[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017133316A1 - 对冲燃烧进风量的确定方法、装置及自动控制系统 - Google Patents

对冲燃烧进风量的确定方法、装置及自动控制系统 Download PDF

Info

Publication number
WO2017133316A1
WO2017133316A1 PCT/CN2016/109029 CN2016109029W WO2017133316A1 WO 2017133316 A1 WO2017133316 A1 WO 2017133316A1 CN 2016109029 W CN2016109029 W CN 2016109029W WO 2017133316 A1 WO2017133316 A1 WO 2017133316A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
air
determining
combustion
air intake
Prior art date
Application number
PCT/CN2016/109029
Other languages
English (en)
French (fr)
Inventor
李金晶
付俊杰
赵振宁
韩志成
张清峰
焦开明
李乐义
赵计平
Original Assignee
华北电力科学研究院有限责任公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610074043.3A external-priority patent/CN105485714B/zh
Priority claimed from CN201610073164.6A external-priority patent/CN105509035B/zh
Priority claimed from CN201610073136.4A external-priority patent/CN105605608A/zh
Application filed by 华北电力科学研究院有限责任公司, 国家电网公司 filed Critical 华北电力科学研究院有限责任公司
Publication of WO2017133316A1 publication Critical patent/WO2017133316A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/18Details; Accessories
    • F23C10/20Inlets for fluidisation air, e.g. grids; Bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught

Definitions

  • the invention relates to a control technology for operating air volume of a boiler combustion system, in particular to a method, a device and an automatic control system for determining the amount of air entering a combustion engine.
  • the combustion methods in large-scale pulverized coal combustion boilers mainly include four-corner tangential combustion and front and rear wall hedging combustion.
  • the front and rear wall-floating combustion boilers have become the main combustion mode adopted by supercritical boilers because of their advantages in combustion stability and heating surface layout.
  • the swirl burner is arranged on the front wall of the furnace and the water wall of the rear wall, and each burner separately organizes the air distribution and the flame is relatively independent; between the flames of the burners on the same wall Without disturbing each other, the burner flame tails on the front and rear walls are folded upwards in the middle of the furnace.
  • This type of combustion has the advantage that the heat load distribution on the furnace section is relatively uniform, but compared with the four-corner tangential combustion method under the same furnace burnout height, the smoke in the later stage of the method is poorly mixed, and the flue gas stroke is relatively Shorter, if the combustion air can not be fed in time and fully mixed with the fuel, it will delay the combustion process of the fuel and affect the heat absorption of the furnace.
  • the conventional pulverized coal boilers are generally large low NO x combustion technology, in conjunction with FIG. 1, a conventional low NO x combustion technology by separate overfire air, the primary combustion zone and the burn construct a zone between the reduction zone by the primary combustion zone under reducing oxygen gas produced by combustion in the primary combustion zone of the combustion of a small amount of the NO x reduction, to further reduce NO x emissions.
  • the solutions adopted by the prior art mainly include: the front and rear wall hedging type boilers are divided into two groups by the long-side symmetrical center line of the boiler, and each group has 4-5 burning winds. Nozzles; each group of burnout wind nozzles emits a burnout wind center line tangent to the same imaginary ellipse, and the two sets of ellipse rotate in opposite directions, one for counterclockwise rotation and the other for clockwise rotation. Since the burnout wind adopts the tangential combustion method, there is residual rotation of the flue gas at the exit of the furnace, which causes uneven distribution of the temperature and composition of the flue gas, which is disadvantageous for the arrangement of the heated surface and the denitration of the flue gas.
  • the burn-out wind structure is an intermediate direct current and an external swirl structure
  • more than six pulverized coal burners and burnout winds are symmetric surfaces of the furnace center. Symmetrical and evenly connected to the front and rear walls of the boiler furnace.
  • the burnout winds on both sides burn out the wind on the sides
  • the burnout wind in the middle burns the wind in the middle.
  • the opening of the intermediate DC and external swirling sides of the side-burning wind is 100%
  • the opening of the intermediate flow of the middle-burning wind is 80%
  • the opening of the external swirling plate is 10%.
  • the same level of burnout wind opening on the small side of the middle is artificially set.
  • the method of adjustment is lack of theoretical basis and space for re-optimization according to actual conditions.
  • the present invention solves the conventional hedge low NO x combustion technologies exist difference fuel flexibility, it can not determine the amount of overfire air combustion boiler hedge question based on the total amount of fuel to the furnace wall, and thus presents a combustion air flow into the hedge Method, device and automatic control system are determined.
  • An embodiment of the present invention provides a method for determining the amount of inward combustion air, wherein the determining method includes: determining a hedging combustion operation oxygen amount, a main combustion zone excess air coefficient, and a burnout air volume distribution coefficient of each floor of the burnout bellows; The amount of total fuel supplied to the furnace wall of the windbox, the analysis data of the coal quality entering the furnace, the oxygen consumption of the hedging combustion operation, the excess air ratio of the main combustion zone, and the distribution coefficient of the burnout air volume determine the amount of inward combustion air.
  • the embodiment of the invention further provides a device for determining the amount of intake air entering the combustion, wherein the determining device comprises: an operating oxygen amount and coefficient determining unit for determining the amount of oxygen in the hedging combustion operation, the excess air coefficient in the main combustion zone, and the combustion rate per layer
  • the exhaust air volume distribution coefficient of the exhaust air box configured to analyze the total fuel amount, the analysis data of the incoming coal quality according to the furnace wall where the burning bellows is located, and the oxygen consumption of the hedging combustion operation, the main combustion
  • the zone excess air coefficient and the burnout air volume partition coefficient determine the amount of the hedging combustion air intake.
  • the embodiment of the present invention further provides an automatic control system for the combustion air intake amount, comprising: an air intake amount detecting device, an air intake amount control device, and the above-mentioned determining device for the amount of the inward combustion air inlet; the air intake amount detecting device is disposed at the burnout At the entrance of the wind box, the air intake amount control means is configured to determine, according to the actual intake air amount obtained by the air intake amount detecting means and the air intake amount determining means in the determining means for the hedging combustion air intake amount, the amount of the hedging combustion air volume determined by the air intake amount determining means The amount of air at the entrance to the burnout bellows is controlled.
  • the beneficial effects of the embodiments of the present invention are: determining the total fuel amount, the analysis data of the coal quality entering the furnace, the oxygen consumption of the hedging combustion, the excess air coefficient of the main combustion zone, and the distribution coefficient of the burned air volume by the furnace wall where the windbox is burned out.
  • hedge combustion air intake amount to achieve automatic control of air flow into the hedge low NO x combustion boiler operation during the process, while maintaining the furnace exit is the NO x concentration at a low level at the same time to ensure efficient combustion.
  • FIG 1 is a configuration diagram of a boiler furnace low NO x combustion technologies (a) employed in the prior art.
  • Figure 2 shows, by way of example, a flow chart of a method of determining the amount of incoming combustion air.
  • Figure 3 shows, by way of example, a flow chart of a method of determining the amount of oxygen in a hedge combustion operation.
  • FIG. 4 shows a graph of the NO x concentration and CO concentration and the operating hedge combustion oxygen inlet flue gas denitrification.
  • Figure 5 shows, by way of example, a graph of the amount of oxygen in the hedging combustion operation.
  • Fig. 6 shows, by way of example, a block diagram of a hedging combustion operation oxygen quantity automatic control system.
  • Figure 7 shows, by way of example, a boiler block diagram of an automatic control system for the operation of a hedging combustion operation.
  • Figure 8 shows, by way of example, a flow chart of the automatic control of the hedging combustion operation oxygen volume automatic control system.
  • Figure 9 shows, by way of example, a flow chart of a method of determining the amount of incoming air.
  • FIG 10 is a configuration diagram of a boiler furnace low NO x combustion technologies (II) employed in the prior art.
  • Fig. 11 shows a block diagram of the intake air volume automatic control system by way of example.
  • Fig. 12 shows, by way of example, a block diagram of an intake air volume automatic control system disposed in a swirl burner.
  • Figure 13 shows, by way of example, a flow chart for the automatic control of the intake air volume automatic control system.
  • Fig. 14 shows, by way of example, a flow chart of the intake air volume automatic control system automatically controlling the inlet of the secondary bellows.
  • Fig. 15 shows, by way of example, a structural view of a device for determining the amount of incoming combustion air.
  • Fig. 16 shows, by way of example, a block diagram of an automatic combustion air intake control system.
  • Fig. 17 shows, by way of example, a schematic view of the installation position of the burnout bellows.
  • Fig. 18 shows, by way of example, a flow chart of the automatic control of the amount of intake air of the burnout bellows by the automatic combustion air intake amount control system.
  • the embodiment of the invention provides a method, a device and an automatic control system for determining the amount of air entering the combustion.
  • the invention will be described in detail below with reference to the accompanying drawings.
  • the method for determining the amount of air entering the combustion of the embodiment of the present invention mainly includes:
  • Step 21 determining the amount of oxygen in the combustion operation, the excess air ratio in the main combustion zone, and the burnout wind of each floor of the burnout bellows Quantity allocation coefficient.
  • the burn-through air volume distribution coefficient can generally take values in the range of 0 to 1, and the specific value can be determined by the combustion adjustment test, and the following formula is also satisfied:
  • x j represents the burn-in air distribution coefficient of the j-th floor burn-out bellows
  • n represents the total number of layers of the burn-out bellows.
  • the excess air coefficient of the main combustion zone can generally be in the range of 0.8 to 0.95, and the specific value can be determined by the combustion adjustment test.
  • the amount of the hedge combustion intake air may be determined as the designed minimum ventilation amount of the burnout bellows.
  • the process of determining the oxygen consumption of the hedging combustion operation may include:
  • Step 211 CO concentration in the flue gas inlet of the denitration obtain a predetermined operating point, and in the NO x concentration.
  • Step 212 determining when the slope of the curve when the NO x concentration in front of the CO concentration in the flue gas denitration system is less than a predetermined value.
  • the slope of the curve can be determined by the following formula:
  • Formula j represents oxygen according to the operational conditions point number from small to large are arranged; n-represents the total number of operating points; K j represents the NO x concentration corresponding to the j-th operating point change with flue gas oxygen content of the operation slope; O 2, j denotes the j-th operation point corresponding to the amount of oxygen in the flue gas; C j represents the NO x concentration corresponding to the j-th operating point of the flue gas converted to a value at 6% oxygen.
  • the j-th operation point corresponding to the NO x concentration in the flue gas converted to a value at 6% oxygen content may be determined by the following equation:
  • Step 213 determining the amount of oxygen for the hedging combustion operation according to the corresponding operating oxygen value when the slope of the curve reaches a minimum value.
  • the oxygen consumption of the hedging combustion under three stable loads, the correspondence between the oxygen consumption of the hedging combustion operation and the boiler load can be obtained, thereby determining the oxygen consumption of the hedging combustion operation.
  • CO is less than 600mg/m 3
  • the first five rows of data are selected, and the corresponding k j values are calculated as shown in the last column of the table.
  • the optimal operating oxygen amount under the load is determined to be 3.25%.
  • the main steam flow of the boiler is the boiler load.
  • the current boiler load (main steam flow) is 1200t/h, between (950, 5.7) and (1440, 3.5) in Figure 4, there are:
  • the amount of oxygen in the combustion operation of the boiler during the steady operation of any load in the test load section can be determined by the negative
  • the at least one operating oxygen value of the load is determined by interpolation. Since the oxygen content of the hedging combustion is generally only related to the coal quality of the boiler, it can be set to be re-acquired only when the coal quality of the boiler changes greatly.
  • the process of determining the oxygen consumption of the combustion operation in the above steps 211 to 213 can be realized by a hedging combustion operation oxygen amount automatic control system as shown in FIG. 6.
  • the hedging combustion operation oxygen amount automatic control system includes: a supply air control device 61, a denitration device 62, and a device 63 for determining the amount of oxygen for the operation of the combustion.
  • the operation of determining the oxygen content of the combustion apparatus hedge 63 comprising: determining a concentration unit, and the slope of the curve determining unit operation determination unit oxygen concentration determining means for the flue gas inlet CO concentration denitration obtain a predetermined operating point of the NO x and a concentration; a curve slope determining unit is configured to determine a curve slope of the NOx concentration when the CO concentration in the denitration inlet flue gas is less than a predetermined value; and the operating oxygen amount determining unit is configured to perform a corresponding operation according to the slope of the curve reaching a minimum value The oxygen value determines the oxygen content of the hedging combustion operation.
  • the denitration device 62 is configured to perform denitration treatment on the boiler flue gas, and the concentration determining unit in the device 63 for determining the oxygen consumption of the hedging combustion operation is disposed at the flue gas inlet of the denitration device 62, and the air supply control device 61 is configured to operate according to the determined hedging combustion.
  • the amount of oxygen supplied by the operating oxygen amount determining unit in the oxygen amount determining means 63 determines the amount of blown air.
  • the air supply control device 61 includes:
  • the oxygen input module is operated to obtain the current operating oxygen amount of the predetermined boiler.
  • a comparison module configured to determine a comparison result between the current operating oxygen amount and the amount of hedging combustion operation determined by the operating oxygen amount determining unit;
  • a wind control module configured to control the air supply amount according to the comparison result.
  • the present embodiment provides an automatic control system for the oxygenation operation of the hedging combustion system, which is disposed in the boiler equipped with the control device as shown in FIG. .
  • the boiler is provided with a furnace-based low NO x combustion technology 71, economizer 72, an air preheater 73 and the blower 74; denitration apparatus 62 disposed hedge oxygen combustion operation in the automatic control system economizer and air preheater 72 Between the injectors 73, an oxygen content monitoring point 75 is provided at the flue gas inlet of the denitration device 62, and the air supply control device 61 is connected to the blower 74 for controlling the amount of air blown by the blower 74.
  • the air volume of the blower 74 can be adjusted by means of a variable frequency motor, a fan blade or a fan outlet baffle.
  • Figure 8 shows the automatic control flow of the automatic combustion control oxygen control system proposed in the present embodiment.
  • the operating oxygen value under 3-5 stable load conditions is determined according to the input current load of the boiler, and then interpolated.
  • the method determines the operating oxygen quantity O 2 * of the boiler, and then determines the comparison result (O 2 * -O 2 ) between the current operating oxygen amount O 2 of the input boiler and the optimal operating oxygen amount O 2 * of the boiler, and finally controls the blower according to the comparison result.
  • the amount of air delivered is determined according to the input current load of the boiler, and then interpolated.
  • the method determines the operating oxygen quantity O 2 * of the boiler, and then determines the comparison result (O 2 * -O 2 ) between the current operating oxygen amount O 2 of the input boiler and the optimal operating oxygen amount O 2 * of the boiler, and finally controls the blower according to the comparison result.
  • the amount of air delivered is the amount of air delivered.
  • the air supply volume of the blower is reduced;
  • the comparison between the current operating oxygen amount and the boiler operating oxygen amount is less than the preset oxygen content deviation - ⁇ (O 2 -O 2 * ⁇ - ⁇ )
  • the blower air supply amount is increased.
  • the preset oxygen content deviation ⁇ can be determined according to the actual fluctuation amplitude of the measurement point indication of the oxygen content monitoring point 75.
  • the step 22 is performed.
  • the amount of hedging combustion air is determined according to the total fuel amount, the analysis data of the coal quality, and the oxygen consumption of the combustion combustion, the excess air ratio of the main combustion zone and the exhaust air volume distribution coefficient.
  • the analysis data of the coal quality into the furnace may include: a mass fraction of the received carbon element in the coal quality, a mass fraction of the received base sulfur element, a mass fraction of the received hydrogen element, and a mass fraction of the received oxygen element.
  • the amount of this inward combustion airflow can be determined by the following formula:
  • V i,j represents the amount of inward combustion air intake of the jth floor burnout bellows of the i-th furnace wall
  • x j represents the burnout air volume distribution coefficient of the jth floor burnout bellows
  • O 2 represents the hedging combustion operation oxygen amount.
  • ⁇ c represents the excess air coefficient
  • C represents the mass fraction of the received base carbon in the coal
  • S represents the mass fraction of the received base sulfur in the coal
  • H represents the received hydrogen element in the coal.
  • O represents the mass fraction of the received oxygen element in the coal quality
  • M i represents the total amount of fuel fed into the i-th furnace wall where the blown bellows is located.
  • the technical solution is provided by using the specific embodiment, and the total fuel amount, the analysis data of the coal quality entering the furnace, the oxygen consumption in the combustion combustion, the excess air coefficient in the main combustion zone, and the distribution coefficient of the burned air volume are determined by the furnace wall in which the windbox is burned. combustion air flow into the hedge, while maintaining the furnace exit is the NO x concentration at a low level at the same time to ensure efficient combustion.
  • the hedging of the embodiment of the present invention is performed before the step 22 is performed.
  • the method for determining the amount of combustion air intake may further comprise the steps of determining the air intake amount of the coal mill and the air intake amount of the secondary air box, as shown in FIG. 9, the steps mainly include:
  • step 91 the air intake amount of the coal mill is determined according to the coal supply amount of the coal mill and the ratio of the coal to the coal quality.
  • the amount of air intake can be determined by the following formula:
  • V p k p ⁇ M
  • V p in the formula represents the amount of primary air intake of the coal mill in t/h;
  • k p represents the ratio of wind to coal in the coal, which is related to the type of coal entering the furnace.
  • the range of k p is 1.6-1.8, for lignite, the value of k ranges from 1.8 to 2.0, etc.
  • the specific value can be determined by the performance test of the coal mill;
  • M represents the coal supply amount of the coal mill, and the unit is t/h.
  • the primary air intake of the coal mill may be determined as the minimum ventilation of the coal mill design.
  • step 92 the air volume of the secondary air box at the inlet of the wind box provided with the burner is determined according to the analysis data of the coal quality entering the furnace, the coal supply amount of the coal mill, and the air intake amount.
  • the air volume of the secondary bellows can be determined by the following formula:
  • V s ⁇ [0.089(C+0.375S)+0.265H-0.0333O] ⁇ MV p ,
  • V s represents the air volume of the secondary bellows
  • represents the excess air coefficient
  • C represents the mass fraction of the received base carbon in the coal
  • S represents the mass fraction of the received base sulfur in the coal
  • H represents as received coal into the furnace of a hydrogen element content
  • M is the mill coal feed rate
  • V p represents an amount of time into the wind.
  • the excess air coefficient ⁇ is decreased by a predetermined ratio as the number of layers of the secondary windbox increases, and can be determined, for example, by the following formula:
  • the k s in the formula represents the oxygenation coefficient, and the value range is usually 0.10-0.45.
  • the actual value can be determined by the combustion adjustment test;
  • the excess air ratio ⁇ can also be determined by the following formula:
  • ⁇ 0 represents a predetermined constant, and in general, the value may be 1.05; k s represents an under-oxidation coefficient, and the range of values may be determined according to a function form actually used; p represents a predetermined power exponent, which is generally a constant.
  • the air volume of the secondary air box is determined as the minimum secondary air volume of the design of the burner.
  • the process of the air intake of the coal mill and the air intake of the secondary air box of the above steps 91 to 92 can be realized by an automatic air intake control system as shown in FIG. 11 , and the air intake automatic control system
  • the primary air volume detecting device 101 is disposed at the air inlet of the coal mill, and the primary air volume control device 102 is configured to detect the actual primary air volume obtained by the primary air volume detecting device 101 and the primary air volume determining unit determined by the primary air volume determining unit in the device 105 for determining the air intake amount.
  • the air volume controls the air volume at the air inlet of the coal mill, the secondary air volume detecting device 103 is disposed at the inlet of the wind box, and the secondary air volume control device 104 is configured to determine the actual secondary air volume obtained by the secondary air volume detecting device 103 and determine the progress.
  • the air volume of the secondary air duct determined by the secondary air volume determining unit in the air volume device 105 controls the air volume at the entrance of the wind box.
  • the primary air volume control device 102 includes:
  • a primary air volume input module for obtaining an actual primary air volume at the air inlet of the coal mill
  • a comparison module configured to determine a comparison result between the actual primary air volume and the primary air volume determined by the primary air volume determining unit
  • a wind control module for adjusting the actual primary air volume based on the comparison result.
  • the secondary air volume control device 104 includes:
  • a secondary air volume input module for obtaining an actual secondary air volume at a burner fuel inlet
  • a second comparison module configured to determine a comparison result between the actual secondary air volume and the secondary air box air intake amount determined by the secondary air volume determining unit
  • the secondary wind control module is configured to adjust the actual secondary air volume according to the comparison result.
  • the present embodiment proposes an automatic air intake amount control system which is disposed in the swirl burner as shown in FIG.
  • the swirl burner includes a coal mill 51 and a bellows 53 provided with a burner 52.
  • the primary air volume detecting device 101 is disposed at an air inlet of the coal mill 51, and the primary air volume control device 102 detects the air volume detecting device 102 according to the primary air volume detecting device 101.
  • the actual primary air volume and the primary air volume determining unit in the device 105 for determining the air intake amount determine the primary air intake amount, and the air volume at the air inlet of the coal mill 51 is controlled by the primary air baffle 54, and the secondary air volume detecting device 103 is disposed in the wind box.
  • the secondary air volume control device 104 detects the actual secondary air volume obtained by the secondary air volume detecting device 103 and the secondary air volume of the secondary air volume determining unit in the device 105 that determines the air intake amount, and passes the second air volume.
  • the secondary air baffle 55 controls the amount of wind at the inlet of the air volume of the bellows 53.
  • the primary air volume V 1 at the air inlet of the coal mill is obtained by the primary air volume input module, and the comparison result of the actual primary air volume V 1 and the primary air intake amount V p is determined by a comparison module. If the comparison result is greater than a predetermined air amount deviation ⁇ 1 (i.e., V 1 -V p> ⁇ 1) , the control module controls the wind by a primary air shutter 54 is closed to reduce the actual small amount of wind V 1; and if the result is less than The negative value of the preset air volume deviation - ⁇ 1 (ie, V 1 -V p ⁇ - ⁇ 1 ), the primary wind deflector 54 is controlled by the primary wind control module to increase the actual primary air volume V 1 ; if the comparison result is The preset air volume deviation ⁇ 1 and the negative value of the preset air volume deviation - ⁇ 1 (ie, ⁇ 1 >V 1 -V p >- ⁇ 1 ) eliminate the need to adjust the primary air baffle 54.
