[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017133867A1 - Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes - Google Patents

Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes Download PDF

Info

Publication number
WO2017133867A1
WO2017133867A1 PCT/EP2017/050401 EP2017050401W WO2017133867A1 WO 2017133867 A1 WO2017133867 A1 WO 2017133867A1 EP 2017050401 W EP2017050401 W EP 2017050401W WO 2017133867 A1 WO2017133867 A1 WO 2017133867A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
strip
metal strip
cooling
belt
Prior art date
Application number
PCT/EP2017/050401
Other languages
English (en)
French (fr)
Inventor
Dirk Schäfer
Andreas Noé
Thomas Von Der Ohe
Original Assignee
Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57796344&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2017133867(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh filed Critical Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh
Priority to KR1020187018659A priority Critical patent/KR20180109864A/ko
Priority to EP17700322.5A priority patent/EP3350352B1/de
Priority to US15/769,540 priority patent/US11072834B2/en
Priority to CN201780005207.XA priority patent/CN108431250A/zh
Priority to RU2018122483A priority patent/RU2744007C2/ru
Priority to CA3004532A priority patent/CA3004532A1/en
Publication of WO2017133867A1 publication Critical patent/WO2017133867A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/63Continuous furnaces for strip or wire the strip being supported by a cushion of gas
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/035Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material to several spraying apparatus

Definitions

  • the invention relates to a continuous cooling device for cooling a metal strip, in particular a metal strip of light metal, for.
  • a continuous cooling device for cooling a metal strip, in particular a metal strip of light metal, for.
  • B. an aluminum strip with at least one (first) belt float having a plurality along the strip running direction distributed upper (air) nozzles and a plurality of along the tape running direction distributed lower (air) nozzles, the metal belt floating (and thus non-contact) between the Both upper and lower side of the belt can be acted upon with cooling air, and with a plurality of water cooling units, with which the metal strip can be acted upon with cooling water.
  • the strip running direction corresponds to the furnace longitudinal direction. It is (essentially) horizontally oriented.
  • Metal strip in the context of the invention preferably means a metal strip made of a light metal or a light metal alloy, particularly preferably made of aluminum or an aluminum alloy.
  • the metal strip is usually subjected during the production of a heat treatment for metallurgical purposes. So it is z.
  • a metal strip made of an aluminum alloy after the cold rolling to a heat treatment in order to optimize the strip properties or material properties, in particular strength and deformability / plasticity. So it is with aluminum alloys z.
  • B. usual to achieve increases in strength by precipitation hardening by solution annealing.
  • the metal strip passes through an oven, for. B. a band float oven.
  • the temperatures in the course of solution annealing of aluminum alloys are usually in a temperature range between 400 ° C and 600 ° C, depending on the type of alloy.
  • the alloying elements are uniformly dissolved in the aluminum matrix, resulting in a homogeneous mixed crystal.
  • the invention therefore relates
  • the Schroff cooling the band are forced out with a circular arc-like cross-sectional shape.
  • a device for cooling a metal band which has a slanted inclined to the surface slot nozzle, which directs a beam of a gas / liquid mixture to the surface.
  • EP 0 343 103 B1 likewise describes a method for cooling metal strips by spraying a gas / liquid mixture in the form of a mist onto the surface of the strip.
  • EP 0 695 590 B1 describes a method for cooling hot-rolled plates or also strips of aluminum or aluminum alloys, wherein air nozzles are to be provided in addition to water nozzles, which impose a periodic wiping movement on the water jets.
  • EP 1 485 509 discloses a method for the rapid cooling of strips or plates made of metal, in which predominantly the lower surface of the strips or plates is acted upon by water jets.
  • the invention is based on the technical problem of providing a continuous cooling device with which, with a simple construction, metal strips, in particular aluminum alloy strips, can be cooled in an optimum manner and thus achieve outstanding strip properties.
  • the invention teaches in a generic flow cooling device of the type described above, that the water cooling units are integrated into the belt float.
  • the invention is based on the recognition that, although it is basically expedient, the metal strip, z.
  • the metal strip for example, to cool aluminum as quickly as possible in order to optimally "freeze" the properties achieved by the heat treatment, but at the same time avoid overly rapid cooling in order to reduce contraction by contraction of the strip, even if such distortions generally occur in a subsequent straightening process
  • the invention has nevertheless found that, in order to achieve optimum strip properties, warping must be kept as low as possible in order to minimize as far as possible the influence of the strip in the course of the downstream straightening process. not as quickly as possible, but only as quickly as necessary and at the same time as slowly as possible, in order to
  • a frequently observed in practice degressive cooling curve (in the time-temperature diagram) is avoided and realized either a progressive or a linear cooling curve.
  • this is achieved in that a combined water-air cooling is realized in such a way that water cooling units are integrated into a belt-shaft cooler.
  • Such a device can be implemented quite simply in terms of device technology, since it is initially possible to make use of the fundamental structure of a belt-type bucket.
  • the water cooling units which can also be very simple, integrated.
  • a "soft quench" is realized, in addition, a very good adjustability and thus good customization options to the respective process and in particular to the treatment of different bands are possible.
  • a band-float furnace or cooler of known design. Such has a plurality of upper nozzles, which are arranged along the strip running direction at a distance, so that between the upper nozzle each intermediate areas are formed.
  • a plurality of lower nozzles are provided, which are arranged in the strip running direction at a distance from each other, so that a plurality of intermediate regions are formed between the lower nozzle.
  • a multiplicity of water cooling units can now be integrated into the strip-shaft cooler by arranging the water-cooling units in the lower intermediate regions and / or the upper intermediate regions. There are therefore a plurality of water cooling units integrated in the belt float, wherein in several intermediate areas between each in the strip running direction immediately behind one another and thus adjacent
  • each at least one water cooling unit is arranged.
  • the water cooling units can be integrated into the belt-shaft cooler in such a way that the already existing intermediate regions between the nozzles are optimally utilized. Furthermore, a too rapid cooling of the metal strip can be avoided in this way, since the cooling with the aid of cooling water as it is stepwise and is superimposed in each case with a cooling on the cooling air. There are optimal settings.
  • the admission of air in principle takes place both from above and from below, as is generally the case in strip-type vibrators or strip-float furnaces.
  • the water cooling is carried out only “from below", that is to say the water cooling units are arranged to act on the strip underside only in the area of the lower nozzles and consequently in the lower intermediate areas below the strip.
  • it is alternatively also within the scope of the invention alternatively or additionally to apply water to the upper side, so that, alternatively or additionally, water cooling units are also used in the upper intermediate regions can be provided.
  • the upper nozzles in a side view are arranged in pairs one above the other in alignment, so that the tape is not floated sinusoidal.
  • the water cooling units themselves can be constructed and set up in basically known manner. They may each have one or more in the strip running direction arranged one behind the other and extending transversely to the strip running direction along the bandwidth water nozzles or rows of water nozzles.
  • the belt float cooler vorzuordnen at least one water cooling device.
  • the metal strip after which it has been subjected to a heat treatment and z. B. emerges from a ribbon float oven, first passes through a conventional water cooling unit and thus a conventional water quench and only then enters into the strip vibrating cooler according to the invention with integrated water cooling units. In this way, the system can be operated very variable overall.
  • the optionally provided water cooling can also be switched off, so that then the "soft quench" according to the invention with combined water-air cooling is used.
