[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017137509A1 - Panneau solaire - Google Patents

Panneau solaire Download PDF

Info

Publication number
WO2017137509A1
WO2017137509A1 PCT/EP2017/052913 EP2017052913W WO2017137509A1 WO 2017137509 A1 WO2017137509 A1 WO 2017137509A1 EP 2017052913 W EP2017052913 W EP 2017052913W WO 2017137509 A1 WO2017137509 A1 WO 2017137509A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
solar panel
heating space
panel according
tunnel
Prior art date
Application number
PCT/EP2017/052913
Other languages
English (en)
Inventor
Pascal NUTI
Brahmi SAADI
Original Assignee
Solable Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solable Sas filed Critical Solable Sas
Priority to EP17704254.6A priority Critical patent/EP3414495A1/fr
Publication of WO2017137509A1 publication Critical patent/WO2017137509A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/25Solar heat collectors using working fluids having two or more passages for the same working fluid layered in direction of solar-rays, e.g. having upper circulation channels connected with lower circulation channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/501Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits of plastic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/502Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates and internal partition means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/60Solar heat collectors using working fluids the working fluids trickling freely over absorbing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/30Arrangements for connecting the fluid circuits of solar collectors with each other or with other components, e.g. pipe connections; Fluid distributing means, e.g. headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/40Casings
    • F24S80/45Casings characterised by the material
    • F24S80/457Casings characterised by the material made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the present invention generally relates to a solar panel for heating a heat transfer fluid.
  • a solar panel is otherwise called solar thermal panel, but the invention also covers a photovoltaic solar panel, which has been added a heat transfer fluid circuit to be heated.
  • An object of the present invention is to meet the drawbacks of the prior art mentioned above and in particular, first of all, to provide an economical solar panel to manufacture, and which has a rigid structure that does not deform or little.
  • a first aspect of the invention relates to a solar panel arranged for heating a heat transfer fluid, comprising:
  • a first wall arranged to be exposed to solar radiation
  • the second wall is a plate comprising a front face facing the first wall, and a rear face, the front face and the rear face being separated from each other by a plurality of partitions defining a plurality of tunnels in the second wall,
  • the supply means comprise at least one feed tunnel selected from the said plurality of tunnels, and in that the said feed tunnel is placed in communication with the heating space by a plurality of orifices arranged in the front face.
  • the solar panel according to the above implementation comprises a second wall which is in fact a plate with a very strong internal structure to bending (main stress on a large plate held by its edges, as is often the case. case for a solar panel).
  • the faces of the second wall are separated by partitions, so we have a honeycomb structure, and each face is far from the neutral fiber in case of bending, and this greatly increases the bending strength without weighing down the solar panel.
  • the invention takes advantage of this honeycomb structure by using one of its tunnels to supply heat transfer fluid to the heating space.
  • the tunnel is advantageously used to distribute the fluid, which simplifies the general structure, by adding on the second wall this distribution function.
  • the first wall is arranged between the sun and the second wall.
  • the second wall with its internal honeycomb structure provides effective insulation between the heating space and the back of the solar panel.
  • the solar panel is inclined relative to the horizontal to ensure a flow or gravity runoff.
  • the solar panel comprises means for evacuating the heat transfer fluid from the heating space.
  • the evacuation means comprise at least one evacuation tunnel selected from the plurality of tunnels, wherein said at least one evacuation tunnel is placed in communication with the heating space by at least one orifice of the face. before.
  • one of the tunnels is assigned to supply the heating space, and one of the tunnels is assigned to the evacuation of the heating space.
  • said at least one evacuation tunnel is adjacent to a lower edge of the solar panel.
  • the coolant is water or water mixed with an antifreeze.
  • the supply means are arranged to deposit the coolant in the heating space on the first wall.
  • the heat transfer fluid then slides along the first wall in droplets or in liquid streams with a random movement and a low flow rate, but a high efficiency of heat capture, because the fluid is directly in contact with the first wall which is the one exposed to the sun, and because the heating space is closed and well isolated from the outside, depending on the predetermined distance. We can talk about runoff on the first wall or between the two walls.
  • said plurality of orifices is arranged along said feed tunnel.
  • the distribution is carried out over the entire width of the solar panel, which optimizes the heating capacity by using the entire surface of the first wall. Runoff is therefore imposed on the entire width of the solar panel.
  • said feed tunnel is parallel to an upper edge of the solar panel.
  • said feed tunnel is adjacent to an upper edge of the solar panel. Runoff begins at the very top of the solar panel.
  • said feed tunnel is adjacent to an electrical junction box.
  • the feed tunnel is located under the housing of junction when the panel is installed, which protects the junction box from any leaks, because it is above the coolant circuit.
  • said feed tunnel is closed by lateral plugs arranged on lateral edges of the second wall.
  • the solar panel comprises circulation means arranged to create a coolant flow in the solar panel, and the circulation means are connected to the feed tunnel by one of the side plugs.
  • the circulation means are a pump which has a water height less than or equal to 5m. Such a pump is sufficient, since no pressure is really necessary in the coolant circuit.
  • the runoff in the heating space is carried out by gravity, and circulation without pressure limits the risk of leakage and does not solicit the sealing elements.
  • the solar panel comprises at least one spacer arranged between the first wall and the second wall to impose said predetermined distance between the first wall and the second wall.
  • the solar panel comprises at least one spacer arranged between the first wall and the second wall to impose said predetermined distance between the first wall and the second wall.
  • the predetermined distance is in a range of values ranging from 1.5mm to 4.5mm. This range of value is ideal to guarantee a good runoff of the coolant between the walls. We can have drops or streams of liquid flowing.
  • the solar panel comprises sealing means, such as an O-ring, or a double-sided adhesive, or a silicone or polyurethane polymer, arranged between the first wall and the second wall, along a periphery of the solar panel.
  • sealing means such as an O-ring, or a double-sided adhesive, or a silicone or polyurethane polymer, arranged between the first wall and the second wall, along a periphery of the solar panel.
  • the second wall is a cellular polycarbonate sheet.
  • a cellular polycarbonate sheet is very advantageous because it is light, inexpensive, durable and resistant to solar radiation, very solid, and with a multitude of adjacent tunnels throughout its structure.
  • Food grade polycarbonate can also be used.
  • the evacuation tunnel is closed by lateral plugs arranged on lateral edges of the second wall.
  • the evacuation means comprise an evacuation hole formed in the second wall.
  • the solar panel comprises circulation means arranged to create a coolant flow in the solar panel, and wherein the circulation means are connected to the discharge tunnel by one of the side plugs.
  • the first wall is transparent.
  • the solar panel comprises a coating layer, such as polyvinyl fluoride, of the first wall, arranged between the heating space and the first wall, and the coating layer is black.
  • a coating layer such as polyvinyl fluoride
  • the first wall comprises at least one photovoltaic sensor.
  • the solar panel is then thermal and electrical, hybrid in other words.
  • the solar panel comprises a perimeter frame arranged to secure the first wall and the second wall.
  • FIG. 1 shows a side view of a solar panel according to the present invention.
  • FIG. 1 represents a sectional view of a solar panel according to the present invention, consisting essentially of a first wall 10 and a second wall 20, spaced from one another to define a heating space 15 between them, in order to to heat a coolant 70, under the effect of solar radiation produced by a sun 100.
  • the first wall 10 is transparent is mounted at a predetermined distance from the second wall 20, by means of spacers 32 and a Perimeter frame 33 made of aluminum or PVC, for example.
  • the spacers 32 may be bonded to the walls with a silicone or polyurethane sealant, and then provide a mechanical connection between the first wall 10 and the second wall 20, which improves the strength and rigidity of the assembly. Indeed, such a solar panel may have large dimensions
  • the spacers 32 thus provide a sandwich structure which increases the flexural strength.
  • the first wall may be of glass or laminated glass, or a transparent polymer for example. It can also be provided to cover the inner face of the first wall 10 with a black coating layer to improve the heating capacity, which will therefore be between the heating space 15 and the first wall 10.
  • the second wall 20 is in turn a honeycomb wall, typically a cellular polycarbonate plate. Indeed, the second wall 20 comprises a front face 21 and a rear face 22, separated by partitions 24, which thus define a plurality of tunnels 23. Such a plate is cheap, rigid and the invention advantageously takes advantage of this honeycomb structure, using at least one of the tunnels to form means for supplying the heating medium 15 with heat transfer fluid 70.
  • the tunnel adjacent to the upper edge of the solar panel is a feed tunnel 25 connected via a lateral plug 41 to circulation means, a pump P.
  • the feed tunnel 25 communicates with the heating space 15 through holes 26 formed in the front face 21, all along the feed tunnel, to run off the heat transfer fluid 70 along the heating space 15. It is conceivable for example to provide holes 26 from 01 mm, every 2 cm.
  • the lateral plug 41 is thus pierced to be connected to the pump P by a pipe 61 which passes behind the lateral edge of the solar panel.
  • the pump P is connected to a reservoir R that can be filled and emptied otherwise to take hot water and replace it with cold water.
  • the tank R is connected via a pipe 62 to the lower part of the solar panel to collect the coolant 70 via a connector 42 passing through the second wall 20.
  • the coolant 70 could be perfectly collected in the same way as it is supplied at the top of the panel, that is to say, pierce the front face 21 at a tunnel 23 at the bottom of the panel and collect via a side plug 41.
  • sealing means are naturally provided between the side plugs 41 and / or the connector 42 and the second wall 20, for example a silicone or polyurethane seal.
  • drops 71 of heat transfer fluid 70 run along the first wall 10, and thus capture the heat of solar radiation, but it is conceivable to run continuous streams of heat transfer fluid 70 in the heating space 15.
  • the distance between the first wall 10 and the second wall 20 can ideally be between 1 .5mm and 4.5mm, which ensures that the heat transfer fluid will touch the first wall 10 to capture the heat.
  • the runoff has a random path, which provides heat capture over the entire useful surface of the solar panel.
  • the runoff is also advantageous in the sense that it does not require pressurization, that is to say that the pump P does not need to be powerful and can be a simple pump lift, with a height water less than 5m for example.
  • the first wall comprises a plurality of photovoltaic sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Panneau solaire, comprenant : - une première paroi (10) agencée pour être exposée à un rayonnement solaire, - une deuxième paroi (20) agencée à une distance prédéterminée de la première paroi (10), - un espace de chauffage (15) du fluide caloporteur (70), - des moyens d'alimentation de l'espace de chauffage (15), dans lequel : - la deuxième paroi (20) est une plaque comprenant une face avant (21) en regard de la première paroi (10), et une face arrière (22), la face avant (21) et la face arrière (22) étant séparées l'une de l'autre par une pluralité de cloisons (24) définissant une pluralité de tunnels (23) dans la deuxième paroi (20), - les moyens d'alimentation comprennent au moins un tunnel d'alimentation (25) choisi parmi ladite pluralité de tunnels (23), et ledit tunnel d'alimentation (25) est mis en communication avec l'espace de chauffage (15) par une pluralité d'orifices (26) agencés dans la face avant (21).

Description

PAN N EA U SOLAI R E
La présente invention concerne de manière générale un panneau solaire destiné à chauffer un fluide caloporteur. Un tel panneau solaire est autrement appelé panneau solaire thermique, mais l'invention couvre également un panneau solaire photovoltaïque, auquel on a ajouté un circuit de fluide caloporteur à chauffer.
Il est connu dans l'art antérieur de tels panneaux solaires, en particulier celui divulgué dans le document EP2963809. En contrepartie, ce système présente notamment l'inconvénient de pouvoir être coûteux à assembler, et il faut également prévoir une structure assez résistante pour éviter toute déformation de la structure au cours du temps.
Un but de la présente invention est de répondre aux inconvénients de l'art antérieur mentionnés ci-dessus et en particulier, tout d'abord, de proposer un panneau solaire économique à fabriquer, et qui présente une structure rigide qui ne se déforme pas ou peu. Pour cela un premier aspect de l'invention concerne un panneau solaire agencé pour chauffer un fluide caloporteur, comprenant :
- une première paroi agencée pour être exposée à un rayonnement solaire,
- une deuxième paroi agencée à une distance prédéterminée de la première paroi,
- un espace de chauffage du fluide caloporteur agencé entre la première paroi et la deuxième paroi,
- des moyens d'alimentation de l'espace de chauffage en fluide caloporteur, caractérisé :
- en ce que la deuxième paroi est une plaque comprenant une face avant en regard de la première paroi, et une face arrière, la face avant et la face arrière étant séparées l'une de l'autre par une pluralité de cloisons définissant une pluralité de tunnels dans la deuxième paroi,
- en ce que les moyens d'alimentation comprennent au moins un tunnel d'alimentation choisi parmi ladite pluralité de tunnels, et en ce que ledit tunnel d'alimentation est mis en communication avec l'espace de chauffage par une pluralité d'orifices agencés dans la face avant.
Le panneau solaire selon la mise en œuvre ci-dessus comprend une deuxième paroi qui est en fait une plaque avec une structure interne très résistante à la flexion (sollicitation principale sur une plaque de grandes dimensions tenue par ses bords, comme c'est souvent le cas pour un panneau solaire). En effet, les faces de la deuxième paroi sont séparées par des cloisons, on a donc une structure alvéolaire, et chaque face est donc loin de la fibre neutre en cas de flexion, et cela augmente fortement la résistance à la flexion sans pour autant alourdir le panneau solaire. De plus, l'invention tire parti de cette structure alvéolaire en utilisant un de ses tunnels pour alimenter en fluide caloporteur l'espace de chauffage. Le tunnel est avantageusement utilisé pour distribuer le fluide, ce qui simplifie la structure générale, en ajoutant sur la deuxième paroi cette fonction de distribution. On comprend bien sûr que lors de l'utilisation, la première paroi est agencée entre le soleil et la deuxième paroi. De plus, la deuxième paroi, avec sa structure interne alvéolée fournit une isolation efficace entre l'espace de chauffage et l'arrière du panneau solaire. De plus, on comprend que le panneau solaire est incliné par rapport à l'horizontale pour garantir un écoulement ou ruissellement par gravité.
Avantageusement, le panneau solaire comprend des moyens d'évacuation du fluide caloporteur de l'espace de chauffage.
Avantageusement, les moyens d'évacuation comprennent au moins un tunnel d'évacuation choisi parmi la pluralité de tunnels, dans lequel ledit au moins un tunnel d'évacuation est mis en communication avec l'espace de chauffage par au moins un orifice de la face avant. Autrement dit, un des tunnels est affecté à l'alimentation de l'espace de chauffage, et un des tunnels est affecté à l'évacuation de l'espace de chauffage. Il en résulte une économie de moyens, et le fluide est alimenté et évacué au travers de la même deuxième paroi, par un ou plusieurs tunnels qui en forment la structure. Avantageusement, ledit au moins un tunnel d'évacuation est adjacent à un bord inférieur du panneau solaire.
Avantageusement, le fluide caloporteur est de l'eau ou de l'eau mélangée avec un antigel.
Avantageusement, les moyens d'alimentation sont agencés pour déposer le fluide caloporteur dans l'espace de chauffage, sur la première paroi. Le fluide caloporteur glisse alors le long de la première paroi en gouttelettes ou en filets de liquide avec un mouvement aléatoire et un faible débit, mais une grande efficacité de captage de chaleur, car le fluide est directement en contact avec la première paroi qui est celle exposée au soleil, et car l'espace de chauffage est clos et bien isolé de l'extérieur, en fonction de la distance prédéterminée. On peut parler de ruissellement sur la première paroi ou entre les deux parois.
Avantageusement, ladite pluralité d'orifices est agencée le long dudit tunnel d'alimentation. La distribution est effectuée sur toute la largeur du panneau solaire, ce qui optimise la capacité de chauffage en utilisant toute la surface de la première paroi. Le ruissellement est donc imposé sur toute la largueur du panneau solaire.
Avantageusement, ledit tunnel d'alimentation est parallèle à un bord supérieur du panneau solaire. Avantageusement, ledit tunnel d'alimentation est adjacent à un bord supérieur du panneau solaire. Le ruissellement commence tout en haut du panneau solaire.
Avantageusement, ledit tunnel d'alimentation est adjacent à un boîtier de jonction électrique. Le tunnel d'alimentation est situé sous le boîtier de jonction lorsque le panneau est installé, ce qui protège le boîtier de jonction des fuites éventuelles, car il est au dessus du circuit de fluide caloporteur.
Avantageusement, ledit tunnel d'alimentation est obturé par des bouchons latéraux agencés sur des bords latéraux de la deuxième paroi. Avantageusement, le panneau solaire comprend des moyens de circulation agencés pour créer un flux de fluide caloporteur dans le panneau solaire, et les moyens de circulation sont connectés au tunnel d'alimentation par un des bouchons latéraux. Un même bouchon assure deux fonctions, cela limite le nombre de pièces. Avantageusement, les moyens de circulation sont une pompe qui présente une hauteur d'eau inférieure ou égale à 5m. Une telle pompe est suffisante, dans la mesure où aucune pression n'est véritablement nécessaire dans le circuit de fluide caloporteur. Le ruissellement dans l'espace de chauffage est effectué par gravité, et une circulation sans pression limite alors les risques de fuite et ne sollicite pas les éléments d'étanchéité.
Avantageusement, le panneau solaire comprend au moins une entretoise agencée entre la première paroi et la deuxième paroi pour imposer ladite distance prédéterminée entre la première paroi et la deuxième paroi. On peut envisager bien entendu de prévoir plusieurs entretoises, et de les espacer entre elles de 300mm environ. Il est également possible de les coller sur chaque paroi, ce qui procure alors un lien entre la première et la deuxième paroi et augmente encore la résistance à la flexion.
Avantageusement, la distance prédéterminée est comprise dans une plage de valeurs allant de 1 .5mm à 4.5mm. Cette plage de valeur est idéale pour garantir un bon ruissellement du fluide caloporteur entre les parois. On peut avoir des gouttes ou des filets de liquide qui s'écoulent.
Avantageusement, le panneau solaire comprend des moyens d'étanchéité, tels qu'un joint torique, ou un adhésif double face, ou un polymère silicone ou polyuréthane, agencés entre la première paroi et la deuxième paroi, le long d'une périphérie du panneau solaire.
Avantageusement, la deuxième paroi est une plaque de polycarbonate alvéolaire. Une telle plaque est très avantageuse, car légère, bon marché, durable et résistante au rayonnement solaire, très solide, et avec une multitude de tunnels adjacents dans toute sa structure. On peut également utiliser du polycarbonate de qualité alimentaire.
Avantageusement, le tunnel d'évacuation est obturé par des bouchons latéraux agencés sur des bords latéraux de la deuxième paroi. Avantageusement, les moyens d'évacuation comprennent un trou d'évacuation ménagé dans la deuxième paroi.
Avantageusement, le panneau solaire comprend des moyens de circulation agencés pour créer un flux de fluide caloporteur dans le panneau solaire, et dans lequel les moyens de circulation sont connectés au tunnel d'évacuation par un des bouchons latéraux.
Avantageusement, la première paroi est transparente.
Avantageusement, le panneau solaire comprend une couche de revêtement, telle que du polyfluorure de vinyle, de la première paroi, agencée entre l'espace de chauffage et la première paroi, et la couche de revêtement est noire.
Avantageusement, la première paroi comprend au moins un capteur photovoltaïque. Le panneau solaire est alors thermique et électrique, hybride en d'autres termes.
Avantageusement, le panneau solaire comprend un cadre périmétrique agencé pour solidariser la première paroi et la deuxième paroi.
D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description détaillée qui suit d'un mode de réalisation de l'invention donné à titre d'exemple nullement limitatif et illustré par les dessins annexés, dans lesquels :
- la figure 1 représente une vue de profil d'un panneau solaire selon la présente invention. La figure 1 représente une vue en coupe d'un panneau solaire selon la présente invention, essentiellement constitué par une première paroi 10 et une deuxième paroi 20, espacées l'une de l'autre pour définir un espace de chauffage 15 entre elles, afin de chauffer un fluide caloporteur 70, sous l'effet d'un rayonnement solaire produit par un soleil 100. La première paroi 10 est transparente est montée à une distance prédéterminée de la deuxième paroi 20, au moyen d'entretoises 32 et d'un cadre périmétrique 33 en aluminium ou en PVC par exemple. Il est également prévu des moyens d'étanchéité en périphérie du panneau solaire, et un joint 31 de mastic silicone ou polyuréthane peut être déposé entre la première paroi 10 et la deuxième paroi 20.
Les entretoises 32 peuvent être collées aux parois avec un mastic silicone ou polyuréthane, et apportent alors une solidarisation mécanique entre la première paroi 10 et la deuxième paroi 20, ce qui améliore la solidité et la rigidité de l'ensemble. En effet, un tel panneau solaire peut présenter de grandes dimensions
(1 m x 1 .65m par exemple), et des déformations par flexion peuvent être néfastes à un positionnement précis sur un cadre ou un toit par exemple. Les entretoises 32 procurent donc une structure sandwich qui augmente la résistance à la flexion. La première paroi peut être en verre ou verre feuilleté, ou un polymère transparent par exemple. On peut prévoir aussi de recouvrir la face interne de la première paroi 10 avec une couche de revêtement noire pour améliorer la capacité de chauffage, qui sera donc entre l'espace de chauffage 15 et la première paroi 10. La deuxième paroi 20 est quant à elle une paroi alvéolée, typiquement une plaque de polycarbonate alvéolaire. En effet, la deuxième paroi 20 comprend une face avant 21 et une face arrière 22, séparées par des cloisons 24, qui définissent ainsi une pluralité de tunnels 23. Une telle plaque est bon marché, rigide et l'invention tire avantageusement parti de cette structure alvéolaire, en utilisant au moins un des tunnels pour former des moyens d'alimentation de l'espace de chauffage 15 en fluide caloporteur 70.
En effet, le tunnel adjacent au bord supérieur du panneau solaire est un tunnel d'alimentation 25 connecté via un bouchon latéral 41 à des moyens de circulation, une pompe P. Le tunnel d'alimentation 25 communique avec l'espace de chauffage 15 par des trous 26 ménagés dans la face avant 21 , tout le long du tunnel d'alimentation, pour laisser s'écouler par ruissellement le fluide caloporteur 70 le long de l'espace de chauffage 15. On peut envisager par exemple de prévoir des trous 26 de 01 mm, tous les 2cm. Le bouchon latéral 41 est donc percé pour être connecté à la pompe P par un tuyau 61 qui passe derrière le bord latéral du panneau solaire. La pompe P est connectée à un réservoir R que l'on peut remplir et vider par ailleurs pour prélever de l'eau chaude et la remplacer par de l'eau froide. Le réservoir R est quant à lui connecté via un tuyau 62 à la partie inférieure du panneau solaire pour collecter le fluide caloporteur 70, via un connecteur 42 traversant la deuxième paroi 20.
On pourrait cependant parfaitement collecter le fluide caloporteur 70 de la même manière qu'il est alimenté en haut du panneau, c'est-à-dire percer la face avant 21 au niveau d'un tunnel 23 en bas du panneau et collecter via un bouchon latéral 41 . Bien que cela ne soit pas représenté, des moyens d'étanchéité sont bien entendu prévus entre les bouchons latéraux 41 et/ou le connecteur 42 et la deuxième paroi 20, par exemple un joint en silicone ou en polyuréthane.
Dans le cas de figure représenté ici, des gouttes 71 de fluide caloporteur 70 ruissellent le long de la première paroi 10, et captent ainsi la chaleur du rayonnement solaire, mais on peut envisager de faire couler des filets continus de fluide caloporteur 70 dans l'espace de chauffage 15. La distance entre la première paroi 10 et la deuxième paroi 20 (l'épaisseur de l'espace de chauffage 15) peut être idéalement comprise entre 1 .5mm et 4.5mm, ce qui garantit que le fluide caloporteur touchera bien la première paroi 10 pour capter la chaleur. De plus le ruissellement présente alors un trajet aléatoire, ce qui procure un captage de la chaleur sur toute la surface utile du panneau solaire.
Le ruissellement est également avantageux dans le sens où il ne nécessite pas de mise sous pression, c'est-à-dire que la pompe P n'a pas besoin d'être puissante et peut être une simple pompe de relevage, avec une hauteur d'eau inférieure à 5m par exemple.
Bien que cela ne soit pas représenté, on peut bien entendu utiliser l'invention avec un panneau photovoltaïque, et dans ce cas, la première paroi comprend une pluralité de capteurs photovoltaïques.
On comprendra que diverses modifications et/ou améliorations évidentes pour l'homme du métier peuvent être apportées aux différents modes de réalisation de l'invention décrits dans la présente description sans sortir du cadre de l'invention défini par les revendications annexées.

Claims

R EV EN D I CATI O N S
1 . Panneau solaire agencé pour chauffer un fluide caloporteur (70), comprenant :
- une première paroi (10) agencée pour être exposée à un rayonnement solaire,
- une deuxième paroi (20) agencée à une distance prédéterminée de la première paroi (10),
- un espace de chauffage (15) du fluide caloporteur (70) agencé entre la première paroi (10) et la deuxième paroi (20),
- des moyens d'alimentation de l'espace de chauffage (15) en fluide caloporteur (70),
- des moyens d'évacuation du fluide caloporteur (70) de l'espace de chauffage (15),
caractérisé :
- en ce que la deuxième paroi (20) est une plaque comprenant une face avant (21 ) en regard de la première paroi (10), et une face arrière (22), la face avant (21 ) et la face arrière (22) étant séparées l'une de l'autre par une pluralité de cloisons (24) définissant une pluralité de tunnels (23) dans la deuxième paroi (20),
- en ce que les moyens d'alimentation comprennent au moins un tunnel d'alimentation (25) choisi parmi ladite pluralité de tunnels (23), et en ce que ledit tunnel d'alimentation (25) est mis en communication avec l'espace de chauffage (15) par une pluralité d'orifices (26) agencés dans la face avant (21 ),
- en ce que les moyens d'évacuation comprennent au moins un tunnel d'évacuation choisi parmi la pluralité de tunnels (23), et en ce que ledit au moins un tunnel d'évacuation est mis en communication avec l'espace de chauffage (15) par au moins un orifice de la face avant (21 ).
2. Panneau solaire selon la revendication précédente, dans lequel les moyens d'alimentation sont agencés pour déposer le fluide caloporteur (70) dans l'espace de chauffage (15), sur la première paroi (10).
3. Panneau solaire selon l'une des revendications précédentes, dans lequel ladite pluralité d'orifices est agencée le long dudit tunnel d'alimentation (25).
4. Panneau solaire selon l'une des revendications précédentes, comprenant au moins une entretoise agencée entre la première paroi (10) et la deuxième paroi (20) pour imposer ladite distance prédéterminée entre la première paroi (10) et la deuxième paroi (20).
5. Panneau solaire selon l'une des revendications précédentes, dans lequel la deuxième paroi (20) est une plaque de polycarbonate alvéolaire.
6. Panneau solaire selon l'une des revendications précédentes, dans lequel ledit au moins un tunnel d'évacuation est adjacent à un bord inférieur du panneau solaire.
7. Panneau solaire selon la revendication 6, dans lequel les moyens d'évacuation comprennent un trou d'évacuation ménagé dans la deuxième paroi (20).
8. Panneau solaire selon l'une des revendications précédentes, comprenant une couche de revêtement, telle que du polyfluorure de vinyle, de la première paroi (10), agencée entre l'espace de chauffage (15) et la première paroi (10), et dans lequel la couche de revêtement est noire.
9. Panneau solaire selon l'une des revendications précédentes, dans lequel la première paroi (10) comprend au moins un capteur photovoltaïque.
PCT/EP2017/052913 2016-02-10 2017-02-09 Panneau solaire WO2017137509A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17704254.6A EP3414495A1 (fr) 2016-02-10 2017-02-09 Panneau solaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1600247A FR3047550B1 (fr) 2016-02-10 2016-02-10 Panneau solaire
FR1600247 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017137509A1 true WO2017137509A1 (fr) 2017-08-17

Family

ID=55971135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/052913 WO2017137509A1 (fr) 2016-02-10 2017-02-09 Panneau solaire

Country Status (3)

Country Link
EP (1) EP3414495A1 (fr)
FR (1) FR3047550B1 (fr)
WO (1) WO2017137509A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133299A (en) * 1976-07-15 1979-01-09 Halm Instrument Co. Inc. Solar heat absorber plate
FR2417253A1 (fr) * 1978-02-17 1979-09-14 Comte Paul Procedes et dispositifs pour climatiser des serres
US4170984A (en) * 1977-02-17 1979-10-16 Atlantic Research Corporation Solar energy heat collector
US4267822A (en) * 1978-11-08 1981-05-19 Grumman Energy Systems, Inc. Integrated solar energy system
FR2497928A1 (fr) * 1981-01-14 1982-07-16 Europ Propulsion Capteur a ruissellement
US4345586A (en) * 1980-02-05 1982-08-24 Monjes Julio A Cascade solar heater
JP2000304360A (ja) * 1999-04-23 2000-11-02 Bunka Shutter Co Ltd 流体昇温装置
FR2882426A1 (fr) * 2005-02-23 2006-08-25 Essertaux Jean Marie D Capteur solaire hybride thermique (liquide et gaz de facon alternative) et photovoltaique
FR2922299A1 (fr) * 2007-10-16 2009-04-17 Fabre Jean Paul Georges Leo Vi Collecteur solaire canalaire.
EP2963809A1 (fr) 2014-07-04 2016-01-06 Nuti, Pascal Panneau solaire hybride