  • the preset air volume deviation ⁇ 1 may be determined based on the actual volatility of the actual amount of wind V 1 shows the number of measuring points.
  • Figure 14 shows the secondary air intake automatic control flow of the air intake automatic control system proposed in the present embodiment.
  • the under-oxidation coefficient k s , the number of layers in the secondary air box x, and the total number of secondary air boxes are determined according to the combustion adjustment experiment.
  • the number of layers N is calculated and the excess air coefficient ⁇ is calculated.
  • the secondary air volume determining unit calculates the primary air inlet amount V p according to the primary air volume determining unit and calculates the secondary air box air intake amount V s in combination with the excess air coefficient ⁇ and the analysis data of the incoming coal quality.
  • the analysis data of the coal quality entering the furnace may include the mass fraction C of the received carbon element in the coal quality, the mass fraction S of the received base sulfur element in the coal quality, and the quality of the received hydrogen element in the coal quality
  • the secondary air box inlet air amount V s calculated at this time is greater than the designed minimum ventilation amount V s0 of the burner, the secondary air box inlet air amount V s determined at this time is determined as the secondary air box inlet air amount V s ;
  • the calculated secondary air box inlet air volume V s is smaller than the designed minimum ventilation amount V s0 of the burner, and the designed minimum ventilation amount V s0 of the burner is determined as the secondary air box inlet air amount V s .
  • the actual secondary air volume V 2 at the inlet of the wind box is obtained by the secondary air volume input module, and the comparison result of the actual secondary air volume V 2 and the secondary air box inlet air amount V s is determined by the secondary comparison module. If the comparison result is greater than the preset air volume deviation ⁇ 2 (ie, V 2 -V s > ⁇ 2 ), the secondary wind control 55 is controlled to be closed by the secondary wind control module to reduce the actual secondary air volume V 2 ; If the comparison result is less than the negative value of the preset air volume deviation - ⁇ 2 (ie, V 2 - V s ⁇ - ⁇ 2 ), the secondary wind control panel is controlled by the secondary wind control module to increase the actual primary air volume V 2 .
  • the preset air volume deviation ⁇ 2 can be determined according to the actual fluctuation amplitude of the actual secondary air volume V 2 measurement point.
  • the embodiment also provides a device for determining the amount of intake air entering the combustion.
  • the device for determining the amount of intake air entering the combustion includes:
  • the operating oxygen amount and coefficient determining unit 1501 is configured to determine a hedging combustion operation oxygen amount, a main combustion zone excess air coefficient, and a burnout air volume distribution coefficient of each floor of the burnout bellows;
  • the intake air amount determining unit 1502 is configured to, according to the total fuel amount, the analysis data of the incoming coal quality, and the hedging combustion operation oxygen amount, the main combustion zone excess air coefficient, and the burning according to the furnace wall where the burning bellows is located.
  • the exhaust air volume distribution coefficient determines the amount of the hedging combustion air intake.
  • operation of oxygen and coefficient determination unit 1501 may determine each overfire windbox overfire air distribution coefficient, and NO x when the concentration of CO in the flue gas inlet of the denitration than a predetermined value by the total number of layers in accordance with when the overfire air tank
  • the slope of the curve of the concentration determines the amount of oxygen that is hedged for combustion operation.
  • the intake air volume determining unit 1502 can calculate the hedging combustion according to the total fuel amount, the analysis data of the coal quality entering the furnace, the oxygen consumption of the hedging combustion, the excess air coefficient of the main combustion zone, and the exhaust air volume distribution coefficient. Air intake. If the determined amount of hedging combustion air intake is less than the designed minimum ventilation amount of the burnout bellows, the amount of hedging combustion air intake may be determined as the designed minimum ventilation amount of the burnout bellows.
  • the technical solution is provided by using the specific embodiment, and the total fuel amount, the analysis data of the coal quality entering the furnace, the oxygen consumption in the combustion combustion, the excess air coefficient in the main combustion zone, and the distribution coefficient of the burned air volume are determined by the furnace wall in which the windbox is burned. combustion air flow into the hedge, while maintaining the furnace exit is the NO x concentration at a low level at the same time to ensure efficient combustion.
  • the present embodiment also proposes an automatic control system for the combustion air intake amount, which, as shown in FIG. 16, includes: an air intake amount detecting device 1601, an air intake amount control device 1602, and a hedging combustion air intake amount as described in the above specific embodiment.
  • the determining device 1603; the intake air amount detecting device 1601 is disposed at the inlet of the burning air box, and the air intake amount controlling device 1602 is configured to detect the actual air intake amount obtained by the air intake amount detecting device 1601 and the air intake amount in the determining device 1603 for the amount of the combustion air intake.
  • the amount of hedging combustion air determined by the determining unit 1502 controls the amount of wind at the inlet of the burnout bellows.
  • the air volume control device 1602 includes:
  • An air intake input module for detecting an actual intake air volume at the entrance of the burnout bellows
  • a comparison module configured to determine a comparison result of the actual intake air amount and the amount of the inward combustion air amount determined by the intake air amount determining unit;
  • the air volume control module is configured to adjust the actual air intake amount according to the comparison result.
  • the air volume control module includes:
  • the air volume adjustment submodule is configured to reduce the actual air intake amount when the comparison result is greater than the preset air volume deviation value, and increase the actual air intake amount when the comparison result is less than the negative value of the preset air volume deviation value.
  • the present embodiment proposes an automatic control system for the hedging combustion intake air, which system is disposed in the counter-fired boiler shown in FIG.
  • the counter-fired boiler includes No. 1 furnace wall and No. 2 furnace wall, and a C-layer coal pulverizer, a D-layer coal pulverizer, an E-layer coal pulverizer, and a first-layer burnout bellows are arranged on the No. 1 furnace wall.
  • x 1,1 and 2nd floor burnout bellows x 1,2 A layer coal mill, B layer coal mill, F layer coal mill, 1st floor burnout bellows on the 2nd furnace wall 2, 1 and 2nd floor burnout bellows x 2,2 .
  • the burnout wind can be sent in the burnout area above the reduction zone to ensure that there is a certain excess air at the furnace exit, so that the remaining combustibles in the furnace are completely burned out.
  • the burning of the wind can follow the principle of timely and high efficiency, that is, after the main reduction in the reduction zone, the burnt air is sent in time in the high temperature zone of the furnace, and the position, wind speed and mode of burning the wind can be beneficial.
  • the flammable gas and the burnout wind sent from the reduction zone are thoroughly mixed to improve the combustion efficiency.
  • the total fuel amount M i that is supplied to the furnace wall of the burning bellows may be the coal amount of the coal mill of the No. 1 furnace wall.
  • the sum of the coal feeds of the No. 2 furnace wall, that is, M 1 is the sum of the coal amount of the C, D and E layer coal mills, and M 2 is the sum of the coal amount of the A, B and F layer coal mills.
  • the actual intake air amount V at the entrance of the burnout bellows can be controlled by the burnout air baffle provided at the entrance of the wind box, and the actual intake air amount V is detected by the intake air amount detecting means 1601 provided at the inlet.
  • FIG 18 is a hedge specific embodiment proposed by the present combustion air intake amount hedge automatic control system to automatically control the combustion air intake flow, first 2, primary combustion zone excess air coefficient ⁇ is determined according to the test by adjusting the combustion oxygen combustion operation hedge O c and the burnout air volume distribution coefficient M i of each layer of the burnout bellows, and input the analysis data of the coal quality into the furnace, the analysis data may include receiving the base carbon element mass fraction C, receiving the base sulfur element mass fraction S, and receiving To the base hydrogen element mass fraction H and receive the base oxygen element mass fraction O. Finally, the total amount of fuel fed into the furnace wall of the i-th furnace can be calculated to obtain the amount of inward combustion air V i,j .
  • the actual intake air volume V at the inlet of the burnout bellows is obtained by the intake air volume input module, and the comparison module determines the comparison result of the actual intake air volume V and the hedging combustion air intake amount V i,j . If the comparison result is greater than the preset air volume deviation ⁇ (ie, VV i, j > ⁇ ), the air volume control module controls the burnout wind baffle to be closed to reduce the actual air intake amount V; if the comparison result is less than the preset air volume deviation The negative value - ⁇ (ie VV i,j ⁇ - ⁇ ), the air volume control module controls the burnout wind baffle to open to increase the actual air intake V; if the comparison result is at the preset air volume deviation ⁇ and the preset The negative value of the air volume deviation - ⁇ (ie ⁇ > VV i, j > - ⁇ ), there is no need to adjust the burnout wind baffle.
  • the minimum amount of overfire air vent tank may be designed V 0 boiler or burner design information provided.
  • the technical solution is provided by using the specific embodiment, and the total fuel amount, the analysis data of the coal quality entering the furnace, the oxygen consumption in the combustion combustion, the excess air coefficient in the main combustion zone, and the distribution coefficient of the burned air volume are determined by the furnace wall in which the windbox is burned.
  • hedge combustion air intake amount to achieve automatic control of air flow into the hedge low NO x combustion boiler operation during the process, while maintaining the furnace exit is the NO x concentration at a low level at the same time to ensure efficient combustion.
  • an embodiment of the present invention further provides a computer readable storage medium comprising computer readable instructions, when executed, causing a processor to perform at least the following operations: determining a hedging combustion operation Oxygen quantity, excess air ratio in the main combustion zone, and burnout air distribution coefficient of each floor of the burnout bellows; analysis of the total fuel amount, the analysis of the coal quality, and the oxygenation of the combustion according to the furnace wall where the blowout bellows is located The amount, the excess air ratio of the main combustion zone, and the burn-in air volume distribution coefficient determine the amount of inward combustion air intake.
  • the computer readable instructions causing the processor to determine the amount of the hedging combustion air intake comprises: if the determined amount of the hedging combustion air intake is less than the designed minimum air volume of the burnout bellows, the hedging combustion air intake amount A minimum amount of ventilation is determined for the design of the burnout bellows.
  • the above-described computer-readable instructions cause the processor to determine the amount of oxygen hedge combustion operation, comprises: CO concentration in the flue gas inlet of the denitration obtain a predetermined operating point, and in the NO x concentration; determining when the inlet flue gas denitration CO concentration of the NO x concentration curve slope is less than a predetermined value when gas; determining the hedging combustion operation in accordance with the amount of oxygen corresponding to the slope of the curve reaches a minimum when the oxygen run value.
  • the computer readable instructions cause the processor to determine the amount of oxygen for the hedging combustion operation according to the amount of operating oxygen corresponding to the slope of the curve when the slope of the curve reaches a minimum value, specifically, the operating oxygen value corresponding to the predetermined load the NO x concentration slope of the curve is minimum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

一种对冲燃烧进风量的确定方法,包括:确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量。一种实现对冲燃烧进风量的确定方法的装置以及自动控制系统,其实现了在锅炉运行过程中自动控制低NO x对冲燃烧过程中的进风量,在保证高效燃烧的同时又能维持低水平的炉膛出口NO x浓度。

Description

对冲燃烧进风量的确定方法、装置及自动控制系统 技术领域
本发明是关于锅炉燃烧系统运行风量的控制技术,具体地,是关于一种对冲燃烧进风量的确定方法、装置及自动控制系统。
背景技术
目前,大型煤粉燃烧锅炉中的燃烧方式主要包括四角切圆燃烧和前后墙对冲燃烧。前后墙对冲燃烧锅炉因其在燃烧稳定性和受热面布置方面的优势,已经成为超临界锅炉采用的主要燃烧方式。在前后墙对冲燃烧方式中,旋流燃烧器布置在炉膛前墙和后墙水冷壁上,每个燃烧器单独组织配风、火焰相对独立;同一面墙上的各支燃烧器的火焰之间互不干扰,前后墙上的燃烧器火焰尾部在炉膛中部对冲后折向向上流动。这种燃烧方式具有炉膛断面上热负荷分布较为均匀的优点,但与同样的炉膛燃尽高度下的四角切圆燃烧方式相比,该方式的后期炉内烟气混合较差、烟气行程相对较短,若燃烧用空气不能及时给入并与燃料充分混合,则会延迟燃料的燃烧过程并影响炉膛吸热。
为降低NOx排放浓度,现有的大型煤粉锅炉通常采用低NOx燃烧技术,结合图1所示,现有的低NOx燃烧技术通过分离的燃尽风,在主燃区与燃尽区之间构建了一个还原区,利用主燃区欠氧燃烧产生的还原性气体对主燃区中燃烧生成的少量NOx进行还原,从而进一步减少NOx排放量。
针对上述问题,现有技术采用的解决方案主要包括:前后墙对冲燃烧型式的锅炉以锅炉长边对称中心线为界将燃尽风分为两组,每组设有4-5只燃尽风喷嘴;每组燃尽风喷嘴射出燃尽风中心线与同一个假想椭圆相切,且两组椭圆的旋转方向相反,一个为逆时针旋转,另一个为顺时针旋转。由于燃尽风采用切圆燃烧方式,在炉膛出口存在烟气旋转残余,造成烟气温度和成分分布不均,不利于受热面布置和烟气脱硝。
另外,还有一种防止对冲锅炉结渣的燃尽风调整结构,其中的燃尽风结构为中间直流、外部旋流结构,六个以上的煤粉燃烧器和燃尽风以炉膛中心为对称面对称且均匀的连接在锅炉炉膛的前墙和后墙上,根据所安装位置的不同,位于两侧的燃尽风为侧边燃尽风,位于中间的燃尽风为中间燃尽风,侧边燃尽风的中间直流和外部旋流的调节板开度均为100%,中间燃尽风的中间流的调节板开度为80%,外部旋流的调节板开度为10%。但是,为了防止侧墙结渣,人为设置了中间小两侧大的同层燃尽风开度,属于经 验调节方法,缺乏理论依据和按照实际情况再优化的空间。
发明内容
本发明为解决现有的低NOx对冲燃烧技术存在的燃料适应性差,无法根据炉墙给入的总燃料量确定对冲燃烧锅炉的燃尽风量的问题,进而提出了一种对冲燃烧进风量的确定方法、装置及自动控制系统。
本发明实施例提供一种对冲燃烧进风量的确定方法,所述的确定方法包括:确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定对冲燃烧进风量。
本发明实施例还提供一种对冲燃烧进风量的确定装置,所述的确定装置包括:运行氧量及系数确定单元,用于确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;进风量确定单元,用于根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定所述对冲燃烧进风量。
本发明实施例还提供一种对冲燃烧进风量自动控制系统,包括:进风量检测装置、进风量控制装置以及上述的对冲燃烧进风量的确定装置;所述进风量检测装置设置在所述燃尽风箱的入口处,所述进风量控制装置用于根据所述进风量检测装置检测获得的实际进风量和所述对冲燃烧进风量的确定装置中的进风量确定单元确定的对冲燃烧进风量对所述燃尽风箱的入口处的风量进行控制。
本发明实施例的有益效果在于,通过燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据、对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量,实现了在锅炉运行过程中自动控制低NOx对冲燃烧过程中的进风量,在保证高效燃烧的同时又能维持低水平的炉膛出口NOx浓度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中采用低NOx燃烧技术的锅炉炉膛结构图(一)。
图2以示例的方式示出了对冲燃烧进风量的确定方法的流程图。
图3以示例的方式示出了确定对冲燃烧运行氧量的方法的流程图。
图4以示例的方式示出了脱硝入口烟气中的CO浓度与NOx浓度与对冲燃烧运行氧量的关系图。
图5以示例的方式示出了对冲燃烧运行氧量的曲线图。
图6以示例的方式示出了对冲燃烧运行氧量自动控制系统的结构图。
图7以示例的方式示出了安装有对冲燃烧运行氧量自动控制系统的锅炉结构图。
图8以示例的方式示出了对冲燃烧运行氧量自动控制系统的自动控制流程图。
图9以示例的方式示出了确定进风量的方法的流程图。
图10为现有技术中采用低NOx燃烧技术的锅炉炉膛结构图(二)。
图11以示例的方式示出了进风量自动控制系统的结构图。
图12以示例的方式示出了进风量自动控制系统设置在旋流燃烧器中的结构图。
图13以示例的方式示出了进风量自动控制系统自动控制一次进风的流程图。
图14以示例的方式示出了进风量自动控制系统自动控制二次风箱进风的流程图。
图15以示例的方式示出了对冲燃烧进风量的确定装置的结构图。
图16以示例的方式示出了对冲燃烧进风量自动控制系统的结构图。
图17以示例的方式示出了燃尽风箱的安装位置示意图。
图18以示例的方式示出了对冲燃烧进风量自动控制系统自动控制燃尽风箱的进风量的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种对冲燃烧进风量的确定方法、装置及自动控制系统。以下结合附图对本发明进行详细说明。
结合图2所示,本发明实施例的对冲燃烧进风量的确定方法主要包括:
步骤21,确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风 量分配系数。
其中,燃尽风量分配系数一般可在0~1的范围内取值,其具体数值可通过燃烧调整试验确定,同时还满足以下公式:
Figure PCTCN2016109029-appb-000001
式中的xj表示第j层燃尽风箱的燃尽风量分配系数,n表示燃尽风箱的总层数。
另外,主燃区过量空气系数一般可在0.8~0.95的范围内取值,其具体数值可通过燃烧调整试验确定。
可选的,若确定的对冲燃烧进风量小于燃尽风箱的设计最小通风量,则可将对冲燃烧进风量确定为该燃尽风箱的设计最小通风量。
可选的,结合图3所示,确定对冲燃烧运行氧量的过程可以包括:
步骤211,获得预定工况点的脱硝入口烟气中的CO浓度以及NOx浓度。
其中,在锅炉稳定负荷的状态下,可选取运行氧量在1.5~7.0范围内设置4~10个工况点。在每个工况点下稳定运行时,获得脱硝系统前烟气中的NOx浓度以及CO浓度。该NOx浓度以及CO浓度可通过MRU4000或TESTO系列烟气分析仪检测获得。
步骤212,确定当脱硝系统前烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率。
图4所示的是在该负荷条件下,CO和NOx浓度随运行氧量变化的曲线。锅炉在稳定负荷下的锅炉运行氧量以示例的方式可同时满足下列两个条件:
1)脱硝入口烟气中的CO浓度折算到6%含氧量下的数值小于600mg/m3
2)脱硝入口烟气中的NOx浓度随运行氧量变化的曲线斜率达到最小值。
可选的,曲线斜率可通过以下公式确定:
Figure PCTCN2016109029-appb-000002
式中的j表示按照运行氧量从小到大排列的工况点序号;n表示工况点的总数;kj表示第j个工况点对应烟气中的NOx浓度随运行氧量变化的曲线斜率;O2,j表示第j个工况点对应烟气中氧量;Cj表示第j个工况点对应烟气中的NOx浓度折算到6%含氧量下的 数值。
可选的,第j个工况点对应烟气中的NOx浓度折算到6%含氧量下的数值可通过以下公式确定:
Figure PCTCN2016109029-appb-000003
其中,
Figure PCTCN2016109029-appb-000004
表示第j个工况点实测烟气中的NOx浓度或CO浓度,单位为ppm;K表示折算系数,对于NOx,一般情况下可取K=2.05,对于CO,一般情况下可取K=1.25。
步骤213,根据曲线斜率达到最小值时对应的运行氧量值确定对冲燃烧运行氧量。
其中,通过确定3个稳定负荷下的对冲燃烧运行氧量,即可获得该对冲燃烧运行氧量与锅炉负荷之间的对应关系,从而确定对冲燃烧运行氧量。
下面通过的实施例对本发明提出的确定对冲燃烧运行氧量的方法进行详细说明。
在图4所示的预定稳定负荷下,脱硝入口烟气中CO和NOx浓度与运行氧量的具体数值如下表所示。按照CO小于600mg/m3的原则筛选出前五行数据,分别计算出对应的kj值如表中最后一列所示,按照kj最小的原则确定该负荷下的最佳运行氧量为3.25%。
Figure PCTCN2016109029-appb-000005
对于图5所示一台容量等级为2000t/h的对冲燃烧最佳运行氧量曲线,其中的锅炉主汽流量即锅炉负荷。通过求取任意锅炉负荷下的最佳运行氧量的插值法示例。例如:当前锅炉负荷(主汽流量)为1200t/h,处于图4中的(950,5.7)和(1440,3.5)两点之间,则有:
Figure PCTCN2016109029-appb-000006
解出该负荷下最佳运行氧量为
Figure PCTCN2016109029-appb-000007
锅炉在试验负荷段内任意负荷稳定运行时的对冲燃烧运行氧量,可以通过将预定负 荷下的至少一个运行氧量值通过插值法确定。由于对冲燃烧运行氧量一般只与锅炉燃用煤质相关,因此可设定为只有当锅炉燃用煤质发生很大变化时,才需要重新获取。
在一实施例中,上述步骤211至步骤213的确定对冲燃烧运行氧量的过程可以通过一如图6所示的对冲燃烧运行氧量自动控制系统实现。该对冲燃烧运行氧量自动控制系统包括:送风控制装置61、脱硝装置62以及确定对冲燃烧运行氧量的装置63。其中,确定对冲燃烧运行氧量的装置63包含:浓度确定单元、曲线斜率确定单元及运行氧量确定单元,浓度确定单元用于获得预定工况点的脱硝入口烟气中的CO浓度以及NOx浓度;曲线斜率确定单元用于确定当所述脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率;运行氧量确定单元用于根据所述曲线斜率达到最小值时对应的运行氧量值确定对冲燃烧运行氧量。
脱硝装置62用于对锅炉烟气进行脱硝处理,确定对冲燃烧运行氧量的装置63中的浓度确定单元设置在脱硝装置62的烟气入口处,送风控制装置61用于根据确定对冲燃烧运行氧量的装置63中的运行氧量确定单元确定的对冲燃烧运行氧量控制送风量。
可选的,在送风控制装置61中包括:
运行氧量输入模块,用于获取预定锅炉的当前运行氧量。
比较模块,用于确定所述当前运行氧量与所述运行氧量确定单元确定的对冲燃烧运行氧量的比较结果;
风力控制模块,用于根据所述比较结果控制所述送风量。
根据上述具体实施方式提出的确定对冲燃烧运行氧量的方法,本具体实施方式提出了一种对冲燃烧运行氧量自动控制系统,该系统设置在如图7所示的安装有控制设备的锅炉中。该锅炉设置有基于低NOx燃烧技术的炉膛71、省煤器72、空气预热器73和送风机74;对冲燃烧运行氧量自动控制系统的脱硝装置62设置在省煤器72和空气预热器73之间,在脱硝装置62的烟气入口处设置有含氧量监测点75,送风控制装置61与送风机74连接,用于控制送风机74的送风量。
其中,送风机74的出风量可以通过变频电机、风机动叶或风机出口挡板等方式调节。
图8所示的是本具体实施方式提出的对冲燃烧运行氧量自动控制系统的自动控制流程,首先根据输入的锅炉当前负荷确定3-5个稳定负荷状态下的运行氧量值,然后通过插值法确定锅炉运行氧量O2 *,再确定输入的锅炉当前运行氧量O2与锅炉最佳运行氧量O2 *的比较结果(O2 *-O2),最后根据该比较结果控制送风机的送风量。例如,当锅炉当前运行氧量与锅炉最佳运行氧量的比较结果大于预设的含氧量偏差Δ时(O2-O2 *>Δ),则减小 送风机的送风量;当锅炉当前运行氧量与锅炉运行氧量的比较结果小于预设的含氧量偏差-Δ时(O2-O2 *<-Δ),则增加送风机的送风量。
其中,预设的含氧量偏差Δ可根据含氧量监测点75的测点示数的实际波动幅度确定。
在本发明实施例的对冲燃烧进风量的确定方法中,通过步骤21确定了对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数后,通过步骤22,根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量。
其中,入炉煤质的分析数据可以包括:入炉煤质的收到基碳元素质量分数、收到基硫元素质量分数、收到基氢元素质量分数和收到基氧元素质量分数。
可选的,该对冲燃烧进风量可通过以下公式确定:
Figure PCTCN2016109029-appb-000008
式中的Vi,j表示第i号炉墙的第j层燃尽风箱的对冲燃烧进风量,xj表示第j层燃尽风箱的燃尽风量分配系数,O2表示对冲燃烧运行氧量,αc表示过量空气系数,C表示入炉煤质的收到基碳元素质量分数,S表示入炉煤质的收到基硫元素质量分数,H表示入炉煤质的收到基氢元素质量分数,O表示入炉煤质的收到基氧元素质量分数,Mi表示燃尽风箱所在第i个炉墙给入的总燃料量。
采用本具体实施方式提供技术方案,通过燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据、对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量,在保证高效燃烧的同时又能维持低水平的炉膛出口NOx浓度。
在一实施例中,在通过步骤21确定了对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数后,执行上述步骤22之前,本发明实施例的对冲燃烧进风量的确定方法还可包含一确定磨煤机的一次进风量及二次风箱进风量的步骤,如图9所示,该步骤主要包括:
步骤91,根据磨煤机的给煤量和入炉煤质的风煤比确定磨煤机的一次进风量。
其中,一次进风量可通过以下公式确定:
Vp=kp·M,
式中的Vp表示磨煤机的一次进风量,单位为t/h;kp表示入炉煤质的风煤比,与入炉煤种有关,例如对于烟煤,kp的取值范围为1.6-1.8,对于褐煤,k的取值范围为1.8-2.0 等,具体数值可由磨煤机性能试验确定;M表示磨煤机的给煤量,单位为t/h。
可选的,若确定的一次进风量小于磨煤机的设计最小通风量,则可将磨煤机的一次进风量确定为磨煤机的设计最小通风量。
步骤92,根据入炉煤质的分析数据、磨煤机的给煤量以及一次进风量确定设置有燃烧器的风箱入口处的二次风箱进风量。
其中,二次风箱进风量可通过以下公式确定:
Vs=α·[0.089(C+0.375S)+0.265H-0.0333O]·M-Vp
式中的Vs表示二次风箱进风量,α表示过量空气系数,C表示入炉煤质的收到基碳元素质量分数,S表示入炉煤质的收到基硫元素质量分数,H表示入炉煤质的收到基氢元素质量分数,O表示入炉煤质的收到基氧元素质量分数,M表示磨煤机的给煤量,Vp表示一次进风量。
其中的过量空气系数α按预定比例随二次风箱所在层数的增大而减小,例如可通过以下公式确定:
Figure PCTCN2016109029-appb-000009
式中的ks表示欠氧系数,通常情况下取值范围为0.10-0.45,实际取值可通过燃烧调整试验确定;x表示二次风箱所在层数,例如结合图10所示,A、C在第1层,对应的x=1,B、D在第2层,对应的x=2,E、F在第3层,对应的x=3;N表示二次风箱总层数,例如在图10中,N=3。
或者,过量空气系数α也可通过以下公式确定:
α=α0-ksxp
其中,α0表示预定常数,一般情况下可取值为1.05;ks表示欠氧系数,可根据实际采用的函数形式确定取值范围;p表示预定幂指数,一般情况下为常数。
可选的,若确定的二次风箱进风量小于燃烧器的设计最小二次风量,则将二次风箱进风量确定为燃烧器的设计最小二次风量。
在一实施例中,上述步骤91至步骤92的磨煤机的一次进风量及二次风箱进风量的过程可通过一如图11所示的进风量自动控制系统实现,该进风量自动控制系统包括:一次风量检测装置101、一次风量控制装置102、二次风量检测装置103、二次风量控制装置104以及确定进风量的装置105;其中,确定进风量的装置105包含一次风量确定单 元及二次风量确定单元,一次风量确定单元用于根据磨煤机的给煤量和入炉煤质的风煤比确定磨煤机的一次进风量;二次风量确定单元用于根据所述入炉煤质的分析数据、所述磨煤机的给煤量以及所述一次进风量确定设置有燃烧器的风箱入口处的二次风箱进风量。
一次风量检测装置101设置在磨煤机进风口处,一次风量控制装置102用于根据一次风量检测装置101检测获得的实际一次风量和确定进风量的装置105中的一次风量确定单元确定的一次进风量对磨煤机进风口处的风量进行控制,二次风量检测装置103设置在风箱入口处,二次风量控制装置104用于根据二次风量检测装置103检测获得的实际二次风量和确定进风量的装置105中的二次风量确定单元确定的二次风箱进风量对风箱入口处的风量进行控制。
可选的,在一次风量控制装置102中包括:
一次风量输入模块,用于获取磨煤机进风口处的实际一次风量;
一次比较模块,用于确定实际一次风量与一次风量确定单元确定的一次进风量的比较结果;
一次风力控制模块,用于根据比较结果调整实际一次风量。
可选的,在二次风量控制装置104中包括:
二次风量输入模块,用于获取燃烧器燃料入口处的实际二次风量;
二次比较模块,用于确定实际二次风量与二次风量确定单元确定的二次风箱进风量的比较结果;
二次风力控制模块,用于根据比较结果调整实际二次风量。
根据上述具体实施方式提出的确定进风量的过程,本具体实施方式提出了一种进风量自动控制系统,该系统设置在如图12所示的旋流燃烧器中。该旋流燃烧器包括磨煤机51和设置有燃烧器52的风箱53,一次风量检测装置101设置在磨煤机51的进风口处,一次风量控制装置102根据一次风量检测装置101检测获得的实际一次风量和确定进风量的装置105中的一次风量确定单元确定的一次进风量,并通过一次风挡板54控制磨煤机51的进风口处的风量,二次风量检测装置103设置在风箱53的入口处,二次风量控制装置104根据二次风量检测装置103检测获得的实际二次风量和确定进风量的装置105中的二次风量确定单元确定的二次风箱进风量,并通过二次风挡板55控制风箱53的风量入口处的风量。
图13所示的是本具体实施方式提出的进风量自动控制系统的一次进风自动控制流程, 首先根据磨煤机性能实验确定风煤比kp以及确定磨煤机的实际给煤量M,然后通过一次风量确定单元计算获得磨煤机的一次进风量Vp
若此时计算获得的一次进风量Vp大于磨煤机的设计最小通风量Vp0,则将该一次进风量Vp确定为一次进风量Vp;若此时计算获得的一次进风量Vp小于磨煤机的设计最小通风量Vp0,则将磨煤机的设计最小通风量Vp0确定为一次风箱进风量Vp
然后由一次风量输入模块获取磨煤机进风口处的实际一次风量V1,再由一次比较模块确定实际一次风量V1与一次进风量Vp的比较结果。若比较结果大于预设的风量偏差Δ1(即V1-Vp1),则由一次风力控制模块控制一次风挡板54关小以减小实际一次风量V1;若比较结果小于预设的风量偏差的负值-Δ1(即V1-Vp<-Δ1),则由一次风力控制模块控制一次风挡板54开大以增加实际一次风量V1;若比较结果在预设的风量偏差Δ1和预设的风量偏差的负值-Δ1之间(即Δ1>V1-Vp>-Δ1),则无需对一次风挡板54进行调整。
其中,预设的风量偏差Δ1可根据实际一次风量V1测点示数的实际波动幅度确定。
图14所示的是本具体实施方式提出的进风量自动控制系统的二次进风自动控制流程,首先根据燃烧调整实验确定欠氧系数ks、二次风箱所在层数x以及二次风箱总层数N,并计算获得过量空气系数α。然后由二次风量确定单元根据一次风量确定单元计算获得的一次进风量Vp并结合过量空气系数α及入炉煤质的分析数据计算获得二次风箱进风量Vs。其中,入炉煤质的分析数据可以包括入炉煤质的收到基碳元素质量分数C,入炉煤质的收到基硫元素质量分数S,入炉煤质的收到基氢元素质量分数H,入炉煤质的收到基氧元素质量分数O。
若此时计算获得的二次风箱进风量Vs大于燃烧器的设计最小通风量Vs0,则将此时确定的二次风箱进风量Vs确定为二次风箱进风量Vs;若此时计算获得的二次风箱进风量Vs小于燃烧器的设计最小通风量Vs0,则将燃烧器的设计最小通风量Vs0确定为二次风箱进风量Vs
然后由二次风量输入模块获取风箱入口处的实际二次风量V2,再由二次比较模块确 定实际二次风量V2与二次风箱进风量Vs的比较结果。若比较结果大于预设的风量偏差Δ2(即V2-Vs2),则由二次风力控制模块控制二次风挡板55关小以减小实际二次风量V2;若比较结果小于预设的风量偏差的负值-Δ2(即V2-Vs<-Δ2),则由二次风力控制模块控制二次风挡板55开大以增加实际一次风量V2;若比较结果在预设的风量偏差Δ2和预设的风量偏差的负值-Δ2之间(即Δ2>V2-Vs>-Δ2),则无需对二次风挡板55进行调整。
其中,预设的风量偏差Δ2可根据实际二次风量V2测点示数的实际波动幅度确定。
本具体实施方式还提出了一种对冲燃烧进风量的确定装置,结合图15所示,该对冲燃烧进风量的确定装置包括:
运行氧量及系数确定单元1501,用于确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;
进风量确定单元1502,用于根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定所述对冲燃烧进风量。
其中,运行氧量及系数确定单元1501可通过燃尽风箱的总层数确定每层燃尽风箱的燃尽风量分配系数,以及根据当脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率确定对冲燃烧运行氧量。进风量确定单元1502可根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据、对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数计算获得对冲燃烧进风量。若确定的对冲燃烧进风量小于燃尽风箱的设计最小通风量,则可将对冲燃烧进风量确定为该燃尽风箱的设计最小通风量。
采用本具体实施方式提供技术方案,通过燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据、对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量,在保证高效燃烧的同时又能维持低水平的炉膛出口NOx浓度。
本具体实施方式还提出了一种对冲燃烧进风量自动控制系统,结合图16所示,包括:进风量检测装置1601、进风量控制装置1602以及如上述具体实施方式所述的对冲燃烧进风量的确定装置1603;进风量检测装置1601设置在燃尽风箱的入口处,进风量控制装置1602用于根据进风量检测装置1601检测获得的实际进风量和对冲燃烧进风量的确定装置1603中的进风量确定单元1502确定的对冲燃烧进风量对燃尽风箱的入口处的风量进行控制。
可选的,在进风量控制装置1602中包括:
进风量输入模块,用于检测燃尽风箱的入口处的实际进风量;
比较模块,用于确定实际进风量与进风量确定单元确定的对冲燃烧进风量的比较结果;
风量控制模块,用于根据比较结果调整所述实际进风量。
可选的,在风量控制模块中包括:
风量调整子模块,用于当比较结果大于预设的风量偏差值时减小实际进风量,当比较结果小于预设的风量偏差值的负值时增大实际进风量。
根据上述具体实施方式提出的确定对冲燃烧进风量的方法,本具体实施方式提出了一种对冲燃烧进风量自动控制系统,该系统设置在如图17所示的对冲燃烧锅炉中。该对冲燃烧锅炉包括第1号炉墙和第2号炉墙,在第1号炉墙上设置有C层磨煤机、D层磨煤机、E层磨煤机、第1层燃尽风箱x1,1和第2层燃尽风箱x1,2,在第2号炉墙上设置有A层磨煤机、B层磨煤机、F层磨煤机、第1层燃尽风箱x2,1和第2层燃尽风箱x2,2
其中,燃尽风可在还原区上方的燃尽区送入,以保证炉膛出口存在一定的过量空气,使炉膛内剩余的可燃物完全燃尽。燃尽风的给入可遵循及时、高效的原则,即在还原区内完成主要还原后,在炉膛高温区及时将燃尽风送入,燃尽风送入的位置、风速和方式可有利于还原区送来的可燃气体和燃尽风的充分混合,以提高燃烧效率。
在通过确定对冲燃烧进风量的装置1603确定对冲燃烧进风量的过程中,燃尽风箱所在炉墙给入的总燃料量Mi可为第1号炉墙的磨煤机给煤量与的第2号炉墙的磨煤机给煤量总和,即M1为C、D和E层磨煤机给煤量的总和,M2为A、B和F层磨煤机给煤量的总和。燃尽风箱入口处的实际进风量V可由设置在风箱入口的燃尽风挡板控制,并通过设置在入口处的进风量检测装置1601检测获得实际进风量V。
图18所示的是本具体实施方式提出的对冲燃烧进风量自动控制系统的对冲燃烧进风自动控制流程,首先根据通过燃烧调整试验确定对冲燃烧运行氧量O2、主燃区过量空气系数αc以及每层燃尽风箱的燃尽风量分配系数Mi,并输入入炉煤质的分析数据,该分析数据可以包括收到基碳元素质量分数C、收到基硫元素质量分数S、收到基氢元素质量分数H和收到基氧元素质量分数O。最后输入第i号炉墙给入的总燃料量即可计算获得对冲燃烧进风量Vi,j
若此时计算获得的对冲燃烧进风量Vi,j大于燃尽风箱的设计最小通风量V0,则不改变对冲燃烧进风量Vi,j的取值;若此时计算获得的对冲燃烧进风量Vi,j小于燃尽风箱的设计最 小通风量V0,则将对冲燃烧进风量Vi,j确定为燃尽风箱的设计最小通风量V0
最后由进风量输入模块获取燃尽风箱入口处的实际进风量V,再由比较模块确定实际进风量V与对冲燃烧进风量Vi,j的比较结果。若比较结果大于预设的风量偏差Δ(即V-Vi,j>Δ),则由风量控制模块控制燃尽风挡板关小以减小实际进风量V;若比较结果小于预设的风量偏差的负值-Δ(即V-Vi,j<-Δ),则由风量控制模块控制燃尽风挡板开大以增加实际进风量V;若比较结果在预设的风量偏差Δ和预设的风量偏差的负值-Δ之间(即Δ>V-Vi,j>-Δ),则无需对燃尽风挡板进行调整。
其中,预设的风量偏差Δ可根据实际进风量V测点示数的实际波动幅度确定,燃尽风箱的设计最小通风量V0可由锅炉或燃烧器设计资料提供。
采用本具体实施方式提供技术方案,通过燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据、对冲燃烧运行氧量、主燃区过量空气系数和燃尽风量分配系数确定对冲燃烧进风量,实现了在锅炉运行过程中自动控制低NOx对冲燃烧过程中的进风量,在保证高效燃烧的同时又能维持低水平的炉膛出口NOx浓度。
在一较佳实施例中,本发明实施例还提供了一种包括计算机可读指令的计算机可读存储介质,该计算机可读指令在被执行时使处理器至少执行以下操作:确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定对冲燃烧进风量。
在一个实施例中,上述计算机可读指令使处理器确定所述对冲燃烧进风量包括:若确定的对冲燃烧进风量小于所述燃尽风箱的设计最小通风量,则将所述对冲燃烧进风量确定为所述燃尽风箱的设计最小通风量。
在一个实施例中,上述计算机可读指令使处理器确定对冲燃烧运行氧量,具体包括:获得预定工况点的脱硝入口烟气中的CO浓度以及NOx浓度;确定当所述脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率;根据所述曲线斜率达到最小值时对应的运行氧量值确定所述对冲燃烧运行氧量。
在一个实施例中,上述计算机可读指令使处理器确定当所述脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率,具体包括:从所述预定工况点中选取CO浓度小于600mg/m3的筛选工况点;确定在所述筛选工况点的NOx浓度的曲线斜率。
在一个实施例中,上述计算机可读指令使处理器根据所述曲线斜率达到最小值时对应的运行氧量确定所述对冲燃烧运行氧量,具体包括:在预定负荷下的运行氧量值对应NOx浓度的曲线斜率为最小值。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读取存储介质中,比如ROM/RAM、磁碟、光盘等。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (19)

  1. 一种对冲燃烧进风量的确定方法,其特征在于,所述的确定方法包括:
    确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;
    根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定对冲燃烧进风量。
  2. 如权利要求1所述的对冲燃烧进风量的确定方法,其特征在于,所述入炉煤质的分析数据包括:入炉煤质的收到基碳元素质量分数、收到基硫元素质量分数、收到基氢元素质量分数和收到基氧元素质量分数。
  3. 如权利要求1所述的对冲燃烧进风量的确定方法,其特征在于,确定所述对冲燃烧进风量包括:
    若确定的对冲燃烧进风量小于所述燃尽风箱的设计最小通风量,则将所述对冲燃烧进风量确定为所述燃尽风箱的设计最小通风量。
  4. 如权利要求1所述的对冲燃烧进风量的确定方法,其特征在于,所述燃尽风量分配系数满足以下公式:
    Figure PCTCN2016109029-appb-100001
    其中,xj表示第j层燃尽风箱的燃尽风量分配系数,n表示所述燃尽风箱的总层数。
  5. 如权利要求1至4任意一项所述的对冲燃烧进风量的确定方法,其特征在于,所述对冲燃烧进风量通过以下公式确定:
    Figure PCTCN2016109029-appb-100002
    其中,Vi,j表示第i个炉墙的第j层燃尽风箱的对冲燃烧进风量,xj表示第j层燃尽风箱的燃尽风量分配系数,O2表示对冲燃烧运行氧量,αc表示过量空气系数,C表示入炉煤质的收到基碳元素质量分数,S表示入炉煤质的收到基硫元素质量分数,H表示入炉煤质的收到基氢元素质量分数,O表示入炉煤质的收到基氧元素质量分数,Mi表示燃尽风箱所在第i个炉墙给入的总燃料量。
  6. 如权利要求1所述的对冲燃烧进风量的确定方法,其特征在于,确定对冲燃烧运 行氧量,具体包括:
    获得预定工况点的脱硝入口烟气中的CO浓度以及NOx浓度;
    确定当所述脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率;
    根据所述曲线斜率达到最小值时对应的运行氧量值确定所述对冲燃烧运行氧量。
  7. 如权利要求6所述的对冲燃烧进风量的确定方法,其特征在于,确定当所述脱硝入口烟气中的CO浓度小于预定值时的NOx浓度的曲线斜率,具体包括:
    从所述预定工况点中选取CO浓度小于600mg/m3的筛选工况点;
    确定在所述筛选工况点的NOx浓度的曲线斜率。
  8. 如权利要求6所述的对冲燃烧进风量的确定方法,其特征在于,根据所述曲线斜率达到最小值时对应的运行氧量确定所述对冲燃烧运行氧量,具体包括:
    在预定负荷下的运行氧量值对应NOx浓度的曲线斜率为最小值。
  9. 如权利要求6所述的对冲燃烧进风量的确定方法,其特征在于,所述确定方法还包括:
    在锅炉负荷稳定的状态下,从运行氧量在1.5~7.0范围内选取4~10个工况点作为所述预定工况点。
  10. 如权利要求6所述的对冲燃烧进风量的确定方法,其特征在于,所述曲线斜率通过以下公式确定:
    Figure PCTCN2016109029-appb-100003
    其中,j表示按照运行氧量从小到大排列的工况点序号;n表示工况点的总数;kj表示第j个工况点对应烟气中的NOx浓度随运行氧量变化的曲线斜率;O2,j表示第j个工况点对应烟气中氧量;Cj表示第j个工况点对应烟气中的NOx浓度折算到6%含氧量下的数值。
  11. 如权利要求1所述的对冲燃烧进风量的确定方法,其特征在于,在确定所述对冲燃烧进风量之前,所述的对冲燃烧进风量的确定方法还包括:
    根据磨煤机的给煤量和入炉煤质的风煤比确定磨煤机的一次进风量;
    根据所述入炉煤质的分析数据、所述磨煤机的给煤量以及所述一次进风量确定设置有燃烧器的风箱入口处的二次风箱进风量。
  12. 如权利要求11所述的对冲燃烧进风量的确定方法,其特征在于,所述确定磨煤机的一次进风量包括:
    若确定的一次进风量小于所述磨煤机的设计最小通风量,则将所述磨煤机的一次进风量确定为所述磨煤机的设计最小通风量;和/或
    确定设置有燃烧器的风箱入口处的二次风箱进风量包括:
    若确定的二次风箱进风量小于所述燃烧器的设计最小二次风量,则将所述二次风箱进风量确定为所述燃烧器的设计最小二次风量。
  13. 如权利要求11或12所述的对冲燃烧进风量的确定方法,其特征在于,所述一次进风量通过以下公式确定:
    Vp=kp·M,
    其中,Vp表示一次进风量,kp表示入炉煤质的风煤比,M表示磨煤机的给煤量。
  14. 如权利要求11或12所述的对冲燃烧进风量的确定方法,其特征在于,所述二次风箱进风量通过以下公式确定:
    Vs=α·[0.089(C+0.375S)+0.265H-0.0333O]·M-Vp
    其中,Vs表示二次风箱进风量,α表示过量空气系数,C表示入炉煤质的收到基碳元素质量分数,S表示入炉煤质的收到基硫元素质量分数,H表示入炉煤质的收到基氢元素质量分数,O表示入炉煤质的收到基氧元素质量分数,M表示磨煤机的给煤量,Vp表示一次进风量。
  15. 如权利要求14所述的对冲燃烧进风量的确定方法,其特征在于,所述过量空气系数按预定比例随所述二次风箱所在层数的增大而减小。
  16. 如权利要求15所述的对冲燃烧进风量的确定方法,其特征在于,所述过量空气系数α通过以下公式中的任意一种确定:
    Figure PCTCN2016109029-appb-100004
    其中,ks表示欠氧系数,x表示二次风箱所在层数,N表示二次风箱总层数;或者:
    α=α0-ksxp
    其中,α0表示预定常数;ks表示欠氧系数;p表示预定幂指数。
  17. 一种对冲燃烧进风量的确定装置,其特征在于,所述的确定装置包括:
    运行氧量及系数确定单元,用于确定对冲燃烧运行氧量、主燃区过量空气系数以及每层燃尽风箱的燃尽风量分配系数;
    进风量确定单元,用于根据燃尽风箱所在炉墙给入的总燃料量、入炉煤质的分析数据以及所述对冲燃烧运行氧量、所述主燃区过量空气系数和所述燃尽风量分配系数确定所述对冲燃烧进风量。
  18. 一种对冲燃烧进风量自动控制系统,其特征在于,包括:进风量检测装置、进风量控制装置以及如权利要求18所述的对冲燃烧进风量的确定装置;所述进风量检测装置设置在所述燃尽风箱的入口处,所述进风量控制装置用于根据所述进风量检测装置检测获得的实际进风量和所述对冲燃烧进风量的确定装置中的进风量确定单元确定的对冲燃烧进风量对所述燃尽风箱的入口处的风量进行控制。
  19. 如权利要求18所述的对冲燃烧进风量自动控制系统,其特征在于,在所述进风量控制装置中包括:
    进风量输入模块,用于检测所述燃尽风箱的入口处的实际进风量;
    比较模块,用于确定所述实际进风量与所述进风量确定单元确定的对冲燃烧进风量的比较结果;
    风量控制模块,用于根据所述比较结果调整所述实际进风量;
    其中,在所述风量控制模块中包括:
    风量调整子模块,用于当所述比较结果大于预设的风量偏差值时减小所述实际进风量,当所述比较结果小于预设的风量偏差值的负值时增大所述实际进风量。
PCT/CN2016/109029 2016-02-02 2016-12-08 对冲燃烧进风量的确定方法、装置及自动控制系统 WO2017133316A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610074043.3A CN105485714B (zh) 2016-02-02 2016-02-02 一种确定锅炉运行氧量的方法、装置及自动控制系统
CN201610073164.6A CN105509035B (zh) 2016-02-02 2016-02-02 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN201610073136.4 2016-02-02
CN201610073136.4A CN105605608A (zh) 2016-02-02 2016-02-02 一种确定进风量的方法、装置及自动控制系统
CN201610073164.6 2016-02-02
CN201610074043.3 2016-02-02

Publications (1)

Publication Number Publication Date
WO2017133316A1 true WO2017133316A1 (zh) 2017-08-10

Family

ID=59500565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109029 WO2017133316A1 (zh) 2016-02-02 2016-12-08 对冲燃烧进风量的确定方法、装置及自动控制系统

Country Status (1)

Country Link
WO (1) WO2017133316A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081457A (zh) * 2019-06-20 2019-08-02 吉林大学 一种预防锅炉水冷壁爆管的二次风风管装置及其控制方法
CN110274222A (zh) * 2019-07-12 2019-09-24 合肥工业大学智能制造技术研究院 一种对冲式燃油锅炉及其炉内燃烧布置方法
CN110805924A (zh) * 2019-12-18 2020-02-18 上海电力大学 一种电站锅炉的二次风通道调节装置及燃烧数值模拟方法
CN111239360A (zh) * 2019-12-27 2020-06-05 国网河北省电力有限公司电力科学研究院 一种基于煤粉燃烧全过程烟气成分监测配风系统
CN112580250A (zh) * 2020-11-12 2021-03-30 山东纳鑫电力科技有限公司 基于深度学习的火电机组脱硝系统及优化控制方法
CN113294806A (zh) * 2021-06-16 2021-08-24 大唐淮南洛河发电厂 一种火电厂锅炉燃烧最佳氧量节能控制优化方法
CN113503534A (zh) * 2021-08-20 2021-10-15 西安热工研究院有限公司 一种四角切圆锅炉近水冷壁飞灰防结渣系统和方法
CN114354854A (zh) * 2022-01-06 2022-04-15 武汉祁联生态科技有限公司 一种烟气监测数据的异常检测方法
CN114576645A (zh) * 2022-03-25 2022-06-03 苏州西热节能环保技术有限公司 一种对冲燃煤锅炉高温受热面壁温超温主动控制方法
CN114637347A (zh) * 2022-03-23 2022-06-17 山东宏桥新型材料有限公司 脱硝烟气量确定方法、装置及脱硝喷氨量调整方法、装置
CN115289495A (zh) * 2022-07-12 2022-11-04 西安佛莱斯特电力科技有限责任公司 一种燃煤电站切圆锅炉深度燃烧优化调整方法
CN115479745A (zh) * 2022-09-19 2022-12-16 西安热工研究院有限公司 适用于前后墙对冲锅炉的冷态空气动力场测量系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089811A1 (en) * 2003-10-24 2005-04-28 United Dominion Industries, Inc. Exhaust recirculating method and apparatus for a hydrocarbon fired burner
CN102620774A (zh) * 2012-02-29 2012-08-01 华北电力大学(保定) 燃煤锅炉二次风量在线标定方法
CN103759290A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 大型燃煤机组在线监测与优化控制系统及其实现方法
CN104456615A (zh) * 2014-12-05 2015-03-25 苏州华瑞能泰发电技术有限公司 一种对冲燃烧煤粉锅炉的一体化调试方法
CN105485714A (zh) * 2016-02-02 2016-04-13 华北电力科学研究院有限责任公司 一种确定锅炉运行氧量的方法、装置及自动控制系统
CN105509035A (zh) * 2016-02-02 2016-04-20 华北电力科学研究院有限责任公司 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN105605608A (zh) * 2016-02-02 2016-05-25 华北电力科学研究院有限责任公司 一种确定进风量的方法、装置及自动控制系统
CN205316379U (zh) * 2016-02-02 2016-06-15 华北电力科学研究院有限责任公司 一种锅炉运行氧量自动控制系统及锅炉
CN205316377U (zh) * 2016-02-02 2016-06-15 华北电力科学研究院有限责任公司 一种对冲燃烧燃尽风量自动控制系统及锅炉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050089811A1 (en) * 2003-10-24 2005-04-28 United Dominion Industries, Inc. Exhaust recirculating method and apparatus for a hydrocarbon fired burner
CN102620774A (zh) * 2012-02-29 2012-08-01 华北电力大学(保定) 燃煤锅炉二次风量在线标定方法
CN103759290A (zh) * 2014-01-16 2014-04-30 广东电网公司电力科学研究院 大型燃煤机组在线监测与优化控制系统及其实现方法
CN104456615A (zh) * 2014-12-05 2015-03-25 苏州华瑞能泰发电技术有限公司 一种对冲燃烧煤粉锅炉的一体化调试方法
CN105485714A (zh) * 2016-02-02 2016-04-13 华北电力科学研究院有限责任公司 一种确定锅炉运行氧量的方法、装置及自动控制系统
CN105509035A (zh) * 2016-02-02 2016-04-20 华北电力科学研究院有限责任公司 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN105605608A (zh) * 2016-02-02 2016-05-25 华北电力科学研究院有限责任公司 一种确定进风量的方法、装置及自动控制系统
CN205316379U (zh) * 2016-02-02 2016-06-15 华北电力科学研究院有限责任公司 一种锅炉运行氧量自动控制系统及锅炉
CN205316377U (zh) * 2016-02-02 2016-06-15 华北电力科学研究院有限责任公司 一种对冲燃烧燃尽风量自动控制系统及锅炉

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110081457A (zh) * 2019-06-20 2019-08-02 吉林大学 一种预防锅炉水冷壁爆管的二次风风管装置及其控制方法
CN110081457B (zh) * 2019-06-20 2023-11-28 吉林大学 一种预防锅炉水冷壁爆管的二次风风管装置及其控制方法
CN110274222A (zh) * 2019-07-12 2019-09-24 合肥工业大学智能制造技术研究院 一种对冲式燃油锅炉及其炉内燃烧布置方法
CN110805924A (zh) * 2019-12-18 2020-02-18 上海电力大学 一种电站锅炉的二次风通道调节装置及燃烧数值模拟方法
CN111239360B (zh) * 2019-12-27 2022-06-24 国网河北省电力有限公司电力科学研究院 一种基于煤粉燃烧全过程烟气成分监测配风系统
CN111239360A (zh) * 2019-12-27 2020-06-05 国网河北省电力有限公司电力科学研究院 一种基于煤粉燃烧全过程烟气成分监测配风系统
CN112580250A (zh) * 2020-11-12 2021-03-30 山东纳鑫电力科技有限公司 基于深度学习的火电机组脱硝系统及优化控制方法
CN113294806A (zh) * 2021-06-16 2021-08-24 大唐淮南洛河发电厂 一种火电厂锅炉燃烧最佳氧量节能控制优化方法
CN113503534A (zh) * 2021-08-20 2021-10-15 西安热工研究院有限公司 一种四角切圆锅炉近水冷壁飞灰防结渣系统和方法
CN114354854A (zh) * 2022-01-06 2022-04-15 武汉祁联生态科技有限公司 一种烟气监测数据的异常检测方法
CN114354854B (zh) * 2022-01-06 2024-02-13 武汉祁联生态科技有限公司 一种烟气监测数据的异常检测方法
CN114637347A (zh) * 2022-03-23 2022-06-17 山东宏桥新型材料有限公司 脱硝烟气量确定方法、装置及脱硝喷氨量调整方法、装置
CN114576645A (zh) * 2022-03-25 2022-06-03 苏州西热节能环保技术有限公司 一种对冲燃煤锅炉高温受热面壁温超温主动控制方法
CN115289495A (zh) * 2022-07-12 2022-11-04 西安佛莱斯特电力科技有限责任公司 一种燃煤电站切圆锅炉深度燃烧优化调整方法
CN115479745A (zh) * 2022-09-19 2022-12-16 西安热工研究院有限公司 适用于前后墙对冲锅炉的冷态空气动力场测量系统

Similar Documents

Publication Publication Date Title
WO2017133316A1 (zh) 对冲燃烧进风量的确定方法、装置及自动控制系统
JP3101823B2 (ja) 低NOx燃焼システムの制御方法
CN112524637B (zh) 一种基于风粉和co在线监测的锅炉燃烧优化方法和系统
CN108800191B (zh) 一种切向燃煤锅炉二次风配风的动力优化方法
CN109084324B (zh) 生物质锅炉的燃烧风量控制系统及控制方法
CN106247368A (zh) 一种工业煤粉锅炉烟气再循环低氮燃烧方法和系统
AU2007231695A1 (en) Methods and systems to increase efficiency and reduce fouling in coal-fired power plants
CN101939589A (zh) 具有闭路火焰温度控制的氧气燃料燃烧系统
US20090183660A1 (en) Method for controlling the combustion air supply in a steam generator that is fueled with fossil fuels
US12098844B2 (en) Integrated comprehensive adjustment method for pulverized coal boiler based on prevention and control of high-temperature corrosion of water wall
CN101776280B (zh) 一种燃气锅炉用三气混烧调量方法
CN105509035B (zh) 一种确定对冲燃烧进风量的方法、装置及自动控制系统
CN107477570B (zh) 乙烯裂解炉燃烧系统超低氮氧化物排放工艺方法
CN103672950B (zh) 拱下二次风下倾角度可调的w型火焰炉的燃烧调整方法
JP5162228B2 (ja) ボイラー装置
Ikeda et al. Emission characteristics of NOx and unburned carbon in fly ash of sub-bituminous coal combustion
CN113137625A (zh) 一种缓解切圆燃烧锅炉冷灰斗高温腐蚀的方法
KR102248435B1 (ko) 연소 장치 및 그것을 구비한 보일러
JPH0255685B2 (zh)
CN203731394U (zh) 电力燃烧锅炉
JP2612284B2 (ja) 燃焼装置
CN113776049B (zh) 前后墙对冲锅炉精细化燃烧配风控制系统及方法
Zhang et al. Experimental study on the effects of co-firing mode and air staging on the ultra-low load combustion assisted by water electrolysis gas (HHO) in a pulverized coal furnace
JPS60218525A (ja) 燃焼制御方法
CN115962480A (zh) 一种燃煤锅炉燃烧控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889123

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889123

Country of ref document: EP

Kind code of ref document: A1