Beschreibung Wärmeübertragerrohr
Die vorliegende Erfindung betrifft ein Wärmeübertragerrohr gemäß dem Oberbegriff des Anspruchs 1.
Wärmeübertragung tritt in vielen Bereichen der Kälte- und Klimatechnik sowie in der Prozess- und Energietechnik auf. Zur Wärmeübertragung werden in diesen Gebieten häufig Rohrbündelwärmeaustauscher eingesetzt. In vielen Anwendungen strömt hierbei auf der Rohrinnenseite eine Flüssigkeit, die abhängig von der Richtung des Wärmestroms abgekühlt oder erwärmt wird. Die Wärme wird an das sich auf der Rohraußenseite befindende Medium abgegeben oder diesem entzogen.
Es ist allgemein bekannt, dass in Rohrbündelwärmeaustauschern anstelle von Glattrohren strukturierte Rohre eingesetzt werden. Durch die Strukturen wird der Wärmedurchgang verbessert. Die Wärmestromdichte wird dadurch erhöht und der Wärmeaustauscher kann kompakter gebaut werden. Alternativ kann die Wär- mestromdichte beibehalten und die treibende Temperaturdifferenz erniedrigt werden, wodurch eine energieeffizientere Wärmeübertragung möglich ist.
Ein- oder beidseitig strukturierte Wärmeübertragerrohre für Rohrbündelwärmeaustauscher besitzen üblicherweise mindestens einen strukturierten Bereich sowie glatte Endstücke und eventuell glatte Zwischenstücke. Die glatten End- oder Zwischenstücke begrenzen die strukturierten Bereiche. Damit das Rohr problemlos in den Rohrbündelwärmeaustauscher eingebaut werden kann, sollte der äußere Durchmesser der strukturierten Bereiche nicht größer sein als der äußere
Durchmesser der glatten End- und Zwischenstücke.
Als strukturierte Wärmeübertragerrohre werden häufig integral gewalzte Rippenrohre verwendet. Unter integral gewalzten Rippenrohren werden berippte Rohre verstanden, bei denen die Rippen aus dem Material der Wandung eines Glattrohres geformt wurden. In vielen Fällen besitzen Rippenrohre auf der Rohrinnenseite eine Vielzahl von achsparallelen oderschraubenlinienförmig umlaufenden Rippen, die die innere Oberfläche vergrößern und den Wärmeübergangskoeffizient auf der Rohrinnenseite verbessern. Auf ihrer Außenseite besitzen die Rippenrohre ring- oder schraubenförmig umlaufende Rippen.
In der Vergangenheit wurden viele Möglichkeiten entwickelt, je nach Anwendung den Wärmeübergang auf der Außenseite von integral gewalzten Rippenrohren weiter zu steigern, indem die Rippen auf der Rohraußenseite mit weiteren Strukturmerkmalen versehen werden. Wie beispielsweise aus der Druckschrift US 5,775,411 bekannt, wird bei Kondensation von Kältemitteln auf der Rohraußenseite der Wärmeübergangskoeffizient deutlich erhöht, wenn die Rippenflanken mit zusätzlichen konvexen Kanten versehen werden. Bei Verdampfung von Kältemitteln auf der Rohraußenseite hat es sich als leistungssteigernd erwiesen, die zwischen den Rippen befindlichen Kanäle teilweise zu verschließen, so dass Hohlräume entstehen, die durch Poren oder Schlitze mit der Umgebung verbunden sind. Wie aus zahlreichen Druckschriften bereits bekannt, werden derartige, im Wesentlichen geschlossene Kanäle durch Umbiegen oder Umlegen der Rippe (US 3,696,861 , US 5,054,548), durch Spalten und Stauchen der Rippe (DE 2 758 526 C2, US 4,577,381) und durch ein Kerben und Stauchen der Rippe (US 4,660,630, EP 0 713 072 B1 , US 4,216,826) erzeugt.
Die vorstehend genannten Leistungsverbesserungen auf der Rohraußenseite haben zur Folge, dass der Hauptanteil des gesamten Wärmeübergangswiderstands auf die Rohrinnenseite verschoben wird. Dieser Effekt tritt insbesondere bei kleinen Strömungsgeschwindigkeiten auf der Rohrinnenseite, wie beispielsweise beim Teillastbetrieb, auf. Um den gesamten Wärmeübergangswiderstand signifikant zu
reduzieren, ist es notwendig, den Wärmeübergangskoeffizient auf der Rohrinnen¬ seite weiter zu erhöhen.
Um den Wärmeübergang der Rohrinnenseite zu erhöhen, können die achsparallelen oder schraubenlinienförmig umlaufenden Innenrippen mit Nuten versehen werden, wie es in der Druckschrift DE 101 56 374 C1 und DE 10 2006 008 083 B4 beschrieben ist. Hierbei ist von Bedeutung, dass durch die dort offen gelegte Verwendung von profilierten Walzdornen zur Erzeugung der Innenrippen und Nuten die Abmessungen der Innen- und der Außenstruktur des Rippenrohres voneinander unabhängig eingestellt werden können. Dadurch können die Strukturen auf der Außen- und Innenseite auf die jeweiligen Anforderungen angepasst und so das Rohr gestaltet werden.
Vor diesem Hintergrund besteht die Aufgabe der vorliegenden Erfindung darin, Innen- bzw. Außenstrukturen von Wärmeübertragerrohren der vorgenannten Art so weiterzubilden, dass eine gegenüber bereits bekannten Rohre eine weitere Leistungssteigerung erzielt wird.
Die Erfindung wird durch die Merkmale des Anspruchs 1 wiedergegeben. Die weiteren rückbezogenen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.
Die Erfindung schließt ein Wärmeübertragerrohr mit einer Rohrlängsachse ein, wobei aus der Rohrwand auf der Rohraußenseite und/oder Rohrinnenseite kontinuierlich verlaufende, achsparallele oder helixförmig umlaufende Rippen geformt sind, zwischen jeweils benachbarten Rippen sich kontinuierlich erstreckende Primärnuten gebildet sind, die Rippen mindestens einen strukturierten Bereich auf der Rohraußenseite und/oder Rohrinnenseite aufweisen sowie der strukturierte Bereich eine Mehrzahl von aus der Oberfläche herausragenden Vorsprüngen mit einer Vorsprungshöhe aufweist, wodurch die Vorsprünge durch Einkerbungen getrennt
sind. Erfindungsgemäß sind die Vorsprünge in Gruppen angeordnet, die sich periodisch entlang dem Rippenverlauf wiederholen. Zudem sind zumindest zwei Einkerbungen zwischen den Vorsprüngen innerhalb der Gruppe mit einer wechselnden Kerbtiefe in einer Rippe ausgebildet.
Hierbei kann der strukturierte Bereich prinzipiell auf der Rohraußenseite bzw. der Rohrinnenseite ausgeformt sein. Bevorzugt ist allerdings, die erfindungsgemäßen Rippenabschnitte im Rohrinneren anzuordnen. Die beschriebenen Strukturen lassen sich sowohl für Verdampfer- als auch für Kondensatorrohre einsetzen.
Die Vorsprungshöhe wird zweckmäßigerweise als die Abmessung eines Vorsprungs in radialer Richtung definiert. Die Vorsprungshöhe ist dann in radialer Richtung die Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs.
Die Kerbtiefe ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.
Eine wechselnde Kerbtiefe ist auch damit gleichbedeutend, dass die jeweils tiefste Stelle der Kerben alterniert und folglich den Abstand zur Rohrwand verändert. Hierzu gleichbedeutend ist zudem, dass die jeweils tiefste Stelle der Kerben, die in diesem Zusammenhang als Kerbgrund bezeichnet wird, im Abstand von der Rohrlängsachse über in Rippenrichtung aufeinanderfolgende Kerben alterniert.
Die Erfindung geht dabei von der Überlegung aus, dass sich aus einer unterschiedlichen Kerbtiefe im Wesentlichen eine unterschiedliche Höhe, Ausrichtung und Form der Vorsprünge zueinander ergibt. Daraus resultiert, dass die
Vorsprünge von einer geregelten Ordnung abweichen. Dies bedingt einen optimierten Wärmeübergang bei möglichst geringem Druckverlust bei der einphasigen Strömung, da die Fluidgrenzschicht, welche hinderlich für einen guten Wärmeübergang ist, durch zusätzlich erzeugte Turbulenzen unterbrochen wird.
Gegenüber einer gleichförmigen homogenen Anordnung der Vorsprünge wirkt sich diese gezielte Unterbrechung der Grenzschicht besonders positiv auf den Wärmeübergangskoeffizienten aus. Die Formen, Höhen und Anordnung der Vorsprünge kann durch das Einstellen geeigneter Schneidmesser bzw. Schneidgeometrien sowie durch individuell angepasste Rippenformen und Geometrien angepasst werden.
Im laminaren Strömungsbereich bedingen die Vorsprünge hingegen ein unregelmäßiges Eintauchen in den laminaren Strömungskern und somit eine optimierte Wärmeleitung von der Rohrwand in den laminaren Strömungskern bzw. vom laminaren Strömungskern hin zur Rohrwand. Diese Optimierungen für die turbulente und laminare Strömungsform werden durch die unterschiedlichen Schneidtiefen und Ausrichtung der Vorsprüngen gemäß der erfindungsgemäßen Lösung realisiert.
Vorteilhafterweise können die zumindest um einen Vorsprung benachbarten Einkerbungen in der Kerbtiefe um mindestens 10 % variieren. Weiter bevorzugt kann die Variation der Kerbtiefe mindestens 20 % oder sogar 50 % betragen. Hierdurch werden unterschiedlich hohe Vorsprünge erreicht, die wiederrum zu einer Unterbrechung der Grenzschicht sowie zur Erhöhung von Turbulenzen und somit zu einer Erhöhung des Wärmeübergangskoeffizienten führen.
Bei einer vorteilhaften Ausführungsform der Erfindung kann sich die größte Kerbtiefe maximal bis zur Rohrwand erstrecken. Hierdurch wird eine Unterbrechung der Grenzschicht sowie eine Erhöhung von Turbulenzen erzielt. Dies führt zu einer
Erhöhung des Wärmeübergangskoeffizienten. Einkerbungen bis in die Rohrwand hinein sind eher nachteilhaft und können zu einer unerwünschten Materialschwächung in der Rohrwand führen, ohne im Gegenzug den Wärmeübergangskoeffizienten wesentlich weiter positiv zu beeinflussen.
In bevorzugter Ausgestaltung der Erfindung können die Einkerbungen durch Schneiden der Innenrippen mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten ausgeformt sein.
Die verfahrensseitige Strukturierung des erfindungsgemäßen Wärmeübertragerrohrs kann unter Verwendung eines Werkzeugs hergestellt werden, welches in der DE 603 17 506 T2 bereits beschrieben ist. Die Offenbarung dieser Druckschrift DE 603 17 506 T2 wird vollumfänglich in die vorliegenden Unterlagen einbezogen. Hierdurch lässt sich die Vorsprungshöhe und der Abstand variabel gestalten und individuell auf die Anforderungen, beispielsweise der Viskosität der Flüssigkeit oder der Strömungsgeschwindigkeit, anpassen. Das verwendete Werkzeug weist eine Schneidkante zum Schneiden durch die Rippen an der inneren Fläche des Rohres auf zur Schaffung von Rippenschichten und eine Anhebekante zum Anheben der Rippenschichten zur Bildung der Vorsprünge. Auf diese Weise werden die Vorsprünge ohne Entfernung von Metall von der inneren Fläche des Rohrs gebildet. Die Vorsprünge an der inneren Fläche des Rohrs können in der gleichen oder einer unterschiedlichen Bearbeitung wie die Bildung der Rippen gebildet werden.
Hiermit lässt sich die Vorsprungshöhe und Abstand variabel gestalten und individuell auf die Anforderungen des in Betracht kommenden Fluids, beispielsweise hinsichtlich Viskosität der Flüssigkeit, Strömungsgeschwindigkeit, anpassen.
Bei einer vorteilhaften Ausführungsform der Erfindung kann mindestens ein Vorsprung aus der Hauptausrichtung entlang dem Rippenverlauf über die Primärnut auskragen Dies bringt den Vorteil mit sich, dass die ausgebildete Grenzschicht im Rippenzwischenraum durch diesen in die Primärnut ragenden Vorsprung unterbrochen wird, was einen verbesserten Wärmeübergang bedingt.
Vorteilhafterweise zwischen den Gruppen der Teilabschnitt der Rippe unverändert vorliegen. Weitere positive Einflüsse auf den Wärmeübergang durch das Unterbrechen der Grenzschicht lassen sich daraus ableiten, da unterschiedliche Teilungen / Gruppierungen und alternierend abwechselnde Rippenformen den oben beschriebenen Effekt verstärken.
In bevorzugter Ausführungsform der Erfindung können mehrere Vorsprünge an der von der Rohrwand entferntesten Stelle eine zur Rohrlängsachse parallele Fläche aufweisen.
In besonders bevorzugter Ausführungsform können die Vorsprünge in Vorsprungshöhe, Form und Ausrichtung untereinander variieren. Hierdurch lassen sich die einzelnen Vorsprünge gezielt aufeinander anpassen sowie zueinander variieren, um besonders bei laminarer Strömung durch unterschiedliche Rippenhöhen in die unterschiedlichen Grenzschichten der Strömung einzutauchen, um die Wärme an die Rohrwand abzuleiten. Damit lässt sich auch die Vorsprungshöhe und der Abstand individuell auf die Anforderungen z.B. Viskosität des Fluids, Strömungsgeschwindigkeit etc. anpassen.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann ein Vorsprung an der von der Rohrwand abgewandten Seite eine spitz zulaufende Spitze aufweisen. Dies führt bei Kondensatorrohren mit einer Verwendung von zweiphasigen Fluiden zu einer optimierten Kondensation an der Spitze.
In weiterer vorteilhafter Ausgestaltung der Erfindung kann ein Vorsprung an der von
der Rohrwand abgewandten Seite eine gekrümmte Spitze aufweisen, deren lokaler Krümmungsradius ausgehend von der Rohrwand mit zunehmender Entfernung verkleinert ist. Dies hat zum Vorteil, dass das an der Spitze eines Vorsprungs entstandene Kondensat durch die konvexe Krümmung schneller hin zum Rippenfuß transportiert und somit der Wärmeübergang bei der Verflüssigung optimiert wird. Beim Phasenwechsel, hier im speziellen bei der Verflüssigung, liegt das Hauptaugenmerk auf der Verflüssigung des Dampfes und das Abführen des Kondensats weg von der Spitze hin zum Rippenfuß. Dafür bildet eine konvex gekrümmter Vorsprung eine ideale Grundlage zur effektiven Wärmeübertragung. Die Basis des Vorsprungs steht dabei im Wesentlichen radial von der Rohrwand ab.
In vorteilhafter Ausgestaltung der Erfindung können die Vorsprünge eine unterschiedliche Form und/oder Höhe von einem Rohranfang entlang der Rohrlängsachse hin zum gegenüber liegenden Rohrende aufweisen Der Vorteil dabei ist eine gezielte Einstellung des Wärmeübergangs von Rohranfang bis Rohrende.
Vorteilhafterweise können sich die Spitzen von zumindest zwei Vorsprüngen entlang dem Rippenverlauf gegenseitig berühren oder überkreuzen; was speziell im reversiblen Betrieb beim Phasenwechsel von Vorteil ist, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden.
In bevorzugter Ausführungsform der Erfindung können sich die Spitzen von zumindest zwei Vorsprüngen über die Primärnut hinweg gegenseitig berühren oder überkreuzen. Dies ist wiederum im reversiblen Betrieb beim Phasenwechsel von Vorteil, da die Vorsprünge für die Verflüssigung weit aus dem Kondensat ragen und für die Verdampfung eine Art Kavität ausbilden. In besonders bevorzugter Ausführungsform kann mindestens einer der Vorsprünge
derartig verformt sein, dass dessen Spitze die Rohrinnenseite bzw. die Rohraußenseite berührt. Insbesondere im reversiblen Betrieb beim Phasenwechsel ist dies von Vorteil, da die Vorsprünge für die Verflüssigung für die Verdampfung eine Art Kavität und damit Blasenkeimstellen ausbilden. Dies führt beim Verdampfungsvorgang zu erhöhten Wärmeübergangskoeffizienten.
Ausführungsbeispiele der Erfindung werden anhand der schematischen Zeichnungen näher erläutert.
Darin zeigen:
Fig. 1 schematisch eine Schrägansicht eines Rohrausschnitts mit der erfindungsgemäßen Struktur auf der Rohrinnenseite;
Fig. 2 schematisch einen Rippenabschnitt mit unterschiedlicher Kerbtiefe;
Fig. 3 schematisch einen Rippenabschnitt mit einem über die Primärnut kragenden
Strukturelement;
Fig. 4 schematisch einen Rippenabschnitt mit einem in Rippenrichtung an der
Spitze gekrümmten Vorsprung;
Fig. 5 schematisch einen Rippenabschnitt mit einem Vorsprung mit einer parallelen
Fläche an der von der Rohrwand entferntesten Stelle;
Fig. 6 schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig berührenden Vorsprüngen;
Fig. 7 schematisch einen Rippenabschnitt mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen;
Fig. 8 schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig berührenden Vorsprüngen; und
Fig. 9 schematisch einen Rippenabschnitt mit zwei sich über die Primärnut hinweg gegenseitig überkreuzenden Vorsprüngen.
Einander entsprechende Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
Fig. 1 zeigt schematisch eine Schrägansicht eines Rohrausschnitts des Wärmeübertragerrohrs 1 mit der erfindungsgemäßen Struktur auf der Rohrinnenseite 22. Das Wärmeübertragerrohr 1 besitzt eine Rohrwand 2, eine Rohraußenseite 21 und eine Rohrinnenseite 22. Auf der Rohrinnenseite 22 sind aus der Rohrwand 2 kontinuierlich verlaufende, helixförmig umlaufende Rippen 3 geformt. Die Rohrlängsachse A verläuft gegenüber den Rippen 3 unter einem gewissen Winkel. Zwischen jeweils benachbarten Rippen 3 sind sich kontinuierlich erstreckende Primärnuten 4 gebildet. Die Vorsprünge 6 sind in Gruppen 10 angeordnet, die sich periodisch entlang dem Rippenverlauf wiederholen Die Vorsprünge 6 sind durch Schneiden der Rippen 3 mit einer Schneidtiefe quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf zwischen Primärnuten 4 ausgeformt. Die Einkerbungen 7 sind zwischen den Vorsprüngen 6 innerhalb der Gruppe 10 mit einer wechselnden Kerbtiefe in einer Rippe 3 ausgebildet.
Fig. 2 zeigt schematisch einen Rippenabschnitt 31 mit unterschiedlicher Schneidoder Kerbtiefe ti, t2, t3. Die Bezeichnungen Schneidtiefe bzw. Kerbtiefe stellen im Rahmen der Erfindung dieselbe Begrifflichkeit dar. Die Vorsprünge 6 weisen alternierend wechselnde Kerbtiefen ti, t2, t3 durch eine Rippe 3 auf. Gestrichelt angedeutet ist in der Fig. 2 die originäre geformte helixförmig umlaufende Rippe 3. Aus dieser sind die Vorsprünge 6 durch Schneiden der Rippe 3 mit einer Kerb- /Schneidtiefe ti, t2, t3 quer zum Rippenverlauf zur Bildung von Rippenschichten und durch Anheben der Rippenschichten mit einer Hauptausrichtung entlang dem Rippenverlauf ausgeformt. Die unterschiedlichen Kerb-/Schneidtiefen ti, t2l t3 bemessen sich folglich an der Einkerbtiefe der originären Rippe in radialer Richtung.
Die Vorsprungshöhe h ist in Fig. 2 als die Abmessung eines Vorsprungs in radialer Richtung eingezeichnet. Die Vorsprungshöhe h ist dann in radialer Richtung die
Strecke ausgehend von der Rohrwand bis zur von der Rohrwand entferntesten Stelle des Vorsprungs.
Die Kerbtiefe ti, t2, t3 ist die in radialer Richtung gemessene Strecke ausgehend von der originären Rippenspitze bis zur tiefsten Stelle der Kerbe. Mit anderen Worten: Die Kerbtiefe ist die Differenz der originären Rippenhöhe und der an der tiefsten Stelle einer Kerbe verbleibenden Restrippenhöhe.
Fig. 3 zeigt schematisch einen Rippenabschnitt 31 mit einem über die Primärnut 4 kragenden Strukturelement 6. Es handelt sich dabei um einen Vorsprung 6, der aus der Hauptausrichtung mit der Spitze 62 entlang dem Rippenverlauf über die Primärnut 4 hinwegreicht. Je weiter die Auskragung ausgebildet ist, desto intensiver wird die ausgebildete Grenzschicht des Fluids im Rippenzwischenraum gestört, was einen verbesserten Wärmeübergang bedingt.
Fig. 4 zeigt schematisch einen Rippenabschnitt 31 mit einem in Rippenrichtung an der Spitze 62 gekrümmten Vorsprung 6. Der Vorsprung 6 hat an der gekrümmten Spitze 62 einen sich verändernden Krümmungsverlauf. Hierbei nimmt der lokale Krümmungsradius ausgehend von der Rohrwand mit zunehmender Entfernung ab. Mit anderen Worten: Der Krümmungsradius verkleinert sich entlang der durch die Punkte P1 , P2, P3 angedeuteten Linie zur Spitze hin. Dies hat zum Vorteil, dass das an der Spitze 62 entstehende Kondensat bei zweiphasigen Fluiden durch die zunehmende konvexe Krümmung schneller hin zum Rippenfuß transportiert wird. Hierdurch wird der Wärmeübergang bei der Verflüssigung optimiert.
Fig. 5 zeigt schematisch einen Rippenabschnitt 31 mit einem Vorsprung 6 mit einer parallelen Fläche 61 an der von der Rohrwand entferntesten Stelle im Bereich der Spitze 62.
Die in den Fig. 3 bis 5 dargestellten Rippenabschnitte 31 können in die jeweiligen
Gruppen einzeln oder auch in größerer Anzahl eingebunden sein.
Fig. 6 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf gegenseitig berührenden Vorsprüngen 6. Des Weiteren zeigt Fig. 7 schematisch einen Rippenabschnitt 31 mit zwei sich entlang dem Rippenverlauf sich gegenseitig überkreuzenden Vorsprüngen 6. Auch Fig. 8 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich über die Primärnut 4 hinweg gegenseitig berührenden Vorsprüngen. Fig. 9 zeigt schematisch einen Rippenabschnitt 31 mit zwei sich über die Primärnut 4 hinweg gegenseitig überkreuzenden Vorsprüngen 6.
Bei den in den Fig. 6 bis 9 dargestellten Strukturelementen ist speziell im reversiblen Betrieb bei zweiphasigen Fluiden von Vorteil, dass diese für die Verdampfung eine Art Kavität ausbilden. Die Kavitäten dieser besonderen Art bilden die Ausgangsstellen für Blasenkeime eines verdampfenden Fluids.
Bezugszeichenliste
1 Wärmeübertragerrohr
2 Rohrwand
21 Rohraußenseite
22 Rohrinnenseite
3 Rippe
31 Rippenabschnitt
4 Primärnut
6 Vorsprung
61 parallele Fläche
62 Spitze
7 Einkerbungen
10 Gruppe von Vorsprüngen
A Rohrlängsachse
ti erste Schneidtiefe
t2 zweite Schneidtiefe
t3 dritte Schneidtiefe
h Vorsprungshöhe