[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017208461A1 - Boiling cooling device and electronic device having same mounted thereon - Google Patents

Boiling cooling device and electronic device having same mounted thereon Download PDF

Info

Publication number
WO2017208461A1
WO2017208461A1 PCT/JP2016/066672 JP2016066672W WO2017208461A1 WO 2017208461 A1 WO2017208461 A1 WO 2017208461A1 JP 2016066672 W JP2016066672 W JP 2016066672W WO 2017208461 A1 WO2017208461 A1 WO 2017208461A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat receiving
cooling device
boiling
phase change
refrigerant
Prior art date
Application number
PCT/JP2016/066672
Other languages
French (fr)
Japanese (ja)
Inventor
近藤 義広
西原 淳夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/066672 priority Critical patent/WO2017208461A1/en
Publication of WO2017208461A1 publication Critical patent/WO2017208461A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a boiling cooling device using phase change cooling of a working fluid, and an electronic device equipped with the boiling cooling device.
  • electronic devices typified by servers, storage devices, network devices, and the like have semiconductor elements such as a plurality of CPUs (central processing units) mounted on circuit boards in order to improve processing speed and the like.
  • the electronic device has circuit boards mounted with high density in a box-shaped rack together with a hard disk device or the like.
  • a semiconductor element such as a CPU is a heating element that generates heat.
  • the calorific value tends to increase.
  • a semiconductor device exceeds predetermined temperature, not only will it become impossible to maintain performance, but it may be damaged depending on the case. Therefore, the temperature management of the semiconductor element by cooling or the like is required, and a technique for efficiently cooling the semiconductor element that generates a large amount of heat is strongly demanded.
  • the semiconductor element is a heating element that generates heat.
  • the density of semiconductor elements has been increased in order to improve the processing speed, and the amount of heat generated by the electronic device alone tends to increase, and the number of semiconductor elements mounted increases. Because of this tendency, the amount of heat generated by the entire apparatus tends to increase.
  • an air-cooling type cooling device has been widely used.
  • the improvement of the cooling capacity of the air-cooled cooling device is already approaching its limit. Therefore, the provision of a new type of cooling system is expected, and as one of them, attention is focused on a cooling system using a refrigerant such as water.
  • the cooling device mounted on the electronic device is generally an air-cooling type.
  • the air-cooling type cooling device is approaching the limit of the cooling capacity, and it is difficult to realize further improvement of the cooling capacity. For this reason, it has been studied to mount a new cooling system cooling device in place of the air cooling type cooling device in the electronic device.
  • a thermosiphon-type boiling cooling device using a refrigerant such as water as a working fluid and utilizing phase change cooling of the working fluid has been provided in recent years (see, for example, Patent Document 1). .
  • the boiling cooling device described in Patent Document 1 includes a plurality of boiling portions (heat receiving portions) equal to the number of heating elements, one condensing portion (heat radiating portion), a double pipe structure connecting pipe, It has the structure which has.
  • Patent Document 1 since the conventional boiling cooling device described in Patent Document 1 is a device having a complicated structure using a connecting tube having a double tube structure, it is difficult to reduce the size of the connecting tube and the entire device, There was a problem that the degree of freedom in designing the device was low and it was difficult to manufacture.
  • the present invention has been made to solve the above-described problems, and is a boiling cooling device that can be made relatively small in size and can improve the degree of design freedom, and an electronic device equipped with the same.
  • the main purpose is to provide a device.
  • the present invention has a hollow portion for accommodating a refrigerant therein, is disposed corresponding to each of a plurality of heating elements, and is formed from each of the heating elements.
  • a plurality of heat receiving members that receive heat to heat the refrigerant in the hollow portion, a condensing portion that condenses and liquefies the vapor of the refrigerant heated and boiled by each of the heat receiving members, and a plurality of connections that transport the refrigerant
  • a boiling cooling device characterized by And equipped with an electronic device. Other means will be described later.
  • the size can be made relatively small, and the degree of freedom in design can be improved.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings.
  • Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example.
  • symbol is attached
  • FIG. 1 is a diagram illustrating a configuration of the circuit board 50.
  • FIG. 2 is a side sectional view of the circuit board 50 and shows the shape of the cut surface of the circuit board 50 cut along the line X1-X1 shown in FIG.
  • FIG. 3 is a top view of the boiling cooling device 30.
  • FIG. 4 is a side sectional view of the boiling cooling device 30.
  • the server module 5 is an electronic device configured as a rack mount server accommodated in the rack cabinet 2 (see FIG. 12).
  • a circuit board 50 includes two semiconductor elements 20a and 20b (see FIG. 2) such as a CPU as a heating element, and a printed wiring board (printed wiring) having the semiconductor elements 20a and 20b mounted on the surface. board) 10, a boiling cooling device 30 that cools the semiconductor elements 20a and 20b, and a cooling fan 40 that sends air (cooling air) to a condenser 31 that will be described later.
  • semiconductor elements 20a and 20b are collectively referred to as “semiconductor element 20”.
  • the semiconductor element 20a is an element closer to the condenser 31 described later, while the semiconductor element 20b is an element farther from the condenser 31 described later. It is.
  • the height of the upper surface of each semiconductor element 20a, 20b is the same. That is, the thickness of each semiconductor element 20a, 20b is the same.
  • the boiling cooling device 30 is configured as a thermosiphon-type phase change module that uses a coolant such as water as a working fluid and uses phase change cooling of the working fluid.
  • Phase change cooling is a cooling technique that uses heat transfer when the working fluid changes from a liquid to a gas.
  • Thermo siphon is a method in which a working fluid is enclosed in a closed container having a boiling part and a condensing part, and the working fluid is heated and evaporated (vaporized) in the boiling part, and the working fluid is cooled in the condensing part. It is a mechanism for returning the working fluid condensed (liquefied) using gravity and condensed (liquefied) using gravity from the condensing part to the boiling part.
  • the boiling cooling device may be referred to as a “phase change module”.
  • the working fluid may be referred to as “refrigerant”.
  • the liquefied refrigerant may be referred to as “liquid refrigerant” and the vaporized refrigerant vapor may be referred to as “refrigerant vapor”.
  • the phase change module (boiling cooling device) 30 transports refrigerant by two heat receiving members 32 a and 32 b that function as a boiling part, a condenser 31 that functions as a condensing part, and 2.
  • the connecting pipes 36a and 36b are provided.
  • the heat receiving members 32a and 32b are collectively referred to as “heat receiving member 32”.
  • the connecting pipes 36a and 36b are collectively referred to as “connecting pipe 36”.
  • the heat receiving member 32 a is a member closer to the condenser 31, while the heat receiving member 32 b is a member farther from the condenser 31.
  • the heat receiving member 32a is attached to the surface of the semiconductor element 20a (see FIG. 2), which is a heating element, and receives heat from the semiconductor element 20a.
  • the heat receiving member 32b is attached to the surface of the semiconductor element 20b (see FIG. 2), which is a heating element, and receives heat from the semiconductor element 20b.
  • the connecting pipe 36a is a pipe connecting the condenser 31 and the heat receiving member 32a in the immediate vicinity thereof, while the connecting pipe 36b is disposed downstream of the connecting pipe 36a.
  • This is a pipe connecting the heat receiving member 32a and the heat receiving member 32b.
  • Each of the connecting pipes 36a and 36b has a single pipe structure.
  • the connecting pipes 36a and 36b are arranged so as to extend in the same direction when viewed from above (see FIGS. 1 and 3). The liquid refrigerant flows on the lower side inside the connecting pipes 36a and 36b, while the refrigerant vapor flows on the upper side inside the connecting pipes 36a and 36b.
  • upstream and downstream are based on the direction in which the liquid refrigerant flows (the liquid flow direction Aliq described later). Therefore, in this embodiment, the “condenser 31” is the most upstream part, and the “heat receiving member 32b” is the most downstream part.
  • the connecting pipe 36a serves as an upstream connecting pipe, while the connecting pipe 36b serves as a downstream connecting pipe.
  • the heat receiving member 32a of the two heat receiving members 32a and 32b includes a lid 33a and a bottom plate 34a covered with the lid 33a.
  • the bottom surface of the bottom plate 34a of the heat receiving member 32a is in contact with the surface of the semiconductor element 20a.
  • the heat receiving member 32b includes a lid 33b and a bottom plate 34b covered with the lid 33b.
  • the bottom surface of the bottom plate 34b of the heat receiving member 32b is in contact with the surface of the semiconductor element 20b.
  • the lids 33a and 33b are collectively referred to as “lid 33”.
  • the bottom plates 34a and 34b are collectively referred to as “bottom plate 34”.
  • the lid 33 is made by, for example, processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy, into a shape narrowed down like a bowl.
  • the bottom plate 34 is made by processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy, into a flat plate shape.
  • the printed wiring board 10 is fixed with a fixing tool (not shown) such as a screw so that the bottom surfaces of the bottom plates 34a and 34b of the heat receiving members 32a and 32b are in contact with the surfaces of the corresponding semiconductor elements 20a and 20b. It is fixed to.
  • a fixing tool such as a screw
  • heat conduction grease (not shown) is provided, respectively. It has been applied.
  • a hollow portion 32ia that accommodates the refrigerant R is formed in the heat receiving member 32a, and a boiling heat transfer portion 35a to which the heat of the semiconductor element 20a is transmitted is disposed in the hollow portion 32ia.
  • the heat receiving member 32b is formed with a hollow portion 32ib for accommodating the refrigerant, and the boiling heat transfer portion 35b to which the heat of the semiconductor element 20b is transmitted is disposed inside the hollow portion 32ib.
  • the hollow portions 32ia and 32ib are collectively referred to as “hollow portions 32i”.
  • the boiling heat transfer parts 35a and 35b are collectively referred to as “boiling heat transfer part 35”.
  • the liquid refrigerant Rliq which is the liquefied refrigerant R, is accumulated on the bottom side inside the hollow portion 32i, and the vaporized refrigerant is present in the space above the liquid level of the liquid refrigerant Rliq inside the hollow portion 32i.
  • the refrigerant vapor Rst which is R is floating.
  • the inside of the hollow part 32i is in a decompressed state. Therefore, the refrigerant R is easily boiled at a relatively low temperature.
  • the liquid refrigerant Rliq flows from the condenser 31 toward the heat receiving member 32b (see arrow Aliq). Arrow Aliq indicates the direction of liquid flow. On the other hand, the refrigerant vapor Rst flows from the heat receiving member 32b toward the condenser 31 (see arrow As). Arrow Ast indicates the direction of steam flow.
  • the boiling heat transfer section 35 is disposed near the center inside the heat receiving member 32 in a top view.
  • the boiling heat transfer section 35 has a porous structure in order to promote evaporation (vaporization) of the refrigerant R. That is, the boiling heat transfer part 35 has a structure provided with minute uneven projections and holes.
  • the boiling heat transfer section 35 is made, for example, by machining a vaporization promoting plate having a porous structure.
  • the vaporization promotion plate is made by processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy.
  • the boiling heat transfer section 35 is joined to the bottom plate 34 by pressure welding, brazing, or the like. However, the boiling heat transfer section 35 can be formed integrally with the bottom plate 34 by making the surface of the bottom plate 34 porous and machining the surface of the bottom plate 34.
  • the heat receiving member 32 heats and evaporates (vaporizes) the refrigerant R accommodated in the hollow portion 32i by transferring the heat of the semiconductor element 20 to the boiling heat transfer portion 35 through the bottom plate 34. As a result, the liquid refrigerant Rliq is changed to the refrigerant vapor Rst inside the hollow portion 32i.
  • the condenser 31 includes a hollow portion 31i that accommodates the refrigerant R inside the upper side, and a plurality of fins 31f on the lower side.
  • the condenser 31 has a structure in which the hollow portion 31i in which the refrigerant R is accommodated is disposed on the upper side and the fins 31f are disposed on the lower side. Thereby, the condenser 31 can make thickness thin.
  • the bottom surface of the hollow portion 31i of the condenser 31 is disposed at a position higher than the bottom surfaces (the top surfaces of the bottom plates 34a and 34b) of the hollow portions 32ia and 32ib of the heat receiving members 32a and 32b.
  • the cooling fan 40 sends air (cooling air) in the direction of the fins 31f (see arrow Aair). Arrow Aair shows the direction of the cooling air flow.
  • the air (cooling air) sent by the cooling fan 40 (see FIG. 1) passes around the fins 31f. At that time, the condenser 31 releases the heat of the refrigerant vapor Rst inside the hollow portion 31i to the air (cooling air) through the fins 31f.
  • the condenser 31 cools and liquefies the refrigerant
  • the refrigerant vapor Rst returns to the liquid refrigerant Rliq inside the hollow portion 31i.
  • phase change module 30 can circulate the working fluid between the most upstream condenser 31 and the downstream heat receiving members 32a and 32b without using external power such as an electric pump.
  • the conventional boiling cooling apparatus described in Patent Document 1 has a plurality of boiling parts (heat receiving parts) having the same number as the number of heating elements, one condensing part (heat radiating part), and a double tube structure. And a connecting pipe.
  • Such a conventional boiling cooling device has a structure that makes it difficult to return the liquid to the boiling portion far from the condensing portion. For this reason, in the conventional boiling cooling device, dryout due to liquid withering occurs in the boiling part far from the condensing part, and as a result, the temperature of the heating element far from the condensing part can rapidly increase. There was sex. Thereby, the conventional boiling cooling apparatus may impair the reliability of the electronic device mounted.
  • the phase change module 30 causes dryout due to liquid drainage in the heat receiving member 32b on the downstream side (the side far from the condenser 31), and as a result, the semiconductor element 20b on the downstream side A structure that can prevent the temperature from rising is preferable. That is, the phase change module 30 preferably has a structure that can satisfactorily return the liquid refrigerant Rliq to the heat receiving member 32b that is the most downstream portion. Therefore, the phase change module 30 has the following structure.
  • the upper surface of the bottom plate 34a of the heat receiving member 32a on the upstream side (side closer to the condenser 31) is higher than the upper surface of the bottom plate 34b of the heat receiving member 32b on the downstream side (side far from the condenser 31). It is placed at a high position.
  • the upper surface of the bottom plate 34b of the downstream heat receiving member 32b is disposed at a position lower than the upper surface of the bottom plate 34a of the upstream heat receiving member 32a.
  • the thicknesses of the bottom plates 34a and 34b of the heat receiving members 32a and 32b are adjusted so that the upper surfaces satisfy such a height position relationship.
  • the height of the boiling heat transfer portions 35a and 35b is lower as the boiling heat transfer portion 35b of the downstream heat receiving member 32b is farther from the condensing portion 31. Further, the height of the ceiling of the hollow portions 32ia and 32ib of the heat receiving member 32a32b is lower as the hollow portion 32ib of the heat receiving member 32b on the downstream side farther from the condensing portion 31 is lower.
  • the upper surface of the condenser 31 and the upper surfaces of the heat receiving members 32a and 32b are arranged so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order.
  • the height position is set. Further, the height positions of the inner bottom portions of the connecting tubes 36a and 36b are set so that the inner bottom portion of the downstream connecting tube 36b is lower than the inner bottom portion of the upstream connecting tube 36a.
  • phase change module 30 allows the liquid refrigerant Rliq to flow well from the heat receiving member 32a on the upstream side (side near the condenser 31) toward the heat receiving member 32b on the downstream side (side far from the condenser 31). it can. Thereby, the phase change module 30 can perform liquid return favorably toward the heat receiving member 32b which is the most downstream part from the condenser 31 which is the most upstream part. As a result, the phase change module 30 reduces the amount of the liquid refrigerant Rliq retained in the upstream heat receiving member 32a as much as possible and cools the downstream semiconductor element 20b (see FIG. 2) sufficiently. The liquid refrigerant Rliq can be flowed to the heat receiving member 32b on the downstream side. Therefore, the phase change module 30 can prevent the dry-out due to the liquid withering in the downstream heat receiving member 32b, and prevents a rapid increase in temperature in each heating element (particularly, the downstream semiconductor element 20b). can do.
  • the relationship between the height positions of the upper surfaces of the bottom plates 34a and 34b may be considered as a relationship based on the upper surface of the printed wiring board 10 (see FIG. 2). That is, on the basis of the upper surface of the printed wiring board 10 (see FIG. 2), the distance from the upper surface of the printed wiring board 10 to the upper surface of the bottom plate 34a of the upstream heat receiving member 32a is downstream from the upper surface of the printed wiring board 10.
  • the heat receiving member 32b is larger than the distance to the upper surface of the bottom plate 34b.
  • the phase change module 30 has a structure in which the inner bottom portion of the upstream connecting pipe 36a is disposed at a position higher than the inner bottom portion of the downstream connecting pipe 36b.
  • each connection is made so that the cross-sectional area of the upstream connection pipe 36a and the cross-sectional area of the downstream connection pipe 36b are substantially the same.
  • the flatness of the tubes 36a and 36b is adjusted. Specifically, the flattening rate of each of the connecting pipes 36a and 36b increases as the connecting pipe on the upstream side near the condensing unit 31 increases. That is, the cross-sectional shape of the upstream connecting pipe 36a is wider than the cross-sectional shape of the downstream connecting pipe 36b, and the vertical width is narrow. In other words, the cross-sectional shape of the downstream connecting pipe 36b is narrower than the cross-sectional shape of the upstream connecting pipe 36a and has a wide vertical width.
  • the phase change module 30 is mounted on the circuit board 50 mounted on the server module 5 (see FIG. 12) which is a rack mount server.
  • the upper end portion of the phase change module 30 is the upper surface of the condenser 31.
  • the “lower end portion of the phase change module 30” refers to any one or more of the lower end of the fin 31f of the condenser 31, the bottom surface of the bottom plate 34a of the heat receiving member 32a, and the bottom surface of the bottom plate 34b of the heat receiving member 32b. It has become.
  • the condensing part (heat radiating part) of the conventional boiling cooling apparatus described in Patent Document 1 needs to receive refrigerant vapor generated in each of the plurality of boiling parts (heat receiving parts) separately. Therefore, the condensing part (heat radiation part) of the conventional boiling cooling device has a structure that partitions the internal space.
  • Such a conventional boiling cooling device has a structure in which it is difficult to reduce the size of the condensing part (heat dissipating part) because a useless space that is not used for accommodating the refrigerant vapor exists inside the condensing part (heat dissipating part). Yes.
  • the condensing part (condenser 31) of the phase change module 30 needs to separately receive the refrigerant vapor Rst generated in each of the plurality of boiling parts (heat receiving members 32a and 32b). Absent. Therefore, the condensing part (condenser 31) of the phase change module 30 can configure the internal space as a single hollow part 31i having a relatively large capacity. Since such a phase change module 30 does not have a useless space that is not used for accommodating the refrigerant vapor Rst inside the condenser (condenser 31), the size of the condenser (condenser 31) can be easily reduced. be able to.
  • the phase change module 30 has a thickness from the upper end to the lower end so that the circuit board 50 can be mounted on the server module 5 (see FIG. 12) in a state where the phase change module 30 is mounted. Can be set. Therefore, the circuit board 50 on which the phase change module 30 is mounted can be mounted on the server module 5 (see FIG. 12) that is a rack mount server.
  • the heat generated in the semiconductor element 20 is transmitted from the surface of the semiconductor element 20 to the bottom plate 34 of the heat receiving member 32 via heat conduction grease (not shown), and is disposed from the bottom plate 34 to the inside of the hollow portion 32i. Is transmitted to the boiling heat transfer section 35.
  • the liquid refrigerant Rliq boils under reduced pressure and evaporates.
  • refrigerant vapor Rst is generated.
  • the refrigerant vapor Rst flows from the heat receiving member 32 toward the condenser 31 through the inside of the connecting pipe 36.
  • the refrigerant vapor Rst that has reached the condenser 31 is liquefied by being cooled by the condenser 31 and returns to the liquid refrigerant Rliq.
  • the liquid refrigerant Rliq flows from the condenser 31 toward the heat receiving member 32 through the inside of the connecting pipe 36 due to gravity.
  • the liquid refrigerant Rliq first reaches the hollow portion 32ia of the upstream heat receiving member 32a.
  • the liquid refrigerant Rliq that has overflowed from the hollow portion 32ia of the upstream heat receiving member 32a does not stop at the upstream heat receiving member 32a, and travels from the upstream heat receiving member 32a to the downstream heat receiving member 32b.
  • the flow reaches the hollow portion 32ib of the heat receiving member 32b on the downstream side.
  • the boiling heat transfer section 35 has a porous structure.
  • the liquid refrigerant Rliq evaporates (vaporizes), and the film thickness of the liquid refrigerant Rliq increases.
  • the liquid refrigerant Rliq is impregnated into the holes of the boiling heat transfer section 35 to fill the holes. Therefore, the boiling heat transfer section 35 can exhibit stable evaporation performance (vaporization performance) unless the liquid refrigerant Rliq is depleted.
  • the boiling heat transfer part 35 can improve the heat dissipation performance and increase the amount of heat transport.
  • Such a boiling heat transfer section 35 can promote the evaporation (vaporization) of the liquid refrigerant Rliq depending on the temperature rise when the amount of input heat increases. Further, the boiling heat transfer section 35 can further promote the evaporation (vaporization) of the liquid refrigerant Rliq depending on the increase in the amount of the refrigerant vapor Rst. Therefore, the boiling heat transfer unit 35 can greatly increase the heat transport amount and improve the cooling performance as the input heat amount is larger.
  • the phase change module 30 has a structure in which the refrigerant R is transported using connecting pipes 36a and 36b having a single pipe structure. Unlike the conventional boiling cooling device described in Patent Document 1, such a phase change module 30 has a simple structure, so that it can be made relatively small in size and has a high degree of design freedom. Can be improved. Therefore, it can be manufactured relatively easily.
  • the phase change module 30 is configured so that the upper surface of the bottom plate 34a of the heat receiving member 32a on the upstream side (side closer to the condenser 31) is higher than the upper surface of the bottom plate 34b of the heat receiving member 32b on the downstream side (side far from the condenser 31). It is placed at a high position.
  • the connecting pipes 36a and 36b are formed such that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a.
  • Such a phase change module 30 can satisfactorily return the liquid from the condenser 31 that is the most upstream part toward the heat receiving member 32b that is the most downstream part.
  • the phase change module 30 can prevent dry-out due to liquid withering in the downstream heat receiving member 32b, and can prevent temperature rise of each heating element (particularly, the downstream semiconductor element 20b). it can.
  • the phase change module 30 has a structure in which the flatness of each connecting pipe 36 is adjusted so that the cross-sectional area of the upstream connecting pipe 36a and the cross-sectional area of the downstream connecting pipe 36b are substantially the same. It has become. That is, the cross-sectional shape of the upstream connecting pipe 36a is wider than the cross-sectional shape of the downstream connecting pipe 36b, and the vertical width is narrow.
  • Such a phase change module 30 can prevent the flow resistance from changing between the upstream connecting pipe 36a and the downstream connecting pipe 36b, and as a result, a good flow of the liquid refrigerant Rliq is realized. be able to.
  • the phase change module 30 can easily reduce the size of the condensing unit (condenser 31) because there is no useless space in the condensing unit (condenser 31) that is not used to accommodate the refrigerant vapor Rst. be able to.
  • the phase change module 30 has a thickness from the upper end to the lower end so that the circuit board 50 can be mounted on the server module 5 (see FIG. 12) in a state where the phase change module 30 is mounted. Can be set. Therefore, the circuit board 50 on which the phase change module 30 is mounted can be mounted on the server module 5 (see FIG. 12) that is a rack mount server.
  • phase change module 30 Since the phase change module 30 has a relatively simple structure, it can be manufactured at low cost. Moreover, the phase change module 30 can circulate the working fluid between the most upstream condenser 31 and the downstream heat receiving members 32a and 32b without using external power such as an electric pump. Therefore, the phase change module 30 is excellent in energy saving, and can efficiently and reliably cool the heating elements (semiconductor elements 20a and 20b).
  • the circuit board 50 can satisfactorily return the liquid to the downstream boiling portion (here, the heat receiving member 32 b), and therefore the downstream boiling portion (here Then, it is possible to suppress the liquid withering at the heat receiving member 32b). As a result, the circuit board 50 can sufficiently cool each semiconductor element 20 regardless of the mounting position of each semiconductor element 20. Such a circuit board 50 can prevent a rapid increase in temperature at each heating element (particularly, the semiconductor element 20b on the downstream side), and can provide a highly reliable electronic device.
  • phase change module 30 according to the present embodiment can be modified as, for example, the phase change modules 30A to 30G shown in FIGS.
  • the configuration of the phase change modules 30A to 30G according to each modification will be described with reference to FIGS.
  • FIG. 5 is a top view of a circuit board 50A on which the phase change module 30A according to the first modification is mounted.
  • the phase change module 30 ⁇ / b> A according to the first modification has connecting pipes 36 a and 36 b extending in different directions in a top view as compared with the phase change module 30 according to the embodiment (see FIG. 1). It is different in that the structure is so arranged.
  • the phase change module 30 (see FIG. 1) according to the embodiment has a structure in which the condenser 31, the connecting pipe 36a, the heat receiving member 32a, the connecting pipe 36b, and the heat receiving member 32b are arranged on a straight line.
  • the phase change module 30A according to the first modification has a structure in which the condenser 31, the connecting pipe 36a, the heat receiving member 32a, the connecting pipe 36b, and the heat receiving member 32b are not arranged on a straight line. .
  • the circuit board 50A has a structure in which two semiconductor elements 20a and 20b are arranged under the two heat receiving members 32a and 32b of the phase change module 30A.
  • the height positions of the upper surfaces of the condenser 31 and the heat receiving members 32a and 32b are set so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order.
  • the height position of the inner bottom portions of the connecting pipes 36a and 36b is set so that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a.
  • the phase change module 30A according to the first modification is the same as the phase change module 30 according to the embodiment.
  • phase change module 30A can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving member 32b, similarly to the phase change module 30 according to the embodiment.
  • FIG. 6 is a top view of a circuit board 50B on which the phase change module 30B according to the second modification is mounted.
  • the phase change module 30B according to the second modified example is a combination of the most upstream side connection pipe and the downstream side connection pipe, as compared with the phase change module 30 according to the embodiment (see FIG. 1). It is different in that it has a structure having a plurality of transport paths for the refrigerant R.
  • the phase change module 30 (see FIG. 1) according to the embodiment has a structure including only a single transportation path in which the most upstream side connecting pipe 36a and the downstream side connecting pipe 36b are combined.
  • the phase change module 30B according to the second modification includes a first transport path in which the most upstream side connection pipe 36a and the downstream side connection pipe 36b are combined, and the most upstream side connection pipe 36a2 and the downstream side connection. It has a structure provided with two systems of transport paths, that is, a second transport path combined with the pipe 36b2.
  • the connecting pipes 36a and 36b of the first transport path are arranged so as to extend in the same direction when viewed from above. Further, the connecting pipes 36a2 and 36b2 of the second transport path are arranged so as to extend in the same direction when viewed from above.
  • the circuit board 50B has a structure in which two semiconductor elements 20a and 20b are arranged under the two heat receiving members 32a and 32b of the phase change module 30B.
  • the height positions of the upper surfaces of the condenser 31 and the heat receiving members 32a and 32b are set so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order.
  • the height position of the inner bottom portions of the connecting pipes 36a and 36b is set so that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a.
  • the phase change module 30B according to the second modification is the same as the phase change module 30 according to the embodiment.
  • phase change module 30B can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving member 32b, similarly to the phase change module 30 according to the embodiment.
  • FIG. 7 is a side sectional view of a circuit board 50C on which the phase change module 30C according to the third modification is mounted.
  • the phase change module 30C according to the third modified example has a connecting pipe 36c and a heat receiving member 32c on the downstream side of the heat receiving member 32b as compared with the phase change module 30 according to the embodiment (see FIG. 2). It is different in that it has.
  • the heat receiving member 32c includes a bottom plate 34c. Further, the heat receiving member 32c includes a boiling heat transfer portion 35c therein.
  • the circuit board 50C has a structure in which three semiconductor elements 20a, 20b, and 20c are disposed under the three heat receiving members 32a, 32b, and 32c of the phase change module 30C. That is, the circuit board 50C has a structure in which the number of mounted semiconductor elements 20 is larger than that of the circuit board 50 according to the embodiment.
  • the height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side.
  • the height positions of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set so as to become lower in the order of the connecting pipe 36a on the most upstream side, the connecting pipe 36b on the intermediate stream side, and the connecting pipe 36c on the most downstream side. .
  • the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c are: (a) the height position of the upper surface of the bottom plates 34a, 34b, 34c is the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the intermediate flow side, The condition that the heat receiving member 32c on the downstream side is set to become lower in order and the condition that (b) the bottom plates 34a, 34b, and 34c are set to have the same height are satisfied. As such, its thickness is set.
  • each of the connecting pipes 36a, 36b, 36c is adjusted so that the cross-sectional areas of the connecting pipes 36a, 36b, 36c are substantially the same in order to achieve a good flow of the liquid refrigerant Rliq. ing. That is, the cross-sectional shape of each connecting pipe 36a, 36b, 36c is such that the upstream connecting pipe is wider in width and narrower in vertical length. In other words, the cross-sectional shape of each connecting pipe 36a, 36b, 36c is such that the downstream connecting pipe has a narrower lateral width and a wider vertical width.
  • phase change module 30C can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving members 32b and 32c on the downstream side.
  • FIG. 8 is a side sectional view of a circuit board 50D on which the phase change module 30D according to the fourth modification is mounted.
  • the circuit board 50D according to the fourth modified example is different from the circuit board 50C according to the third modified example (see FIG. 7) in place of the semiconductor elements 20a, 20b, and 20c.
  • 25b, and 25c are different.
  • Each of the semiconductor elements 25a, 25b, and 25c is a semiconductor element in which either one or both of the height (thickness) of the upper surface and the shape of the upper surface are different.
  • the semiconductor elements 25a, 25b, and 25c are collectively referred to as “semiconductor element 25”.
  • phase change module 30D according to the fourth modified example has either the height of the bottom surface of the bottom plate 34 or the shape of the top view of each heat receiving member 32 as compared with the phase change module 30C according to the third modified example (see FIG. 7).
  • One or both are different in that they are set in accordance with the corresponding semiconductor element 25.
  • FIG. 8 shows a state in which the upper surface (thickness) of each semiconductor element 25a, 25b, 25c is different.
  • the heights of the bottom surfaces of the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c of the phase change module 30D that is, the thicknesses of the bottom plates 34a, 34b, 34c
  • the thicknesses of the bottom plates 34a, 34b, 34c correspond to the corresponding semiconductor elements 25a.
  • 25b, 25c are set according to the height of the upper surface.
  • the height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side.
  • the heights of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set in the order of the upstream-most connecting pipe 36a, the middle-stream connecting pipe 36b, and the downstream-most connecting pipe 36c.
  • the phase change module 30 ⁇ / b> D according to the fourth modification is the same as the phase change module 30 ⁇ / b> C according to the third modification.
  • the phase change module 30D can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving members 32b and 32c. Moreover, the phase change module 30D can be suitably mounted on the circuit board 50D on which the semiconductor elements 25a, 25b, and 25c having different one or both of the top surface height (thickness) and the top view shape are mounted. .
  • FIG. 9 is a side sectional view of a circuit board 50E on which the phase change module 30E according to the fifth modification is mounted.
  • the phase change module 30E according to the fifth modification has a downstream height lower than the upstream height compared to the phase change module 30 according to the embodiment (see FIG. 2).
  • the connection pipe 36b is different in that it is disposed at an inclination.
  • the upper surface of the bottom plate 34a of the upstream heat receiving member 32a is located higher than the upper surface of the bottom plate 34b of the downstream heat receiving member 32b, and the inner bottom portion of the downstream connecting pipe 36b is the upstream side.
  • the phase change module 30E according to the fifth modification is the same as the phase change module 30 according to the embodiment in that the connection pipe 36a is formed so as to be lower than the inner bottom portion.
  • phase change module 30E can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving member 32b on the downstream side, similarly to the phase change module 30 according to the embodiment.
  • the phase change module 30E has the connecting pipe 36b inclined downward toward the downstream side, the liquid refrigerant Rliq is supplied to the downstream heat receiving member 32b more efficiently than the phase change module 30 according to the embodiment. It can flow.
  • FIG. 10 is a side sectional view of a circuit board 50F on which the phase change module 30F according to the sixth modification is mounted. As shown in FIG. 10, the phase change module 30F according to the sixth modification has a downstream height higher than the upstream height compared to the phase change module 30D according to the fourth modification (see FIG. 8).
  • the connection pipes 36b and 36c are different in that they are arranged so as to be lowered.
  • phase change module 30F can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving members 32b and 32c on the downstream side. Moreover, since the connection pipes 36b and 36c are inclined downward toward the downstream side, the phase change module 30F is more efficient than the phase change module 30D according to the fourth modification, and the downstream heat receiving members 32b and 32c. In addition, the liquid refrigerant Rliq can flow.
  • FIG. 11 is a side sectional view of a circuit board 50G on which the phase change module 30G according to the seventh modification is mounted.
  • the circuit board 50G according to the seventh modification example is different from the circuit board 50F according to the sixth modification example (see FIG. 10) in place of the semiconductor element 20 (20a, 20b, 20c).
  • the semiconductor device 25 (25a, 25b, 25c) is different in that either one or both of the height (thickness) of the upper surface and the shape of the upper surface is different.
  • phase change module 30G according to the seventh modified example has either the height of the bottom surface of the bottom plate 34 of each heat receiving member 32 or the shape of the top view as compared with the phase change module 30F according to the sixth modified example (see FIG. 10).
  • One or both are different in that they are set in accordance with the corresponding semiconductor element 25.
  • FIG. 11 shows a state in which the upper surface (thickness) of each semiconductor element 25a, 25b, 25c is different.
  • the height of the bottom surfaces of the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c of the phase change module 30G (that is, the thickness of the bottom plates 34a, 34b, 34c) corresponds to the corresponding semiconductor element 25a.
  • 25b, 25c are set according to the height of the upper surface.
  • the height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side.
  • the heights of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set in the order of the upstream-most connecting pipe 36a, the middle-stream connecting pipe 36b, and the downstream-most connecting pipe 36c.
  • the phase change module 30G according to the seventh modified example is the same as the phase change module 30F according to the sixth modified example in that it is set to be.
  • phase change module 30G can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving members 32b and 32c. Moreover, the phase change module 30G can be mounted on the circuit board 50G on which the semiconductor elements 25a, 25b, and 25c having different upper surface heights are mounted.
  • the server module 5 is an electronic device on which the phase change module 30 (including the phase change modules 30A to 30G according to each modification) is mounted.
  • FIG. 12 is a partial cross-sectional perspective view of the rack mount server system 1.
  • FIG. 13 is a partial cross-sectional perspective view of the server module 5 on which the phase change module 30 is mounted.
  • FIG. 14 is a top view of the server module 5.
  • FIG. 15 is a top view of the server module 5 on which the phase change module 30A according to the first modification is mounted.
  • FIG. 16 is a top view of the server module 5 on which the phase change module 30C according to the third modification is mounted.
  • a rack mount server system 1 includes a rack cabinet 2, a front door 3, and a back door 4, and a system in which a plurality of server modules 5 formed in a predetermined shape and size are detachably accommodated therein. It is.
  • the server module 5 includes a hard disk drive device 6, cooling fans 7 and 7 a, a power supply communication block 8, and a circuit board 50 on which the phase change module 30 is mounted. ing. However, in the example shown in FIGS. 13 and 14, the cooling fan 40 (see FIGS. 1 and 2) is excluded from the circuit board 50. 13 and 14 show the configuration of the server module 5 with the lid (not shown) removed.
  • the hard disk drive device 6 is a large capacity recording device.
  • the hard disk drive device 6 has one of the front and rear surfaces of the server module 5 (for example, the right side in the example shown in FIG. 13 and the left side in the example shown in FIG. 14).
  • a plurality (three in the example shown in FIGS. 13 and 14) are arranged in a concentrated manner.
  • the cooling fan 7 is a device that sends air (cooling air) to the hard disk drive device 6 and the circuit board 50 that are heating elements. In the example shown in FIGS. 13 and 14, four cooling fans 7 are arranged behind the hard disk drive device 6.
  • the cooling fan 7a is a device that sends air (cooling air) to the power communication block 8 that is a heating element.
  • one cooling fan 7 is disposed behind the power supply communication block 8.
  • the power supply communication block 8 is a mechanism that houses a power supply unit (not shown) and a communication interface (not shown) such as a LAN.
  • a power supply unit (not shown) of the power communication block 8 supplies power to the hard disk drive device 6, the cooling fans 7 and 7a, the semiconductor elements 20a and 20b of the circuit board 50, and the like.
  • the circuit board 50 is connected to the hard disk drive 6 and the cooling fans 7 and 7a so that the air (cooling air) sent from the cooling fan 7 hits the fins 31f (see FIG. 2) of the condenser 31 of the phase change module 30. It is arranged at a position avoiding the block 8.
  • the server module 5 includes the circuit board 50 on which the phase change module 30 is mounted, the temperature of each heating element (particularly, the downstream semiconductor element 20b) mounted on the circuit board 50 is measured. A sudden rise can be prevented. In addition, since the server module 5 does not use external power such as an electric pump, it is possible to cool each heating element (semiconductor elements 20a and 20b) efficiently and reliably with less power.
  • the circuit board 50 receives air (cooling air) from the cooling fan 7, a dedicated cooling fan 40 (see FIGS. 1 and 2) for cooling the semiconductor element 20 such as a CPU as a heating element is excluded. It has a structured. Since such a circuit board 50 has a simple structure without the cooling fan 40, it can be made relatively small in size. Thereby, since the circuit board 50 can improve the freedom degree of design, it can be mounted in the electronic device with a comparatively high calorific value for which high-density mounting of components is required. Moreover, such a circuit board 50 can reduce manufacturing cost.
  • the condenser 31 is preferably arranged so as to cover the exhaust surfaces of the plurality of cooling fans 7. As a result, the condenser 31 can receive air (cooling air) from the cooling fan 7 that has not failed even if any of the cooling fans 7 has failed and stopped. Therefore, in this case, the phase change module 30 can continue cooling the refrigerant vapor Rst in the condenser 31. Therefore, the phase change module 30 can ensure continuity of cooling with respect to the refrigerant vapor Rst, and as a result, can be suitably used as a cooling device for a heating element of an electronic device.
  • the condenser 31 is more preferably arranged close to the cooling fan 7 having a small area facing the condenser 31. As a result, the condenser 31 can reliably receive air (cooling air) from the cooling fan 7 that has not failed even if one of the cooling fans 7 has failed and stopped. Therefore, in this case, the phase change module 30 can improve the continuity of cooling with respect to the refrigerant vapor Rst.
  • the server module 5 can be mounted with a circuit board 50 ⁇ / b> A on which the phase change module 30 ⁇ / b> A is mounted instead of the circuit board 50.
  • the server module 5 can be mounted with a circuit board 50 ⁇ / b> C on which the phase change module 30 ⁇ / b> C is mounted instead of the circuit board 50.
  • the server module 5 replaces the circuit board 50 with circuit boards 50B, 50D to 50G on which the phase change modules 30B, 30D to 30G according to other modifications other than the circuit board 50A and the circuit board 50C are mounted. Can be installed.
  • the size can be made relatively small and the design can be made.
  • the degree of freedom can be improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment.
  • phase change module 30 (including the phase change modules 30A to 30G according to each modification) according to the above-described embodiment can be mounted not only on the server module 5 but also in various forms of electronic devices.
  • the circuit board 50 can increase the number of semiconductor elements 20 mounted.
  • the phase change module 30 (including the phase change modules 30A to 30G according to the respective modifications) can increase the number of heat receiving members 32 mounted.
  • the height position of the upper surface of the bottom plate 34 of each heat receiving member 32 and the height position of the inner bottom portion of each connection pipe 36 are set to higher positions on the upstream side (that is, lower positions on the downstream side).
  • the cross-sectional shape of each connecting pipe 36 is such that the upstream connecting pipe has a wider width and a smaller vertical width (that is, the downstream connecting pipe has a smaller width and a wider vertical width). )become.
  • the circuit board 50 can change the arrangement position of the semiconductor element 20.
  • the phase change module 30 (including the phase change modules 30A to 30G according to the respective modifications) can change the arrangement position of the heat receiving member 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A boiling cooling device (30) has: a plurality of heat receiving members (32a, 32b) that are disposed corresponding to a plurality of heat generating bodies (20a, 20b), respectively; a condensing section (31), which condenses and liquefies the vapor of a refrigerant (R) that has been heated and boiled by means of the heat receiving members; and a plurality of connecting pipes (36a, 36b) for transporting the refrigerant. The connecting pipes are: an upstream connecting pipe (36a) that connects to each other the condensing section and the heat receiving member closest to the condensing section; and another pipe, i.e., a downstream connecting pipe (36b) that connects to each other the heat receiving members that are disposed in the downstream of the upstream connecting pipe. The upstream connecting pipe (36a) and the downstream connecting pipe (36b) have single pipe structures, respectively.

Description

沸騰冷却装置、及びそれを搭載した電子装置Boiling cooling device and electronic device equipped with the same
 本発明は、作動流体の相変化冷却を利用した沸騰冷却装置、及びそれを搭載した電子装置に関する。 The present invention relates to a boiling cooling device using phase change cooling of a working fluid, and an electronic device equipped with the boiling cooling device.
 近年、例えばサーバや、記憶装置、ネットワーク機器等に代表される電子装置は、処理速度の向上等のために、複数のCPU(中央演算処理装置)等の半導体素子を回路基板に搭載している。そして、電子装置は、ハードディスク装置等と共に回路基板を箱状のラック内に高密度に搭載している。 In recent years, for example, electronic devices typified by servers, storage devices, network devices, and the like have semiconductor elements such as a plurality of CPUs (central processing units) mounted on circuit boards in order to improve processing speed and the like. . The electronic device has circuit boards mounted with high density in a box-shaped rack together with a hard disk device or the like.
 ところで、CPU等の半導体素子は、熱を発する発熱体となっている。近年その発熱量が増大する傾向にある。そして、半導体装置は、所定の温度を超えると、性能を維持することができなくなるだけではなく、場合によっては、破損することがある。そのため、冷却等による半導体素子の温度管理が必要とされ、発熱量の増大する半導体素子を効率的に冷却する技術が強く求められている。 Incidentally, a semiconductor element such as a CPU is a heating element that generates heat. In recent years, the calorific value tends to increase. And if a semiconductor device exceeds predetermined temperature, not only will it become impossible to maintain performance, but it may be damaged depending on the case. Therefore, the temperature management of the semiconductor element by cooling or the like is required, and a technique for efficiently cooling the semiconductor element that generates a large amount of heat is strongly demanded.
 このような電子装置の中で、半導体素子は熱を発する発熱体になっている。そして、近年、電子装置は、処理速度の向上のために、半導体素子の高密度化が図られており、電子装置単体の発熱量が増大する傾向にあるとともに、半導体素子の実装数が増大する傾向にあるため、装置全体の発熱量が増大する傾向にある。 In such an electronic device, the semiconductor element is a heating element that generates heat. In recent years, in an electronic device, the density of semiconductor elements has been increased in order to improve the processing speed, and the amount of heat generated by the electronic device alone tends to increase, and the number of semiconductor elements mounted increases. Because of this tendency, the amount of heat generated by the entire apparatus tends to increase.
 なお、従来、サーバ等の電子装置では、一般的に、空冷式の冷却装置が多く採用されていた。しかしながら、空冷式の冷却装置の冷却能力の向上は、既に限界に近づいている。そのため、新たな方式の冷却システムの提供が期待されており、その一つとして、例えば水等の冷媒を利用した冷却システムに注目が集まっている。 Conventionally, in an electronic device such as a server, generally, an air-cooling type cooling device has been widely used. However, the improvement of the cooling capacity of the air-cooled cooling device is already approaching its limit. Therefore, the provision of a new type of cooling system is expected, and as one of them, attention is focused on a cooling system using a refrigerant such as water.
 電子装置に搭載される冷却装置としては、空冷式のものが一般的であった。しかしながら、空冷式の冷却装置は、冷却能力の限界に近づきつつあり、さらなる冷却能力の向上を実現することが困難な状況になっている。そのため、空冷式の冷却装置に代わる新たな冷却方式の冷却装置を電子装置に搭載することが検討されている。その結果、近年、その冷却装置の一種として、例えば水等の冷媒を作動流体とし、作動流体の相変化冷却を利用したサーモサイホン式の沸騰冷却装置が提供されている(例えば特許文献1参照)。 The cooling device mounted on the electronic device is generally an air-cooling type. However, the air-cooling type cooling device is approaching the limit of the cooling capacity, and it is difficult to realize further improvement of the cooling capacity. For this reason, it has been studied to mount a new cooling system cooling device in place of the air cooling type cooling device in the electronic device. As a result, as a type of cooling device, a thermosiphon-type boiling cooling device using a refrigerant such as water as a working fluid and utilizing phase change cooling of the working fluid has been provided in recent years (see, for example, Patent Document 1). .
 特許文献1に記載された沸騰冷却装置は、発熱体の数と同じ数の複数個の沸騰部(受熱部)と、1つの凝縮部(放熱部)と、二重管構造の連結管と、を有する構造になっている。 The boiling cooling device described in Patent Document 1 includes a plurality of boiling portions (heat receiving portions) equal to the number of heating elements, one condensing portion (heat radiating portion), a double pipe structure connecting pipe, It has the structure which has.
W02015/056288号公報W02015 / 056288 publication
 しかしながら、特許文献1に記載された従来の沸騰冷却装置は、二重管構造の連結管を用いた複雑な構造の装置であるため、連結管や装置全体のサイズを小型化し難いという課題や、装置の設計の自由度が低く、製造し難いという課題があった。 However, since the conventional boiling cooling device described in Patent Document 1 is a device having a complicated structure using a connecting tube having a double tube structure, it is difficult to reduce the size of the connecting tube and the entire device, There was a problem that the degree of freedom in designing the device was low and it was difficult to manufacture.
 本発明は、前記した課題を解決するためになされたものであり、比較的小型なサイズにすることができるとともに、設計の自由度を向上させることができる沸騰冷却装置、及びそれを搭載した電子装置を提供することを主な目的とする。 The present invention has been made to solve the above-described problems, and is a boiling cooling device that can be made relatively small in size and can improve the degree of design freedom, and an electronic device equipped with the same. The main purpose is to provide a device.
 前記目的を達成するため、本発明は、内部に冷媒を収容するための中空部が形成されているとともに、複数個の発熱体のそれぞれに対応して配置され、かつ、それぞれの前記発熱体から受熱して前記中空部内の冷媒を加熱する複数個の受熱部材と、それぞれの前記受熱部材で加熱されて沸騰した冷媒の蒸気を凝縮させて液化する凝縮部と、冷媒を輸送する複数本の連結管と、を有し、複数本の前記連結管は、液化された冷媒の流れの上流部である前記凝縮部とその直近の前記受熱部材とを連結する上流側連結管と、その他の、前記上流側連結管よりも下流側に配置された受熱部材同士を連結する下流側連結管となっており、前記上流側連結管及び前記下流側連結管は、それぞれ、単管構造になっていることを特徴とする沸騰冷却装置、及びそれを搭載した電子装置とする。
 その他の手段は、後記する。
In order to achieve the above object, the present invention has a hollow portion for accommodating a refrigerant therein, is disposed corresponding to each of a plurality of heating elements, and is formed from each of the heating elements. A plurality of heat receiving members that receive heat to heat the refrigerant in the hollow portion, a condensing portion that condenses and liquefies the vapor of the refrigerant heated and boiled by each of the heat receiving members, and a plurality of connections that transport the refrigerant A plurality of connecting pipes, an upstream connecting pipe that connects the condensing part, which is an upstream part of the flow of the liquefied refrigerant, and the heat receiving member immediately adjacent thereto, and the other, It is a downstream connecting pipe that connects the heat receiving members arranged downstream of the upstream connecting pipe, and each of the upstream connecting pipe and the downstream connecting pipe has a single tube structure. A boiling cooling device characterized by And equipped with an electronic device.
Other means will be described later.
 本発明によれば、比較的小型なサイズにすることができるとともに、設計の自由度を向上させることができる。 According to the present invention, the size can be made relatively small, and the degree of freedom in design can be improved.
実施形態に係る沸騰冷却装置を搭載した回路基板の上面図である。It is a top view of the circuit board carrying the boiling cooling device concerning an embodiment. 実施形態に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of a circuit board carrying a boiling cooling device concerning an embodiment. 実施形態に係る沸騰冷却装置の上面図である。It is a top view of the boiling cooling device concerning an embodiment. 実施形態に係る沸騰冷却装置の側断面図である。It is a sectional side view of the boiling cooling device concerning an embodiment. 第1変形例に係る沸騰冷却装置を搭載した回路基板の上面図である。It is a top view of a circuit board carrying a boiling cooling device concerning the 1st modification. 第2変形例に係る沸騰冷却装置を搭載した回路基板の上面図である。It is a top view of a circuit board carrying a boiling cooling device concerning the 2nd modification. 第3変形例に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of a circuit board carrying a boiling cooling device concerning the 3rd modification. 第4変形例に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of the circuit board carrying the boiling cooling device which concerns on a 4th modification. 第5変形例に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of a circuit board carrying a boiling cooling device concerning the 5th modification. 第6変形例に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of the circuit board carrying the boiling cooling device which concerns on a 6th modification. 第7変形例に係る沸騰冷却装置を搭載した回路基板の側断面図である。It is a sectional side view of the circuit board carrying the boiling cooling device which concerns on a 7th modification. ラックマウントサーバシステムの部分断面斜視図である。It is a partial section perspective view of a rack mount server system. 実施形態に係る沸騰冷却装置を搭載した電子装置の部分断面斜視図である。It is a partial section perspective view of an electronic device carrying a boiling cooling device concerning an embodiment. 実施形態に係る沸騰冷却装置を搭載した電子装置の上面図である。It is a top view of the electronic device carrying the boiling cooling device concerning an embodiment. 変形例に係る沸騰冷却装置を搭載した電子装置の上面図(1)である。It is a top view (1) of the electronic device carrying the boiling cooling device which concerns on a modification. 変形例に係る沸騰冷却装置を搭載した電子装置の上面図(2)である。It is a top view (2) of the electronic device carrying the boiling cooling device which concerns on a modification.
 以下、図面を参照して、本発明の実施の形態(以下、「本実施形態」と称する)につき詳細に説明する。なお、各図は、本発明を十分に理解できる程度に、概略的に示してあるに過ぎない。よって、本発明は、図示例のみに限定されるものではない。また、各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明を省略する。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail with reference to the drawings. Each figure is only schematically shown so that the present invention can be fully understood. Therefore, the present invention is not limited to the illustrated example. Moreover, in each figure, the same code | symbol is attached | subjected about the common component and the same component, and those overlapping description is abbreviate | omitted.
 [実施形態]
 <回路基板及びその回路基板に搭載された沸騰冷却装置の構成>
 以下、図1~図4を参照して、回路基板(プリント回路板(printed circuit board))50及びその回路基板50に搭載された本実施形態に係る沸騰冷却装置30の構成につき説明する。図1は、回路基板50の構成を示す図である。図2は、回路基板50の側断面図であり、図1に示す線X1-X1に沿って切断した回路基板50の切断面の形状を示している。図3は、沸騰冷却装置30の上面図である。図4は、沸騰冷却装置30の側断面図である。
[Embodiment]
<Configuration of circuit board and boiling cooling device mounted on the circuit board>
Hereinafter, the configuration of the circuit board (printed circuit board) 50 and the boiling cooling device 30 according to the present embodiment mounted on the circuit board 50 will be described with reference to FIGS. FIG. 1 is a diagram illustrating a configuration of the circuit board 50. FIG. 2 is a side sectional view of the circuit board 50 and shows the shape of the cut surface of the circuit board 50 cut along the line X1-X1 shown in FIG. FIG. 3 is a top view of the boiling cooling device 30. FIG. 4 is a side sectional view of the boiling cooling device 30.
 ここでは、回路基板50がサーバモジュール5(図12参照)に搭載される場合を想定して説明する。サーバモジュール5(図12参照)は、ラックキャビネット2(図12参照)に収容されるラックマウント型サーバとして構成された電子装置である。 Here, the case where the circuit board 50 is mounted on the server module 5 (see FIG. 12) will be described. The server module 5 (see FIG. 12) is an electronic device configured as a rack mount server accommodated in the rack cabinet 2 (see FIG. 12).
 図1に示すように、回路基板50は、発熱体であるCPU等の2つの半導体素子20a,20b(図2参照)と、表面に半導体素子20a,20bが実装されたプリント配線板(printed wiring board)10と、半導体素子20a,20bを冷却する沸騰冷却装置30と、空気(冷却風)を後記する凝縮器31に送る冷却ファン40と、を備えている。以下、半導体素子20a,20bを総称する場合に「半導体素子20」と称する。 As shown in FIG. 1, a circuit board 50 includes two semiconductor elements 20a and 20b (see FIG. 2) such as a CPU as a heating element, and a printed wiring board (printed wiring) having the semiconductor elements 20a and 20b mounted on the surface. board) 10, a boiling cooling device 30 that cools the semiconductor elements 20a and 20b, and a cooling fan 40 that sends air (cooling air) to a condenser 31 that will be described later. Hereinafter, the semiconductor elements 20a and 20b are collectively referred to as “semiconductor element 20”.
 2つの半導体素子20a,20b(図2参照)のうち、半導体素子20aは、後記する凝縮器31に近い側の素子であり、一方、半導体素子20bは、後記する凝縮器31から遠い側の素子である。本実施形態では、各半導体素子20a,20bの上面の高さが同じになっている。つまり、各半導体素子20a,20bの厚さが同じになっている。 Of the two semiconductor elements 20a and 20b (see FIG. 2), the semiconductor element 20a is an element closer to the condenser 31 described later, while the semiconductor element 20b is an element farther from the condenser 31 described later. It is. In the present embodiment, the height of the upper surface of each semiconductor element 20a, 20b is the same. That is, the thickness of each semiconductor element 20a, 20b is the same.
 沸騰冷却装置30は、例えば水等の冷媒を作動流体とし、作動流体の相変化冷却を利用したサーモサイホン式の相変化モジュールとして構成されている。
 「相変化冷却」とは、作動流体が液体から気体に変化する際の熱の移動を利用する冷却技術である。
 「サーモサイホン」とは、沸騰部と凝縮部とを有する密閉容器の中に作動流体を封入し、沸騰部で作動流体を加熱して蒸発(気化)させるとともに、凝縮部で作動流体を冷却して凝縮(液化)させ、重力を利用して凝縮(液化)された作動流体を凝縮部から沸騰部に戻す機構である。
The boiling cooling device 30 is configured as a thermosiphon-type phase change module that uses a coolant such as water as a working fluid and uses phase change cooling of the working fluid.
“Phase change cooling” is a cooling technique that uses heat transfer when the working fluid changes from a liquid to a gas.
“Thermo siphon” is a method in which a working fluid is enclosed in a closed container having a boiling part and a condensing part, and the working fluid is heated and evaporated (vaporized) in the boiling part, and the working fluid is cooled in the condensing part. It is a mechanism for returning the working fluid condensed (liquefied) using gravity and condensed (liquefied) using gravity from the condensing part to the boiling part.
 以下、沸騰冷却装置を「相変化モジュール」と称する場合がある。また、作動流体を「冷媒」と称する場合がある。また、液化している冷媒を「液体冷媒」と称し、気化している冷媒の蒸気を「冷媒蒸気」と称する場合がある。 Hereinafter, the boiling cooling device may be referred to as a “phase change module”. Further, the working fluid may be referred to as “refrigerant”. Further, the liquefied refrigerant may be referred to as “liquid refrigerant” and the vaporized refrigerant vapor may be referred to as “refrigerant vapor”.
 図1及び図3に示すように、相変化モジュール(沸騰冷却装置)30は、沸騰部として機能する2つの受熱部材32a,32bと、凝縮部として機能する凝縮器31と、冷媒を輸送する2本の連結管36a,36bと、を有している。以下、受熱部材32a,32bを総称する場合に「受熱部材32」と称する。また、連結管36a,36bを総称する場合に「連結管36」と称する。 As shown in FIGS. 1 and 3, the phase change module (boiling cooling device) 30 transports refrigerant by two heat receiving members 32 a and 32 b that function as a boiling part, a condenser 31 that functions as a condensing part, and 2. The connecting pipes 36a and 36b are provided. Hereinafter, the heat receiving members 32a and 32b are collectively referred to as “heat receiving member 32”. The connecting pipes 36a and 36b are collectively referred to as “connecting pipe 36”.
 2つの受熱部材32a,32bのうち、受熱部材32aは、凝縮器31に近い側の部材であり、一方、受熱部材32bは、凝縮器31から遠い側の部材である。受熱部材32aは、発熱体である半導体素子20a(図2参照)の表面に取り付けられ、半導体素子20aから受熱する。一方、受熱部材32bは、発熱体である半導体素子20b(図2参照)の表面に取り付けられ、半導体素子20bから受熱する。 Of the two heat receiving members 32 a and 32 b, the heat receiving member 32 a is a member closer to the condenser 31, while the heat receiving member 32 b is a member farther from the condenser 31. The heat receiving member 32a is attached to the surface of the semiconductor element 20a (see FIG. 2), which is a heating element, and receives heat from the semiconductor element 20a. On the other hand, the heat receiving member 32b is attached to the surface of the semiconductor element 20b (see FIG. 2), which is a heating element, and receives heat from the semiconductor element 20b.
 2本の連結管36a,36bのうち、連結管36aは、凝縮器31とその直近の受熱部材32aとを連結する管であり、一方、連結管36bは、連結管36aよりも下流側に配置された受熱部材32aと受熱部材32bを連結する管である。連結管36a,36bは、それぞれ、単管構造になっている。本実施形態では、連結管36a,36bは、上面視で同じ方向に延在するように配置されている(図1及び図3参照)。液体冷媒は、連結管36a,36bの内部の下部側を流れ、一方、冷媒蒸気は、連結管36a,36bの内部の上部側を流れる。 Of the two connecting pipes 36a and 36b, the connecting pipe 36a is a pipe connecting the condenser 31 and the heat receiving member 32a in the immediate vicinity thereof, while the connecting pipe 36b is disposed downstream of the connecting pipe 36a. This is a pipe connecting the heat receiving member 32a and the heat receiving member 32b. Each of the connecting pipes 36a and 36b has a single pipe structure. In the present embodiment, the connecting pipes 36a and 36b are arranged so as to extend in the same direction when viewed from above (see FIGS. 1 and 3). The liquid refrigerant flows on the lower side inside the connecting pipes 36a and 36b, while the refrigerant vapor flows on the upper side inside the connecting pipes 36a and 36b.
 なお、本実施形態では、「上流」及び「下流」は、液体冷媒の流れる方向(後記する液流れの方向Aliq)を基準にしている。したがって、本実施形態では、「凝縮器31」が最上流部となり、「受熱部材32b」が最下流部となる。また、連結管36aは、上流側の連結管となり、一方、連結管36bは、下流側の連結管となる。 In the present embodiment, “upstream” and “downstream” are based on the direction in which the liquid refrigerant flows (the liquid flow direction Aliq described later). Therefore, in this embodiment, the “condenser 31” is the most upstream part, and the “heat receiving member 32b” is the most downstream part. The connecting pipe 36a serves as an upstream connecting pipe, while the connecting pipe 36b serves as a downstream connecting pipe.
 図2及び図4に示すように、2つの受熱部材32a,32bのうち、受熱部材32aは、蓋体33aと、蓋体33aによって覆われた底板34aと、を備えている。受熱部材32aの底板34aの底面は、半導体素子20aの表面と接触している。一方、受熱部材32bは、蓋体33bと、蓋体33bによって覆われた底板34bと、を備えている。受熱部材32bの底板34bの底面は、半導体素子20bの表面と接触している。以下、蓋体33a,33bを総称する場合に「蓋体33」と称する。また、底板34a,34bを総称する場合に「底板34」と称する。 2 and 4, the heat receiving member 32a of the two heat receiving members 32a and 32b includes a lid 33a and a bottom plate 34a covered with the lid 33a. The bottom surface of the bottom plate 34a of the heat receiving member 32a is in contact with the surface of the semiconductor element 20a. On the other hand, the heat receiving member 32b includes a lid 33b and a bottom plate 34b covered with the lid 33b. The bottom surface of the bottom plate 34b of the heat receiving member 32b is in contact with the surface of the semiconductor element 20b. Hereinafter, the lids 33a and 33b are collectively referred to as “lid 33”. The bottom plates 34a and 34b are collectively referred to as “bottom plate 34”.
 蓋体33は、例えば、銅やアルミニウム合金等の、熱伝導率に優れた金属材の板を椀状に絞った形状に加工することによって作られている。一方、底板34は、例えば、銅やアルミニウム合金等の、熱伝導率に優れた金属材の板を平板状に加工することによって作られている。 The lid 33 is made by, for example, processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy, into a shape narrowed down like a bowl. On the other hand, the bottom plate 34 is made by processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy, into a flat plate shape.
 相変化モジュール30は、受熱部材32a,32bの底板34a,34bの底面がそれぞれに対応する半導体素子20a,20bの表面と接触するように、ネジ等の固定具(不図示)でプリント配線板10に固定されている。なお、半導体素子20a,20bの表面には、それぞれに対応する受熱部材32a,32bの底板34a,34bの底面との間の良好な伝熱性を確保するために、熱伝導グリス(不図示)が塗布されている。 In the phase change module 30, the printed wiring board 10 is fixed with a fixing tool (not shown) such as a screw so that the bottom surfaces of the bottom plates 34a and 34b of the heat receiving members 32a and 32b are in contact with the surfaces of the corresponding semiconductor elements 20a and 20b. It is fixed to. In addition, in order to ensure favorable heat transfer between the bottom surfaces 34a and 34b of the heat receiving members 32a and 32b corresponding to the surfaces of the semiconductor elements 20a and 20b, heat conduction grease (not shown) is provided, respectively. It has been applied.
 受熱部材32aの内部には、冷媒Rを収容する中空部32iaが形成されており、その中空部32iaの内部には、半導体素子20aの熱が伝達される沸騰伝熱部35aが配置されている。一方、受熱部材32bの内部には、冷媒を収容する中空部32ibが形成されており、その中空部32ibの内部には、半導体素子20bの熱が伝達される沸騰伝熱部35bが配置されている。以下、中空部32ia,32ibを総称する場合に「中空部32i」と称する。また、沸騰伝熱部35a,35bを総称する場合に「沸騰伝熱部35」と称する。 A hollow portion 32ia that accommodates the refrigerant R is formed in the heat receiving member 32a, and a boiling heat transfer portion 35a to which the heat of the semiconductor element 20a is transmitted is disposed in the hollow portion 32ia. . On the other hand, the heat receiving member 32b is formed with a hollow portion 32ib for accommodating the refrigerant, and the boiling heat transfer portion 35b to which the heat of the semiconductor element 20b is transmitted is disposed inside the hollow portion 32ib. Yes. Hereinafter, the hollow portions 32ia and 32ib are collectively referred to as “hollow portions 32i”. The boiling heat transfer parts 35a and 35b are collectively referred to as “boiling heat transfer part 35”.
 中空部32iの内部の底側には、液化した冷媒Rである液体冷媒Rliqが溜まっており、また、中空部32iの内部の液体冷媒Rliqの液面よりも上方の空間には、気化した冷媒Rである冷媒蒸気Rstが浮遊している。中空部32iの内部は、減圧された状態になっている。そのため、比較的低い温度で冷媒Rが沸騰し易い状態になっている。 The liquid refrigerant Rliq, which is the liquefied refrigerant R, is accumulated on the bottom side inside the hollow portion 32i, and the vaporized refrigerant is present in the space above the liquid level of the liquid refrigerant Rliq inside the hollow portion 32i. The refrigerant vapor Rst which is R is floating. The inside of the hollow part 32i is in a decompressed state. Therefore, the refrigerant R is easily boiled at a relatively low temperature.
 液体冷媒Rliqは、凝縮器31から受熱部材32bの方向に流れる(矢印Aliq参照)。矢印Aliqは、液流れの方向を示している。一方、冷媒蒸気Rstは、受熱部材32bから凝縮器31の方向に流れる(矢印Ast参照)。矢印Astは、蒸気流れの方向を示している。 The liquid refrigerant Rliq flows from the condenser 31 toward the heat receiving member 32b (see arrow Aliq). Arrow Aliq indicates the direction of liquid flow. On the other hand, the refrigerant vapor Rst flows from the heat receiving member 32b toward the condenser 31 (see arrow As). Arrow Ast indicates the direction of steam flow.
 沸騰伝熱部35は、上面視において受熱部材32の内部の中央付近に配置されている。沸騰伝熱部35は、冷媒Rの蒸発(気化)を促進するために、多孔質な構造になっている。つまり、沸騰伝熱部35は、微小の凸凹状の突起部や孔部を備えた構造になっている。沸騰伝熱部35は、例えば、多孔構造の気化促進板を機械加工することによって作られている。その気化促進板は、例えば、銅やアルミニウム合金等の、熱伝導率に優れた金属材の板を加工することによって作られている。沸騰伝熱部35は、加圧溶接やロウ付け等で底板34に接合されている。ただし、沸騰伝熱部35は、底板34の表面を多孔質な構造にしておき、その底板34の表面を機械加工することによって、底板34と一体に形成することも可能である。 The boiling heat transfer section 35 is disposed near the center inside the heat receiving member 32 in a top view. The boiling heat transfer section 35 has a porous structure in order to promote evaporation (vaporization) of the refrigerant R. That is, the boiling heat transfer part 35 has a structure provided with minute uneven projections and holes. The boiling heat transfer section 35 is made, for example, by machining a vaporization promoting plate having a porous structure. The vaporization promotion plate is made by processing a metal plate having excellent thermal conductivity, such as copper or aluminum alloy. The boiling heat transfer section 35 is joined to the bottom plate 34 by pressure welding, brazing, or the like. However, the boiling heat transfer section 35 can be formed integrally with the bottom plate 34 by making the surface of the bottom plate 34 porous and machining the surface of the bottom plate 34.
 受熱部材32は、半導体素子20の熱が底板34を介して沸騰伝熱部35に伝達されることによって、中空部32iの内部に収容されている冷媒Rを加熱して蒸発(気化)させる。その結果、中空部32iの内部で液体冷媒Rliqが冷媒蒸気Rstに変わる。 The heat receiving member 32 heats and evaporates (vaporizes) the refrigerant R accommodated in the hollow portion 32i by transferring the heat of the semiconductor element 20 to the boiling heat transfer portion 35 through the bottom plate 34. As a result, the liquid refrigerant Rliq is changed to the refrigerant vapor Rst inside the hollow portion 32i.
 凝縮器31は、上部側の内部に冷媒Rを収容する中空部31iを備えるとともに、下部側に複数枚のフィン31fを備えている。凝縮器31は、冷媒Rが収容される中空部31iを上部側に配置するとともに、フィン31fを下部側に配置した構造になっている。これにより、凝縮器31は、厚さを薄くすることができる。 The condenser 31 includes a hollow portion 31i that accommodates the refrigerant R inside the upper side, and a plurality of fins 31f on the lower side. The condenser 31 has a structure in which the hollow portion 31i in which the refrigerant R is accommodated is disposed on the upper side and the fins 31f are disposed on the lower side. Thereby, the condenser 31 can make thickness thin.
 凝縮器31の中空部31iの底面は、受熱部材32a,32bの中空部32ia,32ibの底面(底板34a,34bの上面)よりも高い位置に配置されている。冷却ファン40(図1参照)は、フィン31fの方向に空気(冷却風)を送る(矢印Aair参照)。矢印Aairは、冷却風流れの方向を示している。冷却ファン40(図1参照)によって送られた空気(冷却風)は、フィン31fの周囲を通過する。その際に、凝縮器31は、フィン31fを介して中空部31iの内部の冷媒蒸気Rstの熱を空気(冷却風)に放出する。これにより、凝縮器31は、中空部31iの内部の冷媒蒸気Rstを冷却して液化させる。その結果、中空部31iの内部で冷媒蒸気Rstが液体冷媒Rliqに戻る。 The bottom surface of the hollow portion 31i of the condenser 31 is disposed at a position higher than the bottom surfaces (the top surfaces of the bottom plates 34a and 34b) of the hollow portions 32ia and 32ib of the heat receiving members 32a and 32b. The cooling fan 40 (see FIG. 1) sends air (cooling air) in the direction of the fins 31f (see arrow Aair). Arrow Aair shows the direction of the cooling air flow. The air (cooling air) sent by the cooling fan 40 (see FIG. 1) passes around the fins 31f. At that time, the condenser 31 releases the heat of the refrigerant vapor Rst inside the hollow portion 31i to the air (cooling air) through the fins 31f. Thereby, the condenser 31 cools and liquefies the refrigerant | coolant vapor | steam Rst inside the hollow part 31i. As a result, the refrigerant vapor Rst returns to the liquid refrigerant Rliq inside the hollow portion 31i.
 このような相変化モジュール30は、電動ポンプ等の外部動力を用いることなく、最上流側の凝縮器31と下流側の受熱部材32a,32bとの間で作動流体を循環させることができる。 Such a phase change module 30 can circulate the working fluid between the most upstream condenser 31 and the downstream heat receiving members 32a and 32b without using external power such as an electric pump.
 ところで、特許文献1に記載された従来の沸騰冷却装置は、発熱体の数と同じ数の複数個の沸騰部(受熱部)と、1つの凝縮部(放熱部)と、二重管構造の連結管と、を有する構造になっている。このような従来の沸騰冷却装置は、凝縮部から遠い側の沸騰部に対する液戻りをし難い構造になっている。そのため、従来の沸騰冷却装置は、凝縮部から遠い側の沸騰部で液枯れによるドライアウトが発生してしまい、その結果、凝縮部から遠い側の発熱体の温度が急激に上昇してしまう可能性があった。これにより、従来の沸騰冷却装置は、搭載される電子装置の信頼性を損ねる可能性があった。 By the way, the conventional boiling cooling apparatus described in Patent Document 1 has a plurality of boiling parts (heat receiving parts) having the same number as the number of heating elements, one condensing part (heat radiating part), and a double tube structure. And a connecting pipe. Such a conventional boiling cooling device has a structure that makes it difficult to return the liquid to the boiling portion far from the condensing portion. For this reason, in the conventional boiling cooling device, dryout due to liquid withering occurs in the boiling part far from the condensing part, and as a result, the temperature of the heating element far from the condensing part can rapidly increase. There was sex. Thereby, the conventional boiling cooling apparatus may impair the reliability of the electronic device mounted.
 このような現象を考慮すると、相変化モジュール30は、下流側(凝縮器31から遠い側)の受熱部材32bで液枯れによるドライアウトが発生してしまい、その結果、下流側の半導体素子20bの温度が上昇してしまうことを防止できる構造であることが好ましい。つまり、相変化モジュール30は、液体冷媒Rliqを最下流部である受熱部材32bに良好に戻せる構造であることが好ましい。そこで、相変化モジュール30は、以下のような構造になっている。 In consideration of such a phenomenon, the phase change module 30 causes dryout due to liquid drainage in the heat receiving member 32b on the downstream side (the side far from the condenser 31), and as a result, the semiconductor element 20b on the downstream side A structure that can prevent the temperature from rising is preferable. That is, the phase change module 30 preferably has a structure that can satisfactorily return the liquid refrigerant Rliq to the heat receiving member 32b that is the most downstream portion. Therefore, the phase change module 30 has the following structure.
 例えば、相変化モジュール30では、上流側(凝縮器31に近い側)の受熱部材32aの底板34aの上面は、下流側(凝縮器31から遠い側)の受熱部材32bの底板34bの上面よりも高い位置に配置されている。換言すると、下流側の受熱部材32bの底板34bの上面は、上流側の受熱部材32aの底板34aの上面よりも低い位置に配置されている。受熱部材32a,32bの底板34a,34bは、上面がこのような高さ位置の関係を満たすように、厚さが調整されている。 For example, in the phase change module 30, the upper surface of the bottom plate 34a of the heat receiving member 32a on the upstream side (side closer to the condenser 31) is higher than the upper surface of the bottom plate 34b of the heat receiving member 32b on the downstream side (side far from the condenser 31). It is placed at a high position. In other words, the upper surface of the bottom plate 34b of the downstream heat receiving member 32b is disposed at a position lower than the upper surface of the bottom plate 34a of the upstream heat receiving member 32a. The thicknesses of the bottom plates 34a and 34b of the heat receiving members 32a and 32b are adjusted so that the upper surfaces satisfy such a height position relationship.
 また、沸騰伝熱部35a,35bの高さは、凝縮部31から遠い下流側の受熱部材32bの沸騰伝熱部35bほど、低くなっている。また、受熱部材32a32bの中空部32ia,32ibの天井の高さは、凝縮部31から遠い下流側の受熱部材32bの中空部32ibほど、低くなっている。 Moreover, the height of the boiling heat transfer portions 35a and 35b is lower as the boiling heat transfer portion 35b of the downstream heat receiving member 32b is farther from the condensing portion 31. Further, the height of the ceiling of the hollow portions 32ia and 32ib of the heat receiving member 32a32b is lower as the hollow portion 32ib of the heat receiving member 32b on the downstream side farther from the condensing portion 31 is lower.
 また、相変化モジュール30では、凝縮器31の上面が一番高くなり、受熱部材32aの上面、受熱部材32bの上面がこの順に低くなるように、凝縮器31及び受熱部材32a,32bの上面の高さ位置が設定されている。また、下流側の連結管36bの内側底部が上流側の連結管36aの内側底部よりも低くなるように、連結管36a,36bの内側底部の高さ位置が設定されている。 In the phase change module 30, the upper surface of the condenser 31 and the upper surfaces of the heat receiving members 32a and 32b are arranged so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order. The height position is set. Further, the height positions of the inner bottom portions of the connecting tubes 36a and 36b are set so that the inner bottom portion of the downstream connecting tube 36b is lower than the inner bottom portion of the upstream connecting tube 36a.
 このような相変化モジュール30は、上流側(凝縮器31に近い側)の受熱部材32aから下流側(凝縮器31から遠い側)の受熱部材32bに向けて液体冷媒Rliqを良好に流すことができる。これにより、相変化モジュール30は、最上流部である凝縮器31から最下流部である受熱部材32bに向けて良好に液戻りを行うことができる。その結果、相変化モジュール30は、上流の受熱部材32aの内部に停留する液体冷媒Rliqの量を極力少なくして、下流側の半導体素子20b(図2参照)を冷却するための十分な量の液体冷媒Rliqを下流側の受熱部材32bに流すことができる。したがって、相変化モジュール30は、下流側の受熱部材32bでの液枯れによるドライアウトを防止することができ、各発熱体(特に、下流側の半導体素子20b)での温度の急激な上昇を防止することができる。 Such a phase change module 30 allows the liquid refrigerant Rliq to flow well from the heat receiving member 32a on the upstream side (side near the condenser 31) toward the heat receiving member 32b on the downstream side (side far from the condenser 31). it can. Thereby, the phase change module 30 can perform liquid return favorably toward the heat receiving member 32b which is the most downstream part from the condenser 31 which is the most upstream part. As a result, the phase change module 30 reduces the amount of the liquid refrigerant Rliq retained in the upstream heat receiving member 32a as much as possible and cools the downstream semiconductor element 20b (see FIG. 2) sufficiently. The liquid refrigerant Rliq can be flowed to the heat receiving member 32b on the downstream side. Therefore, the phase change module 30 can prevent the dry-out due to the liquid withering in the downstream heat receiving member 32b, and prevents a rapid increase in temperature in each heating element (particularly, the downstream semiconductor element 20b). can do.
 なお、前記した底板34a,34bの上面の高さ位置の関係は、プリント配線板10(図2参照)の上面を基準にした関係と考えてもよい。つまり、プリント配線板10(図2参照)の上面を基準にすると、プリント配線板10の上面から上流側の受熱部材32aの底板34aの上面までの距離は、プリント配線板10の上面から下流側の受熱部材32bの底板34bの上面までの距離よりも大きくなっている。 The relationship between the height positions of the upper surfaces of the bottom plates 34a and 34b may be considered as a relationship based on the upper surface of the printed wiring board 10 (see FIG. 2). That is, on the basis of the upper surface of the printed wiring board 10 (see FIG. 2), the distance from the upper surface of the printed wiring board 10 to the upper surface of the bottom plate 34a of the upstream heat receiving member 32a is downstream from the upper surface of the printed wiring board 10. The heat receiving member 32b is larger than the distance to the upper surface of the bottom plate 34b.
 また、前記した通り、上流側の受熱部材32aの底板34aの上面は、下流側の受熱部材32bの底板34bの上面よりも高い位置に配置されている。そのため、相変化モジュール30は、上流側の連結管36aの内側底部を下流側の連結管36bの内側底部よりも高い位置に配置させた構造になっている。このような構造を実現しようとした場合に、仮に、上流側の連結管36aの径が下流側の連結管36bの径よりも細くなるように設定すると、上流側の連結管36aと下流側の連結管36bとで流路抵抗が変化する。これにより、液体冷媒Rliqの流れが阻害される可能性がある。そこで、本実施形態では、液体冷媒Rliqの良好な流れを実現するために、上流側の連結管36aの断面積と下流側の連結管36bの断面積とが略同じになるように、各連結管36a,36bの偏平率が調整されている。具体的には、各連結管36a,36bは、凝縮部31に近い上流側の連結管ほど、偏平率が大きくなっている。つまり、上流側の連結管36aの断面形状は、下流側の連結管36bの断面形状と比較して、横幅が広く、かつ、縦幅が狭い形状になっている。換言すると、下流側の連結管36bの断面形状は、上流側の連結管36aの断面形状と比較して、横幅が狭く、かつ、縦幅が広い形状になっている。 Also, as described above, the upper surface of the bottom plate 34a of the upstream heat receiving member 32a is disposed at a position higher than the upper surface of the bottom plate 34b of the downstream heat receiving member 32b. Therefore, the phase change module 30 has a structure in which the inner bottom portion of the upstream connecting pipe 36a is disposed at a position higher than the inner bottom portion of the downstream connecting pipe 36b. When trying to realize such a structure, if the diameter of the upstream connecting pipe 36a is set to be smaller than the diameter of the downstream connecting pipe 36b, the upstream connecting pipe 36a and the downstream connecting pipe 36a The flow path resistance changes with the connecting pipe 36b. Thereby, the flow of the liquid refrigerant Rliq may be hindered. Therefore, in the present embodiment, in order to realize a good flow of the liquid refrigerant Rliq, each connection is made so that the cross-sectional area of the upstream connection pipe 36a and the cross-sectional area of the downstream connection pipe 36b are substantially the same. The flatness of the tubes 36a and 36b is adjusted. Specifically, the flattening rate of each of the connecting pipes 36a and 36b increases as the connecting pipe on the upstream side near the condensing unit 31 increases. That is, the cross-sectional shape of the upstream connecting pipe 36a is wider than the cross-sectional shape of the downstream connecting pipe 36b, and the vertical width is narrow. In other words, the cross-sectional shape of the downstream connecting pipe 36b is narrower than the cross-sectional shape of the upstream connecting pipe 36a and has a wide vertical width.
 なお、本実施形態では、ラックマウント型サーバであるサーバモジュール5(図12参照)に搭載される回路基板50に相変化モジュール30が実装されている。ラックマウント型サーバは、筺体の高さが1U(又は2U)以内に規定されている。なお、「U」とは、ラック搭載高さの最小寸法であり、1U=44.45mm(1.75インチ)となっている。そのため、相変化モジュール30の上端部から下端部までの厚さは、相変化モジュール30が実装された状態で回路基板50をサーバモジュール5(図12参照)に搭載することができる値に設定されている。 In the present embodiment, the phase change module 30 is mounted on the circuit board 50 mounted on the server module 5 (see FIG. 12) which is a rack mount server. The rack mount server is defined such that the height of the housing is within 1U (or 2U). “U” is the minimum dimension of the rack mounting height and is 1U = 44.45 mm (1.75 inches). Therefore, the thickness from the upper end portion to the lower end portion of the phase change module 30 is set to a value that allows the circuit board 50 to be mounted on the server module 5 (see FIG. 12) with the phase change module 30 mounted. ing.
 ここで、「相変化モジュール30の上端部」とは、凝縮器31の上面となっている。また、「相変化モジュール30の下端部」とは、凝縮器31のフィン31fの下端、受熱部材32aの底板34aの底面、及び、受熱部材32bの底板34bの底面のいずれか1乃至複数箇所となっている。 Here, “the upper end portion of the phase change module 30” is the upper surface of the condenser 31. The “lower end portion of the phase change module 30” refers to any one or more of the lower end of the fin 31f of the condenser 31, the bottom surface of the bottom plate 34a of the heat receiving member 32a, and the bottom surface of the bottom plate 34b of the heat receiving member 32b. It has become.
 ところで、特許文献1に記載された従来の沸騰冷却装置の凝縮部(放熱部)は、複数個の沸騰部(受熱部)のそれぞれで発生した冷媒蒸気を分けて受け入れる必要がある。そのため、従来の沸騰冷却装置の凝縮部(放熱部)は、内部の空間を仕切る構造になっている。このような従来の沸騰冷却装置は、冷媒蒸気の収容に利用されない無駄な空間が凝縮部(放熱部)の内部に存在するため、凝縮部(放熱部)のサイズを小型化し難い構造になっている。 By the way, the condensing part (heat radiating part) of the conventional boiling cooling apparatus described in Patent Document 1 needs to receive refrigerant vapor generated in each of the plurality of boiling parts (heat receiving parts) separately. Therefore, the condensing part (heat radiation part) of the conventional boiling cooling device has a structure that partitions the internal space. Such a conventional boiling cooling device has a structure in which it is difficult to reduce the size of the condensing part (heat dissipating part) because a useless space that is not used for accommodating the refrigerant vapor exists inside the condensing part (heat dissipating part). Yes.
 これに対して、本実施形態に係る相変化モジュール30の凝縮部(凝縮器31)は、複数個の沸騰部(受熱部材32a,32b)のそれぞれで発生した冷媒蒸気Rstを分けて受け入れる必要がない。そのため、相変化モジュール30の凝縮部(凝縮器31)は、内部の空間を比較的大容量の単体の中空部31iとして構成することができる。このような相変化モジュール30は、冷媒蒸気Rstの収容に利用されない無駄な空間が凝縮部(凝縮器31)の内部に存在しないため、凝縮部(凝縮器31)のサイズを容易に小型化することができる。これにより、相変化モジュール30は、上端部から下端部までの厚さを、相変化モジュール30が実装された状態で回路基板50をサーバモジュール5(図12参照)に搭載することができる値に設定することができる。そのため、相変化モジュール30が実装された回路基板50は、ラックマウント型サーバであるサーバモジュール5(図12参照)に搭載することができる。 On the other hand, the condensing part (condenser 31) of the phase change module 30 according to the present embodiment needs to separately receive the refrigerant vapor Rst generated in each of the plurality of boiling parts ( heat receiving members 32a and 32b). Absent. Therefore, the condensing part (condenser 31) of the phase change module 30 can configure the internal space as a single hollow part 31i having a relatively large capacity. Since such a phase change module 30 does not have a useless space that is not used for accommodating the refrigerant vapor Rst inside the condenser (condenser 31), the size of the condenser (condenser 31) can be easily reduced. be able to. Thereby, the phase change module 30 has a thickness from the upper end to the lower end so that the circuit board 50 can be mounted on the server module 5 (see FIG. 12) in a state where the phase change module 30 is mounted. Can be set. Therefore, the circuit board 50 on which the phase change module 30 is mounted can be mounted on the server module 5 (see FIG. 12) that is a rack mount server.
 かかる構成において、半導体素子20で発生した熱は、熱伝導グリス(不図示)を介して半導体素子20の表面から受熱部材32の底板34に伝達され、底板34から中空部32iの内部に配置された沸騰伝熱部35に伝達される。 In such a configuration, the heat generated in the semiconductor element 20 is transmitted from the surface of the semiconductor element 20 to the bottom plate 34 of the heat receiving member 32 via heat conduction grease (not shown), and is disposed from the bottom plate 34 to the inside of the hollow portion 32i. Is transmitted to the boiling heat transfer section 35.
 これにより、受熱部材32の中空部32iの内部では、液体冷媒Rliqが減圧下で沸騰して蒸発する。その結果、冷媒蒸気Rstが発生する。冷媒蒸気Rstは、連結管36の内部を通って受熱部材32から凝縮器31に向かって流れる。 Thereby, in the hollow portion 32i of the heat receiving member 32, the liquid refrigerant Rliq boils under reduced pressure and evaporates. As a result, refrigerant vapor Rst is generated. The refrigerant vapor Rst flows from the heat receiving member 32 toward the condenser 31 through the inside of the connecting pipe 36.
 凝縮器31に到達した冷媒蒸気Rstは、凝縮器31で冷却されることによって液化して液体冷媒Rliqに戻る。液体冷媒Rliqは、重力により、連結管36の内部を通って凝縮器31から受熱部材32に向かって流れる。このとき、液体冷媒Rliqは、まず、上流側の受熱部材32aの中空部32iaに到達する。そして、上流側の受熱部材32aの中空部32iaから溢れた分の液体冷媒Rliqが、上流側の受熱部材32aで停留することなく、上流側の受熱部材32aから下流側の受熱部材32bに向かって流れ、下流側の受熱部材32bの中空部32ibに到達する。 The refrigerant vapor Rst that has reached the condenser 31 is liquefied by being cooled by the condenser 31 and returns to the liquid refrigerant Rliq. The liquid refrigerant Rliq flows from the condenser 31 toward the heat receiving member 32 through the inside of the connecting pipe 36 due to gravity. At this time, the liquid refrigerant Rliq first reaches the hollow portion 32ia of the upstream heat receiving member 32a. Then, the liquid refrigerant Rliq that has overflowed from the hollow portion 32ia of the upstream heat receiving member 32a does not stop at the upstream heat receiving member 32a, and travels from the upstream heat receiving member 32a to the downstream heat receiving member 32b. The flow reaches the hollow portion 32ib of the heat receiving member 32b on the downstream side.
 なお、前記した通り、沸騰伝熱部35は、多孔質な構造になっている。
 このような沸騰伝熱部35では、入力熱量が小さい場合に、液体冷媒Rliqが少量しか蒸発(気化)せずに、液体冷媒Rliqの膜厚が厚くなる。その結果、液体冷媒Rliqが沸騰伝熱部35の孔の中に含浸して、各孔を埋める。そのため、沸騰伝熱部35は、液体冷媒Rliqが枯渇しない限り、安定した蒸発性能(気化性能)を発揮することができる。
 一方、入力熱量が大きい場合に、各孔を埋めていた液体冷媒Rliqが蒸発(気化)して、液体冷媒Rliqの膜厚が薄くなる。その結果、液体冷媒Rliqの膜厚の薄い部分が増えて、液体冷媒Rliqの蒸発(気化)が促進される。そのため、沸騰伝熱部35は、放熱性能を向上させて、熱輸送量を増大させることができる。
As described above, the boiling heat transfer section 35 has a porous structure.
In such a boiling heat transfer section 35, when the amount of input heat is small, only a small amount of the liquid refrigerant Rliq evaporates (vaporizes), and the film thickness of the liquid refrigerant Rliq increases. As a result, the liquid refrigerant Rliq is impregnated into the holes of the boiling heat transfer section 35 to fill the holes. Therefore, the boiling heat transfer section 35 can exhibit stable evaporation performance (vaporization performance) unless the liquid refrigerant Rliq is depleted.
On the other hand, when the amount of input heat is large, the liquid refrigerant Rliq filling each hole is evaporated (vaporized), and the film thickness of the liquid refrigerant Rliq is reduced. As a result, the thin portion of the liquid refrigerant Rliq increases, and the evaporation (vaporization) of the liquid refrigerant Rliq is promoted. Therefore, the boiling heat transfer part 35 can improve the heat dissipation performance and increase the amount of heat transport.
 このような沸騰伝熱部35は、入力熱量が増大すると、温度の上昇に依存して、液体冷媒Rliqの蒸発(気化)を促進することができる。また、沸騰伝熱部35は、冷媒蒸気Rstの蒸気量の増加に依存して、液体冷媒Rliqの蒸発(気化)をさらに促進することができる。そのため、沸騰伝熱部35は、入力熱量が大きいほど、熱輸送量を大幅に増大させて、冷却性能を向上させることができる。 Such a boiling heat transfer section 35 can promote the evaporation (vaporization) of the liquid refrigerant Rliq depending on the temperature rise when the amount of input heat increases. Further, the boiling heat transfer section 35 can further promote the evaporation (vaporization) of the liquid refrigerant Rliq depending on the increase in the amount of the refrigerant vapor Rst. Therefore, the boiling heat transfer unit 35 can greatly increase the heat transport amount and improve the cooling performance as the input heat amount is larger.
 <主な特徴>
 (1)本実施形態に係る相変化モジュール30は、単管構造の連結管36a,36bを用いて冷媒Rを輸送する構造になっている。このような相変化モジュール30は、特許文献1に記載された従来の沸騰冷却装置と異なり、簡単な構造になっているため、比較的小型なサイズにすることができるとともに、設計の自由度を向上させることができる。そのため、比較的容易に製造することができる。
<Main features>
(1) The phase change module 30 according to the present embodiment has a structure in which the refrigerant R is transported using connecting pipes 36a and 36b having a single pipe structure. Unlike the conventional boiling cooling device described in Patent Document 1, such a phase change module 30 has a simple structure, so that it can be made relatively small in size and has a high degree of design freedom. Can be improved. Therefore, it can be manufactured relatively easily.
 (2)相変化モジュール30は、上流側(凝縮器31に近い側)の受熱部材32aの底板34aの上面を下流側(凝縮器31から遠い側)の受熱部材32bの底板34bの上面よりも高い位置に配置している。また、連結管36a,36bは、下流側の連結管36bの内側底部が上流側の連結管36aの内側底部よりも低くなるように形成されている。このような相変化モジュール30は、最上流部である凝縮器31から最下流部である受熱部材32bに向けて良好に液戻りを行うことができる。その結果、相変化モジュール30は、下流側の受熱部材32bでの液枯れによるドライアウトを防止することができ、各発熱体(特に、下流側の半導体素子20b)の温度上昇を防止することができる。 (2) The phase change module 30 is configured so that the upper surface of the bottom plate 34a of the heat receiving member 32a on the upstream side (side closer to the condenser 31) is higher than the upper surface of the bottom plate 34b of the heat receiving member 32b on the downstream side (side far from the condenser 31). It is placed at a high position. The connecting pipes 36a and 36b are formed such that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a. Such a phase change module 30 can satisfactorily return the liquid from the condenser 31 that is the most upstream part toward the heat receiving member 32b that is the most downstream part. As a result, the phase change module 30 can prevent dry-out due to liquid withering in the downstream heat receiving member 32b, and can prevent temperature rise of each heating element (particularly, the downstream semiconductor element 20b). it can.
 (3)相変化モジュール30は、上流側の連結管36aの断面積と下流側の連結管36bの断面積とが略同じになるように、各連結管36の偏平率が調整された構造になっている。つまり、上流側の連結管36aの断面形状は、下流側の連結管36bの断面形状と比較して、横幅が広く、かつ、縦幅が狭い形状になっている。このような相変化モジュール30は、上流側の連結管36aと下流側の連結管36bとで流路抵抗が変化しないようにすることができ、その結果、液体冷媒Rliqの良好な流れを実現することができる。 (3) The phase change module 30 has a structure in which the flatness of each connecting pipe 36 is adjusted so that the cross-sectional area of the upstream connecting pipe 36a and the cross-sectional area of the downstream connecting pipe 36b are substantially the same. It has become. That is, the cross-sectional shape of the upstream connecting pipe 36a is wider than the cross-sectional shape of the downstream connecting pipe 36b, and the vertical width is narrow. Such a phase change module 30 can prevent the flow resistance from changing between the upstream connecting pipe 36a and the downstream connecting pipe 36b, and as a result, a good flow of the liquid refrigerant Rliq is realized. be able to.
 (4)相変化モジュール30は、冷媒蒸気Rstの収容に利用されない無駄な空間が凝縮部(凝縮器31)の内部に存在しないため、凝縮部(凝縮器31)のサイズを容易に小型化することができる。これにより、相変化モジュール30は、上端部から下端部までの厚さを、相変化モジュール30が実装された状態で回路基板50をサーバモジュール5(図12参照)に搭載することができる値に設定することができる。そのため、相変化モジュール30が実装された回路基板50は、ラックマウント型サーバであるサーバモジュール5(図12参照)に搭載することができる。 (4) The phase change module 30 can easily reduce the size of the condensing unit (condenser 31) because there is no useless space in the condensing unit (condenser 31) that is not used to accommodate the refrigerant vapor Rst. be able to. Thereby, the phase change module 30 has a thickness from the upper end to the lower end so that the circuit board 50 can be mounted on the server module 5 (see FIG. 12) in a state where the phase change module 30 is mounted. Can be set. Therefore, the circuit board 50 on which the phase change module 30 is mounted can be mounted on the server module 5 (see FIG. 12) that is a rack mount server.
 (5)相変化モジュール30は、構造が比較的簡単なため、安価に製造することができる。しかも、相変化モジュール30は、電動ポンプ等の外部動力を用いることなく、最上流側の凝縮器31と下流側の受熱部材32a,32bとの間で作動流体を循環させることができる。そのため、相変化モジュール30は、省エネルギーにも優れ、効率よく確実に各発熱体(半導体素子20a,20b)を冷却することができる。 (5) Since the phase change module 30 has a relatively simple structure, it can be manufactured at low cost. Moreover, the phase change module 30 can circulate the working fluid between the most upstream condenser 31 and the downstream heat receiving members 32a and 32b without using external power such as an electric pump. Therefore, the phase change module 30 is excellent in energy saving, and can efficiently and reliably cool the heating elements ( semiconductor elements 20a and 20b).
 回路基板50は、このような相変化モジュール30を用いることにより、下流側の沸騰部(ここでは、受熱部材32b)への液戻りを良好に行うことができるため、下流側の沸騰部(ここでは、受熱部材32b)での液枯れを抑制することができる。その結果、回路基板50は、各半導体素子20の実装位置に関係なく、各半導体素子20を十分に冷却することができる。このような回路基板50は、各発熱体(特に、下流側の半導体素子20b)での温度の急激な上昇を防止することができ、高信頼な電子装置を提供することができる。 By using such a phase change module 30, the circuit board 50 can satisfactorily return the liquid to the downstream boiling portion (here, the heat receiving member 32 b), and therefore the downstream boiling portion (here Then, it is possible to suppress the liquid withering at the heat receiving member 32b). As a result, the circuit board 50 can sufficiently cool each semiconductor element 20 regardless of the mounting position of each semiconductor element 20. Such a circuit board 50 can prevent a rapid increase in temperature at each heating element (particularly, the semiconductor element 20b on the downstream side), and can provide a highly reliable electronic device.
 なお、本実施形態に係る相変化モジュール30は、例えば、図5~図11に示す相変化モジュール30A~30Gのように変形することができる。以下、図5~図11を参照して各変形例に係る相変化モジュール30A~30Gの構成につき説明する。 It should be noted that the phase change module 30 according to the present embodiment can be modified as, for example, the phase change modules 30A to 30G shown in FIGS. Hereinafter, the configuration of the phase change modules 30A to 30G according to each modification will be described with reference to FIGS.
 <第1変形例>
 図5は、第1変形例に係る相変化モジュール30Aを搭載した回路基板50Aの上面図である。図5に示すように、第1変形例に係る相変化モジュール30Aは、実施形態に係る相変化モジュール30(図1参照)と比較すると、連結管36a,36bが上面視で異なる方向に延在するように配置された構造になっている点で相違している。
<First Modification>
FIG. 5 is a top view of a circuit board 50A on which the phase change module 30A according to the first modification is mounted. As shown in FIG. 5, the phase change module 30 </ b> A according to the first modification has connecting pipes 36 a and 36 b extending in different directions in a top view as compared with the phase change module 30 according to the embodiment (see FIG. 1). It is different in that the structure is so arranged.
 つまり、実施形態に係る相変化モジュール30(図1参照)は、凝縮器31、連結管36a、受熱部材32a、連結管36b、及び受熱部材32bが直線上に配置された構造になっている。これに対して、第1変形例に係る相変化モジュール30Aは、凝縮器31、連結管36a、受熱部材32a、連結管36b、及び受熱部材32bが直線上に配置されていない構造になっている。 That is, the phase change module 30 (see FIG. 1) according to the embodiment has a structure in which the condenser 31, the connecting pipe 36a, the heat receiving member 32a, the connecting pipe 36b, and the heat receiving member 32b are arranged on a straight line. On the other hand, the phase change module 30A according to the first modification has a structure in which the condenser 31, the connecting pipe 36a, the heat receiving member 32a, the connecting pipe 36b, and the heat receiving member 32b are not arranged on a straight line. .
 回路基板50Aは、2つの半導体素子20a,20bが相変化モジュール30Aの2つの受熱部材32a,32bの下に配置された構造になっている。 The circuit board 50A has a structure in which two semiconductor elements 20a and 20b are arranged under the two heat receiving members 32a and 32b of the phase change module 30A.
 なお、凝縮器31の上面が一番高くなり、受熱部材32aの上面、受熱部材32bの上面がこの順に低くなるように、凝縮器31及び受熱部材32a,32bの上面の高さ位置が設定されている点や、下流側の連結管36bの内側底部が上流側の連結管36aの内側底部よりも低くなるように、連結管36a,36bの内側底部の高さ位置が設定されている点は、本第1変形例に係る相変化モジュール30Aも実施形態に係る相変化モジュール30と同じである。 The height positions of the upper surfaces of the condenser 31 and the heat receiving members 32a and 32b are set so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order. The height position of the inner bottom portions of the connecting pipes 36a and 36b is set so that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a. The phase change module 30A according to the first modification is the same as the phase change module 30 according to the embodiment.
 このような相変化モジュール30Aは、実施形態に係る相変化モジュール30と同様に、下流側の受熱部材32bでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。 Such a phase change module 30A can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving member 32b, similarly to the phase change module 30 according to the embodiment.
 <第2変形例>
 図6は、第2変形例に係る相変化モジュール30Bを搭載した回路基板50Bの上面図である。図6に示すように、第2変形例に係る相変化モジュール30Bは、実施形態に係る相変化モジュール30(図1参照)と比較すると、最上流側連結管と下流側連結管とが組み合わされた冷媒Rの輸送路を複数系統備えた構造になっている点で相違している。
<Second Modification>
FIG. 6 is a top view of a circuit board 50B on which the phase change module 30B according to the second modification is mounted. As shown in FIG. 6, the phase change module 30B according to the second modified example is a combination of the most upstream side connection pipe and the downstream side connection pipe, as compared with the phase change module 30 according to the embodiment (see FIG. 1). It is different in that it has a structure having a plurality of transport paths for the refrigerant R.
 つまり、実施形態に係る相変化モジュール30(図1参照)は、最上流側連結管36aと下流側連結管36bとが組み合わされた単一の輸送路しか備えていない構造になっている。これに対して、第2変形例に係る相変化モジュール30Bは、最上流側連結管36aと下流側連結管36bとが組み合わされた第1輸送路と、最上流側連結管36a2と下流側連結管36b2とが組み合わされた第2輸送路と、の2系統の輸送路を備えた構造になっている。 That is, the phase change module 30 (see FIG. 1) according to the embodiment has a structure including only a single transportation path in which the most upstream side connecting pipe 36a and the downstream side connecting pipe 36b are combined. In contrast, the phase change module 30B according to the second modification includes a first transport path in which the most upstream side connection pipe 36a and the downstream side connection pipe 36b are combined, and the most upstream side connection pipe 36a2 and the downstream side connection. It has a structure provided with two systems of transport paths, that is, a second transport path combined with the pipe 36b2.
 なお、第1輸送路の連結管36a,36bは、上面視で同じ方向に延在するように配置されている。また、第2輸送路の連結管36a2,36b2は、上面視で同じ方向に延在するように配置されている。 The connecting pipes 36a and 36b of the first transport path are arranged so as to extend in the same direction when viewed from above. Further, the connecting pipes 36a2 and 36b2 of the second transport path are arranged so as to extend in the same direction when viewed from above.
 回路基板50Bは、2つの半導体素子20a,20bが相変化モジュール30Bの2つの受熱部材32a,32bの下に配置された構造になっている。 The circuit board 50B has a structure in which two semiconductor elements 20a and 20b are arranged under the two heat receiving members 32a and 32b of the phase change module 30B.
 なお、凝縮器31の上面が一番高くなり、受熱部材32aの上面、受熱部材32bの上面がこの順に低くなるように、凝縮器31及び受熱部材32a,32bの上面の高さ位置が設定されている点や、下流側の連結管36bの内側底部が上流側の連結管36aの内側底部よりも低くなるように、連結管36a,36bの内側底部の高さ位置が設定されている点は、本第2変形例に係る相変化モジュール30Bも実施形態に係る相変化モジュール30と同じである。 The height positions of the upper surfaces of the condenser 31 and the heat receiving members 32a and 32b are set so that the upper surface of the condenser 31 is the highest, and the upper surface of the heat receiving member 32a and the upper surface of the heat receiving member 32b are lowered in this order. The height position of the inner bottom portions of the connecting pipes 36a and 36b is set so that the inner bottom portion of the downstream connecting pipe 36b is lower than the inner bottom portion of the upstream connecting pipe 36a. The phase change module 30B according to the second modification is the same as the phase change module 30 according to the embodiment.
 このような相変化モジュール30Bは、実施形態に係る相変化モジュール30と同様に、下流側の受熱部材32bでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。 Such a phase change module 30B can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving member 32b, similarly to the phase change module 30 according to the embodiment.
 <第3変形例>
 図7は、第3変形例に係る相変化モジュール30Cを搭載した回路基板50Cの側断面図である。図7に示すように、第3変形例に係る相変化モジュール30Cは、実施形態に係る相変化モジュール30(図2参照)と比較すると、受熱部材32bの下流側に連結管36c及び受熱部材32cを備えている点で相違している。
<Third Modification>
FIG. 7 is a side sectional view of a circuit board 50C on which the phase change module 30C according to the third modification is mounted. As illustrated in FIG. 7, the phase change module 30C according to the third modified example has a connecting pipe 36c and a heat receiving member 32c on the downstream side of the heat receiving member 32b as compared with the phase change module 30 according to the embodiment (see FIG. 2). It is different in that it has.
 受熱部材32cは、底板34cを備えている。また、受熱部材32cは、内部に沸騰伝熱部35cを備えている。 The heat receiving member 32c includes a bottom plate 34c. Further, the heat receiving member 32c includes a boiling heat transfer portion 35c therein.
 回路基板50Cは、3つの半導体素子20a,20b,20cが相変化モジュール30Cの3つの受熱部材32a,32b,32cの下に配置された構造になっている。つまり、回路基板50Cは、半導体素子20の実装個数が実施形態に係る回路基板50よりも増えた構造になっている。 The circuit board 50C has a structure in which three semiconductor elements 20a, 20b, and 20c are disposed under the three heat receiving members 32a, 32b, and 32c of the phase change module 30C. That is, the circuit board 50C has a structure in which the number of mounted semiconductor elements 20 is larger than that of the circuit board 50 according to the embodiment.
 なお、受熱部材32a,32b,32cの底板34a,34b,34cの上面の高さ位置は、最上流側の受熱部材32a、中流側の受熱部材32b、最下流側の受熱部材32cの順に低くなるように設定されている。また、連結管36a,36b,36cの内側底部の高さ位置は、最上流側の連結管36a、中流側の連結管36b、最下流側の連結管36cの順に低くなるように設定されている。 The height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side. Is set to Further, the height positions of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set so as to become lower in the order of the connecting pipe 36a on the most upstream side, the connecting pipe 36b on the intermediate stream side, and the connecting pipe 36c on the most downstream side. .
 なお、回路基板50Cの半導体素子20a,20b,20cは、それぞれの上面の高さが同じになっている。そのため、受熱部材32a,32b,32cの底板34a,34b,34cは、(a)底板34a,34b,34cの上面の高さ位置が最上流側の受熱部材32a、中流側の受熱部材32b、最下流側の受熱部材32cの順に低くなるように設定されているという条件と、(b)底板34a,34b,34cの底面の高さが同じになるように設定されているという条件と、を満たすように、その厚さが設定されている。 Note that the upper surfaces of the semiconductor elements 20a, 20b, and 20c of the circuit board 50C have the same height. Therefore, the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c are: (a) the height position of the upper surface of the bottom plates 34a, 34b, 34c is the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the intermediate flow side, The condition that the heat receiving member 32c on the downstream side is set to become lower in order and the condition that (b) the bottom plates 34a, 34b, and 34c are set to have the same height are satisfied. As such, its thickness is set.
 なお、連結管36a,36b,36cは、液体冷媒Rliqの良好な流れを実現するために、それぞれの断面積が略同じになるように、各連結管36a,36b,36cの偏平率が調整されている。つまり、各連結管36a,36b,36cの断面形状は、上流側の連結管ほど、横幅が広く、かつ、縦幅が狭い形状になっている。換言すると、各連結管36a,36b,36cの断面形状は、下流側の連結管ほど、横幅が狭く、かつ、縦幅が広い形状になっている。 Note that the flatness of each of the connecting pipes 36a, 36b, 36c is adjusted so that the cross-sectional areas of the connecting pipes 36a, 36b, 36c are substantially the same in order to achieve a good flow of the liquid refrigerant Rliq. ing. That is, the cross-sectional shape of each connecting pipe 36a, 36b, 36c is such that the upstream connecting pipe is wider in width and narrower in vertical length. In other words, the cross-sectional shape of each connecting pipe 36a, 36b, 36c is such that the downstream connecting pipe has a narrower lateral width and a wider vertical width.
 このような相変化モジュール30Cは、下流側の受熱部材32b,32cでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。 Such a phase change module 30C can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving members 32b and 32c on the downstream side.
 <第4変形例>
 図8は、第4変形例に係る相変化モジュール30Dを搭載した回路基板50Dの側断面図である。図8に示すように、第4変形例に係る回路基板50Dは、第3変形例に係る回路基板50C(図7参照)と比較すると、半導体素子20a,20b,20cの代わりに、半導体素子25a,25b,25cを実装している点で相違している。各半導体素子25a,25b,25cは、上面の高さ(厚さ)及び上面視形状のいずれか一方又は双方が異なる半導体素子である。以下、半導体素子25a,25b,25cを総称する場合に「半導体素子25」と称する。そして第4変形例に係る相変化モジュール30Dは、第3変形例に係る相変化モジュール30C(図7参照)と比較すると、各受熱部材32の底板34の底面の高さ及び上面視形状のいずれか一方又は双方が、対応する半導体素子25に合わせて設定されている点で相違している。
<Fourth Modification>
FIG. 8 is a side sectional view of a circuit board 50D on which the phase change module 30D according to the fourth modification is mounted. As shown in FIG. 8, the circuit board 50D according to the fourth modified example is different from the circuit board 50C according to the third modified example (see FIG. 7) in place of the semiconductor elements 20a, 20b, and 20c. , 25b, and 25c are different. Each of the semiconductor elements 25a, 25b, and 25c is a semiconductor element in which either one or both of the height (thickness) of the upper surface and the shape of the upper surface are different. Hereinafter, the semiconductor elements 25a, 25b, and 25c are collectively referred to as “semiconductor element 25”. Further, the phase change module 30D according to the fourth modified example has either the height of the bottom surface of the bottom plate 34 or the shape of the top view of each heat receiving member 32 as compared with the phase change module 30C according to the third modified example (see FIG. 7). One or both are different in that they are set in accordance with the corresponding semiconductor element 25.
 例えば、図8は、各半導体素子25a,25b,25cの上面の高さ(厚さ)が異なる状態を示している。この状態において、相変化モジュール30Dの各受熱部材32a,32b,32cの底板34a,34b,34cの底面の高さ(つまり、各底板34a,34b,34cの厚さ)は、対応する半導体素子25a,25b,25cの上面の高さに合わせて設定されている。 For example, FIG. 8 shows a state in which the upper surface (thickness) of each semiconductor element 25a, 25b, 25c is different. In this state, the heights of the bottom surfaces of the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c of the phase change module 30D (that is, the thicknesses of the bottom plates 34a, 34b, 34c) correspond to the corresponding semiconductor elements 25a. , 25b, 25c are set according to the height of the upper surface.
 なお、受熱部材32a,32b,32cの底板34a,34b,34cの上面の高さ位置が、最上流側の受熱部材32a、中流側の受熱部材32b、最下流側の受熱部材32cの順に低くなるように設定されている点や、連結管36a,36b,36cの内側底部の高さ位置が、最上流側の連結管36a、中流側の連結管36b、最下流側の連結管36cの順に低くなるように設定されている点は、本第4変形例に係る相変化モジュール30Dも第3変形例に係る相変化モジュール30Cと同じである。 The height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side. The heights of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set in the order of the upstream-most connecting pipe 36a, the middle-stream connecting pipe 36b, and the downstream-most connecting pipe 36c. The phase change module 30 </ b> D according to the fourth modification is the same as the phase change module 30 </ b> C according to the third modification.
 このような相変化モジュール30Dは、第3変形例に係る相変化モジュール30Cと同様に、下流側の受熱部材32b,32cでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。しかも、相変化モジュール30Dは、上面の高さ(厚さ)及び上面視形状のいずれか一方又は双方が異なる半導体素子25a,25b,25cが実装された回路基板50Dに好適に搭載することができる。 Similar to the phase change module 30C according to the third modification, the phase change module 30D can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving members 32b and 32c. . Moreover, the phase change module 30D can be suitably mounted on the circuit board 50D on which the semiconductor elements 25a, 25b, and 25c having different one or both of the top surface height (thickness) and the top view shape are mounted. .
 <第5変形例>
 図9は、第5変形例に係る相変化モジュール30Eを搭載した回路基板50Eの側断面図である。図9に示すように、第5変形例に係る相変化モジュール30Eは、実施形態に係る相変化モジュール30(図2参照)と比較すると、下流側の高さが上流側の高さよりも低くなるように、連結管36bが傾斜して配置されている点で相違している。
<Fifth Modification>
FIG. 9 is a side sectional view of a circuit board 50E on which the phase change module 30E according to the fifth modification is mounted. As shown in FIG. 9, the phase change module 30E according to the fifth modification has a downstream height lower than the upstream height compared to the phase change module 30 according to the embodiment (see FIG. 2). Thus, the connection pipe 36b is different in that it is disposed at an inclination.
 なお、上流側の受熱部材32aの底板34aの上面が下流側の受熱部材32bの底板34bの上面よりも高い位置に配置されている点や、下流側の連結管36bの内側底部が上流側の連結管36aの内側底部よりも低くなるように形成されている点は、本第5変形例に係る相変化モジュール30Eも実施形態に係る相変化モジュール30と同じである。 It should be noted that the upper surface of the bottom plate 34a of the upstream heat receiving member 32a is located higher than the upper surface of the bottom plate 34b of the downstream heat receiving member 32b, and the inner bottom portion of the downstream connecting pipe 36b is the upstream side. The phase change module 30E according to the fifth modification is the same as the phase change module 30 according to the embodiment in that the connection pipe 36a is formed so as to be lower than the inner bottom portion.
 このような相変化モジュール30Eは、実施形態に係る相変化モジュール30と同様に、下流側の受熱部材32bでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。しかも、相変化モジュール30Eは、連結管36bが下流側に向かって下向きに傾斜しているため、実施形態に係る相変化モジュール30よりも効率よく、下流側の受熱部材32bに、液体冷媒Rliqを流すことができる。 Such a phase change module 30E can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving member 32b on the downstream side, similarly to the phase change module 30 according to the embodiment. In addition, since the phase change module 30E has the connecting pipe 36b inclined downward toward the downstream side, the liquid refrigerant Rliq is supplied to the downstream heat receiving member 32b more efficiently than the phase change module 30 according to the embodiment. It can flow.
 <第6変形例>
 図10は、第6変形例に係る相変化モジュール30Fを搭載した回路基板50Fの側断面図である。図10に示すように、第6変形例に係る相変化モジュール30Fは、第4変形例に係る相変化モジュール30D(図8参照)と比較すると、下流側の高さが上流側の高さよりも低くなるように、連結管36b,36cが傾斜して配置されている点で相違している。
<Sixth Modification>
FIG. 10 is a side sectional view of a circuit board 50F on which the phase change module 30F according to the sixth modification is mounted. As shown in FIG. 10, the phase change module 30F according to the sixth modification has a downstream height higher than the upstream height compared to the phase change module 30D according to the fourth modification (see FIG. 8). The connection pipes 36b and 36c are different in that they are arranged so as to be lowered.
 このような相変化モジュール30Fは、第4変形例に係る相変化モジュール30Dと同様に、下流側の受熱部材32b,32cでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。しかも、相変化モジュール30Fは、連結管36b,36cが下流側に向かって下向きに傾斜しているため、第4変形例に係る相変化モジュール30Dよりも効率よく、下流側の受熱部材32b,32cに、液体冷媒Rliqを流すことができる。 Similar to the phase change module 30D according to the fourth modified example, such a phase change module 30F can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the heat receiving members 32b and 32c on the downstream side. . Moreover, since the connection pipes 36b and 36c are inclined downward toward the downstream side, the phase change module 30F is more efficient than the phase change module 30D according to the fourth modification, and the downstream heat receiving members 32b and 32c. In addition, the liquid refrigerant Rliq can flow.
 <第7変形例>
 図11は、第7変形例に係る相変化モジュール30Gを搭載した回路基板50Gの側断面図である。図11に示すように、第7変形例に係る回路基板50Gは、第6変形例に係る回路基板50F(図10参照)と比較すると、半導体素子20(20a,20b,20c)の代わりに、前記した上面の高さ(厚さ)及び上面視形状のいずれか一方又は双方が異なる半導体素子25(25a,25b,25c)を実装している点で相違している。そして第7変形例に係る相変化モジュール30Gは、第6変形例に係る相変化モジュール30F(図10参照)と比較すると、各受熱部材32の底板34の底面の高さ及び上面視形状のいずれか一方又は双方が、対応する半導体素子25に合わせて設定されている点で相違している。
<Seventh Modification>
FIG. 11 is a side sectional view of a circuit board 50G on which the phase change module 30G according to the seventh modification is mounted. As shown in FIG. 11, the circuit board 50G according to the seventh modification example is different from the circuit board 50F according to the sixth modification example (see FIG. 10) in place of the semiconductor element 20 (20a, 20b, 20c). The semiconductor device 25 (25a, 25b, 25c) is different in that either one or both of the height (thickness) of the upper surface and the shape of the upper surface is different. Further, the phase change module 30G according to the seventh modified example has either the height of the bottom surface of the bottom plate 34 of each heat receiving member 32 or the shape of the top view as compared with the phase change module 30F according to the sixth modified example (see FIG. 10). One or both are different in that they are set in accordance with the corresponding semiconductor element 25.
 例えば、図11は、各半導体素子25a,25b,25cの上面の高さ(厚さ)が異なる状態を示している。この状態において、相変化モジュール30Gの各受熱部材32a,32b,32cの底板34a,34b,34cの底面の高さ(つまり、各底板34a,34b,34cの厚さ)は、対応する半導体素子25a,25b,25cの上面の高さに合わせて設定されている。 For example, FIG. 11 shows a state in which the upper surface (thickness) of each semiconductor element 25a, 25b, 25c is different. In this state, the height of the bottom surfaces of the bottom plates 34a, 34b, 34c of the heat receiving members 32a, 32b, 32c of the phase change module 30G (that is, the thickness of the bottom plates 34a, 34b, 34c) corresponds to the corresponding semiconductor element 25a. , 25b, 25c are set according to the height of the upper surface.
 なお、受熱部材32a,32b,32cの底板34a,34b,34cの上面の高さ位置が、最上流側の受熱部材32a、中流側の受熱部材32b、最下流側の受熱部材32cの順に低くなるように設定されている点や、連結管36a,36b,36cの内側底部の高さ位置が、最上流側の連結管36a、中流側の連結管36b、最下流側の連結管36cの順に低くなるように設定されている点は、本第7変形例に係る相変化モジュール30Gも第6変形例に係る相変化モジュール30Fと同じである。 The height positions of the upper surfaces of the bottom plates 34a, 34b, and 34c of the heat receiving members 32a, 32b, and 32c become lower in the order of the heat receiving member 32a on the most upstream side, the heat receiving member 32b on the middle flow side, and the heat receiving member 32c on the most downstream side. The heights of the inner bottom portions of the connecting pipes 36a, 36b, and 36c are set in the order of the upstream-most connecting pipe 36a, the middle-stream connecting pipe 36b, and the downstream-most connecting pipe 36c. The phase change module 30G according to the seventh modified example is the same as the phase change module 30F according to the sixth modified example in that it is set to be.
 このような相変化モジュール30Gは、第6変形例に係る相変化モジュール30Fと同様に、下流側の受熱部材32b,32cでドライアウトが発生しないように、液体冷媒Rliqを良好に流すことができる。しかも、相変化モジュール30Gは、上面の高さが異なる半導体素子25a,25b,25cが実装された回路基板50Gに搭載することができる。 Similar to the phase change module 30F according to the sixth modification, such a phase change module 30G can flow the liquid refrigerant Rliq satisfactorily so that dryout does not occur in the downstream heat receiving members 32b and 32c. . Moreover, the phase change module 30G can be mounted on the circuit board 50G on which the semiconductor elements 25a, 25b, and 25c having different upper surface heights are mounted.
 <沸騰冷却装置を搭載する電子装置>
 以下、図12~図16を参照して、サーバモジュール5の構成について説明する。サーバモジュール5は、相変化モジュール30(各変形例に係る相変化モジュール30A~30Gを含む)を搭載する電子装置である。
<Electronic device with boiling cooling device>
Hereinafter, the configuration of the server module 5 will be described with reference to FIGS. The server module 5 is an electronic device on which the phase change module 30 (including the phase change modules 30A to 30G according to each modification) is mounted.
 図12は、ラックマウントサーバシステム1の部分断面斜視図である。図13は、相変化モジュール30を搭載したサーバモジュール5の部分断面斜視図である。図14は、サーバモジュール5の上面図である。図15は、第1変形例に係る相変化モジュール30Aを搭載したサーバモジュール5の上面図である。図16は、第3変形例に係る相変化モジュール30Cを搭載したサーバモジュール5の上面図である。 FIG. 12 is a partial cross-sectional perspective view of the rack mount server system 1. FIG. 13 is a partial cross-sectional perspective view of the server module 5 on which the phase change module 30 is mounted. FIG. 14 is a top view of the server module 5. FIG. 15 is a top view of the server module 5 on which the phase change module 30A according to the first modification is mounted. FIG. 16 is a top view of the server module 5 on which the phase change module 30C according to the third modification is mounted.
 図12に示すように、サーバモジュール5は、ラックマウントサーバシステム1のラックキャビネット2に収容される。ラックマウントサーバシステム1は、ラックキャビネット2と、表扉3と、裏扉4と、を備え、所定の形状及び寸法で形成された複数個のサーバモジュール5をその内部に着脱自在に収容するシステムである。 As shown in FIG. 12, the server module 5 is accommodated in the rack cabinet 2 of the rack mount server system 1. A rack mount server system 1 includes a rack cabinet 2, a front door 3, and a back door 4, and a system in which a plurality of server modules 5 formed in a predetermined shape and size are detachably accommodated therein. It is.
 図13及び図14に示すように、サーバモジュール5は、ハードディスクドライブ装置6と、冷却ファン7,7aと、電源通信ブロック8と、相変化モジュール30が実装された回路基板50と、を有している。ただし、図13及び図14に示す例では、冷却ファン40(図1及び図2参照)が回路基板50から排除されている。なお、図13及び図14は、蓋体(不図示)を取り外した状態のサーバモジュール5の構成を示している。 As shown in FIGS. 13 and 14, the server module 5 includes a hard disk drive device 6, cooling fans 7 and 7 a, a power supply communication block 8, and a circuit board 50 on which the phase change module 30 is mounted. ing. However, in the example shown in FIGS. 13 and 14, the cooling fan 40 (see FIGS. 1 and 2) is excluded from the circuit board 50. 13 and 14 show the configuration of the server module 5 with the lid (not shown) removed.
 ハードディスクドライブ装置6は、大容量の記録装置である。ハードディスクドライブ装置6は、そのメンテナンス性を考慮して、サーバモジュール5の前面及び後面のいずれか一方の側(例えば、図13に示す例では右側であり、図14に示す例では左側である前面側)に集中して複数個(図13及び図14に示す例では3個)配置されている。 The hard disk drive device 6 is a large capacity recording device. In consideration of maintainability, the hard disk drive device 6 has one of the front and rear surfaces of the server module 5 (for example, the right side in the example shown in FIG. 13 and the left side in the example shown in FIG. 14). A plurality (three in the example shown in FIGS. 13 and 14) are arranged in a concentrated manner.
 冷却ファン7は、発熱体であるハードディスクドライブ装置6や回路基板50に空気(冷却風)を送る装置である。冷却ファン7は、図13及び図14に示す例では4個の冷却ファン7がハードディスクドライブ装置6の後方に配置されている。 The cooling fan 7 is a device that sends air (cooling air) to the hard disk drive device 6 and the circuit board 50 that are heating elements. In the example shown in FIGS. 13 and 14, four cooling fans 7 are arranged behind the hard disk drive device 6.
 冷却ファン7aは、発熱体である電源通信ブロック8に空気(冷却風)を送る装置である。図13及び図14に示す例では1個の冷却ファン7が電源通信ブロック8の後方に配置されている。 The cooling fan 7a is a device that sends air (cooling air) to the power communication block 8 that is a heating element. In the example shown in FIGS. 13 and 14, one cooling fan 7 is disposed behind the power supply communication block 8.
 電源通信ブロック8は、電源部(不図示)や、LAN等の通信インターフェイス(不図示)を収容した機構である。電源通信ブロック8の電源部(不図示)は、ハードディスクドライブ装置6や、冷却ファン7,7a、回路基板50の半導体素子20a,20b等に電源を供給している。 The power supply communication block 8 is a mechanism that houses a power supply unit (not shown) and a communication interface (not shown) such as a LAN. A power supply unit (not shown) of the power communication block 8 supplies power to the hard disk drive device 6, the cooling fans 7 and 7a, the semiconductor elements 20a and 20b of the circuit board 50, and the like.
 回路基板50は、冷却ファン7から送られる空気(冷却風)が相変化モジュール30の凝縮器31のフィン31f(図2参照)に当たるように、ハードディスクドライブ装置6と冷却ファン7,7aと電源通信ブロック8とを避けた位置に配置されている。 The circuit board 50 is connected to the hard disk drive 6 and the cooling fans 7 and 7a so that the air (cooling air) sent from the cooling fan 7 hits the fins 31f (see FIG. 2) of the condenser 31 of the phase change module 30. It is arranged at a position avoiding the block 8.
 このようなサーバモジュール5は、相変化モジュール30が実装された回路基板50を搭載しているため、回路基板50に実装された各発熱体(特に、下流側の半導体素子20b)での温度の急激な上昇を防止することができる。しかも、サーバモジュール5は、電動ポンプ等の外部動力を用いることがないため、少ない電力で効率よく確実に各発熱体(半導体素子20a,20b)を冷却することができる。 Since the server module 5 includes the circuit board 50 on which the phase change module 30 is mounted, the temperature of each heating element (particularly, the downstream semiconductor element 20b) mounted on the circuit board 50 is measured. A sudden rise can be prevented. In addition, since the server module 5 does not use external power such as an electric pump, it is possible to cool each heating element ( semiconductor elements 20a and 20b) efficiently and reliably with less power.
 なお、回路基板50は、冷却ファン7から空気(冷却風)を受けるため、発熱体であるCPU等の半導体素子20を冷却するための専用の冷却ファン40(図1及び図2参照)が排除された構造になっている。このような回路基板50は、冷却ファン40を持たない簡単な構造になっているため、比較的小型なサイズにすることができる。これにより、回路基板50は、設計の自由度を向上させることができるため、部品の高密度の実装が要求される、発熱量が比較的高い電子装置に搭載することができる。また、このような回路基板50は、製造コストを低減することができる。 In addition, since the circuit board 50 receives air (cooling air) from the cooling fan 7, a dedicated cooling fan 40 (see FIGS. 1 and 2) for cooling the semiconductor element 20 such as a CPU as a heating element is excluded. It has a structured. Since such a circuit board 50 has a simple structure without the cooling fan 40, it can be made relatively small in size. Thereby, since the circuit board 50 can improve the freedom degree of design, it can be mounted in the electronic device with a comparatively high calorific value for which high-density mounting of components is required. Moreover, such a circuit board 50 can reduce manufacturing cost.
 また、凝縮器31は、好ましくは、複数個の冷却ファン7の排気面を覆うように配置されているとよい。これにより、凝縮器31は、仮に何れかの冷却ファン7が故障して停止してしまった場合であっても、故障していない冷却ファン7から空気(冷却風)を受けることができる。そのため、この場合に、相変化モジュール30は、凝縮器31での冷媒蒸気Rstの冷却を継続することができる。したがって、相変化モジュール30は、冷媒蒸気Rstに対する冷却の継続性を確保することができ、その結果、電子装置の発熱体の冷却装置として好適に用いることができる。 The condenser 31 is preferably arranged so as to cover the exhaust surfaces of the plurality of cooling fans 7. As a result, the condenser 31 can receive air (cooling air) from the cooling fan 7 that has not failed even if any of the cooling fans 7 has failed and stopped. Therefore, in this case, the phase change module 30 can continue cooling the refrigerant vapor Rst in the condenser 31. Therefore, the phase change module 30 can ensure continuity of cooling with respect to the refrigerant vapor Rst, and as a result, can be suitably used as a cooling device for a heating element of an electronic device.
 また、凝縮器31は、さらに好ましくは、凝縮器31に対向する面積が小さい冷却ファン7の側に寄せて配置されているとよい。これにより、凝縮器31は、何れかの冷却ファン7が故障して停止してしまった場合であっても、故障していない冷却ファン7から空気(冷却風)を確実に受けることができる。そのため、この場合に、相変化モジュール30は、冷媒蒸気Rstに対する冷却の継続性を向上させることができる。 Further, the condenser 31 is more preferably arranged close to the cooling fan 7 having a small area facing the condenser 31. As a result, the condenser 31 can reliably receive air (cooling air) from the cooling fan 7 that has not failed even if one of the cooling fans 7 has failed and stopped. Therefore, in this case, the phase change module 30 can improve the continuity of cooling with respect to the refrigerant vapor Rst.
 なお、図15に示すように、サーバモジュール5は、回路基板50の代わりに、相変化モジュール30Aが実装された回路基板50Aを搭載することができる。また、図16に示すように、サーバモジュール5は、回路基板50の代わりに、相変化モジュール30Cが実装された回路基板50Cを搭載することができる。さらに、サーバモジュール5は、回路基板50の代わりに、回路基板50Aや回路基板50C以外の、他の変形例に係る相変化モジュール30B,30D~30Gが実装された回路基板50B,50D~50Gを搭載することができる。 As shown in FIG. 15, the server module 5 can be mounted with a circuit board 50 </ b> A on which the phase change module 30 </ b> A is mounted instead of the circuit board 50. As shown in FIG. 16, the server module 5 can be mounted with a circuit board 50 </ b> C on which the phase change module 30 </ b> C is mounted instead of the circuit board 50. Further, the server module 5 replaces the circuit board 50 with circuit boards 50B, 50D to 50G on which the phase change modules 30B, 30D to 30G according to other modifications other than the circuit board 50A and the circuit board 50C are mounted. Can be installed.
 以上の通り、本実施形態に係る沸騰冷却装置である相変化モジュール30(各変形例に係る相変化モジュール30A~30Gを含む)によれば、比較的小型なサイズにすることができるとともに、設計の自由度を向上させることができる。 As described above, according to the phase change module 30 (including the phase change modules 30A to 30G according to the respective modifications) that is the boiling cooling device according to the present embodiment, the size can be made relatively small and the design can be made. The degree of freedom can be improved.
 本発明は、前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施形態の構成の一部を他の構成に置き換えることが可能であり、また、実施形態の構成に他の構成を加えることも可能である。また、各構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration, and another configuration can be added to the configuration of the embodiment. Moreover, it is possible to add / delete / replace other configurations for a part of each configuration.
 例えば、前記した実施形態に係る相変化モジュール30(各変形例に係る相変化モジュール30A~30Gを含む)は、サーバモジュール5に限らず、様々な形態の電子装置に搭載することができる。 For example, the phase change module 30 (including the phase change modules 30A to 30G according to each modification) according to the above-described embodiment can be mounted not only on the server module 5 but also in various forms of electronic devices.
 また、例えば、回路基板50は、半導体素子20の実装個数を増やすことができる。これに合わせて、相変化モジュール30(各変形例に係る相変化モジュール30A~30Gを含む)は、受熱部材32の実装個数を増やすことができる。この場合に、各受熱部材32の底板34の上面の高さ位置や、各連結管36の内側底部の高さ位置は、上流側ほど高い位置(つまり、下流側ほど低い位置)に設定される。また、各連結管36の断面形状は、上流側の連結管ほど、横幅が広く、かつ、縦幅が狭い形状(つまり、下流側の連結管ほど、横幅が狭く、かつ、縦幅が広い形状)になる。これにより、回路基板50は、半導体素子20の実装個数を増やした場合であっても、複数個の半導体素子20を効率よく冷却することができる。 Further, for example, the circuit board 50 can increase the number of semiconductor elements 20 mounted. Accordingly, the phase change module 30 (including the phase change modules 30A to 30G according to the respective modifications) can increase the number of heat receiving members 32 mounted. In this case, the height position of the upper surface of the bottom plate 34 of each heat receiving member 32 and the height position of the inner bottom portion of each connection pipe 36 are set to higher positions on the upstream side (that is, lower positions on the downstream side). . The cross-sectional shape of each connecting pipe 36 is such that the upstream connecting pipe has a wider width and a smaller vertical width (that is, the downstream connecting pipe has a smaller width and a wider vertical width). )become. Thereby, even if the circuit board 50 is a case where the mounting number of the semiconductor elements 20 is increased, the plurality of semiconductor elements 20 can be efficiently cooled.
 また、例えば、回路基板50は、半導体素子20の配置位置を変更することができる。これに合わせて、相変化モジュール30(各変形例に係る相変化モジュール30A~30Gを含む)は、受熱部材32の配置位置を変更することができる。 Further, for example, the circuit board 50 can change the arrangement position of the semiconductor element 20. In accordance with this, the phase change module 30 (including the phase change modules 30A to 30G according to the respective modifications) can change the arrangement position of the heat receiving member 32.
 1  ラックマウントサーバシステム
 2  ラックキャビネット
 3  表扉
 4  裏扉
 5  サーバモジュール(電子装置)
 6  ハードディスクドライブ装置
 7,7a  冷却ファン
 8  電源通信ブロック(電源部)
 10  プリント配線板
 20(20a,20b,20c),25(25a,25b,25c)  半導体素子(発熱体)
 25a,25b,25c  半導体素子(発熱体)
 30,30A,30B,30C,30D,30E,30F,30G  相変化モジュール(沸騰冷却装置)
 31  凝縮器(凝縮部)
 31i,33a,33b  中空部
 31f  フィン
 32(32a,32b,32c)  受熱部材(沸騰部)
 33a,33b  蓋体
 34a,34b,34c  底板
 35a,35b,35c  沸騰伝熱部
 36,36a,36b,36c  連結管
 40  冷却ファン
 50,50A,50B,50C,50D,50E,50F,50G  回路基板
 Aliq  液流れの方向
 Ast  蒸気流れの方向
 Aair  冷却風流れの方向
 R  冷媒(作動流体)
 Rliq  液体冷媒
 Rst  冷媒蒸気
1 Rack mount server system 2 Rack cabinet 3 Front door 4 Back door 5 Server module (electronic device)
6 Hard Disk Drive Device 7, 7a Cooling Fan 8 Power Supply Communication Block (Power Supply Unit)
10 Printed wiring board 20 (20a, 20b, 20c), 25 (25a, 25b, 25c) Semiconductor element (heating element)
25a, 25b, 25c Semiconductor element (heating element)
30, 30A, 30B, 30C, 30D, 30E, 30F, 30G Phase change module (boiling cooler)
31 Condenser (condenser)
31i, 33a, 33b Hollow part 31f Fin 32 (32a, 32b, 32c) Heat receiving member (boiling part)
33a, 33b Lid 34a, 34b, 34c Bottom plate 35a, 35b, 35c Boiling heat transfer part 36, 36a, 36b, 36c Connecting pipe 40 Cooling fan 50, 50A, 50B, 50C, 50D, 50E, 50F, 50G Circuit board Aliq Direction of liquid flow Ast Direction of steam flow Aair Direction of cooling air flow R Refrigerant (working fluid)
Rliq Liquid refrigerant Rst Refrigerant vapor

Claims (11)

  1.  内部に冷媒を収容するための中空部が形成されているとともに、複数個の発熱体のそれぞれに対応して配置され、かつ、それぞれの前記発熱体から受熱して前記中空部内の冷媒を加熱する複数個の受熱部材と、
     それぞれの前記受熱部材で加熱されて沸騰した冷媒の蒸気を凝縮させて液化する凝縮部と、
     冷媒を輸送する複数本の連結管と、を有し、
     複数本の前記連結管は、液化された冷媒の流れの上流部である前記凝縮部とその直近の前記受熱部材とを連結する上流側連結管と、その他の、前記上流側連結管よりも下流側に配置された受熱部材同士を連結する下流側連結管となっており、
     前記上流側連結管及び前記下流側連結管は、それぞれ、単管構造になっている
    ことを特徴とする沸騰冷却装置。
    A hollow portion for containing the refrigerant is formed therein, and is arranged corresponding to each of the plurality of heating elements, and receives heat from each of the heating elements to heat the refrigerant in the hollow portion. A plurality of heat receiving members;
    A condensing part for condensing and liquefying the vapor of the refrigerant heated and boiled by each of the heat receiving members;
    A plurality of connecting pipes for transporting the refrigerant,
    The plurality of connecting pipes are an upstream connecting pipe that connects the condensing part, which is an upstream part of the flow of the liquefied refrigerant, and the heat receiving member in the immediate vicinity thereof, and other downstream than the other upstream connecting pipes. It is a downstream side connecting pipe that connects the heat receiving members arranged on the side,
    Each of the upstream connecting pipe and the downstream connecting pipe has a single pipe structure.
  2.  請求項1に記載の沸騰冷却装置において、
     複数本の前記連結管は、前記凝縮部に近い連結管ほど、偏平率が大きくなっている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    The boiling cooling apparatus according to claim 1, wherein the plurality of connecting pipes have a higher flatness as the connecting pipe is closer to the condensing part.
  3.  請求項1に記載の沸騰冷却装置において、
     それぞれの前記受熱部材は、前記中空部の内部に、前記発熱体の熱が伝達される沸騰伝熱部を備えており、
     それぞれの前記沸騰伝熱部の高さは、前記凝縮部から遠い前記受熱部材の沸騰伝熱部ほど、低くなっている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    Each of the heat receiving members includes a boiling heat transfer portion to which heat of the heating element is transmitted inside the hollow portion,
    The boiling cooling device, wherein the height of each boiling heat transfer portion is lower as the boiling heat transfer portion of the heat receiving member is farther from the condensing portion.
  4.  請求項1に記載の沸騰冷却装置において、
     それぞれの前記受熱部材の前記中空部の天井の高さは、前記凝縮部から遠い前記受熱部材の中空部ほど、低くなっている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    The boiling cooling device, wherein the height of the ceiling of the hollow portion of each heat receiving member is lower as the hollow portion of the heat receiving member is farther from the condensing portion.
  5.  請求項1に記載の沸騰冷却装置において、
     それぞれの前記受熱部材の底面の高さは、対応する前記発熱体の上面の高さに合わせて設定されている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    The boiling cooling device characterized in that the height of the bottom surface of each heat receiving member is set in accordance with the height of the upper surface of the corresponding heating element.
  6.  請求項1に記載の沸騰冷却装置において、
     少なくとも1本の前記下流側連結管は、下流側の高さが上流側の高さよりも低くなるように、傾斜して配置されている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    The boiling cooling device, wherein at least one of the downstream connecting pipes is disposed so as to be inclined such that the height on the downstream side is lower than the height on the upstream side.
  7.  請求項1に記載の沸騰冷却装置において、
     前記上流側連結管と前記下流側連結管とが組み合わされた冷媒の輸送路を複数系統備えている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    A boiling cooling device comprising a plurality of refrigerant transport paths in which the upstream connection pipe and the downstream connection pipe are combined.
  8.  請求項1に記載の沸騰冷却装置において、
     複数本の前記連結管は、上面視で同じ方向に延在するように配置されている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    A plurality of the connecting pipes are arranged so as to extend in the same direction in a top view.
  9.  請求項1に記載の沸騰冷却装置において、
     複数本の前記連結管は、上面視で異なる方向に延在するように配置されている
    ことを特徴とする沸騰冷却装置。
    The boiling cooling device according to claim 1,
    A plurality of the connecting pipes are arranged so as to extend in different directions when viewed from above, and a boiling cooling apparatus characterized in that
  10.  発熱体である複数個の半導体素子と前記半導体素子を冷却する沸騰冷却装置とが実装された回路基板と、
     前記沸騰冷却装置に送風する冷却ファンと、
     前記冷却ファンに電力を供給する電源部と、を備え、
     前記沸騰冷却装置は、
     内部に冷媒を収容するための中空部が形成されているとともに、複数個の前記半導体素子のそれぞれに対応して配置され、かつ、それぞれの前記半導体素子から受熱して前記中空部内の冷媒を加熱する複数個の受熱部材と、
     それぞれの前記受熱部材で加熱されて沸騰した冷媒の蒸気を凝縮させて液化する凝縮部と、
     冷媒を輸送する複数本の連結管と、を有し、
     複数本の前記連結管は、液化された冷媒の流れの上流部である前記凝縮部とその直近の前記受熱部材とを連結する上流側連結管と、その他の、前記上流側連結管よりも下流側に配置された受熱部材同士を連結する下流側連結管となっており、
     前記上流側連結管及び前記下流側連結管は、それぞれ、単管構造になっている
    ことを特徴とする電子装置。
    A circuit board on which a plurality of semiconductor elements as heating elements and a boiling cooling device for cooling the semiconductor elements are mounted;
    A cooling fan for blowing air to the boiling cooling device;
    A power supply for supplying power to the cooling fan,
    The boiling cooling device is
    A hollow portion for accommodating a refrigerant is formed therein, and is disposed corresponding to each of the plurality of semiconductor elements, and receives the heat from each of the semiconductor elements to heat the refrigerant in the hollow section. A plurality of heat receiving members,
    A condensing part for condensing and liquefying the vapor of the refrigerant heated and boiled by each of the heat receiving members;
    A plurality of connecting pipes for transporting the refrigerant,
    The plurality of connecting pipes are an upstream connecting pipe that connects the condensing part, which is an upstream part of the flow of the liquefied refrigerant, and the heat receiving member in the immediate vicinity thereof, and other downstream than the other upstream connecting pipes. It is a downstream side connecting pipe that connects the heat receiving members arranged on the side,
    The electronic device according to claim 1, wherein each of the upstream side connecting pipe and the downstream side connecting pipe has a single pipe structure.
  11.  請求項10に記載の電子装置において、
     前記回路基板は、上面の高さ及び上面視形状のいずれか一方又は双方が異なる複数個の前記半導体素子を実装している
    ことを特徴とする電子装置。
    The electronic device according to claim 10.
    The electronic device, wherein the circuit board is mounted with a plurality of the semiconductor elements having different one or both of the height of the upper surface and the shape of the upper surface.
PCT/JP2016/066672 2016-06-03 2016-06-03 Boiling cooling device and electronic device having same mounted thereon WO2017208461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066672 WO2017208461A1 (en) 2016-06-03 2016-06-03 Boiling cooling device and electronic device having same mounted thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/066672 WO2017208461A1 (en) 2016-06-03 2016-06-03 Boiling cooling device and electronic device having same mounted thereon

Publications (1)

Publication Number Publication Date
WO2017208461A1 true WO2017208461A1 (en) 2017-12-07

Family

ID=60478211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066672 WO2017208461A1 (en) 2016-06-03 2016-06-03 Boiling cooling device and electronic device having same mounted thereon

Country Status (1)

Country Link
WO (1) WO2017208461A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544398A1 (en) * 2018-03-20 2019-09-25 Quanta Computer Inc. Extended heat sink design in server

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321263A (en) * 1994-05-20 1995-12-08 Mitsubishi Cable Ind Ltd Heat pipe-system cooler
JPH1167997A (en) * 1997-08-13 1999-03-09 Fujikura Ltd Cooling device for personal computer
WO2006134659A1 (en) * 2005-06-17 2006-12-21 Fujitsu Limited Liquid-type cooling method and cooling device using latent heat material
JP2010033103A (en) * 2008-07-24 2010-02-12 Toshiba Corp Electronic equipment and printed circuit board
JP2011002211A (en) * 2009-06-22 2011-01-06 Toshiba Corp Electronic equipment
US20140014303A1 (en) * 2012-07-12 2014-01-16 Jeremy Rice Thermosiphon Systems for Electronic Devices
WO2015056288A1 (en) * 2013-10-15 2015-04-23 株式会社日立製作所 Ebullient cooling device, and electronic device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321263A (en) * 1994-05-20 1995-12-08 Mitsubishi Cable Ind Ltd Heat pipe-system cooler
JPH1167997A (en) * 1997-08-13 1999-03-09 Fujikura Ltd Cooling device for personal computer
WO2006134659A1 (en) * 2005-06-17 2006-12-21 Fujitsu Limited Liquid-type cooling method and cooling device using latent heat material
JP2010033103A (en) * 2008-07-24 2010-02-12 Toshiba Corp Electronic equipment and printed circuit board
JP2011002211A (en) * 2009-06-22 2011-01-06 Toshiba Corp Electronic equipment
US20140014303A1 (en) * 2012-07-12 2014-01-16 Jeremy Rice Thermosiphon Systems for Electronic Devices
WO2015056288A1 (en) * 2013-10-15 2015-04-23 株式会社日立製作所 Ebullient cooling device, and electronic device using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3544398A1 (en) * 2018-03-20 2019-09-25 Quanta Computer Inc. Extended heat sink design in server
US10842054B2 (en) 2018-03-20 2020-11-17 Quanta Computer Inc. Extended heat sink design in server

Similar Documents

Publication Publication Date Title
JP6015675B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
US7936560B2 (en) Cooling device and electronic equipment including cooling device
JP4859823B2 (en) COOLING DEVICE AND ELECTRONIC DEVICE USING THE SAME
JP4997215B2 (en) Server device
CN107302839B (en) Make the system and method for Electronic cooling in the data center
JP5210997B2 (en) COOLING SYSTEM AND ELECTRONIC DEVICE USING THE SAME
US7958935B2 (en) Low-profile thermosyphon-based cooling system for computers and other electronic devices
US8982559B2 (en) Heat sink, cooling module and coolable electronic board
JP5857964B2 (en) Electronic equipment cooling system
WO2013018667A1 (en) Cooling device and electronic device using same
US9696094B2 (en) Cooling unit
US20130206367A1 (en) Heat dissipating module
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
US6608751B2 (en) Electronic device
JP5262473B2 (en) Electronic equipment and its components
WO2013140761A1 (en) Cooling structure for electronic substrate, and electronic device using same
US20150103486A1 (en) Phase Change Module and Electronic Device Mounted with Same
US10362712B2 (en) Heat receiver, cooling unit, and electronic device
WO2017208461A1 (en) Boiling cooling device and electronic device having same mounted thereon
JP2018133529A (en) Cooling device
WO2015128951A1 (en) Semiconductor element cooling device and electronic apparatus
WO2015056288A1 (en) Ebullient cooling device, and electronic device using same
JP5860728B2 (en) Electronic equipment cooling system
EP2801781B1 (en) Cooling device
JP6127983B2 (en) COOLING STRUCTURE AND ELECTRONIC DEVICE USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP