WO2017204187A1 - 細胞外小胞回収方法及び細胞外小胞用容器 - Google Patents
細胞外小胞回収方法及び細胞外小胞用容器 Download PDFInfo
- Publication number
- WO2017204187A1 WO2017204187A1 PCT/JP2017/019121 JP2017019121W WO2017204187A1 WO 2017204187 A1 WO2017204187 A1 WO 2017204187A1 JP 2017019121 W JP2017019121 W JP 2017019121W WO 2017204187 A1 WO2017204187 A1 WO 2017204187A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exosomes
- coating agent
- exosome
- extracellular vesicles
- adsorption
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F120/00—Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F120/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F120/10—Esters
- C08F120/20—Esters of polyhydric alcohols or polyhydric phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/26—Esters containing oxygen in addition to the carboxy oxygen
- C08F20/28—Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1804—C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/066—Copolymers with monomers not covered by C09D133/06 containing -OH groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D143/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
- C09D143/02—Homopolymers or copolymers of monomers containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1668—Vinyl-type polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D129/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
- C09D129/02—Homopolymers or copolymers of unsaturated alcohols
- C09D129/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
Definitions
- the present invention relates to a method for efficiently recovering cell-derived vesicles represented by exosomes, and a container and instrument used for the recovery. Further, the present invention relates to a substrate, a flow path, and the like for use in a method for inspecting with exosomes.
- Extracellular vesicles are extracellular vesicles derived from cells and classified into exosomes, microvesicles, and apoptotic bodies based on their sizes. Exosomes and microvesicles contain nucleic acids such as proteins, mRNA and miRNA, and apoptotic bodies contain fragmented nuclei and organelles. Among extracellular vesicles, since exosomes and microvesicles contain proteins and nucleic acids, they contain information derived from released cells and have the potential to be used as biomarkers. In particular, exosomes have attracted attention in recent years because they have the potential to be used for diagnostic markers and treatment.
- An exosome is an endoplasmic reticulum with a diameter of 30 to 100 nm formed by a lipid bilayer secreted from cells. Exosomes are known to be secreted from most cells, and their presence has been confirmed in body fluids such as blood, saliva, urine and breast milk. Exosomes contain secreted RNA and proteins derived from cells, and it is suggested that information may be transmitted to distant cells by circulating in body fluid (Non-patent Document 1). The possibility that cancer progression is promoted by nucleic acids and proteins contained in exosomes derived from cancer cells was suggested, and this suggested the possibility of cancer diagnosis systems using exosomes (Non-Patent Documents) 2).
- exosome-derived nucleic acids and proteins are useful as diagnostic markers.
- exosomes are also contained in saliva and urine, if a highly accurate test method using exosomes can be established, it can be a noninvasive diagnostic method.
- attempts have been made to use exosomes collected and recovered from healthy cells by using the exosome information transmission function to recover damaged cells or diseased cells (Patent Document 1).
- exosomes in the case of recovering exosomes from the cell culture supernatant, can be recovered as pellets by ultracentrifugation for about 2 hours after removing cell debris from the medium containing exosomes by low-speed centrifugation.
- the exosomes thus obtained can be redispersed in a buffer solution such as PBS and further purified, or used as it is for analysis such as inspection and research.
- exosomes are non-specifically adsorbed on the plastic surface of the collection container to be used, and a stable collection rate cannot be obtained. It was.
- the adsorption to the surface of the container used for purification and the analysis instrument affects not only the efficiency of the analysis but also the analysis result.
- an effective method for preventing the adsorption of extracellular vesicles such as exosomes has not been developed so far.
- Patent Documents 4 and 5 disclose methods for preventing nonspecific adsorption of proteins and cells, which are biological substances, to a container with a hydrophilic polymer.
- Patent Document 4 discloses that protein adsorption can be prevented by coating a polystyrene container with a PBS solution containing a 2-methacryloyloxyethyl phosphorylcholine polymer or a copolymer of 2-methacryloyloxyethyl phosphorylcholine-containing components.
- Patent Document 5 discloses that by coating a culture vessel with a compound containing a phosphorylcholine-like group, adhesion of ES cells to the culture vessel can be prevented, and an embryoid body can be formed efficiently.
- Patent Document 4 is a method specialized for proteins, and completely prevents adsorption of extracellular vesicles formed by lipid bilayers, even though proteins are exposed on the surface of exosomes and the like. It was difficult to do. Further, the method of Patent Document 5 prevents adsorption of cells formed of lipid bilayers, but the size of cells and extracellular vesicles, particularly exosomes, is completely different, so that they can be transferred to a container. The degree of adsorption of exosomes was greatly different, and adsorption of exosomes to the container could not be completely prevented.
- the present invention prevents the adsorption of cell-derived vesicles to a container used for purification such as a centrifuge tube or a pipette tip when purifying cell-derived vesicles typified by exosomes, and improves the recovery rate. It is an object of the present invention to provide a coating agent for improvement. It is another object of the present invention to provide a coating agent that can be used in the purification process and can improve the accuracy of exosome analysis by coating a substrate, a flow path, and the like used for exosome analysis. It is another object of the present invention to provide analytical instruments such as containers, chips, and substrates coated with these coating agents.
- the present invention relates to the following coating agents, instruments, purification methods, and analysis methods.
- a coating agent for preventing the adsorption of extracellular vesicles comprising a hydrophilic polymer having a weight average molecular weight of 10,000 to 1,000,000, and the contact angle of the resulting coating film being 0 degrees to 30 degrees.
- the hydrophilic polymer includes one or more hydrophilic monomers composed of 2-methacryloyloxyethyl phosphorylcholine, vinyl alcohol, vinyl pyrrolidone, methoxyalkylene glycol monomethacrylate or 2-hydroxyethyl methacrylate. Coating agent.
- the hydrophilic monomer constituting the hydrophilic polymer is 2-methacryloyloxyethyl phosphorylcholine, and contains 30 mol% to 50 mol% of a structural unit based on 2-methacryloyloxyethyl phosphorylcholine.
- the coating agent according to (2), wherein the remainder is a copolymer comprising a hydrophobic group-containing monomer.
- FIG. 4A shows the results of examining the amount of exosome recovered by the coating agent by the number of particles
- FIG. 4B shows the results of examining by Western blotting
- FIG. 5A is a diagram showing the results of examining the amount of exosome recovered by the film thickness of the coating agent according to the number of particles
- FIG. 5C is a diagram in which a collected sample and an adsorbed sample are electrophoresed and analyzed by silver staining.
- an extracellular vesicle refers to a vesicle derived from a cell, and specifically refers to an exosome, a microvesicle, and an apoptotic body.
- exosomes are mainly described, but it goes without saying that the present invention can also be applied to extracellular vesicles other than exosomes.
- the coating agent of the present invention coats an instrument used when purifying extracellular vesicles such as exosomes, such as centrifuge tubes, tubes, and pipette tips, thereby preventing its adsorption and improving the recovery rate. be able to. Also, non-specific adsorption can be prevented and analysis accuracy can be improved by coating the analytical instruments and analytical instruments used in this field, such as beads, microtiter plates, slide glasses, microtass, and lab-on-chip. be able to.
- the coating agent of the present invention can be coated by any material.
- any material for example, polycarbonate, polypropylene, polyallomer, which are frequently used as centrifuge tubes, and vinyl chloride, polystyrene, polyethylene terephthalate, silicon, hydrophilic polydimethylsiloxane, hydrophobic polydimethylsiloxane, glass, stainless steel, which are used as base materials for analytical instruments
- a metal such as aluminum or aluminum
- adsorption of extracellular vesicles such as exosomes can be prevented.
- the contact angle of the coating film obtained by the coating agent of the present invention is 0 degree or more and 30 or less, preferably 0 degree or more and 25 degrees or less.
- the hydrophilic polymer of the present invention has a weight average molecular weight of 10,000 or more and 1,000,000 or less, preferably 100,000 or more from the viewpoint of the durability of the coating film, and has a high viscosity at the time of coating. In order to suppress smears caused by the above, it is more preferably 700,000 or less.
- the hydrophilic monomer of the hydrophilic polymer is not particularly limited as long as it can synthesize a hydrophilic polymer or copolymer. Among them, 2-methacryloyloxyethyl phosphorylcholine, vinyl alcohol, vinyl pyrrolidone, methoxy Alkylene glycol monomethacrylate or 2-hydroxyethyl methacrylate is preferred. These hydrophilic monomers may be used as a polymer or may be used as a copolymer together with other monomers.
- a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and a hydrophobic monomer can be preferably used.
- the hydrophobic monomer methyl methacrylate (MMA), n-butyl methacrylate (BMA), 2-ethylhexyl methacrylate (EhMA), dodecyl methacrylate (DMA), stearyl methacrylate (SMA), etc.
- MMA methyl methacrylate
- BMA n-butyl methacrylate
- EhMA 2-ethylhexyl methacrylate
- DMA dodecyl methacrylate
- SMA stearyl methacrylate
- a copolymer of methacrylic acid-n-butyl is particularly preferable from the viewpoint of availability and film forming property.
- the composition ratio of MPC and hydrophobic monomer is preferably 20/80 to 50/50.
- the coating agent of the present invention can be used as a solution containing the above-mentioned polymer or copolymer at a concentration of 0.05% to 5.0%. If the amount is less than 0.05% by weight, the desired effect cannot be exhibited. If the amount is more than 5% by weight, the effect due to coating spots of the coating agent may be deteriorated or the coating agent may be physically separated.
- the solvent alcohols such as ethanol and methanol, or buffers usually used in the art such as phosphate buffer, Tris buffer, PBS, TBS, and the like can be used.
- the film thickness is preferably 50 nm or more and 2000 nm or less, and more preferably 90 nm or more and 900 nm or less.
- Polymer 1 23.5 g of MPC and 26.5 g of BMA are dissolved in 50 g of ethanol, put into a four-necked flask, blown with nitrogen for 30 minutes, and then added with 0.1 g of t-butylperoxyneodecanoate at 45 ° C. for 24 hours. I let you. The polymerization solution was added dropwise to 3 L of diethyl ether with stirring, and the deposited precipitate was filtered and dried in vacuo at 45 ° C. for 48 hours to obtain 36.8 g of powder.
- a 0.5% by weight solution was prepared by dissolving 0.5 g of the above polymer in 100 g of ethanol. This was coated on a PET film and then air-dried and washed with water. This was used as a sample for contact angle measurement. The contact angle was measured by the bubble method using a drop master (manufactured by Kyowa Interface Science Co., Ltd.), and the contact angle value was determined as the contact angle of water. Specifically, it was calculated as “180 ° ⁇ bubble angle”. The contact angle value of the obtained coating film was 25 degrees.
- Polymer 3 As the polymer 3, poly (2-hydroxyethyl methacrylate) (manufactured by Sigma-Aldrich) having a molecular weight of 300,000 was used. The contact angle value of the obtained coating film was 30 degrees.
- the coating agent containing the hydrophilic polymer Using the coating agent containing the hydrophilic polymer, a container used for purification was coated, and the amount of exosome adsorbed was analyzed. The coating was performed by wetting the container surface with an ethanol solution containing 0.5 wt% of each of the polymers 1 to 3 shown in Table 1 and the polymer 4 as a comparative example, and discharging the excess liquid followed by drying. Using.
- Exosomes were obtained from the culture supernatant of human liver cancer-derived cell line HuH-7 cells or colon cancer-derived cell line HT-29 cells.
- HuH-7 cells the procedure was as follows. 1 ⁇ 10 6 HuH-7 cells were supplemented with 10% fetal bovine serum (manufactured by Thermo Fisher Scientific), 1/100 amount of penicillin streptomycin (penicillin streptomycin solution ⁇ 100, manufactured by Wako Pure Chemical Industries).
- the suspension was suspended in 25 ml of RPMI 1640 medium, seeded in a 150 mm petri dish (cell culture dishes 150 mm, manufactured by Iwaki Co., Ltd.), and cultured at 5% CO 2 , 37 ° C. for 72 hours. Thereafter, the medium was removed by suction, 25 ml of RPMI 1640 medium not containing fetal calf serum was added, and the mixture was cultured at 5% CO 2 , 37 ° C. for 66 hours.
- the culture supernatant was collected, subjected to low-speed centrifugation at 8,900 ⁇ g for 10 minutes, and the supernatant was passed through a 0.22 ⁇ m filter (millex-GS ⁇ SLGV033RS, manufactured by Merck).
- the procedure was as follows. 2 ⁇ 10 8 HT-29 cells were seeded in 500 ml of McCoy's 5A medium supplemented with 10% fetal calf serum and penicillin streptomycin, and 5% CO 2 , 37 ° C. using a Belocell (CESCO) incubator. And cultured for 96 hours. Next, the medium was removed by decantation, and 500 ml of McCoy's 5A medium not containing fetal calf serum was added, followed by further culturing at 5% CO 2 and 37 ° C. for 72 hours. After 72 hours, the culture supernatant was collected and centrifuged at a low speed in the same manner as described above, and the supernatant was passed through a filter to obtain a culture supernatant containing exosomes.
- Exosome adsorption experiment 1 480 ml of the culture supernatant of HuH-7 cells prepared above was centrifuged at 30,700 rpm for 70 minutes to concentrate exosomes. The precipitate was resuspended in 12 ml of culture supernatant, and further 60 ml of culture supernatant was added to obtain a sample in which exosomes were concentrated.
- the following ultracentrifugation steps are all ultracentrifugation tubes (UC tubes, Ultra-Clear Tubes, manufactured by Beckman Coulter) coated with a coating agent containing the hydrophilic polymer of polymer 1 or uncoated centrifuge tubes
- UC tubes Ultra-Clear Tubes, manufactured by Beckman Coulter
- the sample containing exosome was dispensed in equal amounts and purified, and the exosome recovery rate with and without the coating agent was compared.
- the film thickness of the coating agent used in the following experiments was approximately 90 nm unless otherwise specified.
- the sample containing the concentrated exosome was centrifuged at 30,700 rpm for 120 minutes.
- the obtained precipitate was suspended by pipetting in 3 ml of 45% OptiPrep (manufactured by Cosmo Bio), centrifuged at 24,200 rpm for 20 minutes using an 8-40% gradient, and then divided into 10 fractions. Collected. Each collected fraction was centrifuged at 30,700 rpm for 120 minutes, and the precipitate was suspended and collected in 250 ⁇ l PBS.
- the exosomes collected in each fraction and the amount of exosomes adsorbed on the centrifuge tube were analyzed by Western blotting. According to a standard method, Western blotting was performed to detect CD9 and CD63 known as exosome markers.
- Anti-CD9 antibody and anti-CD63 antibody are used as primary antibodies, and HRP-labeled anti-mouse IgG antibody (Bio-Rad Laboratories Co., Ltd.) is reacted as a secondary antibody to perform chemiluminescence detection It was.
- Example 2 Exosome adsorption experiment 2 Into a centrifuge tube coated with a hydrophilic polymer of polymers 1 to 3, or an untreated centrifuge tube, spin-rotated in the same manner as described above, and filtered through a 0.22 ⁇ m filter, to 12 ml of HuH-7 cell culture supernatant. A sample to which 23 ml of PBS was added was placed, and ultracentrifugation was performed at 37,000 rpm for 70 minutes. The precipitate was collected by suspending in 250 ⁇ l of PBS. The centrifuge tube after collecting the precipitate was eluted by adding 150 ⁇ l, 1 ⁇ SDS sample buffer (first centrifuge tube adsorption sample).
- the recovered exosome was added with 30 ml of PBS, and centrifuged again at 37,000 rpm for 120 minutes using a new centrifuge tube coated with hydrophilic polymers 1 to 3 or a new untreated centrifuge tube.
- the exosome was recovered by suspending in PBS so as to be 150 ⁇ l.
- the centrifuge tube after exosome recovery was eluted by adding 150 ⁇ l of 1 ⁇ SDS sample buffer (second centrifuge tube adsorption sample).
- FIG. 2 shows the results of Western blotting of the same experiment performed three times.
- the supernatant is the culture supernatant
- 1-3 are centrifuge tubes coated with a coating agent containing a hydrophilic polymer of polymers 1-3. .
- Example 3 Exosome adsorption experiment 3 The number of exosome particles recovered in Example 2 was measured with Nanosite LM10 (Malvern). Calibration was performed using Silica Microspheres: 100 nm (Polysciences, Inc. # 24041) diluted with MilliQ water through GE plastic disk 13 (NYL 0.1 ⁇ m). Next, the exosome was diluted to about 10 8 with PBS through the GE plastic disk 13, the sample solution was injected into the measurement cell with a syringe, waited for 10 seconds, and then data measurement was performed for 30 seconds. By pushing the syringe and moving the sample solution in the chamber, the measurement was performed five times while replacing the inside of the cell with a new sample. FIG. 3 shows average values and standard deviations. The detection threshold was 4, and the camera level was 14.
- the exosome recovery rate is greatly improved compared to the case of purification using an untreated centrifuge tube. Is clear.
- Example 4 Centrifugation was performed once or twice as described below, and the amount of exosome recovered and the amount adsorbed on the tube were examined. Exosomes were purified from the culture supernatant of HT-29 cells as follows. The culture supernatant of 500 ml of HT-29 cells prepared as described above is centrifuged at 160,000 ⁇ g for 70 minutes to precipitate exosomes, and then the precipitate is resuspended in 180 ml of PBS, and further at 160,000 ⁇ g for 70 minutes. Washed by centrifugation. The resulting precipitate is resuspended in 1.3 ml of PBS to obtain a crude exosome fraction.
- fraction 2 (density 1.36 g / cm 3 ) was used as a purified exosome sample in this experiment.
- FIG. 4A shows the analysis result of the number of recovered exosome particles.
- the experiment shows the average of three times as a percentage of the input, and the number in parentheses shows the number of times of centrifugation.
- the polymer 1 when centrifugation is performed once, 50% or more of the input, and even when centrifugation is performed twice, 30% or more of the particles can be recovered.
- the comparative example of the polymer 4 when the comparative example of the polymer 4 was used, the recovery rate was only about 30% when the centrifugation was performed once and about 15% when the centrifugation was performed twice.
- FIG. 4B shows the analysis result by Western blotting.
- Each panel analyzes the collected sample and the sample adsorbed on the tube in each of the first, second, and third experiments, and shows the analysis results from the first to the third in order from the top. Detection was performed using an anti-EpCAM antibody (R & D Systems) and an anti-CD9 antibody. In the case where the polymer 4 was used, the sample collected by performing centrifugation twice was hardly detected even when using either the anti-EpCAM antibody or the anti-CD9 antibody. When 1 was used, detection was possible in any case.
- Example 5 The amount of adsorption by the film thickness of the coating agent was compared.
- Polymer 1 is dissolved in ethanol to 0.5, 1.0, 2.0, and 4.0 wt%, and coated on a microtube (manufactured by Treff) with a film thickness varying from 90 nm to 1400 nm for analysis. Used for.
- the film thickness was measured using a reflection spectral film thickness meter (FE-3000, manufactured by Otsuka Electronics Co., Ltd.).
- FE-3000 reflection spectral film thickness meter
- FIG. 5A shows the analysis result of the number of recovered exosome particles.
- 90, 140, 370, and 1400 shown on the left side indicate the film thickness (nm) coated with the microtube.
- the experiment shows the average of three times as a percentage of the input, and the number in parentheses shows the number of times of centrifugation.
- the film thickness is 50 nm or more and 2000 nm or less in consideration of variations in film formation and workability. If the film thickness is within this range, it is considered that exosome adsorption is prevented and a stable measurement result can be obtained.
- FIG. 5B shows the analysis result by Western blotting.
- the result of having detected by the anti- EpCAM antibody and the anti-CD9 antibody similarly to Example 4 is shown.
- the exosome adsorption was clearly suppressed compared to the uncoated tube at any film thickness.
- FIG. 5C shows the result of SDS electrophoresis of the collected sample and the sample adsorbed on the tube and analysis by silver staining.
- an untreated tube When an untreated tube is used, the recovered amount is clearly reduced.
- coating when coating is performed at any film thickness, it is clear that the number of adsorbed samples decreases and the number of recovered samples increases.
- the use of the coating agent containing the polymers 1 to 3 reduces the adsorption of exosomes to the container and significantly improves the recovery rate.
- These coating agents can not only improve the exosome recovery rate, but can also perform quantitative analysis with high accuracy.
- the coating agent of the present invention it is possible to prevent exosomes and other extracellular vesicles from adsorbing to a container or a substrate used for analysis. As a result, the recovery rate of extracellular vesicles can be remarkably improved, and the accuracy of analysis can be further improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Paints Or Removers (AREA)
Abstract
エクソソームに代表される細胞外小胞の器具への吸着を防止するためのコーティング剤を開発した。重量平均分子量が1万以上100万以下である親水性ポリマーを含有し、得られるコーティング被膜の接触角が0度以上30度以下であるコーティング剤を使用することによって、細胞外小胞の器具への吸着を防止することができる。
Description
本発明は、エクソソーム(exosome)に代表される細胞由来の小胞を効率的に回収するための方法及びその回収に用いる容器、器具に関する。また、エクソソームによって検査する方法に用いるための基板、流路等に関する。
細胞外小胞とは、細胞に由来する細胞外に存在する小胞で、その大きさからエクソソーム、微小小胞体(Microvesicle)、アポトーシス小体(apoptotic body)に分類される。エクソソームや微小小胞体には、タンパク質やmRNA、miRNAなどの核酸が含まれ、アポトーシス小体には断片化された核や細胞小器官が含まれている。細胞外小胞の中でも、エクソソームや微小小胞体にはタンパク質や核酸が含まれていることから、放出した細胞由来の情報が含まれており、バイオマーカーとして利用できる可能性を有している。特にエクソソームは診断マーカーや治療に利用できる可能性を含んでおり近年注目されている。
エクソソームは、細胞から分泌される脂質二重膜で形成された直径30~100nmの小胞体である。エクソソームはほとんどの細胞から分泌されることが知られており、血液、唾液、尿、母乳などの体液中で存在が確認されている。エクソソームには分泌された細胞由来のRNAやタンパク質が内包されており、体液中を循環することで離れた細胞まで情報を伝達する可能性が示唆されている(非特許文献1)。癌細胞由来のエクソソームに含まれている核酸やタンパク質によって、癌の進展が促進される可能性が示され、さらにこのことからエクソソームを用いた癌診断システムの可能性が示唆された(非特許文献2)。
上述のように、エクソソームに内包されているタンパク質や核酸は、分泌された細胞種によって異なることが明らかになっている。そのため、エクソソーム由来の核酸やタンパク質は診断マーカーとして有用である。また、エクソソームは唾液や尿中にも含まれることから、エクソソームを用いた精度の高い検査方法を確立することができれば、非侵襲的な診断方法とすることができる。さらに、エクソソームの情報伝達機能を用いることによって、健康な細胞から採取し回収したエクソソームを、傷害を受けた細胞や罹患細胞の回復に用いる試みも行われている(特許文献1)。
唾液など少量の試料からエクソソームを精製したり、治療目的で多量のエクソソームを精製するためには、回収率良く精製する方法が必要となる。従来からエクソソームを精製する方法として、遠心分離やカラムにより単離する方法が開示されている(特許文献2、3)。中でも超遠心を用いた遠心分離法は確立された回収技術であり、エクソソームの形状維持性の点で優れた技術である。
例えば、細胞の培養上清からエクソソームを回収する場合であれば、エクソソームを含む培地を低速遠心で細胞の破片等を除去した後に、2時間程度超遠心によりエクソソームをペレットとして回収することができる。こうして得たエクソソームはPBSなどの緩衝液に再分散させ、さらに精製を行ったり、そのまま検査や研究などの解析に用いることができる。
Valadi, H. et al., 2007, Nat. Cell Biol., Vol.9, p.654-659.
Skog, J. et al., 2008,Nat. Cell Biol., Vol.10, pp.1470-1476.
しかしながら、上述の超遠心による回収方法では、使用する回収容器のプラスチック表面にエクソソームが非特異的に吸着し、安定した回収率が得られず、操作のたびに回収率が低下することが問題となっていた。特に、定量的な解析を行うにあたって、精製に用いる容器や、解析器具の表面への吸着は、解析の効率だけではなく解析結果にも影響を与える。しかしながら、今までエクソソームなどの細胞外小胞の吸着を防止する有効な方法は開発されていない。
従来、生体由来物質であるタンパク質や細胞を親水性ポリマーによって、容器へ非特異的に吸着するのを防止する方法は開示されている(特許文献4、5)。特許文献4には2-メタクリロイルオキシエチルホスホリルコリン重合体や、2-メタクリロイルオキシエチルホスホリルコリン含有成分の共重合体を含むPBS溶液でポリスチレン製の容器をコートすることにより、タンパク質の吸着を防止できることが開示されている。特許文献5には、ホスホリルコリン類似基を含有する化合物を用いて培養容器を被覆することによって、ES細胞の培養容器への接着を防止し、効率良く胚様体を形成できることが開示されている。
しかしながら、特許文献4はタンパク質に特化した方法であり、エクソソーム等の表面にはタンパク質が表出しているとはいえ、脂質二重膜で形成されている細胞外小胞の吸着を完全に防止することが困難であった。また、特許文献5の方法は、脂質二重膜で形成されている細胞の吸着を防止するものであるが、細胞と細胞外小胞、特にエクソソームとではその大きさが全く異なることから容器への吸着の程度が大きく異なり、エクソソームの容器への吸着を完全に防止することはできなかった。
本発明は、エクソソームに代表される細胞由来の小胞を精製する際に、遠心管など精製に使用する容器やピペットチップなどの器具への細胞由来の小胞の吸着を防止し、回収率の向上を図るためのコーティング剤を提供することを課題とする。また、精製の過程に使用できるだけではなく、エクソソーム解析に用いる基板、流路などにコートすることによって、エクソソーム解析の精度を向上させることができるコーティング剤を提供することを課題とする。さらに、これらコーティング剤によってコートされた容器やチップ、基板などの分析器具を提供することを課題とする。
本発明は以下のコーティング剤、器具、精製方法、解析方法に関する。
(1)重量平均分子量が1万以上100万以下である親水性ポリマーを含有し、得られるコーティング被膜の接触角が0度以上30度以下である細胞外小胞吸着防止用コーティング剤。
(2)前記親水性ポリマーが2-メタクリロイルオキシエチルホスホリルコリン、ビニルアルコール、ビニルピロリドン、メトキシアルキレングリコールモノメタクリレート又はメタクリル酸2-ヒドロキシエチルからなる1種以上の親水性単量体を含む(1)記載のコーティング剤。
(3)前記親水性ポリマーを構成する前記親水性単量体が、2-メタクリロイルオキシエチルホスホリルコリンであって、2-メタクリルロイルオキシエチルホスホリルコリンに基づく構成単位を30モル%以上50モル%以下含有し、残余が疎水性基含有単量体からなる共重合体である(2)記載のコーティング剤。
(4)(1)~(3)いずれか1つ記載のコーティング剤でコートされている器具。
(5)(4)記載の器具を用いることを特徴とする細胞外小胞の精製及び/又は解析方法。
(1)重量平均分子量が1万以上100万以下である親水性ポリマーを含有し、得られるコーティング被膜の接触角が0度以上30度以下である細胞外小胞吸着防止用コーティング剤。
(2)前記親水性ポリマーが2-メタクリロイルオキシエチルホスホリルコリン、ビニルアルコール、ビニルピロリドン、メトキシアルキレングリコールモノメタクリレート又はメタクリル酸2-ヒドロキシエチルからなる1種以上の親水性単量体を含む(1)記載のコーティング剤。
(3)前記親水性ポリマーを構成する前記親水性単量体が、2-メタクリロイルオキシエチルホスホリルコリンであって、2-メタクリルロイルオキシエチルホスホリルコリンに基づく構成単位を30モル%以上50モル%以下含有し、残余が疎水性基含有単量体からなる共重合体である(2)記載のコーティング剤。
(4)(1)~(3)いずれか1つ記載のコーティング剤でコートされている器具。
(5)(4)記載の器具を用いることを特徴とする細胞外小胞の精製及び/又は解析方法。
本発明で細胞外小胞とは、細胞に由来する小胞をいい、具体的には、エクソソーム、微小小胞体、アポトーシス小体を指す。以下の実施例ではエクソソームを中心に記載するが、エクソソーム以外の細胞外小胞にも応用できることは言うまでもない。
また、本発明のコーティング剤は、遠心管、チューブ、ピペットチップなど、エクソソーム等の細胞外小胞を精製する際に使用する器具にコートすることによって、その吸着を防止し、回収率を向上することができる。また、ビーズ、マイクロタイタープレート、スライドグラス、マイクロタス、ラボ・オン・チップ等、当該分野で用いられている分析器具、分析機器にコートすることにより非特異吸着を防止し、分析精度を向上させることができる。
本発明のコーティング剤は、どのような材質の器具であってもコートすることができる。例えば、遠心管として多用されているポリカーボネート、ポリプロピレン、ポリアロマーや、分析器具の基材として使用される塩化ビニル、ポリスチレン、ポリエチレンテレフタレート、シリコン、親水性ポリジメチルシロキサン、疎水性ポリジメチルシロキサン、ガラス、ステンレスやアルミなどの金属も本発明のコーティング剤によってコートすることにより、エクソソーム等の細胞外小胞の吸着を防止することができる。
本発明のコーティング剤によって得られるコーティング被膜の接触角は0度以上30以下であるが、0度以上25度以下であることが好ましい。また、本発明の親水性ポリマーの分子量は重量平均分子量が10,000以上1,000,000以下であるが、コーティング膜の耐久性の点から100,000以上が好ましく、またコーティング時の高粘度による塗り斑を抑制するために700,000以下であることがより好ましい。
また、親水性ポリマーの親水性単量体としては、親水性の重合体、あるいは共重合体を合成できるものであれば構わないが、中でも2-メタクリロイルオキシエチルホスホリルコリン、ビニルアルコール、ビニルピロリドン、メトキシアルキレングリコールモノメタクリレート又はメタクリル酸2-ヒドロキシエチルであることが好ましい。これら親水性単量体は、重合体として使用しても、他の単量体とともに共重合体として使用してもよい。
なかでも、2-メタクリロイルオキシエチルホスホリルコリン(MPC)と疎水性単量体との共重合体は好ましく用いることができる。疎水性単量体としては、メタクリル酸メチル(MMA)、n-ブチルメタクリレート(BMA)、メタクリル酸2-エチルヘキシル(EhMA)、メタクリル酸ドデシル(DMA)、メタクリル酸ステアリル(SMA)などを用いることができるが、特にメタクリル酸-n-ブチルとの共重合体が入手しやすさと製膜性の点から好ましい。また、MPCと疎水性単量体との共重合体を作製する場合には、MPCと疎水性単量体の組成比は20/80~50/50が良い。
本発明のコーティング剤は上述の重合体、あるいは共重合体を0.05%以上5.0%以下の濃度で含有した溶液として用いることができる。0.05重量%未満であると所望の効果を発揮できず、また5重量%より高いとコーティング剤の塗工斑による効果の低下やコーティング剤の物理的な剥離を生ずる恐れがある。溶媒としては、エタノール、メタノールなどのアルコール類、あるいはリン酸緩衝液、トリス緩衝液、PBS、TBSなど当該分野で通常用いられている緩衝液を用いることができる。
また、コーティング剤を器具に製膜する場合の膜厚は50nm以上2000nm以下であることが好ましく、より好ましくは、90nm以上900nm以下であることが好ましい。
器具に製膜する場合、完全に均一に製膜することはできない。薄い膜厚で製膜することは非常に困難であることから、平均膜厚が50nm未満の場合には、膜厚のばらつきが大きく、エクソソームの吸着防止効果が弱い箇所が生じる。また、膜厚が2000nmより大きい場合には、製膜に用いるコーティング液(ポリマー溶液)の粘度が高く、使用するポリマー量も多くなるため、製膜時の作業性(乾燥や操作性の点)と経済性の点から難しい。50nm以上2000nm以下の膜厚であれば、エクソソームの吸着を防止する効果がある。さらに、90nm以上900nm以下の膜厚の場合には、安定した膜厚で製膜を行うことができるため、エクソソームの吸着を防止し、安定した測定結果を得ることができる。
以下、実施例を示しながら、本発明を詳細に説明する。
以下、実施例を示しながら、本発明を詳細に説明する。
1.重合体
以下の実施例では、下記表1に示す重合体を用いた。
[重合体1]
MPC23.5g及びBMA26.5gをエタノール50gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、45℃でt-ブチルペルオキシネオデカノエート0.1gを加えて24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末36.8gを得た。分子量は標準をポリエチレングリコールに用いたゲルパーミエーションクロマトグラフィー(東ソー社製)により測定した。重量平均分子量は、580,000であった。1H-NMRにて組成分析した結果、MPC/BMA=30/70(モル比)であった。
以下の実施例では、下記表1に示す重合体を用いた。
[重合体1]
MPC23.5g及びBMA26.5gをエタノール50gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、45℃でt-ブチルペルオキシネオデカノエート0.1gを加えて24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末36.8gを得た。分子量は標準をポリエチレングリコールに用いたゲルパーミエーションクロマトグラフィー(東ソー社製)により測定した。重量平均分子量は、580,000であった。1H-NMRにて組成分析した結果、MPC/BMA=30/70(モル比)であった。
上記のポリマー0.5gをエタノール100gに溶解して0.5重量%の溶液を調製した。これをPETフィルム上に塗布した後風乾したものを水洗した。これを接触角測定用サンプルとした。接触角測定はドロップマスター(協和界面科学社製)を用いた気泡法により行い、接触角値を水の接触角として求めた。具体的には、「180°-気泡角」として算出した。得られたコーティング被膜の接触角値は25度であった。
[重合体2]
MPC4.7g及びBMA5.3gをエタノール90gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、60℃でt-ブチルペルオキシネオデカノエート0.25gを加えて24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末36.8gを得た。重量平均分子量は、120,000であった。1H-NMRにて組成分析では、MPC/BMA=30/70(モル比)であった。得られたコーティング被膜の接触角値は20度であった。
MPC4.7g及びBMA5.3gをエタノール90gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、60℃でt-ブチルペルオキシネオデカノエート0.25gを加えて24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末36.8gを得た。重量平均分子量は、120,000であった。1H-NMRにて組成分析では、MPC/BMA=30/70(モル比)であった。得られたコーティング被膜の接触角値は20度であった。
[重合体3]
重合体3は、分子量300,000のポリ(2-ヒドロキシエチルメタクリレート)(Sigma-Aldrich社製)を使用した。得られたコーティング被膜の接触角値は30度であった。
重合体3は、分子量300,000のポリ(2-ヒドロキシエチルメタクリレート)(Sigma-Aldrich社製)を使用した。得られたコーティング被膜の接触角値は30度であった。
[重合体4](比較例)
重合体4は、MPC8.4gおよびBMA36.6gをエタノール54.6gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、60℃でt-ブチルペルオキシネオデカノエート0.37gを加え24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末26.3gを得た。重量平均分子量は340,000であった。1H-NMRにて組成分析した結果、MPC/BMA=10/90(モル比)であった。得られたコーティング被膜の接触角値は42度であった。
重合体4は、MPC8.4gおよびBMA36.6gをエタノール54.6gに溶解して4つ口フラスコに入れ、30分間窒素を吹き込んだ後、60℃でt-ブチルペルオキシネオデカノエート0.37gを加え24時間重合反応させた。重合液を3Lのジエチルエーテル中に攪拌しながら滴下し、析出した沈殿をろ過し、48時間45℃で真空乾燥して粉末26.3gを得た。重量平均分子量は340,000であった。1H-NMRにて組成分析した結果、MPC/BMA=10/90(モル比)であった。得られたコーティング被膜の接触角値は42度であった。
上記の親水性ポリマーを含有したコーティング剤を用いて、精製に用いる容器のコーティングを行い、エクソソームの吸着量の解析を行った。なお、コーティングは、表1に示す重合体1~3、比較例である重合体4の親水性ポリマーを夫々0.5wt%含むエタノール溶液で容器表面を濡らし、余剰液を排出した後に乾燥させて用いた。
2.親水性ポリマーの有無によるエクソソームの吸着比較
[エクソソームを含む培養上清の調製]
エクソソームはヒト肝がん由来の細胞株HuH-7細胞、又は大腸がん由来の細胞株HT-29細胞の培養上清から得た。HuH-7細胞からエクソソームを得る場合は以下のようにして行った。1×106個のHuH-7細胞は、10%ウシ胎仔血清(サーモフィッシャーサイエンティフィック社製)、1/100量のペニシリンストレプトマイシン(ペニシリンストレプトマイシン溶液×100、和光純薬工業製)を添加したRPMI 1640培地、25mlに懸濁して、150mmシャーレ(cell culture dishes 150mm、イワキ株式会社製)に播種し、5%CO2、37℃、72時間培養した。その後培地を吸引除去し、ウシ胎仔血清を含まないRPMI 1640培地を25ml加え、5%CO2、37℃、66時間培養した。66時間後に、培養上清を回収し、8,900xg10分で低速遠心を行い、上清を0.22μmフィルター(milliex-GS・SLGV033RS、メルク社製)に通した。
[エクソソームを含む培養上清の調製]
エクソソームはヒト肝がん由来の細胞株HuH-7細胞、又は大腸がん由来の細胞株HT-29細胞の培養上清から得た。HuH-7細胞からエクソソームを得る場合は以下のようにして行った。1×106個のHuH-7細胞は、10%ウシ胎仔血清(サーモフィッシャーサイエンティフィック社製)、1/100量のペニシリンストレプトマイシン(ペニシリンストレプトマイシン溶液×100、和光純薬工業製)を添加したRPMI 1640培地、25mlに懸濁して、150mmシャーレ(cell culture dishes 150mm、イワキ株式会社製)に播種し、5%CO2、37℃、72時間培養した。その後培地を吸引除去し、ウシ胎仔血清を含まないRPMI 1640培地を25ml加え、5%CO2、37℃、66時間培養した。66時間後に、培養上清を回収し、8,900xg10分で低速遠心を行い、上清を0.22μmフィルター(milliex-GS・SLGV033RS、メルク社製)に通した。
HT-29細胞からエクソソームを得る場合には、以下のようにして行った。2x108個のHT-29細胞を、10%ウシ胎仔血清、ペニシリンストレプトマイシンを添加したMcCoy’s 5A培地、500mlに播種し、Bellocell(CESCO社製)培養器を用い、5%CO2、37℃、96時間培養した。次に、培地をデカントで除去し、ウシ胎仔血清を含まないMcCoy’s 5A培地を500ml加え、5%CO2、37℃、72時間さらに培養した。72時間後に、培養上清を回収し、上記と同様にして低速遠心し、上清をフィルターに通しエクソソームの含まれた培養上清を得た。
[実施例1]エクソソーム吸着実験1
上記で調製したHuH-7細胞の培養上清480mlを30,700rpmで70分遠心し、エクソソームの濃縮を行った。沈殿は12mlの培養上清に再懸濁し、さらに培養上清60mlを加え、エクソソームが濃縮された試料を得た。
上記で調製したHuH-7細胞の培養上清480mlを30,700rpmで70分遠心し、エクソソームの濃縮を行った。沈殿は12mlの培養上清に再懸濁し、さらに培養上清60mlを加え、エクソソームが濃縮された試料を得た。
以下の超遠心工程は、すべて重合体1の親水性ポリマーを含有するコーティング剤をコートした超遠心用チューブ(UCチューブ、Ultra-Clear Tubes、ベックマン・コールター社製)、あるいはコートしていない遠心管にエクソソームが含まれる試料を等量分注し精製を行い、コーティング剤の有無によるエクソソーム回収率を比較した。なお、以下の実験で用いたコーティング剤の膜厚は特に断らない限りおよそ90nmのものを用いた。
濃縮されたエクソソームを含む試料は、30,700rpmで120分遠心を行った。得られた沈殿は、3mlの45% OptiPrep(コスモ・バイオ株式会社製)にピペッティングで懸濁し、8-40%のグラジエントを用いて24,200rpmで20分遠心した後10分画に分けて採取した。採取した各分画は30,700rpm120分遠心し、沈殿を250μlPBSに懸濁して回収した。
各分画で回収されたエクソソーム、及び遠心管に吸着したエクソソーム量をウェスタンブロッティングにより解析した。定法にしたがって、ウェスタンブロッティングを行い、エクソソームのマーカーとして知られているCD9及びCD63を検出した。抗CD9抗体、抗CD63抗体(両者ともコスモ・バイオ株式会社製)を夫々一次抗体として、二次抗体としてHRP標識抗マウスIgG抗体(バイオ・ラッド ラボラトリーズ社製)を反応させ、化学発光検出を行った。
図1は10分画に分画した各分画で回収されたエクソソーム量(回収量)、遠心管に吸着して回収できなかったエクソソーム量(吸着量)を重合体1の親水性ポリマーを含有したコーティング剤、あるいは未処理の遠心管を用いた場合で比較したものである。図1に示すように、コーティング剤を用いずにエクソソームの精製を行った場合には、回収されたエクソソームはごくわずかであり、多くのエクソソームが遠心管に吸着していた。これに対し、重合体1の親水性ポリマーをコートした遠心管を用いて精製を行った場合には、遠心管に吸着したエクソソームはごくわずかであり、ほとんどのエクソソームは再懸濁させて回収することができた。
[実施例2]エクソソーム吸着実験2
重合体1~3の親水性ポリマーをコートした遠心管、あるいは未処理の遠心管に、上記と同様に低速遠心後、0.22μmのフィルター濾過を行ったHuH-7細胞の培養上清12mlにPBS23mlを加えた試料を入れ、37,000rpm70分超遠心を行った。沈殿を250μlのPBSに懸濁して回収した。沈殿回収後の遠心管は150μl、1×SDS sample bufferを加えて溶出した(1回目遠心管吸着試料)。回収したエクソソームは30mlのPBSを加え、夫々重合体1~3の親水性ポリマーをコートした新しい遠心管、あるいは新しい未処理の遠心管を用い、再度37,000rpm120分遠心を行った。エクソソームは150μlになるようにPBSで懸濁して回収した。また、エクソソーム回収後の遠心管は150μlの1×SDS sample bufferを加えて溶出した(2回目遠心管吸着試料)。
重合体1~3の親水性ポリマーをコートした遠心管、あるいは未処理の遠心管に、上記と同様に低速遠心後、0.22μmのフィルター濾過を行ったHuH-7細胞の培養上清12mlにPBS23mlを加えた試料を入れ、37,000rpm70分超遠心を行った。沈殿を250μlのPBSに懸濁して回収した。沈殿回収後の遠心管は150μl、1×SDS sample bufferを加えて溶出した(1回目遠心管吸着試料)。回収したエクソソームは30mlのPBSを加え、夫々重合体1~3の親水性ポリマーをコートした新しい遠心管、あるいは新しい未処理の遠心管を用い、再度37,000rpm120分遠心を行った。エクソソームは150μlになるようにPBSで懸濁して回収した。また、エクソソーム回収後の遠心管は150μlの1×SDS sample bufferを加えて溶出した(2回目遠心管吸着試料)。
回収したエクソソーム、1回目、2回目の超遠心で遠心管に吸着したエクソソームは実施例1と同様にしてウェスタンブロッティングにより解析を行った。結果を図2に示す。
図2は同じ実験を3回行い、各実験のウェスタンブロッティングの結果を示している。図中、上清は培養上清を、-は未処理の遠心管を、1~3は重合体1~3の親水性ポリマーを含有するコーティング剤によってコートした遠心管を用いていることを示す。
CD63、CD9どちらのマーカーによって検出した場合も、コーティング剤を使用した場合にはエクソソームが効率よく回収されている。一方、未処理(-)の遠心管を用いた場合には、遠心管に非特異的に吸着したエクソソーム量が多く、回収率が非常に悪くなっている。
[実施例3]エクソソーム吸着実験3
実施例2において回収されたエクソソームの粒子数をナノサイトLM10(マルバーン社製)によって測定した。キャリブレーションは、Silica Microspheres:100nm(Polysiciences、Inc.#24041)をGEプラディスク13(NYL 0.1μm)を通したミリQ水で希釈したもので行った。次に、エクソソームをGEプラディスク13を通したPBSでおよそ108程度に希釈し、シリンジでサンプル溶液を測定セルに注入し10秒待ち、次に30秒のデータ測定を行った。シリンジを押して、チャンバー内のサンプル溶液を移動させることにより、新しいサンプルでセル内を入れ代えながら5回測定を行った。図3は平均値、及び標準偏差を示している。Detection thresholdは4、Camera levelは14を用いた。
実施例2において回収されたエクソソームの粒子数をナノサイトLM10(マルバーン社製)によって測定した。キャリブレーションは、Silica Microspheres:100nm(Polysiciences、Inc.#24041)をGEプラディスク13(NYL 0.1μm)を通したミリQ水で希釈したもので行った。次に、エクソソームをGEプラディスク13を通したPBSでおよそ108程度に希釈し、シリンジでサンプル溶液を測定セルに注入し10秒待ち、次に30秒のデータ測定を行った。シリンジを押して、チャンバー内のサンプル溶液を移動させることにより、新しいサンプルでセル内を入れ代えながら5回測定を行った。図3は平均値、及び標準偏差を示している。Detection thresholdは4、Camera levelは14を用いた。
重合体1~3、いずれの親水性ポリマーを含有したコーティング剤を用いた場合も、未処理の遠心管を用いて精製を行った場合に比べてエクソソームの回収率が非常に向上していることは明らかである。
[実施例4]
遠心を下記の要領で1回、又は2回行い、エクソソームの回収量、チューブに吸着する量を検討した。エクソソームはHT-29細胞の培養上清から以下のようにして精製した。上記のようにして調製したHT-29細胞の培養上清500mlを160,000xgで70分遠心し、エクソソームを沈殿させ、続いて沈殿を180mlのPBSで再懸濁し、さらに160,000xgで70分遠心して洗浄した。得られた沈殿を1.3mlのPBSに再懸濁して、エクソソーム粗分画とする。
遠心を下記の要領で1回、又は2回行い、エクソソームの回収量、チューブに吸着する量を検討した。エクソソームはHT-29細胞の培養上清から以下のようにして精製した。上記のようにして調製したHT-29細胞の培養上清500mlを160,000xgで70分遠心し、エクソソームを沈殿させ、続いて沈殿を180mlのPBSで再懸濁し、さらに160,000xgで70分遠心して洗浄した。得られた沈殿を1.3mlのPBSに再懸濁して、エクソソーム粗分画とする。
エクソソーム粗分画1.3mlを1.7mlの46% Iodixanol(OptiPrep、コスモバイオ社製)と混合し、遠心チューブの底に入れ、その上に8%から40%のIodixanol連続密度勾配を重層する。遠心チューブをベックマンL-90K遠心機とSW32Tiローターで、100、000xg、17時間、平衡密度勾配遠心を行った。遠心後、試料の上液面から4.26mlずつ3分画を回収し、その後3.26mlずつ6分画を回収し、合計9分画に分けた。それぞれの分画を27mlのPBSに懸濁し、160,000xg、120分の遠心を行った後、沈殿を500μlのPBSに懸濁して精製エクソソームとした。この9分画のうち、この実験では、分画2(密度1.36g/cm3)を精製エクソソーム試料として用いた。
HT-29細胞の培養上清より得た密度1.36g/cm3エクソソーム溶液をマイクロチューブ(エッペンドルフ社製)に各30μlずつ入れた。チューブは、予め重合体1、又は重合体4の親水性ポリマーをコートしたものを用意した。吸着実験は室温で10分静置し、13,200rpm、4℃、30分間遠心した後、ボルテックスミキサーで10秒撹拌し、エクソソームを回収した。遠心を2回行う場合は、同じ工程を2回行い、エクソソームを回収した。回収したエクソソームは、ナノサイトLM10を用いて粒子数を、ウェスタンブロッティングによって解析を行った。実験は3回行い、粒子数は平均を、ウェスタンブロッティングによる結果は3回の各実験結果を示す(図4)。
図4Aは、回収したエクソソームの粒子数の解析結果を示す。実験は3回の平均値をインプットに対する割合で示し、かっこ内の数字は遠心した回数を示す。重合体1を用いた場合には、遠心を1回行った場合にはインプットの50%以上、2回遠心を行った場合であっても30%以上の粒子を回収することができる。これに対し、重合体4の比較例を用いた場合には、遠心を1回行った場合には30%、2回行った場合には15%程度の回収率しかなかった。
図4Bに、ウェスタンブロッティングによる解析結果を示す。各パネルは、1回目、2回目、3回目の各実験において、回収したサンプル、チューブに吸着したサンプルを解析し、上から順に1回目から3回目までの解析結果を示したものである。抗EpCAM抗体(R&D Systems社製)、抗CD9抗体を用いて検出を行った。重合体4を用いた場合には、遠心を2回行って回収したサンプルでは、抗EpCAM抗体、抗CD9抗体いずれの抗体を用いた場合であってもほとんど検出されなかったのに対し、重合体1を用いた場合には、いずれの場合も検出可能であった。
[実施例5]
コーティング剤の膜厚による吸着量の比較を行った。重合体1を0.5、1.0、2.0、4.0wt%となるようにエタノールに溶解し、マイクロチューブ(トレフ社製)に、90nm~1400nmまで膜厚を変えてコートし解析に用いた。なお、膜厚の測定は、反射分光膜厚計(FE-3000、大塚電子株式会社製)を用いて測定した。実施例4と同様に、HT-29細胞の培養上清から得られたエクソソームを用い、遠心を1回、あるいは2回行い、エクソソームの回収量を比較した。
コーティング剤の膜厚による吸着量の比較を行った。重合体1を0.5、1.0、2.0、4.0wt%となるようにエタノールに溶解し、マイクロチューブ(トレフ社製)に、90nm~1400nmまで膜厚を変えてコートし解析に用いた。なお、膜厚の測定は、反射分光膜厚計(FE-3000、大塚電子株式会社製)を用いて測定した。実施例4と同様に、HT-29細胞の培養上清から得られたエクソソームを用い、遠心を1回、あるいは2回行い、エクソソームの回収量を比較した。
図5Aは、回収したエクソソームの粒子数の解析結果を示す。左側に示す90、140、370、1400は、マイクロチューブをコートした膜厚(nm)を示す。実験は3回の平均値をインプットに対する割合で示し、かっこ内の数字は遠心した回数を示す。-は未処理のチューブを用いた結果を示す。いずれの膜厚であっても、コーティングを行ったチューブを使用した場合には、インプットの50%以上の粒子を回収可能であった。これに対し、未処理のチューブの場合には、遠心を1回行った場合でも平均約45%、2回遠心を行った場合では平均20%以下の粒子しか回収することができなかった。
粒子数の解析によって、コート剤の厚さによる回収量の違いは見られなかったが、製膜時のばらつき、作業性を考慮すると50nm以上2000nm以下の膜厚であることが好ましい。この範囲の膜厚であれば、エクソソームの吸着を防止し、かつ安定した測定結果が得られると考えられる。
図5Bに、ウェスタンブロッティングによる解析結果を示す。実施例4と同様に、抗EpCAM抗体、及び抗CD9抗体により検出を行った結果を示している。いずれの膜厚でも、コートしていないチューブと比較して、明らかにエクソソームの吸着が抑えられるという結果が得られた。
図5Cに、回収サンプル、チューブに吸着したサンプルをSDS電気泳動し、銀染色により解析した結果を示す。未処理のチューブを用いた場合には、明らかに回収量が低下している。これに対し、いずれの膜厚であってもコーティングを行った場合には、吸着サンプルが減少し、回収サンプルが増加していることは明らかである。
上記実施例に示すように、重合体1~3を含有するコーティング剤を用いることによりエクソソームの容器への吸着が減少し、著しく回収率が向上している。これらコーティング剤により、エクソソーム回収率を向上させることができるだけではなく、定量的な解析を精度良く行うことができる。
本発明のコーティング剤を使用することによって、エクソソームをはじめとする細胞外小胞が容器や解析に用いる基板などへ吸着することを防止できる。その結果、細胞外小胞の回収率を著しく改善し、さらに解析の精度を向上させることができる。
Claims (5)
- 重量平均分子量が1万以上100万以下である親水性ポリマーを含有し、
得られるコーティング被膜の接触角が0度以上30度以下である細胞外小胞吸着防止用コーティング剤。 - 前記親水性ポリマーが
2-メタクリロイルオキシエチルホスホリルコリン、ビニルアルコール、ビニルピロリドン、メトキシアルキレングリコールモノメタクリレート又はメタクリル酸2-ヒドロキシエチルからなる1種以上の親水性単量体を含む請求項1記載のコーティング剤。 - 前記親水性ポリマーを構成する前記親水性単量体が、
2-メタクリロイルオキシエチルホスホリルコリンであって、
2-メタクリルロイルオキシエチルホスホリルコリンに基づく構成単位を30モル%以上50モル%以下含有し、
残余が疎水性基含有単量体からなる共重合体である請求項2記載のコーティング剤。 - 請求項1~3いずれか1項記載のコーティング剤でコートされている器具。
- 請求項4記載の器具を用いることを特徴とする細胞外小胞の精製及び/又は解析方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17802773.6A EP3467059B1 (en) | 2016-05-24 | 2017-05-23 | Method of recovering extracellular vesicles and container for extracellular vesicles |
JP2018519547A JP6970665B2 (ja) | 2016-05-24 | 2017-05-23 | 細胞外小胞回収方法及び細胞外小胞用容器 |
CN201780032132.4A CN109153882B (zh) | 2016-05-24 | 2017-05-23 | 细胞外小泡回收方法及细胞外小泡用容器 |
US16/303,798 US10955410B2 (en) | 2016-05-24 | 2017-05-23 | Method of recovering extracellular vesicles and container for extracellular vesicles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016103091 | 2016-05-24 | ||
JP2016-103091 | 2016-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017204187A1 true WO2017204187A1 (ja) | 2017-11-30 |
Family
ID=60411962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019121 WO2017204187A1 (ja) | 2016-05-24 | 2017-05-23 | 細胞外小胞回収方法及び細胞外小胞用容器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10955410B2 (ja) |
EP (1) | EP3467059B1 (ja) |
JP (1) | JP6970665B2 (ja) |
CN (1) | CN109153882B (ja) |
WO (1) | WO2017204187A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124288A1 (ja) * | 2020-12-07 | 2022-06-16 | 大日本塗料株式会社 | 粒状物質をイムノクロマトグラフィー法によって検出する方法及びそのためのキット |
CN115887758A (zh) * | 2022-11-15 | 2023-04-04 | 西南交通大学 | 负载外泌体促进糖尿病创面修复的共聚水凝胶 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022203603A1 (en) * | 2021-03-26 | 2022-09-29 | N-Lab Technology Center Pte. Ltd. | Water-soluble polymer to prevent non-specific adsorption |
CN118345022A (zh) * | 2024-01-24 | 2024-07-16 | 上海市肺科医院(上海市职业病防治院) | 一种唾液中外泌体的富集提取方法及在筛查结核性潜伏感染中的应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0339309A (ja) * | 1989-07-07 | 1991-02-20 | Res Dev Corp Of Japan | 生体適合性医療デバイス用材料 |
JPH075177A (ja) * | 1993-06-15 | 1995-01-10 | Nippon Oil & Fats Co Ltd | 生化学的分析方法及び生化学的分析用反応容器 |
JP2003014767A (ja) * | 2001-04-26 | 2003-01-15 | Nof Corp | 非特異的ハイブリダイゼーション抑制剤、臨床検査薬及び臨床検査法 |
JP2004275862A (ja) * | 2003-03-14 | 2004-10-07 | Sumitomo Bakelite Co Ltd | 糖鎖化合物吸着制御実験器具 |
JP2005099040A (ja) * | 1998-12-24 | 2005-04-14 | Sumitomo Bakelite Co Ltd | 免疫分析用容器 |
JP2008058334A (ja) * | 2007-11-21 | 2008-03-13 | Towns:Kk | イムノクロマトグラフィー用展開溶媒、測定法およびキット |
WO2015029979A1 (ja) * | 2013-08-30 | 2015-03-05 | 国立大学法人東京大学 | エキソソームの分析方法、エキソソーム分析チップ、及びエキソソーム分析装置 |
WO2015068772A1 (ja) * | 2013-11-06 | 2015-05-14 | Jsr株式会社 | 分離方法、検出方法、シグナル測定方法、疾患の判定方法、疾患治療薬の薬効評価方法、キット及び液状組成物 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3443891B2 (ja) | 1993-09-14 | 2003-09-08 | 日本油脂株式会社 | タンパク質吸着防止剤 |
DE69929248T2 (de) | 1998-12-24 | 2006-08-17 | Sumitomo Bakelite Co. Ltd. | Behälter für immunoassays |
FR2788780B1 (fr) | 1999-01-27 | 2001-03-30 | Ap Cells Inc | Procede de preparation de vesicules membranaires |
US20040241176A1 (en) | 2000-04-27 | 2004-12-02 | Ap Cells. Inc. | Method of producing membrane vesicles |
DK1657302T3 (da) | 2003-06-25 | 2013-02-18 | Nof Corp | Fremgangsmåde til dannelse af embryoide legemer |
JP4931342B2 (ja) * | 2004-11-26 | 2012-05-16 | 株式会社トクヤマ | 義歯床用コーティング材 |
CN101365501B (zh) * | 2005-12-09 | 2015-12-16 | 帝斯曼知识产权资产管理有限公司 | 包含聚电解质的亲水性涂料 |
AU2008321174A1 (en) * | 2007-11-14 | 2009-05-22 | The Regents Of The University Of California | Sterol-modified amphiphilic lipids |
US8957173B2 (en) * | 2009-04-24 | 2015-02-17 | Next21 K.K. | Resin product for medical use and respiration-assisting tube |
SG183579A1 (en) | 2011-02-11 | 2012-09-27 | Agency Science Tech & Res | Methods of detecting therapeutic exosomes |
WO2014084219A1 (ja) | 2012-11-29 | 2014-06-05 | 大阪有機化学工業株式会社 | 親水性コート剤 |
JP2017526388A (ja) * | 2014-09-05 | 2017-09-14 | エクサーカイン コーポレイションExerkine Corporation | エキソソームの単離 |
-
2017
- 2017-05-23 WO PCT/JP2017/019121 patent/WO2017204187A1/ja unknown
- 2017-05-23 JP JP2018519547A patent/JP6970665B2/ja active Active
- 2017-05-23 EP EP17802773.6A patent/EP3467059B1/en active Active
- 2017-05-23 US US16/303,798 patent/US10955410B2/en active Active
- 2017-05-23 CN CN201780032132.4A patent/CN109153882B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0339309A (ja) * | 1989-07-07 | 1991-02-20 | Res Dev Corp Of Japan | 生体適合性医療デバイス用材料 |
JPH075177A (ja) * | 1993-06-15 | 1995-01-10 | Nippon Oil & Fats Co Ltd | 生化学的分析方法及び生化学的分析用反応容器 |
JP2005099040A (ja) * | 1998-12-24 | 2005-04-14 | Sumitomo Bakelite Co Ltd | 免疫分析用容器 |
JP2003014767A (ja) * | 2001-04-26 | 2003-01-15 | Nof Corp | 非特異的ハイブリダイゼーション抑制剤、臨床検査薬及び臨床検査法 |
JP2004275862A (ja) * | 2003-03-14 | 2004-10-07 | Sumitomo Bakelite Co Ltd | 糖鎖化合物吸着制御実験器具 |
JP2008058334A (ja) * | 2007-11-21 | 2008-03-13 | Towns:Kk | イムノクロマトグラフィー用展開溶媒、測定法およびキット |
WO2015029979A1 (ja) * | 2013-08-30 | 2015-03-05 | 国立大学法人東京大学 | エキソソームの分析方法、エキソソーム分析チップ、及びエキソソーム分析装置 |
WO2015068772A1 (ja) * | 2013-11-06 | 2015-05-14 | Jsr株式会社 | 分離方法、検出方法、シグナル測定方法、疾患の判定方法、疾患治療薬の薬効評価方法、キット及び液状組成物 |
Non-Patent Citations (3)
Title |
---|
KYOKO FUKAZAWA ET AL.: "Surface Modification of Various Materials Using Photoreactive MPC Polymer", FUNCTION & MATERIALS, vol. 33, no. 9, 2013, JP, pages 26 - 32, XP009513070, ISSN: 0286-4835 * |
MADOKA TAKAI: "Evaluation of Biocompatible Polymer for Medical Devices", SCIENCE AND ENGINEERING OF MATERIALS, vol. 52, no. 1, 2015, pages 14 - 17, XP009513808 * |
See also references of EP3467059A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022124288A1 (ja) * | 2020-12-07 | 2022-06-16 | 大日本塗料株式会社 | 粒状物質をイムノクロマトグラフィー法によって検出する方法及びそのためのキット |
JP2022090191A (ja) * | 2020-12-07 | 2022-06-17 | 大日本塗料株式会社 | 粒状物質をイムノクロマトグラフィー法によって検出する方法及びそのためのキット |
JP7451385B2 (ja) | 2020-12-07 | 2024-03-18 | 大日本塗料株式会社 | 粒状物質をイムノクロマトグラフィー法によって検出する方法及びそのためのキット |
CN115887758A (zh) * | 2022-11-15 | 2023-04-04 | 西南交通大学 | 负载外泌体促进糖尿病创面修复的共聚水凝胶 |
CN115887758B (zh) * | 2022-11-15 | 2024-01-26 | 西南交通大学 | 负载外泌体促进糖尿病创面修复的共聚水凝胶 |
Also Published As
Publication number | Publication date |
---|---|
JP6970665B2 (ja) | 2021-11-24 |
EP3467059B1 (en) | 2022-02-23 |
CN109153882A (zh) | 2019-01-04 |
US10955410B2 (en) | 2021-03-23 |
JPWO2017204187A1 (ja) | 2019-03-22 |
CN109153882B (zh) | 2022-03-04 |
EP3467059A1 (en) | 2019-04-10 |
EP3467059A4 (en) | 2020-03-11 |
US20200025750A1 (en) | 2020-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cufaro et al. | Extracellular vesicles and their potential use in monitoring cancer progression and therapy: the contribution of proteomics | |
Coumans et al. | Methodological guidelines to study extracellular vesicles | |
WO2017204187A1 (ja) | 細胞外小胞回収方法及び細胞外小胞用容器 | |
Hou et al. | Microfluidic devices for blood fractionation | |
Wang et al. | Label-free isolation and mRNA detection of circulating tumor cells from patients with metastatic lung cancer for disease diagnosis and monitoring therapeutic efficacy | |
JP5620444B2 (ja) | 液滴中においてサンプルを処理するためのデバイスをリンスする装置、および当該デバイスをリンスする方法 | |
Sharpe | Methods of cell separation | |
JP6208473B2 (ja) | 血液成分を含む試料の処理方法 | |
Ryu et al. | Patient-derived airway secretion dissociation technique to isolate and concentrate immune cells using closed-loop inertial microfluidics | |
Marqués-García et al. | Protocols for exosome isolation and RNA profiling | |
JP6535050B2 (ja) | 循環腫瘍細胞濃縮分離デバイス及び循環腫瘍細胞の濃縮分離方法 | |
Yin et al. | Detection of circulating tumor cells by fluorescence microspheres-mediated amplification | |
JP7158671B2 (ja) | 特定細胞捕捉方法 | |
Gorgzadeh et al. | A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection | |
CN105087775A (zh) | 一种基于稀有细胞检测c-MET/CEP7基因状态的方法及相关试剂盒 | |
Gribko et al. | IsoMAG—An Automated System for the Immunomagnetic Isolation of Squamous Cell Carcinoma-Derived Circulating Tumor Cells | |
US11467073B2 (en) | Method for concentrating extracellular vesicles | |
US9632086B2 (en) | Method and kit for determining-antibody sensitivity and clone cell strain | |
Zuvin et al. | Human breast cancer cell enrichment by Dean flow driven microfluidic channels | |
Chen et al. | Blood-typing and irregular antibody screening through multi-channel microfluidic discs with surface antifouling modification | |
US10752937B2 (en) | Processing blood samples to detect target nucleic acids | |
JP6272296B2 (ja) | 懸濁された細胞成分を均質に分布させるための方法と装置 | |
JP2020180794A (ja) | 医療用検査装置及び細胞検査方法 | |
Zhong | Detection and Isolation of Circulating Tumor Cells from Whole Blood Using a High-Throughput Microchip System | |
WO2012017922A1 (ja) | 細胞観察用デバイス,細胞観察方法および細胞観察用システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018519547 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17802773 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017802773 Country of ref document: EP Effective date: 20190102 |