WO2017204115A1 - スイッチング電源回路 - Google Patents
スイッチング電源回路 Download PDFInfo
- Publication number
- WO2017204115A1 WO2017204115A1 PCT/JP2017/018883 JP2017018883W WO2017204115A1 WO 2017204115 A1 WO2017204115 A1 WO 2017204115A1 JP 2017018883 W JP2017018883 W JP 2017018883W WO 2017204115 A1 WO2017204115 A1 WO 2017204115A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- power supply
- circuit
- switching
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from dc input or output
- H02M1/143—Arrangements for reducing ripples from dc input or output using compensating arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0032—Control circuits allowing low power mode operation, e.g. in standby mode
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/36—Means for starting or stopping converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4258—Arrangements for improving power factor of AC input using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
- H02M3/33553—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current with galvanic isolation between input and output of both the power stage and the feedback loop
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Definitions
- the present invention relates to a switching power supply circuit.
- the output voltage gradually decreases as the output current increases during an overcurrent, which is generally called a “shape” characteristic (constant power control voltage drooping type).
- shape constant power control voltage drooping type
- He is a Japanese hiragana character.
- the output voltage and the output current are decreased with an increase in the output current at the time of overcurrent, which is generally called a drooping characteristic.
- a protection circuit for overcurrent protection and load short-circuit protection may be added separately in addition to the basic circuit (component configuration required as a topology) of the switching power supply.
- abnormal overheating of the components of the switching power supply circuit can be achieved by intermittent operation using the decrease of the bias voltage accompanying the decrease of the output voltage at the time of load short circuit and overcurrent. There are ways to prevent this.
- a switching power supply circuit when a load short circuit or overcurrent occurs, the electrical energy transmitted by the transformer temporarily increases abruptly, and the voltage generated in the auxiliary winding may increase from the original design value. Most of the energy is absorbed by the capacitor of the auxiliary winding, and the bias voltage rarely jumps up.
- the ratio of the on time to the switching cycle of the primary side switch circuit hereinafter referred to as the PWM (Pulse Width Modulation) signal ON-Duty or duty ratio
- the output voltage on the secondary side decreases, and the bias voltage obtained from the auxiliary winding of the transformer also decreases (operation 1).
- the power supply control IC stops the operation of the primary side switch circuit. Thereafter, the capacitor connected to the power supply terminal of the power supply control IC is charged from the input voltage via the starting resistor, and when the start voltage of the power supply control IC is reached, the primary side switch circuit is operated again (operation 2).
- the operation that repeats the operation 1 and the operation 2 as described above is called an intermittent operation, and is a general protective operation in the case of a load short circuit state or an overcurrent state.
- an intermittent operation By such an intermittent operation, the switching power supply circuit that is in a load short-circuit state or an overcurrent state can be prevented from being abnormally heated and safety can be improved.
- the power supply terminal of the power supply control IC that outputs a signal for driving the primary side switch circuit has a voltage for starting the switching operation (for example, a start voltage of 16 V) by the applied voltage, and the switching operation is performed.
- a voltage to be stopped for example, a stop voltage of 10 V
- a maximum applied voltage for example, 30 V
- the switching power supply circuit has a constant voltage circuit (transistor, resistor, diode, so that the bias voltage output from the auxiliary winding of the transformer is equal to or lower than a certain voltage for the purpose of preventing destruction of the power supply control IC.
- a constant voltage diode or the like is provided (for example, see Japanese Patent Application Laid-Open No. 2015-173043 (Patent Document 1) and Japanese Patent Application Laid-Open No. 7-213053 (Patent Document 2)).
- the constant voltage circuits described in Patent Documents 1 and 2 can reduce the increased bias voltage and supply it to the power supply terminal of the power supply control IC (power supply control circuit).
- the constant voltage circuit described in Patent Document 1 cannot control the lowered bias voltage and supply it to the power supply terminal of the power supply control IC.
- the bias voltage output from the auxiliary winding and rectified does not drop to the stop voltage of the power supply control IC (power supply control circuit) when the load is short-circuited or overcurrent, the switching power supply circuit is intermittent
- the electronic component may be overheated and the power supply circuit may fail without being operated.
- the present invention includes a first rectifying element connected to an AC power source, a first capacitor for smoothing a DC voltage rectified by the first rectifying element, a primary winding, a secondary winding, and an auxiliary winding. And a DC resistor from one end of the first capacitor, a starting resistor connected to a node between one end of the primary winding, and a DC voltage supplied from the first capacitor to the primary winding.
- a switching element a power supply control circuit for controlling the switching element, a second capacitor having one end connected to a starting resistor and a power supply terminal of the power supply control circuit, and a magnitude of a primary current flowing in the primary winding
- a bias voltage output from the second rectifying element connected to the auxiliary winding and the bias voltage output from the second rectifying element is greater than or equal to the set voltage, Voltage to power supply end Output to, when the bias voltage is less than the set voltage, and a stop circuit for stopping the power supply to the power supply terminal.
- the power supply control circuit controls the ratio of the on time to the switching period of the switching element based on the current detection voltage generated by the current detection resistor.
- the power supply control circuit stops the switching operation of the switching element when the voltage of the power supply terminal becomes equal to or lower than the stop voltage.
- the stop circuit stops power supply to the power supply terminal when the bias voltage outputted from the auxiliary winding and rectified is less than the set voltage, and the power supply control circuit stops the power supply terminal voltage.
- the switching operation of the switching element is stopped.
- the switching operation of the switching element can be stopped even if the bias voltage does not decrease to the stop voltage of the power supply control circuit.
- FIG. 1 It is a figure which shows the structure of the switching power supply circuit in Embodiment 1, a commercial power supply, and load. It is a figure showing the output current-output voltage characteristic which shows a "subscript" characteristic in rated power 100% or more. It is a figure showing the detailed circuit structure of the power converter circuit of FIG. 2 is a diagram illustrating a constant voltage circuit described in Patent Document 1.
- is there. 6 is a diagram illustrating a configuration of a stop circuit according to a second embodiment.
- FIG. 10 represents a configuration of a stop circuit according to a third embodiment.
- the voltage supplied to the power supply control IC can be reduced by the constant voltage circuit.
- the design bias voltage is 18V, and the voltage after passing through the constant voltage circuit is 15V. Even when the bias voltage temporarily rises due to a load short circuit state or an overcurrent state (for example, 35 V), the power supply terminal voltage of the power supply control IC becomes 15 V by the constant voltage circuit described in Patent Document 1, and the power supply control IC Can be prevented from reaching a breakdown voltage of 30 V at which the voltage V is destroyed.
- the primary-side current detection circuit operates in the switching power supply circuit, so that the power supply control IC performs control to reduce the ON-Duty of the primary-side switching operation. As a result, the bias voltage decreases. Thereafter, when the power supply terminal of the power supply control IC becomes a stop voltage (for example, 10 V) or less, the primary side switching operation is stopped.
- a stop voltage for example, 10 V
- the power supply terminal voltage of the power supply control IC is supplied with the start voltage (for example, 16V) and the stop voltage (for example, 10V) while receiving the charging current from the starting resistor and the current supply from the bias voltage. ),
- the switching power supply circuit repeatedly operates and stops.
- the components of the switching power supply circuit including the semiconductor element generate heat during the operation period, and the temperature decreases during the stop period. For this reason, the components that make up the switching power supply circuit repeatedly generate heat and decrease in temperature, but since the rate of heat generation increases more than the decrease in temperature, the temperature gradually increases and eventually becomes saturated at a constant temperature. .
- the cycle of the repetition cycle of operation-stop is a charging current that depends on the input voltage and the starting resistance value, a voltage (hysteresis voltage) between the start voltage and the stop voltage of the power supply control IC, It is determined by the capacitance value of the capacitor connected to the power supply terminal of the control IC and the bias voltage supplied from the auxiliary winding of the transformer.
- the charging current ( ⁇ input voltage / starting resistance value) determined by the input voltage and starting resistance value is about several mA to several mA.
- the current supplied to the power supply control IC from the bias voltage determined by the voltage value charged during the operation of the switching power supply circuit is several tens of mA.
- the current used by the power supply control IC for driving the semiconductor element is several tens of mA. Therefore, the power supply control IC cannot continue to drive the semiconductor element without supplying current from the bias voltage generated from the auxiliary winding.
- the amount of decrease in the bias voltage supplied from the auxiliary winding is small, and the operation stop voltage of the power supply control IC is reduced.
- the voltage is held at a voltage higher than the operation stop voltage of the power supply control IC without lowering, and the intermittent operation may not be started. In such a state, since the switching power supply circuit continues to operate, the temperature continues to rise higher, and the switching power supply circuit may fail.
- FIG. 1 is a diagram showing a configuration of a switching power supply circuit 100, a commercial power supply 101, and a load 104 in the first embodiment.
- Commercial power supply 101 is, for example, an AC commercial power supply.
- the commercial power source 101 may be a DC voltage source having a power circuit in the previous stage, or a DC voltage source using a battery or a battery.
- the switching power supply circuit 100 receives an AC voltage from the commercial power supply 101 and supplies an output voltage to the load 104.
- the load 104 is connected to the output of the switching power supply circuit 100 and operates with power from the switching power supply circuit 100.
- the switching power supply circuit 100 includes a rectifying element 102, a capacitor 103, and a power conversion circuit 200.
- Switching power supply circuit 100 is, for example, an insulating flyback converter.
- the rectifying element 102 is connected to the commercial power source 101 and rectifies an AC voltage supplied from the commercial power source 101 to convert it into a direct current (pulsating flow).
- the rectifying element 102 is configured by a diode bridge.
- the capacitor 103 charges the direct current (pulsating flow) rectified by the rectifying element 102, thereby smoothing the pulsating flow and storing the direct current voltage Vin.
- the power conversion circuit 200 performs power conversion to a desired DC output voltage Vout in a state where the DC voltage Vin stored in the capacitor 103 (DC or a pulsating current superimposed on DC, also referred to as input voltage) is insulated.
- the switching power supply circuit 100 converts the AC voltage input from the commercial power supply 101 into the DC voltage Vin, and supplies desired power (output voltage Vout ⁇ output current Iout) to the load 104.
- the maximum design power handled by the switching power supply circuit 100 and the power conversion circuit 200 has the same power value.
- the output current Iout is a value equal to or smaller than the current value IoutR that can be output by the power conversion circuit 200 and the switching power supply circuit 100 in design.
- the overcurrent state is a state in which a current exceeding the designable output current value IoutR is output in the power conversion circuit 200 and the switching power supply circuit 100, in other words, the load 104 exceeds the designable output current value IoutR. It is the state which is going to flow the current.
- the output current Iout is in the range of 0 to 10 A.
- the load short-circuit state is a state in which the power conversion circuit 200 and the circuit or wiring after the output terminal of the switching power supply circuit 100, the load 104, etc. are short-circuited (electrically short-circuited). In this case, since it is short-circuited (because the load-side impedance is indefinite), it is not known how many times the output current Iout flows through the rated current.
- the output when the current is further extracted from the rated power of 50 W, that is, the output is 5 V / 10 A, that is, in an overcurrent state, the output is 4.0 V / 12.5 A, 2.5 V / 20 A. As described above, the output voltage gradually decreases as the output current increases.
- the “character shape” characteristic is not a characteristic that can be accurately controlled, but is due to the mechanism of the flyback power supply circuit.
- FIG. 2 is a diagram showing an output current-output voltage characteristic showing a “bent” characteristic when the rated power is 100% or more.
- the “U character” characteristic has a characteristic that the output voltage does not begin to decrease unless an output current larger than the output current at the rated power is output.
- FIG. 3 is a diagram showing a detailed circuit configuration of power conversion circuit 200 in FIG.
