolyte containing no negative electrode active material containing no Sn and Mg-Sn alloy (alloy). That is, the magnesium secondary battery according to the present invention is a cathode including a transition metal compound capable of reversible insertion and detachment of magnesium ions as a cathode active material, Mg-Sn in an as-synthesized state in which charging and discharging are not performed.
- anode and an electrolyte including an anode active material made of an alloy (alloy) is included.
- the negative electrode active material is made of an Mg-Sn alloy (alloy) means that in addition to the Mg-Sn alloy in the negative electrode there is no other active material (heterogeneous negative electrode active material) involved in charging and discharging.
- the Mg-Sn alloy is preferably Mg 2 Sn. That the negative electrode active material is made of Mg-Sn alloy means that the magnesium secondary battery according to the present invention has a state of charge immediately after manufacture, and furthermore, that the negative electrode active material is made of Mg 2 Sn, there is no charge and discharge In the immediate post-production state, this means that the battery has the maximum possible state of charge theoretically.
- the magnesium secondary battery according to an embodiment of the present invention can be discharged during the initial charge and discharge.
- demagnesiumation and magnesiumation may occur repeatedly from the surface of the negative electrode active material in contact with the electrolyte.
- the negative electrode of the battery includes a negative electrode active material made of an Mg-Sn alloy, preferably Mg 2 Sn in a state immediately after manufacture, demagnesiumation and magnesiumation occur repeatedly from the surface region of the negative electrode active material.
- the core of the negative electrode active material may continuously serve as a source of magnesium.
- the magnesium supply profile from the core to the surface can also be made by the magnesium concentration profile of the negative electrode active material itself during charging and / or discharging, which will lead to quick and easy magnesiumation and demagnesification in the surface area of the negative electrode active material.
- the negative electrode of the battery includes a negative electrode active material made of an Mg-Sn alloy, preferably Mg 2 Sn in a state immediately after manufacture, the physical structure and electrical characteristics of the electrode even when the negative electrode is repeatedly magnesiumated and demagnesiumated The deformation or deterioration (eg, desorption, etc.) can be prevented. Accordingly, the secondary battery according to an embodiment of the present invention can stably maintain the battery capacity even when performing repeated charge / discharge cycles, have a significantly improved cycle life, have high coulombic efficiency, and have improved high rate characteristics. Can be.
- the negative electrode active material may be Mg-Sn alloy, preferably Mg 2 Sn
- the negative electrode active material may be made of Mg-Sn alloy particles, preferably Mg 2 Sn particles.
- magnesium plate (foil) itself is used as the cathode.
- the negative electrode active material is a particulate form of Mg-Sn alloy particles, preferably Mg 2 Sn particles. Accordingly, rolling and / or rolling of the current collector to which the negative electrode active material is applied can improve battery output, and there are advantages in that electrodes can be manufactured in various shapes and structures.
- the negative electrode active material layer can be mixed with a conductive material and a binder to form a negative electrode active material layer on the current collector, through which, there is an advantage that can improve the electrical conductivity, physical strength and stability of the negative electrode (current collector and negative electrode active material layer). .
- the negative electrode active material layers may be formed, there is an advantage in that the reaction area with the electrolyte in the same volume may be significantly improved.
- the average diameter of the Mg-Sn alloy particles may be in the order of several nanometers to several tens of micrometers.
- Mg-Sn alloy particles, preferably Mg 2 Sn particles, of several nanometers to several tens of micrometers of order can significantly improve the reaction area with the electrolyte solution while increasing the energy density of the cathode. Strength may be improved and may have improved structural stability during the electrochemical reaction.
- Mg-Sn alloy particles, preferably Mg 2 Sn particles, having orders of several nanometers to several tens of micrometers may be formed in the particle (center region) in the process of repeatedly demagnesification and magnesiumation from the surface region of the particle during repeated charge and discharge. ) Can continuously supply magnesium to the surface area.
- the average diameter of the Mg-Sn alloy particles, preferably Mg 2 Sn particles may be 5 nm to 20 ⁇ m, specifically 1 to 15 ⁇ m, but is not limited thereto.
- the negative electrode of Mg 2 Sn is a negative electrode active material may satisfy the following equation 1.
- THF tetrahydrofuran
- the negative electrode of Mg 2 Sn is a negative electrode active material may satisfy the following equation (2) and (3).
- THF tetrahydrofuran
- CE (20) has a coin cell in which magnesium metal is provided as a counter electrode of the cathode and the cathode, and tetrahydrofuran (THF) in which PhMgCl is dissolved at a concentration of 0.5 M is provided as an electrolyte.
- THF tetrahydrofuran
- the coin cells in relations 1, 2 and 3 are half cells, and the negative electrode of the coin cell may be a negative electrode containing 80 wt% of a negative electrode active material, 10 wt% of a binder, and 10 wt% of carbon black (Super P).
- the positive electrode active material of the positive electrode may be used as long as it is a material capable of reversible insertion and desorption of magnesium ions, and specifically, may be a transition metal compound capable of reversible insertion and desorption of magnesium ions.
- the cathode active material is scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) And oxides, halides, chalcogenides, cyanides or mixtures thereof of at least one transition metal selected from zinc (Zn), molybdenum (Mo), niobium (Nb) and ruthenium (Ru).
- the negative electrode may include a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer may include the above-described negative electrode active material, a binder, and a conductive material.
- the positive electrode may also include a positive electrode active material layer containing a positive electrode active material and a positive electrode current collector, and the positive electrode active material layer may include a positive electrode active material, a binder, and a conductive material.
- the binder of the negative electrode or the positive electrode may be a polymer commonly used to improve the binding force of the active material layer in the secondary battery field. That is, the polymer can be used as long as it does not chemically react with the electrolyte and can bind between the active material, the active material and the conductive material, the active material and the current collector, and the conductive material and the current collector.
- the binder of the negative electrode or the positive electrode independently of each other, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-trichloroethylene copolymer, polymethyl methacrylate , Polytetrafluoroethylene, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene-vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan , Cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, styrene-butadiene copolymer, acrylonitrile-styrene-butadiene copolymer, polyimide, polyvinylidene flu
- the conductive material of the negative electrode or the positive electrode may be a conductive material that is commonly used to improve the electrical conductivity of the active material layer in the secondary battery field.
- the conductive material of the negative electrode or the positive electrode independently of each other, conductive carbon bodies such as carbon black, acetylene black, Ketjen black, channel black, Farnes black, lamp black, thermal black or a mixture thereof; Conductive fibers such as carbon fibers and metal fibers; Conductive nanostructures such as carbon nanotubes, carbon fibers, graphene, graphite (graphite), hard carbon, soft carbon, etc. may be, but are not limited thereto.
- the content of the conductive material and the binder contained in the negative electrode active material layer or the positive electrode active material layer may be stable electrical conduction and stable binding between components.
- the negative electrode active material layer or the positive electrode active material layer may independently contain 5 to 50 parts by weight of a conductive material and 1 to 20 parts by weight of a binder based on 100 parts by weight of an active material (negative electrode active material or positive electrode active material), but is not limited thereto. It doesn't happen.
- the current collector of the negative electrode or the positive electrode may have a good conductivity and may be a chemically stable material during charge and discharge of the battery.
- the current collector of the negative electrode or the positive electrode may be independently a conductive material such as graphite, graphene, activated carbon, titanium, copper, platinum, aluminum, nickel, silver, gold, or carbon nanotubes.
- the current collector of the negative electrode or the positive electrode may be in the form of a foam, film, mesh, felt or porous film of a conductive material independently of each other.
- the present invention cannot be limited by the shape and the material of the current collector.
- the negative electrode may be prepared by applying and drying a slurry containing a negative electrode active material, a conductive material, and a binder on a current collector, and optionally rolling may be further performed after drying is performed.
- the negative electrode may be a compressed body obtained by compressing a mixture containing a negative electrode active material, a conductive material, and a binder.
- the positive electrode may also be prepared by applying and drying a slurry containing a positive electrode active material, a conductive material and a binder on a current collector, or by pressing a mixture containing the positive electrode active material, a conductive material and a binder.
- the rolling may be further performed after the drying is performed.
- the electrolyte is a liquid containing magnesium ions, so long as it is an electrolyte solution commonly used in magnesium secondary batteries.
- the electrolyte may be a non-aqueous organic electrolyte or an aqueous electrolyte.
- the electrolyte solution may include a magnesium salt and a solvent to be an electrolyte.
- the electrolyte may be a water-soluble magnesium salt such as Mg (OH) 2 , MgSO 4 , MgCl 2 , Mg (NO 3 ) 2, or the like.
- the electrolyte concentration may be a saturation concentration or a concentration close to the saturation concentration.
- the electrolyte When the electrolyte is a non-aqueous electrolyte, the electrolyte may be a Grignard reagent-based electrolyte.
- the magnesium salt usable as the electrolyte is RMgX (R is a linear or branched alkyl group having 1 to 10 carbon atoms, a straight or branched aryl group having 1 to 10 carbon atoms, or 1 carbon atom).
- X is halogen and preferably chlorine or bromine
- MgX 2 is halogen
- R 2 Mg R is an alkyl group, a dialkyl boron group, a diaryl boron group, an alkylcarbonyl group (eg methylcarbonyl group (-CO 2 CH 3 )), an alkylsulfonyl group (e.g. For example, one or two or more selected from trifluoromethylsulfonyl group (-SO 2 CF 3 )), etc.
