WO2017213441A1 - 리튬전지 - Google Patents
리튬전지 Download PDFInfo
- Publication number
- WO2017213441A1 WO2017213441A1 PCT/KR2017/005971 KR2017005971W WO2017213441A1 WO 2017213441 A1 WO2017213441 A1 WO 2017213441A1 KR 2017005971 W KR2017005971 W KR 2017005971W WO 2017213441 A1 WO2017213441 A1 WO 2017213441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium battery
- organic solvent
- aqueous organic
- electrolyte
- additive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- It relates to a lithium battery.
- Lithium batteries are used as power sources for portable electronic devices such as video cameras, mobile phones, and notebook computers.
- rechargeable lithium secondary batteries have a higher energy density per unit weight than 3 times and can be charged at a high speed as compared with conventional lead acid batteries, nickel-cadmium batteries, nickel hydrogen batteries, or nickel zinc batteries.
- the lithium secondary battery may increase the charging potential for high capacity. Under such a high voltage, the electrolyte may be easily oxidized and decomposed at the positive electrode of the lithium secondary battery. When the electrolyte is oxidatively decomposed, electrolyte decomposition products may be deposited on the positive electrode surface of the lithium secondary battery, and it may be difficult to maintain high voltage for a long time.
- One aspect is to provide a lithium battery that can improve the life characteristics at room temperature and high temperature and the rate of change in thickness of the anode under high voltage.
- a positive electrode having a mixture density of 3.9 g / cc or more;
- An electrolyte comprising a non-aqueous organic solvent disposed between the positive electrode and the negative electrode;
- the operating voltage of the lithium battery is more than 4.4V
- the non-aqueous organic solvent includes at least one first non-aqueous organic solvent selected from ethyl butyrate and methyl valerate,
- a lithium battery having a content of the first non-aqueous organic solvent is 20 to 50% by volume based on the total volume of the non-aqueous organic solvent.
- the high-voltage lithium battery containing a positive electrode having a mixture density of 3.9g / cc or more and operating voltage of 4.4V or more, at least one first non-aqueous organic solvent selected from ethyl butyrate and methyl valerate And an electrolyte having a content of the first non-aqueous organic solvent in an amount of 20 to 50% by volume based on the total volume of the non-aqueous organic solvent, and may improve life characteristics at room temperature and high temperature under high voltage. The rate of change of the thickness of can be reduced.
- FIG. 1 is a schematic view of a lithium secondary battery according to one embodiment.
- FIG. 2 is a cross-sectional view of a lithium secondary battery according to one embodiment.
- Figure 3 is a graph showing the discharge capacity according to the number of cycles at room temperature (25 °C) for the lithium battery prepared in Examples 1-2 and Comparative Examples 1-2.
- FIG. 6 is a graph showing the result of measuring the thickness of the anode from before the formation step to 700 th cycle at a high temperature (45 °C) for the lithium battery prepared in Examples 1-2 and Comparative Examples 1-2.
- FIG. 7 is a graph showing the discharge capacity according to the number of cycles at a high temperature (45 °C) for the lithium battery prepared in Examples 3 to 4 and Comparative Example 3.
- Example 9 is a graph showing the discharge capacity according to the number of cycles at a high temperature (45 °C) for the lithium batteries prepared in Example 1 and Comparative Example 4.
- Figure 10 is a graph showing the result of measuring the thickness of the anode after leaving in a constant temperature chamber of 60 °C for 21 days for the lithium battery prepared in Examples 1 and 2 and Comparative Examples 1 and 2.
- the lithium battery is composed of a positive electrode and a negative electrode that can occlude and release lithium ions in the non-aqueous electrolyte.
- LiCoO 2 or the like can be used as the positive electrode active material of the positive electrode, for example, carbon black or the like can be used as the negative electrode active material of the negative electrode.
- the electrolyte may contain, for example, a lithium salt such as LiPF 6 in a carbonate-based non-aqueous organic solvent.
- LiPF 6 and the like contained in the electrolyte are generated using PCl or the like, but anions such as Cl ions may remain in the electrolyte as acid contaminants.
- a positive electrode active material such as Co contained in the positive electrode is easily eluted by binding to acid contaminants of anions such as Cl ions remaining in the electrolyte. As a result, the surface of the positive electrode may be corroded to lower the capacity of the lithium battery and / or short-circuit may occur due to the transition metal such as Co eluted to reach the negative electrode.
- the positive electrode having a mixture density of 3.9g / cc or more; cathode; And an electrolyte including a non-aqueous organic solvent disposed between the positive electrode and the negative electrode, wherein the operating voltage of the lithium battery is 4.4 V or higher, and the non-aqueous organic solvent is ethyl butyrate and methyl valerate ( methyl valerate) may include at least one first non-aqueous organic solvent, and the content of the first non-aqueous organic solvent may be 20 to 50% by volume based on the total volume of the non-aqueous organic solvent.
- a lithium battery may include an electrolyte including a positive electrode, a negative electrode, and a non-aqueous organic solvent disposed between the positive electrode and the negative electrode having a mixture density of 3.9 g / cc or more.
- the lithium battery may include a positive electrode having a mixture density of 3.9 to 4.3 g / cc.
- the operating voltage of the lithium battery may be 4.4 to 4.5V.
- the lithium battery may include a positive electrode having a high mixture density as described above, thereby achieving high capacity.
- the lithium battery may have a high operating voltage within the above range.
- an ester non-aqueous organic solvent which is a low viscosity solvent may be used as an electrolyte.
- a lithium battery according to one embodiment may include at least one first non-aqueous organic solvent selected from ethyl butyrate and methyl valerate, and the content of the first non-aqueous organic solvent may be the non-aqueous organic solvent. It may be 20 to 50% by volume based on the total volume of the solvent.
- the first non-aqueous organic solvent has an oxidation initiation voltage of about 0.5 V (vs. Li / Li + ) or less in the electrolyte compared to the propyl propionate non-aqueous organic solvent, thereby reducing the amount of lithium salts and / or additives in the electrolyte. Oxidative decomposition occurs at lower voltages and a film at the anode can be formed firmly. For this reason, the first non-aqueous organic solvent is more electrochemically stable in the electrolyte than the propyl propionate non-aqueous organic solvent. In addition, when the content of the first non-aqueous organic solvent is within the above range, the lithium battery including the same may have improved life characteristics at room temperature and high temperature, and a change in thickness of the positive electrode may be reduced.
- the non-aqueous organic solvent may further include at least one second non-aqueous organic solvent selected from ethylene carbonate, propylene carbonate, diethyl carbonate, and ethyl propionate.
- the content of the ethylene carbonate may be 20 to 30% by volume, for example 20 to 25% by volume based on the total volume of the non-aqueous organic solvent.
- the content of the propylene carbonate may be 0 to 10% by volume, for example, 0 to 5% by volume based on the total volume of the non-aqueous organic solvent.
- the content of ethyl propionate may be 20 to 50% by volume, for example 20 to 40% by volume, for example 20 to 30% by volume, based on the total volume of the non-aqueous organic solvent. have.
- the lithium battery further including the second non-aqueous organic solvent may have improved life characteristics at room temperature and high temperature.
- the electrolyte may further include at least one first additive selected from fluoroethylene carbonate, vinylethylene carbonate, 1,3-propane sultone, succinonitrile, and LiBF 4 .
- Fluoroethylene carbonate, vinylethylene carbonate, and 1,3-propane sultone may improve the thermal stability of the lithium battery, thereby improving capacity retention of the lithium battery at high temperatures.
- Succinonitrile can improve the life characteristics at room temperature when used as an electrolyte additive in a lithium battery containing a positive electrode having a high mixture density can provide a high capacity lithium battery.
- the content of the first additive may be 0.5 to 20% by weight based on the total weight of the electrolyte.
- a more robust film may be formed on the surface of the anode under high voltage to further improve the discharge capacity and capacity retention rate of the lithium battery at room temperature as well as at high temperature.
- the electrolyte may further include a second additive represented by Formula 1 below:
- p can be an integer from 0 to 10;
- R 1 , R 2 may be independently of each other hydrogen, a cyano group, a substituted or unsubstituted C1-C5 alkylene cyano group, or a combination thereof;
- R 1 and R 2 may be a cyano group or a substituted or unsubstituted C1-C5 alkylene cyano group.
- alkylene cyano group used in Formula 1 refers to a cyano group to which a fully saturated branched or unbranched (or straight or linear) hydrocarbon group is linked.
- alkylene cyano group examples include methylene cyano group, ethylene cyano group, n-propylene cyano group, isopropylene cyano group, n-butylene cyano group, isobutylene cyano group, sec-butylene cyano And an n-pentylene cyano group.
- One or more hydrogen atoms of the "alkylene cyano group” may be a halogen, a C1-C20 alkyl group substituted with halogen (e.g., CCF 3 , CHCF 2 , CH 2 F, CCl 3, etc.), an alkoxy group of C1-C20, C2 -C20 alkoxyalkyl group, hydroxy group, nitro group, cyano group, amino group, or C1-C20 alkyl group, C2-C20 alkenyl group, C2-C20 alkynyl group, C1-C20 heteroalkyl group, C6-C20 aryl group, C6 Or a C6-C20 heteroaryl group, a C6-C20 heteroaryl group, a C7-C20 heteroarylalkyl group, a C6-C20 heteroaryloxy group, or a C6-C20 heteroaryloxyalkyl group.
- halogen e.g., CCF 3 , CH
- the second additive may include 1,3,6-hexanetricarbonitrile, 1,2,6-hexanetricarbonitrile, or a combination thereof.
- the second additive is a hydrocarbon compound including three cyano groups (CN groups), and the degree of change in thickness of the lithium battery may be reduced at high temperatures, thereby improving stability of the lithium battery.
- CN groups cyano groups
- the second additive By coordinating N non-covalent electron pairs of the cyano group (CN group) terminal of the second additive with various kinds of metals such as transition metals of the positive electrode active material, it is possible to stably form a film on the surface of the positive electrode. It can be thought of as suppressing side reactions.
- the second additive may be combined with other constituent materials of the lithium battery, thereby suppressing a phenomenon in which the constituent materials generate heat after decomposition, thereby suppressing a temperature rise of the lithium battery.
- the second additive may be combined with various metal ions in the lithium battery, thereby suppressing a short circuit caused by contamination of metal ions on the surface of the negative electrode.
- the content of the second additive may be 0.5 to 5% by weight, for example, 0.5 to 4% by weight, for example 0.5 to 3% by weight, based on the total weight of the electrolyte. For example, 0.5 to 2% by weight.
- the second additive has a content within the above range, by more stable bonding with the second additive on the surface of the positive electrode active material, the degree of change in thickness at a high temperature may be reduced, thereby improving stability of the lithium battery.
- the anode includes a coating formed on the surface thereof, and the coating may be a result derived from some or all of the first additive, the second additive, or the first and second additives in the electrolyte.
- the electrolyte is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3
- At least one lithium salt selected from SO 3 Li, (CF 3 SO 2 ) 2 NLi, and lithium chloroborate may be further included.
- the content of the lithium salt may be 0.1 to 5% by weight based on the total weight of the electrolyte.