- the power conversion circuit 200 converts the DC voltage Vin smoothed by the capacitor 103 (stored in DC or DC with a pulsating current superimposed) into an output voltage Vout.
- the power conversion circuit 200 includes a switching element 110, a current detection resistor 111, a power supply control IC 114, a transformer 120, a rectifier element 115, a capacitor 116, an F / B circuit 119, a stop circuit 130, a transformer 120, a capacitor 112, a capacitor 117, and a rectifier. And an element 118.
- the transformer 120 has a primary winding 121, a secondary winding 122, and an auxiliary winding 123. Although the primary winding 121 and the secondary winding 122 are magnetically coupled, the primary winding 121 and the auxiliary winding 123 are electrically insulated. Therefore, the transformer 120 has a role of insulating the primary side (commercial power supply side, input side) and the secondary side (insulated side, output side) in the insulating switching power supply circuit 100.
- the rectifying element 102 As the components constituting the primary side, the rectifying element 102, the capacitor 103, the starting resistor 113, the switching element 110, the current detecting resistor 111, the capacitor 112, the power supply control IC 114, the primary winding 121, the auxiliary winding 123, and the rectifying element 118. , A capacitor 117 and a stop circuit 130 are provided.
- a secondary winding 122, a rectifying element 115, a capacitor 116, and an F / B circuit 119 are provided.
- the switching element 110 is composed of a MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the rectifying elements 102, 115, and 118 are formed of diodes.
- the starting resistor 113 is connected to a node ND1 between one end of the capacitor 103 and one end of the primary winding 121.
- the switching element 110 switches the DC voltage Vin from the capacitor 103 supplied to the primary winding 121.
- the power supply control IC 114 controls the switching element 110.
- One end of the capacitor 112 is connected to the starting resistor 113 and the power terminal T1 of the power control IC 114.
- the current detection resistor 111 is connected to the switching element 110.
- the current detection resistor 111 detects the magnitude of the primary current I1 flowing through the primary winding 121.
- the rectifying element 118 is connected to the auxiliary winding 123.
- the rectifying element 115 is connected to the secondary winding 122.
- the capacitor 116 is connected to the rectifier element 115 and smoothes the output voltage.
- the F / B circuit 119 outputs a signal representing the magnitude relationship between the output voltage smoothed by the capacitor 116 and a desired constant voltage.
- the power supply control IC 114 controls the ratio of the ON time to the switching period of the switching element 110 based on the current detection voltage generated by the current detection resistor 111 and the signal from the F / B circuit 119.
- the stop circuit 130 receives the bias voltage VB output from the rectifying element 118, and outputs a voltage based on the bias voltage VB to the power supply terminal T1 of the power supply control IC 114 when the bias voltage VB is equal to or higher than the set voltage. Is less than the set voltage, the power supply to the power supply terminal T1 of the power supply control IC is stopped.
- the power supply control IC 114 stops the switching operation of the switching element 110 when the voltage at the power supply terminal T1 of the power supply control IC 114 becomes equal to or lower than the stop voltage.
- the power conversion circuit 200 of the present embodiment includes a stop circuit 130, but the power conversion circuit of Patent Document 1 includes a constant voltage circuit instead of the stop circuit 130. First, the operation of this constant voltage circuit will be described.
- FIG. 4 is a diagram showing a constant voltage circuit described in Patent Document 1.
- This constant voltage circuit includes an NPN transistor 301, a voltage supply resistor 302, and a Zener diode (low voltage diode) 303.
- the zener diode 303 is a constant voltage diode, and is an element from which a current flows when a certain voltage (this is called a set voltage or a zener voltage) is applied.
- the set voltage of the Zener diode 303 is 15V, and the collector-emitter voltage VCE of the NPN transistor 301 is 0.5V.
- the Zener diode 303 When the bias voltage VB is less than 15V (for example, 14.4V), the Zener diode 303 is not turned on, but the bias voltage VB is supplied to the base B of the NPN transistor 301 via the voltage supply resistor 302. Turns on.
- the set voltage determined by the Zener diode 303 limits the upper limit value of the output voltage of the constant voltage circuit, but does not control the lower limit.
- FIG. 5 shows an example of the configuration of stop circuit 130 included in FIG.
- the stop circuit 130 includes a PNP transistor 131, a voltage supply resistor 132, an adjustment resistor 133, and a Zener diode 134.
- the PNP transistor 131 has an emitter E connected to the output of the rectifying element 118, a collector C connected to the power supply terminal T1 of the power supply control IC 114, and a base B.
- the adjusting resistor 133 and the Zener diode are connected in series between the base B of the PNP transistor 131 and the ground.
- the voltage supply resistor 132 is disposed between the output of the rectifying element 118 and the base B of the PNP transistor 131.
- the set voltage (zener voltage) of the Zener diode 134 is set to 15V, and the voltage VCE of the PNP transistor 131 is set to 0.5V.
- the voltage supply resistor 132 supplies the bias voltage VB charged in the capacitor 117 to the base B of the PNP transistor 131.
- the adjustment resistor 133 is a resistor for adjusting the current flowing through the Zener diode 134.
- the Zener diode 134 When the bias voltage VB is 15 V (set voltage) or more, the Zener diode 134 is turned on, whereby the PNP transistor 131 is turned on, and (the bias voltage VB-VCB voltage) is output to the collector C of the PNP transistor 131.
- the Zener diode 134 When the bias voltage VB is less than 15 V (set voltage), the Zener diode 134 is not turned on, and the PNP transistor 131 is also turned off. Therefore, no voltage is output to the collector C of the PNP transistor 131. That is, the set voltage determined by the Zener diode 303 does not control the upper limit value of the output voltage of the stop circuit 130, but limits the lower limit value.
- the capacitor 112 When the PNP transistor 131 is turned on, the capacitor 112 is charged with the bias voltage VB, but when the PNP transistor 131 is turned off, the capacitor 112 is not charged with the bias voltage VB.
- the capacitor 112 is charged via the starting resistor 113 from the DC voltage Vin stored in the capacitor 103.
- the charging current via the starting resistor 113 is much smaller than the charging current from the bias voltage VB. Therefore, the power supply control IC 114 cannot continue to drive the switching element 110 only with the charging current via the starting resistor 113.
- the power supply control IC 114 outputs a PWM signal to the switching element 110 when the voltage VCC at the power supply terminal T1 reaches the start voltage 16V, and stops outputting the PWM signal when the stop voltage becomes 10V. That is, when the switching power supply circuit 100 continues the switching operation and continues to output a desired output voltage, the following processing is continued.
- the capacitor 112 is charged via the starting resistor 113 by the DC voltage Vin stored in the capacitor 103, and the voltage VCC of the power supply terminal T1 of the power supply control IC 114 reaches the start voltage 16V.
- the power supply control IC 114 outputs a PWM signal, and the switching element 110 performs a switching operation by the PWM signal.
- the transformer 120 transmits electromagnetic energy between the primary winding 121 and the secondary winding 122 / auxiliary winding 123.
- the voltage generated in the auxiliary winding 123 is rectified by the rectifying element 118 and charged to the capacitor 117.
- the bias voltage VB is generated.
- the capacitor 112 connected to the power supply terminal T1 of the power supply control IC 114 is charged from the bias voltage VB via the stop circuit 130 before the voltage VCC of the power supply terminal T1 of the power supply control IC 114 decreases to the stop voltage 10V.
- the voltage VCC of the power supply terminal T1 is kept at 10V or higher.
- the AC voltage supplied from commercial power supply 101 is converted into DC (pulsating flow) by passing through rectifying element 102.
- Capacitor 103 generates and stores DC voltage Vin (direct current or direct current with superimposed pulsating current) that smoothes and stores direct current (pulsating flow) that has passed through rectifying element 102.
- Switching element 110 performs a switching operation based on a PWM signal sent from power supply control IC 114.
- the design switching frequency is 100 kHz.
- the DC voltage Vin stored in the capacitor 103 that has been DC (pulsating) from the AC commercial power supply 101 through the rectifier 102 is connected to the power supply terminal T1 of the power supply control IC 114 via the starting resistor 113. 112 is charged.
- the power supply control IC 114 sends a PWM signal for driving the gate terminal to the switching element 110 at a frequency of 100 KHz.
- the PWM signal is a signal that can change the pulse width according to the situation so as to be a target constant voltage (a signal that changes only the ON ratio every 100 usec period and 10 usec).
- the DC voltage Vin stored in the capacitor 103 is applied to one side of the primary winding 121 of the transformer 120.
- the switching element 110 is driven by the PWM signal, the switching element 110 is turned on.
- a primary current I1 flows through the primary winding 121.
- the primary current I1 returns to the capacitor 103 via the current detection resistor 111.
- a voltage hereinafter referred to as current detection voltage Vi1 is generated by the primary current I1 flowing in the current detection resistor 111.
- This current detection voltage Vi1 is sent to the power supply control IC 114.
- the transformer 120 accumulates magnetic energy inside when the primary current I1 flows through the primary winding 121. Thereafter, when the PWM signal from the power supply control IC 114 is turned off, that is, the switching element 110 is turned off, the magnetic energy accumulated in the transformer 120 is transmitted to the secondary winding 122 as the secondary current I2.
- the secondary current I2 charges the capacitor 116 via the rectifying element 115. As described above, when the switching element 110 receives the PWM signal and repeats on / off, power is transmitted from the primary winding 121 to the secondary winding 122.
- the voltage charged in the capacitor 116 gradually increases, and the output voltage Vout eventually reaches the desired output voltage VoutR.
- the F / B circuit 119 detects the output voltage Vout.
- the F / B circuit 119 passes the F / B signal for controlling the ON width (duty ratio) of the PWM signal supplied to the switching element 110 through the fat coupler 60 so that the output voltage Vout becomes the target output voltage VoutR.
- the F / B circuit 119 widens the ON width of the PWM signal to the power supply control IC 114 ((increases the duty ratio).
- the F / B signal indicating that the output voltage Vout is smaller than the desired output voltage Vout is sent in.
- the F / B circuit 119 sends a PWM signal to the power supply control IC 114.
- the F / B signal indicating that the output voltage Vout is larger than the desired output voltage Vout is sent so as to narrow the ON width of the signal (decrease the duty ratio).
- the power supply control IC 114 increases or decreases the ON width (duty ratio) of the PWM signal based on the F / B signal sent from the F / B circuit 119 so that the output voltage Vout becomes the target output voltage VoutR.
- the switching element 110 is driven.
- the power conversion circuit 200 allows the current value Iout flowing out from the output voltage Vout to be the load 104 while maintaining the state of the target voltage value within the designed power value (VoutR ⁇ Iout). Can be supplied to.
- the bias voltage VB When the bias voltage VB is supplied from the auxiliary winding 123 of the transformer 120, the bias voltage varies depending on the winding structure of the transformer 120. When the degree of coupling of the transformer 120 is high (coupling between windings is good), the bias voltage VB decreases as the output voltage decreases due to overcurrent or load short circuit. On the other hand, when the coupling degree of the transformer 120 is low (coupling between windings is poor), the bias voltage VB does not decrease much even if the output voltage decreases due to overcurrent or load short circuit.
- This embodiment is based on the premise that when the output voltage Vout decreases due to an overcurrent or a load short circuit, the bias voltage VB also decreases following the output voltage Vout. That is, it is assumed that the degree of coupling of the transformer 120 is high.
- the transformer 120 includes a primary winding 121, a secondary winding 122, and an auxiliary winding 123. Since the transformer 120 is a flyback transformer, the magnetic energy is accumulated by passing a current through the primary winding 121. After the current has been passed through the primary winding 121, the accumulated magnetic energy is transferred to the secondary winding. 122 and the auxiliary winding 123 are discharged as current.
- the voltage generated in the secondary winding 122 and the voltage generated in the auxiliary winding 123 are proportional to the number of turns of the secondary winding 122 and the auxiliary winding 123.
- the output of the secondary winding 122 is designed to be 5V (voltage considering the voltage drop of the diode forward voltage)
- the output of the auxiliary winding 123 is designed to be 18V (voltage considering the voltage drop of the diode forward voltage). Then, when the output voltage Vout is 5V, the bias voltage VB becomes 18V.
- the power supply control IC 114 controls the width of the PWM signal by the F / B signal from the F / B circuit 119 even if the load 104 fluctuates and the output current Iout changes.
- the output voltage Vout is kept at a constant voltage value.
- the horizontal axis represents time and the vertical axis represents voltage.
- the power supply control IC 114 does not output a PWM signal because the voltage VCC has not reached the start voltage 16V. Since the switching element 110 is not performing a switching operation, the bias voltage VB is 0V. Since the bias voltage VB is 0V, the output of the stop circuit 130 is 0V.
- the switching operation of the switching element 110 causes a current to flow from the auxiliary winding 123 of the transformer 120 through the rectifying element 118 to the capacitor 117, and the bias voltage VB increases.
- the bias voltage VB is less than 15V
- the voltage VS output from the stop circuit 130 is 0V.
- the bias voltage VB is 15V or more
- the voltage VS output from the stop circuit 130 is the same as the bias voltage VB. It becomes size.
- the output current Iout is in an overcurrent state (for example, 11 A) of 10 A or more.
- a current detection voltage Vi1 larger than that at the maximum power of 50 W is generated in the current detection resistor 111.
- the power supply control IC 114 reduces the ON-Duty of the PWM signal so as to reduce the primary current flowing through the current detection resistor 111. Make it smaller. This limits the primary current.
- the bias voltage VB decreases to 14.4V because it is proportional to the turns ratio of the transformer 120.
- the constant voltage circuit has a function of limiting the voltage input to the power supply control IC 114 when the bias voltage VB is equal to or higher than the set voltage 15 V determined by the Zener diode, but the bias voltage VB is less than the set voltage 15 V.
- the voltage VCC at the power supply terminal T1 of the power supply control IC 114 is 13.9V, it is higher than the stop voltage 10V. Therefore, the switching operation of the switching power supply circuit 100 is continued. As a result, the electronic components constituting the switching power supply circuit 100 continue to operate continuously in an overload state, and the electronic components fail due to overheating.
- the capacitor 117 is charged from the DC voltage Vin stored in the capacitor 103 via the starting resistor 113.
- the PWM signal for driving the switching element 110 is output from the power supply control IC 114 again.
- the switching operation is resumed.
- the ON-Duty of the PWM signal immediately decreases and the output voltage Vout does not rise to the desired voltage VoutR.
- the bias voltage VB does not rise to a desired voltage
- the voltage VCC at the power supply terminal T1 of the power supply control IC 114 eventually falls below the stop voltage 10V. As a result, the switching power supply circuit 100 stops the switching operation again.
- the charging current from the starting resistor is much smaller than the supply current from the bias voltage, the charging current from the starting resistor 113 alone cannot hold the voltage at the power supply terminal of the power supply control IC 114, so it once rises to the starting voltage. Even then, the voltage drops again to the stop voltage.
- the stop circuit 130 is mounted as compared with the switching power supply circuit 100 mounted with the constant voltage circuit of Patent Document 1 continuously operating. Since the switching power supply circuit 100 operates intermittently, the operation rate of the power supply control IC 114 per unit time can be reduced. As a result, the amount of heat generated by the electronic components constituting the switching power supply circuit 100 can be suppressed, and failure of the switching power supply circuit 100 can be prevented as compared with the switching power supply circuit 100 that does not include the stop circuit 130.
- the power supply control IC 114 does not output the PWM signal because the start voltage has not reached 16V. Since the switching element 110 is not performing a switching operation, the bias voltage VB is 0V. Since the bias voltage VB is 0V, the output voltage VS of the stop circuit 130 is 0V.
- the switching operation of the switching element 110 causes a current to flow from the auxiliary winding 123 of the transformer 120 through the rectifying element 118 to the capacitor 117, and the bias voltage VB increases.
- the output voltage Vout rises only to 4V.
- the bias voltage VB rises only to 14.4V. Since the bias voltage VB is less than 15V, the output voltage VS of the stop circuit 130 is 0V.
- the voltage VCC at the power supply terminal T1 reaches the stop voltage 10V.
- the constant voltage circuit described in Patent Document 1 and the stop circuit 130 of the present embodiment differ in the bias voltage VB at which the switching power supply circuit 100 stops.
- the condition for stopping the switching power supply circuit 100 is that the bias voltage VB is 9.5 V in the constant voltage circuit described in Patent Document 1, whereas the bias voltage VB is used in the stop circuit 130 of the present embodiment. Is 15V. Such a difference leads to the following differences.
- the switching power supply circuit 100 continues to perform the switching operation until the output is in a load short-circuit state or an overcurrent state and the bias voltage VB decreases from 18V to 10.5V.
- the switching power supply circuit 100 performs the switching operation only when the output is in a load short-circuit state or an overcurrent state and the bias voltage VB is decreased from 18V to 15V. Stop. As a result, the time during which the electronic components constituting the switching power supply circuit 100 are overloaded is shortened, and the failure due to heating can be prevented more than the switching power supply circuit 100 having the constant voltage circuit described in Patent Document 1. it can.
- a stop circuit 130 (configured by a resistor, a transistor, a diode, and a constant voltage diode) between the bias voltage VB and the power supply terminal of the power supply control IC 114, a load short circuit state or an overcurrent state is achieved.
- the bias voltage VB obtained by rectifying the auxiliary winding 123 also decreases in proportion to the decrease in the output voltage Vout, and the bias voltage VB reaches the set voltage of the stop circuit 130 (a constant voltage determined by the constant voltage diode).
- the output voltage VS of the stop circuit 130 becomes 0V.
- the supply of the bias voltage VB to the power supply terminal T1 of the power supply control IC 114 is stopped.
- the power supply control IC 114 stops the primary side switching operation. .
- the switching power supply circuit 100 can be stopped earlier than the bias voltage VB decreases to the stop voltage of the power supply control IC 114. If there is no stop circuit 130, it does not stop until the bias voltage VB reaches the stop voltage 10V, but if there is the stop circuit 130, the switching power supply circuit 100 stops when the bias voltage VB becomes 15V or less.
- FIG. 8 is a diagram illustrating the configuration of the stop circuit according to the second embodiment.
- the stop circuit 70 according to the second embodiment includes a rectifying element 135 in addition to the components of the stop circuit 130 according to the first embodiment. That is, the stop circuit 70 includes a PNP transistor 131, an adjustment resistor 133, a Zener diode 134, a voltage supply resistor 132, and a rectifier element (diode) 135.
- the PNP transistor 131 has an emitter E connected to the output of the rectifying element 118, a collector C connected to the anode of the diode 135, and a base B.
- the adjusting resistor 133 and the Zener diode are connected in series between the base B of the PNP transistor 131 and the ground.
- the voltage supply resistor 132 is disposed between the output of the rectifying element 118 and the base B of the PNP transistor 131.
- the anode of the diode 135 is connected to the collector C of the PNP transistor 131.
- the cathode of the diode 135 is connected to the power supply terminal T1 of the power supply control IC 114.
- the voltage applied to the NPN transistor 135 can be blocked when the PNP transistor 131 is off.
- the stop circuit 130 can be protected by adding the diode 135. Therefore, it is possible to prevent a failure of the switching power supply circuit even in a load short circuit state or an overcurrent state.
- FIG. 9 is a diagram illustrating the configuration of the stop circuit according to the third embodiment.
- the stop circuit 80 according to the third embodiment includes a resistor 136 in addition to the components of the stop circuit 70 according to the second embodiment. That is, the stop circuit 80 includes a PNP transistor 131, an adjustment resistor 133, a Zener diode 134, a voltage supply resistor 132, a rectifier element (diode) 135, and an adjustment resistor 136.
- the PNP transistor 131 has an emitter E connected to the output of the rectifying element 118, a collector C connected to one end of the adjustment resistor 136, and a base B.
- the adjusting resistor 133 and the Zener diode are connected in series between the base B of the PNP transistor 131 and the ground.
- the voltage supply resistor 132 is disposed between the output of the rectifying element 118 and the base B of the PNP transistor 131.
- One end of the adjustment resistor 136 is connected to the collector C of the PNP transistor 131, and one end of the adjustment resistor 136 is connected to the power supply terminal T1 of the power supply control IC 114.
- the anode of the diode 135 is connected to the other end of the adjustment resistor 136.
- the cathode of the diode 135 is connected to the power supply terminal T1 of the power supply control IC 114.
- the adjustment resistor 136 By adding the adjustment resistor 136, the current flowing between the collector and the emitter of the PNP transistor 131 can be adjusted when the PNP transistor 131 is on. This makes it possible to adjust the time during which the switching power supply circuit 100 operates when the switching power supply circuit 100 operates intermittently in a load short circuit state or an overcurrent state. As a result, the switching power supply circuit 100 can prevent abnormal overheating in the case of a load short circuit state or an overcurrent state, thereby preventing a failure.
- 60 photocoupler 100 switching power supply circuit, 101 commercial power supply, 102, 115, 118, 135 rectifier, 103, 112, 116, 117 capacitor, 104 load, 110 switching element, 111 current detection resistor, 113 start resistance, 114 power supply Control IC, 119 F / B circuit, 120 transformer, 121 primary winding, 122 secondary winding, 123 auxiliary winding, 70, 80, 130 stop circuit, 131 PNP transistor, 132, 302 voltage supply resistor, 133 , 136 adjustment resistor, 134,303 Zener diode, 200 power conversion circuit, 301 NPN transistor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
整流素子(118)は、補助巻線(123)に接続される。停止回路(130)は、整流素子(118)から出力されるバイアス電圧(VB)を受ける。停止回路(130)は、バイアス電圧(VB)が設定電圧未満のときには、電源制御IC(114)の電源端子への電力供給を停止する。電源制御IC(114)は、電流検出抵抗(111)で発生する電流検出電圧に基づいて、スイッチング素子(110)のスイッチング周期に対するオン時間の割合を制御する。電源制御IC(114)は、電源端子の電圧が停止電圧以下となったときに、スイッチング素子(110)のスイッチング動作を停止させる。
Description
本発明は、スイッチング電源回路に関する。
従来、スイッチング電源回路は、別途、過電流保護機能あるいはそれに準ずる回路が設けられない場合、その動作トポロジーによって過電流状態および負荷短絡時の特性が異なる。
例えば、フライバック方式では、一般的に「への字」特性(定電力制御電圧垂下型)と呼ばれる、過電流時に出力電流の増加に伴ってなだらかな出力電圧の低下が起こる。「へ」は、日本語の平仮名文字である。また、フォワード方式では、一般的に垂下特性とよばれる、過電流時に出力電流の増加に伴って出力電圧と出力電流の低下が起こる。
スイッチング電源回路が上記のような特性を有する場合、過電流時に半導体素子に過剰な負担が加わり、異常な過熱により破損することもある。そのため、スイッチング電源の基本回路(トポロジーとして必要な部品構成)に加えて、別途、過電流保護および負荷短絡保護のための保護回路を追加することがある。
また、このような保護回路を追加せずに、負荷短絡時および過電流時に、出力電圧が低下することに伴うバイアス電圧の低下を利用した間欠動作により、スイッチング電源回路の構成部品の異常な過熱を防ぐ方法がある。
スイッチング電源回路において、負荷短絡状態または過電流状態になると、一時的にトランスが伝達する電気エネルギーが急激に増加し、補助巻線に発生する電圧が本来の設計値よりも増加する場合もあるが、そのエネルギーの多くは補助巻線のコンデンサに吸収され、バイアス電圧が跳ね上がることは少ない。その後、負荷短絡状態または過電流状態を検出する回路の働きにより、1次側のスイッチ回路のスイッチング周期に対するオン時間の割合(以下、PWM(Pulse Width Modulation)信号のON-Dutyまたはデューティ比と呼称する)が減少し、2次側の出力電圧が低下するとともに、トランスの補助巻線から得られるバイアス電圧も低下する(動作1)。
バイアス電圧が電源制御ICの停止電圧にまで低下すると、電源制御ICが1次側スイッチ回路の動作を停止させる。その後、電源制御ICの電源端子に接続されたコンデンサが入力電圧から起動抵抗を介して充電され、電源制御ICの開始電圧に達したら、再び1次側スイッチ回路を動作させる(動作2)。
負荷短絡状態または過電流状態が継続されていると、上記の動作1と動作2を繰り返すことになり、スイッチング電源回路および接続される負荷が異常に加熱されることを防止する。
上記のような動作1と動作2を繰り返す動作は、間欠動作と呼ばれ、負荷短絡状態または過電流状態になった場合の保護動作として一般的なものである。このような間欠動作によって、負荷短絡状態または過電流状態になったスイッチング電源回路が異常に加熱されることを防止し安全性を向上させることができる。
また、スイッチング電源回路において、1次側スイッチ回路を駆動する信号を出力する電源制御ICの電源端子には、印加される電圧によってスイッチング動作を開始する電圧(例えば、開始電圧16V)、スイッチング動作を停止する電圧(例えば、停止電圧10V)、電源制御ICの破壊を防ぐために最大印加電圧(例えば、30V)が規定されている。よって、スイッチング電源回路には、電源制御ICの破壊を防ぐ目的で、トランスの補助巻線から出力されるバイアス電圧が一定の電圧以下になるように、定電圧回路(トランジスタ、抵抗器、ダイオード、定電圧ダイオードなど)が設けられる(たとえば、特開2015-173043号公報(特許文献1)、特開平7-213053号公報(特許文献2)を参照)。
特許文献1、2に記載された定電圧回路は、上昇したバイアス電圧を減少させて、電源制御IC(電源制御回路)の電源端子に供給することができる。
しかしながら、特許文献1に記載された定電圧回路は、下降したバイアス電圧を制御して、電源制御ICの電源端子に供給することできない。その結果、負荷短絡状態または過電流状態になった場合に、補助巻線から出力されて整流されたバイアス電圧が電源制御IC(電源制御回路)の停止電圧まで低下しないと、スイッチング電源回路が間欠動作にならずに、電子部品が過熱され、電源回路が故障する場合がある。
本発明は、交流電源に接続された第1の整流素子と、第1の整流素子によって整流された直流電圧を平滑する第1のコンデンサと、1次巻線と2次巻線と補助巻線とを有するトランスと、第1のコンデンサの一端と、1次巻線の一端の間のノードに接続された起動抵抗と、1次巻線に供給する第1のコンデンサからの直流電圧をスイッチングするスイッチング素子と、スイッチング素子を制御する電源制御回路と、一端が、起動抵抗と、電源制御回路の電源端子とに接続される第2のコンデンサと、1次巻線に流れる1次電流の大きさを検出する電流検出抵抗と、補助巻線に接続された第2の整流素子と、第2の整流素子から出力されるバイアス電圧を受けて、バイアス電圧が設定電圧以上のときには、バイアス電圧に基づく電圧を電源端子へ出力し、バイアス電圧が設定電圧未満のときには、電源端子への電力供給を停止する停止回路とを備える。電源制御回路は、電流検出抵抗で発生する電流検出電圧に基づいて、スイッチング素子のスイッチング周期に対するオン時間の割合を制御する。電源制御回路は、電源端子の電圧が停止電圧以下となったときに、スイッチング素子のスイッチング動作を停止させる。
本発明によれば、停止回路は、補助巻線から出力されて整流されたバイアス電圧が設定電圧未満のときには、電源端子への電力供給を停止し、電源制御回路は、電源端子の電圧が停止電圧以下となったときに、スイッチング素子のスイッチング動作を停止させる。これにより、バイアス電圧が電源制御回路の停止電圧まで低下しなくても、スイッチング素子のスイッチング動作を停止させることができる。
まず、背景技術の問題点について、より詳細に説明する。
スイッチング電源回路が負荷短絡状態または過電流状態になった場合に、トランスが一時的に伝達する電気エネルギー(正確には電気エネルギー→磁気エネルギー→電気エネルギーの変換が行われている)が増加するため、一時的に補助巻線に発生する両端電圧が増加する。両端電圧が増加すると、バイアス電圧が増加するが、増加する時間は、短時間であるため、コンデンサにより電気エネルギーが吸収されてしまうので、電源制御ICが破壊されるような電圧までバイアス電圧が上昇することはない。
スイッチング電源回路が負荷短絡状態または過電流状態になった場合に、トランスが一時的に伝達する電気エネルギー(正確には電気エネルギー→磁気エネルギー→電気エネルギーの変換が行われている)が増加するため、一時的に補助巻線に発生する両端電圧が増加する。両端電圧が増加すると、バイアス電圧が増加するが、増加する時間は、短時間であるため、コンデンサにより電気エネルギーが吸収されてしまうので、電源制御ICが破壊されるような電圧までバイアス電圧が上昇することはない。
さらに、特許文献1では、定電圧回路によって、電源制御ICに供給する電圧を減少させることができる。
例えば、設計上のバイアス電圧が18Vとし、定電圧回路を通過した後の電圧を15Vとする。負荷短絡状態または過電流状態によって一時的にバイアス電圧が上昇した場合(例えば、35V)においても、特許文献1に記載の定電圧回路によって、電源制御ICの電源端子電圧は15Vとなり、電源制御ICが破壊されるような破壊電圧30Vにまでは達しないようにすることができる。
その後、負荷短絡状態または過電流状態が継続すると、スイッチング電源回路において、1次側の電流検出回路が働くことにより、電源制御ICが1次側スイッチング動作のON-Dutyを小さくする制御を行う。これにより、バイアス電圧が低下する。その後、電源制御ICの電源端子が停止電圧(例えば、10V)以下になると、1次側スイッチング動作を停止する。
このような従来の間欠動作モードでは、起動抵抗からの充電電流と、バイアス電圧からの電流供給を受けながら、電源制御ICの電源端子電圧が開始電圧(例えば、16V)と停止電圧(例えば、10V)の間で、スイッチング電源回路が動作-停止を繰り返す。このような間欠動作モードでは、動作している期間に半導体素子を含めスイッチング電源回路の構成部品が発熱し、停止している期間に温度が下がることになる。そのため、スイッチング電源回路を構成する部品は、発熱と温度低下を繰り返すことになるが、温度低下よりも発熱の割合が多くなるので、徐々に温度が上昇し、やがて一定の温度で飽和状態になる。
従来の間欠動作モードでは、動作-停止の繰り返しサイクルの周期が、入力電圧と起動抵抗値に依存する充電電流と、電源制御ICの開始電圧と停止電圧の差の電圧(ヒステリシス電圧)と、電源制御ICの電源端子に接続されたコンデンサ容量値と、トランスの補助巻線から供給されるバイアス電圧とで決まる。
入力電圧と起動抵抗値により決まる充電電流(≒入力電圧÷起動抵抗値)は0.数mA~数mA程度である。スイッチング電源回路が動作している期間に充電される電圧値により決まるバイアス電圧から電源制御ICに供給される電流は数十mAである。電源制御ICが半導体素子の駆動に使う電流は数十mAである。したがって、補助巻線から生成されるバイアス電圧からの電流供給が無ければ、電源制御ICが半導体素子を駆動し続けることができない。
特許文献1に記載の定電圧回路は、ツェナーダイオードで設定した設定電圧(ツェナー電圧)よりもバイアス電圧が高い場合は定電圧値(=設定電圧-0.5V)を出力する。一方、ツェナーダイオードで設定した設定電圧よりもバイアス電圧の方が低い場合は、定電圧回路は、可変電圧値(=バイアス電圧-0.5V)を出力し、電源制御ICの電源端子へ印加する。負荷短絡状態または過電流状態であれば、PWM信号のON-Dutyが小さいため、補助巻線から供給されるバイアス電圧も低下する。そのため、電源制御ICの電源端子に接続されているコンデンサに充電されている電圧も徐々に低下していく。
しかしながら、電源制御ICの電源端子の電圧値(=電源端子に接続されたコンデンサの充電電圧)が電源制御ICの動作停止電圧に低下するまで、スイッチング電源回路は動作し続けてしまうという問題がある。
さらに、トランス内の巻線間の結合度合によっては、負荷短絡状態または過電流状態になった時にでも、補助巻線から供給されるバイアス電圧の低下量が小さく、電源制御ICの動作停止電圧を下回らずに、電源制御ICの動作停止電圧よりも高い電圧で保持されてしまい、間欠動作に入らない場合がある。このような状態では、スイッチング電源回路が動作し続けるため、温度がより高く上がり続けるため、スイッチング電源回路が故障する場合がある。
以下、本発明の実施の形態について、図面を用いて説明する。
実施の形態1.
図1は、実施の形態1におけるスイッチング電源回路100と、商用電源101と、負荷104の構成を示す図である。
実施の形態1.
図1は、実施の形態1におけるスイッチング電源回路100と、商用電源101と、負荷104の構成を示す図である。
商用電源101は、たとえば、交流商用電源である。あるいは、商用電源101は、前段に電源回路を有する直流電圧源、またはバッテリーまたは電池などを用いた直流電圧源でもよい。スイッチング電源回路100は、商用電源101から交流電圧を受け、負荷104へ出力電圧を供給する。負荷104は、スイッチング電源回路100の出力に接続され、スイッチング電源回路100からの電力によって動作する。
スイッチング電源回路100は、整流素子102、コンデンサ103、および電力変換回路200を備える。スイッチング電源回路100は、たとえば、絶縁型のフライバックコンバータである。
整流素子102は、商用電源101に接続され、商用電源101から供給される交流電圧を整流して直流(脈流)に変換する。整流素子102は、ダイオードブリッジによって構成される。
コンデンサ103は、整流素子102が整流した直流(脈流)を充電することによって、脈流を平滑化して、直流電圧Vinを蓄電する。
電力変換回路200は、コンデンサ103が蓄電する直流電圧Vin(直流または直流に脈流が重畳したもの、入力電圧ともいう)を絶縁した状態で所望の直流の出力電圧Voutに電力変換する。
このように、スイッチング電源回路100は、商用電源101から入力された交流電圧を直流電圧Vinに変換し、負荷104へ所望の電力(出力電圧Vout×出力電流Iout)を供給する。
よって、交流の商用電源101から負荷104へ所望の電力(設計上の最大電力)を供給する場合には、整流素子102、コンデンサ103、および電力変換回路200が必要となる。一方、直流電源から負荷104へ所望の電力(設計上の最大電力)を供給する場合には、電力変換回路200のみが必要となる。
従って、スイッチング電源回路100と電力変換回路200の取り扱う、設計上の最大電力は同じ電力値となる。
ここで、出力電流Ioutとは、電力変換回路200及びスイッチング電源回路100が設計上、出力可能な電流値IoutR以下の値とする。過電流状態とは、電力変換回路200及びスイッチング電源回路100において設計上の出力可能な電流値IoutRを超えた電流を出力する状態、言い換えれば、負荷104が設計上の出力可能な電流値IoutR以上の電流を流そうとする状態のことである。
例えば、電力変換回路200及びスイッチング電源回路100の設計上の電力値が最大電力50Wとし、出力電圧Voutが5Vとすると、出力電流Ioutは、0~10Aまでの範囲とする。出力電流Ioutが10A(=IoutR)を超えると、過電流状態とする。例えば、設計上の出力電流Iout(=5A)の定格電流値を100%とすると、定格電流値の10A以上の場合は過電流状態といえる。
負荷短絡状態とは、電力変換回路200およびスイッチング電源回路100の出力端子以降の回路または配線、負荷104などにおいて短絡(電気的にショート)している状態のことである。この場合、短絡(負荷側のインピーダンスが不定状態なので)しているので出力電流Ioutが定格電流の何倍流れるかはわからない。
出力電圧の過電圧(例えば、5Vが6Vや20Vになる等)は、F/B回路119が故障しない限り、通常は起こりえないので、本実施の形態においては説明を省略する。
また、出力電圧Voutが設計上の出力電圧VoutR(=5V)よりも低くなる状態、つまり、1次側からの電力供給が制限されて出力電圧の低下が発生している状態を出力電圧Voutの低下と呼ぶことにする。
出力電圧Voutの低下は、電力変換回路200およびスイッチング電源回路100において設計上の最大電力以上の出力電力を取り出せないので、1次側から供給される電力でフライバック電源回路の仕組みで起こる出力電圧の低下、いわゆる、「への字」特性として現れる。
「への字」特性は、例えば、定格電力50Wつまり出力が5V/10Aから更に電流を取り出す、つまり、過電流状態になると、出力が4.0V/12.5A、2.5V/20Aとなるように、なだらかに出力電流の増加に伴い、出力電圧が低下する特性である。「への字」特性は、正確に制御できる特性ではなく、フライバック電源回路の仕組みによるものである。
図2は、定格電力100%以上で「への字」特性を示す出力電流-出力電圧特性を表わす図である。「への字」特性では、定格電力時の出力電流よりも多くの出力電流を出力しないと出力電圧の低下が始まらないという特性を有する。
図3は、図1の電力変換回路200の詳細な回路構成を表わす図である。
電力変換回路200は、コンデンサ103が平滑し、蓄電する直流電圧Vin(直流または直流に脈流が重畳したもの)を出力電圧Voutに変換する。
電力変換回路200は、コンデンサ103が平滑し、蓄電する直流電圧Vin(直流または直流に脈流が重畳したもの)を出力電圧Voutに変換する。
電力変換回路200は、スイッチング素子110、電流検出抵抗111、電源制御IC114、トランス120、整流素子115、コンデンサ116、F/B回路119、停止回路130、トランス120、コンデンサ112、コンデンサ117、および整流素子118とを備える。
トランス120は、1次巻線121、2次巻線122、および補助巻線123を有する。1次巻線121と2次巻線122、1次巻線121と補助巻線123は磁気結合されているが、電気的には絶縁されている。従って、トランス120は、絶縁型のスイッチング電源回路100において1次側(商用電源側、入力側)と2次側(絶縁される側、出力側)を絶縁する役割を有する。
1次側を構成する部品として、整流素子102、コンデンサ103、起動抵抗113、スイッチング素子110、電流検出抵抗111、コンデンサ112、電源制御IC114、1次巻線121、補助巻線123、整流素子118、コンデンサ117、停止回路130が備えられる。2次側を構成する部品として、2次巻線122、整流素子115、コンデンサ116、およびF/B回路119が備えられる。
スイッチング素子110は、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)で構成される。整流素子102,115,118は、ダイオードで構成される。
起動抵抗113は、コンデンサ103の一端と、1次巻線121の一端の間のノードND1に接続される。
スイッチング素子110は、1次巻線121に供給するコンデンサ103からの直流電圧Vinをスイッチングする。
電源制御IC114は、スイッチング素子110を制御する。
コンデンサ112の一端が、起動抵抗113と、電源制御IC114の電源端子T1とに接続される。
コンデンサ112の一端が、起動抵抗113と、電源制御IC114の電源端子T1とに接続される。
電流検出抵抗111は、スイッチング素子110に接続される。電流検出抵抗111は、1次巻線121に流れる1次電流I1の大きさを検出する。
整流素子118は、補助巻線123に接続される。
整流素子115は、2次巻線122に接続される。
整流素子115は、2次巻線122に接続される。
コンデンサ116は、整流素子115に接続されて、出力電圧を平滑する。
F/B回路119は、コンデンサ116が平滑する出力電圧と所望の一定の電圧との大小関係を表わす信号を出力する。
F/B回路119は、コンデンサ116が平滑する出力電圧と所望の一定の電圧との大小関係を表わす信号を出力する。
電源制御IC114は、電流検出抵抗111で発生する電流検出電圧、およびF/B回路119からの信号に基づいて、スイッチング素子110のスイッチング周期に対するオン時間の割合を制御する。
停止回路130は、整流素子118から出力されるバイアス電圧VBを受けて、バイアス電圧VBが設定電圧以上のときには、バイアス電圧VBに基づく電圧を電源制御IC114の電源端子T1へ出力し、バイアス電圧VBが設定電圧未満のときには、電源制御ICの電源端子T1への電力供給を停止する。
電源制御IC114は、電源制御IC114の電源端子T1の電圧が停止電圧以下となったときに、スイッチング素子110のスイッチング動作を停止させる。
本実施の形態の電力変換回路200は、停止回路130を備えるが、特許文献1の電力変換回路は、停止回路130の代わりに、定電圧回路を備える。まず、この定電圧回路の動作を説明する。
図4は、特許文献1に記載されている定電圧回路を表わす図である。
この定電圧回路は、NPNトランジスタ301、電圧供給用抵抗302、およびツェナーダイオード(低電圧ダイオード)303によって構成される。
この定電圧回路は、NPNトランジスタ301、電圧供給用抵抗302、およびツェナーダイオード(低電圧ダイオード)303によって構成される。
ツェナーダイオード303は、定電圧ダイオードであり、ある一定の電圧(これを設定電圧、またはツェナー電圧という)が印加されると、電流が流れ出す素子である。
ツェナーダイオード303の設定電圧を15Vとし、NPNトランジスタ301のコレクタ・エミッタ間電圧VCEを0.5Vとする。
バイアス電圧VBが15V以上の場合、ツェナーダイオード303がオンし、NPNトランジスタ301がオン状態になる。定電圧回路の出力電圧は、ツェナーダイオード303の設定電圧15VからNPNトランジスタ301のベース・エミッタ間電圧VBE(=0.5V)を引いた電圧である15V-0.5V=14.5Vとなる。
バイアス電圧VBが15V未満(例えば、14.4V)の場合、ツェナーダイオード303はオンしないが、バイアス電圧VBが電圧供給用抵抗302を介してNPNトランジスタ301のベースBへ供給されるのでNPNトランジスタ301がオン状態になる。定電圧回路の出力電圧は、14.4Vから電圧VBE(=0.5V)を引いた電圧である14.4V-0.5V=13.9Vとなる。
上記のように、ツェナーダイオード303で決まる設定電圧は、定電圧回路の出力電圧の上限値を制限するが、下限を制御しないことがわかる。
図5は、図3に含まれる停止回路130の構成の一例を表わす図である。
停止回路130は、PNPトランジスタ131、電圧供給用抵抗132、調整用抵抗133、およびツェナーダイオード134を備える。
停止回路130は、PNPトランジスタ131、電圧供給用抵抗132、調整用抵抗133、およびツェナーダイオード134を備える。
PNPトランジスタ131は、整流素子118の出力と接続されるエミッタEと、電源制御IC114の電源端子T1に接続されるコレクタCと、ベースBとを有する。
調整用抵抗133およびツェナーダイオードは、PNPトランジスタ131のベースBとグランドとの間に直列に接続される。
電圧供給用抵抗132は、整流素子118の出力とPNPトランジスタ131のベースBとの間に配置される。
定電圧回路と同様に、ツェナーダイオード134の設定電圧(ツェナー電圧)を15Vとし、PNPトランジスタ131の電圧VCEを0.5Vとする。
電圧供給用抵抗132は、コンデンサ117に充電されたバイアス電圧VBをPNPトランジスタ131のベースBへ供給する。調整用抵抗133は、ツェナーダイオード134に流れる電流を調整するための抵抗器である。
バイアス電圧VBが15V(設定電圧)以上の場合、ツェナーダイオード134がオンし、それによって、PNPトランジスタ131がオンし、PNPトランジスタ131のコレクタCへ(バイアス電圧VB-VCB電圧)が出力される。
バイアス電圧VBが15V(設定電圧)未満の場合、ツェナーダイオード134がオンせず、PNPトランジスタ131もオフとなる。したがって、PNPトランジスタ131のコレクタCに電圧が出力されない。つまり、ツェナーダイオード303で決まる設定電圧は、停止回路130の出力電圧の上限値を制御しないが、下限値を制限する。
PNPトランジスタ131がオンすると、コンデンサ112は、バイアス電圧VBにより充電されるが、PNPトランジスタ131がオフするとコンデンサ112は、バイアス電圧VBでは充電されない。
一方、停止回路130の動作に係らず、コンデンサ103に蓄電する直流電圧Vinから起動抵抗113を経由してコンデンサ112は充電される。しかし、起動抵抗113経由の充電電流は、バイアス電圧VBからの充電電流よりもはるかに小さい。したがって、起動抵抗113経由の充電電流のみでは、電源制御IC114がスイッチング素子110を駆動し続けることはできない。
電源制御IC114は、電源端子T1の電圧VCCが開始電圧16VになるとPWM信号をスイッチング素子110へ出力し、停止電圧10VになるとPWM信号の出力を停止する。つまり、スイッチング電源回路100がスイッチング動作を継続して、所望の出力電圧を出力し続ける場合には、以下の処理が継続されていることになる。
コンデンサ103に蓄電する直流電圧Vinによって、起動抵抗113経由でコンデンサ112が充電され、電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達する。これにより、電源制御IC114がPWM信号を出力し、PWM信号によりスイッチング素子110がスイッチング動作する。トランス120が1次巻線121と2次巻線122・補助巻線123の間で、電磁エネルギーの伝達を行い、補助巻線123に発生した電圧を整流素子118で整流し、コンデンサ117に充電してバイアス電圧VBを生成する。電源制御IC114の電源端子T1の電圧VCCが停止電圧10Vまで低下するよりも先にバイアス電圧VBから停止回路130経由で電源制御IC114の電源端子T1に接続されたコンデンサ112を充電し、電源制御IC114の電源端子T1の電圧VCCを10V以上に保持し続ける。
(最大電力以内での動作)
ここからは、例えば、電力変換回路200が、設計上の最大電力50W以内で、かつ正常な動作をしている場合の説明を行う。
ここからは、例えば、電力変換回路200が、設計上の最大電力50W以内で、かつ正常な動作をしている場合の説明を行う。
図3を参照して、商用電源101から供給される交流電圧は整流素子102を通ることによって直流(脈流)に変換される。コンデンサ103は、整流素子102を通った直流(脈流)を平滑して蓄電する直流電圧Vin(直流または直流に脈流が重畳したもの)を生成し、蓄電する。
スイッチング素子110は、電源制御IC114から送られるPWM信号に基づいてスイッチング動作をする。設計上のスイッチング周波数は100kHzとする。
交流の商用電源101から整流素子102を通り、直流(脈流)となったコンデンサ103に蓄電された直流電圧Vinは、起動抵抗113を介して、電源制御IC114の電源端子T1に接続されたコンデンサ112を充電する。やがて、電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達すると、電源制御IC114は、スイッチング素子110へゲート端子を駆動するためのPWM信号を周波数100KHzで送る。ここで、PWM信号は、目標となる定電圧になるように状況に応じてパルス幅を変化させることのできる信号(100kHzの周期、10usec毎にオンの割合だけを変化させる信号)である。
コンデンサ103に蓄電された直流電圧Vinは、トランス120の1次巻線121の片側に印加される。スイッチング素子110がPWM信号により駆動されると、スイッチング素子110は、オン状態となる。その結果、1次巻線121に1次電流I1が流れる。1次電流I1は、電流検出抵抗111を経由してコンデンサ103へ戻る。この時、電流検出抵抗111には、1次電流I1が流れることにより電圧(以後、電流検出電圧Vi1と呼称する)が発生する。この電流検出電圧Vi1は、電源制御IC114へ送られる。
トランス120は、1次巻線121に1次電流I1が流れることにより内部に磁気エネルギーを蓄積する。その後、電源制御IC114からのPWM信号がオフ、つまりスイッチング素子110がオフ状態になると、トランス120の内部に蓄積した磁気エネルギーが2次巻線122へ2次電流I2として伝達される。
2次電流I2は、整流素子115を介してコンデンサ116を充電する。このようにスイッチング素子110がPWM信号を受けてオン/オフを繰り返すことによって、1次巻線121から2次巻線122へ電力の伝達が行われる。
コンデンサ116に充電された電圧は徐々に上昇していき、出力電圧Voutは、やがて所望の出力電圧VoutRへ到達する。
F/B回路119は、出力電圧Voutを検出する。F/B回路119は、出力電圧Voutが、目標の出力電圧VoutRになるようにスイッチング素子110へ与えられるPWM信号のオン幅(デューティ比)を制御するためのF/B信号をファトカプラ60を介して、電源制御IC114へ送る。
例えば、所望の出力電圧VoutRが5Vの場合、現在の出力電圧Voutが4.9Vのときには、F/B回路119は、電源制御IC114へPWM信号のオン幅を広げる((デューティ比を大きくする)ように、出力電圧Voutが所望の出力電圧Voutよりも小さいことを表わすF/B信号を送る。F/B回路119は、現在の出力電圧Voutが5.1Vのときには、電源制御IC114へPWM信号のオン幅を狭める(デューティ比を小さくする)ように、出力電圧Voutが所望の出力電Voutよりも大きいことを表わすF/B信号を送る。
このように出力電圧VoutがVoutR(=5.0V)になるようにスイッチング素子110の駆動するPWM信号の幅を制御することによって、出力電圧Voutを一定に保つ。
電源制御IC114は、F/B回路119から送られてきたF/B信号に基づいて、PWM信号のオン幅(デューティ比)を増減させて、出力電圧Voutが目標の出力電圧VoutRになるようにスイッチング素子110を駆動する。
以上の処理によって、電力変換回路200は、設計上の電力値(VoutR×Iout)以内であれば、出力電圧Voutから流出する電流値Ioutを、目標の電圧値の状態を保持したまま、負荷104へ供給することができる。
出力電圧Voutが所望の電圧VoutR(=5V)の場合には、補助巻線123には設計した電圧が発生し、コンデンサ117に所望の大きさのバイアス電圧VB(=18V)が充電される。
このバイアス電圧VBをトランス120の補助巻線123から供給する時、トランス120の巻線構造に依存してバイアス電圧が変動する。トランス120の結合度が高い(巻線間の結合が良い)場合は、過電流または負荷短絡による出力電圧の低下に伴いバイアス電圧VBが低下する。一方、トランス120の結合度が低い(巻線間の結合が悪い)場合は、過電流または負荷短絡により出力電圧が低下してもあまりバイアス電圧VBが低下しない。本実施の形態は、過電流または負荷短絡によって出力電圧Voutが低下した場合に、追従してバイアス電圧VBも低下することを前提とする。つまり、トランス120の結合度が高い状態を前提とする。
トランス120は、1次巻線121、2次巻線122、補助巻線123とを備える。トランス120は、フライバックトランスであるため、1次巻線121に電流を流すことで磁気エネルギーを溜めて、1次巻線121に電流を流し終わった後に、溜まった磁気エネルギーを2次巻線122、補助巻線123に電流として放出する。
この時、2次巻線122に発生する電圧と、補助巻線123に発生する電圧は、2次巻線122と補助巻線123の巻線数に比例する。つまり、2次巻線122の出力を5V設計(ダイオードの順方向電圧分電圧降下を加味した電圧)、補助巻線123の出力を18V設計(ダイオードの順方向電圧分電圧降下を加味した電圧)とすると、出力電圧Voutが5Vの時に、バイアス電圧VBが18Vになる。
停止回路130に、バイアス電圧18Vが入力されると、PNPトランジスタ131のベースBに調整用抵抗133を介して接続されたツェナーダイオード134の設定電圧(=15V)を超えるため、ベースBに電流が流れ、PNPトランジスタ131のコレクタC-エミッタE間に電流が流れる。これによって、電源制御IC114の電源端子T1に接続されたコンデンサ112が充電されて、バイアス電圧VBに近い電圧が電源端子T1に印加される。厳密には、バイアス電圧VBからPNPトランジスタ131のコレクタ・エミッタ間電圧VCEの分だけ降下した電圧が、電源端子T1に印加される。本実施の形態の説明においては、便宜上、電圧VCEの電圧降下は、省略して説明する。
設計上の電力値(=50W)以内であれば、負荷104が変動し出力電流Ioutが変化してもF/B回路119からのF/B信号により電源制御IC114がPWM信号の幅を制御して、出力電圧Voutが一定の電圧値になるように1次側から2次側へ伝達する電力を制御するので、出力電圧Voutは一定の電圧値に保たれる。
図6は、実施の形態1のスイッチング電源回路を用いたときの、設計上の電力値(=50W)以内でスイッチング電源回路100を動作させた場合の各電圧波形を表わす図である。図6において、横軸が時間経過、縦軸が電圧を表わす。
(1)時刻t0~t1
商用電源101から供給される交流電圧は整流素子102を通ることによって直流(脈流)に変換される。コンデンサ103は、整流素子102を通った直流(脈流)を平滑して直流電圧Vinを生成し、蓄電する。直流電圧Vinは、時間とともに徐々に上昇する。直流電圧Vinの上昇に伴い、起動抵抗113経由で充電電流がコンデンサ112に流れ、電源制御IC114の電源端子T1の電圧VCCが徐々に上昇する。電圧VCCは、まだ開始電圧16Vに達していない。
商用電源101から供給される交流電圧は整流素子102を通ることによって直流(脈流)に変換される。コンデンサ103は、整流素子102を通った直流(脈流)を平滑して直流電圧Vinを生成し、蓄電する。直流電圧Vinは、時間とともに徐々に上昇する。直流電圧Vinの上昇に伴い、起動抵抗113経由で充電電流がコンデンサ112に流れ、電源制御IC114の電源端子T1の電圧VCCが徐々に上昇する。電圧VCCは、まだ開始電圧16Vに達していない。
電源制御IC114は、電圧VCCが開始電圧16Vに達していないため、PWM信号を出力しない。スイッチング素子110は、スイッチング動作していないため、バイアス電圧VBは0Vである。バイアス電圧VBが0Vであるため、停止回路130の出力は0Vである。
(2)時刻t1~t2
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達するので、電源制御IC114は、PWM信号を出力し、スイッチング素子110を駆動する。電源制御IC114がPWM信号を出力し始めると、起動抵抗113からの充電電流の大きさは、PWM信号を出力するための消費電流の大きさよりもはるかに小さいため、電源端子T1の電圧VCCは低下していく。
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達するので、電源制御IC114は、PWM信号を出力し、スイッチング素子110を駆動する。電源制御IC114がPWM信号を出力し始めると、起動抵抗113からの充電電流の大きさは、PWM信号を出力するための消費電流の大きさよりもはるかに小さいため、電源端子T1の電圧VCCは低下していく。
PWM信号が出力されるとスイッチング素子110のスイッチング動作により、トランス120の補助巻線123から整流素子118を通って、コンデンサ117に電流が流れ、バイアス電圧VBが上昇する。バイアス電圧VBが15V未満のときには、停止回路130から出力される電圧VSは、0Vであり、バイアス電圧VBが15V以上になれば、停止回路130から出力される電圧VSは、バイアス電圧VBと同じ大きさとなる。
(3)時刻t2~t3
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、停止回路130からの電力供給が始まるので、上昇に転じる。電源制御IC114は、電圧VCCが停止電圧(=10V)を下回らないので、PWM信号の出力を維持する。バイアス電圧VBはさらに上昇し、設計値の18Vに達する。バイアス電圧VBの上昇に伴い、停止回路130の出力電圧VSも上昇し、18Vに達する。
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、停止回路130からの電力供給が始まるので、上昇に転じる。電源制御IC114は、電圧VCCが停止電圧(=10V)を下回らないので、PWM信号の出力を維持する。バイアス電圧VBはさらに上昇し、設計値の18Vに達する。バイアス電圧VBの上昇に伴い、停止回路130の出力電圧VSも上昇し、18Vに達する。
(4)時刻t3~t10
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、停止回路130の出力電圧VS(=18V)で維持される。電源制御IC114は、PWM信号の出力を維持する。その結果、バイアス電圧VBが18Vで維持され、停止回路130の出力電圧VSも18Vで維持される。
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、停止回路130の出力電圧VS(=18V)で維持される。電源制御IC114は、PWM信号の出力を維持する。その結果、バイアス電圧VBが18Vで維持され、停止回路130の出力電圧VSも18Vで維持される。
(最大電力を超える場合の動作)
次に、電力変換回路200の設計上の最大電力(=50W)を超えて負荷104が電流を消費しようとする場合の動作を説明する。つまり、過電流状態、または過電流状態よりも多くの電流が流れる負荷短絡状態を想定する。
次に、電力変換回路200の設計上の最大電力(=50W)を超えて負荷104が電流を消費しようとする場合の動作を説明する。つまり、過電流状態、または過電流状態よりも多くの電流が流れる負荷短絡状態を想定する。
例えば、出力電流Ioutが10A以上の過電流状態(例えば、11A)になったとする。この場合、電力変換回路200の出力電力は、出力電圧Vout×出力電流Ioutが5A×11A=55Wとなり、設計上の最大電力50Wを超える電力を供給しなくてはならない。そのためには、最大電力50Wを電力変換する時の1次電流I1を超える電流を1次側回路に流す必要がある。その際、電流検出抵抗111には、最大電力50Wの時よりも大きな電流検出電圧Vi1が発生する。
電流検出抵抗111に発生する電流検出電圧Vi1が電源制御IC114の規定値よりも大きくなると、電流検出抵抗111に流れる1次電流を削減するように、電源制御IC114は、PWM信号のON-Dutyを小さくする。これにより、1次電流が制限される。1次電流が制限されると、1次側から供給される電力が概ね50Wで制限されることにより、所望の出力電圧VoutR(=5V)を維持できなくなる。
以上のように、出力電流Ioutを10Aより大きくしていくと、出力電圧Voutが所望の電圧VoutR(=5V)よりも低くなる。たとえば、スイッチング電源回路100の出力電圧Voutが4Vに低下すれば、トランス120の巻数比に比例するので、バイアス電圧VBは14.4Vまで低下する。
特許文献1では、バイアス電圧VBがツェナーダイオードで決まる設定電圧15V以上の場合に、定電圧回路は、電源制御IC114へ入力する電圧を制限する機能を有するが、バイアス電圧VBが設定電圧15V未満の場合は、NPNトランジスタ301の電圧VBE分の電圧降下分(=0.5V)を差し引いた電圧(=14.4V-0.5V=13.9V)を電源制御IC114の電源端子T1に供給する。
電源制御IC114の電源端子T1の電圧VCCが13.9Vであれば、停止電圧10Vよりも大きいので、スイッチング電源回路100は動作し続けるので、間欠動作に入らない。よって、スイッチング電源回路100のスイッチング動作は継続される。その結果、スイッチング電源回路100を構成する電子部品は、過負荷状態で連続動作し続けることになり、過熱されていくことで、電子部品が故障する。
つまり、出力電圧Voutが5Vから4Vになる負荷短絡状態または過電流状態では、電源制御ICの電源端子T1に13.9Vが印加され続けるため、スイッチング電源回路100のスイッチング動作は継続される。よって、スイッチング電源回路100を構成する電子部品は、過負荷状態で連続動作し続けることになり、過熱されていくことで、故障する。
これに対して、本実施の形態の停止回路130の場合には、出力電圧Voutが5Vから4Vになる負荷短絡状態または過電流状態になることによって、バイアス電圧VBが18Vから14.4Vに低下すると、バイアス電圧VBがツェナーダイオード134の設定電圧(=15V)未満となる。この場合、PNPトランジスタ131がオフとなり、PNPトランジスタ131のコレクタCにバイアス電圧VBが出力されない。バイアス電圧VBから電流の供給を受けられない電源制御IC114の電源端子T1の電圧VCCは急速に低下し、電源制御IC114の停止電圧10Vを下回るため、スイッチング電源回路100はスイッチング動作を止める。
その後、コンデンサ103に蓄電された直流電圧Vinから起動抵抗113を介して、コンデンサ117を充電する。電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達すると、再び電源制御IC114からスイッチング素子110を駆動するためのPWM信号が出力される。PWM信号が出力されるとスイッチング動作が再開されるが、負荷短絡状態または過電流状態であるため、すぐにPWM信号のON-Dutyが小さくなり、出力電圧Voutが所望の電圧VoutRにまで上がらずに、バイアス電圧VBも所望の電圧にまで上がらないため、やがて電源制御IC114の電源端子T1の電圧VCCが停止電圧10Vを下回る。その結果、スイッチング電源回路100は、再び、スイッチング動作を停止する。
起動抵抗からの充電電流は、バイアス電圧からの供給電流よりもはるかに小さいため、起動抵抗113からの充電電流だけでは、電源制御IC114の電源端子の電圧を保持できないので、一度、開始電圧まで上昇しても、再び停止電圧まで低下してしまう。
上記のようなスイッチング動作の停止および再開が繰り返される間欠動作が行われることになる。
よって、負荷短絡状態や過電流状態になった場合において、特許文献1の定電圧回路を搭載したスイッチング電源回路100が連続動作し続けるのに比べて、本実施の形態の停止回路130を搭載したスイッチング電源回路100は間欠動作となるため、単位時間あたりの電源制御IC114の動作割合を少なくさせることができる。その結果、スイッチング電源回路100を構成する電子部品の発熱量を抑えることができるとともに、停止回路130を搭載しないスイッチング電源回路100に比べて、スイッチング電源回路100の故障を防止できる。
図7は、実施の形態1のスイッチング電源回路を用いたときの、設計上の電力値(=50W)以上で、スイッチング電源回路100を負荷短絡状態や過電流状態で動作させた場合の各電圧波形を表わす図である。横軸を時間経過、縦軸を電圧とする。
(1)時刻t0~t1
商用電源101から供給される交流電圧は整流素子102を通ることによって直流(脈流)に変換される。コンデンサ103は、整流素子102を通った直流(脈流)を平滑して直流電圧Vinを生成し、蓄電する。直流電圧Vinは、時間とともに徐々に上昇する。直流電圧Vinの上昇に伴い、起動抵抗113経由で充電電流がコンデンサ112に流れ、電源制御IC114の電源端子T1の電圧VCCが徐々に上昇する。電圧VCCは、まだ開始電圧16Vに達していない。
商用電源101から供給される交流電圧は整流素子102を通ることによって直流(脈流)に変換される。コンデンサ103は、整流素子102を通った直流(脈流)を平滑して直流電圧Vinを生成し、蓄電する。直流電圧Vinは、時間とともに徐々に上昇する。直流電圧Vinの上昇に伴い、起動抵抗113経由で充電電流がコンデンサ112に流れ、電源制御IC114の電源端子T1の電圧VCCが徐々に上昇する。電圧VCCは、まだ開始電圧16Vに達していない。
電源制御IC114は、開始電圧16Vに達していないため、PWM信号を出力しない。スイッチング素子110は、スイッチング動作していないため、バイアス電圧VBは0Vである。バイアス電圧VBが0Vであるため、停止回路130の出力電圧VSは0Vである。
(2)時刻t1~t2
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達するので、電源制御IC114は、PWM信号を出力し、スイッチング素子110を駆動する。電源制御IC114が、PWM信号を出力し始めると、起動抵抗113からの充電電流の大きさは、PWM信号を出力するための消費電流の大きさよりもはるかに小さいため、電圧VCCが低下していく。
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCが開始電圧16Vに達するので、電源制御IC114は、PWM信号を出力し、スイッチング素子110を駆動する。電源制御IC114が、PWM信号を出力し始めると、起動抵抗113からの充電電流の大きさは、PWM信号を出力するための消費電流の大きさよりもはるかに小さいため、電圧VCCが低下していく。
PWM信号が出力されるとスイッチング素子110のスイッチング動作により、トランス120の補助巻線123から整流素子118を通って、コンデンサ117に電流が流れ、バイアス電圧VBが上昇する。しかし、負荷短絡状態であるため、出力電圧Voutが4Vまでしか上昇しない。そのため、バイアス電圧VBが14.4Vまでしか上昇しない。バイアス電圧VBが15V未満であるため、停止回路130の出力電圧VSは、0Vである。時刻t2の時点で、電源端子T1の電圧VCCは、停止電圧10Vに達する。
(3)時刻t2~t3
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、起動抵抗113経由で充電され、再び上昇する。電圧VCCは、開始電圧16Vに達していないため、PWM信号を出力しない。スイッチング素子110は、スイッチング動作していないため、バイアス電圧VBは0Vのままである。バイアス電圧VBが0Vであるため、停止回路130の出力電圧VSは0Vである。時刻t3の時点で、電源端子T1の電圧VCCは、開始電圧16Vに達する。
コンデンサ103で蓄電される電圧Vinが一定値を維持する。電源制御IC114の電源端子T1の電圧VCCは、起動抵抗113経由で充電され、再び上昇する。電圧VCCは、開始電圧16Vに達していないため、PWM信号を出力しない。スイッチング素子110は、スイッチング動作していないため、バイアス電圧VBは0Vのままである。バイアス電圧VBが0Vであるため、停止回路130の出力電圧VSは0Vである。時刻t3の時点で、電源端子T1の電圧VCCは、開始電圧16Vに達する。
以降は、時刻t1~t2のスイッチン動作と時刻t2~t3のスイッチング動作の停止とを繰り返す間欠動作となる。
次に、出力電圧Voutが5Vから2.5Vになる程度の負荷短絡状態または過電流状態になった場合を考える。この場合、バイアス電圧VBは18Vから9Vに低下するので、特許文献1に記載の定電圧回路の出力電圧は、8.5V(=9V-0.5V)であるのに対して、本実施の形態の停止回路130の出力電圧VSが0Vとなり、どちらの回路も電源制御ICの停止電圧(=10V)を下回るので、間欠動作に入る。
但し、特許文献1に記載の定電圧回路と本実施の停止回路130とでは、スイッチング電源回路100が停止するバイアス電圧VBが異なる。スイッチング電源回路100が停止するための条件は、特許文献1に記載の定電圧回路では、バイアス電圧VBが9.5Vであるのに対して、本実施の形態の停止回路130では、バイアス電圧VBが15Vである。このような相違は、以下の相違につながる。
特許文献1に記載の定電圧回路の場合は、出力が負荷短絡状態または過電流状態になり、バイアス電圧VBが18Vから10.5Vに低下するまでスイッチング電源回路100がスイッチング動作し続ける。これに対して、本実施の形態の停止回路130の場合は、出力が負荷短絡状態または過電流状態になり、バイアス電圧VBが18Vから15Vに低下しただけで、スイッチング電源回路100がスイッチング動作を停止する。これにより、スイッチング電源回路100を構成する電子部品が過負荷にさられる時間が短くなり、特許文献1に記載される定電圧回路を搭載するスイッチング電源回路100よりも、加熱による故障を防ぐことができる。
本実施の形態では、バイアス電圧VBと電源制御IC114の電源端子の間に停止回路130(抵抗器、トランジスタ、ダイオード、定電圧ダイオードにより構成)を接続することによって、負荷短絡状態または過電流状態の場合に、出力電圧Voutの低下に比例して補助巻線123を整流して得られるバイアス電圧VBも低下し、バイアス電圧VBが停止回路130の設定電圧(定電圧ダイオードで決まる一定の電圧)まで低下した時点で、停止回路130の出力電圧VSが0Vになる。これにより、電源制御IC114の電源端子T1へのバイアス電圧VBの供給が停止する。
バイアス電圧VBからの電力供給が得られなくなった電源制御IC114の電源端子T1の電圧VCCが急激に低下し、電源制御IC114の停止電圧を下回ると、電源制御IC114が1次側スイッチング動作を停止する。これにより、バイアス電圧VBが、電源制御IC114の停止電圧まで低下するよりも早くスイッチング電源回路100を停止させることができる。停止回路130が無ければ、バイアス電圧VBが停止電圧10Vになるまで止まらないが、停止回路130があれば、バイアス電圧VBが15V以下になった時点で、スイッチング電源回路100が停止する。
実施の形態2.
図8は、実施の形態2の停止回路の構成を表わす図である。
図8は、実施の形態2の停止回路の構成を表わす図である。
実施の形態2の停止回路70は、実施の形態1の停止回路130の構成要素に加えて、整流素子135を備える。すなわち、この停止回路70は、PNPトランジスタ131と、調整用抵抗133と、ツェナーダイオード134と、電圧供給用抵抗132と、整流素子(ダイオード)135とを備える。
PNPトランジスタ131は、整流素子118の出力と接続されるエミッタEと、ダイオード135のアノードに接続されるコレクタCと、ベースBとを有する。
調整用抵抗133およびツェナーダイオードは、PNPトランジスタ131のベースBとグランドとの間に直列に接続される。
電圧供給用抵抗132は、整流素子118の出力とPNPトランジスタ131のベースBとの間に配置される。
ダイオード135のアノードが、PNPトランジスタ131のコレクタCに接続される。ダイオード135のカソードが、電源制御IC114の電源端子T1に接続される。
ダイオード135を追加することで、PNPトランジスタ131がオフの場合に、NPNトランジスタ135に加わる電圧を阻止することができるようになる。ダイオード135を追加することにより、停止回路130を保護できる。従って、負荷短絡状態や過電流状態であっても、スイッチング電源回路の故障を防止できる。
実施の形態3.
図9は、実施の形態3の停止回路の構成を表わす図である。
図9は、実施の形態3の停止回路の構成を表わす図である。
実施の形態3の停止回路80は、実施の形態2の停止回路70の構成要素に加えて、抵抗136を備える。すなわち、この停止回路80は、PNPトランジスタ131と、調整用抵抗133と、ツェナーダイオード134と、電圧供給用抵抗132と、整流素子(ダイオード)135と、調整用抵抗136を備える。
PNPトランジスタ131は、整流素子118の出力と接続されるエミッタEと、調整用抵抗136の一端に接続されるコレクタCと、ベースBとを有する。
調整用抵抗133およびツェナーダイオードは、PNPトランジスタ131のベースBとグランドとの間に直列に接続される。
電圧供給用抵抗132は、整流素子118の出力とPNPトランジスタ131のベースBとの間に配置される。
調整用抵抗136の一端がPNPトランジスタ131のコレクタCに接続され、調整用抵抗136の一端が電源制御IC114の電源端子T1に接続される。
ダイオード135のアノードが、調整用抵抗136の他端に接続される。ダイオード135のカソードが、電源制御IC114の電源端子T1に接続される。
調整用抵抗136を追加することによって、PNPトランジスタ131がオンの場合に、PNPトランジスタ131のコレクタ-エミッタ間に流れる電流を調整することができるようになる。これによって、負荷短絡状態や過電流状態において、スイッチング電源回路100が間欠動作する際のスイッチング電源回路100が動作する時間を調整することができるようになる。その結果、スイッチング電源回路100としては、負荷短絡状態や過電流状態の際に、異常な過熱を防ぐことができるようになり故障を防止できる。
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
60 フォトカプラ、100 スイッチング電源回路、101 商用電源、102,115,118,135 整流素子、103,112,116,117 コンデンサ、104 負荷、110 スイッチング素子、111 電流検出抵抗、113 起動抵抗、114 電源制御IC、119 F/B回路、120 トランス、121 1次巻線、122 2次巻線、123 補助巻線、70,80,130 停止回路、131 PNPトランジスタ、132,302 電圧供給用抵抗、133,136 調整用抵抗、134,303 ツェナーダイオード、200 電力変換回路、301 NPNトランジスタ。
Claims (8)
- 交流電源に接続された第1の整流素子と、
前記第1の整流素子によって整流された直流電圧を平滑する第1のコンデンサと、
1次巻線と2次巻線と補助巻線とを有するトランスと、
前記第1のコンデンサの一端と、前記1次巻線の一端の間のノードに接続された起動抵抗と、
前記1次巻線に供給する前記第1のコンデンサからの直流電圧をスイッチングするスイッチング素子と、
前記スイッチング素子を制御する電源制御回路と、
一端が、前記起動抵抗と、前記電源制御回路の電源端子とに接続される第2のコンデンサと、
前記1次巻線に流れる1次電流の大きさを検出する電流検出抵抗と、
前記補助巻線に接続された第2の整流素子と、
前記第2の整流素子から出力されるバイアス電圧を受けて、前記バイアス電圧が設定電圧以上のときには、前記バイアス電圧に基づく電圧を前記電源端子へ出力し、前記バイアス電圧が前記設定電圧未満のときには、前記電源端子への電力供給を停止する停止回路とを備え、
前記電源制御回路は、前記電流検出抵抗で発生する電流検出電圧に基づいて、前記スイッチング素子のスイッチング周期に対するオン時間の割合を制御し、
前記電源制御回路は、前記電源端子の電圧が停止電圧以下となったときに、前記スイッチング素子のスイッチング動作を停止させる、スイッチング電源回路。 - 前記2次巻線に接続された第3の整流素子と、
前記第3の整流素子に接続されて、出力電圧を平滑する第3のコンデンサと、
前記第3のコンデンサが平滑する出力電圧と一定の電圧との大小関係を表わす信号を出力するフィードバック回路とをさらに備え、
前記電源制御回路は、さらに、前記フィードバック回路からの信号に基づいて、前記スイッチング素子のスイッチング周期に対するオン時間の割合を制御する、請求項1記載のスイッチング電源回路。 - 前記停止回路は、
前記第2の整流素子の出力と接続されるエミッタと、前記電源端子に接続されるコレクタと、ベースとを有するPNPトランジスタと、
前記ベースとグランドとの間に直列に接続された調整用抵抗およびツェナーダイオードと、
前記第2の整流素子の出力と前記エミッタの間に配置された電圧供給用抵抗とを含み、
前記設定電圧は、前記ツェナーダイオードのツェナー電圧である、請求項1または2記載のスイッチング電源回路。 - 前記停止回路は、
前記第2の整流素子の出力と接続されるエミッタと、前記電源端子に接続されるコレクタと、ベースとを有するPNPトランジスタと、
前記ベースとグランドとの間に直列に接続された調整用抵抗およびツェナーダイオードと、
前記第2の整流素子の出力と前記ベースとの間に配置された電圧供給用抵抗と、
前記コレクタと、前記電源端子との間に配置された第4の整流素子とを含み、
前記設定電圧は、前記ツェナーダイオードのツェナー電圧である、請求項1または2記載のスイッチング電源回路。 - 前記停止回路は、
前記第2の整流素子の出力と接続されるエミッタと、前記電源端子に接続されるコレクタと、ベースとを有するPNPトランジスタと、
前記ベースとグランドとの間に直列に接続された第1の調整用抵抗およびツェナーダイオードと、
前記第2の整流素子の出力と前記ベースとの間に配置された電圧供給用抵抗と、
一端が前記コレクタに接続された第2の調整用抵抗と、
前記第2の調整用抵抗の他端と、前記電源端子との間に配置された第4の整流素子とを含み、
前記設定電圧は、前記ツェナーダイオードのツェナー電圧である、請求項1または2記載のスイッチング電源回路。 - 前記電源制御回路は、前記フィードバック回路からの信号に基づいて、前記出力電圧が前記一定の電圧よりも大きいときには、前記スイッチング素子へのPWM信号のデユーティ比が小さくなるように制御し、前記出力電圧が前記一定の電圧よりも小さいときには、前記スイッチング素子へのPWM信号のデユーティ比が大きくなるように制御する、請求項2記載のスイッチング電源回路。
- 前記電源制御回路は、前記電流検出抵抗で発生する電流検出電圧に基づいて、過電流状態であるかどうかを判断し、前記過電流状態の場合に前記スイッチング素子へのPWM信号のデユーティ比が小さくなるように制御する、請求項1記載のスイッチング電源回路。
- 前記電源制御回路は、前記電源端子の電圧が開始電圧以上となったときに、前記スイッチング素子のスイッチ動作を開始させる、請求項1または2記載のスイッチング電源回路。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112017002638.5T DE112017002638T5 (de) | 2016-05-25 | 2017-05-19 | Schaltnetzteil |
JP2018519250A JP6559343B2 (ja) | 2016-05-25 | 2017-05-19 | スイッチング電源回路 |
US16/303,259 US10615681B2 (en) | 2016-05-25 | 2017-05-19 | Switching power supply circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-104038 | 2016-05-25 | ||
JP2016104038 | 2016-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204115A1 true WO2017204115A1 (ja) | 2017-11-30 |
Family
ID=60412273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018883 WO2017204115A1 (ja) | 2016-05-25 | 2017-05-19 | スイッチング電源回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10615681B2 (ja) |
JP (1) | JP6559343B2 (ja) |
DE (1) | DE112017002638T5 (ja) |
WO (1) | WO2017204115A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI713287B (zh) * | 2020-03-19 | 2020-12-11 | 捷拓科技股份有限公司 | 寬輸入電壓範圍的輔助電源供應電路 |
US11418123B2 (en) | 2020-12-08 | 2022-08-16 | P-Duke Technology Co, Ltd. | Power supply apparatus suppressing transient voltage |
CN112615425B (zh) * | 2020-12-31 | 2023-09-08 | 广州金升阳科技有限公司 | 一种检测控制电路 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07327369A (ja) * | 1994-05-31 | 1995-12-12 | Nec Home Electron Ltd | 電源装置 |
JPH08205530A (ja) * | 1995-01-20 | 1996-08-09 | Tec Corp | スイッチング電源装置 |
JP2012124993A (ja) * | 2010-12-06 | 2012-06-28 | Canon Inc | スイッチング電源装置及び画像形成装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07213053A (ja) | 1994-01-25 | 1995-08-11 | Tec Corp | トランス結合型スイッチング電源装置 |
US5517397A (en) * | 1994-12-06 | 1996-05-14 | Astec International, Ltd. | Flyback power converter with spike compensator circuit |
TW328992B (en) * | 1997-03-17 | 1998-04-01 | Acer Peripherals Inc | Improved low power consumption electric power supply |
WO2001043265A1 (fr) * | 1999-12-09 | 2001-06-14 | Sanken Electric Co., Ltd. | Convertisseur continu-continu |
KR100856900B1 (ko) * | 2001-12-21 | 2008-09-05 | 페어차일드코리아반도체 주식회사 | 버스트 모드 스위칭 모드 파워 서플라이 |
CN100405725C (zh) * | 2003-01-28 | 2008-07-23 | 三垦电气株式会社 | 电源装置 |
TWI387194B (zh) * | 2009-08-14 | 2013-02-21 | Richpower Microelectronics | 減少返馳式電源轉換器之待機功耗的裝置及方法 |
JP6249167B2 (ja) | 2014-03-12 | 2017-12-20 | 岩崎電気株式会社 | Led点灯装置及びled照明装置 |
-
2017
- 2017-05-19 JP JP2018519250A patent/JP6559343B2/ja active Active
- 2017-05-19 DE DE112017002638.5T patent/DE112017002638T5/de active Pending
- 2017-05-19 US US16/303,259 patent/US10615681B2/en active Active
- 2017-05-19 WO PCT/JP2017/018883 patent/WO2017204115A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07327369A (ja) * | 1994-05-31 | 1995-12-12 | Nec Home Electron Ltd | 電源装置 |
JPH08205530A (ja) * | 1995-01-20 | 1996-08-09 | Tec Corp | スイッチング電源装置 |
JP2012124993A (ja) * | 2010-12-06 | 2012-06-28 | Canon Inc | スイッチング電源装置及び画像形成装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6559343B2 (ja) | 2019-08-14 |
JPWO2017204115A1 (ja) | 2019-01-24 |
US10615681B2 (en) | 2020-04-07 |
DE112017002638T5 (de) | 2019-04-11 |
US20190207507A1 (en) | 2019-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5056395B2 (ja) | スイッチング電源装置 | |
US7830130B2 (en) | Forward power converter controllers | |
US20090201705A1 (en) | Energy converting apparatus, and semiconductor device and switching control method used therein | |
US10170906B2 (en) | Semiconductor device for power supply control | |
US7161783B2 (en) | Overcurrent protection circuit for switching power supply | |
JP2011015557A (ja) | スイッチング電源装置およびスイッチング電源制御用半導体装置 | |
US9318961B2 (en) | Switching power-supply device | |
JP2004260977A (ja) | Ac−dcコンバータ | |
CN101277057B (zh) | 过载保护延迟电路及交换式电源供应器 | |
JP6559343B2 (ja) | スイッチング電源回路 | |
JP5137121B2 (ja) | スイッチング電源装置 | |
JP5126967B2 (ja) | スイッチング電源装置 | |
JP6459599B2 (ja) | スイッチング電源装置 | |
JP5417235B2 (ja) | 非絶縁コンバータの過電圧保護回路 | |
JP5322572B2 (ja) | 電源装置 | |
JP2005176535A (ja) | スイッチング電源装置 | |
JP6109976B1 (ja) | 自動電圧調整器 | |
JP4950254B2 (ja) | スイッチング電源装置 | |
JP2016226112A (ja) | 電力変換回路およびそれを用いたスイッチング電源装置 | |
KR101284827B1 (ko) | 스위치 제어 장치, 스위치 제어 방법 및 이를 이용하는컨버터 | |
JP2017103870A (ja) | スイッチング電源装置 | |
JP2010130881A (ja) | スイッチング電源回路 | |
JP5915471B2 (ja) | スイッチング電源 | |
KR101854630B1 (ko) | 앰프용 스위칭 모드 파워 서플라이를 위한 단락 보호 기법 | |
JP2016226114A (ja) | 電力変換回路およびそれを用いたスイッチング電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018519250 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802707 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17802707 Country of ref document: EP Kind code of ref document: A1 |