- Non-aqueous electrolysis Solvents are dimethyl ether, diethyl ether, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, n Propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, dibutyl Ether, tetraglyme, triglyme, diglyme, polyethyleneglycol dimethylether, dimethoxyethane, tetrahydrofuran, 2-methyltetrafluorate, ethylene carbonate, butylene carbonate, butylene carbonate, methyl acetate, ethyl acetate
- Mg (TFSI) 2 magnesium bis (trifluoromethanesulfonyl) imide
- Mg (FSI) 2 magnesium bis (fluorosulfonyl) imide
- Mg (PF 6 ) 2 Mg (ClO 4 ) 2
- Mg (HMDS) 2 magnesium hexamethyldisilazide
- Mg (CB 11 H 12 ) 2 Magesium monocarborane
- MgCl 2 An electrolyte containing one or two or more selected magnesium salts, but is not limited thereto.
- the driving temperature of the magnesium secondary battery changes from room temperature to high temperature according to the composition of the electrolyte solution.
- Magnesium secondary battery of the present invention can be driven at room temperature (10 to 35 °C), the driving temperature is not limited.
- Magnesium secondary battery according to an embodiment of the present invention may further include a separator, the separator is located between the negative electrode and the positive electrode to facilitate the material movement including the magnesium ions while the electrical short circuit between the negative electrode and the positive electrode Can play a role of blocking.
- a separator conventional inorganic separators or organic separators conventionally used as separators may be used.
- a glass filter etc. are mentioned as an inorganic separator,
- a porous polymer film etc. are mentioned as an organic separator.
- porous polymer film examples include porous polymer films made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, and the like. .
- Magnesium secondary battery according to an embodiment of the present invention may have a structure commonly used in the secondary battery field, and may be a cylindrical, square, pouch (type) or coin (coin) using a can, but is not limited thereto. It doesn't happen.
- Mg metal powder (Aldrich) was mixed with 0.243g and Sn metal powder (Aldrich) 0.594g and perform a ball mill for 12 hours to 50 oscillation using zirconia balls were prepared Mg 2 Sn alloy, it is manufactured of Mg 2 Sn alloy The average particle diameter was 9 ⁇ m.
- a negative electrode was prepared by mixing and pressing 80 wt% of a prepared Mg 2 Sn alloy active material, 10 wt% of PTFE (polytetrafluoroethylene) as a binder, and 10 wt% of carbon black (Super P) as a conductive material.
- PTFE polytetrafluoroethylene
- a coin cell type half-cell of 2016 was manufactured using the prepared negative electrode and the electrolyte as a counter electrode of magnesium metal foil.
- the charge and discharge cycle test was performed at 0.2C in the voltage range of 0.05-0.6V, and the initial discharge was performed as the coin cell type half cell in the state immediately after the manufacture was in the charged state.
- FIG. 2 is a view showing the discharge capacity (mAh / g) and the coulomb efficiency (%) according to the number of charge-discharge cycles of the manufactured coin cell-type magnesium half-cell, blue circle is the discharge capacity, red square is the coulomb efficiency Means.
- the Mg 2 Sn alloy negative active material shows an activity in the electrochemical reaction with magnesium ions in the magnesium cell and is reversibly charged and discharged. It can be seen that even if 20 cycles are performed, there is almost no deterioration of the battery and a stable charge / discharge cycle is achieved.
- the battery has a capacity of about 320 mAh / g for 20 cycles, and the initial coulombic efficiency is 86% and after the second cycle. It can be seen that the cycle efficiency is superior to 99% or more.
- a coin cell-type complete product was prepared using a V 2 O 5 anode as a counter electrode and a diglyme in which Mg (TFSI) 2 was dissolved at a concentration of 0.5 M as an electrolyte.
- Full-cell Mg 2 Sn / V 2 O 5 was prepared.
- the charge and discharge cycle test was performed at 25 ° C. at 0.05 C in the voltage range of 0.01-2.0 V, and the first discharge of the coin cell-type complete cell was performed as Mg 2 Sn in the state of charge immediately after the manufacture was charged.
- FIG. 3 is a charge / discharge curve diagram showing the capacity (mAh / g) according to charge / discharge of the manufactured coin-cell type magnesium ion-complete Mg 2 Sn / V 2 O 5 .
- the Mg 2 Sn alloy negative active material is active in an electrochemical reaction with magnesium ions even in a magnesium ion cell composed of a V 2 O 5 positive electrode, and has an initial coulombic efficiency of 90% for three cycles. It can be seen that it is reversibly charged and discharged with a capacity of 149-102 mAh / g.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
The present invention relates to a magnesium secondary battery capable of operating at room temperature. Specifically, the magnesium secondary battery according to the present invention comprises, in an as-prepared (as-synthesized) state in which no charging or discharging has been carried out: an anode comprising a transition metal compound as an anode active material; a cathode comprising a Mg-Sn alloy as a cathode active material; and an electrolyte.
Description
본 발명은 마그네슘 이차전지에 관한 것으로, 상세하게, 고효율을 가지며 장기간 안정적 구동이 가능한 마그네슘 이차전지에 관한 것이다.The present invention relates to a magnesium secondary battery, and more particularly, to a magnesium secondary battery having high efficiency and capable of long-term stable driving.
휴대폰, 노트북을 비롯하여 전기자동차 등까지 이차전지의 활용 분야가 확대됨에 따라, 에너지 저장 장치의 고용량화에 대한 요구가 높아지고 있다.As the field of application of secondary batteries is expanded to mobile phones, laptops and electric vehicles, demand for higher capacity of energy storage devices is increasing.
이에 따라, 차세대 이차전지로, 리튬 이차전지, 니켈-카드뮴 전지, 니켈-수소 전지 및 니켈 아연등의 종래 이차전지 대비 보다 친환경적이고, 안정성이 우수하며, 자원이 풍부하고, 고용량화가 가능하여 특히 중대형 전지로 활용 가능한 마그네슘 이차전지에 대한 연구가 이루어지고 있다.Accordingly, as a next-generation secondary battery, it is more environmentally friendly, more stable, richer in resources, and higher in capacity than conventional secondary batteries such as lithium secondary batteries, nickel-cadmium batteries, nickel-hydrogen batteries, and nickel zinc. Research on magnesium secondary battery that can be used as a battery has been made.
마그네슘 이차전지는 마그네슘 이온이 양극 활물질에 삽입-탈리되며 전자를 이동시켜 충방전되는 이차전지이다. 마그네슘 이차전지에서 음극으로는 마그네슘 판이, 양극으로는 Chevrel-phase 양극활물질 소재가, 전해액으로는 알킬 마그네슘 할라이드 전해질인 그리냐드 시약(Grignard solutions)이 상용화 가능성 측면에서 주목되고 있다.A magnesium secondary battery is a secondary battery in which magnesium ions are inserted and detached into a cathode active material and charged and discharged by moving electrons. In the magnesium secondary battery, a magnesium plate as a cathode, a Chevrel-phase cathode active material as a cathode, and a Grignard solution, which is an alkyl magnesium halide electrolyte as an electrolyte, have been attracting attention in terms of commercialization possibility.
마그네슘 이차전지는 Chevrel-phase 양극활물질에 의해 가역적인 충방전 구현이 확보된 2000년대에 들어서야 실질적인 연구가 시작되었을 뿐이며, 현재 리튬 이온 전지의 절반 이하의 수준에 불과한 에너지 밀도만이 구현되는 수준으로, 새로운 활물질 소재, 전해질 물질, 집전체등의 개발이 절실히 요구되고 있다. Magnesium secondary batteries only began practical research in the 2000s when reversible charging and discharging was secured by Chevrel-phase cathode active materials, and only energy density of less than half of lithium ion batteries is realized. Development of new active material, electrolyte material, current collector, and the like are urgently required.
그러나, 마그네슘 이차전지에 대한 대부분의 연구가 미국 등록특허 제6713213호나 일본 공개특허 제2007-188709호와 같이 전해질 분야나, 대한민국 공개특허 제2015-0033787호와 같이 양극활물질 분야에 집중되어 있으며, 마그네슘 이차전지의 음극 활물질에 대한 연구는 거의 미미한 실정이다.However, most researches on magnesium secondary batteries are concentrated in the field of electrolytes, such as US Patent No. 6713213 and Japanese Patent Application No. 2007-188709, or in the field of positive electrode active materials, such as Korean Patent Application Publication No. 2015-0033787. Research on the negative electrode active material of the secondary battery is almost insignificant.
본 발명의 목적은 우수한 전지 용량을 가지며, 사이클 특성이 향상된 마그네슘 이차전지를 제공하는 것이다.An object of the present invention is to provide a magnesium secondary battery having excellent battery capacity and improved cycle characteristics.
본 발명에 따른 마그네슘 이차전지는, 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서, 마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물을 양극활물질로 포함하는 양극, Mg-Sn 합금(alloy)을 음극활물질로 포함하는 음극 및 전해액을 포함한다.Magnesium secondary battery according to the present invention, a positive electrode, Mg-Sn alloy containing a transition metal compound capable of reversible insertion and desorption of magnesium ions as a positive electrode active material in an as-synthesized state, without charge and discharge It includes a cathode and an electrolyte containing (alloy) as a cathode active material.
본 발명의 일 실시예에 따른 마그네슘 이차전지는 상온에서 구동할 수 있다. 즉, 본 발명의 일 실시예에 따른 마그네슘 이차전지는 상온용일 수 있으며, 이때, 상온은 외부에서 이차전지에 별도의 열 에너지가 인가되지 않은 상태의 온도, 실질적인 일 예로, 10 내지 35℃의 온도를 의미할 수 있다.Magnesium secondary battery according to an embodiment of the present invention can be driven at room temperature. That is, the magnesium secondary battery according to an embodiment of the present invention may be for room temperature, and in this case, the room temperature is a temperature in which a separate thermal energy is not applied to the secondary battery from the outside, for example, a temperature of 10 to 35 ° C. It may mean.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 양극활물질은 마그네슘을 함유하지 않을 수 있다. 즉, 본 발명의 일 실시예에 따른 마그네슘 이차전지는 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서, 양극의 양극활물질이 마그네슘을 함유하지 않을 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the cathode active material may not contain magnesium. That is, in the magnesium secondary battery according to an embodiment of the present invention, in the as-synthesized state in which charge and discharge are not performed, the cathode active material of the cathode may not contain magnesium.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 양극활물질은 스칸듐(Sc), 타이타늄(Ti), 바나듐(V), 크로뮴(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 몰리브데넘(Mo), 나이오븀(Nb) 및 루테늄(Ru)에서 하나 이상 선택되는 전이금속의 산화물, 할로겐화물, 칼코겐화물 또는 시안화물일 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the cathode active material is scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt ( Oxides, halides, chalcogens of one or more transition metals selected from Co, nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), niobium (Nb), and ruthenium (Ru) It may be a cargo or a cyanide.
본 발명의 일 실시예에 따른 마그네슘 이차전지는 충전 상태일 수 있다.Magnesium secondary battery according to an embodiment of the present invention may be in a charged state.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 음극활물질은 Mg2Sn일 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the negative electrode active material may be Mg 2 Sn.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 음극활물질은 Mg2Sn 입자로 이루어질 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the negative electrode active material may be made of Mg 2 Sn particles.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 Mg2Sn 입자의 평균 직경은 5nm 내지 20μm일 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the average diameter of the Mg 2 Sn particles may be 5nm to 20μm.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, 상기 전해액은 마그네슘 이온을 함유하는 비수계 전해액일 수 있다.In the magnesium secondary battery according to an embodiment of the present invention, the electrolyte may be a non-aqueous electrolyte containing magnesium ions.
본 발명의 일 실시예에 따른 마그네슘 이차전지는 세퍼레이터를 더 포함할 수 있다.The magnesium secondary battery according to an embodiment of the present invention may further include a separator.
본 발명에 따른 마그네슘 이차전지는, 충방전이 수행되지 않은 제조 직후 상태에서, 음극이 Mg-Sn 합금을 함유함에 따라, 반복적인 충방전이 수행되어도 안정적으로 전지 용량이 유지되며 향상된 수명을 가질 수 있으며, 20회의 충방전 사이클에서도 99% 이상의 매우 높은 쿨롱 효율을 갖는 장점이 있다.Magnesium secondary battery according to the present invention, in the state immediately after the manufacturing without charging and discharging, as the negative electrode contains the Mg-Sn alloy, even if repeated charging and discharging is carried out stably maintain the battery capacity and can have an improved lifetime In addition, there is an advantage of having a very high coulombic efficiency of 99% or more even in 20 charge and discharge cycles.
도 1은 본 발명의 실시예1에서 제조된 Mg2Sn 알로이의 X-선 회절 측정 결과를 도시한 도면이며, 1 is a view showing the results of X-ray diffraction measurement of Mg 2 Sn alloy prepared in Example 1 of the present invention,
도 2는 본 발명의 실시예1에서 제조된 반쪽전지의 충방전 사이클 특성을 도시한 도면이며,2 is a view showing the charge and discharge cycle characteristics of the half-cell manufactured in Example 1 of the present invention,
도 3은 본 발명의 실시예2에서 제조된 완전지의 충방전에 따른 용량(mAh/g)을 도시한 도면이다.3 is a view showing the capacity (mAh / g) according to the charge and discharge of the complete cell produced in Example 2 of the present invention.
이하 본 발명의 마그네슘 이차전지를 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다. Hereinafter, the magnesium secondary battery of the present invention will be described in detail. At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs, the gist of the present invention in the following description and the accompanying drawings Descriptions of well-known functions and configurations that may be unnecessarily blurred are omitted.
Sn 기반 음극의 경우, 전지의 충방전이 반복됨에 따라 충전시 하기 반응식 1에 의해, 음극에 Mg2Sn을 포함하는 Mg와 Sn의 합금이 생성될 수 있다.In the case of the Sn-based negative electrode, as charging and discharging of the battery are repeated, an alloy of Mg and Sn including Mg 2 Sn in the negative electrode may be generated by the following Scheme 1 during charging.
(반응식 1)(Scheme 1)
Sn + 2Mg2+ +4e- → Mg2Sn Sn + 2Mg 2+ + 4e - → Mg 2 Sn
그러나, 이러한 Sn 기반 음극의 경우 충방전 사이클이 반복 수행됨에 따라, 급격하게 전지 용량이 감소하는 문제점이 있다. However, such a Sn-based negative electrode has a problem in that the battery capacity suddenly decreases as the charge and discharge cycle is repeatedly performed.
즉, 충방전이 수행되지 않은 제조 직후(as-fabricated) 상태에서, Sn을 음극활물질로 함유하며, 충방전 과정에서 Sn의 마그네슘화와 탈마그네슘화가 반복적으로 수행되는 경우, 실질적으로 충방전 사이클이 10회 정도만 수행되어도 전지로서의 활용이 불가할 정도로 전지 특성이 급격하게 열화되는 문제가 발생한다.That is, in the as-fabricated state in which charging and discharging is not performed, when Sn is contained as a negative electrode active material and when magnesiumization and demagnesification of Sn are repeatedly performed in the charging and discharging process, the charging and discharging cycle is substantially performed. Even if only about 10 times, a problem occurs that the battery characteristics are rapidly deteriorated to the extent that it cannot be used as a battery.
본 출원인은 넓은 비표면적을 가져 전기화학적 반응이 수행되는 활성 면적이 크고, 취급이 어렵고 상대적으로 고가인 판이나 박막 기반 음극이 아닌 입자 기반 음극의 구현이 가능하며, 저비용으로 용이하게 제조 가능하면서도, 상온에서 구동 가능하며, 보다 장기간 안정적인 사이클 특성이 구현되어 전지의 수명을 향상시킬 수 있는 마그네슘 이차전지에 대한 연구를 지속적으로 수행하였다.Applicant has a large specific surface area and can realize a particle-based negative electrode rather than a plate or thin film-based negative electrode having a large active area in which an electrochemical reaction is performed, difficult to handle, and relatively expensive, and can be easily manufactured at low cost. Much research has been conducted on magnesium secondary batteries that can be driven at room temperature and have stable cycle characteristics for a longer period of time to improve battery life.
연구 결과, 제조 직후 상태에서의 음극의 상태가 전지 구동시 전지의 전기화학적 특성에 큰 영향을 미침을 발견하였으며, Sn이 아닌, Mg-Sn 합금 자체로 음극을 형성하는 경우, 전지의 충방전 사이클 특성이 놀랍도록 향상되며, 나아가 쿨롱 효율 또한 크게 증가함을 발견하여 본 발명을 출원하기에 이르렀다. As a result, it was found that the state of the negative electrode in the state immediately after the manufacture had a great influence on the electrochemical characteristics of the battery when the battery was driven. When the negative electrode was formed by the Mg-Sn alloy itself, not Sn, The properties have been surprisingly improved, and furthermore, the Coulomb efficiency has also been found to significantly increase, leading to the present application.
상술한 발견에 기반한 본 발명에 따른 마그네슘 이차전지는 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서, 마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물을 양극활물질로 포함하는 양극, Mg-Sn 합금(alloy)을 음극활물질로 포함하는 음극 및 전해액을 포함한다. 이때, 전해액은 양극과 음극 사이에 위치할 수 있다.Based on the above findings, a magnesium secondary battery according to the present invention includes a positive electrode including a transition metal compound capable of reversible insertion and detachment of magnesium ions as an anode active material in an as-synthesized state in which charging and discharging are not performed. A cathode and an electrolyte including an Mg-Sn alloy as an anode active material are included. In this case, the electrolyte may be located between the positive electrode and the negative electrode.
달리 상술하면, 본 발명에 따른 마그네슘 이차전지는 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서, 마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물을 양극활물질로 포함하는 양극, 금속 Sn을 함유하지 않으며 Mg-Sn 합금(alloy)을 함유하는 음극활물질을 포함하는 음극 및 전해액을 포함한다. 즉, 본 발명에 따른 마그네슘 이차전지는 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서, 마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물을 양극활물질로 포함하는 양극, Mg-Sn 합금(alloy)으로 이루어진 음극활물질을 포함하는 음극 및 전해액을 포함한다. 이때, 음극활물질이 Mg-Sn 합금(alloy)으로 이루어진다는 것은 음극에 Mg-Sn 합금 이외에 전지의 충방전에 관여하는 다른 활물질(이종의 음극활물질)이 존재하지 않음을 의미하는 것이다. In detail, the magnesium secondary battery according to the present invention is a cathode and a metal including a transition metal compound capable of reversible insertion and desorption of magnesium ions as an anode active material in an as-synthesized state in which charging and discharging are not performed. It includes a negative electrode and an electrolyte containing no negative electrode active material containing no Sn and Mg-Sn alloy (alloy). That is, the magnesium secondary battery according to the present invention is a cathode including a transition metal compound capable of reversible insertion and detachment of magnesium ions as a cathode active material, Mg-Sn in an as-synthesized state in which charging and discharging are not performed. An anode and an electrolyte including an anode active material made of an alloy (alloy) is included. At this time, the negative electrode active material is made of an Mg-Sn alloy (alloy) means that in addition to the Mg-Sn alloy in the negative electrode there is no other active material (heterogeneous negative electrode active material) involved in charging and discharging.
본 발명의 일 실시예에 따른 마그네슘 이차전지에 있어, Mg-Sn 합금은 Mg2Sn인 것이 좋다. 음극활물질이 Mg-Sn 합금으로 이루어진다는 것은, 본 발명에 따른 마그네슘 이차전지가 제조직후 충전 상태를 가짐을 의미하는 것이며, 나아가, 음극활물질이 Mg2Sn으로 이루어진다는 것은, 충방전이 전혀 이루어지지 않은 제조직후 상태에서 전지가 이론적으로 가능한 최대의 충전 상태를 가짐을 의미하는 것이다. In the magnesium secondary battery according to an embodiment of the present invention, the Mg-Sn alloy is preferably Mg 2 Sn. That the negative electrode active material is made of Mg-Sn alloy means that the magnesium secondary battery according to the present invention has a state of charge immediately after manufacture, and furthermore, that the negative electrode active material is made of Mg 2 Sn, there is no charge and discharge In the immediate post-production state, this means that the battery has the maximum possible state of charge theoretically.
제조 직후 상태에서 이론적으로 가능한 최대의 충전 상태를 가짐에 따라, 본 발명의 일 실시예에 따른 마그네슘 이차전지는 최초 충방전시 방전이 수행될 수 있다. 방전-충전을 일 사이클로 충방전 사이클이 반복 수행되는 경우, 전해액과 접하는 음극활물질 표면에서부터 탈마그네슘화와 마그네슘화가 반복적으로 발생할 수 있다. 그러나, 상술한 바와 같이, 전지의 음극이 제조직후 상태에서 Mg-Sn 합금, 좋게는 Mg2Sn으로 이루어진 음극활물질을 포함함에 따라, 음극활물질의 표면 영역에서부터 탈마그네슘화와 마그네슘화가 반복적으로 발생하는 과정에서 음극활물질의 코어(core, 내부)는 지속적으로 마그네슘의 공급원으로 작용할 수 있다. 이는 충전 및/또는 방전시 음극활물질 자체의 마그네슘 농도 프로파일에 의해 코어에서 표면 방향으로의 마그네슘 공급 또한 이루어질 수 있음을 의미하며, 이는 음극활물질 표면 영역에서 빠르고 용이한 마그네슘화와 탈마그네슘화를 야기할 수 있다. 또한, 전지의 음극이 제조직후 상태에서 Mg-Sn 합금, 좋게는 Mg2Sn으로 이루어진 음극활물질을 포함하는 경우, 음극이 마그네슘화와 탈마그네슘화가 반복적으로 수행되는 경우에도 전극의 물리적 구조와 전기적 특성이 변형되거나 열화(일 예로, 탈착등)되는 것을 방지할 수 있다. 이에 따라, 본 발명의 일 실시예에 따른 이차전지는 반복적인 충방전 사이클 수행시에도 안정적으로 전지용량이 유지되어, 현저하게 향상된 사이클 수명을 가질 수 있으며, 쿨롱 효율이 높고, 향상된 고율 특성을 가질 수 있다. As a theoretically possible maximum state of charge in the state immediately after manufacture, the magnesium secondary battery according to an embodiment of the present invention can be discharged during the initial charge and discharge. When the charge-discharge cycle is repeated with one cycle of discharge-charge, demagnesiumation and magnesiumation may occur repeatedly from the surface of the negative electrode active material in contact with the electrolyte. However, as described above, since the negative electrode of the battery includes a negative electrode active material made of an Mg-Sn alloy, preferably Mg 2 Sn in a state immediately after manufacture, demagnesiumation and magnesiumation occur repeatedly from the surface region of the negative electrode active material. In the process, the core of the negative electrode active material may continuously serve as a source of magnesium. This means that the magnesium supply profile from the core to the surface can also be made by the magnesium concentration profile of the negative electrode active material itself during charging and / or discharging, which will lead to quick and easy magnesiumation and demagnesification in the surface area of the negative electrode active material. Can be. In addition, when the negative electrode of the battery includes a negative electrode active material made of an Mg-Sn alloy, preferably Mg 2 Sn in a state immediately after manufacture, the physical structure and electrical characteristics of the electrode even when the negative electrode is repeatedly magnesiumated and demagnesiumated The deformation or deterioration (eg, desorption, etc.) can be prevented. Accordingly, the secondary battery according to an embodiment of the present invention can stably maintain the battery capacity even when performing repeated charge / discharge cycles, have a significantly improved cycle life, have high coulombic efficiency, and have improved high rate characteristics. Can be.
본 발명의 일 실시예에 따른 이차전지에 있어, 음극활물질은 Mg-Sn 합금, 좋게는 Mg2Sn일 수 있으며, 음극활물질은 Mg-Sn 합금 입자, 좋게는 Mg2Sn 입자로 이루어질 수 있다. 종래와 같이 마그네슘 금속 자체를 음극으로 사용하는 경우, 마그네슘 판(호일) 자체가 음극으로 사용된다. 반면, 본원발명의 일 실시예에 따른 이차전지는, 음극활물질이 Mg-Sn 합금 입자인 입자상, 좋게는 Mg2Sn 입자인 입자상이다. 이에 따라, 음극활물질이 도포된 집전체의 압연 및/또는 롤링(rolling)이 가능하여 전지 출력을 향상시킬 수 있고, 다양한 형상 및 구조의 전극으로 제조 가능한 장점이 있다. 또한, 도전물질 및 바인더등과 혼합되어 집전체 상 음극활물질층을 형성할 수 있으며, 이를 통해, 음극(집전체 및 음극활물질층)의 전기전도도, 물리적 강도 및 안정성을 증진시킬 수 있는 장점이 있다. 또한, 입자상들의 음극활물질층을 형성할 수 있음에 따라, 동일 부피에서 전해액과의 반응 면적을 현저하게 향상시킬 수 있는 장점이 있다. 또한, 슬러리 제조, 도포 및 건조, 압연(롤링)등과 같은 종래 리튬 이차전지에서 기 확립된 전지 제조 기술을 고도로 변경시키지 않고 마그네슘 이차전지의 제조 공정에 적용시킬 수 있는 장점이 있다. In the secondary battery according to an embodiment of the present invention, the negative electrode active material may be Mg-Sn alloy, preferably Mg 2 Sn, the negative electrode active material may be made of Mg-Sn alloy particles, preferably Mg 2 Sn particles. When magnesium metal itself is used as the cathode as in the prior art, magnesium plate (foil) itself is used as the cathode. On the other hand, the secondary battery according to an embodiment of the present invention, the negative electrode active material is a particulate form of Mg-Sn alloy particles, preferably Mg 2 Sn particles. Accordingly, rolling and / or rolling of the current collector to which the negative electrode active material is applied can improve battery output, and there are advantages in that electrodes can be manufactured in various shapes and structures. In addition, it can be mixed with a conductive material and a binder to form a negative electrode active material layer on the current collector, through which, there is an advantage that can improve the electrical conductivity, physical strength and stability of the negative electrode (current collector and negative electrode active material layer). . In addition, since the negative electrode active material layers may be formed, there is an advantage in that the reaction area with the electrolyte in the same volume may be significantly improved. In addition, there is an advantage that can be applied to the manufacturing process of the magnesium secondary battery without highly changing the existing battery manufacturing technology in the conventional lithium secondary battery, such as slurry production, coating and drying, rolling (rolling).
Mg-Sn 합금 입자, 좋게는 Mg2Sn 입자의 평균 직경은 수 나노미터 내지 수십 마이크로미터 오더(order)일 수 있다. 수 나노 내지 수십 마이크로미터 오더의 Mg-Sn 합금 입자, 좋게는 Mg2Sn 입자는 음극의 에너지 밀도를 높이면서도 전해액과의 반응면적의 현저한 향상이 가능하며, 바인더에 의해 서로 강하게 결착하여 음극의 물리적 강도가 향상될 수 있고, 전기화학적 반응 중 향상된 구조 안정성을 가질 수 있다. 또한, 수 나노 내지 수십 마이크로미터 오더의 Mg-Sn 합금 입자, 좋게는 Mg2Sn 입자는 반복적 충방전 수행시 입자의 표면 영역에서부터 탈마그네슘화와 마그네슘화가 반복적으로 발생하는 과정에서 입자 내부(중심 영역)에서 지속적으로 마그네슘을 표면 영역으로 공급할 수 있다. 구체적으로, Mg-Sn 합금 입자, 좋게는 Mg2Sn 입자의 평균 직경은 5 nm 내지 20㎛, 구체적으로 1 내지 15 ㎛일 수 있으나, 이에 한정되는 것은 아니다. The average diameter of the Mg-Sn alloy particles, preferably Mg 2 Sn particles, may be in the order of several nanometers to several tens of micrometers. Mg-Sn alloy particles, preferably Mg 2 Sn particles, of several nanometers to several tens of micrometers of order, can significantly improve the reaction area with the electrolyte solution while increasing the energy density of the cathode. Strength may be improved and may have improved structural stability during the electrochemical reaction. In addition, Mg-Sn alloy particles, preferably Mg 2 Sn particles, having orders of several nanometers to several tens of micrometers, may be formed in the particle (center region) in the process of repeatedly demagnesification and magnesiumation from the surface region of the particle during repeated charge and discharge. ) Can continuously supply magnesium to the surface area. Specifically, the average diameter of the Mg-Sn alloy particles, preferably Mg 2 Sn particles may be 5 nm to 20 ㎛, specifically 1 to 15 ㎛, but is not limited thereto.
