[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017130966A1 - 基地局装置、端末装置および通信方法 - Google Patents

基地局装置、端末装置および通信方法 Download PDF

Info

Publication number
WO2017130966A1
WO2017130966A1 PCT/JP2017/002359 JP2017002359W WO2017130966A1 WO 2017130966 A1 WO2017130966 A1 WO 2017130966A1 JP 2017002359 W JP2017002359 W JP 2017002359W WO 2017130966 A1 WO2017130966 A1 WO 2017130966A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
terminal device
signal
information
beam pattern
Prior art date
Application number
PCT/JP2017/002359
Other languages
English (en)
French (fr)
Inventor
良太 山田
宏道 留場
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017130966A1 publication Critical patent/WO2017130966A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a base station device, a terminal device, and a communication method.
  • a base station device (base station, transmitting station, transmission point, downlink transmitting device, uplink) Expand the communication area by adopting a cellular configuration in which multiple areas covered by a receiving station, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) or transmitting station according to the base station apparatus are arranged in a cell shape. can do.
  • frequency utilization efficiency can be improved by using the same frequency between adjacent cells or sectors.
  • next generation mobile communication systems have been studied.
  • attention is focused on communication in a high frequency band capable of securing a wide band for further large-capacity transmission.
  • the next generation mobile communication system is described in Non-Patent Document 1.
  • the communication in the high frequency band has a problem of ensuring coverage because the communication distance becomes short.
  • beam forming is effective as a technique for ensuring coverage, there is a problem that the base station apparatus needs to perform beam forming suitable for the terminal apparatus.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a base station device, a terminal device, and a communication method capable of improving throughput when beam forming is performed.
  • configurations of a base station apparatus, a terminal apparatus, and a communication method according to an aspect of the present invention are as follows.
  • a base station apparatus is a base station apparatus that communicates with a terminal apparatus, and includes a preamble area in which a preamble signal including at least a synchronization signal is arranged and a data area in which a data signal is arranged
  • a transmission unit for transmitting a radio frame is provided, and a signal sequence of the synchronization signal is generated based on a cell identifier and a beam identifier, and the synchronization signal is beam-formed corresponding to the beam identifier.
  • the preamble signal includes a plurality of synchronization signals generated based on different beam identifiers.
  • a terminal apparatus is a terminal apparatus that communicates with a base station apparatus, and includes a preamble area in which a preamble signal including at least a synchronization signal is disposed and a data area in which a data signal is disposed.
  • a receiving unit that receives a radio frame is provided, and a signal sequence of the synchronization signal is generated based on a cell identifier and a beam identifier, and the synchronization signal is beam-formed corresponding to the beam identifier.
  • the preamble signal includes a plurality of synchronization signals generated based on different beam identifiers.
  • a cell identifier and a beam identifier with good communication quality are specified from the synchronization signal.
  • a communication method is a communication method in a base station device that communicates with a terminal device, and includes a preamble region in which a preamble signal including at least a synchronization signal is arranged and a data region in which a data signal is arranged.
  • a communication method is a communication method in a terminal device that communicates with a base station device, from at least a preamble region in which a preamble signal including a synchronization signal is arranged and a data region in which a data signal is arranged.
  • a reception step of receiving a configured radio frame is provided, wherein a signal sequence of the synchronization signal is generated based on a cell identifier and a beam identifier, and the synchronization signal is beam-formed corresponding to the beam identifier.
  • throughput can be improved by suitable beamforming.
  • the communication system in this embodiment includes a base station device (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and terminal device (terminal, mobile terminal, receiving point, receiving terminal, receiving terminal).
  • a base station device transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB
  • terminal device terminal, mobile terminal, receiving point, receiving terminal, receiving terminal.
  • Device receiving antenna group, receiving antenna port group, UE.
  • a base station device connected to a terminal device is called a serving cell.
  • the base station apparatus and terminal apparatus in this embodiment can communicate in a frequency band (license band) that requires a license and / or a frequency band (unlicensed band) that does not require a license.
  • X / Y includes the meaning of “X or Y”. In the present embodiment, “X / Y” includes the meanings of “X and Y”. In the present embodiment, “X / Y” includes the meaning of “X and / or Y”.
  • FIG. 1 is a diagram illustrating an example of a communication system according to the present embodiment.
  • the communication system according to the present embodiment includes a base station device 1A and terminal devices 2A and 2B.
  • the coverage 1-1 is a range (communication area) in which the base station device 1A can be connected to the terminal device.
  • the terminal devices 2A and 2B are also collectively referred to as the terminal device 2.
  • the following uplink physical channels are used in uplink radio communication from the terminal apparatus 2A to the base station apparatus 1A.
  • the uplink physical channel is used for transmitting information output from an upper layer.
  • -PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • PRACH Physical Random Access Channel
  • the PUCCH is used for transmitting uplink control information (Uplink Control Information: UCI).
  • UCI Uplink Control Information
  • the uplink control information includes ACK (a positive acknowledgement) or NACK (a negative acknowledgement) (ACK / NACK) for downlink data (downlink transport block, Downlink-Shared Channel: DL-SCH).
  • ACK / NACK for downlink data is also referred to as HARQ-ACK and HARQ feedback.
  • the uplink control information includes channel state information (Channel State Information: CSI) for the downlink. Further, the uplink control information includes a scheduling request (Scheduling Request: SR) used to request resources of an uplink shared channel (Uplink-Shared Channel: UL-SCH).
  • the channel state information includes a rank index RI (Rank Indicator) designating a suitable spatial multiplexing number, a precoding matrix indicator PMI (Precoding Matrix Indicator) designating a suitable precoder, and a channel quality index CQI designating a suitable transmission rate.
  • RI Rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI channel quality index
  • the channel quality indicator CQI (hereinafter referred to as CQI value) is a suitable modulation scheme (for example, QPSK, 16QAM, 64QAM, 256QAM, etc.) and a coding rate in a predetermined band (details will be described later). It can.
  • the CQI value can be an index (CQI Index) determined by the change method and coding rate.
  • the CQI value can be predetermined by the system.
  • the rank index and the precoding quality index can be determined in advance by the system.
  • the rank index and the precoding matrix index can be indexes determined by the spatial multiplexing number and precoding matrix information.
  • the values of the rank index, the precoding matrix index, and the channel quality index CQI are collectively referred to as CSI values.
  • the PUSCH is used for transmitting uplink data (uplink transport block, UL-SCH). Moreover, PUSCH may be used to transmit ACK / NACK and / or channel state information together with uplink data. Moreover, PUSCH may be used in order to transmit only uplink control information.
  • PUSCH is used to transmit an RRC message.
  • the RRC message is information / signal processed in a radio resource control (Radio-Resource-Control: -RRC) layer.
  • the PUSCH is used to transmit a MAC CE (Control Element).
  • the MAC CE is information / signal processed (transmitted) in the medium access control (MAC) layer.
  • the power headroom may be included in the MAC CE and reported via PUSCH. That is, the MAC CE field may be used to indicate the power headroom level.
  • PRACH is used to transmit a random access preamble.
  • an uplink reference signal (Uplink Reference Signal: UL SRS) is used as an uplink physical signal.
  • the uplink physical signal is not used for transmitting information output from the upper layer, but is used by the physical layer.
  • the uplink reference signal includes DMRS (Demodulation Reference Signal) and SRS (Sounding Reference Signal).
  • DMRS is related to transmission of PUSCH or PUCCH.
  • base station apparatus 1A uses DMRS to perform propagation channel correction for PUSCH or PUCCH.
  • SRS is not related to PUSCH or PUCCH transmission.
  • the base station apparatus 1A uses SRS to measure the uplink channel state.
  • the following downlink physical channels are used in downlink radio communication from the base station apparatus 1A to the terminal apparatus 2A.
  • the downlink physical channel is used for transmitting information output from an upper layer.
  • PBCH Physical Broadcast Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid automatic repeat request Indicator Channel: HARQ instruction channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) that is commonly used by terminal devices.
  • MIB Master Information Block
  • BCH Broadcast Channel
  • PCFICH is used for transmitting information indicating a region (for example, the number of OFDM symbols) used for transmission of PDCCH.
  • PHICH is used to transmit ACK / NACK for uplink data (transport block, codeword) received by the base station apparatus 1A. That is, PHICH is used to transmit a HARQ indicator (HARQ feedback) indicating ACK / NACK for uplink data. ACK / NACK is also referred to as HARQ-ACK.
  • the terminal device 2A notifies the received ACK / NACK to the upper layer.
  • ACK / NACK is ACK indicating that the data has been correctly received, NACK indicating that the data has not been correctly received, and DTX indicating that there is no corresponding data. Further, when there is no PHICH for the uplink data, the terminal device 2A notifies the upper layer of ACK.
  • DCI Downlink Control Information
  • a plurality of DCI formats are defined for transmission of downlink control information. That is, fields for downlink control information are defined in the DCI format and mapped to information bits.
  • a DCI format 1A used for scheduling one PDSCH (transmission of one downlink transport block) in one cell is defined as a DCI format for the downlink.
  • the DCI format for the downlink includes information on PDSCH resource allocation, information on MCS (Modulation & Coding Scheme) for PDSCH, and downlink control information such as a TPC command for PUCCH.
  • the DCI format for the downlink is also referred to as a downlink grant (or downlink assignment).
  • DCI format 0 used for scheduling one PUSCH (transmission of one uplink transport block) in one cell is defined.
  • the DCI format for uplink includes information on PUSCH resource allocation, information on MCS for PUSCH, and uplink control information such as TPC command for PUSCH.
  • the DCI format for the uplink is also referred to as uplink grant (or uplink assignment).
  • the DCI format for uplink can be used to request downlink channel state information (CSI: “Channel State Information”, also referred to as reception quality information).
  • CSI Downlink Channel State Information
  • the DCI format for the uplink can be used for setting indicating an uplink resource for mapping a channel state information report (CSI feedback report) that the terminal apparatus feeds back to the base station apparatus.
  • the channel state information report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the channel state information report can be used for setting indicating an uplink resource for reporting irregular channel state information (Aperiodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for reporting the channel state information irregularly.
  • the base station apparatus can set either the periodic channel state information report or the irregular channel state information report. Further, the base station apparatus can set both the periodic channel state information report and the irregular channel state information report.
  • the DCI format for the uplink can be used for setting indicating the type of channel state information report that the terminal apparatus feeds back to the base station apparatus.
  • the types of channel state information reports include wideband CSI (for example, Wideband CQI) and narrowband CSI (for example, Subband CQI).
  • the terminal apparatus When the PDSCH resource is scheduled using the downlink assignment, the terminal apparatus receives the downlink data on the scheduled PDSCH. In addition, when PUSCH resources are scheduled using an uplink grant, the terminal apparatus transmits uplink data and / or uplink control information using the scheduled PUSCH.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit a system information block type 1 message.
  • the system information block type 1 message is cell specific (cell specific) information.
  • PDSCH is used to transmit a system information message.
  • the system information message includes a system information block X other than the system information block type 1.
  • the system information message is cell specific (cell specific) information.
  • PDSCH is used to transmit an RRC message.
  • the RRC message transmitted from the base station apparatus may be common to a plurality of terminal apparatuses in the cell.
  • the RRC message transmitted from the base station device 1A may be a message dedicated to a certain terminal device 2 (also referred to as dedicated signaling). That is, user device specific (user device specific) information is transmitted to a certain terminal device using a dedicated message.
  • the PDSCH is used to transmit the MAC CE.
  • the RRC message and / or MAC CE is also referred to as higher layer signaling.
  • PDSCH can be used to request downlink channel state information.
  • the PDSCH can be used to transmit an uplink resource that maps a channel state information report (CSI feedback report) that the terminal device feeds back to the base station device.
  • CSI feedback report can be used for setting indicating an uplink resource that periodically reports channel state information (Periodic CSI).
  • the channel state information report can be used for mode setting (CSI report mode) for periodically reporting the channel state information.
  • the types of downlink channel state information reports include wideband CSI (for example, Wideband CSI) and narrowband CSI (for example, Subband CSI).
  • the broadband CSI calculates one channel state information for the system band of the cell.
  • the narrowband CSI the system band is divided into predetermined units, and one channel state information is calculated for the division.
  • a synchronization signal (Synchronization signal: SS) and a downlink reference signal (Downlink Signal: DL RS) are used as downlink physical signals.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • the synchronization signal is used for the terminal device to synchronize the downlink frequency domain and time domain.
  • the downlink reference signal is used by the terminal device for channel correction of the downlink physical channel.
  • the downlink reference signal is used by the terminal device to calculate downlink channel state information.
  • the downlink reference signal includes CRS (Cell-specific Reference Signal: Cell-specific reference signal), URS related to PDSCH (UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal), EPDCCH Related DMRS (Demodulation Reference Signal), NZP CSI-RS (Non-Zero Power Chanel State Information Information Reference Signal), and ZP CSI-RS (Zero Power Channel Information State Information Reference Signal) are included.
  • CRS Cell-specific Reference Signal: Cell-specific reference signal
  • URS related to PDSCH UE-specific Reference Signal: terminal-specific reference signal, terminal device-specific reference signal
  • EPDCCH Related DMRS Demodulation Reference Signal
  • NZP CSI-RS Non-Zero Power Chanel State Information Information Reference Signal
  • ZP CSI-RS Zero Power Channel Information State Information Reference Signal
  • CRS is transmitted in the entire band of the subframe, and is used to demodulate PBCH / PDCCH / PHICH / PCFICH / PDSCH.
  • the URS associated with the PDSCH is transmitted in subframes and bands used for transmission of the PDSCH associated with the URS, and is used to demodulate the PDSCH associated with the URS.
  • DMRS related to EPDCCH is transmitted in subframes and bands used for transmission of EPDCCH related to DMRS.
  • DMRS is used to demodulate the EPDCCH with which DMRS is associated.
  • NZP CSI-RS resources are set by the base station apparatus 1A.
  • the terminal device 2A performs signal measurement (channel measurement) using NZP CSI-RS.
  • the resource of ZP CSI-RS is set by the base station apparatus 1A.
  • the base station apparatus 1A transmits ZP CSI-RS with zero output.
  • the terminal device 2A measures interference in a resource supported by NZP CSI-RS.
  • MBSFN Multimedia Broadcast Multicast Service Single Frequency Network
  • the MBSFN RS is used for PMCH demodulation.
  • PMCH is transmitted through an antenna port used for transmission of MBSFN RS.
  • the downlink physical channel and the downlink physical signal are collectively referred to as a downlink signal.
  • the uplink physical channel and the uplink physical signal are collectively referred to as an uplink signal.
  • the downlink physical channel and the uplink physical channel are collectively referred to as a physical channel.
  • the downlink physical signal and the uplink physical signal are collectively referred to as a physical signal.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • a channel used in the MAC layer is referred to as a transport channel.
  • the unit of the transport channel used in the MAC layer is also referred to as a transport block (Transport Block: TB) or a MAC PDU (Protocol Data Unit).
  • the transport block is a unit of data that is delivered (delivered) by the MAC layer to the physical layer. In the physical layer, the transport block is mapped to a code word, and an encoding process or the like is performed for each code word.
  • a base station device can communicate with a terminal device that supports carrier aggregation (CA: CarriergAggregation) by integrating multiple component carriers (CC: Component Carrier) for wider band transmission.
  • CA CarriergAggregation
  • CC Component Carrier
  • carrier aggregation one primary cell (PCell: Primary Cell) and one or more secondary cells (SCell: Secondary Cell) are set as a set of serving cells.
  • a master cell group MCG: Master Cell Group
  • a secondary cell group SCG: Secondary Cell Group
  • the MCG is composed of a PCell and optionally one or more SCells.
  • the SCG includes a primary SCell (PSCell) and optionally one or a plurality of SCells.
  • the base station apparatus can communicate using a radio frame.
  • a reference signal, a synchronization signal, a discovery signal, a control signal, a data signal, and the like are arranged.
  • the radio frame structure includes a frame structure in which a common reference signal or the like in a cell is transmitted discretely in a subframe, a frame structure in which a common reference signal and a data signal are distinguished in terms of area / time .
  • the base station apparatus can communicate using, for example, a radio frame structure as shown in FIG. In the area hatched on the upper right in FIG. 2, common reference signals, synchronization signals, discovery signals, control signals, and the like are arranged in cells such as CRS.
  • the discovery signal includes part or all of CRS, synchronization signal, and CSI-RS.
  • the white area terminal-specific reference signals, data signals, control signals, and the like are arranged.
  • the area hatched in the upper right is also referred to as a preamble area and the white area is also referred to as a data area.
  • the preamble area and the data area are composed of one or a plurality of symbols.
  • symbols included in the preamble area are referred to as preamble symbols
  • symbols included in the data area are referred to as data symbols.
  • a frame structure in which the preamble area and the data area are separated will be described.
  • the present invention is not limited to this, and the arrangement of the signals included in the preamble area and the signals included in the data area is not limited thereto. Regardless, the present invention can be applied.
  • FIG. 3 shows an example in which each subframe is changed.
  • n is an integer of 1 or more.
  • Subframe n in FIG. 3 is allocated more preamble areas than subframe n-1.
  • subframe n + 1 in FIG. 3 it is also possible to form a subframe with only a data area without a preamble area.
  • the base station apparatus can instruct the terminal apparatus about the range of the preamble area / data area.
  • the range of the preamble area / data area can be, for example, the number of symbols included in the preamble area / data area.
  • the base station apparatus can instruct the terminal apparatus whether or not there is a preamble area / data area.
  • the base station apparatus can periodically set the preamble area. For example, the base station apparatus can transmit a preamble region with a small number of symbols in a short cycle, and can transmit a preamble region with a large number of symbols in a longer cycle.
  • FIG. 4 is an example of a communication system using beamforming.
  • This communication system includes a base station device 1A and terminal devices 2A and 2B.
  • the coverage 1-1 that can cover a wide direction has a short communication distance, and in this example, the terminal devices 2A and 2B are outside the communication area.
  • coverages 2-1 to 2-3 are coverages when beamforming is used, and each coverage has a different beam pattern. When beam forming is used, only a narrow direction can be covered, but the communication distance becomes long.
  • the terminal device 2A is inside the coverage 2-1
  • the terminal device 2B is inside the coverage 2-3
  • the base station device 1A and the terminal devices 2A and 2B can be connected.
  • the base station device 1A and the terminal devices 2A and 2B need to search which beam pattern is used in the communication area at the time of initial connection.
  • a communication area using beam forming is also referred to as a beam cell or a beam area.
  • a beam connected to a terminal device (establishing a radio link) is called a serving beam.
  • the terminal apparatus uses a preamble signal to synchronize time / frequency and detect a cell search (cell search) and / or a beam identifier (beam ID, beam cell ID) to detect a physical cell identifier (PCID, cell ID). Search (beam search) is performed.
  • the cell ID may include a beam ID.
  • a cell ID that includes a beam ID is also referred to as an extended cell ID.
  • the base station apparatus can perform beam forming and transmitting a part or all of the signal included in the preamble.
  • the preamble signal / discovery signal may include one or a plurality of signals subjected to beam forming.
  • the preamble signal may include one or more synchronization signals / CRS / discovery signals that have been beamformed.
  • the discovery signal may include one or more synchronization signals / CRS / CSI-RS that have been beamformed.
  • the base station apparatus can change the beam pattern for each preamble region or each preamble symbol.
  • the beam pattern may include a pattern that is not beam-formed.
  • the base station device transmits a synchronization signal that can identify the base station device and the beam pattern.
  • the terminal device can know the cell ID and the beam ID from the synchronization signal sequence.
  • the base station apparatus changes the beam pattern based on radio resources such as slots and subframes in which the synchronization signal is arranged, the synchronization signal is generated based on the cell ID and information on the radio resource.
  • the radio resource information is, for example, a slot / subframe number and a subband number.
  • the base station apparatus can multiplex (add, superimpose) the preamble signal / synchronization signal / discovery signal beam-formed with different beam patterns and arrange and transmit it in one preamble area or preamble symbol.
  • the base station apparatus multiplexes (adds and superimposes) the preamble signal / synchronization signal / discovery signal generated based on different beam IDs, arranges them in one preamble region or preamble symbol, and transmits them. Can do.
  • the terminal device can know the cell ID and / or the beam ID from the preamble signal / synchronization signal / discovery signal with good communication quality.
  • the synchronization signal may be one type or multiple types.
  • PSS Primary Synchronization Signal, first synchronization signal
  • SSS SecondaryPSSynchronization Signal, second synchronization signal
  • PSS and SSS are used.
  • the cell ID and / or beam ID are used.
  • the function may be divided for each type.
  • the cell ID can be identified by PSS
  • the beam ID can be identified by SSS.
  • the cell ID can be identified by PSS and SSS
  • the beam ID can be identified by another synchronization signal (third synchronization signal).
  • a suitable beam in the base station apparatus can be selected by beam search at the initial connection. At this time, it is desirable to perform a beam search even in the terminal device.
  • the beam in the terminal device can be used as a reception beam or an uplink transmission beam in the terminal device. It is desirable that the beam search in the terminal device be different synchronization signal sequences that have been subjected to the same beam forming. Therefore, the base station apparatus arranges and transmits different series of synchronization signals beamformed with the same beam pattern in the preamble area.
  • the synchronization signal that can be used for beam search in the terminal apparatus may be arranged in one subframe or may be arranged in a plurality of subframes.
  • the plurality of synchronization signals arranged in the preamble area by the base station apparatus may simultaneously include a synchronization signal based on different synchronization signal sequences formed with the same beamforming and different synchronization signal sequences formed with different beamforming.
  • the base station apparatus may notify the terminal apparatus of information indicating which one of the plurality of synchronization signals arranged in the preamble region is the same beamformed synchronization signal or a different beamformed synchronization signal. it can. That is, the base station apparatus can continuously transmit a synchronization signal associated with the beam search of the base station apparatus and a synchronization signal associated with the beam search of the terminal apparatus described later to the preamble region. .
  • the terminal device can search for the beam of the terminal device when performing a beam search of the base station device. Further, the terminal device can search for the beam of the terminal device when instructed by the base station device. Further, the terminal device can periodically search for the beam of the terminal device. The beam search period of the terminal device is instructed from the base station device.
  • the base station apparatus transmits a setting for measurement, which is setting information for clarifying the measurement performed by the terminal apparatus, to the terminal apparatus.
  • the measurement settings include some or all of the measurement object list, report setting list, measurement ID list, and other parameters.
  • the measurement object is information related to cell information and includes carrier frequency, measurement bandwidth, antenna port, cell list for reporting measurement results, black cell list composed of cells not reporting measurement results, measurement DS settings, and measurement.
  • a beam list that reports results and a part or all of a black beam list that does not report measurement results are included.
  • the cell reporting the measurement result includes a cell index, a physical cell ID, and a cell individual offset as parameters.
  • the beam reporting the measurement result includes a beam ID and a part or all of the physical cell ID.
  • the report setting includes a trigger type indicating whether the report is a regular report or an event report.
  • the event ID is included in the report setting.
  • the event ID includes, for example, the following, and a threshold necessary for calculating the condition (threshold 1 and threshold 2 if necessary) and an offset value are also set.
  • Event A1 When the measurement result of the serving cell is better than the set threshold value
  • Event A2 When the measurement result of the serving cell is worse than the set threshold value
  • Event A3 The measurement result of the neighboring cell is PCell / PSCell measurement When the offset value is better than the set offset value
  • Event A4 When the measurement result of the adjacent cell is better than the set threshold value
  • Event A5 PCell / PSCell measurement result is higher than the set threshold value 1
  • Event A6 When the measurement result of the adjacent cell becomes better than the set offset value than the measurement result of the SCell
  • Event C1 CSI -When the measurement result of the RS resource becomes better than the set threshold, event C2 When the measurement result with the reference CSI-RS resource in which the measurement result with the CSI-RS resource is set becomes better than the offset
  • Event D1 When the measurement result with the serving beam becomes better than the set threshold
  • Event D2 When the measurement result of the serving beam becomes worse than the set threshold value
  • Event D3 When the
  • the events C1 and C2 are selected when the measurement DS setting is set in the measurement object.
  • the measurement DS setting is information applicable to the measurement by the discovery signal, and includes the discovery signal measurement timing setting period and offset, the period of the detection signal occasion, and the measurement CSI-RS list.
  • the measurement CSI-RS is set by the measurement CSI-RS ID, the physical cell ID, the scrambling identity for generating the pseudo-random sequence, the resource setting which is the CSI-RS setting, and the SSS and CSI- in the discovery signal. RS subframe offset and CSI-RS individual offset are included. Further, the CSI-RS for measurement is arranged in the preamble area and / or the data area.
  • the terminal device reports the serving cell, serving beam, cell list, beam list, detected cell, or measurement result of the detected beam to the base station device.
  • the terminal device reports the measurement result periodically or when an event occurs according to an instruction from the base station device.
  • the measurement results that the terminal device reports to the base station device are: measurement ID, PCell measurement result, neighbor cell measurement result list, serving frequency measurement result, CSI-RS measurement result list, PCell beam measurement result, SCell Includes a part or all of a measurement result list of beams and a measurement result list of beams (adjacent beams) other than the serving beam.
  • the measurement result of PCell includes RSRP (Reference Signal Received Power) and RSRQ (Reference Signal Received Quality).
  • RSRP is received power calculated using CRS.
  • RSRQ is obtained from the ratio of RSRP and received signal strength (RSSI: “Received” Signal “Strength” Indicator).
  • the measurement result of the neighbor cell includes a part or all of the physical cell ID, RSRP, and RSRQ.
  • the measurement result list of the serving frequency includes a serving cell index for specifying a serving cell, a measurement result of SCell, and a measurement result of a neighboring cell with the best measurement result.
  • the measurement result of the SCell and the measurement result of the neighboring cell with the best measurement result include RSRP and RSRQ.
  • the measurement result of CSI-RS includes part or all of the ID of CSI-RS for measurement, CSI-RSRP, and CSI-RSRQ.
  • CSI-RSRP is received power calculated using CSI-RS.
  • CSI-RSRQ is obtained from the ratio of CSI-RSRP and RSSI.
  • the measurement result of the beam in the PCell includes a part or all of the physical cell ID, beam ID, RSRP, and RSRQ.
  • the measurement result of the beam in the SCell includes a part or all of the physical cell ID, beam ID, RSRP, and RSRQ.
  • the measurement results of beams other than the serving beam include some or all of the physical cell ID, beam ID, RSRP, and RSRQ.
  • FIG. 5 shows an example of a fixed beam and a variable beam.
  • the communication system of FIG. 5 includes a base station device 1A and a terminal device 2A.
  • Beam areas 2-1 and 2-2 are communication areas having different beam IDs.
  • the base station apparatus 1A changes the beam ID of the terminal apparatus 2A to the beam ID of the beam area 2-2. Switch.
  • the base station apparatus 1A transmits a new beam ID to the terminal apparatus 2A.
  • the terminal device 2A performs synchronization, RRM measurement, CSI measurement / report, data demodulation, and the like using the beam ID received from the base station device 1A.
  • the terminal device 2A In the case of a variable beam, it is assumed that the terminal device 2A has moved in the direction of the arrow as shown in FIG.
  • the base station apparatus 1A changes the beam pattern without changing the beam ID of the terminal apparatus 2A.
  • the terminal device 2A can communicate without knowing that the beam pattern has changed.
  • the base station apparatus 1A can know a suitable beam pattern of the terminal apparatus 2A by receiving a report regarding a suitable beam pattern from the terminal apparatus 2A.
  • the base station apparatus 1A and the terminal apparatus 2A can change the frequency band for communication. For example, when the communication quality between the base station apparatus 1A and the terminal apparatus 2A that perform communication in a frequency band of 6 GHz or more rapidly decreases, the base station apparatus 1A and the terminal apparatus 2A have a communication frequency in a frequency band of 6 GHz or less. Can be switched.
  • the base station apparatus 1A and the terminal apparatus 2A again The communication frequency can be switched to the frequency band.
  • the base station apparatus 1A and the terminal apparatus 2A can continue to use the beam forming used by each before switching.
  • the base station device 1A and the terminal device 2A may perform a beam search again when switching the communication frequency to the frequency band before switching, or after performing a beam search again in the frequency band before switching, The communication frequency may be switched.
  • the switchable frequency band combinations may be determined in advance.
  • switchable frequency band combinations can be linked to carrier aggregation or dual connectivity. The combination of the frequency bands depends on the function (UE ⁇ Capability) of the terminal device.
  • the base station device 1A can switch to a frequency band indicated by a combination of frequency bands included in the function of the terminal device received from the terminal device 2A.
  • each terminal device may receive the interference between beams.
  • the base station apparatus can perform transmission by dividing time / frequency / space resources.
  • the base station apparatus can transmit the antenna ports separately among the terminal apparatuses.
  • the same antenna port is allocated between terminal devices, but transmission can be performed with different beam patterns for each terminal device.
  • the terminal apparatus supports a function for removing or suppressing inter-beam interference
  • the base station apparatus assists the terminal apparatus for removing or suppressing inter-beam interference (adjacent beam interference) (adjacent beam information). Can be sent.
  • the terminal device can remove or suppress inter-beam interference using the received assist information.
  • Assist information physical cell ID, the beam ID, CRS number of ports, P A list, P B, MBSFN (Multimedia Broadcast multicast service Single Frequency Network) subframe configuration, transmission mode list, the resource allocation granularity, TDD of UL / DL sub It includes part or all of the frame configuration, ZP / NZP CSI-RS configuration, and QCL (quasi co-location) information.
  • P A is the PDSCH and CRS power ratio in OFDM symbols CRS is not arranged (power offset).
  • the QCL information is information related to the QCL for a predetermined antenna port, a predetermined signal, or a predetermined channel.
  • a predetermined antenna port if the long-term characteristics of the channel carrying the symbol on one antenna port can be inferred from the channel carrying the symbol on the other antenna port, those antenna ports are QCL It is called.
  • Long interval characteristics include delay spread, Doppler spread, Doppler shift, average gain and / or average delay. That is, when the two antenna ports are QCL, the terminal device can be regarded as having the same long section characteristics at the antenna ports.
  • each parameter included in the assist information may be set to one value (candidate) or a plurality of values (candidates).
  • the terminal device interprets that the parameter indicates a value that may be set by the base station device that causes interference, and sets the interference signal from the multiple values. Detect (specify) the parameters that are being used.
  • the assist information may indicate information of another base station apparatus / beam, or may indicate information of its own base station apparatus / beam.
  • the assist information may be used when performing various measurements.
  • the measurement includes RRM (Radio Resource Management) measurement, RLM (Radio Link Monitoring) measurement, and CSI (Channel State Information) measurement.
  • the base station apparatus can further perform terminal-specific beam forming on the beam area with respect to the terminal apparatus.
  • the base station apparatus can perform precoding based on a code book or PMI, or can perform beam forming unique to the base station apparatus.
  • the base station apparatus can know a suitable CSI from the CSI report from the terminal apparatus.
  • the CSI reported by the terminal device includes CQI / PMI / RI / CRI.
  • the base station apparatus can know a suitable beam pattern of the terminal apparatus from the CSI calculated from the CSI-RS.
  • the CSI-RS can transmit (set) non-preformed CSI-RS (non-precoded CSI-RS) and / or beamformed CSI-RS (beamformed CSI-RS).
  • the CSI-RS is arranged in the preamble area and / or the data area.
  • the base station apparatus can include non-precoded CSI-RS information or beamformed CSI-RS information in the CSI-RS setting information.
  • Non-precoded CSI-RS information includes information on codebook subset restrictions (CBSR: Codebook Subset Restriction), information on codebooks, and interference measurement restriction settings that determine whether to restrict resources when measuring interference. Includes some or all.
  • Beamformed CSI-RS information includes an ID list for CSI-RS settings, an ID list for CSI-IM (CSI-Interference Measurement) settings, information on codebook subset restrictions, and whether to limit resources when measuring channels Including some or all of the channel measurement restrictions.
  • the ID list of the CSI-IM setting is composed of one or a plurality of CSI-IM setting ID information, and the CSI-IM setting ID information includes a CSI-IM setting ID and a part or all of interference measurement restrictions. CSI-IM is also used for interference measurement.
  • the base station apparatus may include a setting (CSI process) related to a procedure for calculating channel state information by associating at least CSI-RS for channel measurement with CSI-IM for interference measurement in higher layer signaling. It can.
  • the CSI process can include a part or all of the CSI process ID, non-precoded CSI-RS information, and beamformed CSI-RS information.
  • the base station apparatus can set one or more CSI processes.
  • the base station apparatus can generate CSI feedback independently for each CSI process.
  • the base station apparatus can set the CSI-RS resource and the CSI-IM differently for each CSI process.
  • one or more CSI processes are set, and CSI reporting is performed independently for each set CSI process.
  • the CSI process is set in a predetermined transmission mode.
  • the beam ID and beam forming can be set for each cell.
  • the beam ID and beam forming may be set by PCell and SCell, or may be set only by PCell or only SCell.
  • CA or DC it is possible to CA or DC a radio frame that can set beam ID and beam forming and a radio frame that cannot set beam ID and beam forming.
  • a radio frame that can set beam ID and beam forming is set to PCell / SCell, and a radio frame that cannot set beam ID and beam forming is set to PSCell / SCell.
  • a radio frame in which beam ID and beam forming cannot be set is set in PCell / SCell, and a radio frame in which beam ID and beam forming can be set is set in PSCell / SCell.
  • the base station apparatus and the terminal apparatus can set the beam forming set in one CC (cell) to another CC.
  • the base station apparatus and the terminal apparatus can perform a beam search only with a predetermined CC (for example, a CC set in PCell / SCell).
  • the base station apparatus and the terminal apparatus can set CC conditions that allow the same beamforming to be set. For example, the base station apparatus and the terminal apparatus can set the same beam forming between CCs whose difference in center frequency is lower than a predetermined value. Alternatively, the base station apparatus and the terminal apparatus can set the same beam forming within the same frequency band (Intra-band).
  • the antenna gain in the maximum radiation direction can be determined according to the transmission power (antenna power) in each device. For example, when the antenna power exceeds 10 dBm, the base station device and the terminal device can set the antenna gain in the maximum radiation direction of the beam pattern to 10 dBi or more.
  • the antenna gain in the maximum radiation direction can be determined according to the type of frequency band transmitted by each apparatus. For example, when the frequency band transmitted by each device is a so-called licensed band obtained from a country or region where the wireless service provider provides a service (license), The antenna gain in the maximum radiation direction can be set to a different value depending on a frequency band called a so-called unlicensed band that does not require use permission (license) from the country or region.
  • a so-called licensed band obtained from a country or region where the wireless service provider provides a service (license)
  • the antenna gain in the maximum radiation direction can be set to a different value depending on a frequency band called a so-called unlicensed band that does not require use permission (license) from the country or region.
  • the base station apparatus can switch between transmitting a beamformed preamble signal / synchronization signal / discovery signal or transmitting a preamble signal / synchronization signal / discovery signal that is not beamformed depending on the frequency band. That is, the terminal device can determine whether to perform initial connection (detection of beam ID) assuming beamforming or initial connection not assuming beamforming, depending on the frequency band.
  • FIG. 6 is a schematic block diagram showing the configuration of the base station apparatus 1A in the present embodiment.
  • the base station apparatus 1 ⁇ / b> A performs transmission / reception with an upper layer processing unit (upper layer processing step) 101, a control unit (control step) 102, a transmission unit (transmission step) 103, and a reception unit (reception step) 104.
  • An antenna 105 is included.
  • the upper layer processing unit 101 includes a radio resource control unit (radio resource control step) 1011 and a scheduling unit (scheduling step) 1012.
  • the transmission unit 103 includes an encoding unit (encoding step) 1031, a modulation unit (modulation step) 1032, a downlink reference signal generation unit (downlink reference signal generation step) 1033, a multiplexing unit (multiplexing step) 1034, a radio A transmission unit (wireless transmission step) 1035 is included.
  • the reception unit 104 includes a wireless reception unit (wireless reception step) 1041, a demultiplexing unit (demultiplexing step) 1042, a demodulation unit (demodulation step) 1043, and a decoding unit (decoding step) 1044.
  • the upper layer processing unit 101 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, a radio resource control (Radio) Resource (Control: RRC) layer processing.
  • MAC Medium Access Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC radio resource control
  • upper layer processing section 101 generates information necessary for controlling transmission section 103 and reception section 104 and outputs the information to control section 102.
  • the upper layer processing unit 101 receives information related to the terminal device such as the function (UE capability) of the terminal device from the terminal device. In other words, the terminal apparatus transmits its own function to the base station apparatus using an upper layer signal.
  • information on a terminal device includes information indicating whether the terminal device supports a predetermined function, or information indicating that the terminal device has introduced a predetermined function and has completed a test.
  • whether or not to support a predetermined function includes whether or not installation and testing for the predetermined function have been completed.
  • the terminal device transmits information (parameters) indicating whether the predetermined function is supported.
  • the terminal device does not transmit information (parameter) indicating whether or not the predetermined device is supported. That is, whether or not to support the predetermined function is notified by whether or not information (parameter) indicating whether or not to support the predetermined function is transmitted. Note that information (parameter) indicating whether or not to support a predetermined function may be notified using 1 bit of 1 or 0.
  • the radio resource control unit 1011 generates or obtains downlink data (transport block), system information, RRC message, MAC CE, and the like arranged on the downlink PDSCH from an upper node.
  • the radio resource control unit 1011 outputs downlink data to the transmission unit 103 and outputs other information to the control unit 102.
  • the radio resource control unit 1011 manages various setting information of the terminal device.
  • the scheduling unit 1012 determines the frequency and subframe to which the physical channels (PDSCH and PUSCH) are allocated, the coding rate and modulation scheme (or MCS) of the physical channels (PDSCH and PUSCH), transmission power, and the like.
  • the scheduling unit 1012 outputs the determined information to the control unit 102.
  • the scheduling unit 1012 generates information used for physical channel (PDSCH and PUSCH) scheduling based on the scheduling result.
  • the scheduling unit 1012 outputs the generated information to the control unit 102.
  • the control unit 102 generates a control signal for controlling the transmission unit 103 and the reception unit 104 based on the information input from the higher layer processing unit 101.
  • the control unit 102 generates downlink control information based on the information input from the higher layer processing unit 101 and outputs the downlink control information to the transmission unit 103.
  • the transmission unit 103 generates a downlink reference signal according to the control signal input from the control unit 102, and encodes the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Then, PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal are multiplexed, and the signal is transmitted to the terminal apparatus 2 via the transmission / reception antenna 105.
  • the encoding unit 1031 uses a predetermined encoding method such as block encoding, convolutional encoding, and turbo encoding for the HARQ indicator, downlink control information, and downlink data input from the higher layer processing unit 101. Encoding is performed using the encoding method determined by the radio resource control unit 1011.
  • the modulation unit 1032 converts the encoded bits input from the encoding unit 1031 into BPSK (Binary Phase Shift Shift Keying), QPSK (quadrature Phase Shift Shift Keying), 16 QAM (quadrature Amplitude Modulation), 64 QAM, 256 QAM, and the like. Or it modulates with the modulation system which the radio
  • the downlink reference signal generation unit 1033 refers to a sequence known by the terminal apparatus 2A, which is obtained based on a predetermined rule based on a physical cell identifier (PCI, cell ID) for identifying the base station apparatus 1A. Generate as a signal.
  • PCI physical cell identifier
  • the multiplexing unit 1034 multiplexes the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information. That is, multiplexing section 1034 arranges the modulated modulation symbol of each channel, the generated downlink reference signal, and downlink control information in the resource element.
  • the wireless transmission unit 1035 generates an OFDM symbol by performing inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed modulation symbol and the like, and adds a cyclic prefix (cyclic prefix: CP) to the OFDM symbol.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the receiving unit 104 separates, demodulates, and decodes the received signal received from the terminal device 2A via the transmission / reception antenna 105 in accordance with the control signal input from the control unit 102, and outputs the decoded information to the upper layer processing unit 101. .
  • the radio reception unit 1041 converts an uplink signal received via the transmission / reception antenna 105 into a baseband signal by down-conversion, removes unnecessary frequency components, and amplifies the signal level so that the signal level is properly maintained.
  • the level is controlled, quadrature demodulation is performed based on the in-phase component and the quadrature component of the received signal, and the analog signal that has been demodulated is converted into a digital signal.
  • the wireless reception unit 1041 removes a portion corresponding to the CP from the converted digital signal.
  • Radio receiving section 1041 performs fast Fourier transform (FFT) on the signal from which CP has been removed, extracts a signal in the frequency domain, and outputs the signal to demultiplexing section 1042.
  • FFT fast Fourier transform
  • the demultiplexing unit 1042 demultiplexes the signal input from the wireless reception unit 1041 into signals such as PUCCH, PUSCH, and uplink reference signal. This separation is performed based on radio resource allocation information included in the uplink grant that is determined in advance by the radio resource control unit 1011 by the base station apparatus 1A and notified to each terminal apparatus 2.
  • the demultiplexing unit 1042 compensates for the propagation paths of the PUCCH and PUSCH. Further, the demultiplexing unit 1042 demultiplexes the uplink reference signal.
  • the demodulator 1043 performs inverse discrete Fourier transform (Inverse Discrete Fourier Transform: IDFT) on the PUSCH to obtain modulation symbols, and for each of the PUCCH and PUSCH modulation symbols, BPSK, QPSK, 16QAM, 64QAM, 256QAM, etc.
  • IDFT inverse discrete Fourier transform
  • the received signal is demodulated by using a modulation method determined or notified in advance by the own device to each of the terminal devices 2 using an uplink grant.
  • the decoding unit 1044 uses the coding rate of the demodulated PUCCH and PUSCH in a predetermined encoding method, the predetermined coding method, or the coding rate notified by the own device to the terminal device 2 using the uplink grant. Decoding is performed, and the decoded uplink data and uplink control information are output to the upper layer processing section 101. When PUSCH is retransmitted, decoding section 1044 performs decoding using the coded bits held in the HARQ buffer input from higher layer processing section 101 and the demodulated coded bits.
  • FIG. 7 is a schematic block diagram showing the configuration of the terminal device 2 in the present embodiment.
  • the terminal device 2A includes an upper layer processing unit (upper layer processing step) 201, a control unit (control step) 202, a transmission unit (transmission step) 203, a reception unit (reception step) 204, a channel state An information generation unit (channel state information generation step) 205 and a transmission / reception antenna 206 are included.
  • the upper layer processing unit 201 includes a radio resource control unit (radio resource control step) 2011 and a scheduling information interpretation unit (scheduling information interpretation step) 2012.
  • the transmission unit 203 includes an encoding unit (encoding step) 2031, a modulation unit (modulation step) 2032, an uplink reference signal generation unit (uplink reference signal generation step) 2033, a multiplexing unit (multiplexing step) 2034, and a radio A transmission unit (wireless transmission step) 2035 is included.
  • the reception unit 204 includes a wireless reception unit (wireless reception step) 2041, a demultiplexing unit (demultiplexing step) 2042, and a signal detection unit (signal detection step) 2043.
  • the upper layer processing unit 201 outputs uplink data (transport block) generated by a user operation or the like to the transmission unit 203. Further, the upper layer processing unit 201 includes a medium access control (Medium Access Control: MAC) layer, a packet data integration protocol (Packet Data Convergence Protocol: PDCP) layer, a radio link control (Radio Link Control: RLC) layer, and a radio resource control. Process the (Radio Resource Control: RRC) layer.
  • Medium Access Control Medium Access Control: MAC
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • RRC Radio Resource Control
  • the upper layer processing unit 201 outputs information indicating the function of the terminal device supported by the own terminal device to the transmission unit 203.
  • the radio resource control unit 2011 manages various setting information of the own terminal device. Also, the radio resource control unit 2011 generates information arranged in each uplink channel and outputs the information to the transmission unit 203.
  • the radio resource control unit 2011 acquires setting information regarding CSI feedback transmitted from the base station apparatus, and outputs the setting information to the control unit 202.
  • the scheduling information interpretation unit 2012 interprets the downlink control information received via the reception unit 204 and determines scheduling information.
  • the scheduling information interpretation unit 2012 generates control information for controlling the reception unit 204 and the transmission unit 203 based on the scheduling information, and outputs the control information to the control unit 202.
  • the control unit 202 generates a control signal for controlling the receiving unit 204, the channel state information generating unit 205, and the transmitting unit 203 based on the information input from the higher layer processing unit 201.
  • the control unit 202 controls the reception unit 204 and the transmission unit 203 by outputting the generated control signal to the reception unit 204, the channel state information generation unit 205, and the transmission unit 203.
  • the control unit 202 controls the transmission unit 203 to transmit the CSI generated by the channel state information generation unit 205 to the base station apparatus.
  • the receiving unit 204 separates, demodulates, and decodes the received signal received from the base station apparatus 1A via the transmission / reception antenna 206 according to the control signal input from the control unit 202, and sends the decoded information to the upper layer processing unit 201. Output.
  • the radio reception unit 2041 converts a downlink signal received via the transmission / reception antenna 206 into a baseband signal by down-conversion, removes unnecessary frequency components, and increases the amplification level so that the signal level is appropriately maintained. , And quadrature demodulation based on the in-phase and quadrature components of the received signal, and converting the quadrature demodulated analog signal into a digital signal.
  • the wireless reception unit 2041 removes a portion corresponding to CP from the converted digital signal, performs fast Fourier transform on the signal from which CP is removed, and extracts a frequency domain signal.
  • the demultiplexing unit 2042 separates the extracted signal into PHICH, PDCCH, EPDCCH, PDSCH, and downlink reference signal. Further, the demultiplexing unit 2042 performs channel compensation of PHICH, PDCCH, and EPDCCH based on the channel estimation value of the desired signal obtained from the channel measurement, detects downlink control information, and Output. In addition, control unit 202 outputs PDSCH and the channel estimation value of the desired signal to signal detection unit 2043.
  • the signal detection unit 2043 detects a signal using the PDSCH and the channel estimation value, and outputs the signal to the higher layer processing unit 201.
  • the transmission unit 203 generates an uplink reference signal according to the control signal input from the control unit 202, encodes and modulates the uplink data (transport block) input from the higher layer processing unit 201, PUCCH, The PUSCH and the generated uplink reference signal are multiplexed and transmitted to the base station apparatus 1A via the transmission / reception antenna 206.
  • the encoding unit 2031 performs encoding such as convolutional encoding and block encoding on the uplink control information input from the higher layer processing unit 201. Also, the coding unit 2031 performs turbo coding based on information used for PUSCH scheduling.
  • the modulation unit 2032 modulates the coded bits input from the coding unit 2031 using a modulation scheme notified by downlink control information such as BPSK, QPSK, 16QAM, 64QAM, or a modulation scheme predetermined for each channel. .
  • the uplink reference signal generation unit 2033 includes a physical cell identifier (physical cell identity: referred to as PCI, Cell ID, etc.) for identifying the base station apparatus 1A, a bandwidth for arranging the uplink reference signal, and an uplink grant.
  • a sequence determined by a predetermined rule is generated on the basis of the cyclic shift, the parameter value for the generation of the DMRS sequence, and the like notified in (1).
  • the multiplexing unit 2034 rearranges the PUSCH modulation symbols in parallel according to the control signal input from the control unit 202, and then performs a discrete Fourier transform (DFT). Also, the multiplexing unit 2034 multiplexes the PUCCH and PUSCH signals and the generated uplink reference signal for each transmission antenna port. That is, multiplexing section 2034 arranges the PUCCH and PUSCH signals and the generated uplink reference signal in the resource element for each transmission antenna port.
  • DFT discrete Fourier transform
  • the wireless transmission unit 2035 performs inverse fast Fourier transform (Inverse Fast Transform: IFFT) on the multiplexed signal, performs SC-FDMA modulation, generates SC-FDMA symbols, and generates the generated SC-FDMA symbols.
  • IFFT inverse fast Fourier transform
  • CP is added to baseband digital signal, baseband digital signal is converted to analog signal, excess frequency component is removed, converted to carrier frequency by up-conversion, power amplification, transmission / reception antenna It outputs to 206 and transmits.
  • the program that operates in the apparatus related to the present invention may be a program that controls the central processing unit (CPU) or the like to function the computer so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • volatile memory such as Random Access Memory (RAM) during processing
  • non-volatile memory such as flash memory or Hard Disk Drive (HDD).
  • HDD Hard Disk Drive
  • a program for realizing the functions of the embodiments may be recorded on a computer-readable recording medium.
  • the “computer system” here is a computer system built in the apparatus, and includes hardware such as an operating system and peripheral devices.
  • the “computer-readable recording medium” may be any of a semiconductor recording medium, an optical recording medium, a magnetic recording medium, and the like.
  • Computer-readable recording medium means a program that dynamically holds a program for a short time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system serving as a server or a client may be included, which holds a program for a certain period of time.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • each functional block or various features of the apparatus used in the above-described embodiments can be implemented or executed by an electric circuit, that is, typically an integrated circuit or a plurality of integrated circuits.
  • Electrical circuits designed to perform the functions described herein can be general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other Programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be configured with a digital circuit or an analog circuit.
  • an integrated circuit based on the technology can be used.
  • the present invention is not limited to the above-described embodiment.
  • an example of the apparatus has been described.
  • the present invention is not limited to this, and a stationary or non-movable electronic device installed indoors or outdoors, such as an AV device, a kitchen device, It can be applied to terminal devices or communication devices such as cleaning / washing equipment, air conditioning equipment, office equipment, vending machines, and other daily life equipment.
  • the present invention is suitable for use in a base station device, a terminal device, and a communication method.
  • Base station apparatus 2A, 2B Terminal apparatus 101 Upper layer processing section 102 Control section 103 Transmission section 104 Reception section 105 Transmission / reception antenna 1011 Radio resource control section 1012 Scheduling section 1031 Encoding section 1032 Modulation section 1033 Downlink reference signal generation section 1034 Multiplexing Unit 1035 radio transmission unit 1041 radio reception unit 1042 demultiplexing unit 1043 demodulation unit 1044 decoding unit 201 upper layer processing unit 202 control unit 203 transmission unit 204 reception unit 205 channel state information generation unit 206 transmission / reception antenna 2011 radio resource control unit 2012 scheduling information Interpreter 2031 Encoder 2032 Modulator 2033 Uplink reference signal generator 2034 Multiplexer 2035 Radio transmitter 2041 Radio receiver 2042 Demultiplexer 2043 Signal detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

ビームフォーミングした場合にスループット向上が可能な基地局装置、端末装置および通信方法を提供すること。端末装置と通信する基地局装置であって、1または複数の同期信号で構成される同期信号領域を送信する送信部を備え、前記同期信号領域が複数の同期信号で構成される場合、前記複数の同期信号は、それぞれ同じビームパターンまたは異なるビームパターンでビームフォーミングされ、前記送信部は、さらに、同じビームパターンまたは異なるビームパターンを示す情報を前記端末装置に送信する。

Description

基地局装置、端末装置および通信方法
 本発明は、基地局装置、端末装置および通信方法に関する。
 3GPP(Third Generation Partnership Project)によるLTE(Long Term Evolution)、LTE-A(LTE-Advanced)のような通信システムでは、基地局装置(基地局、送信局、送信点、下りリンク送信装置、上りリンク受信装置、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)あるいは基地局装置に準じる送信局がカバーするエリアをセル(Cell)状に複数配置するセルラ構成とすることにより、通信エリアを拡大することができる。このセルラ構成において、隣接するセルまたはセクタ間で同一周波数を利用することで、周波数利用効率を向上させることができる。
 近年では、次世代移動通信システムが検討されている。次世代移動通信システムでは、さらなる大容量伝送のため、広帯域の確保が可能な高周波数帯での通信が注目されている。次世代移動通信システムについては非特許文献1に記載されている。
ARIB 2020 and Beyond Ad Hoc Group、White Paper、"Mobile Communications Systems for 2020 and beyond、"version 1.0.0、2014年10月。
 しかしながら、高周波数帯での通信は、通信距離が短くなるため、カバレッジの確保が問題となる。カバレッジを確保する技術としてビームフォーミングが有効であるが、基地局装置は端末装置にとって好適であるビームフォーミングをする必要があるという問題がある。
 本発明はこのような事情を鑑みてなされたものであり、その目的は、ビームフォーミングした場合にスループット向上が可能な基地局装置、端末装置および通信方法を提供することにある。
 上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置および通信方法の構成は、次の通りである。
 本発明の一態様に係る基地局装置は、端末装置と通信する基地局装置であって、少なくとも同期信号を含むプリアンブル信号が配置されるプリアンブル領域およびデータ信号が配置されるデータ領域から構成される無線フレームを送信する送信部を備え、前記同期信号の信号系列はセル識別子およびビーム識別子に基づいて生成され、前記同期信号は前記ビーム識別子に対応してビームフォーミングされる。
 また本発明の一態様に係る基地局装置において、前記プリアンブル信号は、異なるビーム識別子に基づいて生成された複数の同期信号が多重されている。
 また本発明の一態様に係る端末装置は、基地局装置と通信する端末装置であって、少なくとも同期信号を含むプリアンブル信号が配置されるプリアンブル領域およびデータ信号が配置されるデータ領域から構成される無線フレームを受信する受信部を備え、前記同期信号の信号系列はセル識別子およびビーム識別子に基づいて生成され、前記同期信号は前記ビーム識別子に対応してビームフォーミングされる。
 また本発明の一態様に係る端末装置であって、前記プリアンブル信号は、異なるビーム識別子に基づいて生成された複数の同期信号が多重されている。
 また本発明の一態様に係る端末装置であって、前記同期信号から通信品質の良いセル識別子およびビーム識別子を特定する。
 また本発明の一態様に係る通信方法は、端末装置と通信する基地局装置における通信方法であって、少なくとも同期信号を含むプリアンブル信号が配置されるプリアンブル領域およびデータ信号が配置されるデータ領域から構成される無線フレームを送信する送信ステップを備え、前記同期信号の信号系列はセル識別子およびビーム識別子に基づいて生成され、前記同期信号は前記ビーム識別子に対応してビームフォーミングされる。
 また本発明の一態様に係る通信方法は、基地局装置と通信する端末装置における通信方法であって、少なくとも同期信号を含むプリアンブル信号が配置されるプリアンブル領域およびデータ信号が配置されるデータ領域から構成される無線フレームを受信する受信ステップを備え、前記同期信号の信号系列はセル識別子およびビーム識別子に基づいて生成され、前記同期信号は前記ビーム識別子に対応してビームフォーミングされる。
 本発明の一態様によれば、好適なビームフォーミングによって、スループットを向上させることができる。
本実施形態に係る通信システムの例を示す図である。 本実施形態に係るフレーム構成例を示す図である。 本実施形態に係るフレーム構成例を示す図である。 本実施形態に係る通信システムの例を示す図である。 本実施形態に係る通信システムの例を示す図である。 本実施形態に係る基地局装置の構成例を示すブロック図である。 本実施形態に係る端末装置の構成例を示すブロック図である。
 本実施形態における通信システムは、基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)および端末装置(端末、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE)を備える。また端末装置と接続している(無線リンクを確立している)基地局装置をサービングセルと呼ぶ。
 本実施形態における基地局装置および端末装置は、免許が必要な周波数帯域(ライセンスバンド)および/または免許不要の周波数帯域(アンライセンスバンド)で通信することができる。
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。
 図1は、本実施形態に係る通信システムの例を示す図である。図1に示すように、本実施形態における通信システムは、基地局装置1A、端末装置2A、2Bを備える。また、カバレッジ1-1は、基地局装置1Aが端末装置と接続可能な範囲(通信エリア)である。また、端末装置2A、2Bを総称して端末装置2とも称する。
 図1において、端末装置2Aから基地局装置1Aへの上りリンクの無線通信では、以下の上りリンク物理チャネルが用いられる。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PUCCH(Physical Uplink Control Channel)
・PUSCH(Physical Uplink Shared Channel)
・PRACH(Physical Random Access Channel)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報は、下りリンクデータ(下りリンクトランスポートブロック、Downlink-Shared Channel: DL-SCH)に対するACK(a positive acknowledgement)またはNACK(a negative acknowledgement)(ACK/NACK)を含む。下りリンクデータに対するACK/NACKを、HARQ-ACK、HARQフィードバックとも称する。
 また、上りリンク制御情報は、下りリンクに対するチャネル状態情報(Channel State Information: CSI)を含む。また、上りリンク制御情報は、上りリンク共用チャネル(Uplink-Shared Channel: UL-SCH)のリソースを要求するために用いられるスケジューリング要求(Scheduling Request: SR)を含む。前記チャネル状態情報は、好適な空間多重数を指定するランク指標RI(Rank Indicator)、好適なプレコーダを指定するプレコーディング行列指標PMI(Precoding Matrix Indicator)、好適な伝送レートを指定するチャネル品質指標CQI(Channel Quality Indicator)、好適なCSI-RSリソースを示すCSI-RS(Reference Signal、参照信号)リソース指標CRI(CSI-RS Resource Indication)等が該当する。
 前記チャネル品質指標CQIは(以下、CQI値)、所定の帯域(詳細は後述)における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAM等)、符号化率(coding rate)とすることができる。CQI値は、前記変更方式や符号化率により定められたインデックス(CQI Index)とすることができる。前記CQI値は、予め当該システムで定めたものをすることができる。
 なお、前記ランク指標、前記プレコーディング品質指標は、予めシステムで定めたものとすることができる。前記ランク指標や前記プレコーディング行列指標は、空間多重数やプレコーディング行列情報により定められたインデックスとすることができる。なお、前記ランク指標、前記プレコーディング行列指標、前記チャネル品質指標CQIの値をCSI値と総称する。
 PUSCHは、上りリンクデータ(上りリンクトランスポートブロック、UL-SCH)を送信するために用いられる。また、PUSCHは、上りリンクデータと共に、ACK/NACKおよび/またはチャネル状態情報を送信するために用いられても良い。また、PUSCHは、上りリンク制御情報のみを送信するために用いられても良い。
 また、PUSCHは、RRCメッセージを送信するために用いられる。RRCメッセージは、無線リソース制御(Radio Resource Control: RRC)層において処理される情報/信号である。また、PUSCHは、MAC CE(Control Element)を送信するために用いられる。ここで、MAC CEは、媒体アクセス制御(MAC: Medium Access Control)層において処理(送信)される情報/信号である。
 例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されても良い。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられても良い。
 PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。
 また、上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。ここで、上りリンク参照信号には、DMRS(Demodulation Reference Signal)、SRS(Sounding Reference Signal)が含まれる。
 DMRSは、PUSCHまたはPUCCHの送信に関連する。例えば、基地局装置1Aは、PUSCHまたはPUCCHの伝搬路補正を行なうためにDMRSを使用する。SRSは、PUSCHまたはPUCCHの送信に関連しない。例えば、基地局装置1Aは、上りリンクのチャネル状態を測定するためにSRSを使用する。
 図1において、基地局装置1Aから端末装置2Aへの下りリンクの無線通信では、以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・PBCH(Physical Broadcast Channel: 報知チャネル)
・PCFICH(Physical Control Format Indicator Channel: 制御フォーマット指示チャネル)
・PHICH(Physical Hybrid automatic repeat request Indicator Channel: HARQ指示チャネル)
・PDCCH(Physical Downlink Control Channel: 下りリンク制御チャネル)
・EPDCCH(Enhanced Physical Downlink Control Channel: 拡張下りリンク制御チャネル)
・PDSCH(Physical Downlink Shared Channel: 下りリンク共有チャネル)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB, Broadcast Channel: BCH)を報知するために用いられる。PCFICHは、PDCCHの送信に用いられる領域(例えば、OFDMシンボルの数)を指示する情報を送信するために用いられる。
 PHICHは、基地局装置1Aが受信した上りリンクデータ(トランスポートブロック、コードワード)に対するACK/NACKを送信するために用いられる。すなわち、PHICHは、上りリンクデータに対するACK/NACKを示すHARQインディケータ(HARQフィードバック)を送信するために用いられる。また、ACK/NACKは、HARQ-ACKとも呼称する。端末装置2Aは、受信したACK/NACKを上位レイヤに通知する。ACK/NACKは、正しく受信されたことを示すACK、正しく受信しなかったことを示すNACK、対応するデータがなかったことを示すDTXである。また、上りリンクデータに対するPHICHが存在しない場合、端末装置2AはACKを上位レイヤに通知する。
 PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。ここで、下りリンク制御情報の送信に対して、複数のDCIフォーマットが定義される。すなわち、下りリンク制御情報に対するフィールドがDCIフォーマットに定義され、情報ビットへマップされる。
 例えば、下りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPDSCH(1つの下りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット1Aが定義される。
 例えば、下りリンクに対するDCIフォーマットには、PDSCHのリソース割り当てに関する情報、PDSCHに対するMCS(Modulation and Coding Scheme)に関する情報、PUCCHに対するTPCコマンド等の下りリンク制御情報が含まれる。ここで、下りリンクに対するDCIフォーマットを、下りリンクグラント(または、下りリンクアサインメント)とも称する。
 また、例えば、上りリンクに対するDCIフォーマットとして、1つのセルにおける1つのPUSCH(1つの上りリンクトランスポートブロックの送信)のスケジューリングに使用されるDCIフォーマット0が定義される。
 例えば、上りリンクに対するDCIフォーマットには、PUSCHのリソース割り当てに関する情報、PUSCHに対するMCSに関する情報、PUSCHに対するTPCコマンド等上りリンク制御情報が含まれる。上りリンクに対するDCIフォーマットを、上りリンクグラント(または、上りリンクアサインメント)とも称する。
 また、上りリンクに対するDCIフォーマットは、下りリンクのチャネル状態情報(CSI: Channel State Information。受信品質情報とも称する。)を要求(CSI request)するために用いることができる。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを示す設定のために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 例えば、チャネル状態情報報告は、不定期なチャネル状態情報(Aperiodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、不定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。基地局装置は、前記定期的なチャネル状態情報報告または前記不定期的なチャネル状態情報報告のいずれかを設定することができる。また、基地局装置は、前記定期的なチャネル状態情報報告および前記不定期的なチャネル状態情報報告の両方を設定することもできる。
 また、上りリンクに対するDCIフォーマットは、端末装置が基地局装置にフィードバックするチャネル状態情報報告の種類を示す設定のために用いることができる。チャネル状態情報報告の種類は、広帯域CSI(例えば、Wideband CQI)と狭帯域CSI(例えば、Subband CQI)等がある。
 端末装置は、下りリンクアサインメントを用いてPDSCHのリソースがスケジュールされた場合、スケジュールされたPDSCHで下りリンクデータを受信する。また、端末装置は、上りリンクグラントを用いてPUSCHのリソースがスケジュールされた場合、スケジュールされたPUSCHで上りリンクデータおよび/または上りリンク制御情報を送信する。
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。また、PDSCHは、システムインフォメーションブロックタイプ1メッセージを送信するために用いられる。システムインフォメーションブロックタイプ1メッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、システムインフォメーションメッセージを送信するために用いられる。システムインフォメーションメッセージは、システムインフォメーションブロックタイプ1以外のシステムインフォメーションブロックXを含む。システムインフォメーションメッセージは、セルスペシフィック(セル固有)な情報である。
 また、PDSCHは、RRCメッセージを送信するために用いられる。ここで、基地局装置から送信されるRRCメッセージは、セル内における複数の端末装置に対して共通であっても良い。また、基地局装置1Aから送信されるRRCメッセージは、ある端末装置2に対して専用のメッセージ(dedicated signalingとも称する)であっても良い。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。また、PDSCHは、MAC CEを送信するために用いられる。
 ここで、RRCメッセージおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。
 また、PDSCHは、下りリンクのチャネル状態情報を要求するために用いることができる。また、PDSCHは、端末装置が基地局装置にフィードバックするチャネル状態情報報告(CSI feedback report)をマップする上りリンクリソースを送信するために用いることができる。例えば、チャネル状態情報報告は、定期的にチャネル状態情報(Periodic CSI)を報告する上りリンクリソースを示す設定のために用いることができる。チャネル状態情報報告は、定期的にチャネル状態情報を報告するモード設定(CSI report mode)のために用いることができる。
 下りリンクのチャネル状態情報報告の種類は広帯域CSI(例えば、Wideband CSI)と狭帯域CSI(例えば、Subband CSI)がある。広帯域CSIは、セルのシステム帯域に対して1つのチャネル状態情報を算出する。狭帯域CSIは、システム帯域を所定の単位に区分し、その区分に対して1つのチャネル状態情報を算出する。
 また、下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。また、下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、端末装置が、下りリンクのチャネル状態情報を算出するために用いられる。
 ここで、下りリンク参照信号には、CRS(Cell-specific Reference Signal: セル固有参照信号)、PDSCHに関連するURS(UE-specific Reference Signal: 端末固有参照信号、端末装置固有参照信号)、EPDCCHに関連するDMRS(Demodulation Reference Signal)、NZP CSI-RS(Non-Zero Power Chanel State Information - Reference Signal)、ZP CSI-RS(Zero Power Chanel State Information - Reference Signal)が含まれる。
 CRSは、サブフレームの全帯域で送信され、PBCH/PDCCH/PHICH/PCFICH/PDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信され、URSが関連するPDSCHの復調を行なうために用いられる。
 EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。
 NZP CSI-RSのリソースは、基地局装置1Aによって設定される。例えば、端末装置2Aは、NZP CSI-RSを用いて信号の測定(チャネルの測定)を行なう。ZP CSI-RSのリソースは、基地局装置1Aによって設定される。基地局装置1Aは、ZP CSI-RSをゼロ出力で送信する。例えば、端末装置2Aは、NZP CSI-RSが対応するリソースにおいて干渉の測定を行なう。
 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信に用いられるアンテナポートで送信される。
 ここで、下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。
 また、BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。また、MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(Transport Block: TB)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理等が行なわれる。
 また、キャリアアグリゲーション(CA: Carrier Aggregation)をサポートしている端末装置に対して、基地局装置は、より広帯域伝送のため複数のコンポーネントキャリア(CC: Component Carrier)を統合して通信することができる。キャリアアグリゲーションでは、1つのプライマリセル(PCell: Primary Cell)および1または複数のセカンダリセル(SCell: Secondary Cell)がサービングセルの集合として設定される。
 また、デュアルコネクティビティ(DC: Dual Connectivity)では、サービングセルのグループとして、マスターセルグループ(MCG: Master Cell Group)とセカンダリセルグループ(SCG: Secondary Cell Group)が設定される。MCGはPCellとオプションで1または複数のSCellから構成される。またSCGはプライマリSCell(PSCell)とオプションで1または複数のSCellから構成される。
 基地局装置は、無線フレームを用いて通信することができる。無線フレームは、参照信号、同期信号、ディスカバリ信号、制御信号、データ信号等が配置される。無線フレーム構造は、セル内で共通の参照信号等がサブフレーム内で離散的に送信されるフレーム構造と共通の参照信号とデータ信号が領域的/時間的に区別されているフレーム構造等がある。基地局装置は、例えば、図2に示すような無線フレーム構造を用いて通信することができる。図2に示す右上にハッチングされた領域はCRS等セル内で共通の参照信号、同期信号、ディスカバリ信号、制御信号等が配置される。ディスカバリ信号は、CRS、同期信号、CSI-RSの一部または全部が含まれる。白抜きの領域は、端末固有の参照信号、データ信号、制御信号等が配置される。なお、以下の説明では、特に断りがない限り右上にハッチングされた領域をプリアンブル領域、白抜きの領域をデータ領域とも呼称する。また、プリアンブル領域およびデータ領域は1または複数のシンボルで構成される。以降では、プリアンブル領域に含まれるシンボルをプリアンブルシンボル、データ領域に含まれるシンボルをデータシンボルと呼称する。また、以降の実施形態では、プリアンブル領域とデータ領域が分かれているフレーム構造を用いて説明するが、本発明はこれに限らず、プリアンブル領域に含まれる信号とデータ領域に含まれる信号の配置に依らず、本発明は適用することができる。
 プリアンブル領域、データ領域は、範囲(シンボル数)を変えることができる。図3はサブフレーム毎に変化させた例である。なお図中のnは1以上の整数である。図3のサブフレームnはサブフレームn-1よりも多くプリアンブル領域が割当てられている。また、図3のサブフレームn+1に示すように、プリアンブル領域がなくデータ領域のみでサブフレームを構成することも可能である。また図示していないが、プリアンブル領域のみでサブフレームを構成することも可能である。
 基地局装置は、プリアンブル領域/データ領域の範囲を端末装置に指示することができる。プリアンブル領域/データ領域の範囲は、例えば、プリアンブル領域/データ領域に含まれるシンボル数とすることができる。もしくは、基地局装置はプリアンブル領域/データ領域があるか否かを端末装置に指示することができる。
 また基地局装置は、プリアンブル領域を周期的に設定することができる。例えば、基地局装置は、シンボル数の少ないプリアンブル領域は短い周期で送信し、シンボル数の多いプリアンブル領域はより長い周期で送信することができる。
 基地局装置は、6GHz以上のような高い周波数帯で通信する場合、カバレッジを確保するために、ビームフォーミングを用いて通信することができる。図4は、ビームフォーミングを用いた通信システムの例である。この通信システムは、基地局装置1A、端末装置2A、2Bを備える。広い方向をカバーできるカバレッジ1-1は、通信距離が短く、この例では端末装置2A、2Bは通信エリア外になる。一方、カバレッジ2-1~2-3は、ビームフォーミングを用いた場合のカバレッジであり、各々のカバレッジはビームパターンが異なる。ビームフォーミングを用いた場合、狭い方向しかカバーできないが通信距離は長くなる。従って、端末装置2Aはカバレッジ2-1の内部にあり、端末装置2Bはカバレッジ2-3の内部にあり、基地局装置1Aと端末装置2A、2Bは接続可能となる。ただし、基地局装置1A、端末装置2A、2Bは、初期接続時にどのビームパターンを用いれば通信エリア内になるかを探索する必要がある。なお、ビームフォーミングを用いた通信エリアをビームセル、ビームエリアとも称する。また、端末装置と接続している(無線リンクを確立している)ビームをサービングビームと呼ぶ。
 端末装置は、プリアンブル信号を用いて、時間/周波数同期し、物理セル識別子(PCID、セルID)を検出するセル探索(セルサーチ)および/またはビーム識別子(ビームID、ビームセルID)を検出するビーム探索(ビームサーチ)を行なう。なお、セルIDがビームIDを含むことも可能である。また、ビームIDを含まないセルIDと区別するため、ビームIDを含むセルIDは拡張セルIDとも呼称される。端末装置でビーム探索するために、基地局装置は、プリアンブルに含まれる信号の一部または全てをビームフォーミングして送信することができる。また、プリアンブル信号/ディスカバリ信号は、ビームフォーミングされた1または複数の信号を含むことができる。例えば、プリアンブル信号は、ビームフォーミングされた1または複数の同期信号/CRS/ディスカバリ信号を含むことができる。また例えば、ディスカバリ信号はビームフォーミングされた1または複数の同期信号/CRS/CSI-RSを含むことができる。また基地局装置は、プリアンブル領域毎またはプリアンブルシンボル毎にビームパターンを変えることができる。なお、ビームパターンにはビームフォーミングしないパターンが含まれていても良い。基地局装置は、ビームフォーミングした同期信号を送信する場合、基地局装置およびビームパターンを識別できる同期信号を送信する。同期信号がセルIDおよびビームIDに基づいて生成される場合、端末装置は、同期信号系列からセルIDおよびビームIDを知ることができる。また、基地局装置が、同期信号が配置されるスロットやサブフレーム等の無線リソースに基づいてビームパターンを変える場合、同期信号はセルIDおよび無線リソースの情報に基づいて生成される。無線リソースの情報は、例えば、スロット/サブフレーム番号、サブバンド番号である。
 また、基地局装置は、異なるビームパターンでビームフォーミングされたプリアンブル信号/同期信号/ディスカバリ信号を多重(加算、重畳)して1つのプリアンブル領域またはプリアンブルシンボルに配置して送信することができる。別の言い方では、基地局装置は、異なるビームIDに基づいて生成されるプリアンブル信号/同期信号/ディスカバリ信号を多重(加算、重畳)して1つのプリアンブル領域またはプリアンブルシンボルに配置して送信することができる。このとき端末装置は、通信品質の良いプリアンブル信号/同期信号/ディスカバリ信号からセルIDおよび/またはビームIDを知ることができる。
 なお、同期信号は1種類でも良いし、複数種類でも良い。同期信号がプライマリ同期信号(PSS: Primary Synchronization Signal、第1の同期信号)とセカンダリ同期信号(SSS: Secondary Synchronization Signal、第2の同期信号)の2種類ある場合、PSSとSSSの両方を用いてセルIDおよび/またはビームIDがわかれば良い。また、種類ごとに機能が分かれていても良い。例えば、PSSでセルIDを識別し、SSSでビームIDを識別することが可能である。また別の例では、PSSとSSSでセルIDを識別し、また別の同期信号(第3の同期信号)でビームIDを識別することが可能である。
 上記により、初期接続時のビーム探索によって、基地局装置における好適なビームが選択できる。このとき、端末装置でもビーム探索することが望ましい。端末装置におけるビームは端末装置における受信ビームや上りリンクの送信ビームに用いることができる。端末装置におけるビームサーチは、同じビームフォーミングされた異なる同期信号系列であることが望ましい。従って、基地局装置は、同じビームパターンでビームフォーミングした異なる系列の同期信号をプリアンブル領域に配置して送信する。なお、端末装置でのビーム探索に用いることができる同期信号は、1サブフレーム内に配置されても良いし、複数サブフレームに配置されても良い。
 なお、基地局装置がプリアンブル領域に配置する複数の同期信号には、同じビームフォーミングされた異なる同期信号系列に基づく同期信号と、異なるビームフォーミングされた異なる同期信号系列を同時に含んでも良い。基地局装置は、プリアンブル領域に配置した複数の同期信号のうち、いずれが同じビームフォーミングされた同期信号なのか、異なるビームフォーミングされた同期信号なのかを示す情報を、端末装置に通知することができる。すなわち、基地局装置は、プリアンブル領域に、基地局装置のビームサーチに関連付けられた同期信号と、後述する端末装置のビームサーチに関連付けられた同期信号を、連続して送信することが可能である。
 端末装置は、基地局装置のビーム探索をしたときに端末装置のビームを探索することができる。また、端末装置は、基地局装置から指示された場合に端末装置のビームを探索することができる。また、端末装置は、定期的に端末装置のビームを探索することができる。端末装置のビーム探索の周期は、基地局装置から指示される。
 端末装置が移動した場合等、通信環境が変わる可能性があるので、基地局装置はビームパターンを更新する必要がある。基地局装置は、端末装置によって実行される測定を明確にする設定情報である測定用設定を端末装置に送信する。測定用設定には、測定オブジェクトリスト、レポート設定リスト、測定IDリスト、その他のパラメータの一部または全てが含まれる。測定オブジェクトは、セルの情報に関する情報であり、搬送周波数、測定バンド幅、アンテナポート、測定結果を報告するセルリスト、測定結果を報告しないセルで構成されるブラックセルリスト、測定用DS設定、測定結果を報告するビームリスト、測定結果を報告しないブラックビームリストの一部または全部が含まれる。測定結果を報告するセルは、パラメータとしてセルインデックス、物理セルID、セル個別オフセットが含まれる。測定結果を報告するビームは、ビームID、物理セルIDの一部または全部が含まれる。レポート設定は、定期的な報告かイベントによる報告かを示すトリガータイプを含む。イベントによる報告の場合、レポート設定にイベントIDが含まれる。イベントIDは、例えば、次のようなものがあり、条件の計算に必要な閾値(必要な場合は、閾値1、閾値2)やオフセット値も設定される。
イベントA1:サービングセルの測定結果が設定された閾値よりも良くなった場合
イベントA2:サービングセルの測定結果が設定された閾値よりも悪くなった場合
イベントA3:隣接セルの測定結果がPCell/PSCellの測定結果よりも設定されたオフセット値以上に良くなった場合
イベントA4:隣接セルの測定結果が設定された閾値よりも良くなった場合
イベントA5:PCell/PSCellの測定結果が設定された閾値1よりも悪くなり、隣接セルの測定結果が設定された閾値2よりも良くなった場合
イベントA6:隣接セルの測定結果がSCellの測定結果よりも設定されたオフセット値以上に良くなった場合
イベントC1:CSI-RSリソースでの測定結果が設定された閾値よりも良くなった場合
イベントC2:CSI-RSリソースでの測定結果が設定された参照CSI-RSリソースでの測定結果がオフセット以上に良くなった場合
イベントD1:サービングビームの測定結果が設定された閾値よりも良くなった場合
イベントD2:サービングビームの測定結果が設定された閾値よりも悪くなった場合
イベントD3:サービングビームとは異なるビーム(隣接ビーム)の測定結果が設定された閾値よりも良くなった場合
イベントE1:基地局装置がビームを決定してから経過した時間が、閾値を超えた場合
イベントE2:端末装置がビームを決定してから経過した時間が、閾値を超えた場合
イベントE3:E1かつE2である場合
 なお、イベントC1、C2は測定オブジェクトで測定用DS設定が設定された場合に選択される。
 また、測定用DS設定はディスカバリ信号による測定に適用できる情報であり、ディスカバリ信号測定タイミング設定の周期およびオフセット、ディカバリ信号オケージョンの期間、測定用CSI-RSリストが含まれる。測定用CSI-RSの設定は、測定用CSI-RSのID、物理セルID、擬似ランダム系列生成のためのスクランブリングアイデンティティ、CSI-RSの設定であるリソース設定、ディスカバリ信号内のSSSとCSI-RSのサブフレームオフセット、CSI-RS個別オフセットが含まれる。また、測定用CSI-RSはプリアンブル領域および/またはデータ領域に配置される。
 端末装置は、サービングセル、サービングビーム、セルリスト、ビームリスト、検出したセル、または検出したビームの測定結果を基地局装置に報告する。端末装置は、基地局装置からの指示により、定期的にまたはイベントが生じた場合に測定結果を報告する。端末装置が基地局装置に報告する測定結果は、測定ID、PCellの測定結果、隣接セルの測定結果リスト、サービング周波数の測定結果、CSI-RSの測定結果リスト、PCellにおけるビームの測定結果、SCellにおけるビームの測定結果リスト、サービングビーム以外のビーム(隣接ビーム)の測定結果リストの一部または全部を含む。PCellの測定結果はRSRP(Reference Signal Received Power)およびRSRQ(Reference Signal Received Quality)を含む。なお、RSRPはCRSを用いて算出した受信電力である。またRSRQは、RSRPと受信信号強度(RSSI: Received Signal Strength Indicator)の比から求められる。隣接セルの測定結果は物理セルID、RSRP、RSRQの一部または全部を含む。サービング周波数の測定結果リストは、サービングセルを特定するためのサービングセルインデックス、SCellの測定結果、最も測定結果の良い隣接セルの測定結果を含む。SCellの測定結果、最も測定結果の良い隣接セルの測定結果は、RSRP、RSRQを含む。CSI-RSの測定結果は、測定用CSI-RSのID、CSI-RSRP、CSI-RSRQの一部または全部を含む。CSI-RSRPは、CSI-RSを用いて算出した受信電力である。またCSI-RSRQは、CSI-RSRPとRSSIの比から求められる。PCellにおけるビームの測定結果は、物理セルID、ビームID、RSRP、RSRQの一部または全部を含む。SCellにおけるビームの測定結果は、物理セルID、ビームID、RSRP、RSRQの一部または全部を含む。サービングビーム以外のビームの測定結果は、物理セルID、ビームID、RSRP、RSRQの一部または全部を含む。
 端末装置が、他のビームパターンの測定結果が良くなり、基地局装置がビームパターンを変える場合、ビームIDが変わる場合と変わらない場合がある。ビームIDが変わる場合は、基地局装置はビームIDが異なる固定ビームを複数形成しておき、端末装置が異なるビームエリアに移動した場合に、異なるビームIDが割当てられる。また、ビームIDが変わらない場合は、端末装置が移動してビームパターンが変わった場合でも、端末装置のビームIDは変わらない。この場合、より柔軟なビーム制御が可能である。図5は固定ビームの場合と可変ビームの場合の例である。図5の通信システムは、基地局装置1A、端末装置2Aを備える。またビームエリア2-1、2-2はビームIDが異なる通信エリアである。
 固定ビームの場合、図5(a)に示すように端末装置2Aが矢印の方向に移動したとする。このとき、ビームエリア2-1の通信品質が劣化し、ビームエリア2-2の通信品質が良くなった場合、基地局装置1Aは端末装置2AのビームIDをビームエリア2-2のビームIDに切替える。基地局装置1Aは新しいビームIDを端末装置2Aに送信する。端末装置2Aは基地局装置1Aから受信したビームIDを用いて、同期、RRM測定、CSI測定/報告、データ復調等を行なう。
 可変ビームの場合、図5(b)に示すように端末装置2Aが矢印の方向に移動したとする。端末装置2Aが移動し、好適なビームパターンが異なった場合、基地局装置1Aは端末装置2AのビームIDを変えずにビームパターンを変える。このとき端末装置2Aは、ビームパターンが変わったことを知らなくても通信することができる。基地局装置1Aは、端末装置2Aから好適なビームパターンに関する報告を受けて、端末装置2Aの好適なビームパターンを知ることができる。
 なお、他の移動体による電波遮蔽等により、端末装置2Aの受信品質が急激に低下した場合、上記ハンドオーバでは、該受信品質の急激な低下に追随できない場合がある。この場合、基地局装置1Aと端末装置2Aは、通信を行なう周波数バンドを変更することができる。例えば、6GHz以上の周波数バンドで通信を行なっている基地局装置1Aと端末装置2A間の通信品質が急激に低下した場合、基地局装置1Aと端末装置2Aは、6GHz以下の周波数バンドに通信周波数を切り替えることができる。なお、一度基地局装置1Aと端末装置2Aが周波数バンドを切り替えたのち、切替前の周波数バンドの通信品質の改善が認められた場合、基地局装置1Aと端末装置2Aは、再度、切替前の周波数バンドに通信周波数を切り替えることができる。この場合、基地局装置1Aと端末装置2Aは、切替前にそれぞれが用いていたビームフォーミングを継続して用いることが可能である。なお、基地局装置1Aと端末装置2Aは、切替前の周波数バンドに通信周波数を切り替える場合、改めてビームサーチを行なっても良いし、切替前の周波数バンドのビームサーチを改めた行なったのちに、通信周波数を切り替えても良い。なお、切替え可能な周波数バンドの組合せは予め決められていても良い。また、切替え可能な周波数バンドの組合せはキャリアアグリゲーションやデュアルコネクティビティとリンクさせることができる。また、前記周波数バンドの組合せは、端末装置の機能(UE Capability)に依存される。例えば、基地局装置1Aは、端末装置2Aから受信した端末装置の機能に含まれる周波数バンドの組合せで示される周波数バンドに切り替えることができる。
 なお、基地局装置は複数の端末装置に対して異なるビームIDを設定して通信する場合、各端末装置はビーム間の干渉を受信する可能性がある。基地局装置は、ビーム間干渉回避する場合、時間/周波数/空間リソース分割して送信することができる。空間リソースを分割する場合、例えば基地局装置は、端末装置間でアンテナポートを分けて送信することができる。また、別の例では、端末装置間で同じアンテナポートを割当てるが各々の端末装置に対して異なるビームパターンで送信することができる。また、端末装置がビーム間干渉を除去または抑圧する機能をサポートしている場合、基地局装置は端末装置にビーム間干渉(隣接ビーム干渉)を除去または抑圧するためのアシスト情報(隣接ビーム情報)を送信することができる。端末装置は、受信したアシスト情報を用いてビーム間干渉を除去または抑圧することができる。アシスト情報は、物理セルID、ビームID、CRSポート数、Pリスト、P、MBSFN(Multimedia Broadcast multicast service Single Frequency Network)サブフレーム設定、送信モードリスト、リソース割当て粒度、TDDのUL/DLサブフレーム構成、ZP/NZP CSI-RS構成、QCL(quasi co-location)情報の一部または全部を含む。なお、Pは、CRSが配置されていないOFDMシンボルにおけるPDSCHとCRSの電力比(電力オフセット)である。Pは、CRSが配置されているOFDMシンボルにおけるPDSCHとCRSが配置されていないOFDMシンボルにおけるPDSCHの電力比(電力オフセット)を表す。QCL情報は、所定のアンテナポート、所定の信号、または所定のチャネルに対するQCLに関する情報である。2つのアンテナポートにおいて、一方のアンテナポート上のシンボルが搬送されるチャネルの長区間特性が、もう一方のアンテナポート上のシンボルが搬送されるチャネルから推測できる場合、それらのアンテナポートはQCLであると呼称される。長区間特性は、遅延スプレッド、ドップラースプレッド、ドップラーシフト、平均利得および/または平均遅延を含む。すなわち、2つのアンテナポートがQCLである場合、端末装置はそれらのアンテナポートにおける長区間特性が同じであると見なすことができる。なお、上記アシスト情報に含まれるパラメータの各々は、1つの値(候補)が設定されても良いし、複数の値(候補)が設定されても良い。複数の値が設定される場合は、端末装置は、そのパラメータについては、干渉となる基地局装置が設定する可能性のある値が示されていると解釈し、複数の値から干渉信号に設定されているパラメータを検出(特定)する。また、上記アシスト情報は、他の基地局装置/ビームの情報を示す場合もあるし、自らの基地局装置/ビームの情報を示す場合もある。また上記アシスト情報は、様々な測定を行なうときに用いられても良い。測定は、RRM(Radio Resource Management)測定、RLM(Radio Link Monitoring)測定、CSI(Channel State Information)測定を含む。
 基地局装置は、端末装置に対し、ビームエリア上でさらに端末固有のビームフォーミングをすることができる。基地局装置はコードブックやPMIに基づいてプリコーディングすることもできるし、基地局装置独自のビームフォーミングすることもできる。基地局装置は、端末装置からのCSI報告によって好適なCSIを知ることができる。端末装置が報告するCSIはCQI/PMI/RI/CRIを含む。基地局装置は、CSI-RSから算出されたCSIにより、端末装置の好適なビームパターンを知ることができる。なお、CSI-RSはビームフォーミングされていないCSI-RS(non-precoded CSI-RS)および/またはビームフォーミングされたCSI-RS(beamformed CSI-RS)を送信(設定)することができる。CSI-RSはプリアンブル領域および/またはデータ領域に配置される。また、基地局装置はnon-precoded CSI-RSの情報またはbeamformed CSI-RSの情報をCSI-RSの設定情報に含めることができる。non-precoded CSI-RSの情報は、コードブックサブセット制限(CBSR: Codebook Subset Restriction)に関する情報、コードブックに関する情報、干渉を測定する際のリソース制限をするか否かの設定である干渉測定制限の一部または全部を含む。beamformed CSI-RSの情報は、CSI-RS設定のIDリスト、CSI-IM(CSI-Interference Measurement)設定のIDリスト、コードブックサブセット制限に関する情報、チャネル測定の際にリソース制限するか否かの設定であるチャネル測定制限の一部または全部を含む。CSI-IM設定のIDリストは1または複数のCSI-IM設定のID情報から構成され、CSI-IM設定のID情報はCSI-IM設定ID、干渉測定制限の一部または全部を含む。またCSI-IMは干渉測定のために用いられる。
 基地局装置は、上位レイヤのシグナリングに、少なくともチャネル測定のためのCSI-RSと干渉測定のためのCSI-IMを関連付けて、チャネル状態情報を算出する手順に関する設定(CSIプロセス)を含めることができる。CSIプロセスには、そのCSIプロセスID、non-precoded CSI-RSの情報、beamformed CSI-RSの情報の一部または全部を含めることができる。基地局装置は、1つ以上のCSIプロセスを設定することができる。基地局装置は、CSIのフィードバックを前記CSIプロセス毎に独立して生成することができる。基地局装置は、CSIプロセス毎にCSI-RSリソースとCSI-IMを異なる設定にすることができる。端末装置は、1つ以上のCSIプロセスが設定され、設定されたCSIプロセス毎に独立にCSI報告を行なう。また、CSIプロセスは、所定の送信モードにおいて設定される。
 なお上記ビームIDおよびビームフォーミングは、セル毎に設定することができる。また、上記ビームIDおよびビームフォーミングは、PCellおよびSCellで設定できるようにしても良いし、PCellのみまたはSCellのみで設定できるようにしても良い。また上記ビームIDおよびビームフォーミングを設定できる無線フレームと設定できない無線フレームがあっても良い。この場合、ビームIDおよびビームフォーミングを設定できる無線フレームと設定できない無線フレームをCAまたはDCすることが可能である。例えば、ビームIDおよびビームフォーミングを設定できる無線フレームはPCell/SCellに設定され、ビームIDおよびビームフォーミングを設定できない無線フレームはPSCell/SCellに設定される。また例えば、ビームIDおよびビームフォーミングを設定できない無線フレームはPCell/SCellに設定され、ビームIDおよびビームフォーミングを設定できる無線フレームはPSCell/SCellに設定される。
 基地局装置および端末装置は、1つのCC(セル)で設定されたビームフォーミングを、他のCCに設定することができる。基地局装置および端末装置は、所定のCC(例えば、PCell/SCellに設定されたCC)でのみ、ビームサーチを行なうことができる。基地局装置および端末装置は、同じビームフォーミングが設定可能なCCの条件を設定することができる。例えば、基地局装置および端末装置は、中心周波数の差が所定の値よりも低いCC間では同じビームフォーミングを設定することが可能である。もしくは、基地局装置および端末装置は、同じ周波数バンド内(Intra-band)では同じビームフォーミングを設定することが可能である。
 なお、基地局装置および端末装置が行なうビームフォーミングで形成されるビームパターンについては、それぞれの装置における送信電力(空中線電力)に応じて、最大放射方向の空中線利得が決定されることができる。例えば、基地局装置および端末装置は、空中線電力が10dBmを超える場合、ビームパターンの最大放射方向の空中線利得を10dBi以上とすることができる。
 また、基地局装置および端末装置が行なうビームフォーミングで形成されるビームパターンについては、それぞれの装置が送信する周波数バンドのタイプに応じて、最大放射方向の空中線利得が決定されることができる。例えば、それぞれの装置が送信する周波数バンドが、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンドである場合と、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドである場合とで、最大放射方向の空中線利得をそれぞれ異なる値とすることができる。
 また、基地局装置は、周波数バンドによって、ビームフォーミングしたプリアンブル信号/同期信号/ディスカバリ信号を送信するか、ビームフォーミングしないプリアンブル信号/同期信号/ディスカバリ信号を送信するかを切り替えることができる。つまり、端末装置は、周波数バンドによって、ビームフォーミングを想定した初期接続(ビームIDの検出)をするか、ビームフォーミングを想定しない初期接続をするか判断することができる。
 図6は、本実施形態における基地局装置1Aの構成を示す概略ブロック図である。図6に示すように、基地局装置1Aは、上位層処理部(上位層処理ステップ)101、制御部(制御ステップ)102、送信部(送信ステップ)103、受信部(受信ステップ)104と送受信アンテナ105を含んで構成される。また、上位層処理部101は、無線リソース制御部(無線リソース制御ステップ)1011、スケジューリング部(スケジューリングステップ)1012を含んで構成される。また、送信部103は、符号化部(符号化ステップ)1031、変調部(変調ステップ)1032、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1033、多重部(多重ステップ)1034、無線送信部(無線送信ステップ)1035を含んで構成される。また、受信部104は、無線受信部(無線受信ステップ)1041、多重分離部(多重分離ステップ)1042、復調部(復調ステップ)1043、復号部(復号ステップ)1044を含んで構成される。
 上位層処理部101は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部101は、送信部103および受信部104の制御を行なうために必要な情報を生成し、制御部102に出力する。
 上位層処理部101は、端末装置の機能(UE capability)等、端末装置に関する情報を端末装置から受信する。言い換えると、端末装置は、自身の機能を基地局装置に上位層の信号で送信する。
 なお、以下の説明において、端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。なお、以下の説明において、所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。
 例えば、端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しない。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知しても良い。
 無線リソース制御部1011は、下りリンクのPDSCHに配置される下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ、MAC CE等を生成、または上位ノードから取得する。無線リソース制御部1011は、下りリンクデータを送信部103に出力し、他の情報を制御部102に出力する。また、無線リソース制御部1011は、端末装置の各種設定情報の管理をする。
 スケジューリング部1012は、物理チャネル(PDSCHおよびPUSCH)を割り当てる周波数およびサブフレーム、物理チャネル(PDSCHおよびPUSCH)の符号化率および変調方式(あるいはMCS)および送信電力等を決定する。スケジューリング部1012は、決定した情報を制御部102に出力する。
 スケジューリング部1012は、スケジューリング結果に基づき、物理チャネル(PDSCHおよびPUSCH)のスケジューリングに用いられる情報を生成する。スケジューリング部1012は、生成した情報を制御部102に出力する。
 制御部102は、上位層処理部101から入力された情報に基づいて、送信部103および受信部104の制御を行なう制御信号を生成する。制御部102は、上位層処理部101から入力された情報に基づいて、下りリンク制御情報を生成し、送信部103に出力する。
 送信部103は、制御部102から入力された制御信号に従って、下りリンク参照信号を生成し、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および、下りリンクデータを、符号化および変調し、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を多重して、送受信アンテナ105を介して端末装置2に信号を送信する。
 符号化部1031は、上位層処理部101から入力されたHARQインディケータ、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳み込み符号化、ターボ符号化等の予め定められた符号化方式を用いて符号化を行なう、または無線リソース制御部1011が決定した符号化方式を用いて符号化を行なう。変調部1032は、符号化部1031から入力された符号化ビットをBPSK(Binary Phase Shift Keying)、QPSK(quadrature Phase Shift Keying)、16QAM(quadrature amplitude modulation)、64QAM、256QAM等の予め定められた、または無線リソース制御部1011が決定した変調方式で変調する。
 下りリンク参照信号生成部1033は、基地局装置1Aを識別するための物理セル識別子(PCI、セルID)等を基に予め定められた規則で求まる、端末装置2Aが既知の系列を下りリンク参照信号として生成する。
 多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とを多重する。つまり、多重部1034は、変調された各チャネルの変調シンボルと生成された下りリンク参照信号と下りリンク制御情報とをリソースエレメントに配置する。
 無線送信部1035は、多重された変調シンボル等を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成し、OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送受信アンテナ105に出力して送信する。
 受信部104は、制御部102から入力された制御信号に従って、送受信アンテナ105を介して端末装置2Aから受信した受信信号を分離、復調、復号し、復号した情報を上位層処理部101に出力する。
 無線受信部1041は、送受信アンテナ105を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 無線受信部1041は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1041は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行ない、周波数領域の信号を抽出し多重分離部1042に出力する。
 多重分離部1042は、無線受信部1041から入力された信号をPUCCH、PUSCH、上りリンク参照信号等の信号に分離する。なお、この分離は、予め基地局装置1Aが無線リソース制御部1011で決定し、各端末装置2に通知した上りリンクグラントに含まれる無線リソースの割り当て情報に基づいて行なわれる。
 また、多重分離部1042は、PUCCHとPUSCHの伝搬路の補償を行なう。また、多重分離部1042は、上りリンク参照信号を分離する。
 復調部1043は、PUSCHを逆離散フーリエ変換(Inverse Discrete Fourier Transform: IDFT)し、変調シンボルを取得し、PUCCHとPUSCHの変調シンボルそれぞれに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた、または自装置が端末装置2各々に上りリンクグラントで予め通知した変調方式を用いて受信信号の復調を行なう。
 復号部1044は、復調されたPUCCHとPUSCHの符号化ビットを、予め定められた符号化方式の、予め定められた、または自装置が端末装置2に上りリンクグラントで予め通知した符号化率で復号を行ない、復号した上りリンクデータと、上りリンク制御情報を上位層処理部101へ出力する。PUSCHが再送信の場合は、復号部1044は、上位層処理部101から入力されるHARQバッファに保持している符号化ビットと、復調された符号化ビットを用いて復号を行なう。
 図7は、本実施形態における端末装置2の構成を示す概略ブロック図である。図7に示すように、端末装置2Aは、上位層処理部(上位層処理ステップ)201、制御部(制御ステップ)202、送信部(送信ステップ)203、受信部(受信ステップ)204、チャネル状態情報生成部(チャネル状態情報生成ステップ)205と送受信アンテナ206を含んで構成される。また、上位層処理部201は、無線リソース制御部(無線リソース制御ステップ)2011、スケジューリング情報解釈部(スケジューリング情報解釈ステップ)2012を含んで構成される。また、送信部203は、符号化部(符号化ステップ)2031、変調部(変調ステップ)2032、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2033、多重部(多重ステップ)2034、無線送信部(無線送信ステップ)2035を含んで構成される。また、受信部204は、無線受信部(無線受信ステップ)2041、多重分離部(多重分離ステップ)2042、信号検出部(信号検出ステップ)2043を含んで構成される。
 上位層処理部201は、ユーザの操作等によって生成された上りリンクデータ(トランスポートブロック)を、送信部203に出力する。また、上位層処理部201は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。
 上位層処理部201は、自端末装置がサポートしている端末装置の機能を示す情報を、送信部203に出力する。
 無線リソース制御部2011は、自端末装置の各種設定情報の管理をする。また、無線リソース制御部2011は、上りリンクの各チャネルに配置される情報を生成し、送信部203に出力する。
 無線リソース制御部2011は、基地局装置から送信されたCSIフィードバックに関する設定情報を取得し、制御部202に出力する。
 スケジューリング情報解釈部2012は、受信部204を介して受信した下りリンク制御情報を解釈し、スケジューリング情報を判定する。また、スケジューリング情報解釈部2012は、スケジューリング情報に基づき、受信部204、および送信部203の制御を行なうために制御情報を生成し、制御部202に出力する。
 制御部202は、上位層処理部201から入力された情報に基づいて、受信部204、チャネル状態情報生成部205および送信部203の制御を行なう制御信号を生成する。制御部202は、生成した制御信号を受信部204、チャネル状態情報生成部205および送信部203に出力して受信部204、および送信部203の制御を行なう。
 制御部202は、チャネル状態情報生成部205が生成したCSIを基地局装置に送信するように送信部203を制御する。
 受信部204は、制御部202から入力された制御信号に従って、送受信アンテナ206を介して基地局装置1Aから受信した受信信号を、分離、復調、復号し、復号した情報を上位層処理部201に出力する。
 無線受信部2041は、送受信アンテナ206を介して受信した下りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。
 また、無線受信部2041は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換を行ない、周波数領域の信号を抽出する。
 多重分離部2042は、抽出した信号をPHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号に、それぞれ分離する。また、多重分離部2042は、チャネル測定から得られた所望信号のチャネルの推定値に基づいて、PHICH、PDCCH、およびEPDCCHのチャネルの補償を行ない、下りリンク制御情報を検出し、制御部202に出力する。また、制御部202は、PDSCHおよび所望信号のチャネル推定値を信号検出部2043に出力する。
 信号検出部2043は、PDSCH、チャネル推定値を用いて、信号検出し、上位層処理部201に出力する。
 送信部203は、制御部202から入力された制御信号に従って、上りリンク参照信号を生成し、上位層処理部201から入力された上りリンクデータ(トランスポートブロック)を符号化および変調し、PUCCH、PUSCH、および生成した上りリンク参照信号を多重し、送受信アンテナ206を介して基地局装置1Aに送信する。
 符号化部2031は、上位層処理部201から入力された上りリンク制御情報を畳み込み符号化、ブロック符号化等の符号化を行なう。また、符号化部2031は、PUSCHのスケジューリングに用いられる情報に基づきターボ符号化を行なう。
 変調部2032は、符号化部2031から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM等の下りリンク制御情報で通知された変調方式または、チャネル毎に予め定められた変調方式で変調する。
 上りリンク参照信号生成部2033は、基地局装置1Aを識別するための物理セル識別子(physical cell identity: PCI、Cell ID等と称される)、上りリンク参照信号を配置する帯域幅、上りリンクグラントで通知されたサイクリックシフト、DMRSシーケンスの生成に対するパラメータの値等を基に、予め定められた規則(式)で求まる系列を生成する。
 多重部2034は、制御部202から入力された制御信号に従って、PUSCHの変調シンボルを並列に並び替えてから離散フーリエ変換(Discrete Fourier Transform: DFT)する。また、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎に多重する。つまり、多重部2034は、PUCCHとPUSCHの信号と生成した上りリンク参照信号を送信アンテナポート毎にリソースエレメントに配置する。
 無線送信部2035は、多重された信号を逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、SC-FDMA方式の変調を行ない、SC-FDMAシンボルを生成し、生成されたSC-FDMAシンボルにCPを付加し、ベースバンドのディジタル信号を生成し、ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送受信アンテナ206に出力して送信する。
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)等の揮発性メモリに読み込まれ、あるいはフラッシュメモリ等の不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、ディジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んで良い。汎用用途プロセッサは、マイクロプロセッサであっても良いし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていても良いし、アナログ回路で構成されていても良い。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、例えば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器等の端末装置もしくは通信装置に適用出来る。
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。
 なお、本国際出願は、2016年1月26日に出願した日本国特許出願第2016-012180号に基づく優先権を主張するものであり、日本国特許出願第2016-012180号の全内容を本国際出願に援用する。
1A 基地局装置
2A、2B 端末装置
101 上位層処理部
102 制御部
103 送信部
104 受信部
105 送受信アンテナ
1011 無線リソース制御部
1012 スケジューリング部
1031 符号化部
1032 変調部
1033 下りリンク参照信号生成部
1034 多重部
1035 無線送信部
1041 無線受信部
1042 多重分離部
1043 復調部
1044 復号部
201 上位層処理部
202 制御部
203 送信部
204 受信部
205 チャネル状態情報生成部
206 送受信アンテナ
2011 無線リソース制御部
2012 スケジューリング情報解釈部
2031 符号化部
2032 変調部
2033 上りリンク参照信号生成部
2034 多重部
2035 無線送信部
2041 無線受信部
2042 多重分離部
2043 信号検出部

Claims (9)

  1.  端末装置と通信する基地局装置であって、
     1または複数の同期信号で構成される同期信号領域を送信する送信部を備え、
     前記同期信号領域が複数の同期信号で構成される場合、前記複数の同期信号は、それぞれ同じビームパターンまたは異なるビームパターンでビームフォーミングされ、
     前記送信部は、さらに、同じビームパターンまたは異なるビームパターンを示す情報を前記端末装置に送信する基地局装置。
  2.  受信部をさらに備え、
     前記同じビームパターンまたは異なるビームパターンを示す情報が異なるビームパターンを示す場合、前記受信部は、好適なビームパターンを示す情報を前記端末装置から受信する請求項1記載の基地局装置。
  3.  前記同期信号の系列は、前記ビームパターンに対応するビーム識別子に基づいて生成される請求項1に記載の基地局装置。
  4.  基地局装置と通信する端末装置であって、
     1または複数の同期信号で構成される同期信号領域を受信する受信部を備え、
     前記同期信号領域が複数の同期信号で構成される場合、前記複数の同期信号は、それぞれ同じビームパターンまたは異なるビームパターンでビームフォーミングされ、
     前記受信部は、さらに、同じビームパターンまたは異なるビームパターンを示す情報を前記基地局装置から受信する端末装置。
  5.  送信部をさらに備え、
     前記同じビームパターンまたは異なるビームパターンを示す情報が、異なるビームパターンを示す場合、前記送信部は、好適なビームパターンを示す情報を前記基地局装置に送信する請求項4に記載の端末装置。
  6.  前記同じビームパターンまたは異なるビームパターンを示す情報が、同じビームパターンを示す場合、好適な受信ビームパターンを探索する請求項4に記載の端末装置。
  7.  前記同期信号の系列は、前記ビームパターンに対応するビーム識別子に基づいて生成される請求項4に記載の端末装置。
  8.  端末装置と通信する基地局装置における通信方法であって、
     1または複数の同期信号で構成される同期信号領域を送信する送信ステップを備え、
     前記同期信号領域が複数の同期信号で構成される場合、前記複数の同期信号は、それぞれ同じビームパターンまたは異なるビームパターンでビームフォーミングされ、
     前記送信ステップは、さらに、同じビームパターンまたは異なるビームパターンを示す情報を前記端末装置に送信する通信方法。
  9.  基地局装置と通信する端末装置における通信方法であって、
     1または複数の同期信号で構成される同期信号領域を受信する受信ステップを備え、
     前記同期信号領域が複数の同期信号で構成される場合、前記複数の同期信号は、それぞれ同じビームパターンまたは異なるビームパターンでビームフォーミングされ、
     前記受信ステップは、さらに、同じビームパターンまたは異なるビームパターンを示す情報を前記基地局装置から受信する通信方法。
PCT/JP2017/002359 2016-01-26 2017-01-24 基地局装置、端末装置および通信方法 WO2017130966A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-012180 2016-01-26
JP2016012180A JP2019054304A (ja) 2016-01-26 2016-01-26 基地局装置、端末装置および通信方法

Publications (1)

Publication Number Publication Date
WO2017130966A1 true WO2017130966A1 (ja) 2017-08-03

Family

ID=59397934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002359 WO2017130966A1 (ja) 2016-01-26 2017-01-24 基地局装置、端末装置および通信方法

Country Status (2)

Country Link
JP (1) JP2019054304A (ja)
WO (1) WO2017130966A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130810A1 (ja) * 2017-12-27 2019-07-04 シャープ株式会社 基地局装置、端末装置および通信方法
CN113169779A (zh) * 2018-09-14 2021-07-23 夏普株式会社 基站装置、终端装置以及通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098880A1 (ja) * 2008-02-05 2009-08-13 Panasonic Corporation 基地局装置、端末装置および無線通信システム
JP2015185956A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ユーザ装置及び基地局

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098880A1 (ja) * 2008-02-05 2009-08-13 Panasonic Corporation 基地局装置、端末装置および無線通信システム
JP2015185956A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ユーザ装置及び基地局

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO: "Views on Beamformed CSI-RS Based Enhancement", 3GPP TSG-RAN WG1#82 RL-154661, 24 August 2015 (2015-08-24), XP050993524, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82/Docs/R1-154661.zip> *
NTT DOCOMO: "Views on Non-Precoded CSI-RS Design", 3GPP TSG-RAN WG1#82 RL-154660, 24 August 2015 (2015-08-24), XP050993485, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_82/Docs/R1-154660.zip> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130810A1 (ja) * 2017-12-27 2019-07-04 シャープ株式会社 基地局装置、端末装置および通信方法
CN113169779A (zh) * 2018-09-14 2021-07-23 夏普株式会社 基站装置、终端装置以及通信方法

Also Published As

Publication number Publication date
JP2019054304A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2019111619A1 (ja) 端末装置、基地局装置および通信方法
WO2017130967A2 (ja) 基地局装置、端末装置および通信方法
WO2019130938A1 (ja) 基地局装置、端末装置および通信方法
WO2017130970A2 (ja) 基地局装置、端末装置および通信方法
CN110603873A (zh) 基站装置、终端装置、通信方法以及集成电路
CN110603875A (zh) 基站装置、终端装置、通信方法以及集成电路
CN110574418A (zh) 基站装置、终端装置、通信方法以及集成电路
EP3425978B1 (en) User terminal, wireless base station and wireless communication method
JP2019140512A (ja) 端末装置、基地局装置および通信方法
WO2018008404A2 (ja) 基地局装置、端末装置および通信方法
JP6701334B2 (ja) 通信装置および通信方法
WO2019065189A1 (ja) 基地局装置、端末装置および通信方法
JP2020010072A (ja) 基地局装置、端末装置および通信方法
WO2019130847A1 (ja) 基地局装置、端末装置および通信方法
WO2017130968A2 (ja) 基地局装置、端末装置および通信方法
WO2018008405A2 (ja) 基地局装置、端末装置および通信方法
EP3641391B1 (en) Cqi index reporting using a 64qam mode cqi table, a 256qam mode cqi table and a 1024qam mode cqi table
JP2019140436A (ja) 通信装置および通信方法
WO2020054607A1 (ja) 基地局装置、端末装置および通信方法
WO2017169366A1 (ja) 基地局装置、端末装置および通信方法
WO2019065191A1 (ja) 基地局装置、端末装置および通信方法
WO2019111589A1 (ja) 基地局装置、端末装置および通信方法
US11057847B2 (en) Base station apparatus, terminal apparatus, and communication method for improving communication performance using multiple frame formats
WO2018061571A1 (ja) 基地局装置、端末装置および通信方法
WO2017130966A1 (ja) 基地局装置、端末装置および通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP