[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017217182A1 - 基地局、端末及び通信方法 - Google Patents

基地局、端末及び通信方法 Download PDF

Info

Publication number
WO2017217182A1
WO2017217182A1 PCT/JP2017/018769 JP2017018769W WO2017217182A1 WO 2017217182 A1 WO2017217182 A1 WO 2017217182A1 JP 2017018769 W JP2017018769 W JP 2017018769W WO 2017217182 A1 WO2017217182 A1 WO 2017217182A1
Authority
WO
WIPO (PCT)
Prior art keywords
response signal
downlink data
downlink
transmission
unit
Prior art date
Application number
PCT/JP2017/018769
Other languages
English (en)
French (fr)
Inventor
岩井 敬
綾子 堀内
哲矢 山本
智史 高田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to JP2018523605A priority Critical patent/JP6914254B2/ja
Priority to US16/306,378 priority patent/US11044711B2/en
Publication of WO2017217182A1 publication Critical patent/WO2017217182A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to a base station, a terminal, and a communication method.
  • a base station receives data from a terminal (sometimes referred to as “UE (User Equipment)”). Send a control signal.
  • the terminal decodes control information transmitted to the terminal according to the received control signal, and obtains information related to frequency allocation or adaptive control necessary for data reception.
  • HARQ Hybrid Automatic Repeat Request
  • the terminal feeds back a response signal indicating the downlink data error detection result to the base station.
  • a base station performs communication by allocating resource blocks (RB: Resource Block) within a system band to terminals in units of time called subframes. Also, the base station transmits control information (DL grant) for the terminal to receive downlink data using a downlink control channel (PDCCH: Physical Downlink Control Channel). The terminal decodes the control information transmitted to itself by using the received PDCCH signal, and obtains information related to frequency allocation or adaptive control necessary for data reception.
  • DL grant may also be called DL assignment.
  • HARQ is applied to downlink data. That is, the terminal feeds back a response signal indicating the downlink data error detection result to the base station.
  • the terminal performs CRC (Cyclic Redundancy Check) on the downlink data. If there is no error in the CRC calculation result, an acknowledgment (ACK: Acknowledgement) is received. If there is an error in the CRC calculation result, a negative response (NACK: Negative Negative Acknowledgment) is fed back to the base station as a response signal.
  • An uplink control channel PUCH: “Physical” Uplink “Control” Channel) is used for feedback of the response signal (ACK or NACK).
  • a response signal for downlink data is transmitted using a PUCCH resource in a target subframe four subframes after the subframe in which the downlink data is transmitted.
  • a response signal for downlink data is transmitted using a PUCCH resource in a target subframe that is four or more subframes after the subframe in which the downlink data is transmitted.
  • RAT Radio Access Technology
  • NR New RAT
  • reception of a downlink control signal necessary for receiving downlink data, and downlink data allocated by the downlink control signal are received.
  • An operation called “Self-contained” in which reception and feedback of a response signal to the downlink data to the base station are performed in a certain time unit (for example, one subframe or NR subframe) is examined. (For example, see Non-Patent Document 4).
  • 3GPP TS 36.211 V13.1.0 “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels channels and modulation (Release 13),“ March 2016.
  • 3GPP TS 36.212 V13.1.0 “Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding (Release 13),“ March 2016.
  • 3GPP TS 36.213 V13.1.0 “Evolved Universal Terrestrial Radio AccessRe (E-UTRA); Physical layer procedures (Release 13),” March 2016. R1-163112, NTT DOCOMO, “Initial views” on “frame” structure “for” NR “access” technology, “April” 2016
  • One aspect of the present disclosure is to provide a base station, a terminal, and a communication method that can efficiently perform scheduling of a downlink control signal in consideration of HARQ in a self-contained operation.
  • a base station includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and a response signal for the downlink data.
  • the response signal has a transmission bandwidth that is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • a terminal includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and a response signal for the downlink data.
  • a time unit including an uplink time resource, the receiving unit receiving the downlink control signal and the downlink data, and a transmitting unit transmitting a response signal to the downlink data in the time unit.
  • the transmission bandwidth of the response signal is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • Fig. 1 shows an example of self-contained operation in the TDD system.
  • the terminal receives a downlink control signal necessary for receiving downlink data, receives downlink data assigned by the downlink control signal, and a response signal to the downlink data. Is fed back to the base station in units of time (hereinafter referred to as “Self-contained time unit”). That is, as shown in FIG. 1, Self-contained time unit (simply expressed as “Time unit”) is a downlink time resource for a downlink control signal (DL control) and a downlink allocated by the downlink control signal.
  • DL control downlink control signal
  • HARQ-ACK uplink time resource for a response signal
  • GP Guard Period
  • Self-contained “time unit” is sometimes called “Self-contained” NR “subframe”.
  • the uplink response signal (UL-HARQ-ACK) transmission method in the self-contained operation is similar to the LTE SRS (Sounding Reference Signal) transmission method. It is conceivable to use Distributed transmission in which signals are transmitted at carrier intervals. Frequency diversity gain can be obtained by the distributed transmission of the uplink response signal over the entire system band.
  • the uplink response signal transmission resource notification method in the self-contained operation is the same as the PUCCH resource (orthogonal code sequence number) notification method used for transmission of the LTE uplink response signal.
  • the head CCE index of the CCE (Control Channel Element) occupied by the downlink control signal (DL grant) and the uplink response signal transmission resource (subcarrier position or code sequence number, etc.) can be uniquely associated with each other. Conceivable.
  • the transmission resource of the uplink response signal is indirectly (Implicitly) notified by the CCE used for DL grant, and there is an advantage that the overhead of DL grant does not increase.
  • UE # 2 and UE # 3 are multiplexed by Multi-user (MU) -MIMO in the transmission band of DL_data # 1.
  • the head CCE index number of the radio resource occupied by the downlink control signal (DL grant) for scheduling the downlink data of UE # 2 is X (CCE # X).
  • the correspondence between the CCE index and the uplink response signal transmission resource is defined in advance in the specification, or shared between the base station and the terminal by, for example, the base station notifying the terminal in advance in units of cells. is doing.
  • the scheduler of the base station considers the orthogonal allocation of transmission resources of uplink response signals of a plurality of UEs multiplexed within the system band and the reception performance of DL grant, that is, DL grant transmission resources (that is, , First CCE index) must be selected.
  • the scheduler of the base station considers the orthogonal allocation of the transmission resources of the uplink response signals of these five UEs and the DL ⁇ ⁇ grant for each UE in consideration of the transmission band in which each of the five UEs satisfies the reception performance. It is necessary to select a transmission resource.
  • the self-contained operation there are fewer resources that can be used to transmit the uplink response signal compared to LTE. Therefore, when the number of resources that can be used for orthogonal allocation of uplink response signals is small as in such a self-contained operation, more complicated scheduling is required for DL ⁇ ⁇ ⁇ ⁇ grant. For example, when DL grant scheduling is performed, if the orthogonal resource of the uplink response signal cannot be allocated based on the DL grant CCE index, a terminal in which downlink data cannot be scheduled at a desired timing occurs, and the delay time increases.
  • one aspect of the present disclosure when using a self-contained operation, appropriately controls an uplink frequency resource for transmitting an uplink response signal for downlink data in the self-contained time unit, and An object is to efficiently schedule link control signals.
  • the communication system includes a base station 100 and a terminal 200.
  • FIG. 3 is a block diagram illustrating a main configuration of the base station 100 according to each embodiment of the present disclosure.
  • the transmission unit 108 transmits a downlink time resource for the downlink control signal, a downlink time resource for the downlink data allocated by the downlink control signal, and a response signal for the downlink data.
  • the downlink control signal and the downlink data are transmitted in a time unit (Self-contained time unit) including the uplink time resource for use.
  • the receiving unit 110 receives the response signal in the time unit.
  • the transmission bandwidth of the response signal is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • FIG. 4 is a block diagram illustrating a main configuration of the terminal 200 according to each embodiment of the present disclosure.
  • receiving section 202 uses downlink time resources for downlink control signals, downlink time resources for downlink data allocated by downlink control signals, and response signals for downlink data.
  • the downlink control signal and the downlink data are received in a time unit (Self-contained time unit) including the uplink time resource.
  • the transmission unit 212 transmits a response signal for downlink data in a time unit.
  • the transmission bandwidth of the response signal is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • FIG. 5 is a block diagram showing a configuration of base station 100 according to the present embodiment.
  • the base station 100 includes a scheduling unit 101, a control signal generation unit 102, a control signal modulation unit 103, a data encoding unit 104, a retransmission control unit 105, a data modulation unit 106, and a signal allocation unit. 107, a transmission unit 108, an antenna 109, a reception unit 110, a response signal resource control unit 111, an extraction unit 112, a demodulation / decoding unit 113, and a determination unit 114.
  • Scheduling section 101 for terminal 200, scheduling information regarding downlink control signals and downlink data in Self-contained time unit (for example, allocation resource information (frequency, time, code resource), terminal ID, reference for data demodulation) Signal (DMRS: demodulation reference signal) information, modulation / coding scheme, etc.).
  • Scheduling section 101 outputs scheduling information to control signal generation section 102, data encoding section 104, signal allocation section 107, and response signal resource control section 111.
  • the control signal generator 102 generates a control signal for the terminal 200.
  • the control signal includes a cell-specific upper layer signal, a group or RAT-specific upper layer signal, a terminal-specific upper layer signal, and downlink allocation information (scheduling information) instructing allocation of downlink data. included.
  • the control signal generation unit 102 generates a control information bit string using these control information, encodes the generated control information bit string, and outputs the encoded control signal to the control signal modulation unit 103.
  • Control signal modulation section 103 modulates the control signal received from control signal generation section 102 and outputs the modulated control signal (symbol sequence) to signal allocation section 107.
  • the data encoding unit 104 performs error correction encoding on the transmission data (downlink data) according to the encoding method received from the scheduling unit 101, and outputs the encoded data signal to the retransmission control unit 105.
  • the retransmission control unit 105 holds the encoded data signal received from the data encoding unit 104 at the time of initial transmission and outputs the data signal to the data modulation unit 106.
  • retransmission control section 105 controls retained data based on the determination result from determination section 114 during retransmission. Specifically, upon receiving NACK for the data signal, retransmission control section 105 outputs the corresponding retained data to data modulation section 106. In addition, upon receiving ACK for transmission data, retransmission control section 105 discards the corresponding retained data and ends transmission of downlink data.
  • the data modulation unit 106 modulates the data signal received from the retransmission control unit 105 and outputs the data modulation signal to the signal allocation unit 107.
  • the signal allocation unit 107 maps the control signal (symbol sequence) received from the control signal modulation unit 103 and the data modulation signal received from the data modulation unit 106 to radio resources instructed by the scheduling unit 101.
  • the signal allocation unit 107 outputs a downlink signal to which the signal is mapped to the transmission unit 108.
  • the transmission unit 108 performs RF (Radio Frequency) processing such as D / A (Digital-to-Analog) conversion and up-conversion on the signal received from the signal allocation unit 107, and transmits a radio signal to the terminal 200 via the antenna 109. Send.
  • RF Radio Frequency
  • Receiving section 110 performs RF processing such as down-conversion or A / D (Analog-to-Digital) conversion on the response signal waveform of the uplink signal from terminal 200 received via antenna 109, and obtains it.
  • the received signal is output to the extraction unit 112.
  • the response signal resource control unit 111 based on the scheduling information (downlink data allocation resource information, terminal ID, reference signal information for data demodulation, etc.) of the terminal 200 in Self-contained time unit output from the scheduling unit 101, Radio resources (frequency, time, code resource) used for transmission of the response signal are determined.
  • the response signal resource control unit 111 outputs information indicating the determined radio resource to the extraction unit 112. Details of the response signal radio resource determination method in response signal resource control section 111 will be described later.
  • extraction section 112 Based on the information received from response signal resource control section 111, extraction section 112 extracts the radio resource portion to which the uplink response signal has been transmitted from the received signal, and outputs the received response signal to demodulation / decoding section 113 .
  • the demodulation / decoding unit 113 performs equalization, demodulation, and decoding on the reception response signal received from the extraction unit 112, and outputs the decoded bit sequence to the determination unit 114.
  • the determination unit 114 determines whether the response signal transmitted from the terminal 200 indicates ACK or NACK for the transmitted downlink data. To do.
  • the determination unit 114 outputs the determination result (ACK or NACK) to the retransmission control unit 105.
  • FIG. 6 is a block diagram showing a configuration of terminal 200 according to the present embodiment.
  • a terminal 200 includes an antenna 201, a reception unit 202, an extraction unit 203, a control signal decoding unit 204, a data demodulation unit 205, a data decoding unit 206, an error detection unit 207, and a response signal resource.
  • the control unit 208 includes a response signal generation unit 209, an encoding / modulation unit 210, a signal allocation unit 211, and a transmission unit 212.
  • the receiving unit 202 receives the control signal and data signal transmitted from the base station 100 via the antenna 201, performs RF processing such as down-conversion or AD conversion on the radio reception signal, and converts the baseband signal into obtain.
  • the reception unit 202 outputs the signal to the extraction unit 203.
  • the extraction unit 203 extracts a control signal from the signal received from the reception unit 202 and outputs the control signal to the control signal decoding unit 204. Further, the extraction unit 203 extracts downlink data from the signal received from the reception unit 202 and outputs the downlink data to the data demodulation unit 205.
  • the control signal decoding unit 204 performs blind decoding on the control signal received from the extraction unit and attempts to decode the control signal addressed to itself.
  • scheduling information for example, allocation resource information (frequency, time, code resource), terminal ID included in the control signal is included. , DMRS information, modulation / coding scheme, etc.
  • DMRS information for example, DMRS information, modulation / coding scheme, etc.
  • Data demodulating section 205 demodulates downlink data received from extracting section 203 based on downlink resource allocation resource information received from control signal decoding section 204, and outputs the demodulated downlink data to data decoding section 206. .
  • the data decoding unit 206 decodes the downlink data received from the data demodulation unit 205, and outputs the decoded downlink data to the error detection unit 207.
  • the error detection unit 207 performs error detection by, for example, CRC on the downlink data received from the data decoding unit 206, and outputs an error detection result (ACK or NACK) to the response signal generation unit 209. Further, the error detection unit 207 outputs, as received data, downlink data that has been determined to have no error as a result of error detection.
  • the response signal resource control unit 208 includes scheduling information of the terminal 200 in the Self-contained time unit output from the control signal decoding unit 204 (for example, information on downlink data allocation resources (frequency, time, code resource), terminal ID Radio resource (frequency, time, code resource) used for transmitting the response signal in the same manner as the response signal resource control unit 111 (FIG. 5) of the base station 100 based on the data demodulation reference signal information, etc. ).
  • Response signal resource control section 208 outputs information indicating the determined radio resource to signal allocation section 211. Details of the response signal radio resource determination method in response signal resource control section 208 will be described later.
  • the response signal generation unit 209 generates a response signal (bit sequence) for the received downlink data using the error detection result (ACK or NACK) received from the error detection unit 207 and encodes the response signal into the encoding / modulation unit 210. Output to.
  • Encoding / modulating section 210 performs error correction coding on the response signal (bit sequence) received from response signal generating section 209, modulates the encoded bit sequence, and assigns the modulated symbol sequence to the signal Output to the unit 211.
  • the signal allocation unit 211 maps the signal received from the encoding / modulation unit 210 to the uplink resource (time, frequency, code resource) in the Self-contained time unit designated by the response signal resource control unit 208.
  • the signal allocation unit 211 may apply Distributed transmission in which response signals are allocated at predetermined subcarrier intervals.
  • the transmission unit 212 performs RF processing such as D / A conversion and up-conversion on the signal received from the signal allocation unit 211, and transmits a radio signal to the base station 100 via the antenna 201.
  • radio resource determination methods 1 to 5 used for transmission of response signals in the base station 100 (response signal resource control unit 111) and the terminal 200 (response signal resource control unit 208) will be described.
  • ⁇ Determination method 1> the base station 100 and the terminal 200 limit the transmission band of the uplink response signal within the range of the transmission band of the downlink data in the self-contained operation.
  • FIG. 7 shows an example of frequency resource allocation of downlink data (DL data) and uplink response signal (HARQ-ACK) according to decision method 1.
  • DL data downlink data
  • HARQ-ACK uplink response signal
  • Data # 1 downlink data
  • UE # 2 terminal 200
  • HARQ-ACK uplink response signal
  • distributed transmission using subcarriers (Comb) different between the UEs may be applied to orthogonalization between a plurality of UEs of radio resources used for uplink response signal transmission (for example, FIG. 7).
  • CDMA using different orthogonal codes between UEs may be applied.
  • the base station 100 and the terminal 200 match the transmission band of the uplink response signal with the transmission band of the downlink data.
  • base station 100 and UE # 2 (terminal 200) use the same frequency band as the transmission band of DL # data # 1, which is downlink data addressed to UE # 2, for the uplink response signal in UE # 2.
  • the UE that transmits the uplink response signal within the transmission band of the downlink data addressed to each UE is only the UE multiplexed by MU-MIMO in the transmission band of the downlink data.
  • UE # 2 and UE # 3 are multiplexed by MU-MIMO within the transmission band of DL ⁇ data # 1 addressed to UE # 2. Therefore, only UE # 2 and UE # 3 transmit the uplink response signal using the transmission band of DL1data # 1. That is, uplink response signals of other UE # 0, UE # 1, and UE # 4 (see, for example, FIG. 2) are not transmitted in the DL-data # 1 transmission band.
  • the scheduling unit 101 of the base station 100 performs orthogonal allocation of uplink response signal transmission resources and DL grant reception performance only for UE # 2 and UE # 3 multiplexed in the transmission bandwidth of DL1data # 1. Considering this, it is sufficient to select the transmission resource (first CCE index) of DL ⁇ ⁇ grant. The same applies to other downlink data transmission bands shown in FIG.
  • the scheduling unit 101 of the base station 100 needs to consider the number of terminals that need to be considered when allocating orthogonal resources for the uplink response signal, compared to the method of transmitting the uplink response signal over the entire system band as shown in FIG. Can be reduced. That is, according to the determination method 1, scheduling of the downlink control signal (DL grant) in the base station 100 is facilitated.
  • DL grant downlink control signal
  • the transmission band of the uplink response signal is not limited to the case where it matches the transmission band of the downlink data as shown in FIG.
  • the transmission band of the uplink response signal may be a band within the transmission band of the downlink data corresponding to the response signal.
  • the transmission band of the uplink response signal may be limited to a part of the transmission band of the downlink data (eg, arranged in the center in FIG. 8).
  • the base station 100 may limit the transmission bandwidth of the uplink response signal within a predetermined bandwidth in order to increase the transmission power density of the uplink response signal.
  • a bandwidth narrower than the transmission bandwidth of downlink data may be set as the transmission bandwidth of the uplink response signal.
  • the base station 100 and the terminal 200 limit the transmission band of the uplink response signal within the transmission band of the downlink data.
  • the transmission bandwidth of the uplink response signal is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • the uplink frequency resource for transmitting the uplink response signal for the downlink data in the self-contained time unit is appropriately controlled, It is possible to efficiently schedule downlink control signals.
  • the uplink response signal allocated within the downlink data transmission band can also obtain the same frequency scheduling gain as that of the downlink data.
  • the terminal 200 uniquely associates a downlink data transmission band notified by DL grant with a resource (first CCE index) used for DL grant transmission (Comb in FIGS. 7 and 8).
  • the radio resource of the uplink response signal can be specified by the number and the Comb interval). Therefore, according to the determination method 1, the overhead of the control signal for notifying the radio resource of the uplink response signal does not increase.
  • ⁇ Determination method 2> In the determination method 2, as in the determination method 1, the transmission band of the uplink response signal is limited to the transmission band of the downlink data in the self-contained operation.
  • the radio resources for example, the Comb number, the Comb interval, the orthogonal code number, etc.
  • the radio resource of the uplink response signal is uniquely associated with scheduling information (terminal ID, DMRS information, etc.) for each terminal 200.
  • the scheduling information uniquely associated with the radio resource of the uplink response signal in the determination method 2 is information that is different between terminals 200 that transmit downlink data within the same frequency band.
  • FIG. 9 shows an example of frequency resource allocation for downlink data (DL data) and uplink response signal (HARQ-ACK) according to decision method 2.
  • DL data downlink data
  • HARQ-ACK uplink response signal
  • a link control signal (DL grant) is transmitted, and DL data # 1 (downlink data) is transmitted by MU-MIMO using the DL grant.
  • UE # 2 and UE # 3 (terminal 200) base the uplink response signal (HARQ-ACK) corresponding to the received error detection result of DL data # 1 on the uplink resource in Self-contained time unit. Each is fed back to the station 100.
  • UE # 2 and UE # 3 transmit an uplink response signal within the transmission band of DL data # 1 as in the determination method 1.
  • the terminal 200 multiplexed in the uplink response signal transmission band has the downlink data in the same frequency band.
  • MU-MIMO terminals UE # 2 and UE # 3 in FIG. 9.
  • the base station 100 and the terminal 200 are based on the scheduling information of each terminal 200 in the transmission band of the downlink data (DL data # 1) for the terminal 200.
  • An uplink resource (orthogonal resource) to be used for transmitting an uplink response signal in the terminal 200 is determined.
  • the base station 100 needs to notify each MU-MIMO terminal of DLRS information or the like regarding DMRS of different numbers (DMRS information) in order to receive downlink data. That is, the DMRS information notified by DL grant is scheduling information that differs between terminals 200.
  • the base station 100 and the terminal 200 may uniquely associate a DMRS number with an uplink resource (orthogonal resource, such as a Comb number, a Comb interval, or an orthogonal code number) used for transmission of an uplink response signal. .
  • an uplink response signal can be orthogonalized according to the scheduling information of each terminal 200 between terminals 200 having the same uplink response signal transmission band.
  • the correspondence relationship between the DMRS number and the orthogonal resource of the uplink response signal is shared in advance between the base station 100 and the terminal 200 using a specification or cell specific information.
  • a part of the radio resource information of the uplink response signal may be notified by DL grant.
  • the Comb interval of the uplink response signal may be explicitly notified by DL grant, and the Comb number of the uplink response signal may be indirectly (Implicitly) notified in association with the DMRS number uniquely.
  • Reference signal (DMRS # 1) is assigned.
  • the scheduling information (DMRS number in FIG. 9) different among the plurality of terminals 200 to which downlink data is assigned to the same frequency band, and the uplink resource used for transmitting the uplink response signal are uniquely associated.
  • the base station 100 does not consider resource allocation of the uplink response signal (assignment of the top CCE index, etc.), but schedules the downlink control signal (DL grant) (that is, frequency allocation (CCE number to be transmitted, etc.)). Can be made). That is, in the determination method 2, scheduling of the downlink control signal (DL grant) in the base station 100 is further facilitated as compared with the determination method 1.
  • the downlink data is scheduled in a band in which the reception quality of the terminal 200 is good. Therefore, according to the determination method 2, the uplink data allocated in the transmission band of the downlink data The response signal can also obtain the same frequency scheduling gain as that of the downlink data.
  • terminal 200 has a parameter (Comb number and Comb interval in FIG. 9) uniquely associated with the downlink data transmission band notified by DL ⁇ ⁇ ⁇ ⁇ grant and scheduling information (DMRS information in FIG. 9) of terminal 200.
  • the radio resource of the uplink response signal can be specified. Therefore, according to the determination method 2, as in the determination method 1, the overhead of the control signal for notifying the radio resource of the uplink response signal does not increase.
  • FIG. 9 illustrates the case where the DMRS number is used as an example of the scheduling information associated with the radio resource of the uplink response signal
  • the scheduling information associated with the radio resource of the uplink response signal differs between terminals 200. Any information may be used.
  • the terminal ID (UE ID) and the radio resource of the uplink response signal may be uniquely associated.
  • the base station 100 may select a plurality of terminals 200 having terminal IDs associated with radio resources that are orthogonal to each other in the uplink response signal, and MU-MIMO multiplex these terminals 200. Thereby, orthogonal resource allocation of the uplink response signal transmitted by the terminal 200 becomes possible.
  • ⁇ Determination method 3> In the determination method 3, as in the determination method 1, the transmission band of the uplink response signal is limited to the transmission band of the downlink data in the self-contained operation.
  • CM cubic metric
  • PAPR Peak-to-Average Power Ratio
  • the number of clusters in the transmission band of the downlink data transmitted in the self-contained operation is limited to a predetermined threshold value or less.
  • the number of clusters in the uplink response signal transmission band in the self-contained operation is also limited to the threshold value or less.
  • the scheduling unit 101 of the base station 100 allocates downlink resources so that the number of downlink data clusters is equal to or less than a predetermined threshold.
  • the threshold may be the maximum number of clusters in which CM / PAPR falls below a predetermined value during single carrier transmission.
  • the number of clusters set as the threshold value may be derived in advance and set in a specification or may be set in advance as a cell specific parameter.
  • FIG. 10 shows an example of frequency resource allocation of downlink data (DL data) and uplink response signal (HARQ-ACK) according to the determination method 3.
  • DL data downlink data
  • HARQ-ACK uplink response signal
  • the scheduling unit 101 of the base station 100 allocates three clusters (cluster # 0 to # 2) having a threshold value or less to downlink data addressed to the terminal 200.
  • the base station 100 (response signal resource control unit 111) and the terminal 200 (response signal resource control unit 208) transfer the cluster data # 0 to # 2 that are downlink data transmission bands addressed to the terminal 200 to the uplink response signal ( HARQ-ACK) transmission band.
  • the determination method 3 by limiting the number of downlink data clusters to a predetermined threshold or less in the self-contained operation, an uplink response signal transmitted in the same frequency band as the downlink data transmission band is also obtained. It is transmitted with the number of clusters below a predetermined threshold. Therefore, according to the determination method 3, it is possible to prevent an increase in CM / PAPR when an uplink response signal is transmitted by single carrier.
  • ⁇ Determination method 4> In the determination method 4, as in the determination method 1, the transmission band of the uplink response signal is limited to the transmission band of the downlink data in the self-contained operation.
  • the number of clusters in the transmission band of the uplink response signal is further limited to a predetermined threshold or less in consideration of the same point of view regarding CM / PAPR as in the determination method 3.
  • the response signal resource control unit 111 of the base station 100 and the response signal resource control unit 208 of the terminal 200 transmit the uplink for the response signal so that the number of clusters in the transmission band of the uplink response signal is equal to or less than a predetermined threshold.
  • the threshold may be the maximum number of clusters in which CM / PAPR falls below a predetermined value at the time of single carrier transmission, as in decision method 3.
  • the number of clusters set as the threshold value may be derived in advance and set in a specification or may be set in advance as a cell specific parameter.
  • FIG. 11 shows an example of frequency resource allocation of downlink data (DL data) and uplink response signal (HARQ-ACK) according to determination method 4.
  • DL data downlink data
  • HARQ-ACK uplink response signal
  • the scheduling unit 101 of the base station 100 allocates three clusters (cluster # 0 to # 2) to the downlink data addressed to the terminal 200.
  • the number of clusters or less is determined as the transmission band of the uplink response signal (HARQ-ACK).
  • the base station 100 and the terminal 200 as a radio resource of the uplink response signal (in the order of wider bandwidth per cluster among a plurality of clusters (cluster # 0 to # 2)) cluster # 0, # 2) may be selected. That is, the transmission band of the uplink response signal is a cluster of a number equal to or less than the threshold value with a wider bandwidth per cluster among a plurality of clusters to which downlink data is allocated.
  • a cluster having a wider bandwidth per cluster among a plurality of clusters in the downlink data transmission band is selected with priority over the transmission band of the uplink response signal.
  • the method of selecting the transmission band of the uplink response signal is not limited to the method of selecting the bandwidth per cluster in the order of wide bandwidth as shown in FIG. It may be selected as a transmission band.
  • the base station 100 and the terminal 200 can determine the transmission band of the uplink response signal by a simple process while preventing an increase in CM / PAPR of the uplink response signal.
  • ⁇ Determination method 5> In the determination method 5, as in the determination method 1, the transmission band of the uplink response signal is limited within the transmission band of the downlink data in the self-contained operation.
  • the number of uplink response signal transmission symbols (also called the number of OFDM symbols, that is, the time resource amount) is further changed according to the transmission bandwidth of the uplink response signal (that is, the frequency resource amount).
  • the response signal resource control unit 111 of the base station 100 and the response signal resource control unit 208 of the terminal 200 are configured such that the number of uplink response signal transmission symbols decreases as the transmission band of the uplink response signal (or downlink data) is narrower. Set many (time resources).
  • FIG. 12 shows an example of frequency resource allocation for downlink data (DL data) and uplink response signal (HARQ-ACK) according to determination method 5.
  • DL data downlink data
  • HARQ-ACK uplink response signal
  • Base station 100 (response signal resource control section 111) and terminal 200 (response signal resource control section 208) determine the transmission band of downlink data addressed to terminal 200 as the transmission band of the uplink response signal (HARQ-ACK). . Furthermore, the base station 100 and the terminal 200 increase the number of transmission symbols of the uplink response signal when the bandwidth BW of the transmission band is equal to or less than the predetermined value X [RB].
  • the terminal 200 sets the number of uplink response signal transmission symbols to 2 symbols.
  • terminal 200 sets the number of uplink response signal transmission symbols to one symbol, as shown in FIGS.
  • the terminal 200 When the transmission bandwidth of the uplink response signal is narrow (when BW ⁇ X), it is difficult for terminal 200 to transmit the necessary number of bits for the uplink response signal with a desired quality.
  • the terminal 200 allocates the resource of the uplink response signal in the time direction. By extending to, the necessary number of bits can be transmitted with a desired quality.
  • the coverage performance of the uplink response signal is reduced by changing the number of transmission symbols of the uplink response signal according to the transmission bandwidth of the downlink data (that is, the uplink response signal). Can be prevented.
  • the base station 100 transmits a plurality of downlink data (DL data) allocated by a downlink control signal (DL grant) in a plurality of periods within a self-contained time unit. May be. At this time, the transmission bands of the downlink data transmitted in each period may be different from each other. Further, terminal 200 may transmit one response signal for downlink data transmitted in a plurality of periods.
  • DL data downlink data
  • DL grant downlink control signal
  • the base station 100 and the terminal 200 transmit the uplink response signal transmission band to the downlink data transmission band that is temporally closest to the feedback timing of the uplink response signal (that is, the downlink data transmitted at the latest timing).
  • the transmission band may be limited within the band A) shown in FIG.
  • the base station 100 and the terminal 200 transmit the uplink response signal transmission band to the downlink data transmission band most distant in time from the uplink response signal feedback timing (that is, the downlink data transmitted at the earliest timing).
  • the transmission band may be limited within the band B) shown in FIG.
  • the base station 100 and the terminal 200 overlap the transmission band of the uplink response signal between the transmission bands of the downlink data transmitted in each period by each DL grant (that is, a common area. FIG. 13). It may be limited to band C).
  • One embodiment of the present disclosure can also be applied to an FDD system.
  • the base station 100 and the terminal 200 restrict the RB number (also referred to as the PRB number) of the uplink response signal transmission band within the RB number (within the PRB number) of the downlink data transmission band.
  • FIG. 14 shows an example of HARQ operation in Self-contained time unit in the FDD system.
  • the downlink bandwidth (DL BW) and the uplink bandwidth (UL BW) are configured by RB # 0 to RB # 99.
  • downlink data addressed to terminal 200 is allocated to RB # 20 to RB # 69.
  • the base station 100 and the terminal 200 use the same RB number of the frequency band used for transmitting the uplink response signal as the RB number (RB # 20 to RB # 69) of the frequency band in which the downlink data is transmitted.
  • the RB number (RB # 20 to RB # 69) of the uplink response signal transmission band matches the RB number (RB # 20 to RB # 69) of the downlink data transmission band. That is, as in the above embodiment (TDD system), also in the FDD system, the transmission bandwidth of the uplink response signal is equal to or less than the transmission bandwidth of the downlink data corresponding to the uplink response signal.
  • the transmission bandwidth of the uplink response signal is not limited to the case where it matches the transmission bandwidth of the downlink data, and may be equal to or less than the transmission bandwidth of the downlink data.
  • the RB number of the uplink response signal transmission band is not limited to the case where it is the same as the RB number of the downlink data transmission band.
  • the radio resource of the uplink response signal is limited to the radio resource used for downlink data transmission.
  • the radio resource of the uplink response signal transmitted in Self-contained time unit is limited to subbands that are frequency-division multiplexed for each use by NR. Also good.
  • the frequency band may be divided into a plurality of subbands according to use cases.
  • eMBB enhanced Mobile Broadband
  • uRLLC ultra Reliable Low Latency Communication
  • mMTC massive Machine Type Communication
  • the self-contained operation can be applied in the subband for uRLLC where low delay is required. Therefore, the base station 100 and the terminal 200 may limit the frequency band for transmitting the uplink response signal in the self-contained operation within the frequency band defined as the uRLLC subband. That is, the frequency band of downlink data described in the above embodiment may be read as a subband for uRLLC. Thereby, the transmission band of the uplink response signal for the downlink data for uRLLC is limited to the subband for uRLLC, not the entire system band.
  • the base station 100 can reduce the number of terminals that need to consider the orthogonal resource allocation of the uplink response signal to only terminals for uRLLC, and can easily perform downlink control signal (DL (grant) scheduling (frequency resource allocation). become. Thereby, the effect similar to the said embodiment can be acquired.
  • DL downlink control signal
  • each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit.
  • the integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the base station of the present disclosure includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and an uplink time for a response signal for the downlink data.
  • the bandwidth is equal to or less than the transmission bandwidth of the downlink data corresponding to the response signal.
  • the transmission band of the response signal is a band within the transmission band of the downlink data corresponding to the response signal.
  • the radio resource used for transmission of the response signal corresponds to the radio resource used for transmission of the downlink control signal including allocation information of the downlink data corresponding to the response signal. Attached.
  • the radio resource used for transmitting the response signal is associated with scheduling information for the terminal.
  • the number of clusters indicating the number of continuous bands is equal to or less than a predetermined threshold.
  • the number of clusters indicating the number of continuous bands in the transmission band of the response signal is equal to or less than a predetermined threshold.
  • the transmission band of the response signal is a number of clusters equal to or less than the threshold value with a wider bandwidth per cluster among a plurality of clusters to which the downlink data is allocated.
  • the narrower the transmission band of the response signal the more time resources are used for transmitting the response signal.
  • the transmission unit transmits the downlink data in each of a plurality of periods in the time unit, and the reception unit transmits the response signal in the latest period among the periods. Received within the transmission band of the downlink data.
  • the transmission unit transmits the downlink data in each of a plurality of periods in the time unit, and the reception unit transmits the response signal in the earliest period among the periods. Received within the transmission band of the downlink data.
  • the transmission unit transmits the downlink data in a plurality of periods in the time unit, respectively, and the reception unit transmits the response signal in the downlink transmitted in the plurality of periods. Reception is performed within a band that overlaps between transmission bands of link data.
  • the terminal of the present disclosure includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and an uplink time resource for a response signal for the downlink data.
  • a reception unit that receives the downlink control signal and the downlink data, and a transmission unit that transmits a response signal to the downlink data in the time unit, and the response
  • the transmission bandwidth of the signal is less than or equal to the transmission bandwidth of the downlink data corresponding to the response signal.
  • the communication method of the present disclosure includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and an uplink time for a response signal for the downlink data.
  • a time unit including a resource, the downlink control signal and the downlink data are transmitted, the response signal is received in the time unit, and a transmission bandwidth of the response signal corresponds to the response signal. It is less than the transmission bandwidth of the downlink data.
  • the communication method of the present disclosure includes a downlink time resource for a downlink control signal, a downlink time resource for downlink data allocated by the downlink control signal, and an uplink time for a response signal for the downlink data.
  • a time unit including a resource, the downlink control signal and the downlink data are received, and the response signal is transmitted in the time unit, and a transmission bandwidth of the response signal corresponds to the response signal It is less than the transmission bandwidth of the downlink data.
  • One embodiment of the present disclosure is useful for a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局において、送信部は、下りリンク制御信号用の下りリンク時間リソースと、下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、下りリンク制御信号及び下りリンクデータを送信する。受信部は、時間ユニットにおいて応答信号を受信する。ただし、応答信号の送信帯域幅は、当該応答信号に対応する下りリンクデータの送信帯域幅以下である。

Description

基地局、端末及び通信方法
 本開示は、基地局、端末及び通信方法に関する。
 モバイル通信における下りリンク通信では、一般的に、基地局(「eNB」と呼ぶこともある)が端末(「UE(User Equipment)」と呼ぶこともある)に対して、データを受信するための制御信号を送信する。端末は、受信した制御信号によって自端末に送信された制御情報を復号し、データの受信に必要な周波数割当又は適応制御などに関する情報を得る。
 また、モバイル通信では、一般的に、下りリンクデータに対してHARQ(Hybrid Automatic Repeat Request)が適用される。つまり、端末は、下りリンクデータの誤り検出結果を示す応答信号を基地局へフィードバックする。
 以下では、従来技術として、3GPP(3rd Generation Partnership Project)により標準化されたLTE(Long Term Evolution)における下りリンクデータに対するHARQの動作について説明する(例えば、非特許文献1-3を参照)。
 LTEでは、基地局は、システム帯域内のリソースブロック(RB: Resource Block)をサブフレームと呼ばれる時間単位毎に端末に対して割り当てることにより通信を行う。また、基地局は、下りリンク制御チャネル(PDCCH: Physical Downlink Control Channel)を用いて、端末が下りリンクデータを受信するための制御情報(DL grant)を送信する。端末は、受信したPDCCH信号によって自機に送信された制御情報を復号し、データの受信に必要な周波数割当又は適応制御などに関する情報を得る。なお、DL grantは、DL assignmentとも呼ばれることもある。
 また、LTEでは、下りリンクデータに対してHARQが適用される。つまり、端末は、下りリンクデータの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は、下りリンクデータに対してCRC(Cyclic Redundancy Check)を行って、CRCの演算結果に誤りがなければ肯定応答(ACK: Acknowledgement)を、CRC演算結果に誤りがあれば否定応答(NACK: Negative Acknowledgement)を応答信号として基地局へフィードバックする。この応答信号(ACK又はNACK)のフィードバックには、上りリンク制御チャネル(PUCCH: Physical Uplink Control Channel)が用いられる。
 また、LTEにおいて、FDD(Frequency Division Duplex)システムでは、下りリンクデータに対する応答信号は、下りリンクデータが送信されたサブフレームより4サブフレーム後の対象サブフレーム内のPUCCHリソースで送信される。また、TDD(Time Division Duplex)システムでは、下りリンクデータに対する応答信号は、下りリンクデータが送信されたサブフレームより4サブフレーム以上後の対象サブフレーム内のPUCCHリソースで送信される。
 ところで、近年のモバイルブロードバンドを利用したサービスの普及に伴い、モバイル通信におけるデータトラフィックは指数関数的に増加を続けており、将来に向けてデータ伝送容量の拡大が急務となっている。また、今後はあらゆる「モノ」がインターネットを介してつながるIoT(Internet of Things)の飛躍的な発展が期待されている。IoTによるサービスの多様化を支えるには、データ伝送容量だけではなく、低遅延性及び通信エリア(カバレッジ)などのさまざまな要件について、飛躍的な高度化が求められる。こうした背景を受けて、第4世代移動通信システム(4G: 4th Generation mobile communication systems)と比較して性能及び機能を大幅に向上する第5世代移動通信システム(5G)の技術開発・標準化が進められている。
 4Gの無線アクセス技術(RAT: Radio Access Technology)の1つとして、3GPPにより標準化されたLTE-Advancedがある。3GPPでは、5Gの標準化において、LTE-Advancedとは必ずしも後方互換性を持たない新しい無線アクセス技術(NR: New RAT)の技術開発を進めている。
 NRでは、5Gの要求条件の1つである低遅延を実現する方法として、下りリンクデータを受信するために必要な下りリンク制御信号の受信、当該下りリンク制御信号によって割り当てられた下りリンクデータの受信、及び、当該下りリンクデータに対する応答信号の基地局へのフィードバックを或る一定時間間隔の時間ユニット(例えば1サブフレーム、あるいは、NRサブフレーム)で行う「Self-contained」と呼ばれる動作が検討されている(例えば、非特許文献4を参照)。
 しかしながら、Self-contained動作において、HARQを考慮した下りリンク制御信号のスケジューリング方法に関しては十分に検討がなされていない。
 本開示の一態様は、Self-contained動作においてHARQを考慮した下りリンク制御信号のスケジューリングを効率良く行うことができる基地局、端末及び通信方法を提供することである。
 本開示の一態様に係る基地局は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを送信する送信部と、前記時間ユニットにおいて前記応答信号を受信する受信部と、を具備し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である構成を採る。
 本開示の一態様に係る端末は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを受信する受信部と、前記時間ユニットにおいて前記下りリンクデータに対する応答信号を送信する送信部と、を具備し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である構成を採る。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、または、記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、Self-contained動作においてHARQを考慮した下りリンク制御信号のスケジューリングを効率良く行うことができる。
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/または効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つまたはそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。
TDDシステムにおけるSelf-contained動作例を示す図 Self-contained time unit内のHARQ動作例を示す図 一実施の形態に係る基地局の要部構成を示すブロック図 一実施の形態に係る端末の要部構成を示すブロック図 一実施の形態に係る基地局の構成を示すブロック図 一実施の形態に係る端末の構成を示すブロック図 一実施の形態の決定方法1に係るSelf-contained time unit内のHARQ動作例を示す図 一実施の形態の決定方法1に係るSelf-contained time unit内の他のHARQ動作例を示す図 一実施の形態の決定方法2に係るSelf-contained time unit内のHARQ動作例を示す図 一実施の形態の決定方法3に係るSelf-contained time unit内のHARQ動作例を示す図 一実施の形態の決定方法4に係るSelf-contained time unit内のHARQ動作例を示す図 一実施の形態の決定方法5に係るSelf-contained time unit内のHARQ動作例を示す図 他の実施の形態に係るSelf-contained time unit内のHARQ動作例を示す図 他の実施の形態に係るSelf-contained time unit内のHARQ動作例を示す図 他の実施の形態に係るSelf-contained time unit内のHARQ動作例を示す図
 [本開示に至る経緯]
 まず、本開示に至る経緯について説明する。
 図1は、TDDシステムにおけるSelf-contained動作の一例を示す。図1に示すように、端末は、下りリンクデータを受信するために必要な下りリンク制御信号の受信、当該下りリンク制御信号によって割り当てられる下りリンクデータの受信、及び、当該下りリンクデータに対する応答信号の基地局へのフィードバックを一定時間間隔の時間ユニット(以下、「Self-contained time unit」と呼ぶ)で行う。つまり、図1に示すように、Self-contained time unit(単に「Time unit」と表す)は、下りリンク制御信号(DL control)用の下りリンク時間リソースと、当該下りリンク制御信号によって割り当てられる下りリンクデータ(DL data)用の下りリンク時間リソースと、当該下りリンクデータに対する応答信号(HARQ-ACK)用の上りリンク時間リソースとを含む構成を採る。
 また、TDDシステムでは、下りリンク通信から上りリンク通信への切り替え、又は、下りリンクデータの復号のためのガード時間(GP: Guard Period)が設けられる。
 なお、Self-contained time unitは、「Self-contained NR subframe」と呼ばれることもある。
 Self-contained動作における上り応答信号(UL-HARQ-ACK)の送信方法として、図2に示すように、LTEのSRS(Sounding Reference Signal)の送信方法と同様にして、システム帯域全体に所定のサブキャリア間隔で信号を送信するDistributed送信を用いることが考えらえる。システム帯域全体で上り応答信号がDistributed送信されることで周波数ダイバーシチゲインが得られる。
 また、Self-contained動作における上り応答信号の送信リソースの通知方法として、図2に示すように、LTEの上り応答信号の送信に使用されるPUCCHリソース(直交符号系列番号)の通知方法と同様にして、下りリンク制御信号(DL grant)が占有するCCE(Control Channel Element)のうちの先頭CCEインデックスと、上り応答信号の送信リソース(サブキャリア位置又は符号系列番号等)とを一意に対応付けることが考えられる。上り応答信号の送信リソースがDL grantに使用されるCCEによって間接的に(Implicitに)通知されることで、DL grantのオーバヘッドが増加しない利点がある。
 例えば、図2では、DL data#1の送信帯域に、UE#2及びUE#3がMulti-user(MU)-MIMOで多重されている。ここで、UE#2の下りリンクデータをスケジューリングするための下りリンク制御信号(DL grant)が占有する無線リソースの先頭CCEインデックス番号はX(CCE#X)である。ここで、CCEインデックスと上り応答信号の送信リソースとの対応関係は、予め仕様書で定義するか、あるいは、基地局がセル単位で端末へ予め報知する等によって基地局と端末との間で共有している。図2では、CCEインデックスがXの場合、上り応答信号の送信リソースは、Comb番号(サブキャリア位置)=2及びComb間隔(サブキャリア間隔)=6に一意に対応付けられている。よって、UE#2は、上り応答信号を、Comb番号=2とComb間隔=6で特定される無線リソース(上りリンクリソース)を用いて、システム帯域全体でDistributed送信する。
 しかしながら、図2に示す動作では、下りリンク制御信号(DL grant)のスケジューリングが複雑になるという問題がある。
 具体的には、基地局のスケジューラは、システム帯域内で多重する複数のUEの上り応答信号の送信リソースの直交割当、及び、DL grantの受信性能を考慮して、DL grantの送信リソース(つまり、先頭CCEインデックス)を選択する必要がある。
 例えば、図2では、システム帯域内でUE#0~UE#4の5UEのDL dataがスケジューリングされている。この場合、基地局のスケジューラは、これら5個のUEの上り応答信号の送信リソースの直交割当と、5個のUEの各々が受信性能を満たす送信帯域とを考慮して、各UEに対するDL grantの送信リソースを選択する必要がある。
 特に、Self-contained動作では、LTEと比較して、上り応答信号の送信に使用できるリソースは少なくなる。よって、このようなSelf-contained動作のように上り応答信号の直交割当に使用できるリソース数が少ない場合には、DL grantに対してより複雑なスケジューリングが要求される。例えば、DL grantのスケジューリングの際、DL grantのCCEインデックスによって上り応答信号の直交リソースの割当ができない場合、所望のタイミングで下りリンクデータをスケジューリングできない端末が発生し、遅延時間が増加してしまう。
 そこで、本開示の一態様は、Self-contained動作を用いる場合に、当該Self-contained time unit内の下りリンクデータに対する上り応答信号を送信するための上りリンクの周波数リソースを適切に制御し、下りリンク制御信号のスケジューリングを効率良く行うことを目的とする。
 以下、本開示の実施の形態について図面を参照して詳細に説明する。
 [通信システムの概要]
 本開示の各実施の形態に係る通信システムは、基地局100及び端末200を備える。
 なお、以下では、TDDシステムを前提として説明する。ただし、本開示の一態様は、後述するようにFDDシステムでも同様に適用することができる。
 図3は、本開示の各実施の形態に係る基地局100の要部構成を示すブロック図である。図3に示す基地局100において、送信部108は、下りリンク制御信号用の下りリンク時間リソースと、下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニット(Self-contained time unit)において、下りリンク制御信号及び下りリンクデータを送信する。受信部110は、時間ユニットにおいて応答信号を受信する。ただし、応答信号の送信帯域幅は、当該応答信号に対応する下りリンクデータの送信帯域幅以下である。
 図4は、本開示の各実施の形態に係る端末200の要部構成を示すブロック図である。図4に示す端末200において、受信部202は、下りリンク制御信号用の下りリンク時間リソースと、下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニット(Self-contained time unit)において、下りリンク制御信号、及び、前記下りリンクデータを受信する。送信部212は、時間ユニットにおいて下りリンクデータに対する応答信号を送信する。ただし、応答信号の送信帯域幅は、当該応答信号に対応する下りリンクデータの送信帯域幅以下である。
 [基地局の構成]
 図5は、本実施の形態に係る基地局100の構成を示すブロック図である。図5において、基地局100は、スケジューリング部101と、制御信号生成部102と、制御信号変調部103と、データ符号化部104と、再送制御部105と、データ変調部106と、信号割当部107と、送信部108と、アンテナ109と、受信部110と、応答信号リソース制御部111と、抽出部112と、復調・復号部113と、判定部114と、を有する。
 スケジューリング部101は、端末200に対して、Self-contained time unitにおける下りリンク制御信号及び下りリンクデータに関するスケジューリング情報(例えば、割当リソース情報(周波数、時間、符号リソース)、端末ID、データ復調用参照信号(DMRS:demodulation reference signal))情報、変調・符号化方式など)を決定する。スケジューリング部101は、スケジューリング情報を制御信号生成部102、データ符号化部104、信号割当部107及び応答信号リソース制御部111に出力する。
 制御信号生成部102は、端末200向けの制御信号を生成する。制御信号には、セル固有の上位レイヤの信号、グループ又はRAT固有の上位レイヤの信号、端末固有の上位レイヤの信号、及び、下りリンクデータの割当を指示する下りリンク割当情報(スケジューリング情報)が含まれる。制御信号生成部102は、これらの制御情報を用いて、制御情報ビット列を生成し、生成された制御情報ビット列を符号化し、符号化後の制御信号を制御信号変調部103へ出力する。
 制御信号変調部103は、制御信号生成部102から受け取る制御信号を変調し、変調後の制御信号(シンボル列)を信号割当部107へ出力する。
 データ符号化部104は、スケジューリング部101から受け取る符号化方式に従って、送信データ(下りリンクデータ)に対して誤り訂正符号化を施し、符号化後のデータ信号を再送制御部105へ出力する。
 再送制御部105は、初回送信時にはデータ符号化部104から受け取る符号化後のデータ信号を、保持するとともにデータ変調部106へ出力する。また、再送制御部105は、再送時には、判定部114からの判定結果に基づいて保持データを制御する。具体的には、再送制御部105は、データ信号に対するNACKを受け取ると、対応する保持データをデータ変調部106へ出力する。また、再送制御部105は、送信データに対するACKを受け取ると、対応する保持データを破棄し、下りリンクデータの送信を終了する。
 データ変調部106は、再送制御部105から受け取るデータ信号を変調して、データ変調信号を信号割当部107へ出力する。
 信号割当部107は、制御信号変調部103から受け取る制御信号(シンボル列)及びデータ変調部106から受け取るデータ変調信号を、スケジューリング部101から指示される無線リソースにマッピングする。信号割当部107は、信号がマッピングされた下りリンクの信号を送信部108に出力する。
 送信部108は、信号割当部107から受け取る信号に対してD/A(Digital-to-Analog)変換、アップコンバート等のRF(Radio Frequency)処理を行い、アンテナ109を介して端末200に無線信号を送信する。
 受信部110は、アンテナ109を介して受信された端末200からの上りリンク信号の応答信号波形に対して、ダウンコンバート又はA/D(Analog-to-Digital)変換などのRF処理を行い、得られる受信信号を抽出部112に出力する。
 応答信号リソース制御部111は、スケジューリング部101から出力されるSelf-contained time unitにおける端末200のスケジューリング情報(下りリンクデータの割当リソース情報、端末ID、データ復調用参照信号情報等)に基づいて、応答信号の送信に使用される無線リソース(周波数、時間、符号リソース)を決定する。応答信号リソース制御部111は、決定した無線リソースを示す情報を抽出部112へ出力する。なお、応答信号リソース制御部111における応答信号の無線リソース決定方法の詳細については後述する。
 抽出部112は、応答信号リソース制御部111から受け取る情報に基づいて、受信信号から、上りリンクの応答信号が送信された無線リソース部分を抽出し、受信応答信号を復調・復号部113に出力する。
 復調・復号部113は、抽出部112から受け取る受信応答信号に対して、等化、復調及び復号を施し、復号後のビット系列を判定部114へ出力する。
 判定部114は、復調・復号部113から入力されるビット系列に基づいて、端末200から送信された応答信号が、送信された下りリンクデータに対してACK又はNACKの何れを示しているかを判定する。判定部114は、判定結果(ACK又はNACK)を再送制御部105に出力する。
 [端末の構成]
 図6は、本実施の形態に係る端末200の構成を示すブロック図である。図6において、端末200は、アンテナ201と、受信部202と、抽出部203と、制御信号復号部204と、データ復調部205と、データ復号部206と、誤り検出部207と、応答信号リソース制御部208と、応答信号生成部209と、符号化・変調部210と、信号割当部211と、送信部212と、を有する。
 受信部202は、基地局100から送信された制御信号及びデータ信号を、アンテナ201を介して受信し、無線受信信号に対してダウンコンバート又はAD変換などのRF処理を行い、ベースバンドの信号を得る。受信部202は、信号を抽出部203へ出力する。
 抽出部203は、受信部202から受け取る信号から制御信号を抽出し、制御信号復号部204へ出力する。また、抽出部203は、受信部202から受け取る信号から下りリンクデータを抽出し、データ復調部205へ出力する。
 制御信号復号部204は、抽出部から受け取る制御信号に対してブラインド復号を行い、自機宛ての制御信号の復号を試みる。制御信号復号部204は、ブラインド復号した結果、自機宛ての制御信号であると判定した場合、当該制御信号に含まれるスケジューリング情報(例えば、割当リソース情報(周波数、時間、符号リソース)、端末ID、DMRS情報、変調・符号化方式など)をデータ復調部205及び応答信号リソース制御部208へ出力する。
 データ復調部205は、制御信号復号部204から受け取る下りリンクデータの割当リソース情報に基づいて、抽出部203から受け取る下りリンクデータを復調し、復調後の下りリンクデータをデータ復号部206へ出力する。
 データ復号部206は、データ復調部205から受け取る下りリンクデータを復号し、復号後の下りリンクデータを誤り検出部207へ出力する。
 誤り検出部207は、データ復号部206から受け取る下りリンクデータに対して、例えば、CRCによる誤り検出を行い、誤り検出結果(ACK又はNACK)を応答信号生成部209へ出力する。また、誤り検出部207は、誤り検出の結果、誤り無しと判定した下りリンクデータを受信データとして出力する。
 応答信号リソース制御部208は、制御信号復号部204から出力されるSelf-contained time unitにおける端末200のスケジューリング情報(例えば、下りリンクデータの割当リソース(周波数、時間、符号リソース)に関する情報、端末ID、データ復調用参照信号情報等)に基づいて、基地局100の応答信号リソース制御部111(図5)と同様の方法で、応答信号の送信に使用される無線リソース(周波数、時間、符号リソース)を決定する。応答信号リソース制御部208は、決定した無線リソースを示す情報を信号割当部211へ出力する。なお、応答信号リソース制御部208における応答信号の無線リソース決定方法の詳細については後述する。
 応答信号生成部209は、誤り検出部207から受け取る誤り検出結果(ACK又はNACK)を用いて、受信した下りリンクデータに対する応答信号(ビット系列)を生成し、応答信号を符号化・変調部210へ出力する。
 符号化・変調部210は、応答信号生成部209から受け取る応答信号(ビット系列)に対して誤り訂正符号化を行い、符号化後のビット系列を変調して、変調後のシンボル系列を信号割当部211へ出力する。
 信号割当部211は、符号化・変調部210から受け取る信号を、応答信号リソース制御部208から指示されたSelf-contained time unit内の上りリンクリソース(時間、周波数、符号リソース)にマッピングする。例えば、信号割当部211は、所定のサブキャリア間隔で応答信号を割り当てるDistributed送信を適用してもよい。
 送信部212は、信号割当部211から受け取る信号に対してD/A変換、アップコンバート等のRF処理を行い、アンテナ201を介して基地局100に無線信号を送信する。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200における動作について詳細に説明する。
 以下、基地局100(応答信号リソース制御部111)及び端末200(応答信号リソース制御部208)における応答信号の送信に使用する無線リソースの決定方法1~5についてそれぞれ説明する。
 <決定方法1>
 決定方法1では、基地局100及び端末200は、Self-contained動作において上り応答信号の送信帯域を、下りリンクデータの送信帯域の範囲内に制限する。
 図7は、決定方法1に係る下りリンクデータ(DL data)及び上り応答信号(HARQ-ACK)の周波数リソース割当例を示す。
 図7では、基地局100は、Self-contained time unitにおいて、端末ID=2の端末(UE#2)に対して、下りリンク制御信号(DL grant)を送信し、当該DL grantによって割り当てられるDL data#1(下りリンクデータ)を送信する。そして、UE#2(端末200)は、受信したDL data#1の誤り検出結果に対応した上り応答信号(HARQ-ACK)を、Self-contained time unit内の上りリンクリソースで基地局100へフィードバックする。
 この際、上り応答信号の送信に使用される無線リソースの複数UE間での直交化には、UE間で異なるサブキャリア(Comb)を用いたDistributed送信を適用してもよく(例えば、図7を参照)、UE間で異なる直交符号を用いるCDMAを適用してもよい。
 また、上り応答信号の送信に使用する無線リソースの通知方法は、LTEと同様、下りリンク制御信号(DL grant)が占有するリソースの先頭CCEインデックスと上りリンクリソース(直交リソース)とを一意に対応付けて間接的に(Implicit)に通知されてもよい。つまり、上り応答信号の送信に使用される無線リソースは、当該上り応答信号に対応する下りリンクデータの割当情報を含む下りリンク制御信号の送信に使用される無線リソースに対応付けられる。例えば、下りリンク制御信号の送信に使用されるリソースのCCEインデックス(図7ではCCE#X)と、上り応答信号の送信に使用されるサブキャリアのComb番号及びComb間隔(図7ではComb#2、Comb interval=3)とを一意に対応付けてもよい。こうすることで、DL grantのオーバヘッドを増加させることなく、上り応答信号の送信帯域内で複数のUEを直交化できる。
 また、基地局100及び端末200は、上り応答信号の送信帯域を、下りリンクデータの送信帯域と一致させる。例えば、図7では、基地局100及びUE#2(端末200)は、UE#2宛ての下りリンクデータであるDL data#1の送信帯域と同一の周波数帯域を、UE#2における上り応答信号(UL HARQ-ACK for UE#2)の送信帯域に決定する。
 これにより、各UE宛ての下りリンクデータの送信帯域内で上り応答信号を送信するUEは、当該下りリンクデータの送信帯域でMU-MIMOによって多重されたUEのみとなる。例えば、図7では、UE#2宛てのDL data#1の送信帯域内には、UE#2及びUE#3がMU-MIMOで多重されている。よって、DL data#1の送信帯域を用いて上り応答信号を送信するUEは、UE#2及びUE#3のみである。つまり、DL data#1の送信帯域では、他のUE#0、UE#1、UE#4(例えば、図2を参照)の上り応答信号は送信されない。
