[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017138221A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2017138221A1
WO2017138221A1 PCT/JP2016/085152 JP2016085152W WO2017138221A1 WO 2017138221 A1 WO2017138221 A1 WO 2017138221A1 JP 2016085152 W JP2016085152 W JP 2016085152W WO 2017138221 A1 WO2017138221 A1 WO 2017138221A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
region
insulating film
semiconductor device
electrode
Prior art date
Application number
PCT/JP2016/085152
Other languages
English (en)
French (fr)
Inventor
友勝 渡辺
史郎 日野
祐介 山城
岩松 俊明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112016006374.1T priority Critical patent/DE112016006374B4/de
Priority to US16/066,777 priority patent/US10665679B2/en
Priority to JP2017566527A priority patent/JP6505263B2/ja
Priority to CN201680080810.XA priority patent/CN108604600B/zh
Publication of WO2017138221A1 publication Critical patent/WO2017138221A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing the same.
  • SiC silicon carbide
  • a silicon carbide semiconductor device having an insulated gate structure such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) and an IGBT (Insulated Gate Bipolar Transistor), it is desired to prevent dielectric breakdown of the gate insulating film.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • a SiC-MOSFET or SiC-IGBT as a practical power semiconductor device usually has p-type well regions facing each other with an n-type drift layer interposed therebetween.
  • the portion of the drift layer sandwiched between the well regions is also referred to as a JFET (Junction-Field-Effect-Transistor) region.
  • JFET Junction-Field-Effect-Transistor
  • Patent Documents 1 to 3 disclose a configuration in which a p ⁇ region is formed at the upper center of a JFET region in a MOSFET (a portion where threading dislocations exist in Patent Document 3). According to this configuration, when the MOSFET is in the OFF state, depletion of the upper portion of the JFET region is promoted, and thereby the electric field strength applied to the gate insulating film on the upper portion of the JFET region is suppressed. Therefore, the gate insulating film can be prevented from being broken when a high voltage is applied to the semiconductor device.
  • the presence of the p ⁇ region (electric field relaxation region) in a part of the JFET region can prevent the gate insulating film from being broken when the MOSFET is turned off.
  • the MOSFET when the MOSFET is on, carrier electron travel is hindered by the p ⁇ region, and there is a concern about an increase in on-resistance.
  • the present inventors have found that the breakdown of the gate insulating film when the MOSFET is turned off occurs by the following mechanism.
  • the potential at the interface between the JFET region and the gate insulating film becomes higher than the potential of the source electrode and the gate electrode, so that an electric field is generated in the gate insulating film, thereby causing carrier electrons from the gate electrode to the gate insulating film.
  • the carrier electrons that have leaked through the tunnel are accelerated by a high electric field in the gate insulating film and injected into the SiC layer. At that time, high-energy carrier electrons cause impact ionization in the SiC layer.
  • the holes generated at this time are accelerated by the electric field and collide with the gate insulating film or are reinjected into the gate insulating film, thereby causing the gate insulating film to deteriorate over time, which leads to destruction of the gate insulating film.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a silicon carbide semiconductor device capable of preventing deterioration of the gate insulating film by suppressing deterioration of the gate insulating film.
  • the silicon carbide semiconductor device is selectively provided in a silicon carbide layer, a first conductivity type drift layer provided in the silicon carbide layer, and an upper layer portion of the silicon carbide layer, A plurality of well regions of a second conductivity type different from the conductivity type, a portion of the drift layer sandwiched between the plurality of well regions, a JFET region reaching the upper surface of the silicon carbide layer, and the silicon carbide layer An insulating film covering at least the JFET region, and an electrode provided on the JFET region via the insulating film, wherein the insulating film and the electrode constitute the insulating film and the electrode It includes a region containing an element different from the element to be performed.
  • the present invention since carrier electrons leaking from the electrode to the insulating film are suppressed, deterioration of the insulating film due to the leakage of the carrier electrons can be prevented.
  • produces in the OFF state of the silicon carbide semiconductor device which concerns on one embodiment of this invention of the relationship between the electric field of a gate insulating film, and a gate leak current It is. It is a band figure of the MOS structure of a JFET area
  • FIG. 1 is a diagram showing a configuration of a MOSFET which is a silicon carbide semiconductor device according to the present embodiment, and is a partial sectional view showing a section of a unit cell portion of the MOSFET.
  • the MOSFET includes an SiC substrate 1 (silicon carbide substrate), an SiC layer 30 (silicon carbide layer), a gate insulating film 6 (insulating film), a gate electrode 7 (electrode), a source electrode 8, and a drain.
  • An electrode 9 is provided.
  • the SiC substrate 1 is an n-type (first conductivity type) substrate made of SiC.
  • the n-type impurity concentration of SiC substrate 1 is higher than the impurity concentration of drift layer 2 described later. Therefore, the resistivity of SiC substrate 1 is lower than the resistivity of drift layer 2.
  • SiC substrate 1 has a single crystal structure, the crystal structure of which is hexagonal, and preferably has polytype 4H.
  • the plane orientation of the upper surface of SiC substrate 1 (the surface on the SiC layer 30 side) is the (0001) or (000-1) plane.
  • the SiC layer 30 is provided on the upper surface of the SiC substrate 1.
  • the surface facing SiC substrate 1 is defined as “lower surface S1” (first surface), and the opposite surface is defined as “upper surface S2” (second surface).
  • the SiC layer 30 includes an n-type drift layer 2, a plurality of p-type (second conductivity type) well regions 3, a plurality of n-type source regions 4, and a plurality of p-type plurality. Contact region 5.
  • the thickness of the SiC layer 30 is, for example, 1 to 100 ⁇ m.
  • the drift layer 2 reaches the upper surface S2 of the SiC layer 30 at a portion between the well regions 3. Further, the bottom of drift layer 2 reaches bottom surface S ⁇ b> 1 of SiC layer 30. Accordingly, the maximum thickness of the drift layer 2 corresponds to the thickness of the SiC layer 30 and is, for example, 1 to 100 ⁇ m. Further, a portion sandwiched between adjacent well regions 3 in the drift layer 2 is a JFET region JR. JFET region JR has a width WJ in the direction in which well regions 3 are adjacent to each other (lateral direction in FIG. 1) on upper surface S2 of SiC layer 30.
  • Well region 3 is partially (selectively) formed in the upper layer portion of SiC layer 30, and is a portion where source region 4 and contact region 5 are not formed (a portion between source region 4 and JFET region JR). , And reaches the upper surface S2 of the SiC layer 30. Further, the depth (thickness) of the well region 3 is smaller than the thickness of the SiC layer 30, and thus the well region 3 is separated from the lower surface S ⁇ b> 1 of the SiC layer 30.
  • the source region 4 is formed in the upper layer portion of the well region 3 so as to be separated from the JFET region JR. Source region 4 reaches upper surface S ⁇ b> 2 of SiC layer 30. Further, the depth (thickness) of the source region 4 is smaller than the thickness of the well region 3, so that the source region 4 is also separated from the drift layer 2 below the well region 3.
  • the contact region 5 is formed in the upper layer portion of the well region 3 and adjacent to the source region 4.
  • Source region 4 reaches upper surface S ⁇ b> 2 of SiC layer 30 and also reaches well region 3.
  • the depth (thickness) of the contact region 5 is smaller than the thickness of the well region 3, so that the contact region 5 is separated from the drift layer 2 below the well region 3.
  • the upper surface S2 of the SiC layer 30 includes the upper surface of the JFET region JR, the upper surface of the well region 3, the upper surface of the source region 4, and the upper surface of the contact region 5 which are part of the drift layer 2, respectively. Partially included. Further, the lower surface S1 of the SiC layer 30 corresponds to the lower surface of the drift layer 20.
  • Gate insulating film 6 is provided on upper surface S ⁇ b> 2 of SiC layer 30 and has an opening exposing a part of the upper surface of source region 4 and the upper surface of contact region 5.
  • the upper surface of the JFET region JR, the upper surface of the portion between the JFET region JR and the source region 4 in the well region 3, and the upper surface of the remaining portion of the source region 4 (portion not exposed to the opening) are: Covered by the gate insulating film 6.
  • the gate insulating film 6 is made of, for example, silicon oxide (SiO 2 ).
  • the gate electrode 7 is provided on the gate insulating film 6. As shown in FIG. 1, the gate electrode 7 is disposed so as to face the JFET region JR and the portion of the well region 3 between the JFET region JR and the source region 4 with the gate insulating film 6 interposed therebetween.
  • the gate electrode 7 is made of silicon, and any one of phosphorus (P), arsenic (As), antimony (Sb), boron (B), and gallium (Ga) is used as an impurity dopant. Shall be included.
  • an element different from the element constituting the gate insulating film 6 and the gate electrode 7 (hereinafter referred to as “different element”) is added in the vicinity of the boundary between the gate insulating film 6 and the gate electrode 7.
  • the different element-containing region 10 is included.
  • the foreign element containing region 10 is provided only in the portion above the JFET region JR. That is, the foreign element is not contained in the interface between the gate electrode 7 and the gate insulating film 6 in the region outside the region immediately above the JFET region JR.
  • the “elements constituting the gate electrode 7” includes impurity dopants introduced into the gate electrode 7.
  • the foreign element constituting the foreign element-containing region 10 is an element (negative element) having a higher electronegativity than any element constituting the gate electrode 7.
  • the negative element species carbon (C), nitrogen (N), fluorine (F), sulfur (S), chlorine (Cl), selenium (Se), bromine (Br), iodine (I), or the like may be used. it can.
  • the surface density of the foreign element in the foreign element containing region 10 is in the range of 1 ⁇ 10 13 cm ⁇ 2 or more and 1 ⁇ 10 15 cm ⁇ 2 or less, and the concentration peak of the foreign element in the foreign element containing region 10 is For example, the value is in the range of 1 ⁇ 10 20 cm ⁇ 3 or more and 1 ⁇ 10 22 cm ⁇ 3 or less.
  • the source electrode 8 is formed on the upper surface S ⁇ b> 2 of the SiC layer 30 and is in contact with the source region 4 and the contact region 5 in the opening of the gate insulating film 6.
  • the source electrode 8 is an electrode that is in ohmic contact with the source region 4 and the contact region 5.
  • the drain electrode 9 is formed in contact with the lower surface of the SiC substrate 1. That is, the drain electrode 9 is disposed to face the lower surface S1 of the SiC layer 30 with the SiC substrate 1 interposed therebetween.
  • the drain electrode 9 is an electrode that is ohmically bonded to the SiC layer 30 via the SiC substrate 1.
  • the SiC substrate 1 whose top surface orientation is the (0001) plane or the (000-1) plane is prepared, and the SiC layer 30 is formed on the top surface of the SiC substrate 1 by epitaxial growth.
  • SiC layer 30 having lower surface S1 facing SiC substrate 1 and upper surface S2 on the opposite side is obtained (FIG. 2).
  • Epitaxial growth for forming the SiC layer 30 can be performed by, for example, a CVD (Chemical Vapor Deposition) method.
  • the SiC layer 30 is formed as the n-type drift layer 2 by introducing an n-type impurity (donor) into the SiC layer 30.
  • the concentration (donor concentration) of the n-type impurity introduced into the SiC layer 30 (drift layer 2) is, for example, in the range of 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • a resist mask (not shown) having an opening on the formation region of well region 3 is formed on upper surface S ⁇ b> 2 of SiC layer 30, and p-type impurities (acceptors) are ion-implanted into SiC layer 30 from thereover. .
  • a plurality of well regions 3 are selectively formed in the upper layer portion of SiC layer 30 (FIG. 3).
  • a portion sandwiched between adjacent well regions 3 in the drift layer 2 is defined as a JFET region JR.
  • the interval between the well regions 3 corresponds to the width WJ of the JFET region JR, and the width is defined by the width of the resist mask.
  • the resist mask is removed.
  • the p-type impurity constituting the well region 3 for example, aluminum (Al), boron (B), or gallium (Ga) is used, and its concentration (acceptor concentration) is higher than the donor concentration of the drift layer 2. It is in the range of 1 ⁇ 10 15 cm ⁇ 3 or more and 1 ⁇ 10 19 cm ⁇ 3 or less. Further, the ion implantation depth of the p-type impurity is, for example, about 0.5 to 3 ⁇ m in a range smaller than the thickness of the drift layer 2.
  • a resist mask (not shown) having an opening on the formation region of the source region 4 is formed on the upper surface S2 of the SiC layer 30, and an n-type impurity (donor) is ion-implanted into the SiC layer 30 from thereover. .
  • the source region 4 is selectively formed in the upper layer portion of each well region 3 (FIG. 4), and then the resist mask is removed.
  • the n-type impurity constituting the source region 4 for example, nitrogen, phosphorus, or arsenic is used, and the concentration thereof is, for example, in the range of 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 . Further, the ion implantation depth of the n-type impurity is, for example, about 0.1 to 2 ⁇ m in a range smaller than the thickness of the well region 3.
  • a resist mask (not shown) having an opening on the formation region of the contact region 5 is formed on the upper surface S2 of the SiC layer 30, and p-type impurities are ion-implanted into the SiC layer 30 from thereabove.
  • a contact region 5 is selectively formed at a position adjacent to the source region 4 in the upper layer portion of each well region 3 (FIG. 5). Thereafter, the resist mask is removed.
  • the p-type impurity constituting the contact region 5 for example, aluminum, boron, or gallium is used, and the concentration thereof is, for example, in the range of 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the depth of ion implantation of the p-type impurity is set to about 0.1 to 2.1 ⁇ m in a range smaller than the thickness of the well region 3. Further, the depth of the contact region 5 is desirably larger than the depth of the source region 4 so that the contact region 5 can sufficiently reach the well region 3.
  • heat treatment using a heat treatment apparatus is performed on SiC substrate 1 including SiC layer 30. I do.
  • This heat treatment is performed in the range of 1300 to 2100 ° C. in an inert gas atmosphere such as argon.
  • the impurities ion-implanted into SiC layer 30 in each of the above steps are electrically activated.
  • the gate insulating film 6 is formed on the upper surface S2 of the SiC layer 30 by thermal oxidation processing at a temperature in the range of 700 to 1400 ° C. or lamination processing by a deposition method such as a CVD method on the upper surface S2 of the SiC layer 30. Is formed (FIG. 6).
  • the film thickness of the gate insulating film 6 is in the range of 10 to 200 nm.
  • a polycrystalline silicon (polysilicon) film is deposited on the gate insulating film 6 by, for example, a CVD method, and the polycrystalline silicon film is patterned by using a photolithography technique and an etching technique, whereby the gate electrode 7 is formed.
  • the gate electrode 7 is patterned so that both ends thereof are located on adjacent source regions 4 in a cross-sectional view. That is, the gate electrode 7 is formed so as to straddle between adjacent source regions 4 and cover the well region 3 and the JFET region JR between them in a cross-sectional view.
  • a resist mask having an opening immediately above the JFET region JR is formed on the SiC layer 30 on which the gate insulating film 6 and the gate electrode 7 are formed, and the gate insulating film 6 and the gate electrode 7 are formed thereon.
  • An element (negative element) having a higher electronegativity than any element constituting the gate electrode 7 is added by ion implantation to the gate electrode 7 as an element (different element) different from the element to be performed.
  • a region 11 foreign element implantation region into which a different element has been implanted is formed immediately above the JFET region JR in the gate electrode 7 (FIG. 8). Thereafter, the resist mask is removed.
  • the implantation dose is 1 ⁇ 10 13 cm ⁇ 2 or more and 1 ⁇ 10 15 cm ⁇ 2 or less.
  • heat treatment using a heat treatment apparatus is performed on the SiC substrate 1 including the gate electrode 7 including the different element implantation region 11.
  • This heat treatment is performed in the range of 800 to 1100 ° C. in an inert gas atmosphere such as nitrogen or argon.
  • an inert gas atmosphere such as nitrogen or argon.
  • the diffusion of the different element stops at the interface between the gate electrode 7 and the gate insulating film 6, and the different element containing region 10 due to the different element is formed at the boundary between the gate insulating film 6 and the gate electrode 7 immediately above the JFET region JR. Is formed (FIG. 10).
  • the concentration peak of the different element in the different element containing region 10 is located within a range of 100 nm above and below from the interface between the gate electrode 7 and the gate insulating film 6.
  • the gate insulating film 6 is patterned to form an opening reaching the source region 4 and the contact region 5, and the source electrode 8 so as to straddle the source region 4 and the contact region 5 exposed in the opening. Is formed (FIG. 11).
  • the material of the source electrode 8 for example, nickel, titanium, aluminum, molybdenum, chromium, platinum, tungsten, tantalum, niobium, silicon or titanium carbide, nitrides thereof, or alloys thereof are used.
  • the drain electrode 9 is formed on the lower surface of the SiC substrate 1.
  • the material of the drain electrode 9 may be the same as the material of the source electrode 8.
  • heat treatment is performed to alloy each of the source electrode 8 and the drain electrode 9 with silicon carbide in contact therewith.
  • This heat treatment can be performed, for example, under conditions of a temperature of 950 to 1000 ° C., a processing time of 20 to 60 seconds, and a temperature increase rate of 10 to 25 ° C./second.
  • the MOSFET according to the present embodiment shown in FIG. 1 is completed.
  • FIG. 12 is a band diagram of the MOS structure of the JFET region in the off state of a conventional silicon carbide semiconductor device (MOSFET) that does not have the foreign element-containing region 10.
  • MOSFET silicon carbide semiconductor device
  • carriers are caused by FN (Fowler-Nordheim) tunnel leakage from the gate electrode 7 (Poly-Si) to the gate insulating film 6 (SiO 2 ) due to the reverse electric field, as shown in FIG. Electrons are injected and gate leakage current is generated.
  • the carrier electrons injected into the gate insulating film 6 pass through the gate insulating film 6 while being accelerated by a high electric field and flow to the drift layer 2 (4H—SiC).
  • the carrier electrons Since the carrier electrons have high energy, holes are excited in the drift layer 2 by impact ionization. The excited holes are accelerated toward the gate insulating film 6 in the drift layer 2, and some high energy holes are reinjected into the gate insulating film 6. The amount of carrier electron current due to the FN tunnel leak is determined by the barrier energy ⁇ B for the FN tunnel leak.
  • the energy potential ⁇ S generated by the foreign element (negative element) in the foreign element containing region 10 of the MOSFET according to the present embodiment will be described.
  • the foreign element in the foreign element containing region 10 captures surrounding electrons due to its high electronegativity and forms a negative fixed charge.
  • ⁇ 0 is a vacuum dielectric constant
  • ⁇ S is a relative dielectric constant of the gate electrode 7
  • N D is a doping density of a different element in the gate electrode 7.
  • FIG. 13 shows the dependence on the surface density N S foreign element (negative element) of the energy potential .DELTA..PHI S.
  • N S foreign element negative element
  • energy potential .DELTA..PHI S is can be seen that high.
  • the barrier potential ⁇ B for carrier electrons to FN tunnel leak from the gate electrode 7 to the gate insulating film 6 increases, and the gate leakage current can be greatly reduced.
  • FIG. 14 is a graph showing the dependence of the relationship between the electric field E OX of the gate insulating film 6 and the gate leakage current IG on the energy potential ⁇ S. As shown in FIG. 14, the higher the energy potential ⁇ S, the smaller the gate leakage current IG for the same electric field E OX .
  • the amount of carrier electrons flowing into the drift layer 2 is significantly reduced as shown in FIG.
  • the amount of high energy holes excited in the silicon carbide depletion layer is greatly reduced, and hole reinjection into the gate insulating film 6 is suppressed.
  • deterioration of the gate insulating film 6 is suppressed, and the gate insulating film can be prevented from being broken.
  • the on-resistance is not increased, so that the on-characteristics of the MOSFET are prevented from being impaired, and the reliability at the off-time is improved. Can do.
  • a MOSFET is shown as a silicon carbide semiconductor device to which the present invention is applied.
  • the application of the present invention is not limited to a MOSFET, and other MISFETs (Metal-Insulator-Semiconductor-Field-Effect-Transistor) may be used.
  • the silicon carbide semiconductor device to which the present invention is applied may not be a MISFET, and may be, for example, an IGBT.
  • the conductivity type of SiC substrate 1 in FIG. 1 is p-type, an IGBT having SiC substrate 1 as a collector layer can be obtained.
  • the collector layer of the IGBT does not have to be formed of a “substrate”. For example, after forming a p-type region as a collector layer on the drift layer 2 on the SiC substrate 1, a method of removing the SiC substrate 1 is used. May be taken.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • it may be reversed (that is, the conductivity of impurities (donor and acceptor) added to each region).
  • the type may be changed).
  • the MOSFET of FIG. 1 if the first conductivity type is p-type and the second conductivity type is n-type, a p-channel MOSFET can be obtained.
  • the order of the ion implantation process performed for adding each impurity is not restricted to what was demonstrated above, Arbitrary order may be sufficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

炭化珪素半導体装置は、SiC層30内に設けられたn型のドリフト層2と、p型の複数のウェル領域3と、ウェル領域3に挟まれたドリフト層2の部分であるJFET領域JRと、少なくともJFET領域JRを覆うゲート絶縁膜6およびゲート電極7とを備える。ゲート絶縁膜6およびゲート電極7は、ゲート絶縁膜6およびゲート電極7を構成する元素とは異なる元素を含む異元素含有領域10を含む。

Description

炭化珪素半導体装置およびその製造方法
 本発明は、炭化珪素半導体装置およびその製造方法に関するものである。
 近年、炭化珪素半導体装置、すなわち炭化珪素(SiC)層を有する半導体装置、を用いた電力用半導体装置が実用化されつつあり、その信頼性を向上するための検討が行われている。SiC自体は高い絶縁破壊強度を有するため、炭化珪素半導体装置における絶縁破壊は、SiC層ではなくその上に設けられた絶縁膜で生じやすい。よって信頼性を確保するためには絶縁膜の劣化を防止することが重要である。特に、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)およびIGBT(Insulated Gate Bipolar Transistor)のように絶縁ゲート構造を有する炭化珪素半導体装置においては、ゲート絶縁膜の絶縁破壊を防ぐことが望まれる。
 実用的な電力用半導体装置としてのSiC-MOSFETまたはSiC-IGBTは、通常、n型のドリフト層を挟んで対向するp型のウェル領域を有する。ウェル領域に挟まれたドリフト層の部分は、JFET(Junction-Field-Effect-Transistor)領域とも称される。電力用半導体装置がオフ状態にある際には、JFET領域上に位置するゲート絶縁膜に高い電界が印加される。このため、絶縁膜の絶縁破壊はJFET領域上のゲート電極で特に生じやすく、これを防ぐための種々の技術が提案されている(例えば、下記の特許文献1~3)。
 特許文献1~3には、MOSFETにおけるJFET領域の中央上部(特許文献3では貫通転位が存在する部分)にp領域を形成した構成が開示されている。この構成によれば、MOSFETがオフ状態のとき、JFET領域上部の空乏化が促進され、それによってJFET領域上部のゲート絶縁膜にかかる電界強度が抑制される。したがって、半導体装置に高電圧がかかったときのゲート絶縁膜の破壊を防止できる。
特開2011-060930号公報 特開2011-211020号公報 特開2013-254826号公報
 特許文献1~3の技術では、JFET領域の一部にp領域(電界緩和領域)が存在することで、MOSFETのオフ時におけるゲート絶縁膜の破壊を防止できる。しかし、MOSFETのオン時には、キャリア電子の走行が当該p領域によって阻害されるため、オン抵抗の増大が懸念される。
 一方、本発明者らは、MOSFETのオフ時におけるゲート絶縁膜の破壊が以下のようなメカニズムで起こることを突き止めた。MOSFETのオフ時には、JFET領域とゲート絶縁膜との界面の電位がソース電極およびゲート電極の電位よりも高くなるため、ゲート絶縁膜に電界が生じ、それによりゲート電極からゲート絶縁膜へキャリア電子が僅かにトンネルリークする。トンネルリークしたキャリア電子は、ゲート絶縁膜内で高電界により加速され、SiC層へ注入される。その際、高エネルギーを得たキャリア電子がSiC層内でインパクトイオン化を引き起こす。このとき生じたホールは、電界により加速されてゲート絶縁膜に衝突あるいはゲート絶縁膜に再注入され、ゲート絶縁膜の経時劣化を引き起こし、それがゲート絶縁膜の破壊に繋がる。
 本発明は以上のような課題を解決するためになされたものであり、ゲート絶縁膜の劣化を抑制してゲート絶縁膜の破壊を防止できる炭化珪素半導体装置を提供することを目的とする。
 本発明に係る炭化珪素半導体装置は、炭化珪素層と、前記炭化珪素層内に設けられた第1導電型のドリフト層と、前記炭化珪素層の上層部に選択的に設けられ、前記第1導電型とは異なる第2導電型の複数のウェル領域と、前記複数のウェル領域に挟まれた前記ドリフト層の部分であり、前記炭化珪素層の上面に達するJFET領域と、前記炭化珪素層上に設けられ、少なくとも前記JFET領域を覆う絶縁膜と、前記絶縁膜を介して前記JFET領域上に設けられた電極と、を備え、前記絶縁膜および前記電極は、前記絶縁膜および前記電極を構成する元素とは異なる元素を含む領域を含む。
 本発明によれば、電極から絶縁膜へリークするキャリア電子が抑制させるため、そのキャリア電子のリークに起因する絶縁膜の劣化を防止できる。
本発明の一実施の形態に係る炭化珪素半導体装置のユニットセルの構成を概略的に示す部分断面図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 本発明の一実施の形態に係る炭化珪素半導体装置の製造方法を示す工程図である。 従来の炭化珪素半導体装置のオフ状態における、JFET領域のMOS構造のバンド図である。 本発明の一実施の形態に係る炭化珪素半導体装置のオフ状態における、異元素(陰性元素)の面密度に対するエネルギーポテンシャルの依存性を示すグラフである。 本発明の一実施の形態に係る炭化珪素半導体装置のオフ状態における、ゲート絶縁膜の電界とゲートリーク電流との関係の、異元素(陰性元素)が発生させるエネルギーポテンシャルへの依存性を示すグラフである。 本発明の一実施の形態に係る炭化珪素半導体装置のオフ状態における、JFET領域のMOS構造のバンド図である。
 <実施の形態1>
 以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰り返さない。
 図1は、本実施の形態に係る炭化珪素半導体装置であるMOSFETの構成を示す図であり、MOSFETのユニットセルの部分の断面を示す部分断面図である。図1のように、当該MOSFETは、SiC基板1(炭化珪素基板)、SiC層30(炭化珪素層)、ゲート絶縁膜6(絶縁膜)、ゲート電極7(電極)、ソース電極8、およびドレイン電極9を備えている。
 SiC基板1は、SiCから作られたn型(第1導電型)基板である。SiC基板1のn型不純物の濃度は、後述するドリフト層2の不純物濃度よりも高い。よって、SiC基板1の抵抗率はドリフト層2の抵抗率よりも低い。また、SiC基板1は、単結晶構造を有し、その結晶構造は六方晶系であり、好ましくはポリタイプ4Hを有する。SiC基板1の上面(SiC層30側の面)の面方位は(0001)もしくは(000-1)面である。
 SiC層30は、SiC基板1の上面上に設けられている。ここで、SiC層30において、SiC基板1に面する表面を「下面S1」(第1の面)、その反対側の表面を「上面S2」(第2の面)と定義する。図1のように、SiC層30は、n型のドリフト層2と、p型(第2導電型)の複数のウェル領域3と、n型の複数のソース領域4と、p型の複数のコンタクト領域5とを含む。SiC層30の厚さは、例えば1~100μmである。
 ドリフト層2は、ウェル領域3の間の部分でSiC層30の上面S2に達している。また、ドリフト層2の底部は、SiC層30の下面S1に達している。従って、ドリフト層2の最大厚さは、SiC層30の厚さに相当し、例えば1~100μmである。また、ドリフト層2において隣り合うウェル領域3に挟まれた部分が、JFET領域JRである。JFET領域JRは、SiC層30の上面S2において、ウェル領域3が互いに隣り合う方向(図1における横方向)に、幅WJを有する。
 ウェル領域3は、SiC層30の上層部に部分的(選択的)に形成されており、ソース領域4およびコンタクト領域5が形成されない部分(ソース領域4とJFET領域JRとの間の部分)で、SiC層30の上面S2に達している。また、ウェル領域3の深さ(厚さ)は、SiC層30の厚さよりも小さく、よって、ウェル領域3はSiC層30の下面S1から離間している。
 ソース領域4は、ウェル領域3の上層部に、JFET領域JRから離間して形成されている。ソース領域4はSiC層30の上面S2に達している。また、ソース領域4の深さ(厚さ)はウェル領域3の厚さよりも小さく、よって、ソース領域4はウェル領域3の下のドリフト層2からも離間している。
 コンタクト領域5は、ウェル領域3の上層部に、ソース領域4に隣接して形成されている。ソース領域4は、SiC層30の上面S2に達すると共に、ウェル領域3にも達している。ただし、コンタクト領域5の深さ(厚さ)は、ウェル領域3の厚さよりも小さく、よって、コンタクト領域5はウェル領域3の下のドリフト層2からは離間している。
 以上から分かるように、SiC層30の上面S2には、ドリフト層2の一部であるJFET領域JRの上面、ウェル領域3の上面、ソース領域4の上面、および、コンタクト領域5の上面がそれぞれ部分的に含まれている。また、SiC層30の下面S1は、ドリフト層20の下面に相当する。
 ゲート絶縁膜6は、SiC層30の上面S2上に設けられ、ソース領域4の上面の一部およびコンタクト領域5の上面を露出する開口部を有している。逆に言えば、JFET領域JRの上面、ウェル領域3におけるJFET領域JRとソース領域4と間の部分の上面、および、ソース領域4の残りの部分(開口部に露出しない部分)の上面は、ゲート絶縁膜6によって覆われる。ゲート絶縁膜6は例えば酸化珪素(SiO)により形成される。
 ゲート電極7は、ゲート絶縁膜6上に設けられている。図1のように、ゲート電極7は、ゲート絶縁膜6を介して、JFET領域JR、および、ウェル領域3におけるJFET領域JRとソース領域4と間の部分に対向するように配置される。本実施の形態では、ゲート電極7は、珪素から構成されており、不純物ドーパントとして、燐(P)、砒素(As)、アンチモン(Sb)、硼素(B)、ガリウム(Ga)のいずれかを含むものとする。
 ゲート絶縁膜6およびゲート電極7は、ゲート絶縁膜6とゲート電極7との境界近傍に、ゲート絶縁膜6およびゲート電極7を構成する元素とは異なる元素(以下「異元素」という)が添加された異元素含有領域10を含んでいる。本実施の形態では、異元素含有領域10は、JFET領域JRの上方の部分のみに設けられる。つまり、JFET領域JRの直上から外れた領域のゲート電極7とゲート絶縁膜6との界面には、上記異元素は含有されていない。なお、“ゲート電極7を構成する元素”には、ゲート電極7に導入された不純物ドーパントも含まれる。
 また、本実施の形態では、異元素含有領域10を構成する異元素は、ゲート電極7を構成するいずれの元素よりも電気陰性度が高い元素(陰性元素)である。陰性元素種としては、炭素(C)、窒素(N)、フッ素(F)、硫黄(S)、塩素(Cl)、セレン(Se)、臭素(Br)、ヨウ素(I)などを用いることができる。また、異元素含有領域10における異元素の面密度は、1×1013cm-2以上、1×1015cm-2以下の範囲内であり、異元素含有領域10における異元素の濃度ピークの値は、例えば1×1020cm-3以上、1×1022cm-3以下の範囲内とする。
 ソース電極8は、SiC層30の上面S2上に形成されており、ゲート絶縁膜6の開口部内でソース領域4およびコンタクト領域5に接している。ソース電極8は、ソース領域4およびコンタクト領域5にオーミック接合した電極である。
 ドレイン電極9は、SiC基板1の下面に接するように形成されている。つまり、ドレイン電極9は、SiC基板1を介して、SiC層30の下面S1に対向して配置されている。ドレイン電極9は、SiC基板1を介してSiC層30にオーミックに接合された電極である。
 次に、図1に示したMOSFETの製造方法を、図2~図11の工程図を参照しつつ説明する。なお、各工程図の視野は、図1の視野に対応している。
 まず、上面の面方位が(0001)面もしくは(000-1)面であるSiC基板1を準備し、SiC基板1の上面にSiC層30をエピタキシャル成長により形成する。これにより、SiC基板1に面する下面S1およびその反対側の上面S2を有するSiC層30が得られる(図2)。SiC層30を形成するエピタキシャル成長は、例えばCVD(Chemical Vapor Deposition)法により行うことができる。このとき、SiC層30に、n型不純物(ドナー)を導入することで、SiC層30はn型のドリフト層2として形成される。SiC層30(ドリフト層2)に導入するn型不純物の濃度(ドナー濃度)は、例えば1×1015cm-3以上、1×1018cm-3以下の範囲内である。
 次に、SiC層30の上面S2上に、ウェル領域3の形成領域上が開口されたレジストマスク(不図示)を形成し、その上からSiC層30へp型不純物(アクセプタ)をイオン注入する。それにより、SiC層30の上層部に、選択的に複数のウェル領域3が形成される(図3)。また、ドリフト層2において隣り合うウェル領域3に挟まれた部分が、JFET領域JRとして規定される。ウェル領域3の間隔は、JFET領域JRの幅WJに相当し、その幅はレジストマスクの幅によって規定される。その後、レジストマスクは除去される。
 ウェル領域3を構成するp型不純物としては、例えばアルミニウム(Al)、ホウ素(B)またはガリウム(Ga)が用いられ、その濃度(アクセプタ濃度)は、ドリフト層2のドナー濃度よりも高く、例えば1×1015cm-3以上、1×1019cm-3以下の範囲内である。また、当該p型不純物のイオン注入の深さは、ドリフト層2の厚さよりも小さい範囲で、例えば0.5~3μm程度とされる。
 続いて、SiC層30の上面S2上に、ソース領域4の形成領域上が開口されたレジストマスク(不図示)を形成し、その上からSiC層30へn型不純物(ドナー)をイオン注入する。それにより、各ウェル領域3の上層部に、選択的にソース領域4が形成される(図4)その後、レジストマスクは除去される。
 ソース領域4を構成するn型不純物としては、例えば窒素、リンまたはヒ素が用いられ、その濃度は、例えば1×1018cm-3~1×1020cm-3の範囲内である。また、当該n型不純物のイオン注入の深さは、ウェル領域3の厚さよりも小さい範囲で、例えば0.1~2μm程度とされる。
 次に、SiC層30の上面S2上に、コンタクト領域5の形成領域上が開口されたレジストマスク(不図示)を形成し、その上からSiC層30へp型不純物をイオン注入する。それにより、各ウェル領域3の上層部のソース領域4に隣接する位置に、選択的にコンタクト領域5が形成される(図5)。その後、レジストマスクは除去される。
 コンタクト領域5を構成するp型不純物としては、例えばアルミニウム、ホウ素またはガリウムが用いられ、その濃度は、例えば1×1019cm-3~1×1021cm-3の範囲内である。また、当該p型不純物のイオン注入の深さは、ウェル領域3の厚さよりも小さい範囲で、0.1~2.1μm程度とされる。また、コンタクト領域5の深さは、コンタクト領域5がウェル領域3に十分に達するように、ソース領域4の深さよりも大きいことが望ましい。
 このようにドリフト層2、ウェル領域3、ソース領域4、およびコンタクト領域5を含むSiC層30を形成した後、当該SiC層30を備えるSiC基板1に対し、熱処理装置を用いた熱処理(アニール)を行う。この熱処理は、例えばアルゴンなどの不活性ガス雰囲気中で、1300~2100℃の範囲で行われる。これにより、上記の各工程でSiC層30にイオン注入した不純物が電気的に活性化する。
 その後、SiC層30の上面S2に対し、700~1400℃の範囲の温度での熱酸化処理、または、CVD法などの堆積法による積層処理により、SiC層30の上面S2上にゲート絶縁膜6を形成する(図6)。ゲート絶縁膜6の膜厚は、10~200nmの範囲内とする。
 続いて、ゲート絶縁膜6上に、例えばCVD法により多結晶珪素(ポリシリコン)膜を堆積し、フォトリソグラフィ技術およびエッチング技術を用いて当該多結晶珪素膜をパターニングすることで、ゲート電極7を形成する(図7)。ゲート電極7は、断面視で、両端が隣り合うソース領域4上に位置するように、パターニングされる。すなわち、ゲート電極7は、断面視で、隣り合うソース領域4の間に跨がり、その間のウェル領域3およびJFET領域JRを覆うように形成される。
 次に、ゲート絶縁膜6およびゲート電極7が形成されたSiC層30上に、JFET領域JRの直上が開口されたレジストマスクを形成し、その上から、ゲート絶縁膜6およびゲート電極7を構成する元素とは異なる元素(異元素)として、ゲート電極7を構成するいずれの元素よりも電気陰性度が高い元素(陰性元素)をゲート電極7にイオン注入して添加する。それにより、ゲート電極7におけるJFET領域JRの直上部分に、異元素が注入された領域11(異元素注入領域)が形成される(図8)。その後、レジストマスクは除去される。ここでは、異元素種として、例えば炭素、窒素、フッ素、硫黄、塩素、セレン、臭素、ヨウ素などを用い、その注入ドーズ量は、1×1013cm-2以上1×1015cm-2以下とする。
 続いて、異元素注入領域11を含むゲート電極7を備えるSiC基板1に対し、熱処理装置を用いた熱処理(アニール)を行う。この熱処理は、例えば窒素やアルゴンなどの不活性ガス雰囲気中で、800~1100℃の範囲で行われる。これにより、異元素注入領域11の異元素が熱拡散し、ゲート電極7とゲート絶縁膜6との界面へ向かって拡散する(図9)。ゲート絶縁膜6は、ゲート電極7を構成する多結晶珪素膜に比べて、不純物の拡散係数が遥かに低い。そのため、異元素の拡散は、ゲート電極7とゲート絶縁膜6との界面で止まって、JFET領域JRの直上のゲート絶縁膜6とゲート電極7との境界に、異元素による異元素含有領域10が形成される(図10)。結果として、異元素含有領域10における異元素の濃度ピークは、ゲート電極7とゲート絶縁膜6との界面から、上下100nm以内の範囲に位置することになる。
 その後、ゲート絶縁膜6をパターニングして、ソース領域4およびコンタクト領域5に達する開口部を形成し、その開口部に露出されたソース領域4およびコンタクト領域5に跨がるように、ソース電極8を形成する(図11)。ソース電極8の材料としては、例えばニッケル、チタン、アルミニウム、モリブデン、クロム、白金、タングステン、タンタル、ニオブ、珪素もしくは炭化チタン、これらの窒化物、またはこれらの合金が用いられる。
 そして、SiC基板1の下面にドレイン電極9を形成する。ドレイン電極9の材料は、ソース電極8の材料と同様のものでよい。その後、ソース電極8およびドレイン電極9の各々と、これらが接触している炭化珪素とを合金化させるための熱処理を行う。この熱処理は、例えば温度950~1000℃、処理時間20~60秒、および昇温速度10~25℃/秒の条件で行うことができる。以上により、図1に示した本実施の形態に係るMOSFETが完成する。
 以下、本実施の形態に係るMOSFETにより得られる効果について説明する。例えば、ドレイン電極9に正電圧が印加される実使用時において、MOSFETがオフ状態(ソース領域4とJFET領域JRとの間のウェル領域3にチャネルが形成されていない状態)のとき、ドリフト層2とウェル領域3との間のpn接合の逆バイアスによって空乏層が素子全領域に拡がり、その空乏層によってソース電極8とドレイン電極9との間は電気的に絶縁される。このとき、ゲート電極7とドレイン電極9との間には上記の逆バイアスとほぼ同じ電圧が印加される。また、JFET領域JRでは、ドリフト層2がゲート絶縁膜6に接するため、JFET領域JR上のゲート絶縁膜6にも高電界が印加されることになる。すなわち、MOSFETのオフ状態では、JFET領域JRにおけるn型MOS構造は空乏状態となり、ゲート絶縁膜6に逆方向電界が印加された状態となる。
 図12は、異元素含有領域10の無い従来の炭化珪素半導体装置(MOSFET)のオフ状態における、JFET領域のMOS構造のバンド図である。従来のMOSFETでは、上記の逆方向電界により、図12に示すように、ゲート電極7(Poly-Si)からゲート絶縁膜6(SiO)に向かって、FN(Fowler-Nordheim)トンネルリークによりキャリア電子が注入され、ゲートリーク電流が生じる。ゲート絶縁膜6に注入されたキャリア電子は、高電界により加速されながらゲート絶縁膜6を通過し、ドリフト層2(4H-SiC)へと流れる。このキャリア電子は高エネルギーを得ているため、ドリフト層2でインパクトイオン化によりホールを励起する。励起されたホールは、ドリフト層2内でゲート絶縁膜6へ向かって加速され、一部の高エネルギーホールはゲート絶縁膜6に再注入される。なお、FNトンネルリークによるキャリア電子の電流量は、FNトンネルリークのための障壁エネルギーΦBで決まる。
 ここで、本実施の形態に係るMOSFETの異元素含有領域10内の異元素(陰性元素)が発生させるエネルギーポテンシャルΔΦについて説明する。異元素含有領域10内の異元素は、その高い電気陰性度により周囲の電子を捕獲し、負の固定電荷を形成する。各異元素が1個の電子を捕獲すると仮定し、異元素の面密度をNとすると、異元素含有領域10内の異元素が発生させるエネルギーポテンシャルΔΦは、
ΔΦ=N /2εε
と表される。ここで、εは真空誘電率、εはゲート電極7の比誘電率、Nはゲート電極7における異元素のドーピング密度である。
 図13は、エネルギーポテンシャルΔΦの異元素(陰性元素)の面密度Nに対する依存性を表している。図13のように、異元素の面密度Nが大きいほど、エネルギーポテンシャルΔΦが高くなることが分かる。エネルギーポテンシャルΔΦが上昇すると、キャリア電子がゲート電極7からゲート絶縁膜6へFNトンネルリークするための障壁ポテンシャルΦBを高くなり、ゲートリーク電流を大幅に減らすことができる。図14は、ゲート絶縁膜6の電界EOXとゲートリーク電流IGとの関係の、エネルギーポテンシャルΔΦに対する依存性を示すグラフである。図14のように、エネルギーポテンシャルΔΦが高いほど、同一の電界EOXに対するゲートリーク電流IGは小さくなる。
 従って、異元素含有領域10を有するMOSFETでは、図15に示すように、ドリフト層2に流れ込むキャリア電子の量が大幅に低減される。それにより、炭化珪素の空乏層内で励起される高エネルギーホールの量が大幅に低減され、ゲート絶縁膜6へのホール再注入が抑制される。その結果、ゲート絶縁膜6の劣化が抑制され、ゲート絶縁膜の破壊を防止できる。また、JFET領域JR内にp型の電界緩和領域を形成する場合とは異なりオン抵抗の増大を伴わないため、MOSFETのオン特性と損なうことを防止しつつ、オフ時の信頼性を向上させることができる。
 本実施の形態では、本発明が適用された炭化珪素半導体装置としてMOSFETを示したが、本発明の適用はMOSFETに限られず、他のMISFET(Metal Insulator Semiconductor Field Effect Transistor)であってもよい。さらに、本発明が適用される炭化珪素半導体装置はMISFETでなくてもよく、例えばIGBTであってもよい。例えば図1のSiC基板1の導電型をp型にすれば、SiC基板1をコレクタ層とするIGBTを得ることができる。ただし、IGBTのコレクタ層は“基板”で構成される必要はなく、例えば、SiC基板1上のドリフト層2にコレクタ層としてのp型領域を形成した後で、SiC基板1を除去する方法を採ってもよい。
 また、上記の説明では、第1導電型をn型、第2導電型をp型として説明したが、それを逆にしてもよい(すなわち、各領域に添加する不純物(ドナーおよびアクセプタ)の導電型を入れ替えてもよい)。例えば、図1のMOSFETにおいて、第1導電型をp型、第2導電型をn型とすれば、pチャネル型のMOSFETが得られる。また、各不純物を添加するために行われるイオン注入工程の順番は、上で説明したものに限られず、任意の順番でよい。
 なお、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 1 SiC基板、30 SiC層、2 ドリフト層、JR JFET領域、3 ウェル領域、4 ソース領域、5 コンタクト領域、6 ゲート絶縁膜、7 ゲート電極、8 ソース電極、9 ドレイン電極、10 異元素含有領域、11 異元素注入領域。

Claims (11)

  1.  炭化珪素層と、
     前記炭化珪素層内に設けられた第1導電型のドリフト層と、
     前記炭化珪素層の上層部に選択的に設けられ、前記第1導電型とは異なる第2導電型の複数のウェル領域と、
     前記複数のウェル領域に挟まれた前記ドリフト層の部分であり、前記炭化珪素層の上面に達するJFET領域と、
     前記炭化珪素層上に設けられ、少なくとも前記JFET領域を覆う絶縁膜と、
     前記絶縁膜を介して前記JFET領域上に設けられた電極と、を備え、
     前記絶縁膜および前記電極は、前記絶縁膜および前記電極を構成する元素とは異なる異元素を含む領域を含む
    炭化珪素半導体装置。
  2.  前記異元素は、前記電極を構成する元素のいずれよりも電気陰性度が高い
    請求項1に記載の炭化珪素半導体装置。
  3.  前記電極は、珪素から構成され、不純物ドーパントとして燐、砒素、アンチモン、硼素、ガリウムのいずれかを含み、
     前記異元素は、炭素、窒素、フッ素、硫黄、塩素、セレン、臭素、ヨウ素のいずれかである
    請求項1または請求項2に記載の炭化珪素半導体装置。
  4.  前記異元素を含む領域は、前記JFET領域の上方のみに設けられている
    請求項1から請求項3のいずれか一項に記載の炭化珪素半導体装置。
  5.  前記異元素の面密度は、1×1013cm-2以上、1×1015cm-2以下である
    請求項1から請求項4のいずれか一項に記載の炭化珪素半導体装置。
  6.  前記異元素の濃度ピークは、前記絶縁膜と前記電極との境界から上下に100nm以下の範囲内に位置している
    請求項1から請求項5のいずれか一項に記載の炭化珪素半導体装置。
  7.  炭化珪素層に第1導電型のドリフト層を形成する工程と、
     前記炭化珪素層の上層部に、前記第1導電型とは異なる第2導電型の複数のウェル領域を選択的に形成する工程と、
     前記複数のウェル領域に挟まれた前記ドリフト層の部分であるJFET領域を覆うように、前記炭化珪素層上に絶縁膜を形成する工程と、
     前記絶縁膜上に、前記JFET領域を覆うように電極を形成する工程と、
     前記電極に対し、前記絶縁膜および前記電極を構成する元素とは異なる異元素をイオン注入する工程と、を備える
    炭化珪素半導体装置の製造方法。
  8.  前記異元素をイオン注入する工程の後に、熱処理により前記異元素を拡散させる工程をさらに備える
    請求項7に記載の炭化珪素半導体装置の製造方法。
  9.  前記異元素は、炭素、窒素、フッ素、硫黄、塩素、セレン、臭素、ヨウ素のいずれかである
    請求項7または請求項8に記載の炭化珪素半導体装置の製造方法。
  10.  前記異元素をイオン注入する工程において、前記異元素は、前記電極における前記JFET領域の上方の領域にのみイオン注入される
    請求項7から請求項9のいずれか一項に記載の炭化珪素半導体装置の製造方法。
  11.  前記異元素をイオン注入する工程において、前記電極にイオン注入される前記異元素のドーズ量は、1×1013cm-2以上、1×1015cm-2以下である
    請求項7から請求項10のいずれか一項に記載の炭化珪素半導体装置の製造方法。
PCT/JP2016/085152 2016-02-08 2016-11-28 炭化珪素半導体装置およびその製造方法 WO2017138221A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112016006374.1T DE112016006374B4 (de) 2016-02-08 2016-11-28 Siliciumcarbid-halbleitervorrichtung und verfahren zur herstellung derselben
US16/066,777 US10665679B2 (en) 2016-02-08 2016-11-28 Silicon carbide semiconductor device and method for manufacturing same
JP2017566527A JP6505263B2 (ja) 2016-02-08 2016-11-28 炭化珪素半導体装置およびその製造方法
CN201680080810.XA CN108604600B (zh) 2016-02-08 2016-11-28 碳化硅半导体装置及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021650 2016-02-08
JP2016021650 2016-02-08

Publications (1)

Publication Number Publication Date
WO2017138221A1 true WO2017138221A1 (ja) 2017-08-17

Family

ID=59563004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085152 WO2017138221A1 (ja) 2016-02-08 2016-11-28 炭化珪素半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US10665679B2 (ja)
JP (1) JP6505263B2 (ja)
CN (1) CN108604600B (ja)
DE (1) DE112016006374B4 (ja)
WO (1) WO2017138221A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119480A (zh) * 2018-09-04 2019-01-01 盛世瑶兰(深圳)科技有限公司 功率器件及其制备方法
WO2019171678A1 (ja) * 2018-03-07 2019-09-12 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
WO2023112312A1 (ja) * 2021-12-17 2023-06-22 三菱電機株式会社 半導体装置およびその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192961B2 (en) * 2015-02-20 2019-01-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device
DE102019112985B4 (de) * 2019-05-16 2024-07-18 mi2-factory GmbH Verfahren zur Herstellung von Halbleiterbauelementen
WO2021019082A1 (en) * 2019-08-01 2021-02-04 Abb Power Grids Switzerland Ag Silicon carbide transistor device
CN114613849B (zh) * 2022-05-10 2022-08-12 深圳市威兆半导体股份有限公司 一种改善短路特性的碳化硅mos器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085686A (ja) * 1999-09-13 2001-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2006086397A (ja) * 2004-09-17 2006-03-30 Nissan Motor Co Ltd 半導体装置およびその製造方法
JP2011114252A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 半導体装置
JP2016157762A (ja) * 2015-02-24 2016-09-01 株式会社東芝 半導体装置及びその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319928A (ja) * 2000-05-08 2001-11-16 Hitachi Ltd 半導体集積回路装置およびその製造方法
US7049187B2 (en) * 2001-03-12 2006-05-23 Renesas Technology Corp. Manufacturing method of polymetal gate electrode
US20060060917A1 (en) * 2004-09-17 2006-03-23 Nissan Motor Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20070218663A1 (en) * 2006-03-20 2007-09-20 Texas Instruments Inc. Semiconductor device incorporating fluorine into gate dielectric
JPWO2010119789A1 (ja) * 2009-04-13 2012-10-22 ローム株式会社 半導体装置および半導体装置の製造方法
JP5433352B2 (ja) * 2009-09-09 2014-03-05 株式会社東芝 半導体装置の製造方法
JP5616665B2 (ja) 2010-03-30 2014-10-29 ローム株式会社 半導体装置
JP5284389B2 (ja) 2011-03-07 2013-09-11 株式会社東芝 半導体装置
JP2013254826A (ja) 2012-06-06 2013-12-19 Mitsubishi Electric Corp 半導体装置およびその製造方法
US9070576B2 (en) 2012-09-07 2015-06-30 Freescale Semiconductor Inc. Semiconductor device and related fabrication methods
JP6219044B2 (ja) 2013-03-22 2017-10-25 株式会社東芝 半導体装置およびその製造方法
JP6230323B2 (ja) 2013-08-01 2017-11-15 株式会社東芝 半導体装置
JP2015216348A (ja) 2014-04-23 2015-12-03 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
JP6301795B2 (ja) * 2014-09-19 2018-03-28 株式会社東芝 半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085686A (ja) * 1999-09-13 2001-03-30 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2006086397A (ja) * 2004-09-17 2006-03-30 Nissan Motor Co Ltd 半導体装置およびその製造方法
JP2011114252A (ja) * 2009-11-30 2011-06-09 Toshiba Corp 半導体装置
JP2016157762A (ja) * 2015-02-24 2016-09-01 株式会社東芝 半導体装置及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171678A1 (ja) * 2018-03-07 2019-09-12 三菱電機株式会社 炭化珪素半導体装置、電力変換装置および炭化珪素半導体装置の製造方法
CN109119480A (zh) * 2018-09-04 2019-01-01 盛世瑶兰(深圳)科技有限公司 功率器件及其制备方法
WO2023112312A1 (ja) * 2021-12-17 2023-06-22 三菱電機株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP6505263B2 (ja) 2019-04-24
CN108604600A (zh) 2018-09-28
US20190006471A1 (en) 2019-01-03
DE112016006374B4 (de) 2023-01-19
JPWO2017138221A1 (ja) 2018-08-16
CN108604600B (zh) 2021-07-16
DE112016006374T5 (de) 2018-10-18
US10665679B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
JP6505263B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5961865B2 (ja) 半導体素子
US8933466B2 (en) Semiconductor element
US20060267022A1 (en) Field-effect transistor and thyristor
JP6880669B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2013001677A1 (ja) 半導体装置とその製造方法
WO2009110229A1 (ja) 炭化珪素半導体装置およびその製造方法
JP6766512B2 (ja) 半導体装置および半導体装置の製造方法
WO2010038547A1 (ja) 炭化珪素半導体装置
US20110193101A1 (en) Semiconductor device and method for manufacturing semiconductor device
US10714571B2 (en) Silicon carbide semiconductor device having halogen field limiting ring regions and method of manufacturing same
WO2018037701A1 (ja) 半導体装置
US10510844B2 (en) Semiconductor device and method of manufacturing same
JP2003309262A (ja) 炭化珪素半導体装置およびその製造方法
JP2010027833A (ja) 炭化珪素半導体装置およびその製造方法
JP7151446B2 (ja) 半導体装置の製造方法
JP4730097B2 (ja) 電界効果トランジスタ
JP2014120641A (ja) 炭化珪素半導体装置及びその製造方法
JP7543950B2 (ja) 超接合炭化珪素半導体装置の製造方法
JP5059989B1 (ja) 半導体装置とその製造方法
JP2005353877A (ja) 半導体装置
JP6822088B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US9728599B1 (en) Semiconductor device
JP5895750B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5514726B2 (ja) 接合型半導体装置およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566527

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016006374

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889922

Country of ref document: EP

Kind code of ref document: A1