본 발명에 따른 마그네슘 이차전지에 있어, Mg2Sn가 음극활물질인 음극은 하기 관계식 1을 만족할 수 있다.In the magnesium secondary battery according to the present invention, the negative electrode of Mg 2 Sn is a negative electrode active material may satisfy the following equation 1.
(관계식 1)(Relationship 1)
Cap(20)/Cap(5) ≥ 0.85Cap (20) / Cap (5) ≥ 0.85
관계식 1에서 Cap(5)는 음극 및 음극의 상대전극으로 마그네슘 금속이 구비되며, PhMgCl(Ph=페닐)이 0.5M 농도로 용해된 테트라하이드로퓨란(THF)이 전해액으로 구비되는 코인셀을 0.05V-0.6V의 전압 범위 및 0.2C로 충방전 사이클 테스트시, 5번째 사이클에서의 방전 용량이며, Cap(20)는 동일 코인셀에서 20번째 사이클에서의 방전 용량이다. In relation (1), Cap (5) is made of magnesium metal as a counter electrode of a cathode and a cathode, and a coin cell in which tetrahydrofuran (THF) in which PhMgCl (Ph = phenyl) is dissolved at a concentration of 0.5 M is provided as an electrolyte. In the charge and discharge cycle test at a voltage range of -0.6V and 0.2C, the discharge capacity at the fifth cycle, and Cap (20) is the discharge capacity at the 20th cycle in the same coin cell.
본 발명에 따른 마그네슘 이차전지에 있어, Mg2Sn가 음극활물질인 음극은 하기 관계식 2 및 관계식 3을 만족할 수 있다.In the magnesium secondary battery according to the present invention, the negative electrode of Mg 2 Sn is a negative electrode active material may satisfy the following equation (2) and (3).
(관계식 2)(Relationship 2)
CE(1) ≥ 85% CE (1) ≥ 85%
관계식 2에서, CE(1)은 상기 음극 및 음극의 상대전극으로 마그네슘 금속이 구비되며, PhMgCl(Ph=페닐)이 0.5M 농도로 용해된 테트라하이드로퓨란(THF)이 전해액으로 구비되는 코인셀을 0.05V-0.6V의 전압 범위 및 0.2C로 충방전 사이클 테스트시, 초기(최초) 쿨롱 효율(%)이다.In relation 2, CE (1) is a coin cell in which a magnesium metal is provided as a counter electrode of the cathode and the cathode, and tetrahydrofuran (THF) in which PhMgCl (Ph = phenyl) is dissolved at a concentration of 0.5 M is provided as an electrolyte. Initial (first) coulombic efficiency (%) in a voltage range of 0.05V-0.6V and charge / discharge cycle testing at 0.2C.
(관계식 3)(Relationship 3)
CE(20) ≥ 95%CE (20) ≥ 95%
관계식 3에서 CE(20)은 상기 음극 및 음극의 상대전극으로 마그네슘 금속이 구비되며, PhMgCl이 0.5M 농도로 용해된 테트라하이드로퓨란(THF)이 전해액으로 구비되는 코인셀을 0.05V-0.6V의 전압 범위 및 0.2C로 충방전 사이클 테스트시, 20번째 사이클에서의 쿨롱 효율(%)이다.In the relation 3, CE (20) has a coin cell in which magnesium metal is provided as a counter electrode of the cathode and the cathode, and tetrahydrofuran (THF) in which PhMgCl is dissolved at a concentration of 0.5 M is provided as an electrolyte. The coulombic efficiency (%) at the 20th cycle for testing the voltage range and charge and discharge cycles at 0.2C.
관계식 1, 2 및 3에서의 코인셀은 반쪽전지이며, 코인셀의 음극은 음극활물질 80중량%, 바인더 10중량% 및 카본블랙(Super P) 10 중량%를 함유하는 음극일 수 있다.The coin cells in relations 1, 2 and 3 are half cells, and the negative electrode of the coin cell may be a negative electrode containing 80 wt% of a negative electrode active material, 10 wt% of a binder, and 10 wt% of carbon black (Super P).
양극의 양극활물질은 마이네슘 이온의 가역적인 삽입과 탈리가 가능한 물질이면 사용 가능하며, 구체적으로 마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물일 수 있다. 구체적으로, 양극활물질은 스칸듐(Sc), 타이타늄(Ti), 바나듐(V), 크로뮴(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 몰리브데넘(Mo), 나이오븀(Nb) 및 루테늄(Ru)에서 하나 이상 선택되는 전이금속의 산화물, 할로겐화물, 칼코겐화물, 시안화물 또는 이들의 혼합물일 수 있다. 예를 들어, Co3O4, Mn2O3, Mn3O4, MoO3, PbO2, Pb3O4, RuO2, V2O5, WO3, TiS2, VS2, ZrS2, Mo3O4, Mo6S8, MoB2, TiB2, 또는 이들의 혼합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.The positive electrode active material of the positive electrode may be used as long as it is a material capable of reversible insertion and desorption of magnesium ions, and specifically, may be a transition metal compound capable of reversible insertion and desorption of magnesium ions. Specifically, the cathode active material is scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu) And oxides, halides, chalcogenides, cyanides or mixtures thereof of at least one transition metal selected from zinc (Zn), molybdenum (Mo), niobium (Nb) and ruthenium (Ru). For example, Co 3 O 4, Mn 2 O 3 , Mn 3 O 4 , MoO 3 , PbO 2 , Pb 3 O 4 , RuO 2 , V 2 O 5 , WO 3 , TiS 2 , VS 2 , ZrS 2 , Mo 3 O 4 , Mo 6 S 8 , MoB 2 , TiB 2 , or a mixture thereof, and the like, but is not limited thereto.
음극은 음극 집전체 및 음극활물질층을 포함할 수 있으며, 음극활물질층은 상술한 음극활물질, 바인더 및 도전재를 포함할 수 있다. The negative electrode may include a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer may include the above-described negative electrode active material, a binder, and a conductive material.
양극 또한, 양극활물질을 함유하는 양극활물질층 및 양극 집전체를 포함할 수 있으며, 양극활물질층은 양극활물질, 바인더 및 도전재를 포함할 수 있다. The positive electrode may also include a positive electrode active material layer containing a positive electrode active material and a positive electrode current collector, and the positive electrode active material layer may include a positive electrode active material, a binder, and a conductive material.
음극 또는 양극의 바인더는 이차전지 분야에서 활물질층의 결착력을 향상시키기 위해 통상적으로 사용되는 고분자이면 족하다. 즉, 전해액과 화학적으로 반응하지 않으며 활물질간, 활물질과 도전재간, 활물질과 집전체간, 및 도전재와 집전체간을 결착시킬 수 있는 고분자이면 사용 가능하다. 구체적인 일 예로, 음극 또는 양극의 바인더는 서로 독립적으로, 폴리비닐리덴 플루오라이드, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 공중합체, 폴리비닐리덴플루오라이드-트리클로로에틸렌 공중합체, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌, 폴리아크릴로니트릴, 폴리비닐피롤리돈, 폴리비닐아세테이트, 폴리에틸렌-비닐 아세테이트 공중합체, 폴리에틸렌옥사이드, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부티레이트, 셀룰로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알콜, 시아노에틸셀룰로오스, 시아노에틸수크로오스, 풀루란, 카르복실 메틸 셀룰로오스, 스티렌-부타디엔 공중합체, 아크릴로니트릴-스티렌-부타디엔 공중합체, 폴리이미드, 폴리테트라플루오로에틸렌 또는 이들의 혼합물등을 들 수 있으나, 이에 한정되는 것은 아니다. The binder of the negative electrode or the positive electrode may be a polymer commonly used to improve the binding force of the active material layer in the secondary battery field. That is, the polymer can be used as long as it does not chemically react with the electrolyte and can bind between the active material, the active material and the conductive material, the active material and the current collector, and the conductive material and the current collector. As a specific example, the binder of the negative electrode or the positive electrode, independently of each other, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, polyvinylidene fluoride-trichloroethylene copolymer, polymethyl methacrylate , Polytetrafluoroethylene, polyacrylonitrile, polyvinylpyrrolidone, polyvinylacetate, polyethylene-vinyl acetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan , Cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, styrene-butadiene copolymer, acrylonitrile-styrene-butadiene copolymer, polyimide, polytetrafluoroethylene Or these Mixtures, and the like, but are not limited thereto.