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062352A (en) * 1975-06-20 1977-12-13 Motorola, Inc. Solar fluid heater
US4147155A (en) * 1977-01-19 1979-04-03 Krafft Frederick G Device for collecting solar energy
JPS5563349A (en) * 1978-11-02 1980-05-13 Toray Ind Inc Solar heat accumulator
US4368726A (en) * 1980-10-03 1983-01-18 Fortin Laminating Corporation Solar heating panel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133299A (en) * 1976-07-15 1979-01-09 Halm Instrument Co. Inc. Solar heat absorber plate
US4170984A (en) * 1977-02-17 1979-10-16 Atlantic Research Corporation Solar energy heat collector
FR2417253A1 (fr) * 1978-02-17 1979-09-14 Comte Paul Procedes et dispositifs pour climatiser des serres
US4267822A (en) * 1978-11-08 1981-05-19 Grumman Energy Systems, Inc. Integrated solar energy system
US4345586A (en) * 1980-02-05 1982-08-24 Monjes Julio A Cascade solar heater
FR2497928A1 (fr) * 1981-01-14 1982-07-16 Europ Propulsion Capteur a ruissellement
JP2000304360A (ja) * 1999-04-23 2000-11-02 Bunka Shutter Co Ltd 流体昇温装置
FR2882426A1 (fr) * 2005-02-23 2006-08-25 Essertaux Jean Marie D Capteur solaire hybride thermique (liquide et gaz de facon alternative) et photovoltaique
FR2922299A1 (fr) * 2007-10-16 2009-04-17 Fabre Jean Paul Georges Leo Vi Collecteur solaire canalaire.
EP2963809A1 (fr) 2014-07-04 2016-01-06 Nuti, Pascal Panneau solaire hybride

Also Published As

Publication number Publication date
EP3414495A1 (fr) 2018-12-19
FR3047550A1 (fr) 2017-08-11
FR3047550B1 (fr) 2019-11-08

Similar Documents

Publication Publication Date Title
EP2859158B1 (fr) Panneau isolant thermique
EP3032736B1 (fr) Procédé de fabrication d'un panneau solaire hybride
EP3408869B1 (fr) Panneau solaire photovoltaïque et thermique
CA2746977A1 (fr) Echangeur thermique a plaques soudees
WO2011048342A2 (fr) Collecteur solaire
EP2212925B1 (fr) Perfectionnements apportés à des joints pour des éléments capables de collecter de la lumière
CA2322698C (fr) Dispositif de transfert de chaleur entre un panneau chauffe par rayonnement solaire et une paroi
EP2718635A2 (fr) Systeme de fixation et d'etancheite pour la realisation d'une toiture solaire, et toiture solaire obtenue
FR2939162A1 (fr) Toiture solaire
FR2787868A1 (fr) Capteur solaire pour chauffe-eau
EP2623909B1 (fr) Panneau photovoltaïque à récupération thermique
FR3047550B1 (fr) Panneau solaire
FR2995390A1 (fr) Module solaire hybride thermique et photovoltaique
FR3007894A1 (fr) Module solaire a regulation du niveau d'humidite simplifie
FR2968323A1 (fr) Kit de fixation de panneaux photovoltaiques sur un toit
FR2976055A1 (fr) Collecteur solaire plan d'epaisseur reduite et installation de recuperation de l'energie solaire comportant au moins un tel collecteur
EP2963809A1 (fr) Panneau solaire hybride
FR2593896A1 (fr) Chauffe-eau solaire
FR3005813A1 (fr) Panneau solaire hybride
WO2018064783A1 (fr) Capteur thermique solaire, procede de captage thermique solaire avec ledit capteur et application dans un reseau urbain de distribution d'energie du type anergie
FR3135515A1 (fr) Panneau solaire photovoltaïque et thermique.
FR2945304A1 (fr) Toiture ondulee munie d'un dispositif de recuperation de l'energie solaire photovoltaique et thermique.
FR2886718A1 (fr) Capteur solaire thermique de grande surface depliable
FR3081543A1 (fr) Echangeur thermique
FR2953281A1 (fr) Capteur solaire simplifie a faible inertie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17704254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017704254

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017704254

Country of ref document: EP

Effective date: 20180910