  • the invention also relates to a method for cooling a metal strip, in particular an aluminum strip, in a continuous cooling device of the type described.
  • the metal strip passes through the strip float under tensile stress along a (substantially horizontal) strip running direction, which corresponds to the furnace longitudinal direction. This ensures a continuous treatment in the course of a continuous run.
  • the metal band becomes floating and thus contactless between the upper ones
  • Transported nozzles and the lower nozzles and thereby both the upper side of the tape and the lower side of the belt are subjected to cooling air.
  • the metal strip is acted upon with cooling water.
  • the metal strip within the strip-vibrating cooler is acted upon with cooling water by a plurality of water cooling units integrated in the strip-shaft cooler.
  • the metal strip is subjected to water cooling units within the belt-shaft cooler, which are arranged in several intermediate regions between two each in the strip running direction immediately behind one another (and consequently adjacent) arranged upper nozzles or lower nozzles.
  • the invention proposes that the metal strip between two adjacent lower nozzles or upper nozzles with the water cooling unit arranged in the respective intermediate region by a temperature difference of at most 100 K, for example at most 75 K, preferably maximum 50 K is cooled.
  • the invention also provides a system for heat treatment of a metal strip, in particular an aluminum strip, with at least one treatment device, for.
  • a treatment furnace in particular ribbon float furnace and with at least one flow cooling device of the type described.
  • the flow cooling device according to the invention is z. B. the treatment furnace intended for heat treatment in the working direction and consequently downstream of the tape running direction.
  • the described flow cooling device which operates on the one hand with air cooling and on the other hand with water cooling, a further strip float is arranged downstream, but preferably without water cooling and therefore formed in a conventional manner.
  • the treatment device which is followed by the flow cooling device, it may - as described - act as a treatment oven for heating the band.
  • the invention also includes the combination of the continuous cooling device with other treatment devices.
  • the flow cooling device according to the invention z. B. also a (hot) rolling mill or a (hot) rolling mill or other treatment station are arranged downstream, through which the metal strip runs in a heated state or in which the metal strip is heated.
  • the invention also relates to a method for heat treatment of a metal strip in a plant of the type described.
  • This method is characterized in that the metal strip is first heated in the treatment furnace and then cooled in the flow cooling device and, if appropriate, another strip-float cooler.
  • the metal strip not a treatment furnace, but another treatment device, for. As a rolling mill / mill or the like, passes through.
  • FIG. 1 shows a plant according to the invention for the heat treatment of an aluminum strip with a continuous cooling device according to the invention
  • FIG. 2 shows a section from FIG. 1 in the region of the throughflow cooling device
  • Fig. 3 shows a modified embodiment of the invention
  • Fig. 4 shows a modified embodiment of the article according to
  • a plant for the heat treatment of a metal band 1 is shown, which is preferably formed as an aluminum strip.
  • the plant has a treatment furnace 2, which is designed as a ribbon float furnace and in which the metal strip is subjected to a heat treatment. It may be z. B. act a solution annealing or the like.
  • the system has a continuous flow cooling device 3, which is arranged downstream of the ribbon float furnace 2 in the strip running direction B.
  • the continuous flow cooling device 3 has a belt float cooler 4 which has a plurality of upper nozzles 5 distributed along the belt running direction and a plurality of lower nozzles 6 distributed along the belt running direction, the metal belt 1 being suspended and thus transported without contact between the upper nozzles 5 and the lower nozzles 6 , In this case, both the upper side of the tape and the lower side of the belt are subjected to cooling air.
  • the flow cooling device 3, a plurality of water cooling units 7, with which the metal strip 1 is acted upon with cooling water.
  • these water cooling units 7 are integrated in the belt-shaft cooler 4.
  • upper intermediate regions 5a and lower intermediate regions 6a are formed within the belt-shaft cooler 4, wherein it can be seen that these intermediate regions 5a, 6a are arranged directly one behind the other and consequently adjacent to each other in the direction of belt travel B.
  • arranged upper or lower nozzles 5 and 6 are provided.
  • a water cooling unit 7 is now arranged in each case in a plurality of lower intermediate regions 6a and preferably in all intermediate regions 6a which are formed within the ribbon levitation cooler 4.
  • These water cooling units 7 each have one or more water nozzles or rows of water nozzles 8 arranged one behind the other in the direction of belt travel B and extending transversely to the direction of belt travel B along the belt width.
  • the strip float cooler has a plurality of upper nozzle boxes 9 each having a plurality of integrated upper nozzles 5 and a plurality of lower nozzle boxes 10 each having a plurality of integrated lower nozzles 6.
  • the water cooling units provided according to the invention are consequently arranged in the region of the lower nozzle boxes 10, specifically between the individual lower nozzles of each nozzle box and also between the two lower nozzle boxes 10 arranged one behind the other.
  • the upper nozzle boxes 9 and / or the lower nozzle boxes 10 are suspended vertically adjustable, so that the height adjustment of one or both nozzle boxes, the distance between the upper nozzle 5 and lower nozzle 6 and consequently the vertical distance is adjustable.
  • actuators or the like may be provided.
  • FIGS. 1 and 2 show the throughflow cooling device 3 according to the invention in a first embodiment, in which the upper nozzles 5 are arranged along the strip running direction B offset from the lower nozzles 6, so that the metal strip 1 is floated in a sinusoidal or wavy manner.
  • the water cooling units 7 are thus arranged in a side view in alignment under the opposite upper nozzles 5.
  • Fig. 3 shows a modified embodiment of a continuous flow cooling device according to the invention, in which the upper nozzles 5 on the one hand and the lower nozzles 6 on the other hand in a side view are arranged in pairs one above the other, so that the band is not floated sinusoidal or wavy.
  • the water cooling units 7 essential to the invention are provided in the intermediate areas, which are consequently likewise integrated into the belt-shaft cooler 4.
  • FIG. 4 shows an alternative embodiment of a throughflow cooling device according to the invention.
  • additional upper nozzles 5 ' are additionally arranged between the upper nozzles 5.
  • the embodiment of FIG. 4 is a combination of the embodiments according to Figures 2 and 3.
  • the additional (upper) nozzles 5 ' may be connected to the corresponding (upper) nozzle box 9 or also integrated in this. Alternatively, however, separately formed additional nozzles 5 'can be provided.
  • the metal strip 1, which was previously subjected to a heat treatment in the strip float furnace 2 can be cooled in an optimum manner.
  • the cooling rates can be set sufficiently fast by combined air and water cooling to freeze the metallurgical properties achieved during the heat treatment. In this case, however, too fast cooling rates can be avoided, so that distortions in the course of cooling the tape are kept within acceptable limits.
  • Particularly advantageous is the fact that optimal variable adjustment options exist, so that the cooling process can be optimally adjusted to the particular desired circumstances.
  • the system for heat treatment of the aluminum strip additionally comprises a further belt float cooler 1 1, which operates in a conventional manner without water cooling and which is arranged downstream of the belt float cooler 3 in the belt running direction B.
  • the throughflow cooling device arranged downstream of the furnace 2 can also have an additional water cooling device 12, which is arranged upstream of the belt-floating radiator 2 on the inlet side.
  • an additional water cooling device 12 which is arranged upstream of the belt-floating radiator 2 on the inlet side.
  • a so-called “hard quench” is provided at the inlet, so that it is optionally possible to work with conventional, very fast water cooling if required.
  • This system is characterized by high flexibility and variability.
  • the invention also encompasses embodiments in which the flow cooling device 3 is arranged downstream of another type of treatment device, through which the strip is in a heated state runs or in which the band is heated. In any case, the belt exits the belt treatment device in a heated state and enters the throughflow cooling device 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

Die Erfindung betrifft eine Durchlaufkühlvorrichtung (3) zum Abkühlen eines Metallbandes (1 ), insbesondere eines Metallbandes aus Aluminium oder einer Aluminiumlegierung, mit zumindest einem Bandschwebekühler (4), der mehrere entlang der Bandlaufrichtung (B) verteilte obere Düsen (5) und mehrere entlang der Bandlaufrichtung (B) verteilte untere Düsen (6) aufweist, wobei das Metallband (1 ) schwebend zwischen den oberen Düsen (5) und den unteren Düsen (6) transportierbar und dabei sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagbar ist, und mit mehreren Wasserkühleinheiten (7), mit welchen das Metallband (1 ) mit Kühlwasser beaufschlagbar ist. Diese Vorrichtung ist dadurch gekennzeichnet, dass die Wasserkühleinheiten (7) in den Bandschwebekühler (4) integriert sind.

Description

Durchlaufkühlvorrichtung und Verfahren zum Abkühlen eines Metallbandes
Beschreibung:
Die Erfindung betrifft eine Durchlaufkühlvorrichtung zum Abkühlen eines Metallbandes, insbesondere eines Metallbandes aus Leichtmetall, z. B. eines Aluminiumbandes, mit zumindest einem (ersten) Bandschwebekühler, der mehrere entlang der Bandlaufrichtung verteilte obere (Luft-)Düsen und mehrere entlang der Bandlaufrichtung verteilte untere (Luft-)Düsen aufweist, wobei das Metallband schwebend (und folglich berührungslos) zwischen den oberen Düsen und den unteren Düsen transportierbar und dabei sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagbar ist, und mit mehreren Wasserkühleinheiten, mit welchen das Metallband mit Kühlwasser beauf- schlagbar ist. Die Bandlaufrichtung entspricht der Ofenlängsrichtung. Sie ist (im Wesentlichen) horizontal orientiert.
Metallband meint im Rahmen der Erfindung bevorzugt ein Metallband aus einem Leichtmetall oder einer Leichtmetalllegierung, besonders bevorzugt aus Aluminium bzw. einer Aluminiumlegierung. Das Metallband wird im Zuge der Herstellung in der Regel einer Wärmebehandlung zu metallurgischen Zwecken unterzogen. So ist es z. B. üblich, ein Metallband aus einer Aluminiumlegierung nach dem Kaltwalzen einer Wärmebehandlung zu unterziehen, um die Bandeigenschaften bzw. Materialeigenschaften, insbesondere Festigkeit und Ver- formbarkeit/Plastizität zu optimieren. So ist es bei Aluminiumlegierungen z. B. üblich, Festigkeitssteigerungen durch eine Ausscheidungshärtung durch Lösungsglühen zu erreichen. Dazu durchläuft das Metallband (z. B. Aluminiumband) einen Ofen, z. B. einen Bandschwebeofen. Die Temperaturen im Zuge des Lösungsglühens von Aluminiumlegierungen liegen je nach Legierungstyp üblicherweise in einem Temperaturbereich zwischen 400 °C und 600 °C. Die Legierungselemente werden gleichmäßig in der Aluminiummatrix gelöst, so dass ein homogener Mischkristall entsteht. Die Erfindung betrifft daher be-
sonders bevorzugt die Behandlung von Bändern aus einer ausscheidungshärtbaren Aluminiumlegierung, insbesondere für Automobilanwendungen, das heißt für die Herstellung von Automobilblechen. Im Anschluss an eine derartige Wärmebehandlung ist eine Abkühlung erforderlich, die auch als „Abschrecken" bezeichnet wird, da die gleichmäßige Verteilung der Legierungselemente gleichsam„eingefroren" werden soll.
Dabei ist es grundsätzlich bekannt, die Abkühlung mittels Luft in einen üblichen Bandschwebekühler vorzunehmen. Da jedoch die Abkühlgeschwindigkeiten mit Luft in der Regel für eine hinreichend schnelle Kühlung/Abschreckung nicht ausreichen, wird in der Praxis bevorzugt eine Kühlung mit Wasser („Wasser- Quench") eingesetzt. Auf diese Weise lassen sich deutlich höhere Abkühlgeschwindigkeiten erzielen. Hintergrund ist die Überlegung, dass in der Zeit- Temperatur-Kurve ein kritischer Temperaturbereich beim Abschrecken „umfahren" werden muss. Vor diesem Hintergrund ist man in der Praxis bislang davon ausgegangen, dass die Abkühlung im Sinne einer Abschreckung so schnell wie möglich erfolgen sollte. Problematisch ist jedoch bei einer schnellen Abkühlung die Tatsache, dass es im Zuge der Abkühlung zu einer Kontraktion des Bandes und damit zu Verwerfungen kommt. Dieses ist in der Praxis bislang in der Regel in Kauf genommen worden, da es ohnehin üblich war, das Metallband nach der Wärmebehandlung und nach dem Abkühlen zu richten, z. B. im Wege des Streckbiegerichtens.
So befasst sich z. B. die DE 100 46 273 C2 mit dem Problem der Abkühlkontraktion im Zuge einer Schroffabkühlung nach einer Wärmebehandlung. Dabei soll zur Verringerung der Deformation des Bandes in Bandlaufrichtung hinter
der Schroffkühlung das Band mit einer kreisbogenähnlichen Querschnittsform zwangsgeführt werden.
In der DE 31 29 254 C1 wird eine Vorrichtung zur Kühlung eines Metall band es beschrieben, welche eine zur Oberfläche geneigt angeordnete Schlitzdüse aufweist, die einen Strahl aus einem Gas-/Flüssigkeitsgemisch auf die Oberfläche richtet.
Die EP 0 343 103 B1 beschreibt ebenfalls ein Verfahren zum Kühlen von Metallbändern durch Aufsprühen eines Gas-/Flüssigkeitsgemisches in Form eines Nebels auf die Oberfläche des Bandes.
In ähnlicher Weise wird in der EP 0 695 590 B1 ein Verfahren zum Kühlen von warmgewalzten Platten oder auch Bändern aus Aluminium oder Aluminium- legierungen beschrieben, wobei zusätzlich zu Wasserdüsen Luftdüsen vorgesehen sein sollen, die den Wasserstrahlen eine periodische Wischbewegung aufzwingen.
Aus der EP 1 485 509 kennt man ein Verfahren zur Schroffabkühlung von Bändern oder Platten aus Metall, bei dem überwiegend die untere Oberfläche der Bänder oder Platten durch Wasserstrahlen beaufschlagt wird.
In einem aus der EP 0 949 348 A1 beschriebenen Verfahren wird der Einsatz eines Kühlmediums in Form eines Gases oder Gasgemisches mit einem Siede- punkt von maximal -150 °C in flüssiger Form vorgeschlagen, z. B. der Einsatz von flüssigem Stickstoff. Das Band oder das Profil kann unmittelbar nach der Abkühlung mit flüssigem Gas in einer nachfolgenden Stufe mit Wasser oder Luft weiter gekühlt werden.
Schließlich ist es im Zusammenhang mit der Behandlung von Strangpressprofilen bekannt, in einer Kühlvorrichtung abwechselnd Luftdüsen einerseits und Wasserbeaufschlagungsdüsen andererseits vorzusehen (vgl. EP 0 942 792 B1 und EP 0 541 630 B1 ). Die Behandlung von Metallbändern im Zuge eines kontinuierlichen Durchlaufs und insbesondere Aluminiumbändern wurde durch derartige Überlegungen nicht beeinflusst.
Der Erfindung liegt das technische Problem zugrunde, eine Durchlaufkühlvorrichtung zu schaffen, mit welcher sich bei einfachem Aufbau Metallbänder uns insbesondere Bänder aus Aluminiumlegierungen, in optimaler Weise abkühlen und damit hervorragende Bandeigenschaften erzielen lassen.
Zur Lösung dieser Aufgabe lehrt die Erfindung bei einer gattungsgemäßen Durchlaufkühlvorrichtung der eingangs beschriebenen Art, dass die Wasser- kühleinheiten in den Bandschwebekühler integriert sind.
Die Erfindung geht dabei von der Erkenntnis aus, dass es zwar grundsätzlich zweckmäßig ist, das Metallband, z. B. Aluminiumband, möglichst schnell abzukühlen, um die durch die Wärmebehandlung erzielten Eigenschaften optimal „einzufrieren". Dabei muss jedoch zugleich eine zu schnelle Abkühlung vermieden werden, um Verwerfungen durch Kontraktion des Bandes zu reduzieren. Auch wenn sich solche Verwerfungen in einem anschließenden Richtprozess grundsätzlich eliminieren lassen, so hat die Erfindung doch erkannt, dass zur Erzielung optimaler Bandeigenschaften Verwerfungen mög- liehst gering gehalten werden müssen, um die Beeinflussung des Bandes im Zuge des nachgeschalteten Richtprozesses möglichst zu minimieren. Vor diesem Hintergrund wird im Rahmen der Erfindung eine Abkühlung erreicht, die nicht so schnell wie möglich erfolgt, sondern lediglich so schnell wie notwendig und zugleich so langsam wie möglich, um die Ergebnisse der Wärmebehand-
lung festzuhalten und insbesondere die Ausbildung von Ausscheidungsfehlern zu reduzieren. Erfindungsgemäß wird dazu eine in der Praxis häufig beobachtete stark degressive Abkühlkurve (im Zeit-Temperatur-Diagramm) vermieden und entweder eine progressive oder auch eine lineare Abkühlkurve realisiert. Vorrichtungstechnisch wird dieses dadurch erreicht, dass eine kombinierte Wasser-Luft-Kühlung derart realisiert ist, dass in einen Bandschwebekühler Wasserkühleinheiten integriert werden. Eine solche Einrichtung lässt sich vorrichtungstechnisch recht einfach realisieren, denn es kann zunächst einmal auf den grundsätzlichen Aufbau eines Bandschwebekühlers zurückgegriffen werden. In einen solchen grundsätzlich bekannten Bandschwebekühler werden die Wasserkühleinheiten, die ebenfalls sehr einfach aufgebaut sein können, integriert. Auf diese wird eine„Soft-Quench" realisiert, wobei außerdem eine sehr gute Einstellbarkeit und damit gute Anpassungsmöglichkeiten an den jeweiligen Prozess und insbesondere auch an die Behandlung unterschiedlicher Bänder möglich sind.