 よって、基地局100のスケジューリング部101は、DL data#1の送信帯域で多重されるUE#2,UE#3に対してのみ、上り応答信号の送信リソースの直交割当及びDL grantの受信性能を考慮して、DL grantの送信リソース(先頭CCEインデックス)を選択すればよい。なお、図7に示す他の下りリンクデータの送信帯域についても同様である。
 これにより、基地局100のスケジューリング部101では、図2のようなシステム帯域全体で上り応答信号を送信する方法と比較して、上り応答信号の直交リソース割当の際に考慮する必要がある端末数を減らすことができる。つまり、決定方法1によれば、基地局100における下りリンク制御信号(DL grant)のスケジューリングが容易になる。
 なお、上り応答信号の送信帯域は、図7に示すように下りリンクデータの送信帯域に一致する場合に限定されない。上り応答信号の送信帯域は、当該応答信号に対応する下りリンクデータの送信帯域内の帯域であればよい。例えば、図8に示すように、上り応答信号の送信帯域は、下りリンクデータの送信帯域内の一部の帯域(図8では中央に配置する等)に制限してもよい。例えば、基地局100が上り応答信号の送信電力密度を上げるために、上り応答信号の送信帯域幅を所定帯域幅以内に制限する場合が考えられる。この場合、図8に示すように、上り応答信号の送信帯域としては、下りリンクデータの送信帯域よりも狭い帯域幅が設定される場合がある。
 以上のように、決定方法1では、基地局100及び端末200は、上り応答信号の送信帯域を、下りリンクデータの送信帯域内に制限する。これにより、上り応答信号の送信帯域幅は、当該応答信号に対応する下りリンクデータの送信帯域幅以下となる。
 こうすることで、システム帯域全体で上り応答信号を送信する場合(例えば、図2を参照)と比較して、上り応答信号の直交リソース割当を考慮する必要がある端末数を低減できる。よって、基地局100において、下りリンク制御信号(DL grant)のスケジューリング(周波数リソース割当)が容易になる。これにより、上り応答信号の直交リソース割当に使用できるリソース数がLTEと比較して少ないSelf-contained動作でも、DL grantのスケジューリングの際、DL grantのCCEインデックスの割当に起因して上り応答信号の直交リソースの割当ができなくなる端末が発生する確率を低くすることができる。また、所望のタイミングで下りリンクデータをスケジューリングできない端末200の発生が低減するので、遅延時間の増加を防ぐことができる。
 以上より、決定方法1によれば、Self-contained動作を用いる場合に、当該Self-contained time unit内の下りリンクデータに対する上り応答信号を送信するための上りリンクの周波数リソースを適切に制御し、下りリンク制御信号のスケジューリングを効率良く行うことができる。
 また、TDDシステムの場合、下りリンクデータは端末200の受信品質が良好な帯域にスケジューリングされる。このため、決定方法1によれば、下りリンクデータの送信帯域内に割り当てられる上り応答信号も、下りリンクデータと同様の周波数スケジューリングゲインを得ることができる。
 また、端末200は、DL grantによって通知される下りリンクデータの送信帯域と、DL grantの送信に使用されたリソース(先頭CCEインデックス)に一意に対応付けられたパラメータ(図7,図8ではComb番号及びComb間隔)とによって上り応答信号の無線リソースを特定できる。よって、決定方法1によれば、上り応答信号の無線リソース通知のための制御信号のオーバヘッドは増加しない。
 <決定方法2>
 決定方法2では、決定方法1と同様、Self-contained動作において上り応答信号の送信帯域は、下りリンクデータの送信帯域内に制限される。
 一方、決定方法1では、上り応答信号の送信に使用される無線リソース(例えば、Comb番号、Comb間隔、直交符号番号など)は、下りリンク制御信号(DL grant)の送信に使用されたリソース(先頭CCEインデックス)と一意に対応付けられたのに対して、決定方法2では、上り応答信号の無線リソースは、各端末200に対するスケジューリング情報(端末ID、DMRS情報など)と一意に対応付けられる。
 なお、決定方法2において上り応答信号の無線リソースと一意に対応付けられるスケジューリング情報は、同一周波数帯域内で下りリンクデータを送信する端末200間で互いに異なる情報である。
 図9は、決定方法2に係る下りリンクデータ(DL data)及び上り応答信号(HARQ-ACK)の周波数リソース割当例を示す。
 図9では、決定方法1と同様、基地局100は、Self-contained time unitにおいて、端末ID=2の端末(UE#2)及び端末ID=3の端末(UE#3)に対して、下りリンク制御信号(DL grant)を送信し、当該DL grantによってDL data#1(下りリンクデータ)をMU-MIMO送信する。そして、UE#2及びUE#3(端末200)は、受信したDL data#1の誤り検出結果に対応した上り応答信号(HARQ-ACK)を、Self-contained time unit内の上りリンクリソースで基地局100へそれぞれフィードバックする。
 この際、UE#2及びUE#3は、決定方法1と同様、DL data#1の送信帯域内で上り応答信号を送信する。上述したように、上り応答信号の送信帯域は、下りリンクデータの送信帯域内に制限されるので、上り応答信号の送信帯域で多重される端末200は、同一の周波数帯域において下りリンクデータがMU-MIMOで多重された端末(以下、MU-MIMO端末と呼ぶ。図9ではUE#2,UE#3)である。
 決定方法2では、基地局100及び端末200(UE#2,UE#3)は、端末200向けの下りリンクデータ(DL data#1)の送信帯域において、各端末200のスケジューリング情報に基づいて、当該端末200における上り応答信号の送信に使用する上りリンクリソース(直交リソース)を決定する。
 例えば、基地局100は、MU-MIMO端末の各々に対して、下りリンクデータを受信するために、異なる番号のDMRSに関する情報(DMRS情報)をDL grant等で通知する必要がある。つまり、DL grantで通知されるDMRS情報は、端末200間で異なるスケジューリング情報である。
 そこで、基地局100及び端末200は、DMRS番号と上り応答信号の送信に使用する上りリンクリソース(直交リソース。例えば、Comb番号、Comb間隔、直交符号番号など)とを一意に対応付けてもよい。これにより、上り応答信号の送信帯域が同じ端末200間で、各端末200のスケジューリング情報に応じて上り応答信号を直交化することができる。
 なお、DMRS番号と上り応答信号の直交リソースとの対応関係は、仕様書あるいはセル固有情報等で基地局100と端末200との間で予め共有する。また、上り応答信号の無線リソース情報の一部はDL grantで通知してもよい。例えば、上り応答信号のComb間隔はDL grantで明示的に通知され、上り応答信号のComb番号はDMRS番号と一意に対応付けて間接的に(Implicitに)通知されてもよい。
 例えば、図9では、UE#2に対して下りリンクデータ復調用にDMRS番号=0の参照信号(DMRS#0)が割り当てられ、UE#3に対して下りリンクデータ復調用にDMRS番号=1の参照信号(DMRS#1)が割り当てられている。また、図9では、DMRS#0と、Comb番号=2、Comb間隔=3とが一意に対応付けられ、DMRS#1と、Comb番号=1、Comb間隔=3とが一意に対応付けられている。
 よって、図9では、UE#2(DMRS#0)が上り応答信号の送信に使用する上りリンクリソース(Comb番号=2、Comb間隔=3)と、UE#3(DMRS#1)が上り応答信号の送信に使用する上りリンクリソース(Comb番号=1、Comb間隔=3)とは互いに異なる(つまり、直交する)。
 このように、決定方法2では、同一周波数帯域に下りリンクデータが割り当てられた複数の端末200間で異なるスケジューリング情報(図9ではDMRS番号)と、上り応答信号の送信に使用される上りリンクリソースとが一意に対応付けられる。
 これにより、基地局100は、上り応答信号のリソース割当(先頭CCEインデックス等の割当)を考慮せずに、下りリンク制御信号(DL grant)のスケジューリング(つまり、周波数割当(送信するCCE番号等)の決定)を行うことができる。つまり、決定方法2では、決定方法1と比較して、基地局100における下りリンク制御信号(DL grant)のスケジューリングがさらに容易になる。
 また、決定方法1と同様、TDDシステムの場合、下りリンクデータは端末200の受信品質が良好な帯域にスケジューリングされるので、決定方法2によれば、下りリンクデータの送信帯域内に割り当てられる上り応答信号も、下りリンクデータと同様の周波数スケジューリングゲインを得ることができる。
 また、端末200は、DL grantによって通知される下りリンクデータの送信帯域と、端末200のスケジューリング情報(図9ではDMRS情報)に一意に対応付けられたパラメータ(図9ではComb番号及びComb間隔)とによって上り応答信号の無線リソースを特定できる。よって、決定方法2によれば、決定方法1と同様、上り応答信号の無線リソース通知のための制御信号のオーバヘッドは増加しない。
 なお、図9では、上り応答信号の無線リソースと対応付けられるスケジューリング情報の一例としてDMRS番号を用いる場合について説明したが、上り応答信号の無線リソースと対応付けられるスケジューリング情報は、端末200間で異なる情報であればよい。例えば、端末ID(UE ID)と、上り応答信号の無線リソースとを一意に対応付けてもよい。この場合、基地局100は、上り応答信号の互いに直交する無線リソースに対応付けられた端末IDを有する複数の端末200を選択し、これらの端末200に対してMU-MIMO多重すればよい。これにより、当該端末200が送信する上り応答信号の直交リソース割当が可能となる。
 <決定方法3>
 決定方法3では、決定方法1と同様、Self-contained動作において上り応答信号の送信帯域は、下りリンクデータの送信帯域内に制限される。
 決定方法3では、さらに、以下の特徴に着眼した。
 UEによる上り応答信号の送信には、カバレッジ性能の向上を目的として、低CM(cubic metric)/低PAPR(ピーク電力対平均電力比:Peak-to-Average Power Ratio)の特徴を持つシングルキャリア送信が適用されることが考えられる。シングルキャリア送信では、データ送信に使用される連続帯域の塊(以下、クラスタと呼ぶ)の数が多いほど、CM/PAPRが増加するという特徴がある。
 そこで、決定方法3では、Self-contained動作において送信される下りリンクデータの送信帯域におけるクラスタ数を所定の閾値以下に制限する。
 すなわち、決定方法3では、下りリンクデータの割当クラスタ数の制限に伴い、Self-contained動作における上り応答信号の送信帯域のクラスタ数も、上記閾値以下に制限される。
 具体的には、基地局100のスケジューリング部101は、下りリンクデータのクラスタ数が所定閾値以下になるように下りリンクリソースを割り当てる。ここで、閾値は、シングルキャリア送信時にCM/PAPRが所定の値以下に収まる最大のクラスタ数でもよい。当該閾値として設定されるクラスタ数は、事前に導出され、仕様書で設定あるいはセル固有パラメータとして予め設定されてもよい。
 図10は、決定方法3に係る下りリンクデータ(DL data)及び上り応答信号(HARQ-ACK)の周波数リソース割当例を示す。
 なお、図10では、クラスタ数の閾値は3個以上の値に設定されているものとする。よって、図10では、基地局100のスケジューリング部101は、端末200宛ての下りリンクデータに対して、閾値以下の3つのクラスタ(cluster#0~#2)を割り当てる。
 そこで、基地局100(応答信号リソース制御部111)及び端末200(応答信号リソース制御部208)は、端末200宛ての下りリンクデータの送信帯域であるcluster#0~#2を、上り応答信号(HARQ-ACK)の送信帯域に決定する。
 このようにして、決定方法3では、Self-contained動作において下りリンクデータのクラスタ数を所定閾値以下に制限することで、下りリンクデータの送信帯域と同一の周波数帯域で送信される上り応答信号も所定の閾値以下のクラスタ数で送信される。よって、決定方法3によれば、上り応答信号をシングルキャリア送信する場合に、CM/PAPRの増加を防止することができる。
 <決定方法4>
 決定方法4では、決定方法1と同様、Self-contained動作において上り応答信号の送信帯域は、下りリンクデータの送信帯域内に制限される。
 決定方法4では、さらに、決定方法3と同様のCM/PAPRに関する着眼点を考慮して、上り応答信号の送信帯域におけるクラスタ数を所定閾値以下に制限する。
 具体的には、基地局100の応答信号リソース制御部111及び端末200の応答信号リソース制御部208は、上り応答信号の送信帯域におけるクラスタ数が所定閾値以下になるように、応答信号用の上りリンクリソースを割り当てる。ここで、閾値は、決定方法3と同様、シングルキャリア送信時にCM/PAPRが所定の値以下に収まる最大のクラスタ数でもよい。当該閾値として設定されるクラスタ数は、事前に導出され、仕様書で設定あるいはセル固有パラメータとして予め設定されてもよい。
 図11は、決定方法4に係る下りリンクデータ(DL data)及び上り応答信号(HARQ-ACK)の周波数リソース割当例を示す。
 なお、図11では、クラスタ数の閾値は2個に設定されているものとする。また、図11では、基地局100のスケジューリング部101は、端末200宛ての下りリンクデータに対して、3つのクラスタ(cluster#0~#2)を割り当てている。
 そこで、基地局100(応答信号リソース制御部111)及び端末200(応答信号リソース制御部208)は、端末200宛ての下りリンクデータの送信帯域(cluster#0~#2)のうち、閾値=2個以下のクラスタを、上り応答信号(HARQ-ACK)の送信帯域に決定する。例えば、図11に示すように、基地局100及び端末200は、複数のクラスタ(cluster#0~#2)のうち、クラスタあたりの帯域幅がより広い順に、上り応答信号の無線リソースとしてクラスタ(cluster#0,#2)を選択してもよい。つまり、上り応答信号の送信帯域は、下りリンクデータが割り当てられる複数のクラスタのうち、クラスタあたりの帯域幅がより広い、閾値以下の数のクラスタである。
 このようにして、決定方法4では、Self-contained動作において上り応答信号のクラスタ数を所定の閾値以下に制限することで、上り応答信号をシングルキャリア送信する場合に、CM/PAPRの増加を防止することができる。
 また、下りリンクデータの送信帯域の複数のクラスタのうち、クラスタあたりの帯域幅がより広いクラスタが、上り応答信号の送信帯域に優先して選択される。これにより、上り応答信号の送信時のCM/PAPRの増加を防止しつつ、上り応答信号の送信帯域幅を広くすることができるので、端末200はより多くのビット数を送信でき、あるいは、誤り耐性を向上させることができる。
 なお、上り応答信号の送信帯域の選択方法は、図11のようにクラスタあたりの帯域幅の広い順に選択する方法に限定されず、例えば、クラスタの送信周波数が高い順又は低い順に上り応答信号の送信帯域として選択されてもよい。これにより、基地局100及び端末200では、上り応答信号のCM/PAPRの増加を防止しつつ、簡易な処理で上り応答信号の送信帯域を決定できる。
 <決定方法5>
 決定方法5では、決定方法1と同様、Self-contained動作において上り応答信号の送信帯域は、下りリンクデータの送信帯域内に制限される。
 決定方法5では、さらに、上り応答信号の送信帯域幅(つまり、周波数リソース量)に応じて、上り応答信号の送信シンボル数(OFDMシンボル数とも呼ばれる。つまり、時間リソース量)を変更する。
 具体的には、基地局100の応答信号リソース制御部111及び端末200の応答信号リソース制御部208は、上り応答信号(又は下りリンクデータ)の送信帯域が狭いほど、上り応答信号の送信シンボル数(時間リソース)を多く設定する。
 図12は、決定方法5に係る下りリンクデータ(DL data)及び上り応答信号(HARQ-ACK)の周波数リソース割当例を示す。
 基地局100(応答信号リソース制御部111)及び端末200(応答信号リソース制御部208)は、端末200宛ての下りリンクデータの送信帯域を、上り応答信号(HARQ-ACK)の送信帯域に決定する。さらに、基地局100及び端末200は、当該送信帯域の帯域幅BWが所定値X[RB]以下の場合、上り応答信号の送信シンボル数を増加させる。
 例えば、図12に示すように、端末200は、下りリンクデータの送信帯域幅BWが閾値X以下の場合、上り応答信号の送信シンボル数を2シンボルとする。一方、端末200は、下りリンクデータの送信帯域幅BWが閾値Xより大きい場合、図7~図11に示すように、上り応答信号の送信シンボル数を1シンボルとする。
 上り応答信号の送信帯域幅が狭い場合(BW≦Xの場合)、端末200は、当該上り応答信号に対して必要なビット数を所望の品質で送信することが困難となる。これに対して、決定方法5では、端末200は、下りリンクデータの送信帯域幅が狭い場合(つまり、上り応答信号の周波数方向のリソースが少ない場合)には、上り応答信号のリソースを時間方向に拡張することで、必要なビット数を所望の品質で送信することができる。
 このようにして、決定方法5では、下りリンクデータ(つまり、上り応答信号)の送信帯域幅に応じて、上り応答信号の送信シンボル数を変更することで、上り応答信号のカバレッジ性能の劣化を防止することができる。
 以上、本開示の実施の形態について説明した。
 [他の実施の形態]
 (1)図13に示すように、基地局100は、Self-contained time unit内において複数の期間で下りリンク制御信号(DL grant)によって割り当てられた複数の下りリンクデータ(DL data)をそれぞれ送信してもよい。この際、各期間で送信される下りリンクデータの送信帯域は互いに異なってもよい。また、端末200は、複数の期間で送信された下りリンクデータに対して1つの応答信号を送信してもよい。
 この場合、基地局100及び端末200は、上り応答信号の送信帯域を、上り応答信号のフィードバックタイミングに時間的に最も近い下りリンクデータの送信帯域(つまり、最も遅いタイミングで送信された下りリンクデータの送信帯域。図13に示す帯域A)内に制限してもよい。
 または、基地局100及び端末200は、上り応答信号の送信帯域を、上り応答信号のフィードバックタイミングから時間的に最も離れた下りリンクデータの送信帯域(つまり、最も早いタイミングで送信された下りリンクデータの送信帯域。図13に示す帯域B)内に制限してもよい。
 また、基地局100及び端末200は、上り応答信号の送信帯域を、各DL grantによって各期間で送信された下りリンクデータの送信帯域間で重複する帯域(つまり、共通する領域。図13に示す帯域C)に制限してもよい。
 このような上り応答信号の送信帯域に関する制限ルールを基地局100と端末200とで予め共有することで、上記実施の形態と同様の効果を得ることができる。
 (2)本開示の一態様は、FDDシステムにも適用することができる。FDDシステムの場合、基地局100及び端末200は、上り応答信号の送信帯域のRB番号(PRB番号とも呼ばれる)を、下りリンクデータの送信帯域のRB番号内(PRB番号内)に制限する。
 図14は、FDDシステムにおけるSelf-contained time unit内のHARQ動作例を示す。図14に示すFDDシステムでは、下りリンクの帯域(DL BW)及び上りリンクの帯域(UL BW)は、RB#0~RB#99によって構成される。また、図14では、端末200宛ての下りリンクデータがRB#20~RB#69に割り当てられている。
 この場合、基地局100及び端末200は、上り応答信号の送信に使用する周波数帯域のRB番号を、下りリンクデータが送信された周波数帯域のRB番号(RB#20~RB#69)と同一の番号内に制限する。図14の一例では、上り応答信号の送信帯域のRB番号(RB#20~RB#69)は、下りリンクデータの送信帯域のRB番号(RB#20~RB#69)と一致する。つまり、上記実施の形態(TDDシステム)と同様、FDDシステムにおいても、上り応答信号の送信帯域幅は、当該上り応答信号に対応する下りリンクデータの送信帯域幅以下である。
 これにより、FDDシステムにおいても、上記実施の形態(TDDシステム)の場合と同様の効果を得ることができる。
 なお、FDDシステムにおいて、上り応答信号の送信帯域幅は、下りリンクデータの送信帯域幅に一致する場合に限定されず、下りリンクデータの送信帯域幅以下であればよい。また、FDDシステムにおいて、上り応答信号の送信帯域のRB番号は、下りリンクデータの送信帯域のRB番号と同一である場合に限定されない。
 (3)上記実施の形態では、上り応答信号の無線リソースを、下りリンクデータの送信に使用された無線リソースに制限する場合について説明した。ただし、本開示の一態様はこれに限定されず、例えば、Self-contained time unit内で送信される上り応答信号の無線リソースは、NRで用途毎に周波数分割多重されたサブバンドに制限されてもよい。
 ここで、NRでは、図15に示すように、周波数帯域がユースケースに応じて複数のサブバンドに分割されることが考えられる。具体的には、図15では、大容量通信が要求されるeMBB(enhanced Mobile Broadband)、低遅延通信が要求されるuRLLC(ultra Reliable Low Latency Communication)、及び、スモールパケットの大量送信が要求されるmMTC(massive Machine Type Communication)の3つのユースケース毎にサブバンドが分割されている。
 Self-contained動作は、低遅延が求められるuRLLC用のサブバンドで適用することが考えられる。そこで、基地局100及び端末200は、Self-contained動作において上り応答信号を送信する周波数帯域を、uRLLC用サブバンドとして定義された周波数帯域内に制限してもよい。つまり、上記実施の形態で説明した下りリンクデータの周波数帯域を、uRLLC用のサブバンドと読み替えてもよい。これにより、uRLLC用の下りリンクデータに対する上り応答信号の送信帯域は、システム帯域全体ではなく、uRLLC用のサブバンドに制限される。つまり、基地局100は、上り応答信号の直交リソース割当を考慮する必要がある端末数を、uRLLC向けの端末のみに低減でき、下りリンク制御信号(DL grant)のスケジューリング(周波数リソース割当)が容易になる。これにより、上記実施の形態と同様の効果を得ることができる。
 (4)また、上記実施の形態では、本開示の一態様をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアで実現することも可能である。
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 本開示の基地局は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを送信する送信部と、前記時間ユニットにおいて前記応答信号を受信する受信部と、を具備し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である。
 本開示の基地局において、前記応答信号の送信帯域は、当該応答信号に対応する前記下りリンクデータの送信帯域内の帯域である。
 本開示の基地局において、前記応答信号の送信に使用される無線リソースは、当該応答信号に対応する前記下りリンクデータの割当情報を含む前記下りリンク制御信号の送信に使用される無線リソースに対応付けられる。
 本開示の基地局において、前記応答信号の送信に使用される無線リソースは、前記端末に対するスケジューリング情報に対応付けられる。
 本開示の基地局において、前記下りリンクデータの送信帯域において、連続帯域の数を示すクラスタ数は所定の閾値以下である。
 本開示の基地局において、前記応答信号の送信帯域において、連続帯域の数を示すクラスタ数は所定の閾値以下である。
 本開示の基地局において、前記応答信号の送信帯域は、前記下りリンクデータが割り当てられる複数のクラスタのうち、クラスタあたりの帯域幅がより広い、前記閾値以下の数のクラスタである。
 本開示の基地局において、前記応答信号の送信帯域が狭いほど、前記応答信号の送信に使用される時間リソースは多い。
 本開示の基地局において、前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、前記受信部は、前記応答信号を、前記期間のうち最も遅い期間で送信された前記下りリンクデータの送信帯域内で受信する。
 本開示の基地局において、前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、前記受信部は、前記応答信号を、前記期間のうち最も早い期間で送信された前記下りリンクデータの送信帯域内で受信する。
 本開示の基地局において、前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、前記受信部は、前記応答信号を、前記複数の期間で送信された下りリンクデータの送信帯域間で重複する帯域内で受信する。
 本開示の端末は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを受信する受信部と、前記時間ユニットにおいて前記下りリンクデータに対する応答信号を送信する送信部と、を具備し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である。
 本開示の通信方法は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを送信し、前記時間ユニットにおいて前記応答信号を受信し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である。
 本開示の通信方法は、下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを受信し、前記時間ユニットにおいて前記応答信号を送信し、前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である。
 本開示の一態様は、移動通信システムに有用である。
 100 基地局
 101 スケジューリング部
 102 制御信号生成部
 103 制御信号変調部
 104 データ符号化部
 105 再送制御部
 106 データ変調部
 107,211 信号割当部
 108,212 送信部
 109,201 アンテナ
 110,202 受信部
 111,208 応答信号リソース制御部
 112,203 抽出部
 113 復調・復号部
 114 判定部
 200 端末
 204 制御信号復号部
 205 データ復調部
 206 データ復号部
 207 誤り検出部
 209 応答信号生成部
 210 符号化・変調部

Claims (14)

  1.  下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを送信する送信部と、
     前記時間ユニットにおいて前記応答信号を受信する受信部と、
     を具備し、
     前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である、
     基地局。
  2.  前記応答信号の送信帯域は、当該応答信号に対応する前記下りリンクデータの送信帯域内の帯域である、
     請求項1に記載の基地局。
  3.  前記応答信号の送信に使用される無線リソースは、当該応答信号に対応する前記下りリンクデータの割当情報を含む前記下りリンク制御信号の送信に使用される無線リソースに対応付けられる、
     請求項1に記載の基地局。
  4.  前記応答信号の送信に使用される無線リソースは、前記端末に対するスケジューリング情報に対応付けられる、
     請求項1に記載の基地局。
  5.  前記下りリンクデータの送信帯域において、連続帯域の数を示すクラスタ数は所定の閾値以下である、
     請求項2に記載の基地局。
  6.  前記応答信号の送信帯域において、連続帯域の数を示すクラスタ数は所定の閾値以下である、
     請求項2に記載の基地局。
  7.  前記応答信号の送信帯域は、前記下りリンクデータが割り当てられる複数のクラスタのうち、クラスタあたりの帯域幅がより広い、前記閾値以下の数のクラスタである、
     請求項6に記載の基地局。
  8.  前記応答信号の送信帯域が狭いほど、前記応答信号の送信に使用される時間リソースは多い、
     請求項1に記載の基地局。
  9.  前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、
     前記受信部は、前記応答信号を、前記期間のうち最も遅い期間で送信された前記下りリンクデータの送信帯域内で受信する、
     請求項1に記載の基地局。
  10.  前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、
     前記受信部は、前記応答信号を、前記期間のうち最も早い期間で送信された前記下りリンクデータの送信帯域内で受信する、
     請求項1に記載の基地局。
  11.  前記送信部は、前記下りリンクデータを、前記時間ユニット内の複数の期間でそれぞれ送信し、
     前記受信部は、前記応答信号を、前記複数の期間で送信された下りリンクデータの送信帯域間で重複する帯域内で受信する、
     請求項1に記載の基地局。
  12.  下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを受信する受信部と、
     前記時間ユニットにおいて前記下りリンクデータに対する応答信号を送信する送信部と、
     を具備し、
     前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である、
     端末。
  13.  下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを送信し、
     前記時間ユニットにおいて前記応答信号を受信し、
     前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である、
     通信方法。
  14.  下りリンク制御信号用の下りリンク時間リソースと、前記下りリンク制御信号によって割り当てられる下りリンクデータ用の下りリンク時間リソースと、前記下りリンクデータに対する応答信号用の上りリンク時間リソースとを含む時間ユニットにおいて、前記下りリンク制御信号、及び、前記下りリンクデータを受信し、
     前記時間ユニットにおいて前記応答信号を送信し、
     前記応答信号の送信帯域幅は、当該応答信号に対応する前記下りリンクデータの送信帯域幅以下である、
     通信方法。
PCT/JP2017/018769 2016-06-16 2017-05-19 基地局、端末及び通信方法 WO2017217182A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018523605A JP6914254B2 (ja) 2016-06-16 2017-05-19 基地局、端末及び通信方法
US16/306,378 US11044711B2 (en) 2016-06-16 2017-05-19 Base station, terminal, and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119760 2016-06-16
JP2016119760 2016-06-16

Publications (1)

Publication Number Publication Date
WO2017217182A1 true WO2017217182A1 (ja) 2017-12-21

Family

ID=60663477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018769 WO2017217182A1 (ja) 2016-06-16 2017-05-19 基地局、端末及び通信方法

Country Status (3)

Country Link
US (1) US11044711B2 (ja)
JP (1) JP6914254B2 (ja)
WO (1) WO2017217182A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10314037B2 (en) 2016-07-08 2019-06-04 Qualcomm Incorporated Latency reduction techniques in wireless communications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144477A (ja) * 2010-06-21 2015-08-06 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 通信装置、通信方法及び集積回路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132518B2 (ja) 2012-11-21 2017-05-24 オリンパス株式会社 マルチキャスト送信端末、マルチキャストシステム、プログラムおよびマルチキャスト送信方法
EP2932638B1 (en) 2012-12-14 2019-08-14 Telefonaktiebolaget LM Ericsson (publ) A network node, a wireless device and methods therein for enabling and performing harq transmissions in a d2d communication between wireless devices in a wireless telecommunications network
JP6285647B2 (ja) 2013-06-14 2018-02-28 株式会社Nttドコモ 無線基地局、無線通信システムおよび無線通信方法
WO2015005743A1 (ko) * 2013-07-12 2015-01-15 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신방법 및 장치
WO2017123276A1 (en) * 2016-01-15 2017-07-20 Intel IP Corporation 5g fdd low latency transmission subframe structure system and method of use
US10285170B2 (en) * 2016-01-19 2019-05-07 Samsung Electronics Co., Ltd. Method and apparatus for frame structure for advanced communication systems
WO2017150925A1 (ko) * 2016-03-02 2017-09-08 삼성전자 주식회사 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 장치
US10524237B2 (en) * 2016-03-07 2019-12-31 Samsung Electronics Co., Ltd. Control signaling for supporting multiple services in advanced communication systems
US10420088B2 (en) * 2016-06-06 2019-09-17 Qualcomm Incorporated Downlink slot structure, channel placement, and processing timeline options
WO2017213369A1 (ko) * 2016-06-07 2017-12-14 엘지전자 주식회사 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144477A (ja) * 2010-06-21 2015-08-06 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 通信装置、通信方法及び集積回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Discussion on affinity for unlicensed spectrum access in 5G new radio", 3GPP TSG-RAN WG1#85 R1-165182, 14 May 2016 (2016-05-14), XP051096224, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/Rl-165182.zip> [retrieved on 20170626] *
"initial views on frame structure for NR access technology", 3GPP TSG- RAN WG1#84B R1-163112, 1 April 2016 (2016-04-01), XP051079874, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84b/Docs/Rl-163112.zip> [retrieved on 20170626] *
ZTE: "ZTE Microelectronics, Discussions on HARQ operation for NR", 3GPP TSG-RAN WG1#85 R1- 164276, 14 May 2016 (2016-05-14), XP051090016, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_85/Docs/R1-164276.zip> [retrieved on 20170626] *

Also Published As

Publication number Publication date
US11044711B2 (en) 2021-06-22
JPWO2017217182A1 (ja) 2019-04-11
US20200329459A1 (en) 2020-10-15
JP6914254B2 (ja) 2021-08-04

Similar Documents

Publication Publication Date Title
CA3056577C (en) Method and device by which terminal receives data in wireless communication system
US9979581B2 (en) Control channel design for eLAA
KR102278389B1 (ko) 무선 셀룰라 통신 시스템에서 감소된 전송시간구간을 이용한 송수신 방법 및 장치
WO2011083740A1 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および回路装置
US11695510B2 (en) Base station, terminal, and communication method
JP5934700B2 (ja) 中継局、基地局、送信方法、及び受信方法
US11863478B2 (en) Base station, terminal, and communication method
KR20200015513A (ko) 단말 및 통신 방법
CN112771973A (zh) 终端及通信方法
US20240196410A1 (en) Base station, terminal, and communication method
JP6914254B2 (ja) 基地局、端末及び通信方法
JP7189979B2 (ja) 端末装置、通信方法および集積回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018523605

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813085

Country of ref document: EP

Kind code of ref document: A1