- the concentration of the lithium salt may be 0.01 to 2.0 M, for example, 0.05 to 2.0 M, for example 0.1 to 2.0 M, for example 0.5 to 2.0 M. However, it is not necessarily limited to this range and an appropriate concentration may be used as necessary. Further improved battery characteristics can be obtained within this concentration range.
- Lithium battery the electrolyte, the first non-aqueous organic solvent of ethyl butyrate or methyl valerate; A second non-aqueous organic solvent composed of ethylene carbonate, propylene carbonate and ethyl propionate; A first additive consisting of fluoroethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, succinonitrile, and LiBF 4 ; And lithium salts.
- the weight ratio of fluoroethylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, succinonitrile, and LiBF 4 constituting the first additive is 4.0 to 10.0: 0.1 to 5.0: 0.1 to 5.0: 0.1 to 7.0: 0.01 It may be ⁇ 1.0.
- the lithium battery including the electrolyte may improve the life characteristics at room temperature and high temperature under high voltage and reduce swelling of the cell after the cycle is completed. In addition, the change in thickness of the anode after being left at high temperature may be reduced.
- Lithium battery the electrolyte, the first non-aqueous organic solvent of ethyl butyrate or methyl valerate; A second non-aqueous organic solvent composed of ethylene carbonate, propylene carbonate and ethyl propionate; A first additive consisting of fluoroethylene carbonate, vinyl ethylene carbonate, and 1,3-propane sultone; A second additive composed of 1,3,6-hexanetricarbonitrile or 1,2,6-hexanetricarbonitrile; And lithium salts.
- the weight ratio of fluoroethylene carbonate, vinyl ethylene carbonate, and 1,3-propane sultone constituting the first additive may be 4.0 to 10.0: 0.1 to 5.0: 0.1 to 5.0.
- the content of the second additive may be 0.5 to 2% by weight based on the total weight of the electrolyte.
- the lithium battery including the electrolyte may further improve life characteristics at high temperatures under high voltage.
- the lithium battery is not particularly limited in form, and includes a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, a lithium sulfur battery, and the like, as well as a lithium primary battery.
- a lithium secondary battery such as a lithium ion battery, a lithium ion polymer battery, a lithium sulfur battery, and the like, as well as a lithium primary battery.
- the lithium battery may be manufactured by the following method.
- the anode is prepared.
- a positive electrode active material composition in which a positive electrode active material, a conductive material, a binder, and a solvent are mixed is prepared.
- the positive electrode active material composition is directly coated on a metal current collector to prepare a positive electrode plate.
- the cathode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a cathode plate.
- the anode is not limited to the above enumerated forms and may be in any form other than the foregoing.
- the positive electrode active material is a lithium-containing metal oxide, any one of those commonly used in the art can be used without limitation.
- a complex oxide of metal and lithium selected from cobalt, manganese, nickel, and combinations thereof may be used, and specific examples thereof include Li a A 1 - b B ' b D' 2.
- A is Ni, Co, Mn, or a combination thereof;
- B ' is Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof;
- E is Co, Mn, or a combination thereof;
- G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, or a combination thereof;
- Q is Ti, Mo, Mn, or a combination thereof;
- J is V, Cr, Mn, Co, Ni, Cu, or a combination thereof.
- the positive electrode active material may be, for example, LiCoO 2 .
- a coating layer on the surface of the compound, or may be used by mixing the compound having a compound with the coating layer.
- This coating layer may comprise a coating element compound of an oxide of a coating element, a hydroxide, an oxy hydroxide of a coating element, an oxycarbonate of a coating element, or a hydroxycarbonate of a coating element.
- the compounds constituting these coating layers may be amorphous or crystalline.
- the coating element included in the coating layer Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr or a mixture thereof may be used.
- the coating layer forming process may use any coating method as long as it can be coated with the above compounds by a method that does not adversely affect the physical properties of the positive electrode active material (for example, spray coating or dipping method). Detailed descriptions thereof will be omitted since they can be understood by those skilled in the art.
- Carbon black, graphite fine particles and the like may be used as the conductive material, but is not limited thereto, and any conductive material may be used as long as it can be used as a conductive material in the art.
- binder examples include vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethylmethacrylate, polytetrafluoroethylene and mixtures thereof, or styrene butadiene rubber polymers. It may be used, but not limited to these, any one that can be used as a binder in the art can be used.
- N-methylpyrrolidone, acetone or water may be used as the solvent, but is not limited thereto, and any solvent may be used as long as it can be used in the art.
- the content of the positive electrode active material, the conductive material, the binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
- a negative electrode active material composition is prepared by mixing a negative electrode active material, a conductive material, a binder, and a solvent.
- the negative electrode active material composition is directly coated and dried on a metal current collector to prepare a negative electrode plate.
- the negative electrode active material composition may be cast on a separate support, and then a film peeled from the support may be laminated on a metal current collector to prepare a negative electrode plate.
- the negative electrode active material may be any one that can be used as a negative electrode active material of a lithium battery in the art.
- it may include one or more selected from the group consisting of lithium metal, a metal alloyable with lithium, a transition metal oxide, a non-transition metal oxide, and a carbon-based material.
- the metal alloyable with lithium may be Si, Sn, Al, Ge, Pb, Bi, Sb, Si-Y 'alloy
- the Y' is an alkali metal, alkaline earth metal, group 13 element, group 14 element, transition Metals, rare earth elements or combinations thereof, not Si
- Sn-Y 'alloys wherein Y' is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element or a combination thereof
- Sn is an alkali metal, an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element or a combination thereof
- the transition metal oxide may be lithium titanium oxide, vanadium oxide, lithium vanadium oxide, or the like.
- the non-transition metal oxide may be SnO 2 , SiO x (0 ⁇ x ⁇ 2), or the like.
- the carbonaceous material may be crystalline carbon, amorphous carbon or a mixture thereof.
- the crystalline carbon may be graphite such as amorphous, plate-like, flake, spherical or fibrous natural graphite or artificial graphite, and the amorphous carbon may be soft carbon (low temperature calcined carbon) or hard carbon (hard). carbon, mesophase pitch carbide, calcined coke, and the like.
- a conductive material and a binder may be the same as those of the positive electrode active material composition.
- the amount of the negative electrode active material, the conductive material, the binder, and the solvent is at a level commonly used in lithium batteries. At least one of the conductive material, the binder, and the solvent may be omitted according to the use and configuration of the lithium battery.
- the separator may be used as long as it is commonly used in lithium batteries.
- a low resistance to the ion migration of the electrolyte and excellent in the ability to hydrate the electrolyte can be used.
- it is selected from glass fiber, polyester, Teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in a nonwoven or woven form.
- a rollable separator such as polyethylene or polypropylene may be used for a lithium ion battery, and a separator having excellent organic electrolyte solution impregnation ability may be used for a lithium ion polymer battery.
- the separator may be manufactured according to the following method.
- a separator composition is prepared by mixing a polymer resin, a filler, and a solvent.
- the separator composition may be directly coated and dried on the electrode to form a separator.
- a separator film separated from the support may be laminated on the electrode to form a separator.
- the polymer resin used to manufacture the separator is not particularly limited, and any materials used for the binder of the electrode plate may be used.
- any materials used for the binder of the electrode plate may be used.
- vinylidene fluoride / hexafluoropropylene copolymer, polyvinylidene fluoride (PVDF), polyacrylonitrile, polymethyl methacrylate or mixtures thereof and the like can be used.
- the lithium battery 1 includes a positive electrode 3, a negative electrode 2, and a separator 4.
- the positive electrode 3, the negative electrode 2, and the separator 4 described above are wound or folded to be accommodated in the battery case 5. Subsequently, an electrolyte is injected into the battery case 5 and sealed with a cap assembly 6 to complete the lithium battery 1.
- the battery case may be cylindrical, rectangular, thin film, or the like.
- the lithium battery may be a large thin film type battery.
- the lithium battery may be a lithium ion battery.
- the positive electrode 13, the negative electrode 12, and the separator 14 described above are wound or folded to be accommodated in the battery case 15. Subsequently, electrolyte is injected into the battery case 15 and sealed with a cap assembly 16 to complete a rectangular lithium battery 11.
- a separator may be disposed between the positive electrode and the negative electrode to form a battery structure.
- the battery structure is stacked in a bi-cell structure, and then impregnated in the electrolyte, and the resultant is accommodated in a pouch and sealed to complete a lithium ion polymer battery.
- a plurality of battery structures may be stacked to form a battery pack, and the battery pack may be used in any device requiring high capacity and high power.
- the battery pack may be used in any device requiring high capacity and high power.
- it can be used in notebooks, smartphones, electric vehicles and the like.
- the lithium battery may be used in an electric vehicle (EV) because of its excellent life characteristics and high rate characteristics.
- EV electric vehicle
- a hybrid vehicle such as a plug-in hybrid electric vehicle (PHEV).
- PHEV plug-in hybrid electric vehicle
- it can also be used in applications where a large amount of power storage is required.
- it can be used for electric bicycles, power tools and the like.
- An electrolyte was prepared by adding a lithium salt and a first additive to a mixed solvent of the first non-aqueous organic solvent and the second non-aqueous organic solvent.
- EB ethyl butyrate
- EC ethylene carbonate
- PC propylene carbonate
- DEC diethyl carbonate
- EP ethylpropionate
- LiPF 6 1.15 M LiPF 6 was used as the lithium salt, 7.0 wt% of fluoroethylene carbonate (FEC) based on the total weight of the electrolyte as the first additive, 1.0 wt% of vinylethylene carbonate (VEC), and 1,3-propane sultone ( PS) 2.0 wt%, succinonitrile (SN) 3.0 wt%, and 0.2 wt% LiBF 4 were used.
- FEC fluoroethylene carbonate
- VEC vinylethylene carbonate
- PS 1,3-propane sultone
- PS succinonitrile
- LiBF 4 0.2 wt% LiBF 4
- An electrolyte was prepared in the same manner as in Preparation Example 1, except that 20 vol% of methyl valerate (MV) was used instead of 20 vol% of ethyl butyrate (EB) as the first non-aqueous organic solvent.
- MV methyl valerate
- EB ethyl butyrate
- Ethylene instead of 25 vol% ethylene carbonate (EC), 5 vol% propylene carbonate (PC), 20 vol% diethyl carbonate (DEC), and 30 vol% ethyl propionate (EP) as the second non-aqueous organic solvent
- An electrolyte was prepared in the same manner as in Preparation Example 1, except that 20 vol% of carbonate (EC), 10 vol% of propylene carbonate (PC), and 50 vol% of diethyl carbonate (DEC) were used.
- ethyl butyrate 50 vol% of ethyl butyrate (EB) was used instead of 20 vol% of ethyl butyrate (EB) as the first non-aqueous organic solvent, 25 vol% of ethylene carbonate (EC) and propylene carbonate (PC) as the second non-aqueous organic solvent.
- EC ethylene carbonate
- PC propylene carbonate
- 5% by volume 20% by volume diethylcarbonate
- EP ethylpropionate
- EC ethylene carbonate
- PC propylene carbonate
- diethyl An electrolyte was prepared in the same manner as in Preparation Example 1, except that 20 vol% of carbonate (DEC) was used.
- EC ethylene carbonate
- PC propylene carbonate
- DEC diethyl carbonate
- PP propylpropionate
- compositions of the electrolytes prepared in Preparation Examples 1 to 5 and Comparative Preparation Examples 1 to 3 are summarized in Table 1 below.
- the positive electrode active material composition was prepared by dispersing for 30 minutes using a mechanical stirrer.
- the positive electrode active material composition was applied to the aluminum foil current collector having a thickness of about 20 ⁇ m using a doctor blade, and dried for about 0.5 hours in a hot air dryer at 100 ° C., and then again for 4 hours under conditions of vacuum and 120 ° C. It dried and rolled and manufactured the positive electrode in which the positive electrode active material layer was formed on the electrical power collector.
- the mixture density of the prepared cathode was 4.22 g / cc, and the loading level was 38.80 mg / cm 2 .
- Dispersion prepared a negative electrode active material composition.
- the negative electrode active material composition was coated on a copper current collector having a thickness of about 10 ⁇ m using a doctor blade, dried for about 0.5 hours in a hot air dryer at 100 ° C., and then dried again under vacuum and 120 ° C. for 4 hours. And it rolled and manufactured the negative electrode in which the negative electrode active material layer was formed on the collector.
- the mixture density of the prepared negative electrode was 1.81 g / cc and the loading level was 20.07 mg / cm 2 .
- a pouch-type X212 lithium battery was manufactured using the electrolyte prepared in Preparation Example 1 as an anode, the cathode, and a ceramic-coated 18 ⁇ m thick polyethylene separator.
- a pouch-type X212 lithium battery was manufactured in the same manner as in Example 1, except that the electrolytes prepared in Preparation Examples 2 to 6 were used instead of the electrolyte prepared in Preparation Example 1.
- a pouch-type X212 lithium battery was manufactured in the same manner as in Example 1, except that the electrolytes prepared in Comparative Preparation Examples 1 to 3 were used instead of the electrolyte prepared in Preparation Example 1.
- a pouch type X212 lithium battery was manufactured in the same manner as in Example 1, except that an anode having a mixture density of 3.8 g / cc was used instead of a cathode having a mixture density of 4.22 g / cc.
- the lithium batteries prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were charged at constant temperature (25 ° C.) at a constant current until the voltage reached 4.45 V (vs. Li) at a current of 0.1 C rate, followed by the constant voltage mode. Cut-off at a current of 0.1C rate while maintaining 4.45V at. Subsequently, it discharged at the constant current of 0.1C rate until the voltage reached 2.75V (vs. Li) at the time of discharge (chemical conversion step, 1 st cycle).
- the lithium batteries that passed the 1 st cycle of the chemical conversion step were charged with constant current until the voltage reached 4.45 V (vs. Li) at a current of 0.2 C at 25 ° C., followed by 0.2 C rate while maintaining 4.45 V in the constant voltage mode. Cut-off at the current of Then, the voltage during discharging was a constant current of 0.2C discharge rate until it reaches 2.75V (vs. Li) (chemical conversion step, 2 nd cycle).
- the lithium batteries undergoing the formation step were subjected to constant current charging at a temperature of 1.0 C rate at 25 ° C. until the voltage reached 4.45 V (vs. Li), and then cutoff at a current of 0.1 C rate while maintaining 4.45 V in the constant voltage mode. (cut-off). Subsequently, it discharged at the constant current of 1.0C rate until the voltage reached 3.0V (vs. Li) at the time of discharge (1 st cycle).
- the lithium batteries are charged at a constant current until the voltage reaches 4.45 V (vs. Li) at a current of 0.2 C at 25 ° C., followed by a cutoff at a current of 0.02 C while maintaining 4.45 V in the constant voltage mode. -off).
- the voltage at the time of discharge 2.75V (vs. Li) to the first circuit to repeat the cycle of repeating the cycle to discharge at a constant current of 0.2C rate until the 50 th to 50 th cycles, and to this cycle 14 times (total Charge and discharge experiments up to 700 th cycle) to measure the discharge capacity.
- the lithium batteries manufactured in Examples 1 and 2 were maintained at about 87 to 89% of their initial capacity up to 14 times (700 th cycle total), but the lithium batteries prepared in Comparative Example 1 were From 11 times (total 550 th cycle), the discharge capacity decreased drastically. From this, the lithium batteries prepared in Examples 1 and 2 maintain the discharge capacity about three times (total 150 cycles) more than the lithium batteries prepared in Comparative Example 1 to improve the life characteristics at room temperature (25 °C) You can check it.
- the lithium batteries manufactured in Examples 1 and 2 had a cell thickness change rate of about 11% up to 14 times (700 th cycle in total).
- the lithium battery manufactured in Comparative Example 1 had a cell thickness change rate of about 41% up to 13 times (total 650 th cycles). From this, it can be seen that the lithium battery prepared in Examples 1 to 2 has a smaller cell thickness change at room temperature (25 ° C.) than the lithium battery prepared in Comparative Example 1.
- discharge capacities were maintained at about 57% and about 32%, respectively, relative to the initial capacity up to 14 times (700 th cycle in total).
- the produced lithium batteries rapidly decreased in discharge capacity from eight times (400 th cycles in total) and 11 times (total 550 th cycles), respectively.
- the lithium batteries prepared in Examples 1 and 2 were maintained at about 6 times (300 cycles in total) and about 3 times (150 cycles in total) than the lithium batteries prepared in Comparative Examples 1 and 2, respectively. It can be seen that the life characteristics at high temperature (45 °C) is improved.
- the discharge capacity was maintained at about 96.6% of the initial capacity up to four times (total 200 th cycles).
- the initial dose decreased to about 81.5%. From this, the lithium battery prepared in Example 5 (containing 1,3,6-HTCN as the second additive in the electrolyte) compared with the lithium battery prepared in Example 6 (the second additive contained in the electrolyte) was less It can be seen that the life characteristics at high temperature (45 °C) is improved more.
- the lithium battery manufactured in Example 1 was maintained at about 91.8% of its initial capacity up to four times (total 200 th cycles), but the lithium battery manufactured in Comparative Example 4 had a discharge capacity of The initial dose decreased to about 86.3%. From this, the lithium battery prepared in Example 1 (positive electrode mixture density of 4.22 g / cc) has a higher discharge capacity retention rate compared to the lithium battery prepared in Comparative Example 4 (positive electrode mixture density of 3.8 g / cc) and thus high temperature (45 ° C.). It can be seen that the life characteristics at
- the lithium batteries manufactured in Examples 1 and 2 had a cell thickness change rate of about 21% up to 14 times (700 th cycle in total).
- Comparative Examples 1 and 2 of a lithium battery is a cell thickness change ratio was about 50% up to 11 times (total 550 th cycle), 14 times (total 700 th cycle), respectively, manufactured by. From this, it can be seen that the lithium battery prepared in Examples 1 and 2 has a smaller cell thickness change at a high temperature (45 ° C.) than the lithium batteries prepared in Comparative Examples 1 and 2.
- the lithium batteries prepared in Examples 1 and 2 had a cell thickness change rate of about 32% after being left for 21 days in a constant temperature chamber at 60 ° C.
- FIG. 10 the cell thickness change rate was about 43.7% after being left for 21 days in a constant temperature chamber at 60 ° C. From this, it can be seen that after the lithium batteries prepared in Examples 1 and 2 were left in a constant temperature chamber at 60 ° C. for up to 21 days, compared to the lithium batteries prepared in Comparative Examples 1 and 2, the cell thickness change was small.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Secondary Cells (AREA)
Abstract
합제밀도가 3.9g/cc 이상인 양극; 음극; 및 상기 양극과 상기 음극 사이에 배치된 비수계 유기용매를 포함한 전해질;을 포함하는 리튬전지이고, 상기 리튬전지의 작동전압이 4.4V 이상이며, 상기 비수계 유기용매가 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함하며, 상기 제1 비수계 유기용매의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%인 리튬전지가 개시된다.
Description
리튬전지에 관한 것이다.
리튬전지는 비디오 카메라, 휴대폰, 또는 노트북 컴퓨터 등 휴대용 전자기기의 구동 전원으로 사용된다. 이 중, 재충전이 가능한 리튬이차전지는 기존의 납 축전지, 니켈-카드뮴 전지, 니켈수소 전지, 또는 니켈아연 전지 등과 비교하여 단위 중량당 에너지 밀도가 3배 이상 높고 고속 충전이 가능하다.
이러한 리튬이차전지는 고용량화를 위하여 충전전위를 높일 수 있다. 이러한 고전압 하에 리튬이차전지의 양극에서 전해질이 용이하게 산화 분해될 수 있다. 전해질이 산화 분해되면 리튬이차전지의 양극 표면에 전해질 분해 생성물이 퇴적될 수 있고 고전압을 장기간 유지하기가 곤란해질 수 있다.
따라서 고전압 하에 양극의 열화를 억제하여 상온 및 고온에서의 수명 특성이 개선될 수 있으며, 양극의 두께 변화가 감소될 수 있는 리튬전지에 대한 요구가 여전히 있다.
일 측면은 고전압 하에 개선된 상온 및 고온에서의 수명 특성 및 양극의 두께 변화율이 감소될 수 있는 리튬전지를 제공하는 것이다.
일 측면에 따라,
합제밀도가 3.9g/cc 이상인 양극;
음극; 및
상기 양극과 상기 음극 사이에 배치된 비수계 유기용매를 포함한 전해질;을 포함하는 리튬전지이고,
상기 리튬전지의 작동전압이 4.4V 이상이며,
상기 비수계 유기용매가 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함하며,
상기 제1 비수계 유기용매의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%인 리튬전지가 제공된다.
일 측면에 따르면, 합제밀도가 3.9g/cc 이상인 양극을 포함하고 작동전압이 4.4V 이상인 고전압 리튬전지는, 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함하고 상기 제1 비수계 유기용매의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%인 전해질을 포함하여, 고전압 하에 상온 및 고온에서의 수명 특성이 개선될 수 있으며 양극의 두께 변화율이 감소될 수 있다.
도 1은 일 구현예에 따른 리튬이차전지의 모식도이다.
도 2는 일 구현예에 따른 리튬이차전지의 단면도이다.
도 3은 실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 상온(25℃)에서 사이클 회수에 따른 방전용량을 나타낸 그래프이다.
도 4는 실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 상온(25℃)에서 화성단계 전부터 700th 사이클까지 양극 두께를 측정한 결과를 나타낸 그래프이다.
도 5는 실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 고온(45℃)에서 사이클 회수에 따른 방전용량을 나타낸 그래프이다.
도 6은 실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 고온(45℃)에서 화성단계 전부터 700th 사이클까지 양극 두께를 측정한 결과를 나타낸 그래프이다.
도 7은 실시예 3~4 및 비교예 3에서 제조된 리튬전지에 대하여 고온(45℃)에서 사이클 회수에 따른 방전용량을 나타낸 그래프이다.
도 8은 실시예 5~6에서 제조된 리튬전지에 대하여 고온(45℃)에서 사이클 회수에 따른 방전용량을 나타낸 그래프이다.
도 9는 실시예 1 및 비교예 4에서 제조된 리튬전지에 대하여 고온(45℃)에서 사이클 회수에 따른 방전용량을 나타낸 그래프이다.
도 10은 실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 60℃의 항온 챔버에 넣고 21일까지 방치한 후 양극 두께를 측정한 결과를 나타낸 그래프이다.
이하에서 예시적인 구현예들에 따른 리튬전지에 관하여 더욱 상세히 설명한다.
리튬전지는 비수계 전해질 내에 리튬이온을 흡장 및 방출할 수 있는 양극 및 음극으로 구성되어 있다. 양극의 양극 활물질은 예를 들어, LiCoO2 등을 이용할 수 있고, 음극의 음극 활물질은 예를 들어, 카본 블랙 등을 이용할 수 있다. 전해질은 예를 들어, 카보네이트계 비수계 유기용매에 LiPF6 등과 같은 리튬염이 함유되어 있을 수 있다.
상기 전해질에 포함된 LiPF6 등은 PCl 등을 이용하여 생성되나 Cl 이온 등의 음이온은 산 오염물(contaminant)로서 전해질 내에 잔류할 수 있다. 상기 양극에 포함된 Co 등의 양극 활물질은 전해질 내에 잔류하는 Cl 이온 등의 음이온의 산 오염물과 결합하여 용출하기 쉽다. 이로 인해, 양극 표면이 부식되어 리튬전지의 용량이 저하될 수 있거나/있고 용출한 Co 등과 같은 전이금속이 음극에 도달하여 단락이 발생할 수 있다.
더욱이, 고전압 하에서는 양극 활물질의 안정성이 저하되어 Co 등과 같은 전이금속의 용출이 보다 쉽다. 이로 인해, 용량이 저하되거나 셀이 스웰링되거나(swelling) 또는 단락 발생이 현저하게 증가하여 고용량화에 장애가 되는 문제가 있다.
일 구현예에 따른 리튬전지는, 합제밀도가 3.9g/cc 이상인 양극; 음극; 및 상기 양극과 상기 음극 사이에 배치된 비수계 유기용매를 포함한 전해질;을 포함하는 리튬전지이고, 상기 리튬전지의 작동전압이 4.4V 이상이며, 상기 비수계 유기용매가 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함하며, 상기 제1 비수계 유기용매의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%일 수 있다.
일 구현예에 따른 리튬전지는 합제밀도가 3.9g/cc 이상인 양극, 음극, 및 상기 양극과 상기 음극 사이에 배치된 비수계 유기용매를 포함한 전해질을 포함할 수 있다. 예를 들어, 상기 리튬전지는 합제밀도는 3.9 내지 4.3g/cc인 양극을 포함할 수 있다. 예를 들어, 상기 리튬전지의 작동전압은 4.4 내지 4.5V일 수 있다.
상기 리튬전지는 상기와 같은 높은 합제밀도를 갖는 양극을 포함하여, 고용량화를 구현할 수 있다. 상기 리튬전지는 상기와 같은 범위 내에서 높은 작동전압을 가질 수 있다.
이러한 높은 합제밀도 및 높은 작동전압을 갖는 리튬전지는 전해질로서 저점도 용매인 에스테르계 비수계 유기용매가 사용될 수 있다.
일 구현예에 따른 리튬전지는 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함할 수 있으며, 상기 제1 비수계 유기용매의 함량은 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%일 수 있다.
상기 제1 비수계 유기용매는 프로필 프로피오네이트 비수계 유기용매에 비해 전해질 내에서의 산화 개시 전압이 약 0.5V (vs. Li/Li+) 이상 낮아서 전해질 내에서의 리튬염 또는/및 첨가제의 산화 분해가 더 낮은 전압에 발생하며 양극에서의 피막이 견고하게 형성될 수 있다. 이로 인해, 제1 비수계 유기용매가 프로필 프로피오네이트 비수계 유기용매에 비해 전해질 내에서 전기화학적으로 안정하다. 또한 상기 제1 비수계 유기용매의 함량이 상기 범위 내인 경우에 이를 포함하는 리튬전지는 상온 및 고온에서 수명 특성이 개선될 수 있으며 양극의 두께 변화가 감소될 수 있다.
상기 비수계 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, 디에틸카보네이트, 및 에틸프로피오네이트 중에서 선택된 적어도 1종의 제2 비수계 유기용매를 더 포함할 수 있다.
상기 에틸렌카보네이트의 함량은 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 30 부피%일 수 있고, 예를 들어 20 내지 25 부피%일 수 있다. 상기 프로필렌카보네이트의 함량은 상기 비수계 유기용매 전체 부피를 기준으로 하여 0 내지 10 부피%일 수 있고, 예를 들어 0 내지 5 부피%일 수 있다. 상기 에틸프로피오네이트의 함량은 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%일 수 있고, 예를 들어 20 내지 40 부피%일 수 있고, 예를 들어 20 내지 30 부피%일 수 있다.
상기 제2 비수계 유기용매가 상기 함량 범위를 갖는다면 전해질 내에서 산화 분해가 억제되고, 이에 따라 양극에서 피막이 과잉으로 형성되는 것이 억제될 수 있다. 상기 제2 비수계 유기용매를 더 포함하는 리튬전지는 상온 및 고온에서 수명 특성이 개선될 수 있다.
상기 전해질은 플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4 중에서 선택된 적어도 1 종의 제1 첨가제를 더 포함할 수 있다.
플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 및 1,3-프로판 술톤은 리튬전지의 열적 안정성을 향상시켜 고온에서 리튬전지의 용량유지율이 향상될 수 있다. 석시노니트릴은 높은 합제밀도를 갖는 양극을 포함하는 리튬전지에 전해질 첨가제로 사용될 경우 상온에서 수명 특성을 향상시킬 수 있어 고용량의 리튬전지를 제공할 수 있다.
상기 제1 첨가제의 함량은 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 20 중량%일 수 있다. 전해질 내에서 상기 제1 첨가제를 상기 범위 내로 포함하면 고전압 하에 양극 표면 상에 보다 견고한 피막을 형성하여 상온뿐만 아니라 고온에서 리튬전지의 방전용량 및 용량유지율이 더욱 향상될 수 있다.
상기 전해질은 하기 화학식 1로 표시되는 제2 첨가제를 더 포함할 수 있다:
[화학식 1]
상기 화학식 1에서,
p는 0 내지 10의 정수일 수 있으며;
R1, R2는 서로 독립적으로 수소, 시아노기, 치환 또는 비치환된 C1-C5 알킬렌 시아노기, 또는 이들의 조합일 수 있으며;
단, 상기 R1, R2 중 적어도 하나는 시아노기, 또는 치환 또는 비치환된 C1-C5 알킬렌 시아노기일 수 있다.
상기 화학식 1에서 사용되는 용어 "알킬렌 시아노기"는 완전 포화된 분지형 또는 비분지형 (또는 직쇄 또는 선형) 탄화수소기가 연결된 시아노기를 말한다.
상기 "알킬렌 시아노기"의 비제한적인 예로는 메틸렌 시아노기, 에틸렌 시아노기, n-프로필렌 시아노기, 이소프로필렌 시아노기, n-부틸렌 시아노기, 이소부틸렌 시아노기, sec-부틸렌 시아노기, 또는 n-펜틸렌 시아노기 등을 들 수 있다.
상기 "알킬렌 시아노기" 중 하나 이상의 수소 원자는 할로겐, 할로겐으로 치환된 C1-C20의 알킬기(예: CCF3, CHCF2, CH2F, CCl3 등), C1-C20의 알콕시기, C2-C20의 알콕시알킬기, 히드록시기, 니트로기, 시아노기, 아미노기, 또는 C1-C20의 알킬기, C2-C20 알케닐기, C2-C20 알키닐기, C1-C20의 헤테로알킬기, C6-C20의 아릴기, C6-C20의 아릴알킬기, C6-C20의 헤테로아릴기, C7-C20의 헤테로아릴알킬기, C6-C20의 헤테로아릴옥시기, 또는 C6-C20의 헤테로아릴옥시알킬기로 치환될 수 있다.
예를 들어, 상기 제2 첨가제는 1,3,6-헥산트리카보니트릴(1,3,6-hexanetricarbonitrile), 1,2,6-헥산트리카보니트릴, 또는 이들의 조합을 포함할 수 있다.
상기 제2 첨가제는 3개의 시아노기(CN기)를 포함하는 탄화수소 화합물로서, 고온 하에 리튬전지의 두께 변화의 정도가 감소하여 리튬전지의 안정성이 향상될 수 있다.
고온 하에 리튬전지의 두께 변화의 정도가 감소하여 리튬전지의 안정성이 향상되는 이유에 대해서는, 전기 화학적 측면에서 이하에서 보다 구체적으로 설명한다. 다만, 이는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이하 설명의 범위로 한정되는 것은 아니다.
상기 제2 첨가제의 시아노기(CN기) 말단의 N 비공유전자쌍이 양극 활물질의 전이금속 등 여러 종류의 금속과 배위결합함으로써, 양극 표면에 피막을 안정적으로 형성할 수 있고, 이로 인해 양극과 전해질의 부반응을 억제하는 것으로 생각될 수 있다. 또한 상기 제2 첨가제는 기타 리튬전지의 구성 물질들과 결합하여, 상기 구성물질들이 분해 후 발열하는 현상을 억제함으로써, 리튬전지의 온도 상승을 억제하는 역할을 하는 것으로 생각된다. 또한 상기 제2 첨가제는 리튬전지 내 다양한 금속이온과 결합함으로써, 금속이온의 오염물이 음극 표면에 석출됨으로써 유발되는 단락을 억제하는 것으로 생각된다.
상기 제2 첨가제의 함량은 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 5 중량%일 수 있고, 예를 들어 0.5 내지 4 중량%일 수 있고, 예를 들어 0.5 내지 3 중량%일 수 있고, 예를 들어 0.5 내지 2 중량%일 수 있다.
상기 제2 첨가제가 상기 범위 내의 함량을 갖는다면 양극 활물질 표면에서 상기 제2 첨가제와 보다 안정한 결합을 함으로써, 고온에서 두께 변화의 정도가 감소하여 리튬전지의 안정성이 보다 향상될 수 있다.
상기 양극은 그 표면에 형성된 피막을 포함하고, 상기 피막은 상기 전해질 중 제1 첨가제, 제2 첨가제, 또는 제1 첨가제 및 제2 첨가제의 일부 또는 전부로부터 유래한 결과물일 수 있다.
상기 전해질은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 및 리튬클로로보레이트 중에서 선택된 적어도 1종의 리튬염을 더 포함할 수 있다. 그러나 반드시 이들로 한정되지 않으며 당해 기술 분야에서 리튬염으로 사용할 수 있는 것이라면 모두 가능하다. 상기 리튬염의 함량은 상기 전해질 전체 중량을 기준으로 하여 0.1 내지 5 중량%일 수 있다.
상기 리튬염의 농도는 0.01 내지 2.0 M 일 수 있고, 예를 들어, 0.05 내지 2.0 M, 예를 들어 0.1 내지 2.0 M, 예를 들어 0.5 내지 2.0 M 일 수 있다. 그러나 반드시 이러한 범위로 한정되는 것은 아니며 필요에 따라 적절한 농도가 사용될 수 있다. 상기 농도 범위 내에서 더욱 향상된 전지 특성이 얻어질 수 있다
일 구현예에 따른 리튬전지는, 상기 전해질이, 에틸 부티레이트 또는 메틸 발레레이트의 제1 비수계 유기용매; 에틸렌 카보네이트, 프로필렌 카보네이트 및 에틸 프로피오네이트로 구성된 제2 비수계 유기용매; 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4로 구성된 제1 첨가제; 및 리튬염;을 포함할 수 있다.
상기 제1 첨가제를 구성하는 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4의 중량비가 4.0~10.0:0.1~5.0: 0.1~5.0:0.1~7.0:0.01~1.0일 수 있다.
상기 전해질을 포함하는 리튬전지는 고전압 하에 상온 및 고온에서의 수명 특성이 개선될 수 있고 사이클이 완료된 후 셀이 스웰링되는 것을 감소시킬 수 있다. 또한 고온에서 방치 후 양극의 두께 변화가 감소될 수 있다.
일 구현예에 따른 리튬전지는, 상기 전해질이, 에틸 부티레이트 또는 메틸 발레레이트의 제1 비수계 유기용매; 에틸렌 카보네이트, 프로필렌 카보네이트 및 에틸 프로피오네이트로 구성된 제2 비수계 유기용매; 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 및 1,3-프로판 술톤으로 구성된 제1 첨가제; 1,3,6-헥산트리카보니트릴(1,3,6-hexanetricarbonitrile) 또는 1,2,6-헥산트리카보니트릴로 구성된 제2 첨가제; 및 리튬염;을 포함할 수 있다.
상기 제1 첨가제를 구성하는 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 및 1,3-프로판 술톤의 중량비가 4.0~10.0:0.1~5.0:0.1~5.0일 수 있다.
상기 제2 첨가제의 함량이 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 2 중량%일 수 있다.
상기 전해질을 포함하는 리튬전지는 고전압 하에 고온에서의 수명 특성이 보다 개선될 수 있다.
한편, 상기 리튬전지는 그 형태가 특별히 제한되지는 않으며, 리튬이온전지, 리튬이온 폴리머전지, 리튬설퍼전지 등과 같은 리튬이차전지는 물론, 리튬일차전지도 포함한다.
예를 들어, 상기 리튬전지는 다음과 같은 방법에 의하여 제조될 수 있다.
먼저 양극이 준비된다.
예를 들어, 양극 활물질, 도전재, 바인더 및 용매가 혼합된 양극 활물질 조성물이 준비된다. 상기 양극 활물질 조성물이 금속 집전체 위에 직접 코팅되어 양극판이 제조된다. 다르게는, 상기 양극 활물질 조성물이 별도의 지지체 상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 양극판이 제조될 수 있다. 상기 양극은 상기에서 열거한 형태에 한정되는 것은 아니고 상기 형태 이외의 형태일 수 있다.
상기 양극 활물질은 리튬함유 금속산화물로서, 당업계에서 통상적으로 사용되는 것이면 제한 없이 모두 사용될 수 있다. 예를 들어, 코발트, 망간, 니켈, 및 이들의 조합에서 선택되는 금속과 리튬과의 복합 산화물 중 1종 이상의 것을 사용할 수 있으며, 그 구체적인 예로는, LiaA1
-
bB'bD'2(상기 식에서, 0.90 ≤ a ≤ 1.8, 및 0 ≤ b ≤ 0.5이다); LiaE1
-
bB'bO2
-
cD'c(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤c ≤ 0.05이다); LiE2
-
bB'bO4
-
cD'c(상기 식에서, 0 ≤b ≤0.5, 0 ≤c ≤ 0.05이다); LiaNi1
-b-
cCobB'cD'α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1
-b-
cCobB'cO2
-
αF'α(상기 식에서, 0.90 ≤ a ≤1.8, 0 ≤b ≤0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1
-b-
cCobB'cO2
-
αF'2(상기 식에서, 0.90 ≤a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1-b-cMnbB'cD'α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α ≤ 2이다); LiaNi1
-b-
cMnbB'cO2
-
αF'α(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNi1
-b-
cMnbB'cO2
-
αF'2(상기 식에서, 0.90 ≤a ≤1.8, 0 ≤ b ≤ 0.5, 0 ≤ c ≤ 0.05, 0 < α < 2이다); LiaNibEcGdO2(상기 식에서, 0.90 ≤a ≤ 1.8, 0 ≤b ≤ 0.9, 0 ≤c ≤ 0.5, 0.001 ≤≤ d ≤0.1이다.); LiaNibCocMndGeO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0 ≤ b ≤ 0.9, 0 ≤ c ≤ 0.5, 0 ≤d ≤0.5, 0.001 ≤e ≤0.1이다.); LiaNiGbO2(상기 식에서, 0.90 ≤a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaCoGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMnGbO2(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); LiaMn2GbO4(상기 식에서, 0.90 ≤ a ≤ 1.8, 0.001 ≤ b ≤ 0.1이다.); QO2; QS2; LiQS2; V2O5; LiV2O5; LiI'O2; LiNiVO4; Li(3-f)J2(PO4)3(0 ≤ f ≤2); Li(3-f)Fe2(PO4)3(0 ≤ f ≤2); LiFePO4의 화학식 중 어느 하나로 표현되는 화합물을 사용할 수 있다:
상기 화학식에 있어서, A는 Ni, Co, Mn, 또는 이들의 조합이고; B'는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D'는 O, F, S, P, 또는 이들의 조합이고; E는 Co, Mn, 또는 이들의 조합이고; F'는 F, S, P, 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 또는 이들의 조합이고; Q는 Ti, Mo, Mn, 또는 이들의 조합이고; I'는 Cr, V, Fe, Sc, Y, 또는 이들의 조합이며; J는 V, Cr, Mn, Co, Ni, Cu, 또는 이들의 조합이다.
상기 양극 활물질은 예를 들어, LiCoO2, LiMnxO2x(x=1, 2), LiNi1
-xMnxO2x(0<x<1), LiNi1
-x-
yCoxMnyO2 (0≤x ≤0.5, 0≤y ≤0.5), LiFePO4 등이다. 상기 양극 활물질은 예를 들어, LiCoO2일 수 있다.
물론 상기 화합물 표면에 코팅층을 갖는 것도 사용할 수 있고, 또는 상기 화합물과 코팅층을 갖는 화합물을 혼합하여 사용할 수도 있다. 이 코팅층은 코팅 원소의 옥사이드, 하이드록사이드, 코팅 원소의 옥시하이드록사이드, 코팅 원소의 옥시카보네이트, 또는 코팅 원소의 하이드록시카보네이트의 코팅 원소 화합물을 포함할 수 있다. 이들 코팅층을 이루는 화합물은 비정질 또는 결정질일 수 있다. 상기 코팅층에 포함되는 코팅 원소로는 Mg, Al, Co, K, Na, Ca, Si, Ti, V, Sn, Ge, Ga, B, As, Zr 또는 이들의 혼합물을 사용할 수 있다. 코팅층 형성 공정은 상기 화합물에 이러한 원소들을 사용하여 양극 활물질의 물성에 악영향을 주지 않는 방법(예를 들어 스프레이 코팅, 침지법 등)으로 코팅할 수 있으면 어떠한 코팅 방법을 사용하여도 무방하며, 이에 대하여는 당해 분야에 종사하는 사람들에게 잘 이해될 수 있는 내용이므로 자세한 설명은 생략하기로 한다.
상기 도전재로는 카본블랙, 흑연미립자 등이 사용될 수 있으나, 이들로 한정되지 않으며, 당해 기술분야에서 도전재로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 바인더로는 비닐리덴 플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트, 폴리테트라플루오로에틸렌 및 그 혼합물 또는 스티렌 부타디엔 고무계 폴리머 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 바인더로 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기 용매로는 N-메틸피롤리돈, 아세톤 또는 물 등이 사용될 수 있으나, 이들로 한정되지 않으며 당해 기술분야에서 사용될 수 있는 것이라면 모두 사용될 수 있다.
상기, 양극 활물질, 도전재, 바인더 및 용매의 함량은 리튬전지에서 통상적으로 사용되는 수준이다. 리튬전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로 음극이 준비된다.
예를 들어, 음극 활물질, 도전재, 바인더 및 용매를 혼합하여 음극 활물질 조성물이 준비된다. 상기 음극 활물질 조성물이 금속 집전체 상에 직접 코팅 및 건조되어 음극판이 제조된다. 다르게는, 상기 음극 활물질 조성물이 별도의 지지체상에 캐스팅된 다음, 상기 지지체로부터 박리된 필름이 금속 집전체상에 라미네이션되어 음극판이 제조될 수 있다.
상기 음극 활물질은 당해 기술분야에서 리튬 전지의 음극 활물질로 사용될 수 있는 것이라면 모두 가능하다. 예를 들어, 리튬 금속, 리튬과 합금 가능한 금속, 전이금속 산화물, 비전이금속산화물 및 탄소계 재료로 이루어진 군에서 선택된 하나 이상을 포함할 수 있다.
예를 들어, 상기 리튬과 합금가능한 금속은 Si, Sn, Al, Ge, Pb, Bi, Sb, Si-Y' 합금(상기 Y'는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Si는 아님), Sn-Y' 합금(상기 Y'는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합 원소이며, Sn은 아님) 등일 수 있다. 상기 원소 Y'로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ge, P, As, Sb, Bi, S, Se, Te, Po, 또는 이들의 조합일 수 있다.
예를 들어, 상기 전이금속 산화물은 리튬 티탄 산화물, 바나듐 산화물, 리튬 바나듐 산화물 등일 수 있다.
예를 들어, 상기 비전이금속 산화물은 SnO2, SiOx(0<x<2) 등일 수 있다.
상기 탄소계 재료로는 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 결정질 탄소는 무정형, 판상, 린편상(flake), 구형 또는 섬유형의 천연 흑연 또는 인조 흑연과 같은 흑연일 수 있으며, 상기 비정질 탄소는 소프트 카본(soft carbon: 저온 소성 탄소) 또는 하드 카본(hard carbon), 메조페이스 피치(mesophase pitch) 탄화물, 소성된 코크스 등일 수 있다.
음극 활물질 조성물에서 도전재 및 바인더는 상기 양극 활물질 조성물의 경우와 동일한 것을 사용할 수 있다.
상기 음극 활물질, 도전재, 바인더 및 용매의 함량은 리튬 전지에서 통상적으로 사용하는 수준이다. 리튬 전지의 용도 및 구성에 따라 상기 도전재, 바인더 및 용매 중 하나 이상이 생략될 수 있다.
다음으로, 상기 양극과 음극 사이에 삽입될 세퍼레이터가 준비된다.
상기 세퍼레이터는 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용가능하다. 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로필렌, 폴리테트라플루오로에틸렌(PTFE) 또는 이들의 조합물 중에서 선택된 것으로서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에틸렌, 폴리프로필렌 등과 같은 권취 가능한 세퍼레이터가 사용되며, 리튬이온폴리머전지에는 유기전해액 함침 능력이 우수한 세퍼레이터가 사용될 수 있다. 예를 들어, 상기 세퍼레이터는 하기 방법에 따라 제조될 수 있다.