Konstruktiv kann dabei grundsätzlich auf einen Bandschwebeofen bzw. -kühler bekannter Bauart zurückgegriffen werden. Ein solcher weist eine Vielzahl oberer Düsen auf, die entlang der Bandlaufrichtung mit Abstand angeordnet sind, so dass zwischen den oberen Düsen jeweils Zwischenbereiche gebildet werden. In gleicher weise sind eine Vielzahl unterer Düsen vorgesehen, die in Bandlaufrichtung mit Abstand zueinander angeordnet sind, so dass auch zwischen den unteren Düsen mehrere Zwischenbereiche gebildet werden. Erfindungsgemäß lassen sich nun eine Vielzahl von Wasserkühleinheiten in den Bandschwebekühler integrieren, indem die Wasserkühleinheiten in den unteren Zwischenbereichen und/oder den oberen Zwischenbereichen angeordnet sind. Es sind folglich eine Vielzahl von Wasserkühleinheiten in den Bandschwebekühler integriert, wobei in mehreren Zwischenbereichen zwischen jeweils in Bandlaufrichtung unmittelbar hintereinander und folglich benachbart
angeordneter unterer Düsen (oder alternativ auch oberer Düsen) jeweils zumindest eine Wasserkühleinheit angeordnet ist.
Erfindungsgemäß wird folglich eine sehr kompakte Bauweise realisiert, denn die Wasserkühleinheiten lassen sich derart in den Bandschwebekühler integrieren, dass die ohnehin vorhandenen Zwischenbereiche zwischen den Düsen optimal ausgenutzt werden. Ferner kann auf diese Weise eine zu schnelle Abkühlung des Metallbandes vermieden werden, da die Abkühlung mit Hilfe des Kühlwassers gleichsam schrittweise erfolgt und jeweils mit einer Abkühlung über die Kühlluft überlagert ist. Dabei bestehen optimale Einstellmöglichkeiten.
Zugleich wird eine einwandfreie Bandführung gewährleistet, denn die Vielzahl der Düsen des Bandschwebekühlers dienen nicht nur der Kühlung mittels Kühlluft, sondern auch einer einwandfreien Bandführung.
Dabei erfolgt die Beaufschlagung mit der Luft grundsätzlich sowohl von oben als auch von unten, so wie es bei Bandschwebekühlern bzw. Bandschwebeöfen grundsätzlich üblich ist. Die Wasserkühlung erfolgt jedoch in bevorzugter Ausführungsform der Erfindung lediglich „von unten", das heißt die Wasserkühl- einheiten sind zur Beaufschlagung lediglich der Bandunterseite lediglich im Bereich der unteren Düsen und folglich in den unteren Zwischenbereichen unterhalb des Bandes angeordnet. Diese Ausgestaltung hat den Vorteil, dass ein einwandfreies Abfließen des Wassers gewährleistet und die Ausbildung von Wasserlachen auf der Bandoberseite vermieden werden kann. Grundsätzlich liegt es jedoch alternativ auch im Rahmen der Erfindung alternativ oder ergänzend die Oberseite mit Wasser zu beaufschlagen, so dass alternativ oder ergänzend auch in den oberen Zwischenbereichen Wasserkühleinheiten vorgesehen sein können.
Wie bereits erwähnt, kann bei der Ausgestaltung des Bandschwebekühlers hinsichtlich Luftdüsen auf grundsätzlich bekannte Konstruktionen zurückgegriffen werden. So ist es z. B. vorgesehen, dass die oberen Düsen entlang der Bandlaufrichtung versetzt zu den unteren Düsen angeordnet sind, so dass das Metallband sinusförmig bzw. wellenförmig geschwebt wird. In diesem Fall sind die Wasserkühleinheiten dann in einer Seitenansicht auf den Ofen, z. B. fluchtend mit den gegenüberliegenden Luftdüsen angeordnet. Sofern die Wasserkühleinheiten folglich unterhalb des Bandes zwischen den unteren Luftdüsen angeordnet sind, sind die Wasserkühleinheiten in einer Seitenansicht fluchtend mit den gegenüberliegenden (oberen) Düsen angeordnet. Eine solche Ausgestaltung mit sinusförmiger Bandführung hat den Vorteil, dass das Band optimal geführt und gestützt wird. Eine versetzte Anordnung der oberen und unteren Luftdüsen und damit eine fluchtende Anordnung der oberen Düsen gegenüber der Wasserkühleinheiten hat darüber hinaus den Vorteil, dass durch die Luftbeaufschlagung verhindert wird, dass das von unten zugeführte Wasser über die Bandkanten auf die Oberfläche des Bandes gelangt.
Alternativ liegt es jedoch ebenso im Rahmen der Erfindung, dass die oberen Düsen in einer Seitenansicht jeweils paarweise fluchtend übereinander ange- ordnet sind, so dass das Band nicht sinusförmig geschwebt wird. Bei einer solchen Ausführungsform kann es optional vorteilhaft sein, zusätzlich zu den fluchtenden oberen Düsen zwischen diesen weitere Luftdüsen anzuordnen, die dann wiederum versetzt zu den unteren Luftdüsen und damit fluchtend zu den Wasserkühleinheiten angeordnet sind. Damit wird bei einer grundsätzlich sinusförmigen Bandführung durch eine zusätzliche Luft-Beaufschlagung oberhalb der Wasserkühleinheiten wiederum verhindert, dass Wasser von unten über die Bandkanten auf die Bandoberfläche gelangt.
Die Wasserkühleinheiten selbst können in grundsätzlich bekannter Weise aufgebaut und eingerichtet sein. Sie können jeweils ein oder mehrere in Bandlaufrichtung hintereinander angeordnete und sich quer zur Bandlaufrichtung entlang der Bandbreite erstreckende Wasserdüsen bzw. Wasserdüsenreihen aufweisen.
Auch wenn im Vordergrund der Erfindung die Kombination von Wasserdüsen und Luftdüsen innerhalb eines Bandschwebekühlers im Vordergrund steht, so liegt es optional außerdem im Rahmen der Erfindung, dem Bandschwebekühler zumindest eine Wasserkühleinrichtung vorzuordnen. Es besteht folglich die Möglichkeit, dass das Metallband, nach dem es einer Wärmebehandlung unterzogen wurde und z. B. aus einem Bandschwebeofen austritt, zunächst eine herkömmliche Wasserkühleinheit und damit eine herkömmliche Wasser-Quench durchläuft und erst dann in den erfindungsgemäßen Bandschwebekühler mit integrierten Wasserkühleinheiten eintritt. Auf diese Weise kann die Anlage insgesamt sehr variabel betrieben werden. So besteht die Möglichkeit, in herkömmlicher Weise das Metallband nach der Wärmebehandlung sehr schnell mit Hilfe einer Wasserkühlung abzukühlen. Alternativ kann die optional vorgesehene Wasserkühlung jedoch auch abgeschaltet werden, so dass dann die erfindungsgemäße „Soft-Quench" mit kombinierter Wasser-Luft-Kühlung zum Einsatz kommt.
Die Erfindung betrifft auch ein Verfahren zum Abkühlen eines Metallbandes, insbesondere eines Aluminiumbandes, in einer Durchlaufkühlvorrichtung der beschriebenen Art. Dabei durchläuft das Metallband den Bandschwebekühler unter Zugspannung entlang einer (im Wesentlichen horizontalen) Bandlaufrichtung, welche der Ofenlängsrichtung entspricht. Dabei wird eine kontinuierliche Behandlung im Zuge eines kontinuierlichen Durchlaufs gewährleistet. Das Metallband wird schwebend und folglich berührungslos zwischen den oberen
Düsen und den unteren Düsen transportiert und dabei werden sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagt. Außerdem wird das Metallband mit Kühlwasser beaufschlagt. Erfindungsgemäß ist vorgesehen, dass das Metallband innerhalb des Bandschwebekühlers mit mehreren in den Bandschwebekühler integrierten Wasserkühleinheiten mit Kühlwasser beaufschlagt wird.
In bevorzugter Weiterbildung ist vorgesehen, dass das Metallband innerhalb des Bandschwebekühlers mit Wasserkühleinheiten beaufschlagt wird, die in mehreren Zwischenbereichen zwischen jeweils zwei in Bandlaufrichtung unmittelbar hintereinander (und folglich benachbart) angeordneten oberen Düsen oder unteren Düsen angeordnet sind. Erfindungsgemäß lassen sich optimale Abkühlgeschwindigkeiten einstellen, mit denen zwar verhältnismäßig schnell abgekühlt wird, um die durch eine Wärmebehandlung erzielten Eigenschaften des Bandes„einzufrieren". Andererseits wird eine zu schnelle Abkühlung vermieden, um Verwerfungen, die sich im Zuge der Kontraktion des Bandes beim Abkühlen ergeben können, in Grenzen zu halten. Bevorzugt schlägt die Erfindung vor, dass das Metallband zwischen zwei benachbarten unteren Düsen oder oberen Düsen mit der in dem jeweiligen Zwischenbereich angeordneten Wasserkühleinheit um eine Temperaturdifferenz von maximal 100 K, z. B. maximal 75 K, vorzugsweise maximal 50 K abgekühlt wird.
Gegenstand der Erfindung ist auch eine Anlage zur Wärmebehandlung eines Metallbandes, insbesondere eines Aluminiumbandes, mit zumindest einer Be- handlungseinrichtung, z. B. einem Behandlungsofen, insbesondere Bandschwebeofen und mit zumindest einer Durchlaufkühlvorrichtung der beschriebenen Art. Die erfindungsgemäße Durchlaufkühlvorrichtung ist z. B. dem zur Wärmebehandlung bestimmten Behandlungsofen in Arbeitsrichtung und folglich Bandlaufrichtung nachgeordnet. Die erfindungsgemäße Durchlaufkühlvorrich-
tung wird folglich auch in Kombination mit einem Bandschwebeofen und folglich innerhalb einer Anlage zur Wärmebehandlung unter Schutz gestellt. Dabei ist es zweckmäßig, dass der beschriebenen Durchlaufkühlvorrichtung, die einerseits mit Luftkühlung und andererseits mit Wasserkühlung arbeitet, ein weiterer Bandschwebekühler nachgeordnet ist, der jedoch bevorzugt ohne Wasserkühlung und folglich in herkömmlicher Weise ausgebildet ist. Bei der Behandlungseinrichtung, an welche sich die Durchlaufkühlvorrichtung anschließt, kann es sich - wie beschrieben - um einen Behandlungsofen zur Erwärmung des Bandes handeln. Die Erfindung umfasst jedoch auch die Kombination der Durchlaufkühlvorrichtung mit anderen Behandlungseinrichtungen. So kann die erfindungsgemäße Durchlaufkühlvorrichtung z. B. auch einem (Warm-)Walz- werk oder einem (Warm-)Walzgerüst oder auch einer anderen Behandlungsstation nachgeordnet werden, durch welche das Metallband in erwärmtem Zustand läuft oder in welcher das Metallband erwärmt wird.
Schließlich betrifft die Erfindung auch ein Verfahren zur Wärmebehandlung eines Metallbandes in einer Anlage der beschriebenen Art. Dieses Verfahren ist dadurch gekennzeichnet, dass das Metallband zunächst in dem Behandlungsofen erwärmt und anschließend in der Durchlaufkühlvorrichtung und gegeben- enfalls einem weiteren Bandschwebekühler abgekühlt wird. Auch in verfahrensmäßiger Hinsicht besteht die Möglichkeit, dass das Metallband nicht einen Behandlungsofen, sondern eine andere Behandlungseinrichtung, z. B. ein Walzwerk/Walzgerüst oder dergleichen, durchläuft. Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert. Es zeigen:
Fig. 1 eine erfindungsgemäße Anlage zur Wärmebehandlung eines Aluminiumbandes mit einer erfindungsgemäßen Durchlaufkühlvorrichtung, Fig. 2 einen Ausschnitt aus Fig. 1 im Bereich der Durchlaufkühlvorrichtung,
Fig. 3 eine abgewandelte Ausführungsform der erfindungsgemäßen
Durchlaufkühlvorrichtung,
Fig. 4 eine abgewandelte Ausführungsform des Gegenstandes nach
Fig. 3.
In den Figuren ist eine Anlage zur Wärmebehandlung eines Metall band es 1 dargestellt, dass bevorzugt als Aluminiumband ausgebildet ist. Die Anlage weist einen Behandlungsofen 2 auf, der als Bandschwebeofen ausgebildet ist und in welchem das Metallband einer Wärmebehandlung unterzogen wird. Dabei kann es sich z. B. um ein Lösungsglühen oder dergleichen handeln. Ferner weist die Anlage eine Durchlaufkühlvorrichtung 3 auf, die dem Bandschwebeofen 2 in der Bandlaufrichtung B nachgeordnet ist. Die erfindungsgemäße Durchlaufkühlvorrichtung 3 weist einen Bandschwebekühler 4 auf, der mehrere entlang der Bandlaufrichtung verteilte obere Düsen 5 und mehrere entlang der Bandlaufrichtung verteilte untere Düsen 6 aufweist, wobei das Metallband 1 schwebend und folglich berührungslos zwischen den oberen Düsen 5 und den unteren Düsen 6 transportiert wird. Dabei werden sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagt. Außerdem weist die Durchlaufkühlvorrichtung 3 eine Vielzahl von Wasserkühleinheiten 7 auf, mit denen das Metallband 1 mit Kühlwasser beaufschlagt wird.
Erfindungsgemäß sind diese Wasserkühleinheiten 7 in den Bandschwebekühler 4 integriert. Dabei werden innerhalb des Bandschwebekühlers 4 zwischen den einzelnen oberen Düsen 5 und den einzelnen unteren Düsen 6 obere Zwischenbereiche 5a und untere Zwischenbereiche 6a gebildet, wobei er- kennbar ist, dass diese Zwischenbereiche 5a, 6a zwischen jeweils zwei in Bandlaufrichtung B unmittelbar hintereinander und folglich benachbart angeordneten oberen oder unteren Düsen 5 bzw. 6 vorgesehen sind. In dem dargestellten Ausführungsbeispiel sind nun in mehreren unteren Zwischenbereichen 6a und bevorzugt in sämtlichen Zwischenbereichen 6a, die innerhalb des Band- schwebekühlers 4 gebildet sind, jeweils eine Wasserkühleinheit 7 angeordnet. Diese Wasserkühleinheiten 7 weisen jeweils eine oder mehrere in Bandlaufrichtung B hintereinander angeordnete und sich quer zur Bandlaufrichtung B entlang der Bandbreite erstreckende Wasserdüsen bzw. Wasserdüsenreihen 8 auf.
Der Bandschwebekühler weist im Ausführungsbeispiel mehrere obere Düsenkästen 9 mit jeweils mehreren integrierten oberen Düsen 5 und mehrere untere Düsenkästen 10 mit jeweils mehreren integrierten unteren Düsen 6 auf. Die erfindungsgemäß vorgesehenen Wasserkühleinheiten sind folglich im Bereich der unteren Düsenkästen 10 angeordnet, und zwar zwischen den einzelnen unteren Düsen eines jeden Düsenkastens und auch zwischen den beiden hintereinander angeordneten unteren Düsenkästen 10.
Dabei besteht die Möglichkeit, dass die oberen Düsenkästen 9 und/oder die unteren Düsenkästen 10 höhenverstellbar aufgehängt sind, so dass über die Höhenverstellung eines oder beider Düsenkästen der Abstand zwischen oberen Düsen 5 und unteren Düsen 6 und folglich der vertikale Abstand einstellbar ist. Dazu können nicht näher dargestellte Stellantriebe oder dergleichen vorgesehen sein.
Die Figuren 1 und 2 zeigen dabei die erfindungsgemäße Durchlaufkühlvorrichtung 3 in einer ersten Ausführungsform, bei welcher die oberen Düsen 5 entlang der Bandlaufrichtung B versetzt zu den unteren Düsen 6 angeordnet sind, so dass das Metallband 1 sinusförmig bzw. wellenförmig geschwebt wird. In diesem Ausführungsbeispiel sind die Wasserkühleinheiten 7 folglich in einer Seitenansicht fluchtend unter den gegenüberliegenden oberen Düsen 5 angeordnet. Demgegenüber zeigt Fig. 3 eine abgewandelte Ausführungsform einer erfindungsgemäßen Durchlaufkühlvorrichtung, bei welcher die oberen Düsen 5 einerseits und die unteren Düsen 6 andererseits in einer Seitenansicht jeweils paarweise fluchtend übereinander angeordnet sind, so dass das Band nicht sinusförmig bzw. wellenförmig geschwebt wird. Auch bei dieser Ausführungs- form sind jedoch in den Zwischenbereichen die erfindungswesentlichen Wasserkühleinheiten 7 vorgesehen, die folglich ebenfalls in den Bandschwebekühler 4 integriert sind.
Fig. 4 zeigt eine alternative Ausführungsform einer erfindungsgemäßen Durch- laufkühlvorrichtung. Ausgehend von der Ausführungsform nach Fig. 3 mit versetzt angeordneten oberen Düsen 5 und unteren Düsen 6 sind zusätzlich weitere obere Düsen 5' zwischen den oberen Düsen 5 angeordnet. Diese zusätzlichen Luftdüsen 5' sind folglich fluchtend oberhalb der Wasserkühleinheiten 7 angeordnet. Damit stellt die Ausführungsform nach Fig. 4 gleichsam eine Kombination der Ausführungsformen nach Figuren 2 und 3 dar. Durch die Luftdüsen 5', die fluchtend oberhalb der Wasserkühleinheiten 7 angeordnet sind, wird verhindert, dass gegebenenfalls Wasser, welches auf die Bandunterseite aufgebracht wird, über die Bandkanten auf die Oberseite des Bandes gelangt.
Die zusätzlichen (oberen) Düsen 5' können an den entsprechenden (oberen) Düsenkasten 9 mit angeschlossen bzw. ebenfalls in diesen integriert sein. Alternativ können aber auch separat ausgebildete zusätzliche Düsen 5' vorge- sehen sein.
Mit dem erfindungsgemäßen Bandschwebekühler 4 lässt sich das Metallband 1 , welches zuvor in dem Bandschwebeofen 2 einer Wärmebehandlung unterzogen wurde, auf optimale Weise abkühlen. Die Abkühlgeschwindigkeiten können durch die kombinierte Luft- und Wasserkühlung hinreichend schnell eingestellt werden, um die im Zuge der Wärmebehandlung erzielten metallurgischen Eigenschaften einzufrieren. Dabei können jedoch zu schnelle Abkühlgeschwindigkeiten vermieden werden, so dass Verwerfungen im Zuge der Abkühlung des Bandes in zulässigen Grenzen gehalten werden. Besonders vorteilhaft ist dabei die Tatsache, dass optimale variable Einstellmöglichkeiten bestehen, so dass der Kühlprozess optimal an die jeweils gewünschten Gegebenheiten eingestellt werden kann.
Dabei wird insgesamt mit sehr einfachen konstruktiven Mitteln gearbeitet, denn die Luftdüsen sind als herkömmliche Luftdüsen ausgebildet und die Wasserkühleinheiten weisen herkömmliche Wasserstrahldüsen auf, so dass auf „kombinierte" Wasser-/Luft- bzw. Nebeldüsen, die im Stand der Technik eingesetzt werden, verzichtet wird. Im Übrigen ist in Fig. 1 erkennbar, dass die Anlage zur Wärmebehandlung des Aluminiumbandes zusätzlich einen weiteren Bandschwebekühler 1 1 aufweist, der in herkömmlicher Weise ohne Wasserkühlung arbeitet und der dem Bandschwebekühler 3 in Bandlaufrichtung B nachgeordnet ist. Nach der erfindungs-
gemäßen kombinierten Wasser- und Luftkühlung erfolgt folglich eine weitere Abkühlung mit Hilfe eines herkömmlichen Bandschwebekühlers 1 1 .
Im Übrigen ist in Fig. 2 erkennbar, dass die dem Ofen 2 nachgeordnete Durch- laufkühlvorrichtung außerdem eine zusätzliche Wasserkühlvorrichtung 12 aufweisen kann, die dem Bandschwebekühler 2 einlaufseitig vorgeordnet ist. Damit wird vorrichtungsmäßig am Einlauf eine sogenannte„Hard-Quench" zur Verfügung gestellt, so dass optional bei Bedarf auch mit einer herkömmlichen sehr schnellen Wasserkühlung gearbeitet werden kann. Die dargestellte Anlage zeichnet sich folglich durch hohe Flexibilität und Variabilität aus.
Auch wenn die Figuren Ausführungsformen zeigen, bei denen die erfindungsgemäße Durchlaufkühlvorrichtung 3 einem Bandschwebeofen 2 und damit einer Temperiereinrichtung nachgeordnet ist, so umfasst die Erfindung auch Ausführungsformen, bei denen die Durchlaufkühlvorrichtung 3 einer anderen Art von Behandlungseinrichtung nachgeordnet ist, durch welche das Band in erwärmten Zustand läuft oder in welcher das Band erwärmt wird. Jedenfalls tritt das Band in einem erwärmten Zustand aus der Bandbehandlungseinrichtung aus und tritt in die Durchlaufkühlvorrichtung 3 ein.

Claims

Patentansprüche:
1 . Durchlaufkühlvorrichtung (3) zum Abkühlen eines Metallbandes (1 ), insbesondere eines Metallbandes aus Aluminium oder einer Aluminiumlegierung, mit zumindest einem Bandschwebekühler (4), der mehrere entlang der Band- laufrichtung (B) verteilte obere Düsen (5) und mehrere entlang der Bandlaufrichtung (B) verteilte untere Düsen (6) aufweist, wobei das Metallband (1 ) schwebend zwischen den oberen Düsen (5) und den unteren Düsen (6) transportierbar und dabei sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagbar ist, und mit mehreren Wasserkühleinheiten (7), mit welchen das Metallband (1 ) mit Kühlwasser beaufschlagbar ist, d a d u r c h g e k e n n z e i c h n e t, dass die Wasserkühleinheiten (7) in den Bandschwebekühler (4) integriert sind.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass in mehreren Zwischenbereichen (6a) zwischen jeweils zwei in Bandlaufrichtung (B) unmittelbar hintereinander angeordneten unteren Düsen (6) oder oberen Düsen (5) jeweils zumindest eine Wasserkühleinheit (7) angeordnet ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Wasserkühleinheiten (7) zur Beaufschlagung lediglich der Bandunterseite lediglich zwischen unteren Düsen (6) unterhalb des Bandes angeordnet sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, wobei der Bandschwebekühler (4) einen oder mehrere obere Düsenkästen (9) mit jeweils mehreren angeschlossenen oder integrierten oberen Düsen (5) und einen oder mehrere untere Düsenkästen (10) mit jeweils mehreren angeschlossenen oder integrierten unteren Düsen (6) aufweist, dadurch gekennzeichnet, dass im Bereich der 2 unteren Düsenkästen (10) oder im Bereich der oberen Düsenkästen (9) und/ oder zwischen Düsen zweier hintereinander angeordneten Düsenkästen (9, 10) Wasserkühleinheiten (7) angeordnet sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die oberen Düsen (5) entlang der Bandlaufrichtung (B) versetzt zu den unteren Düsen (6) angeordnet sind, so dass das Metallband sinusförmig oder wellenförmig geschwebt wird.
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die oberen Düsen (5) und die unteren Düsen (6) in einer Seitenansicht jeweils paarweise fluchtend übereinander angeordnet sind.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass zusätzlich zu den fluchtenden oberen Düsen (5) zwischen diesen weitere Luftdüsen (5') angeordnet sind, die versetzt zu den unteren Luftdüsen (6) und fluchtend zu den Wasserkühleinheiten (7) angeordnet sind.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wasserkühleinheiten (7) jeweils eine oder mehrere in Bandlaufrichtung
(B) hintereinander angeordnete und sich quer zur Bandlaufrichtung (B) entlang der Bandbreite erstreckende Wasserdüsen oder Wasserdüsenreihen (8) aufweisen.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dem Bandschwebekühler (4) zumindest eine optional einsetzbare Wasserkühleinrichtung (12) vorgeordnet ist. 3
10. Verfahren zum Abkühlen eines Metallbandes (1 ), insbesondere eines Metallbandes aus Aluminium oder einer Aluminiumlegierung, in einer Durchlaufkühlvorrichtung (3) nach einem der Ansprüche 1 bis 9, wobei das Metallband (1 ) den Bandschwebekühler (4) unter Zugspannung entlang einer im Wesentlichen horizontalen Bandlaufrichtung (B) durchläuft, wobei das Metallband (1 ) schwebend zwischen den oberen Düsen (5) und den unteren Düsen (6) transportiert wird und dabei sowohl die Bandoberseite als auch die Bandunterseite mit Kühlluft beaufschlagt werden, und wobei das Metallband (1 ) außerdem mit Kühlwasser beaufschlagt wird, d a d u r c h g e k e n n z e i c h n e t, dass das Metallband (1 ) innerhalb des Bandschwebekühlers (4) mit mehreren in den Bandschwebekühler (4) integrierten Wasserkühleinheiten (7) mit Kühlwasser beaufschlagt wird.
1 1 . Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Metall- band (1 ) innerhalb des Bandschwebekühlers (4) mit Wasserkühleinheiten (7) beaufschlagt wird, die in mehreren Zwischenbereichen zwischen jeweils zwei in Bandlaufrichtung unmittelbar hintereinander angeordneten oberen Düsen (5) oder unteren Düsen (6) angeordnet sind.
12. Verfahren nach Anspruch 10 oder 1 1 , dadurch gekennzeichnet, dass das Metallband (1 ) zwischen zwei benachbarten unteren Düsen (6) oder oberen Düsen (5) mit der in dem jeweiligen Zwischenbereich angeordneten Wasserkühleinheit um eine Temperaturdifferenz von maximal 100 K, z. B. maximal 75 K, vorzugsweise maximal 50 K abgekühlt wird. 4
13. Anlage zur Wärmebehandlung eines Metallbandes (1 ), insbesondere eines Metallbandes aus Aluminium oder einer Aluminiumlegierung, mit zumindest einer Behandlungseinrichtung, z. B. einem Behandlungsofen (2), einem Walzwerk/-gerüst oder dergleichen, in welcher das Metallband erwärmt wird oder welche das Metallband erwärmt durchläuft, und zumindest einer der Behandlungseinrichtung (2) nachgeordneten Durch- laufkühlvorrichtung (3) nach einem der Ansprüche 1 bis 9.
14. Anlage nach Anspruch 13, dadurch gekennzeichnet, dass der Durchlaufkühlvorrichtung (3) ein weiterer Bandschwebekühler (1 1 ) ohne Wasserkühlung nachgeordnet ist.
15. Verfahren zur Wärmebehandlung eines Metallbandes, insbesondere eines Metallbandes aus Aluminium oder einer Aluminiumlegierung, in einer Anlage nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass Metallband (1 ) zunächst die Behandlungseinrichtung durchläuft, z. B. in dem Behandlungsofen (2) erwärmt wird, und anschließend in der Durchlaufkühlvorrichtung (3) und gegebenenfalls einem weiteren Bandschwebekühler (1 1 ) abgekühlt wird.
PCT/EP2017/050401 2016-02-05 2017-01-10 Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes WO2017133867A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187018659A KR20180109864A (ko) 2016-02-05 2017-01-10 연속 유동 냉각 장치 및 금속 스트립 냉각 방법
EP17700322.5A EP3350352B1 (de) 2016-02-05 2017-01-10 Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes
US15/769,540 US11072834B2 (en) 2016-02-05 2017-01-10 Continuous-flow cooling apparatus and method of cooling strip therewith
CN201780005207.XA CN108431250A (zh) 2016-02-05 2017-01-10 用于冷却金属带的连续冷却设备和方法
RU2018122483A RU2744007C2 (ru) 2016-02-05 2017-01-10 Устройство проточного охлаждения, способ охлаждения металлической полосы, линия термообработки металлической полосы, способ термообработки металлической полосы
CA3004532A CA3004532A1 (en) 2016-02-05 2017-01-10 Continuous-flow cooling apparatus and method of cooling a metal strip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016102093.1 2016-02-05
DE102016102093.1A DE102016102093B3 (de) 2016-02-05 2016-02-05 Durchlaufkühlvorrichtung und Verfahren zum Abkühlen eines Metallbandes

Publications (1)

Publication Number Publication Date
WO2017133867A1 true WO2017133867A1 (de) 2017-08-10

Family

ID=57796344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/050401 WO2017133867A1 (de) 2016-02-05 2017-01-10 Durchlaufkühlvorrichtung und verfahren zum abkühlen eines metallbandes

Country Status (8)

Country Link
US (1) US11072834B2 (de)
EP (1) EP3350352B1 (de)
KR (1) KR20180109864A (de)
CN (1) CN108431250A (de)
CA (1) CA3004532A1 (de)
DE (1) DE102016102093B3 (de)
RU (1) RU2744007C2 (de)
WO (1) WO2017133867A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190010568A1 (en) * 2017-07-04 2019-01-10 Daiso Steel Co., Ltd. Thermal treatment furnace

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019102595A1 (de) * 2019-02-01 2020-08-06 Otto Junker Gmbh Verfahren zum Abkühlen von bewegtem metallischen Material sowie Vorrichtung zur Durchführung eines solchen Verfahrens
DE102019105167B3 (de) 2019-02-28 2020-08-13 Ebner Industrieofenbau Gmbh Schwebebandofen
CN111826504A (zh) * 2020-06-05 2020-10-27 中航工程集成设备有限公司 一种气垫炉气液淬火喷嘴结构及气液协同淬火系统
CN111876559A (zh) * 2020-08-17 2020-11-03 苏州大图热控科技有限公司 一种铝合金瞬时液相扩散焊接后的自动化固溶装置及方法
CN112795771A (zh) * 2020-12-30 2021-05-14 阳江宏旺实业有限公司 雾冷器、不锈钢连续退火冷却系统及其冷却方法
CN114769565B (zh) * 2022-03-22 2023-03-24 吴江市亨达机械配件有限责任公司 全自动机器人配件压铸设备用冷却装置
AT526905B1 (de) 2023-01-16 2024-12-15 Ebner Ind Ofenbau Durchlaufkühlvorrichtung

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900991A (en) 1956-03-26 1959-08-25 Ajem Lab Inc Power washer
DE1427810A1 (de) 1962-06-27 1969-10-16 British Iron Steel Research Vorrichtung zur Abstuetzung und Fuehrung von Bandmaterial
DE3129254C1 (de) 1981-07-24 1983-01-27 Carl Prof. Dr.-Ing. Kramer Vorrichtung zur Kuehlung der bewegten Oberflaeche eines Festkoerpers
EP0031517B1 (de) 1979-12-13 1984-10-24 Nippon Steel Corporation Vorrichtung zum Kühlen mit einer Gas-Flüssigkeit-Mischung
EP0192169A2 (de) * 1985-02-15 1986-08-27 Otto Junker GmbH Vorrichtung zum berührungsfreien Führen von Warenbahnen, insbesondere Metallbändern, mittels eines Gasmediums
JPS61253329A (ja) * 1985-05-01 1986-11-11 Daido Steel Co Ltd 冷却兼シ−ル装置
JPS624833A (ja) * 1985-07-01 1987-01-10 Mitsubishi Heavy Ind Ltd 走行鋼帯の冷却装置
DE4024605A1 (de) 1990-08-02 1992-02-06 Wsp Ingenieurgesellschaft Fuer Vorrichtung zur abkuehlung von strangpressprofilen
EP0343103B1 (de) 1988-05-19 1992-11-11 Alusuisse-Lonza Services Ag Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
DE4240700A1 (de) 1992-12-03 1994-06-09 Kramer Carl Vorrichtung zum schwebend Führen und Umlenken von Warenbahnen
EP0695590A1 (de) 1994-07-20 1996-02-07 Alusuisse-Lonza Services AG Verfahren und Vorrichtung zum Kühlen von warmgewalzten Platten und Bändern aus Metall
EP0949348A1 (de) 1998-04-09 1999-10-13 Alusuisse Technology & Management AG Verfahren zum kontrollierten Abkühlen eines Bandes oder eines Profils aus einer Aluminiumlegierung
EP0942792B1 (de) 1996-11-28 2001-05-23 Ingenieurgemeinschaft WSP Prof. Dr.-Ing. C.Kramer Prof. H.J. Gerhardt, M.Sc. Vorrichtung zur abkühlung von strangpressprofilen
DE10046273C2 (de) 2000-09-19 2003-01-30 Carl Kramer Verfahren und Vorrichtung zur Wärmebehandlung eines Metallbandes
EP1485509A1 (de) 2002-02-22 2004-12-15 Peter Limbach Verfahren zum abkühlen von bändern oder platten aus metall und kühlvorrichtung
EP1624078A1 (de) 2004-08-04 2006-02-08 Ebner Industrieofenbau Gesellschaft m.b.H. Vorrichtung zum Kühlen eines Blechbandes
WO2007138152A1 (en) 2006-06-01 2007-12-06 Outokumpu Oyj Method for controlling a metal strip in a heat treatment furnace
JP2013253329A (ja) 2012-06-05 2013-12-19 Toyota Industries Corp 織機の駆動装置
EP2722112A1 (de) * 2012-10-19 2014-04-23 BWG Bergwerk- Und Walzwerk-Maschinenbau GmbH Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes
DE102016101160B4 (de) 2016-01-22 2017-09-28 Otto Junker Gmbh Vorrichtung zum schwebenden Führen und gleichzeitigem Abkühlen von bahnförmigem Material und Verfahren zum Betreiben einer solchen Vorrichtung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1046273B (de) 1957-02-04 1958-12-11 Owens Illinois Glass Co Verfahren und Vorrichtung zur Herstellung von Glasroehren und -staeben
FR1434336A (fr) 1965-02-18 1966-04-08 Stein & Roubaix Perfectionnements apportés aux fours de traitement thermique des métaux et alliages légers
IT951025B (it) 1971-04-28 1973-06-30 Monforts Fa A Impianto per la guida ed il traspor to allo stato flottante di materia le a nastro esteso in larghezza
DE2450000C2 (de) 1974-10-22 1983-07-07 Kramer, Carl, Prof. Dr.-Ing., 5100 Aachen Vorrichtung zum schwebend Führen von Warenbahnen auf einem Gaspolster
DE2521017B2 (de) 1975-05-12 1981-06-19 Erich 5630 Remscheid Hilgeroth Vorrichtung zum Behandeln von Warenbahnen, insbesondere Metallbändern
DE2615258C2 (de) 1976-04-08 1983-03-17 Vits-Maschinenbau Gmbh, 4018 Langenfeld Vorrichtung zum schwebenden Führen von Materialbahnen
JPS6056218B2 (ja) * 1980-01-18 1985-12-09 大同特殊鋼株式会社 金属ストリツプの熱処理方法
JPS57138782A (en) 1981-02-20 1982-08-27 Hitachi Ltd Fuel cell
JP3489240B2 (ja) * 1995-01-13 2004-01-19 大同特殊鋼株式会社 フローティング炉
DE19619547A1 (de) 1996-05-15 1997-11-27 Vits Maschinenbau Gmbh Luftkissendüse und Vorrichtung zur Wärmebehandlung einer kontinuierlich bewegten Warenbahn mit Luftkissendüsen
US6054095A (en) * 1996-05-23 2000-04-25 Nippon Steel Corporation Widthwise uniform cooling system for steel strip in continuous steel strip heat treatment step
EP1215291B1 (de) * 2000-12-15 2005-05-25 AFT Advanced Forging Technologies GmbH Vorrichtung zum Abkühlen und Behandeln erhitzter rotationssymmetrischer Körper aus Metall
DE102006032377B4 (de) 2006-07-13 2015-12-10 Wieland-Werke Ag Düsenfeld zur schwebenden Führung und Stabilisierung von Metallbändern
JP4449991B2 (ja) * 2007-02-26 2010-04-14 Jfeスチール株式会社 熱延鋼帯の冷却装置及び方法
RU2410177C2 (ru) * 2007-07-30 2011-01-27 Ниппон Стил Корпорейшн Устройство и способ для охлаждения горячего стального листа
FR2940979B1 (fr) * 2009-01-09 2011-02-11 Fives Stein Procede de refroidissement d'une bande metallique en defilement
CN102953021B (zh) * 2012-10-29 2015-08-05 苏州新长光热能科技有限公司 铝合金中厚板固溶处理用快速冷却装置
DE102014118946B4 (de) 2014-12-18 2018-12-20 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900991A (en) 1956-03-26 1959-08-25 Ajem Lab Inc Power washer
DE1427810A1 (de) 1962-06-27 1969-10-16 British Iron Steel Research Vorrichtung zur Abstuetzung und Fuehrung von Bandmaterial
EP0031517B1 (de) 1979-12-13 1984-10-24 Nippon Steel Corporation Vorrichtung zum Kühlen mit einer Gas-Flüssigkeit-Mischung
DE3129254C1 (de) 1981-07-24 1983-01-27 Carl Prof. Dr.-Ing. Kramer Vorrichtung zur Kuehlung der bewegten Oberflaeche eines Festkoerpers
EP0192169A2 (de) * 1985-02-15 1986-08-27 Otto Junker GmbH Vorrichtung zum berührungsfreien Führen von Warenbahnen, insbesondere Metallbändern, mittels eines Gasmediums
JPS61253329A (ja) * 1985-05-01 1986-11-11 Daido Steel Co Ltd 冷却兼シ−ル装置
JPS624833A (ja) * 1985-07-01 1987-01-10 Mitsubishi Heavy Ind Ltd 走行鋼帯の冷却装置
EP0343103B1 (de) 1988-05-19 1992-11-11 Alusuisse-Lonza Services Ag Verfahren und Vorrichtung zum Kühlen eines Gegenstandes
DE4024605A1 (de) 1990-08-02 1992-02-06 Wsp Ingenieurgesellschaft Fuer Vorrichtung zur abkuehlung von strangpressprofilen
EP0541630B1 (de) 1990-08-02 1994-04-13 Wsp Ingenieurgesellschaft Für Wärmetechnik, Strömungstechnik Und Prozesstechnik Mit Beschränkter Haftung Vorrichtung zur abkühlung von strangpressprofilen
DE4240700A1 (de) 1992-12-03 1994-06-09 Kramer Carl Vorrichtung zum schwebend Führen und Umlenken von Warenbahnen
EP0695590A1 (de) 1994-07-20 1996-02-07 Alusuisse-Lonza Services AG Verfahren und Vorrichtung zum Kühlen von warmgewalzten Platten und Bändern aus Metall
EP0695590B1 (de) 1994-07-20 1999-03-03 Alusuisse Technology & Management AG Vorrichtung zum Kühlen von warmgewalzten Platten und Bändern aus Metall
EP0942792B1 (de) 1996-11-28 2001-05-23 Ingenieurgemeinschaft WSP Prof. Dr.-Ing. C.Kramer Prof. H.J. Gerhardt, M.Sc. Vorrichtung zur abkühlung von strangpressprofilen
EP0949348A1 (de) 1998-04-09 1999-10-13 Alusuisse Technology & Management AG Verfahren zum kontrollierten Abkühlen eines Bandes oder eines Profils aus einer Aluminiumlegierung
DE10046273C2 (de) 2000-09-19 2003-01-30 Carl Kramer Verfahren und Vorrichtung zur Wärmebehandlung eines Metallbandes
EP1485509A1 (de) 2002-02-22 2004-12-15 Peter Limbach Verfahren zum abkühlen von bändern oder platten aus metall und kühlvorrichtung
EP1624078A1 (de) 2004-08-04 2006-02-08 Ebner Industrieofenbau Gesellschaft m.b.H. Vorrichtung zum Kühlen eines Blechbandes
WO2007138152A1 (en) 2006-06-01 2007-12-06 Outokumpu Oyj Method for controlling a metal strip in a heat treatment furnace
JP2013253329A (ja) 2012-06-05 2013-12-19 Toyota Industries Corp 織機の駆動装置
EP2722112A1 (de) * 2012-10-19 2014-04-23 BWG Bergwerk- Und Walzwerk-Maschinenbau GmbH Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes
DE102012110010A1 (de) 2012-10-19 2014-04-24 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Vorrichtung und Verfahren zur kontinuierlichen Behandlung eines Metallbandes
DE102016101160B4 (de) 2016-01-22 2017-09-28 Otto Junker Gmbh Vorrichtung zum schwebenden Führen und gleichzeitigem Abkühlen von bahnförmigem Material und Verfahren zum Betreiben einer solchen Vorrichtung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190010568A1 (en) * 2017-07-04 2019-01-10 Daiso Steel Co., Ltd. Thermal treatment furnace
US10900098B2 (en) * 2017-07-04 2021-01-26 Daido Steel Co., Ltd. Thermal treatment furnace

Also Published As

Publication number Publication date
DE102016102093B3 (de) 2017-06-14
US20180327876A1 (en) 2018-11-15
CN108431250A (zh) 2018-08-21
RU2018122483A (ru) 2019-12-20
RU2018122483A3 (de) 2020-05-12
CA3004532A1 (en) 2017-08-10
EP3350352B1 (de) 2021-11-24
EP3350352A1 (de) 2018-07-25
US11072834B2 (en) 2021-07-27
RU2744007C2 (ru) 2021-03-01
KR20180109864A (ko) 2018-10-08

Similar Documents

Publication Publication Date Title
DE102016102093B3 (de) Durchlaufkühlvorrichtung und Verfahren zum Abkühlen eines Metallbandes
EP3303642B1 (de) Verfahren zum kontaktlosen kühlen von stahlblechen und vorrichtung hierfür
WO2012142629A1 (de) Verfahren und vorrichtung zum härten von glas
DE19649073C2 (de) Vorrichtung zur Abkühlung von Strangpreßprofilen
EP3234204B1 (de) Vorrichtung und verfahren zur kontinuierlichen behandlung eines metallbandes
EP3099829B1 (de) Einrichtung zum kühlen von platten- oder bahnförmigem blech aus metall und verfahren zur wärmebehandlung
EP2344287B1 (de) Verfahren und vorrichtung zum kühlen eines vorbandes oder bandes eines metallstrangs in einem warmwalzwerk
DE10163070A1 (de) Verfahren und Einrichtung zum kontrollierten Richten und Kühlen von aus einem Warmband-Walzwerk auslaufendem breiten Metallband, insbesondere von Stahlband oder Blech
EP3370025B1 (de) Einrichtung und verfahren zum abkühlen eines flacherzeugnisses
DE202015104565U1 (de) Kühl- und Spritzwassersystem für mitteldickes Blech nach dem Walzen
EP2379244B1 (de) Verfahren und vorrichtung zur entzunderung eines metallbandes
EP0925855A2 (de) Vorrichtung zum kontrollierten Abkühlen von warmgewalzten Profilen, insbesondere Trägern, direkt aus der Walzhitze
DE102017111991B4 (de) Vorrichtung zum Kühlen von heißen, planen Gegenständen
EP3262202B1 (de) Anlage für die serienfertigung pressgehärteter und korrosionsgeschützter blechformteile, mit einer kühleinrichtung zur zwischenkühlung der platinen
EP1485509B1 (de) Verfahren zum abkühlen von bändern oder platten aus metall und kühlvorrichtung
CH621364A5 (en) Process and equipment for the heat treatment of switch components
EP3201369B1 (de) Verfahren zum ausbilden eines stahlbandes mit unterschiedlichen mechanischen eigenschaften über die breite des bandes
AT526905B1 (de) Durchlaufkühlvorrichtung
EP3686291B1 (de) Einrichtung und verfahren zum abkühlen von metallischem blech
DE3825839A1 (de) Vorrichtung zum kuehlen und zum hydraulischen transport von unsymmetrischen walzprofilen
DE1596384B2 (de) Verfahren zum transport einer im weichen zustand sich befindenden glasscheibe und vorrichtung zur durchfuehrung des verfahrens
DE102016000576A1 (de) Verfahren zum kontinuierlichen Glühen und Abschrecken von Bändern aus metallischen Werkstoffen und Vorrichtung zur Durchführung des Verfahrens
DE3911283A1 (de) Stranggussanlage mit mitlaufender kokille
DE1596384C3 (de) Verfahren zum Transport einer fm welchen Zustand sich befindenden Glasscheibe und Vorrichtung zur Durchführung des Verfahrens
DE102020103276A1 (de) Ofen zur partiellen Erwärmung von Metallbauteilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17700322

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15769540

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2017700322

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 3004532

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2018122483

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20187018659

Country of ref document: KR

Kind code of ref document: A