음극 또는 양극의 도전재는 이차전지 분야에서 활물질층의 전기전도도를 향상시키기 위해 통상적으로 사용되는 전도성 물질이면 족하다. 구체적으로, 음극 또는 양극의 도전재는 서로 독립적으로, 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 또는 이들의 혼합물등의 전도성 탄소체; 탄소 섬유나 금속 섬유 등의 전도성 섬유; 탄소 나노 튜브, 탄소 섬유, 그래핀, 흑연 (그라파이트), 하드카본, 소프트카본 등의 전도성 나노구조체등을 일 수 있으나, 이에 한정되는 것은 아니다.The conductive material of the negative electrode or the positive electrode may be a conductive material that is commonly used to improve the electrical conductivity of the active material layer in the secondary battery field. Specifically, the conductive material of the negative electrode or the positive electrode, independently of each other, conductive carbon bodies such as carbon black, acetylene black, Ketjen black, channel black, Farnes black, lamp black, thermal black or a mixture thereof; Conductive fibers such as carbon fibers and metal fibers; Conductive nanostructures such as carbon nanotubes, carbon fibers, graphene, graphite (graphite), hard carbon, soft carbon, etc. may be, but are not limited thereto.
음극활물질층 또는 양극활물질층에 함유된 도전재 및 바인더의 함량은 안정적인 전기 전도가 이루어지며 구성 물질간 안정적인 결착이 이루어지는 정도면 무방하다. 일 예로, 음극활물질층 또는 양극활물질층은 서로 독립적으로 활물질(음극활물질 또는 양극활물질) 100 중량부에 대하여, 5 내지 50 중량부의 도전재 및 1 내지 20 중량부의 바인더를 함유할 수 있으나, 이에 한정되는 것은 아니다. The content of the conductive material and the binder contained in the negative electrode active material layer or the positive electrode active material layer may be stable electrical conduction and stable binding between components. For example, the negative electrode active material layer or the positive electrode active material layer may independently contain 5 to 50 parts by weight of a conductive material and 1 to 20 parts by weight of a binder based on 100 parts by weight of an active material (negative electrode active material or positive electrode active material), but is not limited thereto. It doesn't happen.
음극 또는 양극의 집전체는 전도도가 우수하며 전지의 충방전시 화학적으로 안정한 물질이면 무방하다. 구체적으로, 음극 또는 양극의 집전체는 서로 독립적으로 그라파이트, 그래핀, 활성카본, 티타늄, 구리, 플래티늄, 알루미늄, 니켈, 은, 금, 또는 카본나노튜브등의 전도성 물질일 수 있다. 음극 또는 양극의 집전체는 서로 독립적으로 전도성 물질의 폼(foam), 박(film), 메쉬(mesh), 펠트(felt) 또는 다공성 박(perforated film) 형태일 수 있다. 그러나, 본 발명이 집전체의 형상 및 물질에 의해 한정될 수 없음은 물론이다.The current collector of the negative electrode or the positive electrode may have a good conductivity and may be a chemically stable material during charge and discharge of the battery. Specifically, the current collector of the negative electrode or the positive electrode may be independently a conductive material such as graphite, graphene, activated carbon, titanium, copper, platinum, aluminum, nickel, silver, gold, or carbon nanotubes. The current collector of the negative electrode or the positive electrode may be in the form of a foam, film, mesh, felt or porous film of a conductive material independently of each other. However, it is a matter of course that the present invention cannot be limited by the shape and the material of the current collector.
음극은 음극활물질, 도전재 및 바인더를 함유하는 슬러리를 집전체 상 도포 및 건조하여 제조될 수 있으며, 선택적으로 건조가 수행된 후 압착(rolling)이 더 수행될 수 있다. 이와 달리, 음극은 음극활물질, 도전재 및 바인더를 함유하는 혼합물을 압착한 압착체일 수 있다. The negative electrode may be prepared by applying and drying a slurry containing a negative electrode active material, a conductive material, and a binder on a current collector, and optionally rolling may be further performed after drying is performed. Alternatively, the negative electrode may be a compressed body obtained by compressing a mixture containing a negative electrode active material, a conductive material, and a binder.
양극 또한, 양극활물질, 도전재 및 바인더를 함유하는 슬러리를 집전체 상 도포 및 건조하여 제조되거나, 양극활물질, 도전재 및 바인더를 함유하는 혼합물을 압착하여 제조될 수 있다. 집전체 상 슬러리를 도포하여 양극을 제조하는 경우, 건조가 수행된 후 압착(rolling)이 더 수행될 수 있음은 물론이다.The positive electrode may also be prepared by applying and drying a slurry containing a positive electrode active material, a conductive material and a binder on a current collector, or by pressing a mixture containing the positive electrode active material, a conductive material and a binder. In the case of preparing the positive electrode by applying the slurry on the current collector, the rolling may be further performed after the drying is performed.
전해액은 마그네슘 이온을 함유하는 액체로, 마그네슘 이차전지에 통상적으로 사용되는 전해액이면 족하다. 전해액은 비수계 유기 전해액 또는 수계 전해액일 수 있다. 전해액은 전해질이 되는 마그네슘염 및 용매를 포함할 수 있다. 수계 전해액인 경우, 전해질은 Mg(OH)2, MgSO4, MgCl2, 또는 Mg(NO3)2등과 같은 수용성 마그네슘 염일 수 있다. 수계 전해액의 경우, 전해질 농도는 포화농도 또는 포화농도에 근접한 농도일 수 있다. 전해액이 비수계 전해액인 경우, 전해액은 그리냐드 시약계 기반 전해액일 수 있다. 구체적으로, 비수계 전해액인 경우, 전해질로서 이용가능한 마그네슘염은 RMgX(R은 탄소수 1 내지 10인 직쇄형이거나 분지형의 알킬기, 탄소수 1 내지 10인 직쇄형이거나 분지형의 아릴기, 또는 탄소수 1 내지 10인 직쇄형이거나 분지형의 아민기이며, 바람직하게는 메틸기, 에틸기, 부틸기, 페닐기, 또는 아닐린기이며, X 는 할로겐이고 바람직하게는 염소 또는 브롬), MgX2 (X는 할로겐이고 바람직하게는 염소 또는 브롬), R2Mg (R은 알킬기, 디알킬보론기, 디아릴보론기, 알킬카보닐기(예를 들면 메틸카보닐기(-CO2CH3)), 알킬설포닐기(예를 들면, 트리플루오로메틸설포닐기(-SO2CF3)) 등에서 하나 또는 둘 이상 선택될 수 있으나, 이에 한정되는 것은 아니다. 이때, 전해액은 AlCl3과 같은 첨가제를 더 포함할 수 있으나,이에 한정되는 것은 아니다. 비수계 전해액의 용매는 디메틸에테르, 디에틸에테르, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, γ-부티로락톤, 데카놀라이드(decanolide), 발레로락톤, 메발로노락톤(mevalonolactone), 카프로락톤(caprolactone), 디부틸 에테르, 테트라글라임, 트리글라임, 디글라임, 폴리에틸렌글리콜디메틸에테르, 디메톡시에탄, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,2-디메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 시클로헥사논, 트리에틸아민, 트리페닐아민, 트리에텔포스핀옥사이드, 아세토니트릴, 디메틸포름아미드, 1,3-디옥솔란, 및 설포란(sulfolane)등에서 하나 또는 둘 이상 선택될 수 있으나, 이에 한정되는 것은 아니다. 다른 비수계 전해액의 일 예로, 상술한 바와 같은 비수계 전해액의 용매와 Mg(TFSI)2(magnesium bis(trifluoromethanesulfonyl)imide), Mg(FSI)2(magnesium bis(fluorosulfonyl)imide), Mg(PF6)2, Mg(ClO4)2, Mg(HMDS)2(magnesium hexamethyldisilazide), Mg(CB11H12)2 (Magesium monocarborane) 및 MgCl2
등에서 하나 또는 둘 이상 선택된 마그네슘 염을 함유하는 전해액을 들 수 있으나, 이에 한정되는 것은 아니다. The electrolyte is a liquid containing magnesium ions, so long as it is an electrolyte solution commonly used in magnesium secondary batteries. The electrolyte may be a non-aqueous organic electrolyte or an aqueous electrolyte. The electrolyte solution may include a magnesium salt and a solvent to be an electrolyte. In the case of an aqueous electrolyte solution, the electrolyte may be a water-soluble magnesium salt such as Mg (OH) 2 , MgSO 4 , MgCl 2 , Mg (NO 3 ) 2, or the like. In the case of the aqueous electrolyte solution, the electrolyte concentration may be a saturation concentration or a concentration close to the saturation concentration. When the electrolyte is a non-aqueous electrolyte, the electrolyte may be a Grignard reagent-based electrolyte. Specifically, in the case of the non-aqueous electrolyte, the magnesium salt usable as the electrolyte is RMgX (R is a linear or branched alkyl group having 1 to 10 carbon atoms, a straight or branched aryl group having 1 to 10 carbon atoms, or 1 carbon atom). Straight or branched amine groups of 10 to 10, preferably methyl, ethyl, butyl, phenyl, or aniline groups, X is halogen and preferably chlorine or bromine), MgX 2 (X is halogen) Preferably chlorine or bromine), R 2 Mg (R is an alkyl group, a dialkyl boron group, a diaryl boron group, an alkylcarbonyl group (eg methylcarbonyl group (-CO 2 CH 3 )), an alkylsulfonyl group (e.g. For example, one or two or more selected from trifluoromethylsulfonyl group (-SO 2 CF 3 )), etc. may be selected, but is not limited thereto.The electrolyte may further include an additive such as AlCl 3 , but is not limited thereto. Non-aqueous electrolysis Solvents are dimethyl ether, diethyl ether, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, dipropyl carbonate, methylpropyl carbonate, ethylpropyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, methyl acetate, ethyl acetate, n Propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone, dibutyl Ether, tetraglyme, triglyme, diglyme, polyethyleneglycol dimethylether, dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,2-dimethyltetrahydrofuran, 2,5-dimethyltetrahydrofuran Cyclohexanone, triethylamine, triphenylamine, triether phosphine oxide, One or two or more may be selected from cetonitrile, dimethylformamide, 1,3-dioxolane, sulfolane, etc. One example of other non-aqueous electrolytes is non-aqueous as described above. Mg (TFSI) 2 (magnesium bis (trifluoromethanesulfonyl) imide), Mg (FSI) 2 (magnesium bis (fluorosulfonyl) imide), Mg (PF 6 ) 2 , Mg (ClO 4 ) 2 , Mg (HMDS) 2 (magnesium hexamethyldisilazide), Mg (CB 11 H 12 ) 2 (Magesium monocarborane) And MgCl 2 An electrolyte containing one or two or more selected magnesium salts, but is not limited thereto.
전해액의 조성에 따라 상온으로부터 고온까지 마그네슘 이차전지의 구동 온도가 변화한다. 본 발명의 마그네슘 이차전지는 상온(10 내지 35℃)에서 구동할 수 있으나, 구동 온도가 한정되는 것은 아니다. The driving temperature of the magnesium secondary battery changes from room temperature to high temperature according to the composition of the electrolyte solution. Magnesium secondary battery of the present invention can be driven at room temperature (10 to 35 ℃), the driving temperature is not limited.
본 발명의 일 실시예에 따른 마그네슘 이차전지는 세퍼레이터를 더 포함할 수 있으며, 세퍼레이터는 음극과 양극 사이에 위치하여 마이네슘 이온을 포함한 물질 이동은 원활히 이루어지면서도 음극과 양극의 전기적 단락을 원천적으로 차단하는 역할을 수행할 수 있다. 세퍼레이터로는 종래에 세퍼레이터로 사용되는 통상적인 무기 분리막이나 유기 분리막이 사용될 수 있다. 무기 분리막으로는 글라스 필터 등을 들 수 있고, 유기 분리막으로는 다공성 고분자 필름등을 들 수 있다. 다공성 고분자 필름은, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 들 수 있다. Magnesium secondary battery according to an embodiment of the present invention may further include a separator, the separator is located between the negative electrode and the positive electrode to facilitate the material movement including the magnesium ions while the electrical short circuit between the negative electrode and the positive electrode Can play a role of blocking. As the separator, conventional inorganic separators or organic separators conventionally used as separators may be used. A glass filter etc. are mentioned as an inorganic separator, A porous polymer film etc. are mentioned as an organic separator. Examples of the porous polymer film include porous polymer films made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methacrylate copolymer, and the like. .
본 발명의 일 실시예에 따른 마그네슘 이차전지는 이차전지 분야에서 통상적으로 사용되는 구조를 가질 수 있으며, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등일 수 있으나, 이에 한정되는 것은 아니다. Magnesium secondary battery according to an embodiment of the present invention may have a structure commonly used in the secondary battery field, and may be a cylindrical, square, pouch (type) or coin (coin) using a can, but is not limited thereto. It doesn't happen.
(실시예 1)(Example 1)
Mg2Sn 알로이의 제조Preparation of Mg 2 Sn Alloy
Mg 금속 분말(Aldrich) 0.243g 및 Sn 금속 분말(Aldrich) 0.594g을 혼합하고 지르코니아 볼을 이용하여 50 oscillation으로 12시간동안 볼밀을 수행하여 Mg2Sn 알로이를 제조하였으며, 제조된 Mg2Sn 알로이의 평균 입자직경은 9μm이었다.Mg metal powder (Aldrich) was mixed with 0.243g and Sn metal powder (Aldrich) 0.594g and perform a ball mill for 12 hours to 50 oscillation using zirconia balls were prepared Mg 2 Sn alloy, it is manufactured of Mg 2 Sn alloy The average particle diameter was 9 μm.
도 1은 제조된 Mg2Sn 알로이의 X-선 회절분석 패턴으로, 도 1의 측정 결과와 같이 결정질의 Mg2Sn의 금속간 화합물이 제조되었으며, 그 외의 다른 이차상, 미반응 잔류물이나 불순물 없이 결정질의 Mg2Sn 단일상이 생성됨을 확인하였다. 1 is an X-ray diffraction pattern of the prepared Mg 2 Sn alloy, a crystalline Mg 2 Sn intermetallic compound was prepared as shown in Figure 1, other secondary phase, unreacted residue or impurities It was confirmed that a crystalline Mg 2 Sn single phase was produced without.
제조된 Mg2Sn 알로이인 음극활물질 80wt%, 바인더인 PTFE(폴리테트라플루오로에틸렌) 10wt % 및 도전재인 카본블랙(Super P) 10 wt%을 혼합하고 프레스하여 음극을 제조하였다.A negative electrode was prepared by mixing and pressing 80 wt% of a prepared Mg 2 Sn alloy active material, 10 wt% of PTFE (polytetrafluoroethylene) as a binder, and 10 wt% of carbon black (Super P) as a conductive material.
테트라하이드로퓨란(THF)에 0.5M의 농도로 PhMgCl(Ph=페닐)을 용해시켜 전해액을 제조하였다.PhMgCl (Ph = phenyl) was dissolved in tetrahydrofuran (THF) at a concentration of 0.5 M to prepare an electrolyte solution.
이후, 마그네슘 금속박을 상대전극으로, 제조된 음극과 전해액을 이용하여 2016의 코인셀형 반쪽전지(half-cell)를 제조하였다. Subsequently, a coin cell type half-cell of 2016 was manufactured using the prepared negative electrode and the electrolyte as a counter electrode of magnesium metal foil.
0.05-0.6V의 전압 범위에서 0.2C로 충방전 사이클 테스트가 수행되었으며, 제조 직후 상태의 코인셀형 반쪽전지는 충전 상태임에 따라 최초 방전이 수행되었다. The charge and discharge cycle test was performed at 0.2C in the voltage range of 0.05-0.6V, and the initial discharge was performed as the coin cell type half cell in the state immediately after the manufacture was in the charged state.
도 2는 제조된 코인셀형 마그네슘 반쪽전지의 충방전 사이클 횟수에 따른 방전 용량(mAh/g) 및 쿨롱 효율(%)을 도시한 도면으로, 푸른색 원은 방전 용량을, 붉은색 사각은 쿨롱 효율을 의미한다.2 is a view showing the discharge capacity (mAh / g) and the coulomb efficiency (%) according to the number of charge-discharge cycles of the manufactured coin cell-type magnesium half-cell, blue circle is the discharge capacity, red square is the coulomb efficiency Means.
도 2에 도시된 예와 같이, Mg2Sn 알로이 음극활물질은 마그네슘 셀에서 마그네슘이온과의 전기화학적 반응에 활성을 보이며 가역적으로 충방전됨을 알 수 있다. 20회의 사이클이 수행되어도 전지의 열화가 거의 발생하지 않고 안정적인 충방전 사이클이 이루어짐을 알 수 있으며, 20 사이클 동안 약 320 mAh/g의 용량을 내며, 초기쿨롱효율은 86 %이고 두 번째 사이클 이후의 사이클 효율이 99% 이상으로 우수함을 알 수 있다. As shown in FIG. 2, the Mg 2 Sn alloy negative active material shows an activity in the electrochemical reaction with magnesium ions in the magnesium cell and is reversibly charged and discharged. It can be seen that even if 20 cycles are performed, there is almost no deterioration of the battery and a stable charge / discharge cycle is achieved. The battery has a capacity of about 320 mAh / g for 20 cycles, and the initial coulombic efficiency is 86% and after the second cycle. It can be seen that the cycle efficiency is superior to 99% or more.
(실시예 2)(Example 2)
실시예 1과 동일하게 Mg2Sn 음극을 제조한 후, V2O5 양극을 상대전극으로, 0.5M 농도로 Mg(TFSI)2가 용해된 디글림(diglyme)을 전해액으로 이용하여 코인셀형 완전지(full-cell) Mg2Sn/V2O5를 제조하였다. In the same manner as in Example 1, after the Mg 2 Sn cathode was manufactured, a coin cell-type complete product was prepared using a V 2 O 5 anode as a counter electrode and a diglyme in which Mg (TFSI) 2 was dissolved at a concentration of 0.5 M as an electrolyte. Full-cell Mg 2 Sn / V 2 O 5 was prepared.
0.01-2.0V의 전압 범위에서 0.05C로 충방전 사이클 테스트가 25℃에서 수행되었으며, 제조 직후 상태의 Mg2Sn가 충전 상태임에 따라 코인셀형 완전지의 최초 방전이 수행되었다. The charge and discharge cycle test was performed at 25 ° C. at 0.05 C in the voltage range of 0.01-2.0 V, and the first discharge of the coin cell-type complete cell was performed as Mg 2 Sn in the state of charge immediately after the manufacture was charged.
도 3은 제조된 코인셀형 마그네슘이온 완전지 Mg2Sn/V2O5의 충방전에 따른 용량(mAh/g)을 도시한 충방전 커브 도면이다.3 is a charge / discharge curve diagram showing the capacity (mAh / g) according to charge / discharge of the manufactured coin-cell type magnesium ion-complete Mg 2 Sn / V 2 O 5 .
도 3에 도시된 예와 같이, Mg2Sn 알로이 음극활물질은 V2O5 양극으로 이루어진 마그네슘이온 셀에서도 마그네슘이온과의 전기화학적 반응에 활성을 보이며, 초기쿨롱효율은 90%이고 3회의 사이클 동안 149-102 mAh/g의 용량을 내며 가역적으로 충방전됨을 알 수 있다. As shown in FIG. 3, the Mg 2 Sn alloy negative active material is active in an electrochemical reaction with magnesium ions even in a magnesium ion cell composed of a V 2 O 5 positive electrode, and has an initial coulombic efficiency of 90% for three cycles. It can be seen that it is reversibly charged and discharged with a capacity of 149-102 mAh / g.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. In the present invention as described above has been described by specific embodiments and limited embodiments and drawings, but this is only provided to help a more general understanding of the present invention, the present invention is not limited to the above embodiments, the present invention Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things that are equivalent to or equivalent to the claims as well as the following claims will belong to the scope of the present invention. .
Claims (10)
- 충방전이 수행되지 않은 제조 직후(as-synthesized) 상태에서,In the as-synthesized state in which no charge / discharge is performed,마그네슘 이온의 가역적인 삽입과 탈리가 가능한 전이금속화합물을 양극활물질로 포함하는 양극, A cathode comprising a transition metal compound capable of reversible insertion and detachment of magnesium ions as a cathode active material,Mg-Sn 합금(alloy)을 음극활물질로 포함하는 음극 및 A negative electrode including an Mg-Sn alloy as a negative electrode active material;전해액을 포함하는 마그네슘 이차전지.Magnesium secondary battery containing an electrolyte solution.
- 제 1항에 있어서,The method of claim 1,상기 마그네슘 이차전지는 상온에서 구동하는 마그네슘 이차전지.The magnesium secondary battery is a magnesium secondary battery operated at room temperature.
- 제 1항에 있어서,The method of claim 1,상기 양극활물질은 마그네슘을 함유하지 않는 마그네슘 이차전지.The cathode active material is a magnesium secondary battery that does not contain magnesium.
- 제 2항에 있어서,The method of claim 2,상기 양극활물질은 스칸듐(Sc), 타이타늄(Ti), 바나듐(V), 크로뮴(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 몰리브데넘(Mo), 나이오븀(Nb) 및 루테늄(Ru)에서 하나 이상 선택되는 전이금속의 산화물, 할로겐화물, 칼코젠화물, 시안화물인 마그네슘 이차전지. The cathode active material is scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc Magnesium secondary battery which is an oxide, halide, chalcogenide, and cyanide of a transition metal selected from (Zn), molybdenum (Mo), niobium (Nb), and ruthenium (Ru).
- 제 2항에 있어서,The method of claim 2,상기 마그네슘 이차전지는 충전 상태인 마그네슘 이차전지. The magnesium secondary battery is a magnesium secondary battery in a charged state.
- 제 1항에 있어서,The method of claim 1,상기 음극활물질은 Mg2Sn인 마그네슘 이차전지.The anode active material is Mg 2 Sn magnesium secondary battery.
- 제 5항에 있어서,The method of claim 5,상기 음극활물질은 Mg2Sn 입자로 이루어진 마그네슘 이차전지.The anode active material is a magnesium secondary battery consisting of Mg 2 Sn particles.
- 제 5항에 있어서,The method of claim 5,상기 Mg2Sn 입자의 평균 직경은 5nm 내지 20μm인 마그네슘 이차전지.The magnesium secondary battery having an average diameter of the Mg 2 Sn particles is 5nm to 20μm.
- 제 1항에 있어서,The method of claim 1,상기 전해액은 마그네슘 이온을 함유하는 비수계 전해액인 마그네슘 이차전지.The electrolyte is a magnesium secondary battery that is a non-aqueous electrolyte containing magnesium ions.
- 제 1항에 있어서,The method of claim 1,상기 마그네슘 이차전지는 세퍼레이터를 더 포함하는 마그네슘 이차전지.The magnesium secondary battery further comprises a separator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0075477 | 2016-06-17 | ||
KR1020160075477A KR101946266B1 (en) | 2016-06-17 | 2016-06-17 | Magnesium Secondary Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217685A1 true WO2017217685A1 (en) | 2017-12-21 |
Family
ID=60664331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005879 WO2017217685A1 (en) | 2016-06-17 | 2017-06-07 | Magnesium secondary battery |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101946266B1 (en) |
WO (1) | WO2017217685A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112534621A (en) * | 2018-08-01 | 2021-03-19 | 株式会社村田制作所 | Electrolyte solution and electrochemical device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102528259B1 (en) | 2020-12-10 | 2023-05-04 | 한국과학기술연구원 | A novel phase-convertible magnesium solid-state electrolyte and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970004131B1 (en) * | 1987-10-01 | 1997-03-25 | 듀라셀 인터내쇼날 인코포레이팃드 | Battery pack |
KR20120073757A (en) * | 2010-12-27 | 2012-07-05 | 주식회사 엘지화학 | Novel cathode active material and magnesium secondary battery comprising the same |
KR101485483B1 (en) * | 2013-07-19 | 2015-01-23 | 전자부품연구원 | Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same |
JP2015515728A (en) * | 2012-04-05 | 2015-05-28 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド | Rechargeable magnesium battery active material |
KR20160022103A (en) * | 2014-08-19 | 2016-02-29 | 삼성전자주식회사 | Electrode active material for magnesium battery, electrode and magnesium battery comprising the same, and method of preparing the electrode active material for magnesium battery |
-
2016
- 2016-06-17 KR KR1020160075477A patent/KR101946266B1/en active IP Right Grant
-
2017
- 2017-06-07 WO PCT/KR2017/005879 patent/WO2017217685A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970004131B1 (en) * | 1987-10-01 | 1997-03-25 | 듀라셀 인터내쇼날 인코포레이팃드 | Battery pack |
KR20120073757A (en) * | 2010-12-27 | 2012-07-05 | 주식회사 엘지화학 | Novel cathode active material and magnesium secondary battery comprising the same |
JP2015515728A (en) * | 2012-04-05 | 2015-05-28 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイテッド | Rechargeable magnesium battery active material |
KR101485483B1 (en) * | 2013-07-19 | 2015-01-23 | 전자부품연구원 | Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same |
KR20160022103A (en) * | 2014-08-19 | 2016-02-29 | 삼성전자주식회사 | Electrode active material for magnesium battery, electrode and magnesium battery comprising the same, and method of preparing the electrode active material for magnesium battery |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112534621A (en) * | 2018-08-01 | 2021-03-19 | 株式会社村田制作所 | Electrolyte solution and electrochemical device |
US12034120B2 (en) | 2018-08-01 | 2024-07-09 | Murata Manufacturing Co., Ltd. | Electrolytic solution and electrochemical device |
CN112534621B (en) * | 2018-08-01 | 2024-07-16 | 株式会社村田制作所 | Electrolyte and electrochemical device |
Also Published As
Publication number | Publication date |
---|---|
KR101946266B1 (en) | 2019-02-11 |
KR20170142283A (en) | 2017-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102492832B1 (en) | Lithium secondary battery | |
CN103702929B (en) | Carbon-silicon composite material, method for preparing same, and negative active material comprising same | |
KR100796687B1 (en) | Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same | |
JP6066956B2 (en) | Magnesium secondary battery electrode and magnesium secondary battery equipped with the same | |
KR20100062297A (en) | Negative active material, negative electrode comrprising same, method of preparing negative electrodee, and lithium battery | |
CN111433946A (en) | Negative electrode for lithium metal battery and lithium metal battery including the same | |
CN112913075B (en) | Functional separator having catalytic site introduced therein, method of manufacturing the same, and lithium secondary battery comprising the same | |
CN113678297B (en) | Lithium secondary battery | |
WO2022071722A1 (en) | Lithium-sulfur battery having high energy density | |
US12087967B2 (en) | Functional separator, manufacturing method therefor, and lithium secondary battery comprising same | |
JP2022542235A (en) | rechargeable metal halide battery | |
JP3046055B2 (en) | Non-aqueous secondary battery | |
JP2012174535A (en) | Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material | |
WO2019059662A2 (en) | Metal secondary battery having metal electrode | |
KR20190056844A (en) | Surface-modified separator for lithium-sulfur battery and lithium-sulfur battery including the same | |
WO2017217685A1 (en) | Magnesium secondary battery | |
WO2019022358A1 (en) | Cathode for lithium-sulfur battery, and lithium-sulfur battery comprising same | |
US20200403224A1 (en) | Lithium molybdate anode material | |
WO2020085859A1 (en) | Functional separator, manufacturing method therefor, and lithium secondary battery comprising same | |
KR20150116702A (en) | Positive electrode for lithium air battery, method of preparing the same and lithium air battery including the same | |
KR101853149B1 (en) | Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material | |
US20190326599A1 (en) | Cathode active material containing boron and carbon, and magnesium secondary battery using the same | |
JP3722462B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
WO2019208928A1 (en) | Secondary lithium battery anode and secondary lithium battery including same | |
KR20200060063A (en) | Electrolyte additives for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17813510 Country of ref document: EP Kind code of ref document: A1 |