고분자 수지, 충진제 및 용매를 혼합하여 세퍼레이터 조성물이 준비된다. 상기 세퍼레이터 조성물이 전극 상부에 직접 코팅 및 건조되어 세퍼레이터가 형성될 수 있다. 또는, 상기 세퍼레이터 조성물이 지지체상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리시킨 세퍼레이터 필름이 전극 상부에 라미네이션되어 세퍼레이터가 형성될 수 있다.
상기 세퍼레이터 제조에 사용되는 고분자 수지는 특별히 한정되지 않으며, 전극판의 결합재에 사용되는 물질들이 모두 사용될 수 있다. 예를 들어, 비닐리덴플루오라이드/헥사플루오로프로필렌 코폴리머, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴, 폴리메틸메타크릴레이트 또는 이들의 혼합물 등이 사용될 수 있다.
다음으로, 전술한 전해질이 준비된다.
도 1에서 보여지는 바와 같이 상기 리튬전지(1)는 양극(3), 음극(2) 및 세퍼레이터(4)를 포함한다. 전술한 양극(3), 음극(2) 및 세퍼레이터(4)가 와인딩되거나 접혀서 전지케이스(5)에 수용된다. 이어서, 상기 전지케이스(5)에 전해질이 주입되고 캡(cap) 어셈블리(6)로 밀봉되어 리튬 전지(1)가 완성된다. 상기 전지케이스는 원통형, 각형, 박막형 등일 수 있다. 예를 들어, 상기 리튬 전지는 대형박막형전지일 수 있다. 상기 리튬 전지는 리튬이온전지일 수 있다.
예를 들어, 도 2에서 보여지는 바와 같이 전술한 양극(13), 음극(12) 및 세퍼레이터(14)가 와인딩되거나 접혀서 전지케이스(15)에 수용된다. 이어서, 상기 전지케이스(15)에 전해질이 주입되고 캡(cap) 어셈블리(16)로 밀봉되어 각형의 리튬 전지(11)가 완성된다.
상기 양극 및 음극 사이에 세퍼레이터가 배치되어 전지구조체가 형성될 수 있다. 상기 전지구조체가 바이셀 구조로 적층된 다음, 전해질에 함침되고, 얻어진 결과물이 파우치에 수용되어 밀봉되면 리튬이온 폴리머전지가 완성된다.
또한, 상기 전지구조체는 복수개 적층되어 전지팩을 형성하고, 이러한 전지팩이 고용량 및 고출력이 요구되는 모든 기기에 사용될 수 있다. 예를 들어, 노트북, 스마트폰, 전기차량 등에 사용될 수 있다.
또한, 상기 리튬전지는 수명특성 및 고율특성이 우수하므로 전기차량(electric vehicle, EV)에 사용될 수 있다. 예를 들어, 플러그인하이브리드차량(plug-in hybrid electric vehicle, PHEV) 등의 하이브리드차량에 사용될 수 있다. 또한, 많은 양의 전력 저장이 요구되는 분야에 사용될 수 있다. 예를 들어, 전기 자전거, 전동 공구 등에 사용될 수 있다.
이하의 실시예 및 비교예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것이 아니다.
[실시예]
(전해질의 제조)
제조예 1: 전해질의 제조
제1 비수계 유기용매 및 제2 비수계 유기용매의 혼합용매에, 리튬염 및 제1 첨가제를 첨가하여 전해질을 제조하였다.
제1 비수계 유기용매로서 에틸 부티레이트(EB) 20 부피%를 사용하였고, 제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 디에틸카보네이트(DEC) 20 부피%, 및 에틸프로피오네이트(EP) 30 부피%를 사용하였다. 리튬염으로서 1.15M LiPF6를 사용하였고, 제1 첨가제로서 전해질 전체 중량을 기준으로 하여 플루오로에틸렌 카보네이트(FEC) 7.0 중량%, 비닐에틸렌 카보네이트(VEC) 1.0 중량%, 1,3-프로판 술톤(PS) 2.0 중량%, 석시노니트릴(SN) 3.0 중량%, 및 LiBF4 0.2 중량%를 사용하였다.
제조예 2: 전해질의 제조
제1 비수계 유기용매로서 에틸 부티레이트(EB) 20 부피%를 사용한 대신 메틸 발레레이트(methyl valerate; MV) 20 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
제조예 3: 전해질의 제조
제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 디에틸카보네이트(DEC) 20 부피%, 및 에틸프로피오네이트(EP) 30 부피%를 사용한 대신 에틸렌카보네이트(EC) 20 부피%, 프로필렌카보네이트(PC) 10 부피%, 및 디에틸카보네이트(DEC) 50 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
제조예 4: 전해질의 제조
제1 비수계 유기용매로서 에틸 부티레이트(EB) 20 부피%를 사용한 대신 에틸 부티레이트(EB) 50 부피%를 사용하였고, 제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 디에틸카보네이트(DEC) 20 부피%, 및 에틸프로피오네이트(EP) 30 부피%를 사용한 대신 에틸렌카보네이트(EC) 20 부피%, 프로필렌카보네이트(PC) 10 부피%, 및 디에틸카보네이트(DEC) 20 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
제조예 5: 전해질의 제조
제1 첨가제로서 전해질 전체 중량을 기준으로 하여 플루오로에틸렌 카보네이트(FEC) 7.0 중량%, 비닐에틸렌 카보네이트(VEC) 1.0 중량%, 1,3-프로판 술톤(PS) 2.0 중량%, 석시노니트릴(SN) 3.0 중량%, 및 LiBF4 0.2 중량%를 사용한 대신 전해질 전체 중량을 기준으로 하여 플루오로에틸렌 카보네이트(FEC) 7.0 중량%, 비닐에틸렌 카보네이트(VEC) 1.0 중량%, 및 1,3-프로판 술톤(PS) 2.0 중량%을 사용하였고 제2 첨가제로서 1,3,6-헥산트리카보니트릴(1,3,6-hexanetricarbonitrile; 1,3,6-HTCN) 2.0 중량%를 더 첨가한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
제조예 6: 전해질의 제조
제1 첨가제로서 전해질 전체 중량을 기준으로 하여 플루오로에틸렌 카보네이트(FEC) 7.0 중량%, 비닐에틸렌 카보네이트(VEC) 1.0 중량%, 1,3-프로판 술톤(PS) 2.0 중량%, 석시노니트릴(SN) 3.0 중량%, 및 LiBF4 0.2 중량%를 사용한 대신 전해질 전체 중량을 기준으로 하여 플루오로에틸렌 카보네이트(FEC) 7.0 중량%, 비닐에틸렌 카보네이트(VEC) 1.0 중량%, 및 1,3-프로판 술톤(PS) 2.0 중량%을 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
비교
제조예
1: 전해질의 제조
제1 비수계 유기용매를 사용하지 않고 제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 에틸메틸카보네이트(EMC) 20 부피%, 디에틸카보네이트(DEC) 20 부피%, 및 에틸프로피오네이트(EP) 30 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
비교 제조예 2: 전해질의 제조
제1 비수계 유기용매를 사용하지 않고 제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 디에틸카보네이트(DEC) 20 부피%, 에틸프로피오네이트(EP) 30 부피%, 및 프로필프로피오네이트(PP) 20 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
비교 제조예 3: 전해질의 제조
제1 비수계 유기용매로서 에틸 부티레이트(EB) 20 부피%를 사용한 대신 에틸 부티레이트(EB) 60 부피%를 사용하였고, 제2 비수계 유기용매로서 에틸렌카보네이트(EC) 25 부피%, 프로필렌카보네이트(PC) 5 부피%, 디에틸카보네이트(DEC) 20 부피%, 및 에틸프로피오네이트(EP) 30 부피%를 사용한 대신 에틸렌카보네이트(EC) 20 부피%, 프로필렌카보네이트(PC) 10 부피%, 및 디에틸카보네이트(DEC) 10 부피%를 사용한 것을 제외하고는, 제조예 1과 동일한 방법으로 전해질을 제조하였다.
상기 제조예 1~5 및 비교 제조예 1~3에서 제조된 전해질의 조성과 관련하여 하기 표 1에 정리하였다.
구분 | 제1 비수계 유기용매 | 제2 비수계 유기용매 | 제1 첨가제 | 제2 첨가제 | 리튬염 |
제조예 1 | EB 20 부피% | EC 25 부피%PC 5 부피%DEC 20 부피%EP 30 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
제조예 2 | MV 20 부피% | EC 25 부피%PC 5 부피%DEC 20 부피%EP 30 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
제조예 3 | EB 20 부피% | EC 20 부피%PC 10 부피%DEC 50 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
제조예 4 | EB 50 부피% | EC 20 부피%PC 10 부피%DEC 20 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
제조예 5 | EB 20 부피% | EC 25 부피%PC 5 부피%DEC 20 부피%EP 30 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량% | 1,3,6-HTCN2.0 중량% | 1.15MLiPF6 |
제조예 6 | EB 20 부피% | EC 25 부피%PC 5 부피%DEC 20 부피%EP 30 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량% | - | 1.15MLiPF6 |
비교 제조예 1 | - | EC 25 부피%PC 5 부피%EMC 20 부피%DEC 20 부피%EP 30 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
비교 제조예 2 | - | EC 25 부피%PC 5 부피%DEC 20 부피%EP 30 부피%PP 20 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
비교 제조예 3 | EB 60 부피% | EC 20 부피%PC 10 부피%DEC 10 부피% | FEC 7.0 중량%VEC 1.0 중량%PS 2.0 중량%SN 3.0 중량%LiBF4 0.2 중량% | - | 1.15MLiPF6 |
(리튬전지의 제조)
실시예 1: 리튬전지의 제조
(양극의 제조)
양극 활물질로서 LiCoO2 96.0 중량%, 도전재로서 Denka black 2.0 중량% 및 바인더로서 PVDF(Solef 6020, Solvay사 제조) 2.0 중량%를 혼합하여, N-메틸-2-피롤리돈 용매에 투입한 후 기계식 교반기를 사용하여 30분간 분산시켜 양극 활물질 조성물을 제조하였다. 상기 양극 활물질 조성물을 닥터 블레이드를 사용하여 두께 20㎛의 알루미늄 호일 집전체 상에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연(roll press)하여 집전체상에 양극 활물질층이 형성된 양극을 제조하였다. 제조된 양극의 합제밀도는 4.22 g/cc이고, 로딩 레벨(loading level)은 38.80 mg/cm2이었다.
(음극의 제조)
음극 활물질로서 흑연(미츠비시 화학 제조) 97.5 중량%, 바인더로서 스티렌-부타디엔 고무(SBR) 1.5 중량% 및 증점제로서 카르복시메틸셀룰로오스(CMC) 1 중량%를 증류수에 투입한 후 기계식 교반기를 사용하여 60분간 분산시켜 음극 활물질 조성물을 제조하였다. 상기 음극 활물질 조성물을 닥터 블레이드를 사용하여 두께 10 ㎛의 구리 집전체 상에 약 60㎛ 두께로 도포하고 100℃의 열풍건조기에서 0.5시간 동안 건조한 후 진공, 120℃의 조건에서 4시간 동안 다시 한번 건조하고, 압연하여 집전체상에 음극 활물질층이 형성된 음극을 제조하였다. 제조된 음극의 합제밀도는 1.81g/cc이고, 로딩 레벨(loading level)은 20.07 mg/cm2이었다.
(리튬전지의 조립)
상기 양극, 상기 음극, 및 세라믹이 코팅된 두께 18㎛ 폴리에틸렌 세퍼레이터 및 전해질로서 상기 제조예 1에서 제조된 전해질을 사용하여 파우치형 X212 리튬전지를 제조하였다.
실시예 2~6: 리튬 전지의 제조
제조예 1에서 제조된 전해질 대신 제조예 2~6에서 제조된 전해질을 각각 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 파우치형 X212 리튬전지를 제조하였다.
비교예 1~3: 리튬 전지의 제조
제조예 1에서 제조된 전해질 대신 비교 제조예 1~3에서 제조된 전해질을 각각 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 파우치형 X212 리튬전지를 제조하였다.
비교예 4: 리튬 전지의 제조
합제밀도가 4.22 g/cc인 양극 대신 합제밀도가 3.8 g/cc인 양극을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 파우치형 X212 리튬전지를 제조하였다.
(전지 성능 평가)
평가예 1: 상온(25℃) 충방전 특성
1-1. 상온(25℃) 수명 특성
실시예 1~2 및 비교예 1~2에서 제조된 리튬전지를 상온(25℃)에서, 0.1C rate의 전류로 전압이 4.45V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.45V를 유지하면서 0.1C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.75V(vs. Li)에 이를 때까지 0.1C rate의 정전류로 방전하였다(화성단계, 1st 사이클).
상기 화성단계의 1st 사이클을 거친 리튬전지들을 25℃에서 0.2C rate의 전류로 전압이 4.45V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.45V를 유지하면서 0.2C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.75V(vs. Li)에 이를 때까지 0.2C rate의 정전류로 방전하였다(화성단계, 2nd 사이클).
상기 화성단계를 거친 리튬 전지들을 25℃에서 1.0C rate의 전류로 전압이 4.45V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.45V를 유지하면서 0.1C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1.0C rate의 정전류로 방전하였다(1st 사이클).
이어서, 상기 리튬전지들을 25℃에서 0.2C rate의 전류로 전압이 4.45V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.45V를 유지하면서 0.02C rate의 전류에서 컷오프(cut-off)하였다. 이어서, 방전시에 전압이 2.75V(vs. Li)에 이를 때까지 0.2C rate의 정전류로 방전하는 사이클을 50th 사이클까지 반복하고 이러한 50th 사이클까지의 반복 사이클을 1회로 하여 14회(전체 700th 사이클)까지 충방전 실험을 하여 방전용량을 각각 측정하였다.
상기 모든 충방전 사이클에서 하나의 충전/방전 사이클 후 10분간의 정지 시간을 두었다. 그 충방전 실험 결과를 도 3에 나타내었다.
도 3을 참조하면, 실시예 1~2에서 제조된 리튬전지는 14회(전체 700th 사이클)까지 방전용량이 초기용량 대비 약 87~89%로 유지되었으나, 비교예 1에서 제조된 리튬전지는 11회(전체 550th 사이클)부터 급격하게 방전용량이 감소되었다. 이로부터, 실시예 1~2에서 제조된 리튬전지가 비교예 1에서 제조된 리튬전지에 비해 약 3회(전체 150 사이클) 더 방전용량을 유지하여 상온(25℃)에서의 수명 특성이 개선됨을 확인할 수 있다.
1-2. 상온(25℃) 셀 두께 변화율 측정
실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 각각 화성단계 전(DF 후), 화성단계 후(FM 후), 용량체크(1st 사이클) 후, 2회(전체 100th 사이클), 4회(전체 200th 사이클), 6회(전체 300th 사이클), 8회(전체 400th 사이클), 10회(전체 500th 사이클), 12회(전체 600th 사이클), 및 14회(전체 700th 사이클)에서의 셀 두께를 평판 두께 측정장치(MITUTOYO사 제조, 543-490B)를 이용하여 각각 측정하였다. 그 결과를 도 4에 나타내었다.
도 4를 참조하면, 실시예 1~2에서 제조된 리튬전지는 14회(전체 700th 사이클)까지 셀 두께 변화율이 약 11%이었다. 이와 비교하여, 비교예 1에서 제조된 리튬전지는 13회(전체 650th 사이클)까지 셀 두께 변화율이 약 41%이었다. 이로부터, 실시예 1~2에서 제조된 리튬전지가 비교예 1에서 제조된 리튬전지에 비해 상온(25℃)에서 셀 두께 변화가 적음을 알 수 있다.
평가예 2: 고온(45℃) 충방전 특성
2-1. 고온(45℃) 수명 특성
충방전 온도를 45℃로 변경한 것을 제외하고는 평가예 1과 동일한 방법으로 상기 실시예 1~6 및 비교예 1~4에서 제조된 리튬 전지에 대하여 충방전 특성을 평가하였다. 그 충방전 실험 결과를 도 5 및 도 7 ~ 도 9에 나타내었다.
도 5를 참조하면, 실시예 1~2에서 제조된 리튬전지는 14회(전체 700th 사이클)까지 방전용량이 초기용량 대비 각각 약 57%, 약 32%로 유지되었으나, 비교예 1~2에서 제조된 리튬전지는 각각 8회(전체 400th 사이클) 및 11회(전체 550th 사이클)부터 급격하게 방전용량이 감소되었다. 이로부터, 실시예 1~2에서 제조된 리튬전지가 비교예 1~2에서 제조된 리튬전지에 비해 각각 약 6회(전체 300 사이클) 및 약 3회(전체 150 사이클) 더 방전용량을 유지하여 고온(45℃)에서의 수명 특성이 개선됨을 확인할 수 있다.
도 7을 참조하면, 실시예 3~4에서 제조된 리튬전지는 9회(전체 450th 사이클)까지 방전용량이 초기용량 대비 각각 약 89%, 약 81%로 유지되었으나, 비교예 3에서 제조된 리튬전지는 8회(전체 400th 사이클)부터 급격하게 방전용량이 감소되었다. 이로부터, 실시예 3~4에서 제조된 리튬전지(전해질에 제1 비수계 유기용매로서 EB 20 부피%, EB 50 부피% 포함)가 비교예 3에서 제조된 리튬전지(전해질에 제1 비수계 유기용매로서 EB 60 부피% 포함)에 비해 약 1회(전체 50 사이클) 더 방전용량을 유지하여 고온(45℃)에서의 수명 특성이 개선됨을 확인할 수 있다.
도 8을 참조하면, 실시예 5에서 제조된 리튬전지는 4회(전체 200th 사이클)까지 방전용량이 초기용량 대비 각각 약 96.6%로 유지되었으나, 실시예 6에서 제조된 리튬전지는 방전용량이 초기용량 대비 각각 약 81.5%로 감소하였다. 이로부터, 실시예 5에서 제조된 리튬전지(전해질에 제2 첨가제로서 1,3,6-HTCN 포함)가 실시예 6에서 제조된 리튬전지(전해질에 제2 첨가제 불포함)에 비해 방전용량 유지율이 높아 고온(45℃)에서의 수명 특성이 보다 개선됨을 확인할 수 있다.
도 9를 참조하면, 실시예 1에서 제조된 리튬전지는 4회(전체 200th 사이클)까지 방전용량이 초기용량 대비 각각 약 91.8%로 유지되었으나, 비교예 4에서 제조된 리튬전지는 방전용량이 초기용량 대비 각각 약 86.3%로 감소하였다. 이로부터, 실시예 1에서 제조된 리튬전지(양극 합제밀도 4.22g/cc)가 비교예 4에서 제조된 리튬전지(양극 합제밀도 3.8g/cc)에 비해 방전용량 유지율이 높아 고온(45℃)에서의 수명 특성이 개선됨을 확인할 수 있다.
2-2. 고온(45℃) 셀 두께 변화율 측정
실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 각각 화성단계 전(DF 후), 화성단계 후(FM 후), 용량체크(1st 사이클) 후, 2회(전체 100th 사이클), 4회(전체 200th 사이클), 6회(전체 300th 사이클), 8회(전체 400th 사이클), 10회(전체 500th 사이클), 12회(전체 600th 사이클), 및 14회(전체 700th 사이클)에서의 셀 두께를 평판 두께 측정장치(MITUTOYO사 제조, 543-490B)를 이용하여 각각 측정하였다. 그 결과를 도 6에 나타내었다.
도 6을 참조하면, 실시예 1~2에서 제조된 리튬전지는 14회(전체 700th 사이클)까지 셀 두께 변화율이 약 21%이었다. 이와 비교하여, 비교예 1~2에서 제조된 리튬전지는 각각 11회(전체 550th 사이클), 14회(전체 700th 사이클)까지 셀 두께 변화율이 약 50%이었다. 이로부터, 실시예 1~2에서 제조된 리튬전지가 비교예 1~2에서 제조된 리튬전지에 비해 고온(45℃)에서 셀 두께 변화가 적음을 알 수 있다.
평가예 3: 고온(60℃) 방치 후 셀 두께 변화율 측정
실시예 1~2 및 비교예 1~2에서 제조된 리튬전지에 대하여 평가예 1.1에서의 2번의 화성 충방전을 수행하였고, 상기 화성 충방전 수행 후 상기 리튬전지들에 대하여 1st 사이클을 수행하였다. 이어서, 상기 리튬전지들을 60℃의 항온 챔버에 넣고 21일까지 방치한 후 셀 두께를 평판 두께 측정장치(MITUTOYO사 제조, 543-490B)를 이용하여 각각 측정하였다. 그 결과를 도 10에 나타내었다.
도 10을 참조하면, 실시예 1~2에서 제조된 리튬전지는 60℃의 항온 챔버에서 21일까지 방치한 후 셀 두께 변화율이 약 32%이었다. 이와 비교하여, 비교예 1~2에서 제조된 리튬전지는 60℃의 항온 챔버에서 21일까지 방치한 후 셀 두께 변화율이 각각 약 43.7%이었다. 이로부터, 실시예 1~2에서 제조된 리튬전지가 비교예 1~2에서 제조된 리튬전지에 비해 60℃의 항온 챔버에서 21일까지 방치한 후 셀 두께 변화가 적음을 알 수 있다.
Claims (20)
- 합제밀도가 3.9g/cc 이상인 양극;음극; 및상기 양극과 상기 음극 사이에 배치된 비수계 유기용매를 포함한 전해질;을 포함하는 리튬전지이고,상기 리튬전지의 작동전압이 4.4V 이상이며,상기 비수계 유기용매가 에틸 부티레이트 및 메틸 발레레이트(methyl valerate) 중에서 선택된 적어도 1종의 제1 비수계 유기용매를 포함하며,상기 제1 비수계 유기용매의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%인 리튬전지.
- 제 1 항에 있어서,상기 합제밀도가 3.9 내지 4.3g/cc인 양극을 포함하는 리튬전지.
- 제 1 항에 있어서,상기 리튬전지의 작동전압이 4.4 내지 4.5V인 리튬전지.
- 제 1 항에 있어서,상기 비수계 유기용매가 에틸렌카보네이트, 프로필렌카보네이트, 디에틸카보네이트, 및 에틸프로피오네이트 중에서 선택된 적어도 1종의 제2 비수계 유기용매를 더 포함하는 리튬전지.
- 제 4 항에 있어서,상기 에틸렌카보네이트의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 30 부피%인 리튬전지.
- 제 4 항에 있어서,상기 프로필렌카보네이트의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 0 내지 10 부피%인 리튬전지.
- 제 4 항에 있어서,상기 에틸프로피오네이트의 함량이 상기 비수계 유기용매 전체 부피를 기준으로 하여 20 내지 50 부피%인 리튬전지.
- 제 1 항에 있어서,상기 전해질이 플루오로에틸렌 카보네이트, 비닐에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4 중에서 선택된 적어도 1 종의 제1 첨가제를 더 포함하는 리튬전지.
- 제 8 항에 있어서,상기 제1 첨가제의 함량이 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 20 중량%인 리튬전지.
- 제 10 항에 있어서,상기 제2 첨가제는 1,3,6-헥산트리카보니트릴(1,3,6-hexanetricarbonitrile), 1,2,6-헥산트리카보니트릴, 또는 이들의 조합을 포함하는 리튬전지.
- 제 10 항에 있어서,상기 제2 첨가제의 함량이 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 5 중량%인 리튬전지.
- 제 10 항에 있어서,상기 양극은 그 표면에 형성된 피막을 포함하고, 상기 피막은 상기 전해질 중 제1 첨가제, 제2 첨가제, 또는 제1 첨가제 및 제2 첨가제의 일부 또는 전부로부터 유래한 결과물인 리튬전지.
- 제 1 항에 있어서,상기 전해질이 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 및 리튬클로로보레이트 중에서 선택된 적어도 1종의 리튬염을 더 포함하는 리튬전지.
- 제 14 항에 있어서,상기 리튬염의 함량이 상기 전해질 전체 중량을 기준으로 하여 0.1 내지 5 중량%인 리튬전지.
- 제 1 항에 있어서,상기 전해질이,에틸 부티레이트 또는 메틸 발레레이트의 제1 비수계 유기용매;에틸렌 카보네이트, 프로필렌 카보네이트 및 에틸 프로피오네이트로 구성된 제2 비수계 유기용매;플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4로 구성된 제1 첨가제; 및리튬염;을 포함하는 리튬전지.
- 제 16 항에 있어서,상기 제1 첨가제를 구성하는 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 1,3-프로판 술톤, 석시노니트릴, 및 LiBF4의 중량비가 4.0~10.0:0.1~5.0: 0.1~5.0:0.1~7.0:0.01~1.0인 리튬전지.
- 제 1 항에 있어서,상기 전해질이,에틸 부티레이트 또는 메틸 발레레이트의 제1 비수계 유기용매;에틸렌 카보네이트, 프로필렌 카보네이트 및 에틸 프로피오네이트로 구성된 제2 비수계 유기용매;플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 및 1,3-프로판 술톤으로 구성된 제1 첨가제;1,3,6-헥산트리카보니트릴(1,3,6-hexanetricarbonitrile) 또는 1,2,6-헥산트리카보니트릴로 구성된 제2 첨가제; 및리튬염;을 포함하는 리튬전지.
- 제 18 항에 있어서,상기 제1 첨가제를 구성하는 플루오로에틸렌 카보네이트, 비닐 에틸렌 카보네이트, 및 1,3-프로판 술톤의 중량비가 4.0~10.0:0.1~5.0:0.1~5.0인 리튬전지.
- 제 18 항에 있어서,상기 제2 첨가제의 함량이 상기 전해질 전체 중량을 기준으로 하여 0.5 내지 2 중량%인 리튬전지.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/300,134 US10873108B2 (en) | 2016-06-09 | 2017-06-08 | Lithium battery |
CN201780033432.4A CN109314271B (zh) | 2016-06-09 | 2017-06-08 | 锂电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160071735A KR102640842B1 (ko) | 2016-06-09 | 2016-06-09 | 리튬전지 |
KR10-2016-0071735 | 2016-06-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017213441A1 true WO2017213441A1 (ko) | 2017-12-14 |
Family
ID=60578005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/005971 WO2017213441A1 (ko) | 2016-06-09 | 2017-06-08 | 리튬전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10873108B2 (ko) |
KR (1) | KR102640842B1 (ko) |
CN (1) | CN109314271B (ko) |
WO (1) | WO2017213441A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943250A (zh) * | 2018-09-21 | 2020-03-31 | 宁德新能源科技有限公司 | 电解液和含有电解液的锂离子电池 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021091215A1 (ko) * | 2019-11-07 | 2021-05-14 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
CN114583277B (zh) * | 2020-03-27 | 2024-06-21 | 宁德新能源科技有限公司 | 电化学装置及包括其的电子装置 |
WO2022015072A1 (ko) * | 2020-07-16 | 2022-01-20 | 주식회사 엘지에너지솔루션 | 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 |
CN116195081A (zh) * | 2020-09-17 | 2023-05-30 | 株式会社村田制作所 | 二次电池 |
US20230246158A1 (en) * | 2022-02-02 | 2023-08-03 | Enevate Corporation | Cycle life in si/li batteries using high temperature deep discharge cycling |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080054100A (ko) * | 2006-12-12 | 2008-06-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR20120090755A (ko) * | 2010-12-22 | 2012-08-17 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR20130130775A (ko) * | 2010-12-15 | 2013-12-02 | 다우 글로벌 테크놀로지스 엘엘씨 | 특정 에스터계 용매를 함유하는 배터리 전해질 용액, 및 상기 전해질 용액을 함유하는 배터리 |
KR20140139442A (ko) * | 2013-05-27 | 2014-12-05 | 주식회사 엘지화학 | 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
KR20150138813A (ko) * | 2014-06-02 | 2015-12-10 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8920981B2 (en) | 2008-04-08 | 2014-12-30 | California Institute Of Technology | Lithium ion electrolytes and lithium ion cells with good low temperature performance |
KR20120036882A (ko) | 2010-03-29 | 2012-04-18 | 파나소닉 주식회사 | 비수 전해질 및 그것을 사용한 비수 전해질 이차전지 |
TWI452748B (zh) * | 2010-10-29 | 2014-09-11 | Asahi Kasei E Materials Corp | 非水系電解液及非水系二次電池 |
CN103178303B (zh) * | 2013-01-22 | 2017-05-24 | 东莞新能源科技有限公司 | 聚合物凝胶电解液电芯的制备方法 |
CN103208653B (zh) * | 2013-03-21 | 2016-11-02 | 东莞新能源科技有限公司 | 一种镍基阴极锂离子电池用电解液及锂离子电池 |
US9806379B2 (en) | 2013-05-27 | 2017-10-31 | Lg Chem, Ltd. | Non-aqueous electrolyte solution and lithium secondary battery including the same |
US10490851B2 (en) | 2014-06-02 | 2019-11-26 | Sk Innovation Co., Ltd. | Lithium secondary battery |
CN104979589A (zh) * | 2015-07-23 | 2015-10-14 | 东莞市凯欣电池材料有限公司 | 一种高电压电解液及使用该电解液的锂离子电池 |
-
2016
- 2016-06-09 KR KR1020160071735A patent/KR102640842B1/ko active IP Right Grant
-
2017
- 2017-06-08 CN CN201780033432.4A patent/CN109314271B/zh active Active
- 2017-06-08 WO PCT/KR2017/005971 patent/WO2017213441A1/ko active Application Filing
- 2017-06-08 US US16/300,134 patent/US10873108B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080054100A (ko) * | 2006-12-12 | 2008-06-17 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR20130130775A (ko) * | 2010-12-15 | 2013-12-02 | 다우 글로벌 테크놀로지스 엘엘씨 | 특정 에스터계 용매를 함유하는 배터리 전해질 용액, 및 상기 전해질 용액을 함유하는 배터리 |
KR20120090755A (ko) * | 2010-12-22 | 2012-08-17 | 삼성에스디아이 주식회사 | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
KR20140139442A (ko) * | 2013-05-27 | 2014-12-05 | 주식회사 엘지화학 | 비수성 전해액 및 이를 포함하는 리튬 이차전지 |
KR20150138813A (ko) * | 2014-06-02 | 2015-12-10 | 에스케이이노베이션 주식회사 | 리튬 이차 전지 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110943250A (zh) * | 2018-09-21 | 2020-03-31 | 宁德新能源科技有限公司 | 电解液和含有电解液的锂离子电池 |
CN110943250B (zh) * | 2018-09-21 | 2021-09-24 | 宁德新能源科技有限公司 | 电解液和含有电解液的锂离子电池 |
US11367898B2 (en) * | 2018-09-21 | 2022-06-21 | Ningde Amperex Technology Limited | Electrolyte and lithium ion battery including the same |
Also Published As
Publication number | Publication date |
---|---|
CN109314271B (zh) | 2021-12-10 |
CN109314271A (zh) | 2019-02-05 |
KR102640842B1 (ko) | 2024-02-27 |
KR20170139341A (ko) | 2017-12-19 |
US10873108B2 (en) | 2020-12-22 |
US20190148776A1 (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017213441A1 (ko) | 리튬전지 | |
WO2016159702A1 (ko) | 비수 전해액 및 이를 구비한 리튬 이차전지 | |
WO2019112167A1 (ko) | 리튬금속전지용 음극 및 이를 포함한 리튬금속전지 | |
WO2015065102A1 (ko) | 리튬 이차전지 | |
WO2015190705A1 (ko) | 비수 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2013073901A1 (ko) | 리튬 이차전지용 비수 전해액 및 이를 구비한 리튬 이차전지 | |
KR20140135038A (ko) | 유기전해액 및 이를 포함하는 리튬전지 | |
WO2018016737A1 (ko) | 리튬 코발트 산화물을 합성하기 위한 양극 활물질을 포함하는 리튬 이차전지, 이의 제조방법 | |
WO2018038501A1 (ko) | 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지 | |
US20200251778A1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising same | |
WO2019027127A1 (ko) | 리튬 전지용 전해액 및 이를 포함하는 리튬 전지 | |
WO2019017643A9 (ko) | 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지 | |
KR20200084691A (ko) | 리튬 이차전지용 전해액 첨가제 및 이를 포함하는 리튬 이차전지 | |
WO2020197278A1 (ko) | 리튬 이차 전지 | |
WO2018164402A1 (ko) | 전극 조립체 및 이를 포함하는 리튬 전지 | |
WO2013137596A1 (ko) | 리튬 이차전지용 비수 전해액 및 그를 포함하는 리튬 이차전지 | |
WO2016052996A1 (ko) | 비수 전해액 리튬 이차전지 | |
WO2018021746A1 (ko) | 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지 | |
WO2019245286A1 (ko) | 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지 | |
WO2019221410A1 (ko) | 전극 보호층을 포함하는 음극 및 이를 적용한 리튬 이차전지 | |
WO2015170786A1 (ko) | 유기전해액 및 상기 전해액을 채용한 리튬전지 | |
WO2019078688A2 (ko) | 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지 | |
KR20200073119A (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2020197093A1 (ko) | 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지 | |
WO2017030416A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17810564 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17810564 Country of ref document: EP Kind code of ref document: A1 |