WO2017130846A1 - Heat management device for vehicle - Google Patents
Heat management device for vehicle Download PDFInfo
- Publication number
- WO2017130846A1 WO2017130846A1 PCT/JP2017/001837 JP2017001837W WO2017130846A1 WO 2017130846 A1 WO2017130846 A1 WO 2017130846A1 JP 2017001837 W JP2017001837 W JP 2017001837W WO 2017130846 A1 WO2017130846 A1 WO 2017130846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat medium
- heat
- temperature
- heating
- cooling water
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 91
- 239000002918 waste heat Substances 0.000 claims abstract description 85
- 239000003507 refrigerant Substances 0.000 claims description 40
- 239000002826 coolant Substances 0.000 claims description 18
- 238000005057 refrigeration Methods 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims 5
- 239000000498 cooling water Substances 0.000 description 233
- 239000003990 capacitor Substances 0.000 description 99
- 238000001816 cooling Methods 0.000 description 53
- 238000004378 air conditioning Methods 0.000 description 12
- 239000002105 nanoparticle Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000007664 blowing Methods 0.000 description 8
- 238000013459 approach Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000011258 core-shell material Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- LLYXJBROWQDVMI-UHFFFAOYSA-N 2-chloro-4-nitrotoluene Chemical compound CC1=CC=C([N+]([O-])=O)C=C1Cl LLYXJBROWQDVMI-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/02—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
- B60H1/04—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
- B60H1/08—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
Definitions
- the present disclosure relates to a heat management device used for a vehicle.
- Patent Document 1 describes a vehicle temperature management device capable of heating a vehicle interior using waste heat of an engine and waste heat of an electric device.
- the flow of cooling water can be selectively switched by a valve unit for an engine, an electric device, and a heat exchanger for air conditioning.
- the vehicle interior can be heated using the waste heat of the engine.
- the vehicle interior can be heated using waste heat of the electric equipment.
- the upper limit temperature of the cooling water flowing through the electrical equipment is generally about 70 ° C. because of the heat resistance of the electronic components, but the temperature of the cooling water that has cooled the engine is typically 90 ° C. or higher.
- the cooling water that has cooled the air cannot be passed through the electrical equipment.
- waste heat of the engine and the waste heat of the electrical equipment cannot be used simultaneously as a heating heat source, the waste heat may not be effectively used.
- the present disclosure is directed to a vehicle heat management apparatus including a heating heat exchanger that heats air blown into a vehicle interior.
- a heating heat exchanger that heats air blown into a vehicle interior.
- the present disclosure has another object to effectively use a plurality of waste heat for heating.
- a vehicle thermal management device according to one feature example of the present disclosure is provided.
- a waste heat supply device for supplying waste heat to the heat medium flowing through the second heat medium path;
- a heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium;
- Switching that switches between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part
- An adjusting unit for adjusting the temperature of the heat medium in the first heat medium path unit;
- the adjustment unit is configured so that the temperature of the heat medium in the first heat medium path unit is equal to or higher than a predetermined temperature.
- a control unit for controlling the operation.
- the state where the heat medium circulates between the heat exchanger for heating and the first heat medium path part from the state where the heat medium circulates between the heat exchanger for heating and the second heat medium path part. Since the heat medium whose temperature has been adjusted by the adjusting unit flows into the heating heat exchanger when switching to, the temperature variation of the heat medium flowing into the heating heat exchanger can be suppressed, and consequently the air blown into the passenger compartment Temperature fluctuation can be suppressed.
- a vehicle thermal management device includes: A first waste heat supply device for supplying waste heat to the heat medium; A second waste heat supply device that supplies waste heat to the heat medium and has an allowable temperature higher than that of the first waste heat supply device; A heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium; A first heat medium path portion in which the heat medium flows and the first waste heat supply device is disposed; A second heat medium path portion in which the heat medium flows and the second waste heat supply device is disposed; An outside air radiator that radiates heat of the heat medium in the first heat medium path portion to the outside air by exchanging heat between the heat medium in the first heat medium path portion and the outside air; Switching between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part A switching unit that switches between a state in which the heat medium in the first heat medium path portion
- the waste heat of the first waste heat supply device can be prevented from being radiated to the outside air by the outside air radiator. Waste heat of the waste heat supply device can be stored in the heat medium of the first heat medium path.
- the waste of the first waste heat supply device stored in the heat medium of the first heat medium path part. Since it can heat using heat, both the waste heat of the 1st waste heat supply equipment and the waste heat of the 2nd waste heat supply equipment can be used effectively for heating.
- the vehicle thermal management apparatus 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors included in a vehicle to an appropriate temperature.
- the vehicle thermal management device 10 is applied to a hybrid vehicle that obtains driving force for vehicle traveling from an engine and an electric motor for traveling.
- the hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source to a battery mounted on the vehicle when the vehicle is stopped.
- a battery for example, a lithium ion battery can be used.
- the driving force output from the engine is used not only for driving the vehicle but also for operating the generator.
- the electric power generated with the generator and the electric power supplied from the external power supply can be stored in the battery.
- the electric power stored in the battery is supplied not only to the electric motor for traveling but also to various in-vehicle devices including the electric components constituting the vehicle thermal management device 10.
- the vehicle thermal management device 10 includes an engine cooling circuit 11 and a capacitor circuit 12.
- the engine cooling circuit 11 and the capacitor circuit 12 are cooling water circuits through which cooling water circulates.
- Cooling water is a fluid as a heat medium.
- the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid.
- the engine cooling circuit 11 is a cooling water circuit for cooling the engine 21 with cooling water.
- an engine pump 20, an engine 21, a heater core 22, a coolant circulation device 23, and a first radiator 24 are arranged.
- the engine 21 is a waste heat supply device that supplies waste heat generated with the operation of the vehicle to the cooling water of the engine cooling circuit 11.
- the allowable temperature of the engine 21 is about 90 ° C.
- the engine pump 20 is a pump that sucks and discharges cooling water.
- the engine pump 20 is an electric pump.
- the engine pump 20 may be a belt driven pump.
- the belt-driven pump is a pump that is driven when the driving force of the engine 21 is transmitted through the belt.
- the heater core 22 is a heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the air blown into the vehicle cabin and the cooling water.
- the heater core 22 is a heat exchanger used for heating the passenger compartment. Air is blown into the passenger compartment by an indoor blower (not shown).
- the engine pump 20, the engine 21, and the heater core 22 are arranged in series with the engine cooling circuit 11 so that the cooling water circulates in this order.
- the cooling water distribution device 23 is a device through which cooling water flows.
- the cooling water circulation device 23 is arranged in parallel with the heater core 22 in the flow of the cooling water.
- the cooling water circulation device 23 is, for example, an EGR cooler or an exhaust heat recovery device.
- the EGR cooler is a heat exchanger that cools the exhaust gas by exchanging heat between the exhaust gas returned to the intake side of the engine 21 and the cooling water.
- the exhaust heat recovery unit 24 is a heat exchanger that recovers heat of the exhaust gas by exchanging heat between the exhaust gas of the engine 21 and the cooling water.
- the cooling water distribution device 23 is a heat generating device that generates heat when activated.
- the first radiator 24 is a cooling water outdoor air heat exchanger that exchanges heat between cooling water and air outside the passenger compartment (hereinafter referred to as outside air) to dissipate the heat of the cooling water to the outside air.
- the first radiator 24 is arranged in parallel with the heater core 22 and the coolant circulation device 23 in the coolant flow.
- the engine cooling circuit 11 includes an engine path portion 11a, a heater core path portion 11b, a device path portion 11c, and a first radiator path portion 11d.
- the engine path portion 11a, the heater core path portion 11b, the device path portion 11c, and the first radiator path portion 11d each form a cooling water flow path through which cooling water flows.
- the engine path portion 11a In the engine path portion 11a, an engine pump 20, an engine 21, and a shutoff valve 25 are arranged in series.
- the engine path portion 11a is a heat medium path portion through which the heat medium flows.
- the shutoff valve 25 is an electromagnetic valve that opens and closes the cooling water flow path of the engine passage portion 11a.
- the shutoff valve 25 is disposed on the downstream side of the coolant flow of the engine pump 20 and the engine 21 in the engine path portion 11a.
- a heater core 22 is disposed in the heater core path portion 11b.
- a cooling water circulation device 23 is disposed in the device path portion 11c.
- the heater core path portion 11b and the device path portion 11c are connected in parallel to the engine path portion 11a.
- the first radiator 24 is disposed in the first radiator path portion 11d.
- One end of the first radiator path portion 11d is connected to a portion of the engine path portion 11a upstream of the coolant flow of the engine pump 20 and the engine 21.
- the other end of the first radiator path portion 11d is connected to a portion of the engine path portion 11a on the downstream side of the cooling water flow of the engine pump 20 and the engine 21 and the upstream side of the cooling water flow of the shutoff valve 25.
- a thermostat 27 is disposed at a connection portion between the first radiator path portion 11d and the engine path portion 11a.
- the thermostat 27 is a cooling water temperature responsive valve.
- the cooling water temperature responsive valve is a valve provided with a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with a thermo wax that changes in volume depending on temperature.
- the capacitor circuit 12 is provided with a capacitor pump 30 and a capacitor 31.
- the condenser pump 30 is a pump that sucks and discharges cooling water.
- the capacitor pump 30 is an electric pump.
- the condenser pump 30 may be a belt driven pump.
- the capacitor 31 is an adjustment unit that adjusts the temperature of the cooling water by heating the cooling water.
- the condenser 31 is a high-pressure side heat exchanger that heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 50 and the cooling water.
- the capacitor circuit 12 has a capacitor path portion 12a.
- route part 12a forms the cooling water circulation flow path through which cooling water flows.
- the capacitor path portion 12a is a heat medium path portion through which the heat medium flows.
- the condenser path portion 12a is a first heat medium path portion, and the engine path portion 11a of the engine cooling circuit 11 is a second heat medium path portion.
- a capacitor pump 30, a capacitor 31, and an electric device 32 are arranged in series.
- the electric device 32 is a heat-generating device that generates waste heat by generating heat when operated.
- the electrical device 32 is a waste heat supply device that supplies waste heat to the cooling water flowing through the capacitor circuit 12.
- the allowable temperature of the electrical device 32 is about 70 ° C.
- the electrical device 32 is a first waste heat supply device
- the engine 21 is a second waste heat supply device.
- the engine 21 has a higher allowable temperature than the electric device 32.
- the refrigeration cycle 50 is a vapor compression refrigerator that includes a compressor 51, a condenser 31, an expansion valve 52, and an evaporator 53.
- the refrigerant of the refrigeration cycle 50 is a fluorocarbon refrigerant.
- the refrigeration cycle 50 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
- the compressor 51 is an electric compressor that is driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 50.
- the compressor 51 may be a variable capacity compressor that is driven by an engine belt by the driving force of the engine 21.
- the condenser 31 is a condenser that condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 51 and the cooling water.
- the expansion valve 52 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the capacitor 31.
- the expansion valve 52 has a temperature sensing part.
- the temperature sensing unit detects the degree of superheat of the evaporator 53 outlet-side refrigerant based on the temperature and pressure of the evaporator 53 outlet-side refrigerant.
- the expansion valve 52 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator 53 falls within a predetermined range.
- the expansion valve 52 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
- the evaporator 53 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 52 and the air blown into the vehicle interior.
- the gas-phase refrigerant evaporated in the evaporator 53 is sucked into the compressor 51 and compressed.
- the evaporator 53 may be a heat medium cooler that cools the cooling water by exchanging heat between the refrigerant and the cooling water.
- the evaporator 53 may be a heat medium cooler that cools the cooling water by exchanging heat between the refrigerant and the cooling water.
- a heat medium air heat exchanger that exchanges heat between the cooling water cooled by the heat medium cooler and the air, it is possible to cool the air blown into the vehicle interior.
- the engine cooling circuit 11 and the capacitor circuit 12 are connected to the switching valve 40.
- the switching valve 40 switches the flow of cooling water between the engine cooling circuit 11 and the capacitor circuit 12.
- the switching valve 40 switches between a state where the cooling water circulates between the engine cooling circuit 11 and the condenser circuit 12 and a state where the cooling water does not circulate between the engine cooling circuit 11 and the condenser circuit 12. In other words, the switching valve 40 switches between a state in which the engine cooling circuit 11 and the capacitor circuit 12 communicate with each other and a state in which the engine cooling circuit 11 and the capacitor circuit 12 do not communicate with each other.
- the second radiator path 12b is connected to the switching valve 40.
- a second radiator 33 is disposed in the second radiator path 12b.
- the second radiator 33 is an outside air radiator that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air.
- the second radiator 33 is an adjustment unit that adjusts the temperature of the cooling water by dissipating the heat of the cooling water.
- the switching valve 40 is a five-way valve having five ports.
- the first port 40a of the switching valve 40 is connected to a coolant outlet side portion of the heater core 22 in the heater core path portion 11b.
- the second port 40b of the switching valve 40 is connected to a merging portion 41 of the engine path portion 11a between the cooling water suction side end of the engine pump 20 and the device path portion 11c.
- the third port 40c of the switching valve 40 is connected to the coolant inlet side portion of the electrical device 32 in the capacitor path portion 12a.
- the fourth port 40d of the switching valve 40 is connected to the coolant outlet side portion of the capacitor 31 in the capacitor path portion 12a.
- the fifth port 40e of the switching valve 40 is connected to one end of the second radiator path 12b.
- the other end of the second radiator path 12b is connected to a portion between the third port 40c of the switching valve 40 and the electric device 32 in the capacitor path portion 12a.
- the shutoff valve 25 and the switching valve 40 are a switching unit that switches between a state in which the cooling water circulates between the heater core 22 and the condenser path portion 12a and a state in which the cooling water circulates between the heater core 22 and the engine path portion 11a. It is.
- shutoff valve 25 and the switching valve 40 switch between a state where the heater core 22 communicates with the capacitor path portion 12a and a state where the heater core 22 communicates with the engine path portion 11a.
- the switching valve 40 switches between a state in which the cooling water of the capacitor circuit 12 flows to the second radiator 33 and a state in which the flow of the cooling water of the capacitor circuit 12 to the second radiator 33 is blocked. In other words, the switching valve 40 switches between a state in which the second radiator 33 communicates with the capacitor circuit 12 and a state in which the second radiator 33 communicates with the capacitor circuit 12.
- the shutoff valve 25 and the switching valve 40 switch the operation mode of the vehicle thermal management device 10 to the first operation mode shown in FIG. 2, the second operation mode shown in FIG. 3, and the third operation mode shown in FIG.
- the switching valve 40 interrupts the cooling water circulation between the engine cooling circuit 11 and the condenser circuit 12, and the cooling water between the second radiator 33 and the condenser circuit 12. Block circulation.
- the switching valve 40 connects the first port 40a and the second port 40b, connects the third port 40c and the fourth port 40d, and closes the fifth port 40e.
- the shutoff valve 25 opens the cooling water flow path of the engine path portion 11a.
- the cooling water flowing out from the engine 21 flows in parallel through the heater core 22 and the cooling water circulation device 23 and flows into the engine 21.
- the cooling water that has flowed out of the engine path portion 11a flows in parallel through the heater core path portion 11b and the device path portion 11c and flows into the engine path portion 11a.
- the cooling water does not circulate through the second radiator 33.
- the switching valve 40 interrupts the cooling water circulation between the engine cooling circuit 11 and the condenser circuit 12, and allows the cooling water to flow between the second radiator 33 and the condenser circuit 12. Circulate.
- the switching valve 40 connects the first port 40a and the second port 40b, and connects the third port 40c, the fourth port 40d, and the fifth port 40e.
- the shutoff valve 25 opens the cooling water flow path of the engine path portion 11a.
- the cooling water flowing out from the engine 21 flows in parallel through the heater core 22 and the cooling water circulation device 23 and flows into the engine 21 as in the first operation mode.
- the cooling water that has flowed out of the engine path portion 11a flows in parallel through the heater core path portion 11b and the device path portion 11c and flows into the engine path portion 11a.
- the cooling water circulates through the second radiator 33.
- the switching valve 40 circulates the cooling water between the engine cooling circuit 11 and the condenser circuit 12 and circulates the cooling water between the second radiator 33 and the condenser circuit 12. Cut off.
- the switching valve 40 connects the first port 40a and the third port 40c, connects the second port 40b and the fourth port 40d, and closes the fifth port 40e.
- the shutoff valve 25 closes the cooling water flow path of the engine path portion 11a.
- the cooling water flowing out from the capacitor 31 flows in series in the order of the cooling water circulation device 23, the heater core 22, and the electric device 32 and flows into the capacitor 31.
- the cooling water in the capacitor path portion 12a flows in series in the order of the device path portion 11c and the heater core path portion 11b and flows into the capacitor path portion 12a.
- cooling water circulates through the engine 21 and the first radiator 24.
- the control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and peripheral circuits thereof.
- the control device 60 performs various calculations and processes based on the control program stored in the ROM.
- Various devices to be controlled are connected to the output side of the control device 60.
- the control device 60 is a control unit that controls the operation of various devices to be controlled.
- the control target devices controlled by the control device 60 are the engine pump 20, the condenser pump 30, the shutoff valve 25, the switching valve 40, the compressor 51, and the like.
- the detection signal of the sensor group is input to the input side of the control device 60.
- the sensor group includes an engine water temperature sensor 61, a condenser water temperature sensor 62, an inside air temperature sensor 63, an outside air temperature sensor 64, a solar radiation amount sensor 65, and the like.
- the engine water temperature sensor 61 is a heat medium temperature detection unit that detects the coolant temperature of the engine cooling circuit 11. Specifically, the engine water temperature sensor 61 detects the cooling water temperature of the engine path portion 11a.
- the condenser water temperature sensor 62 is a heat medium temperature detection unit that detects the cooling water temperature of the condenser circuit 12. Specifically, the condenser water temperature sensor 62 detects the cooling water temperature of the condenser path portion 12a.
- the inside air temperature sensor 63 is an inside air temperature detector that detects the temperature of the inside air.
- the outside temperature sensor 64 is an outside temperature detector that detects the temperature of the outside air.
- the solar radiation amount sensor 65 is a solar radiation amount detector that detects the amount of solar radiation in the passenger compartment.
- Operation signals from various air conditioning operation switches provided on the operation panel 68 disposed in the vicinity of the instrument panel in the front of the passenger compartment are input to the input side of the control device 60.
- various air conditioning operation switches provided on the operation panel 68 an air conditioner switch, an auto switch, an air blower setting switch for an indoor fan, a vehicle interior temperature setting switch, and the like are provided.
- the air conditioner switch is a switch for switching on / off (in other words, on / off) of air conditioning (that is, cooling or heating).
- the auto switch is a switch for setting or canceling automatic control of air conditioning.
- the vehicle interior temperature setting switch is an example of a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
- the control device 60 calculates a target blowing temperature TAO of the air blown into the vehicle interior, and switches between the heating mode and the non-heating mode based on the target blowing temperature TAO.
- the heating mode is an air conditioning mode for heating the passenger compartment.
- the non-heating mode is an air conditioning mode in which the vehicle interior is not heated.
- the non-heating mode is a cooling mode for cooling the passenger compartment, a blowing mode for blowing air into the passenger compartment, or the like.
- TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ As + C
- Tset is the vehicle interior set temperature set by the vehicle interior temperature setting switch
- Tr is the internal air temperature detected by the internal air temperature sensor 63
- Tam is the external air temperature detected by the external air temperature sensor 64
- As is the solar radiation amount sensor 65. Is the amount of solar radiation detected by.
- Kset, Kr, Kam, Ks are control gains
- C is a correction constant.
- the target outlet temperature TAO corresponds to the amount of heat that the vehicle thermal management device 10 needs to generate in order to keep the interior of the vehicle interior at a desired temperature, and is regarded as an air conditioning load required for the vehicle thermal management device 10. Can do. In the heating mode, the target outlet temperature TAO can be regarded as a heating load required for the vehicle thermal management device 10.
- the control device 60 executes the heating mode when the target blowing temperature TAO is higher than the inside air temperature Tr.
- the control device 60 executes the cooling mode when the target blowing temperature TAO is lower than the inside air temperature Tr.
- the control device 60 switches the operation mode shown in FIGS. 2 to 4 by controlling the operation of the switching valve 40.
- the capacitor circuit 12 is a circulation circuit in which cooling water circulates between the electric device 32 and the capacitor 31.
- the capacitor circuit 12 is a circulation circuit in which cooling water circulates independently from the engine cooling circuit 11.
- the water temperature of the capacitor circuit 12 is maintained by the waste heat of the electrical device 32.
- the waste heat of the electrical device 32 is small, the water temperature of the capacitor circuit 12 is maintained higher than a predetermined lower limit temperature by the heat supplied from the capacitor 31.
- the waste heat of the electric device 32 is heated when the heat quantity of the engine cooling circuit 11 is insufficient and the cooling water temperature of the engine cooling circuit 11 is lowered. Etc.
- the cooling water of the capacitor circuit 12 is circulated through the heater core 22 by switching to the third operation mode.
- the waste heat of 32 is utilized for heating the air in the heater core 22.
- the heating or the like is also performed using the heat supplied from the condenser 31.
- the second operation mode shown in FIG. 3 is executed when the amount of waste heat of the electrical device 32 is large.
- the cooling water is allowed to flow through the second radiator 33 to radiate heat from the cooling water to the outside air.
- the second radiator path 12b is throttled by the fifth port 40e of the switching valve 40 so that the flow rate of the coolant flowing through the second radiator 33 is reduced.
- the third port 40c of the switching valve 40 is throttled by a predetermined amount so that the cooling water also flows to the second radiator 33 side, and the pressure loss of the flow path bypassing the second radiator 33 is increased.
- the heat supplied from the capacitor 31 or the waste heat of the electric device 32 is used as a heat source such as heating. That is, heating or the like is performed without operating the engine 21 for the purpose of heating. Moreover, since heating etc. are performed using the waste heat of the electric equipment 32 stored in the capacitor circuit 12, the waste heat of the electric equipment 32 that cannot be used in the first operation mode and the second operation mode can be used.
- the shutoff valve 25 and the switching valve 40 circulate cooling water between the heater core 22 and the engine path portion 11a.
- the shutoff valve 25 and the switching valve 40 circulate cooling water between the heater core 22 and the condenser path portion 12a.
- the control device 60 executes the first operation mode.
- the switching temperature is, for example, 60 ° C.
- the control device 60 executes the third operation mode. Thereby, cooling water circulates between the heater core 22 and the capacitor
- the waste heat of the electric device 32 when the air is heated by the heater core 22 using the waste heat of the engine 21, the waste heat of the electric device 32 is stored, and if the waste heat of the engine 21 is insufficient as a heat source for heating or the like, the stored electricity is stored. Since the waste heat of the device 32 is used for heating or the like, the waste heat of the electric device 32 can be effectively used for heating or the like.
- the capacitor circuit 12 can communicate with the second radiator 33.
- the control device 60 opens the fifth port 40e of the switching valve 40 to a predetermined intermediate opening (in other words, a throttle valve). And the cooling water is allowed to flow through the second radiator 33 at an intermediate flow rate (in other words, a reduced flow rate).
- the allowable temperature is set in consideration of the heat resistant temperature of the electric device 32.
- the allowable temperature is a temperature higher than the switching temperature, and is 70 ° C., for example.
- the heat of the cooling water of the capacitor circuit 12 is dissipated to the outside air, and the cooling water of the capacitor circuit 12 is maintained below the allowable temperature to protect the electric device 32.
- the cooling water is passed through the second radiator 33 at a large flow rate, the cooling water temperature rapidly drops when the outside air temperature is low. Therefore, the flow rate of the second radiator 33 is limited.
- the heating capacity of the condenser 31 can be adjusted by controlling the rotational speed of the compressor 51.
- the control device 60 controls the operation of the compressor 51 so that the cooling water of the capacitor circuit 12 maintains a predetermined heat retaining temperature.
- the heat retention temperature is a temperature slightly lower than the switching temperature.
- the insulation temperature is 40 ° C., for example.
- the cooling water temperature of the capacitor circuit 12 can be maintained at a temperature close to the switching temperature, the temperature of the cooling water flowing into the heater core 22 when the connection destination of the heater core 22 is switched from the engine path portion 11a to the capacitor path portion 12a.
- the fluctuation can be suppressed, and consequently the temperature fluctuation of the air blown into the passenger compartment can be suppressed.
- the control device 60 keeps the cooling water temperature of the capacitor circuit 12 by heating the cooling water of the capacitor circuit 12 with the capacitor 31. Increase above temperature.
- the switching preparation temperature is a temperature slightly higher than the switching temperature.
- the switching preparation temperature is 70 ° C., for example.
- the allowable range is a temperature range in which the temperature fluctuation of the cooling water flowing into the heater core 22 can be allowed, and is 3 ° C., for example. That is, when the cooling water temperature of the capacitor circuit 12 and the cooling water temperature of the engine cooling circuit 11 become approximately the same, the heater core 22 is switched from the engine path portion 11a side to the capacitor path portion 12a side.
- control device 60 does not heat the cooling water of the capacitor circuit 12 with the capacitor 31 as much as possible when the timing for switching the heater core 22 from the engine path portion 11a side to the capacitor path portion 12a is not approaching.
- the heater core 22 when the heater core 22 is connected to the engine path portion 11a, the cooling water temperature of the capacitor circuit 12 does not need to be increased more than necessary. Therefore, the compressor 51 is used to maintain the cooling water temperature of the capacitor circuit 12. Can reduce the power consumed.
- the required cooling water temperature is a lower limit value of the cooling water temperature necessary for maintaining normal operation of the engine 21 (specifically, combustion and sliding).
- the required cooling water temperature is 40 ° C., for example.
- the cooling of the engine path 11a is supplied by supplying the heat of the cooling water of the condenser path 12a to the cooling water of the engine path 11a. It becomes possible to maintain the temperature of water above the required cooling water temperature.
- the switch preparation temperature or required cooling water temperature is the temperature rise start temperature.
- the control device 60 starts heating the cooling water by the capacitor 31 so as to raise the temperature of the cooling water in the capacitor circuit 12 above the heat retention temperature.
- the cooling water of the capacitor circuit 12 is heated by the capacitor 31 so that the cooling water temperature of the capacitor circuit 12 is higher than the heat retention temperature. Raise.
- control device 60 sets the temperature of the cooling water for the condenser circuit 12 to be higher as the heating load is higher. As a result, when the outside air temperature is low, the required cooling water temperature rise is suppressed and the time required for switching is shortened.
- the control device 60 raises the cooling water temperature above the heat retention temperature (hereinafter referred to as the cooling water temperature rise) before switching the connection of the heater core 22.
- the following control is performed.
- the time (hereinafter, referred to as the descent time) to decrease from the rate of decrease in the temperature of the cooling water in the engine cooling circuit 11 to the blowout variation allowable amount is calculated.
- the blowout variation allowable amount is, for example, about 3 ° C.
- the compressor 51 is configured so that the temperature of the cooling water in the condenser circuit 12 becomes equal to the temperature of the cooling water in the engine cooling circuit 11 when the falling time has elapsed. Determine the speed and operating time. Thereby, since the power consumption of the compressor 51 is optimized to the minimum necessary, it is possible to save power.
- the control device 60 changes the rotation speed of the compressor 51 when the cooling water temperature rises according to the temperature of the cooling water in the engine cooling circuit 11 or the temperature of the cooling water in the capacitor circuit 12.
- control device 60 increases the rotational speed of the compressor 51 when the cooling water temperature rises as the cooling water temperature descending speed of the engine cooling circuit 11 increases.
- control device 60 increases the rotational speed of the compressor 51 when the cooling water temperature rises as the cooling water temperature in the capacitor circuit 12 decreases.
- the control device 60 shortens the time from the start of the compressor 51 to the switching of the connection destination of the heater core 22 as the rotational speed of the compressor 51 is higher.
- the control device 60 sets the temperature of the cooling water in the capacitor path portion 12a to the heat retaining temperature.
- the operation of the capacitor 31 and the second radiator 33 (for example, the temperature adjustment capability of the capacitor 31 and the second radiator 33) is controlled so as to be equal to or higher than (a predetermined temperature in other words).
- the refrigerant flows into the heater core 22. Since the temperature fluctuation of the cooling water can be suppressed, the temperature fluctuation of the air blown into the passenger compartment can be suppressed, and consequently, the passenger can be prevented from feeling uncomfortable.
- the control device 60 increases the heat retention temperature in the heating mode compared to the non-heating mode.
- the temperature of the cooling water in the condenser passage portion 12a can be increased, so that the temperature of the air blown into the passenger compartment can be further prevented from feeling uncomfortable. Moreover, since it is possible to lower the temperature of the cooling water in the condenser path portion 12a in the non-heating mode, the cooling efficiency of the electric device 32 can be increased.
- the control device 60 increases the heat insulation temperature as the heating load increases. Specifically, the control device 60 increases the heat retention temperature as the target blowing temperature TAO is higher. Thereby, the temperature fluctuation of the cooling water flowing into the heater core 22 can be suppressed even when the heating load is high.
- the control device 60 when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the heater core 22 and the capacitor path to pass when the temperature of the cooling water in the engine path portion 11a falls below the switching temperature.
- the operation of the shutoff valve 25 and the switching valve 40 is controlled so that the cooling water circulates between the parts 12a.
- the control apparatus 60 sets heat retention temperature to below switching temperature.
- the power consumed for heating the cooling water by the capacitor 31 can be suppressed.
- the control device 60 when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the temperature of the cooling water in the engine path portion 11a to be equal to or lower than the switching temperature and the engine path portion 11a. Control of the shutoff valve 25 and the switching valve 40 so that the cooling water circulates between the heater core 22 and the condenser path 12a when the temperature difference between the cooling water of the condenser and the cooling water of the condenser path 12a falls within an allowable range. To do.
- the control device 60 when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the condenser path portion when the temperature of the cooling water in the engine path portion 11a falls below the temperature rise start temperature.
- the operation of the condenser 31 is controlled so that the temperature of the cooling water 12a is higher than the heat retention temperature.
- the temperature increase start temperature is a switching preparation temperature or a required cooling water temperature.
- the cooling water circulates between the heater core 22 and the condenser path portion 12a from the state where the cooling water circulates between the heater core 22 and the engine path portion 11a.
- the cooling water temperature of the capacitor path portion 12a is raised above the heat retention temperature to approach the cooling water temperature of the engine path portion 11a, so that the heat retention temperature can be set low. Therefore, since the condenser 31 adjusts the temperature of the cooling water, the power consumed by the compressor 51 can be reduced.
- the temperature of the cooling water in the engine path portion 11a is set to the required cooling water temperature by supplying the heat of the cooling water in the capacitor path portion 12a to the cooling water in the engine path portion 11a. It becomes possible to maintain.
- the power consumed by the compressor 51 can be reduced as the heat retention temperature is set lower.
- the temperature of the cooling water in the condenser path portion 12a approaches when the timing for switching the connection destination of the heater core 22 approaches. Therefore, it is necessary to quickly increase the temperature of the cooling water in the capacitor path portion 12a.
- the rotation speed of the compressor 51 If the rotation speed of the compressor 51 is increased, the temperature of the cooling water in the condenser path portion 12a can be quickly increased. However, if the rotation speed of the compressor 51 is increased, the occupant makes the operation sound of the compressor 51 abnormal. It becomes easier to feel. Since the wind noise increases as the vehicle speed increases, the operating noise of the compressor 51 is drowned out by the wind noise even when the rotation speed of the compressor 51 is increased, and the passenger feels the operating noise of the compressor 51. It becomes difficult.
- control device 60 sets the heat insulation temperature lower as the traveling speed of the vehicle is higher. Thereby, the power consumed in order to maintain the cooling water temperature of the capacitor
- the traveling speed of the vehicle can be detected by a vehicle speed sensor (not shown).
- the control device 60 when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 reduces the cooling water temperature of the engine path portion 11a, the switching temperature, and the capacitor path portion 12a.
- the rotation speed of the compressor 51 is determined based on the temperature of the cooling water.
- the second radiator 33 exchanges heat between the cooling water of the condenser path portion 12a and the outside air to dissipate the heat of the cooling water of the condenser path portion 12a to the outside air. Thereby, it can suppress that the temperature of the cooling water of the capacitor
- the refrigeration cycle 50 may be able to reverse the refrigerant flow.
- the refrigerant flow of the refrigeration cycle 50 is reversed, the low-pressure refrigerant decompressed and expanded by the expansion valve 52 flows to the condenser 31, so that the condenser 31 functions as a heat absorber that absorbs the heat of the cooling water.
- the condenser 31 exchanges heat between the low-pressure side refrigerant of the refrigeration cycle 50 and the cooling water of the condenser path portion 12a to refrigerate the heat of the cooling water of the condenser path portion 12a. Heat is released to the low-pressure side refrigerant of the cycle 50.
- the control device 60 blocks the flow of the cooling water in the condenser path portion 12a to the second radiator 33.
- the operation of the switching valve 40 is controlled.
- the waste heat of the electric device 32 stored in the cooling water of the condenser path portion 12a can be used for heating. Effective use of heat.
- control device 60 sets the shutoff valve 25 and the switching valve 40 so that the cooling water circulates between the heater core 22 and the condenser path portion 12a. Control the operation.
- the control device 60 when the coolant is circulating between the heater core 22 and the engine path portion 11a, the control device 60 performs the second operation when the temperature of the coolant water in the capacitor path portion 12a exceeds the allowable temperature.
- the operation of the switching valve 40 is controlled so that the cooling water flows through the radiator 33 at a flow rate that is reduced.
- control device 60 is configured such that the cooling water is circulated between the heater core 22 and the engine path portion 11a, the cooling water is circulated between the heater core 22 and the condenser path portion 12a, and In comparison, the operation of the condenser pump 30 is controlled such that the discharge flow rate of the cooling water is reduced.
- the control device 60 determines that the capacitor path portion 12a
- the operation of the condenser pump 30 is controlled so that the cooling water discharge flow rate increases compared to the case where the temperature of the cooling water is equal to or lower than the allowable temperature. Thereby, it can suppress that cooling of the electric equipment 32 becomes inadequate.
- control device 60 compares the cooling water flow of the condenser path portion 12a to the second radiator 33 when the cooling water of the condenser path portion 12a flows to the second radiator 33.
- the operation of the condenser pump 30 is controlled so that the discharge flow rate of the cooling water increases. Thereby, it can suppress that cooling of the electric equipment 32 becomes inadequate.
- the cooling water temperature of the capacitor circuit 12 is adjusted by the capacitor 31 and the second radiator 33, but the cooling water temperature of the capacitor circuit 12 may be adjusted by an electric heater or a combustion heater.
- the cooling water temperature of the condenser circuit 12 may be adjusted by a heat exchanger that can adjust the heat receiving ability of waste heat from other heat sources.
- the heat exchanger that can adjust the heat receiving capability of the waste heat of other heat sources is, for example, a heat exchanger that exchanges heat between the cooling water of the condenser circuit 12 and the cooling water of the other cooling water circuit.
- the switching valve 40 is a five-way valve, but a plurality of two-way valves or three-way valves may be used instead of the five-way valve.
- the cooling water is used as the heat medium flowing through the engine cooling circuit 11 and the capacitor circuit 12, but various media such as oil may be used as the heat medium.
- Nanofluid may be used as the heat medium.
- a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
- antifreeze liquid ethylene glycol
- the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
- liquidity of can be acquired.
- Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
- the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
- the amount of heat stored in the heat medium itself can be increased.
- the amount of cold storage heat of the heat medium itself is the amount of cold storage heat by sensible heat.
- the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
- the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
- Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle.
- CNT is a carbon nanotube.
- the graphite core-shell type nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
- a chlorofluorocarbon refrigerant is used as the refrigerant.
- the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. May be.
- the refrigeration cycle 50 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
This invention provides a heat management device for a vehicle provided with a heating heat exchanger for heating air blown into the vehicle interior, wherein temperature fluctuation of air blown out into the vehicle interior is minimized when a heat transfer medium flowing into the heating heat exchanger is switched. The heat management device for a vehicle is provided with a first heat transfer medium channel (12a) and a second heat transfer medium channel (11a) through which a heat transfer medium flows, a waste heat supply device (21) for supplying waste heat to the heat transfer medium flowing through the second heat transfer medium channel (11a), a heater core (22) for exchanging heat between air flown into the vehicle interior and the heat transfer medium to heat the air, a switching valve (40) for switching between a state in which the heat transfer medium circulates between the heater core (22) and the first heat transfer medium channel (12a) and a state in which the heat transfer medium circulates between the heater core (22) and the second heat transfer medium channel (11a), an adjustment unit (31) for adjusting the temperature of the heat transfer medium of the first heat transfer medium channel (12a), and a control device (60) for controlling the operation of the adjustment unit (31) so that the temperature of the heat transfer medium in the first heat transfer medium channel (12a) is equal to or greater than a prescribed temperature when the switching valve (40) causes the heat transfer medium to circulate between the heater core (22) and the second heat transfer medium channel (11a).
Description
本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年1月29日に出願された日本特許出願2016-015614号、及び2016年12月5日に出願された日本特許出願2016-236055号を基にしている。
This application includes Japanese Patent Application No. 2016-015614 filed on January 29, 2016, and Japanese Patent Application No. 2016 filed on December 5, 2016, the disclosures of which are incorporated herein by reference. Based on -236055.
本開示は、車両に用いられる熱管理装置に関する。
The present disclosure relates to a heat management device used for a vehicle.
従来、特許文献1には、エンジンの廃熱および電気機器の廃熱を利用して車室内を暖房可能な車両用温度管理装置が記載されている。この従来技術では、エンジン、電気機器、および空調用熱交換器に対して、冷却水の通水をバルブユニットで選択的に切り替えることができるようになっている。
Conventionally, Patent Document 1 describes a vehicle temperature management device capable of heating a vehicle interior using waste heat of an engine and waste heat of an electric device. In this prior art, the flow of cooling water can be selectively switched by a valve unit for an engine, an electric device, and a heat exchanger for air conditioning.
エンジンおよび空調用熱交換器に冷却水を通水させることによって、エンジンの廃熱を利用して車室内を暖房できる。電気機器および空調用熱交換器に冷却水を通水させることによって、電気機器の廃熱を利用して車室内を暖房できる。
¡By passing cooling water through the engine and the air conditioner heat exchanger, the vehicle interior can be heated using the waste heat of the engine. By passing cooling water through the electric equipment and the heat exchanger for air conditioning, the vehicle interior can be heated using waste heat of the electric equipment.
電気機器を流れる冷却水の上限温度は、電子部品の耐熱性から70℃程度が一般的であるが、エンジンを冷却した冷却水の温度は90℃以上になることが一般的であるので、エンジンを冷却した冷却水を電気機器に通水させることができない。
The upper limit temperature of the cooling water flowing through the electrical equipment is generally about 70 ° C. because of the heat resistance of the electronic components, but the temperature of the cooling water that has cooled the engine is typically 90 ° C. or higher. The cooling water that has cooled the air cannot be passed through the electrical equipment.
本出願の発明者らの検討によれば、上記従来技術では、暖房熱源として、エンジンの廃熱および電気機器の廃熱のいずれか一方を選択的に切り替えて利用する必要がある。その結果、上記従来技術では、暖房熱源を切り替えた際に空調用熱交換器に流入する冷却水の温度が変動するので、車室内へ吹き出される空気の温度も変動して乗員が不快感を感じやすい。
According to the study of the inventors of the present application, in the above-described conventional technology, it is necessary to selectively switch between one of engine waste heat and electrical equipment waste heat as a heating heat source. As a result, in the above prior art, the temperature of the cooling water flowing into the heat exchanger for air conditioning fluctuates when the heating heat source is switched, so the temperature of the air blown into the passenger compartment also fluctuates, causing the passengers to feel uncomfortable. Easy to feel.
また、エンジンの廃熱および電気機器の廃熱の両方を同時に暖房熱源として利用することができないので、廃熱の有効活用ができないこともある。
Also, since both the waste heat of the engine and the waste heat of the electrical equipment cannot be used simultaneously as a heating heat source, the waste heat may not be effectively used.
本開示は上記点に鑑みて、車室内へ送風される空気を加熱する加熱用熱交換器を備える車両用熱管理装置において、加熱用熱交換器に流入する熱媒体を切り替えた際に、車室内へ吹き出される空気の温度が変動することを抑制することを目的とする。
In view of the above points, the present disclosure is directed to a vehicle heat management apparatus including a heating heat exchanger that heats air blown into a vehicle interior. When the heat medium flowing into the heating heat exchanger is switched, It aims at suppressing that the temperature of the air which blows off indoors fluctuates.
本開示は上記点に鑑みて、複数の廃熱を暖房に有効活用することを他の目的とする。
In view of the above points, the present disclosure has another object to effectively use a plurality of waste heat for heating.
本開示の一つの特徴例による車両用熱管理装置は、
熱媒体が流れる第1熱媒体経路部および第2熱媒体経路部と、
第2熱媒体経路部を流れる熱媒体に廃熱を供給する廃熱供給機器と、
車室内へ送風される空気と熱媒体を熱交換して空気を加熱する加熱用熱交換器と、
加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態と、加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環する状態とを切り替える切替部と、
第1熱媒体経路部の熱媒体の温度を調整する調整部と、
切替部が加熱用熱交換器と第2熱媒体経路部との間で熱媒体を循環させている場合、第1熱媒体経路部の熱媒体の温度が所定温度以上になるように調整部の作動を制御する制御部とを備える。 A vehicle thermal management device according to one feature example of the present disclosure is provided.
A first heat medium path section and a second heat medium path section through which the heat medium flows;
A waste heat supply device for supplying waste heat to the heat medium flowing through the second heat medium path;
A heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium;
Switching that switches between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part And
An adjusting unit for adjusting the temperature of the heat medium in the first heat medium path unit;
When the switching unit circulates the heat medium between the heating heat exchanger and the second heat medium path unit, the adjustment unit is configured so that the temperature of the heat medium in the first heat medium path unit is equal to or higher than a predetermined temperature. A control unit for controlling the operation.
熱媒体が流れる第1熱媒体経路部および第2熱媒体経路部と、
第2熱媒体経路部を流れる熱媒体に廃熱を供給する廃熱供給機器と、
車室内へ送風される空気と熱媒体を熱交換して空気を加熱する加熱用熱交換器と、
加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態と、加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環する状態とを切り替える切替部と、
第1熱媒体経路部の熱媒体の温度を調整する調整部と、
切替部が加熱用熱交換器と第2熱媒体経路部との間で熱媒体を循環させている場合、第1熱媒体経路部の熱媒体の温度が所定温度以上になるように調整部の作動を制御する制御部とを備える。 A vehicle thermal management device according to one feature example of the present disclosure is provided.
A first heat medium path section and a second heat medium path section through which the heat medium flows;
A waste heat supply device for supplying waste heat to the heat medium flowing through the second heat medium path;
A heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium;
Switching that switches between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part And
An adjusting unit for adjusting the temperature of the heat medium in the first heat medium path unit;
When the switching unit circulates the heat medium between the heating heat exchanger and the second heat medium path unit, the adjustment unit is configured so that the temperature of the heat medium in the first heat medium path unit is equal to or higher than a predetermined temperature. A control unit for controlling the operation.
これによると、加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環する状態から、加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態に切り替えた際、調整部で温度調整された熱媒体が加熱用熱交換器に流入するので、加熱用熱交換器に流入する熱媒体の温度変動を抑制でき、ひいては車室内へ吹き出される空気の温度変動を抑制できる。
According to this, the state where the heat medium circulates between the heat exchanger for heating and the first heat medium path part from the state where the heat medium circulates between the heat exchanger for heating and the second heat medium path part. Since the heat medium whose temperature has been adjusted by the adjusting unit flows into the heating heat exchanger when switching to, the temperature variation of the heat medium flowing into the heating heat exchanger can be suppressed, and consequently the air blown into the passenger compartment Temperature fluctuation can be suppressed.
本開示の他の特徴例による車両用熱管理装置は、
廃熱を熱媒体に供給する第1廃熱供給機器と、
廃熱を熱媒体に供給し、第1廃熱供給機器と比較して許容温度が高くなっている第2廃熱供給機器と、
車室内へ送風される空気と熱媒体を熱交換して空気を加熱する加熱用熱交換器と、
熱媒体が流れ、第1廃熱供給機器が配置された第1熱媒体経路部と、
熱媒体が流れ、第2廃熱供給機器が配置された第2熱媒体経路部と、
第1熱媒体経路部の熱媒体と外気とを熱交換させることによって、第1熱媒体経路部の熱媒体の熱を外気に放熱させる外気放熱器と、
加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態と、加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環する状態とを切り替えるとともに、外気放熱器に第1熱媒体経路部の熱媒体が流れる状態と、外気放熱器への第1熱媒体経路部の熱媒体の流れが遮断される状態とを切り替える切替部と、
加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環している場合、外気放熱器への第1熱媒体経路部の熱媒体の流れが遮断されるように切替部の作動を制御する制御部とを備える。 A vehicle thermal management device according to another feature example of the present disclosure includes:
A first waste heat supply device for supplying waste heat to the heat medium;
A second waste heat supply device that supplies waste heat to the heat medium and has an allowable temperature higher than that of the first waste heat supply device;
A heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium;
A first heat medium path portion in which the heat medium flows and the first waste heat supply device is disposed;
A second heat medium path portion in which the heat medium flows and the second waste heat supply device is disposed;
An outside air radiator that radiates heat of the heat medium in the first heat medium path portion to the outside air by exchanging heat between the heat medium in the first heat medium path portion and the outside air;
Switching between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part A switching unit that switches between a state in which the heat medium in the first heat medium path portion flows to the outside air radiator and a state in which the flow of the heat medium in the first heat medium path portion to the outside air radiator is blocked,
When the heat medium circulates between the heat exchanger for heating and the second heat medium path, the switching unit is configured to block the flow of the heat medium in the first heat medium path to the outside air radiator. A control unit for controlling the operation.
廃熱を熱媒体に供給する第1廃熱供給機器と、
廃熱を熱媒体に供給し、第1廃熱供給機器と比較して許容温度が高くなっている第2廃熱供給機器と、
車室内へ送風される空気と熱媒体を熱交換して空気を加熱する加熱用熱交換器と、
熱媒体が流れ、第1廃熱供給機器が配置された第1熱媒体経路部と、
熱媒体が流れ、第2廃熱供給機器が配置された第2熱媒体経路部と、
第1熱媒体経路部の熱媒体と外気とを熱交換させることによって、第1熱媒体経路部の熱媒体の熱を外気に放熱させる外気放熱器と、
加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態と、加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環する状態とを切り替えるとともに、外気放熱器に第1熱媒体経路部の熱媒体が流れる状態と、外気放熱器への第1熱媒体経路部の熱媒体の流れが遮断される状態とを切り替える切替部と、
加熱用熱交換器と第2熱媒体経路部との間で熱媒体が循環している場合、外気放熱器への第1熱媒体経路部の熱媒体の流れが遮断されるように切替部の作動を制御する制御部とを備える。 A vehicle thermal management device according to another feature example of the present disclosure includes:
A first waste heat supply device for supplying waste heat to the heat medium;
A second waste heat supply device that supplies waste heat to the heat medium and has an allowable temperature higher than that of the first waste heat supply device;
A heat exchanger for heating that heats the air by exchanging heat between the air blown into the passenger compartment and the heat medium;
A first heat medium path portion in which the heat medium flows and the first waste heat supply device is disposed;
A second heat medium path portion in which the heat medium flows and the second waste heat supply device is disposed;
An outside air radiator that radiates heat of the heat medium in the first heat medium path portion to the outside air by exchanging heat between the heat medium in the first heat medium path portion and the outside air;
Switching between a state in which the heat medium circulates between the heat exchanger for heating and the first heat medium path part and a state in which the heat medium circulates between the heat exchanger for heating and the second heat medium path part A switching unit that switches between a state in which the heat medium in the first heat medium path portion flows to the outside air radiator and a state in which the flow of the heat medium in the first heat medium path portion to the outside air radiator is blocked,
When the heat medium circulates between the heat exchanger for heating and the second heat medium path, the switching unit is configured to block the flow of the heat medium in the first heat medium path to the outside air radiator. A control unit for controlling the operation.
これによると、第2廃熱供給機器の廃熱を利用して暖房している場合、第1廃熱供給機器の廃熱が外気放熱器で外気に放熱されることを抑制できるので、第1廃熱供給機器の廃熱を第1熱媒体経路部の熱媒体に蓄えることができる。
According to this, when heating is performed using the waste heat of the second waste heat supply device, the waste heat of the first waste heat supply device can be prevented from being radiated to the outside air by the outside air radiator. Waste heat of the waste heat supply device can be stored in the heat medium of the first heat medium path.
そのため、加熱用熱交換器と第1熱媒体経路部との間で熱媒体が循環する状態になったときに第1熱媒体経路部の熱媒体に蓄えられた第1廃熱供給機器の廃熱を利用して暖房できるので、第1廃熱供給機器の廃熱および第2廃熱供給機器の廃熱の両方を暖房に有効活用できる。
Therefore, when the heat medium circulates between the heat exchanger for heating and the first heat medium path part, the waste of the first waste heat supply device stored in the heat medium of the first heat medium path part. Since it can heat using heat, both the waste heat of the 1st waste heat supply equipment and the waste heat of the 2nd waste heat supply equipment can be used effectively for heating.
以下、実施形態について図に基づいて説明する。図1に示す車両用熱管理装置10は、車両が備える各種機器や車室内を適切な温度に調整するために用いられる。
Hereinafter, embodiments will be described with reference to the drawings. The vehicle thermal management apparatus 10 shown in FIG. 1 is used to adjust various devices and vehicle interiors included in a vehicle to an appropriate temperature.
本実施形態では、車両用熱管理装置10を、エンジンおよび走行用電動モータから車両走行用の駆動力を得るハイブリッド自動車に適用している。
In the present embodiment, the vehicle thermal management device 10 is applied to a hybrid vehicle that obtains driving force for vehicle traveling from an engine and an electric motor for traveling.
本実施形態のハイブリッド自動車は、車両停車時に外部電源から供給された電力を、車両に搭載された電池に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
The hybrid vehicle of the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source to a battery mounted on the vehicle when the vehicle is stopped. As the battery, for example, a lithium ion battery can be used.
エンジンから出力される駆動力は、車両走行用として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができる。電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理装置10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
The driving force output from the engine is used not only for driving the vehicle but also for operating the generator. And the electric power generated with the generator and the electric power supplied from the external power supply can be stored in the battery. The electric power stored in the battery is supplied not only to the electric motor for traveling but also to various in-vehicle devices including the electric components constituting the vehicle thermal management device 10.
車両用熱管理装置10は、エンジン冷却回路11およびコンデンサ回路12を備えている。エンジン冷却回路11およびコンデンサ回路12は、冷却水が循環する冷却水回路である。
The vehicle thermal management device 10 includes an engine cooling circuit 11 and a capacitor circuit 12. The engine cooling circuit 11 and the capacitor circuit 12 are cooling water circuits through which cooling water circulates.
冷却水は、熱媒体としての流体である。例えば、冷却水は、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体である。
Cooling water is a fluid as a heat medium. For example, the cooling water is a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid.
エンジン冷却回路11は、エンジン21を冷却水で冷却するための冷却水回路である。エンジン冷却回路11には、エンジンポンプ20、エンジン21、ヒータコア22、冷却水流通機器23および第1ラジエータ24が配置されている。
The engine cooling circuit 11 is a cooling water circuit for cooling the engine 21 with cooling water. In the engine cooling circuit 11, an engine pump 20, an engine 21, a heater core 22, a coolant circulation device 23, and a first radiator 24 are arranged.
エンジン21は、車両の稼動に伴って発生する廃熱をエンジン冷却回路11の冷却水に供給する廃熱供給機器である。エンジン21の許容温度は90℃程度である。エンジンポンプ20は、冷却水を吸入して吐出するポンプである。エンジンポンプ20は電動ポンプである。
The engine 21 is a waste heat supply device that supplies waste heat generated with the operation of the vehicle to the cooling water of the engine cooling circuit 11. The allowable temperature of the engine 21 is about 90 ° C. The engine pump 20 is a pump that sucks and discharges cooling water. The engine pump 20 is an electric pump.
エンジンポンプ20はベルト駆動式ポンプであってもよい。ベルト駆動式ポンプは、エンジン21の駆動力がベルトを介して動力伝達されることによって駆動されるポンプである。
The engine pump 20 may be a belt driven pump. The belt-driven pump is a pump that is driven when the driving force of the engine 21 is transmitted through the belt.
ヒータコア22は、車室内へ送風される空気と冷却水とを熱交換させることによって、車室内へ送風される空気を加熱する加熱用熱交換器である。ヒータコア22は、車室内を暖房するために用いられる熱交換器である。車室内への空気の送風は、図示しない室内送風機によって行われる。
The heater core 22 is a heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat between the air blown into the vehicle cabin and the cooling water. The heater core 22 is a heat exchanger used for heating the passenger compartment. Air is blown into the passenger compartment by an indoor blower (not shown).
エンジンポンプ20、エンジン21およびヒータコア22は、この順番で冷却水が循環するようにエンジン冷却回路11に直列に配置されている。
The engine pump 20, the engine 21, and the heater core 22 are arranged in series with the engine cooling circuit 11 so that the cooling water circulates in this order.
冷却水流通機器23は、冷却水が流通する機器である。冷却水流通機器23は、冷却水の流れにおいて、ヒータコア22と並列に配置されている。
The cooling water distribution device 23 is a device through which cooling water flows. The cooling water circulation device 23 is arranged in parallel with the heater core 22 in the flow of the cooling water.
冷却水流通機器23は、例えばEGRクーラや排気熱回収器である。EGRクーラは、エンジン21の吸気側に戻される排気ガスと冷却水とを熱交換して排気ガスを冷却する熱交換器である。排気熱回収器24は、エンジン21の排気ガスと冷却水とを熱交換して排気ガスの熱を回収する熱交換器である。冷却水流通機器23は、作動に伴って発熱する発熱機器である。
The cooling water circulation device 23 is, for example, an EGR cooler or an exhaust heat recovery device. The EGR cooler is a heat exchanger that cools the exhaust gas by exchanging heat between the exhaust gas returned to the intake side of the engine 21 and the cooling water. The exhaust heat recovery unit 24 is a heat exchanger that recovers heat of the exhaust gas by exchanging heat between the exhaust gas of the engine 21 and the cooling water. The cooling water distribution device 23 is a heat generating device that generates heat when activated.
第1ラジエータ24は、冷却水と車室外の空気(以下、外気と言う。)とを熱交換させて冷却水の熱を外気に放熱させる冷却水外気熱交換器である。第1ラジエータ24は、冷却水の流れにおいて、ヒータコア22および冷却水流通機器23と並列に配置されている。
The first radiator 24 is a cooling water outdoor air heat exchanger that exchanges heat between cooling water and air outside the passenger compartment (hereinafter referred to as outside air) to dissipate the heat of the cooling water to the outside air. The first radiator 24 is arranged in parallel with the heater core 22 and the coolant circulation device 23 in the coolant flow.
エンジン冷却回路11は、エンジン経路部11a、ヒータコア経路部11b、機器経路部11cおよび第1ラジエータ経路部11dを有している。エンジン経路部11a、ヒータコア経路部11b、機器経路部11cおよび第1ラジエータ経路部11dはそれぞれ、冷却水が流れる冷却水流路を形成している。
The engine cooling circuit 11 includes an engine path portion 11a, a heater core path portion 11b, a device path portion 11c, and a first radiator path portion 11d. The engine path portion 11a, the heater core path portion 11b, the device path portion 11c, and the first radiator path portion 11d each form a cooling water flow path through which cooling water flows.
エンジン経路部11aには、エンジンポンプ20、エンジン21および遮断弁25が直列に配置されている。エンジン経路部11aは、熱媒体が流れる熱媒体経路部である。
In the engine path portion 11a, an engine pump 20, an engine 21, and a shutoff valve 25 are arranged in series. The engine path portion 11a is a heat medium path portion through which the heat medium flows.
遮断弁25は、エンジン経路部11aの冷却水流路を開閉する電磁弁である。遮断弁25は、エンジン経路部11aのうちエンジンポンプ20およびエンジン21の冷却水流れ下流側に配置されている。
The shutoff valve 25 is an electromagnetic valve that opens and closes the cooling water flow path of the engine passage portion 11a. The shutoff valve 25 is disposed on the downstream side of the coolant flow of the engine pump 20 and the engine 21 in the engine path portion 11a.
ヒータコア経路部11bにはヒータコア22が配置されている。機器経路部11cには冷却水流通機器23が配置されている。ヒータコア経路部11bおよび機器経路部11cは、エンジン経路部11aに対して互いに並列に接続されている。
A heater core 22 is disposed in the heater core path portion 11b. A cooling water circulation device 23 is disposed in the device path portion 11c. The heater core path portion 11b and the device path portion 11c are connected in parallel to the engine path portion 11a.
第1ラジエータ経路部11dには第1ラジエータ24が配置されている。第1ラジエータ経路部11dの一端は、エンジン経路部11aのうちエンジンポンプ20およびエンジン21の冷却水流れ上流側部位に接続されている。第1ラジエータ経路部11dの他端は、エンジン経路部11aのうちエンジンポンプ20およびエンジン21の冷却水流れ下流側かつ遮断弁25の冷却水流れ上流側の部位に接続されている。
The first radiator 24 is disposed in the first radiator path portion 11d. One end of the first radiator path portion 11d is connected to a portion of the engine path portion 11a upstream of the coolant flow of the engine pump 20 and the engine 21. The other end of the first radiator path portion 11d is connected to a portion of the engine path portion 11a on the downstream side of the cooling water flow of the engine pump 20 and the engine 21 and the upstream side of the cooling water flow of the shutoff valve 25.
第1ラジエータ経路部11dとエンジン経路部11aとの接続部にはサーモスタット27が配置されている。サーモスタット27は冷却水温度応動弁である。冷却水温度応動弁は、温度によって体積変化するサーモワックスによって弁体を変位させて冷却水流路を開閉する機械的機構を備える弁である。
A thermostat 27 is disposed at a connection portion between the first radiator path portion 11d and the engine path portion 11a. The thermostat 27 is a cooling water temperature responsive valve. The cooling water temperature responsive valve is a valve provided with a mechanical mechanism that opens and closes a cooling water flow path by displacing a valve body with a thermo wax that changes in volume depending on temperature.
コンデンサ回路12には、コンデンサポンプ30およびコンデンサ31が配置されている。コンデンサポンプ30は、冷却水を吸入して吐出するポンプである。コンデンサポンプ30は電動ポンプである。コンデンサポンプ30はベルト駆動式ポンプであってもよい。
The capacitor circuit 12 is provided with a capacitor pump 30 and a capacitor 31. The condenser pump 30 is a pump that sucks and discharges cooling water. The capacitor pump 30 is an electric pump. The condenser pump 30 may be a belt driven pump.
コンデンサ31は、冷却水を加熱することによって冷却水の温度を調整する調整部である。コンデンサ31は、冷凍サイクル50の高圧側冷媒と冷却水とを熱交換させることによって冷却水を加熱する高圧側熱交換器である。
The capacitor 31 is an adjustment unit that adjusts the temperature of the cooling water by heating the cooling water. The condenser 31 is a high-pressure side heat exchanger that heats the cooling water by exchanging heat between the high-pressure side refrigerant of the refrigeration cycle 50 and the cooling water.
コンデンサ回路12は、コンデンサ経路部12aを有している。コンデンサ経路部12aは、冷却水が循環して流れる冷却水循環流路を形成している。コンデンサ経路部12aは、熱媒体が流れる熱媒体経路部である。コンデンサ経路部12aは第1熱媒体経路部であり、エンジン冷却回路11のエンジン経路部11aは第2熱媒体経路部である。
The capacitor circuit 12 has a capacitor path portion 12a. The capacitor | condenser path | route part 12a forms the cooling water circulation flow path through which cooling water flows. The capacitor path portion 12a is a heat medium path portion through which the heat medium flows. The condenser path portion 12a is a first heat medium path portion, and the engine path portion 11a of the engine cooling circuit 11 is a second heat medium path portion.
コンデンサ経路部12aには、コンデンサポンプ30、コンデンサ31および電気機器32が直列に配置されている。電気機器32は、作動に伴って発熱して廃熱を発生する発熱機器である。電気機器32は、コンデンサ回路12を流れる冷却水に廃熱を供給する廃熱供給機器である。電気機器32の許容温度は70℃程度である。
In the capacitor path portion 12a, a capacitor pump 30, a capacitor 31, and an electric device 32 are arranged in series. The electric device 32 is a heat-generating device that generates waste heat by generating heat when operated. The electrical device 32 is a waste heat supply device that supplies waste heat to the cooling water flowing through the capacitor circuit 12. The allowable temperature of the electrical device 32 is about 70 ° C.
電気機器32は第1廃熱供給機器であり、エンジン21は第2廃熱供給機器である。エンジン21は、電気機器32と比較して許容温度が高くなっている。
The electrical device 32 is a first waste heat supply device, and the engine 21 is a second waste heat supply device. The engine 21 has a higher allowable temperature than the electric device 32.
冷凍サイクル50は、圧縮機51、コンデンサ31、膨張弁52および蒸発器53を備える蒸気圧縮式冷凍機である。冷凍サイクル50の冷媒はフロン系冷媒である。冷凍サイクル50は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルである。
The refrigeration cycle 50 is a vapor compression refrigerator that includes a compressor 51, a condenser 31, an expansion valve 52, and an evaporator 53. The refrigerant of the refrigeration cycle 50 is a fluorocarbon refrigerant. The refrigeration cycle 50 is a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant.
圧縮機51は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル50の冷媒を吸入して圧縮して吐出する。圧縮機51は、エンジン21の駆動力によってエンジンベルトで駆動される可変容量圧縮機であってもよい。
The compressor 51 is an electric compressor that is driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 50. The compressor 51 may be a variable capacity compressor that is driven by an engine belt by the driving force of the engine 21.
コンデンサ31は、圧縮機51から吐出された高圧冷媒と冷却水とを熱交換させることによって高圧冷媒を凝縮させる凝縮器である。
The condenser 31 is a condenser that condenses the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 51 and the cooling water.
膨張弁52は、コンデンサ31から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁52は感温部を有している。感温部は、蒸発器53出口側冷媒の温度および圧力に基づいて蒸発器53出口側冷媒の過熱度を検出する。膨張弁52は、蒸発器53出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。膨張弁52は、電気的機構によって絞り通路面積を調節する電気式膨張弁であってもよい。
The expansion valve 52 is a decompression unit that decompresses and expands the liquid-phase refrigerant that has flowed out of the capacitor 31. The expansion valve 52 has a temperature sensing part. The temperature sensing unit detects the degree of superheat of the evaporator 53 outlet-side refrigerant based on the temperature and pressure of the evaporator 53 outlet-side refrigerant. The expansion valve 52 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator 53 falls within a predetermined range. The expansion valve 52 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
蒸発器53は、膨張弁52で減圧膨張された低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させる低圧側熱交換器である。蒸発器53で蒸発した気相冷媒は圧縮機51に吸入されて圧縮される。
The evaporator 53 is a low-pressure side heat exchanger that evaporates the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 52 and the air blown into the vehicle interior. The gas-phase refrigerant evaporated in the evaporator 53 is sucked into the compressor 51 and compressed.
蒸発器53は、冷媒と冷却水とを熱交換させることによって冷却水を冷却する熱媒体冷却器であってもよい。この場合、熱媒体冷却器で冷却された冷却水と空気とを熱交換させる熱媒体空気熱交換器を別個に設けることによって、車室内へ送風される空気を冷却することができる。
The evaporator 53 may be a heat medium cooler that cools the cooling water by exchanging heat between the refrigerant and the cooling water. In this case, by separately providing a heat medium air heat exchanger that exchanges heat between the cooling water cooled by the heat medium cooler and the air, it is possible to cool the air blown into the vehicle interior.
エンジン冷却回路11およびコンデンサ回路12は切替弁40に接続されている。切替弁40は、エンジン冷却回路11とコンデンサ回路12との間の冷却水の流れを切り替える。
The engine cooling circuit 11 and the capacitor circuit 12 are connected to the switching valve 40. The switching valve 40 switches the flow of cooling water between the engine cooling circuit 11 and the capacitor circuit 12.
すなわち、切替弁40は、エンジン冷却回路11とコンデンサ回路12との間で冷却水が循環する状態と、エンジン冷却回路11とコンデンサ回路12との間で冷却水が循環しない状態とを切り替える。換言すれば、切替弁40は、エンジン冷却回路11とコンデンサ回路12とが連通する状態と、エンジン冷却回路11とコンデンサ回路12とが連通しない状態とを切り替える。
That is, the switching valve 40 switches between a state where the cooling water circulates between the engine cooling circuit 11 and the condenser circuit 12 and a state where the cooling water does not circulate between the engine cooling circuit 11 and the condenser circuit 12. In other words, the switching valve 40 switches between a state in which the engine cooling circuit 11 and the capacitor circuit 12 communicate with each other and a state in which the engine cooling circuit 11 and the capacitor circuit 12 do not communicate with each other.
切替弁40には第2ラジエータ経路12bが接続されている。第2ラジエータ経路12bには第2ラジエータ33が配置されている。第2ラジエータ33は、冷却水と外気とを熱交換させることによって冷却水の熱を外気に放熱させる外気放熱器である。第2ラジエータ33は、冷却水の熱を放熱させることによって冷却水の温度を調整する調整部である。
The second radiator path 12b is connected to the switching valve 40. A second radiator 33 is disposed in the second radiator path 12b. The second radiator 33 is an outside air radiator that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air. The second radiator 33 is an adjustment unit that adjusts the temperature of the cooling water by dissipating the heat of the cooling water.
切替弁40は、5つのポートを有する五方弁である。切替弁40の第1ポート40aは、ヒータコア経路部11bのうちヒータコア22の冷却水出口側部位に接続されている。切替弁40の第2ポート40bは、エンジン経路部11aのうちエンジンポンプ20の冷却水吸入側端部と機器経路部11cとの合流部41に接続されている。
The switching valve 40 is a five-way valve having five ports. The first port 40a of the switching valve 40 is connected to a coolant outlet side portion of the heater core 22 in the heater core path portion 11b. The second port 40b of the switching valve 40 is connected to a merging portion 41 of the engine path portion 11a between the cooling water suction side end of the engine pump 20 and the device path portion 11c.
切替弁40の第3ポート40cは、コンデンサ経路部12aのうち電気機器32の冷却水入口側部位に接続されている。切替弁40の第4ポート40dは、コンデンサ経路部12aのうちコンデンサ31の冷却水出口側部位に接続されている。
The third port 40c of the switching valve 40 is connected to the coolant inlet side portion of the electrical device 32 in the capacitor path portion 12a. The fourth port 40d of the switching valve 40 is connected to the coolant outlet side portion of the capacitor 31 in the capacitor path portion 12a.
切替弁40の第5ポート40eは、第2ラジエータ経路12bの一端に接続されている。第2ラジエータ経路12bの他端は、コンデンサ経路部12aのうち切替弁40の第3ポート40cと電気機器32との間の部位に接続されている。
The fifth port 40e of the switching valve 40 is connected to one end of the second radiator path 12b. The other end of the second radiator path 12b is connected to a portion between the third port 40c of the switching valve 40 and the electric device 32 in the capacitor path portion 12a.
遮断弁25および切替弁40は、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する状態と、ヒータコア22とエンジン経路部11aとの間で冷却水が循環する状態とを切り替える切替部である。
The shutoff valve 25 and the switching valve 40 are a switching unit that switches between a state in which the cooling water circulates between the heater core 22 and the condenser path portion 12a and a state in which the cooling water circulates between the heater core 22 and the engine path portion 11a. It is.
換言すれば、遮断弁25および切替弁40は、ヒータコア22がコンデンサ経路部12aと連通する状態と、ヒータコア22がエンジン経路部11aと連通する状態とを切り替える。
In other words, the shutoff valve 25 and the switching valve 40 switch between a state where the heater core 22 communicates with the capacitor path portion 12a and a state where the heater core 22 communicates with the engine path portion 11a.
切替弁40は、第2ラジエータ33にコンデンサ回路12の冷却水が流れる状態と、第2ラジエータ33へのコンデンサ回路12の冷却水の流れが遮断される状態とを切り替える。換言すれば、切替弁40は、第2ラジエータ33がコンデンサ回路12と連通する状態と、第2ラジエータ33がコンデンサ回路12と連通する状態とを切り替える。
The switching valve 40 switches between a state in which the cooling water of the capacitor circuit 12 flows to the second radiator 33 and a state in which the flow of the cooling water of the capacitor circuit 12 to the second radiator 33 is blocked. In other words, the switching valve 40 switches between a state in which the second radiator 33 communicates with the capacitor circuit 12 and a state in which the second radiator 33 communicates with the capacitor circuit 12.
遮断弁25および切替弁40は、車両用熱管理装置10の作動モードを、図2に示す第1作動モード、図3に示す第2作動モード、および図4に示す第3作動モード切り替える。
The shutoff valve 25 and the switching valve 40 switch the operation mode of the vehicle thermal management device 10 to the first operation mode shown in FIG. 2, the second operation mode shown in FIG. 3, and the third operation mode shown in FIG.
図2に示す第1作動モードでは、切替弁40は、エンジン冷却回路11とコンデンサ回路12との間の冷却水の循環を遮断し、第2ラジエータ33とコンデンサ回路12との間の冷却水の循環を遮断する。
In the first operation mode shown in FIG. 2, the switching valve 40 interrupts the cooling water circulation between the engine cooling circuit 11 and the condenser circuit 12, and the cooling water between the second radiator 33 and the condenser circuit 12. Block circulation.
具体的には、切替弁40は、第1ポート40aと第2ポート40bとを接続し、第3ポート40cと第4ポート40dとを接続し、第5ポート40eを閉じる。第1作動モードでは、遮断弁25はエンジン経路部11aの冷却水流路を開ける。
Specifically, the switching valve 40 connects the first port 40a and the second port 40b, connects the third port 40c and the fourth port 40d, and closes the fifth port 40e. In the first operation mode, the shutoff valve 25 opens the cooling water flow path of the engine path portion 11a.
これにより、エンジン冷却回路11では、エンジン21から流出した冷却水がヒータコア22と冷却水流通機器23とを並列に流れてエンジン21に流入する。換言すれば、エンジン経路部11aを流出した冷却水がヒータコア経路部11bと機器経路部11cとを並列に流れてエンジン経路部11aに流入する。コンデンサ回路12では、第2ラジエータ33に冷却水が循環しない。
Thereby, in the engine cooling circuit 11, the cooling water flowing out from the engine 21 flows in parallel through the heater core 22 and the cooling water circulation device 23 and flows into the engine 21. In other words, the cooling water that has flowed out of the engine path portion 11a flows in parallel through the heater core path portion 11b and the device path portion 11c and flows into the engine path portion 11a. In the capacitor circuit 12, the cooling water does not circulate through the second radiator 33.
図3に示す第2作動モードでは、切替弁40は、エンジン冷却回路11とコンデンサ回路12との間の冷却水の循環を遮断し、第2ラジエータ33とコンデンサ回路12との間で冷却水を循環させる。
In the second operation mode shown in FIG. 3, the switching valve 40 interrupts the cooling water circulation between the engine cooling circuit 11 and the condenser circuit 12, and allows the cooling water to flow between the second radiator 33 and the condenser circuit 12. Circulate.
具体的には、切替弁40は、第1ポート40aと第2ポート40bとを接続し、第3ポート40cと第4ポート40dと第5ポート40eとを接続する。第2作動モードでは、遮断弁25は、エンジン経路部11aの冷却水流路を開ける。
Specifically, the switching valve 40 connects the first port 40a and the second port 40b, and connects the third port 40c, the fourth port 40d, and the fifth port 40e. In the second operation mode, the shutoff valve 25 opens the cooling water flow path of the engine path portion 11a.
これにより、エンジン冷却回路11では、第1作動モードと同様に、エンジン21から流出した冷却水がヒータコア22と冷却水流通機器23とを並列に流れてエンジン21に流入する。換言すれば、エンジン経路部11aを流出した冷却水がヒータコア経路部11bと機器経路部11cとを並列に流れてエンジン経路部11aに流入する。コンデンサ回路12では、第2ラジエータ33に冷却水が循環する。
Thereby, in the engine cooling circuit 11, the cooling water flowing out from the engine 21 flows in parallel through the heater core 22 and the cooling water circulation device 23 and flows into the engine 21 as in the first operation mode. In other words, the cooling water that has flowed out of the engine path portion 11a flows in parallel through the heater core path portion 11b and the device path portion 11c and flows into the engine path portion 11a. In the capacitor circuit 12, the cooling water circulates through the second radiator 33.
図4に示す第3作動モードでは、切替弁40は、エンジン冷却回路11とコンデンサ回路12との間で冷却水を循環させ、第2ラジエータ33とコンデンサ回路12との間の冷却水の循環を遮断する。
In the third operation mode shown in FIG. 4, the switching valve 40 circulates the cooling water between the engine cooling circuit 11 and the condenser circuit 12 and circulates the cooling water between the second radiator 33 and the condenser circuit 12. Cut off.
具体的には、切替弁40は、第1ポート40aと第3ポート40cとを接続し、第2ポート40bと第4ポート40dとを接続し、第5ポート40eを閉じる。第3作動モードでは、遮断弁25は、エンジン経路部11aの冷却水流路を閉じる。
Specifically, the switching valve 40 connects the first port 40a and the third port 40c, connects the second port 40b and the fourth port 40d, and closes the fifth port 40e. In the third operation mode, the shutoff valve 25 closes the cooling water flow path of the engine path portion 11a.
これにより、コンデンサ回路12では、コンデンサ31から流出した冷却水が冷却水流通機器23、ヒータコア22、電気機器32の順に直列に流れてコンデンサ31に流入する。換言すれば、コンデンサ経路部12aの冷却水が機器経路部11c、ヒータコア経路部11bの順に直列に流れてコンデンサ経路部12aに流入する。エンジン冷却回路11では、エンジン21および第1ラジエータ24に冷却水が循環する。
Thereby, in the capacitor circuit 12, the cooling water flowing out from the capacitor 31 flows in series in the order of the cooling water circulation device 23, the heater core 22, and the electric device 32 and flows into the capacitor 31. In other words, the cooling water in the capacitor path portion 12a flows in series in the order of the device path portion 11c and the heater core path portion 11b and flows into the capacitor path portion 12a. In the engine cooling circuit 11, cooling water circulates through the engine 21 and the first radiator 24.
次に、車両用熱管理装置10の電気制御部を図5に基づいて説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。制御装置60は、ROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。制御装置60の出力側には各種制御対象機器が接続されている。制御装置60は、各種制御対象機器の作動を制御する制御部である。
Next, the electric control unit of the vehicle thermal management apparatus 10 will be described with reference to FIG. The control device 60 is composed of a well-known microcomputer including a CPU, a ROM, a RAM and the like and peripheral circuits thereof. The control device 60 performs various calculations and processes based on the control program stored in the ROM. Various devices to be controlled are connected to the output side of the control device 60. The control device 60 is a control unit that controls the operation of various devices to be controlled.
制御装置60によって制御される制御対象機器は、エンジンポンプ20、コンデンサポンプ30、遮断弁25、切替弁40および圧縮機51等である。
The control target devices controlled by the control device 60 are the engine pump 20, the condenser pump 30, the shutoff valve 25, the switching valve 40, the compressor 51, and the like.
制御装置60の入力側にはセンサ群の検出信号が入力される。センサ群は、エンジン水温センサ61、コンデンサ水温センサ62、内気温度センサ63、外気温度センサ64および日射量センサ65等である。
The detection signal of the sensor group is input to the input side of the control device 60. The sensor group includes an engine water temperature sensor 61, a condenser water temperature sensor 62, an inside air temperature sensor 63, an outside air temperature sensor 64, a solar radiation amount sensor 65, and the like.
エンジン水温センサ61は、エンジン冷却回路11の冷却水温度を検出する熱媒体温度検出部である。具体的には、エンジン水温センサ61は、エンジン経路部11aの冷却水温度を検出する。
The engine water temperature sensor 61 is a heat medium temperature detection unit that detects the coolant temperature of the engine cooling circuit 11. Specifically, the engine water temperature sensor 61 detects the cooling water temperature of the engine path portion 11a.
コンデンサ水温センサ62は、コンデンサ回路12の冷却水温度を検出する熱媒体温度検出部である。具体的には、コンデンサ水温センサ62は、コンデンサ経路部12aの冷却水温度を検出する。
The condenser water temperature sensor 62 is a heat medium temperature detection unit that detects the cooling water temperature of the condenser circuit 12. Specifically, the condenser water temperature sensor 62 detects the cooling water temperature of the condenser path portion 12a.
内気温度センサ63は、内気の温度を検出する内気温度検出部である。外気温度センサ64は、外気の温度を検出する外気温度検出部である。日射量センサ65は、車室内の日射量を検出する日射量検出部である。
The inside air temperature sensor 63 is an inside air temperature detector that detects the temperature of the inside air. The outside temperature sensor 64 is an outside temperature detector that detects the temperature of the outside air. The solar radiation amount sensor 65 is a solar radiation amount detector that detects the amount of solar radiation in the passenger compartment.
制御装置60の入力側には、車室内前部の計器盤付近に配置された操作パネル68に設けられた各種空調操作スイッチからの操作信号が入力される。操作パネル68に設けられた各種空調操作スイッチとしては、エアコンスイッチ、オートスイッチ、室内送風機の風量設定スイッチ、車室内温度設定スイッチ等が設けられている。
Operation signals from various air conditioning operation switches provided on the operation panel 68 disposed in the vicinity of the instrument panel in the front of the passenger compartment are input to the input side of the control device 60. As various air conditioning operation switches provided on the operation panel 68, an air conditioner switch, an auto switch, an air blower setting switch for an indoor fan, a vehicle interior temperature setting switch, and the like are provided.
エアコンスイッチは、空調(すなわち冷房または暖房)の作動・停止(換言すればオン・オフ)を切り替えるスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。車室内温度設定スイッチは、乗員の操作によって車室内目標温度を設定する目標温度設定部の一例である。
The air conditioner switch is a switch for switching on / off (in other words, on / off) of air conditioning (that is, cooling or heating). The auto switch is a switch for setting or canceling automatic control of air conditioning. The vehicle interior temperature setting switch is an example of a target temperature setting unit that sets the vehicle interior target temperature by the operation of the passenger.
次に、上記構成における作動を説明する。制御装置60は、車室内へ送風される空気の目標吹出温度TAOを算出し、目標吹出温度TAOに基づいて暖房モードと非暖房モードとを切り替える。暖房モードは、車室内を暖房する空調モードである。非暖房モードは、車室内を暖房しない空調モードである。非暖房モードは、車室内を冷房する冷房モード、または車室内に送風する送風モード等である。
Next, the operation in the above configuration will be described. The control device 60 calculates a target blowing temperature TAO of the air blown into the vehicle interior, and switches between the heating mode and the non-heating mode based on the target blowing temperature TAO. The heating mode is an air conditioning mode for heating the passenger compartment. The non-heating mode is an air conditioning mode in which the vehicle interior is not heated. The non-heating mode is a cooling mode for cooling the passenger compartment, a blowing mode for blowing air into the passenger compartment, or the like.
車室内へ送風される空気の目標吹出温度TAOは、例えば以下の数式を用いて算出される。TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×As+C
なお、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ63によって検出された内気温度、Tamは外気温度センサ64によって検出された外気温度、Asは日射量センサ65によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。 The target blowing temperature TAO of the air blown into the passenger compartment is calculated using the following formula, for example. TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C
Note that Tset is the vehicle interior set temperature set by the vehicle interior temperature setting switch, Tr is the internal air temperature detected by the internalair temperature sensor 63, Tam is the external air temperature detected by the external air temperature sensor 64, and As is the solar radiation amount sensor 65. Is the amount of solar radiation detected by. Kset, Kr, Kam, Ks are control gains, and C is a correction constant.
なお、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気温度センサ63によって検出された内気温度、Tamは外気温度センサ64によって検出された外気温度、Asは日射量センサ65によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。 The target blowing temperature TAO of the air blown into the passenger compartment is calculated using the following formula, for example. TAO = Kset × Tset−Kr × Tr−Kam × Tam−Ks × As + C
Note that Tset is the vehicle interior set temperature set by the vehicle interior temperature setting switch, Tr is the internal air temperature detected by the internal
目標吹出温度TAOは、車室内を所望の温度に保つために車両用熱管理装置10が生じさせる必要のある熱量に相当するもので、車両用熱管理装置10に要求される空調負荷として捉えることができる。暖房モードにおいては、目標吹出温度TAOは、車両用熱管理装置10に要求される暖房負荷として捉えることができる。
The target outlet temperature TAO corresponds to the amount of heat that the vehicle thermal management device 10 needs to generate in order to keep the interior of the vehicle interior at a desired temperature, and is regarded as an air conditioning load required for the vehicle thermal management device 10. Can do. In the heating mode, the target outlet temperature TAO can be regarded as a heating load required for the vehicle thermal management device 10.
制御装置60は、目標吹出温度TAOが内気温度Trよりも高い場合、暖房モードを実行する。制御装置60は、目標吹出温度TAOが内気温度Trよりも低い場合、冷房モードを実行する。
The control device 60 executes the heating mode when the target blowing temperature TAO is higher than the inside air temperature Tr. The control device 60 executes the cooling mode when the target blowing temperature TAO is lower than the inside air temperature Tr.
制御装置60は、切替弁40の作動を制御することによって、図2~図4に示す作動モードを切り替える。
The control device 60 switches the operation mode shown in FIGS. 2 to 4 by controlling the operation of the switching valve 40.
図2に示す第1作動モードでは、コンデンサ回路12は、電気機器32とコンデンサ31の間で冷却水が循環する循環回路となる。コンデンサ回路12は、エンジン冷却回路11に対して独立的に冷却水が循環する循環回路となる。
In the first operation mode shown in FIG. 2, the capacitor circuit 12 is a circulation circuit in which cooling water circulates between the electric device 32 and the capacitor 31. The capacitor circuit 12 is a circulation circuit in which cooling water circulates independently from the engine cooling circuit 11.
第1作動モードでは、ヒータコア22にエンジン冷却回路11の冷却水が循環するので、エンジン21の廃熱を利用して暖房が行われる。
In the first operation mode, since the cooling water of the engine cooling circuit 11 circulates in the heater core 22, heating is performed using the waste heat of the engine 21.
第1作動モードでは、電気機器32の廃熱によってコンデンサ回路12の水温が維持される。電気機器32の廃熱が少ない場合、コンデンサ31から供給される熱によって、コンデンサ回路12の水温を所定の下限温度よりも高く維持させる。
In the first operation mode, the water temperature of the capacitor circuit 12 is maintained by the waste heat of the electrical device 32. When the waste heat of the electrical device 32 is small, the water temperature of the capacitor circuit 12 is maintained higher than a predetermined lower limit temperature by the heat supplied from the capacitor 31.
電気機器32の廃熱をコンデンサ回路12で保温しておくことによって、エンジン冷却回路11の熱量が不足してエンジン冷却回路11の冷却水温度が下がってきた場合に電気機器32の廃熱を暖房等に活用できる。
By keeping the waste heat of the electric device 32 in the condenser circuit 12, the waste heat of the electric device 32 is heated when the heat quantity of the engine cooling circuit 11 is insufficient and the cooling water temperature of the engine cooling circuit 11 is lowered. Etc.
すなわち、エンジン冷却回路11の熱量が不足してエンジン冷却回路11の冷却水温度が下がってきた場合、第3作動モードに切り替えることによって、ヒータコア22にコンデンサ回路12の冷却水を循環させて電気機器32の廃熱をヒータコア22での空気の加熱に活用する。電気機器32の廃熱が暖房等に必要な熱に対して不足する場合、コンデンサ31から供給される熱も利用して暖房等を行う。
That is, when the amount of heat of the engine cooling circuit 11 is insufficient and the cooling water temperature of the engine cooling circuit 11 is lowered, the cooling water of the capacitor circuit 12 is circulated through the heater core 22 by switching to the third operation mode. The waste heat of 32 is utilized for heating the air in the heater core 22. When the waste heat of the electrical device 32 is insufficient with respect to the heat necessary for heating or the like, the heating or the like is also performed using the heat supplied from the condenser 31.
図3に示す第2作動モードは、電気機器32の廃熱量が多い場合に実行される。第2作動モードでは、第2ラジエータ33に冷却水を流して冷却水から外気に放熱させる。その場合、第2ラジエータ33に流す冷却水流量が少なくなるように、切替弁40の第5ポート40eによって第2ラジエータ経路12bを絞る。また、第2ラジエータ33側にも冷却水が流れるように、切替弁40の第3ポート40cを所定量絞って、第2ラジエータ33をバイパスする流路の圧力損失を大きくする。
The second operation mode shown in FIG. 3 is executed when the amount of waste heat of the electrical device 32 is large. In the second operation mode, the cooling water is allowed to flow through the second radiator 33 to radiate heat from the cooling water to the outside air. In that case, the second radiator path 12b is throttled by the fifth port 40e of the switching valve 40 so that the flow rate of the coolant flowing through the second radiator 33 is reduced. Further, the third port 40c of the switching valve 40 is throttled by a predetermined amount so that the cooling water also flows to the second radiator 33 side, and the pressure loss of the flow path bypassing the second radiator 33 is increased.
図4に示す第3作動モードは、エンジン冷却回路11の冷却水温度が低い場合に実行される。第3作動モードでは、コンデンサ31から供給される熱や電気機器32の廃熱などを暖房等の熱源として利用する。すなわち、エンジン21を暖房目的で稼動させることなく暖房等を行う。また、コンデンサ回路12で蓄熱した電気機器32の廃熱を利用して暖房等を行うので、第1作動モードおよび第2作動モードで使えなかった電気機器32の廃熱を利用できる。
4 is executed when the coolant temperature of the engine cooling circuit 11 is low. In the third operation mode, the heat supplied from the capacitor 31 or the waste heat of the electric device 32 is used as a heat source such as heating. That is, heating or the like is performed without operating the engine 21 for the purpose of heating. Moreover, since heating etc. are performed using the waste heat of the electric equipment 32 stored in the capacitor circuit 12, the waste heat of the electric equipment 32 that cannot be used in the first operation mode and the second operation mode can be used.
第1作動モードおよび第2作動モードでは、遮断弁25および切替弁40はヒータコア22とエンジン経路部11aとの間で冷却水を循環させる。第3作動モードでは、遮断弁25および切替弁40はヒータコア22とコンデンサ経路部12aとの間で冷却水を循環させる。
In the first operation mode and the second operation mode, the shutoff valve 25 and the switching valve 40 circulate cooling water between the heater core 22 and the engine path portion 11a. In the third operation mode, the shutoff valve 25 and the switching valve 40 circulate cooling water between the heater core 22 and the condenser path portion 12a.
エンジン経路部11aの冷却水温度が所定の切替温度よりも高い場合、制御装置60は第1作動モードを実行する。切替温度は、例えば60℃である。これにより、ヒータコア22とエンジン経路部11aとの間で冷却水が循環するのでエンジン21の廃熱を利用して暖房等を行うことができる。コンデンサ回路12は、エンジン冷却回路11に対して独立した冷却水回路となるので、電気機器32の廃熱がコンデンサ回路12の冷却水に蓄熱される。
When the coolant temperature of the engine path portion 11a is higher than the predetermined switching temperature, the control device 60 executes the first operation mode. The switching temperature is, for example, 60 ° C. Thereby, since a cooling water circulates between the heater core 22 and the engine path part 11a, heating etc. can be performed using the waste heat of the engine 21. FIG. Since the capacitor circuit 12 becomes a cooling water circuit independent of the engine cooling circuit 11, the waste heat of the electric device 32 is stored in the cooling water of the capacitor circuit 12.
第1作動モードおよび第2作動モードにおいてエンジン冷却回路11の冷却水温度が下がってきて所定の切替温度を下回った場合、制御装置60は第3作動モードを実行する。これにより、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する。これにより、コンデンサ回路12の冷却水に蓄熱された電気機器32の廃熱を利用して暖房等を行うことができる。
In the first operation mode and the second operation mode, when the cooling water temperature of the engine cooling circuit 11 decreases and falls below a predetermined switching temperature, the control device 60 executes the third operation mode. Thereby, cooling water circulates between the heater core 22 and the capacitor | condenser path | route part 12a. Thereby, heating etc. can be performed using the waste heat of the electric equipment 32 stored in the cooling water of the capacitor circuit 12.
すなわち、エンジン21の廃熱を利用してヒータコア22で空気を加熱しているときには電気機器32の廃熱を蓄えておき、エンジン21の廃熱が暖房等の熱源として不足すると、蓄えられた電気機器32の廃熱を暖房等に利用するので、電気機器32の廃熱を暖房等に有効利用できる。
That is, when the air is heated by the heater core 22 using the waste heat of the engine 21, the waste heat of the electric device 32 is stored, and if the waste heat of the engine 21 is insufficient as a heat source for heating or the like, the stored electricity is stored. Since the waste heat of the device 32 is used for heating or the like, the waste heat of the electric device 32 can be effectively used for heating or the like.
コンデンサ回路12は、第2ラジエータ33と連通可能になっている。コンデンサ回路12の冷却水温度が電気機器32の廃熱によって所定の許容温度以上になった場合、制御装置60は、切替弁40の第5ポート40eを所定の中間開度(換言すれば、絞られた開度)で開き、第2ラジエータ33に中間流量(換言すれば、絞られた流量)で冷却水を流す。許容温度は、電気機器32の耐熱温度を考慮して設定されている。許容温度は、切替温度よりも高い温度であり、例えば70℃である。
The capacitor circuit 12 can communicate with the second radiator 33. When the cooling water temperature of the condenser circuit 12 becomes equal to or higher than a predetermined allowable temperature due to waste heat of the electrical device 32, the control device 60 opens the fifth port 40e of the switching valve 40 to a predetermined intermediate opening (in other words, a throttle valve). And the cooling water is allowed to flow through the second radiator 33 at an intermediate flow rate (in other words, a reduced flow rate). The allowable temperature is set in consideration of the heat resistant temperature of the electric device 32. The allowable temperature is a temperature higher than the switching temperature, and is 70 ° C., for example.
これにより、コンデンサ回路12の冷却水の熱を外気に放熱して、コンデンサ回路12の冷却水を許容温度以下に維持して電気機器32を保護する。このとき第2ラジエータ33に冷却水を大流量で流すと外気温が低い場合に冷却水温度が急降下するため、第2ラジエータ33に対して流量制限する。
Thereby, the heat of the cooling water of the capacitor circuit 12 is dissipated to the outside air, and the cooling water of the capacitor circuit 12 is maintained below the allowable temperature to protect the electric device 32. At this time, if the cooling water is passed through the second radiator 33 at a large flow rate, the cooling water temperature rapidly drops when the outside air temperature is low. Therefore, the flow rate of the second radiator 33 is limited.
コンデンサ31の加熱能力は、圧縮機51の回転数制御によって調整可能である。ヒータコア22がエンジン経路部11aに接続されている場合、制御装置60は、コンデンサ回路12の冷却水が所定の保温温度を維持するように圧縮機51の作動を制御する。保温温度は、切替温度よりも若干低い温度である。保温温度は、例えば40℃である。
The heating capacity of the condenser 31 can be adjusted by controlling the rotational speed of the compressor 51. When the heater core 22 is connected to the engine path portion 11a, the control device 60 controls the operation of the compressor 51 so that the cooling water of the capacitor circuit 12 maintains a predetermined heat retaining temperature. The heat retention temperature is a temperature slightly lower than the switching temperature. The insulation temperature is 40 ° C., for example.
これにより、コンデンサ回路12の冷却水温度を切替温度に近い温度に維持できるので、ヒータコア22の接続先をエンジン経路部11aからコンデンサ経路部12aに切り替えた際、ヒータコア22に流入する冷却水の温度変動を抑制でき、ひいては車室内へ吹き出される空気の温度変動を抑制できる。
Thereby, since the cooling water temperature of the capacitor circuit 12 can be maintained at a temperature close to the switching temperature, the temperature of the cooling water flowing into the heater core 22 when the connection destination of the heater core 22 is switched from the engine path portion 11a to the capacitor path portion 12a. The fluctuation can be suppressed, and consequently the temperature fluctuation of the air blown into the passenger compartment can be suppressed.
制御装置60は、ヒータコア22をエンジン経路部11a側からコンデンサ経路部12a側に繋ぎ替えるタイミングが近づいたら、コンデンサ回路12の冷却水をコンデンサ31で加熱することによってコンデンサ回路12の冷却水温度を保温温度よりも上昇させる。
When the timing for switching the heater core 22 from the engine path portion 11a side to the capacitor path portion 12a side approaches, the control device 60 keeps the cooling water temperature of the capacitor circuit 12 by heating the cooling water of the capacitor circuit 12 with the capacitor 31. Increase above temperature.
具体的には、エンジン冷却回路11の冷却水の温度が切替準備温度を下回ると、コンデンサ回路12の冷却水温度を保温温度よりも上昇させる。切替準備温度は、切替温度よりも若干高い温度である。切替準備温度は、例えば70℃である。
Specifically, when the temperature of the cooling water in the engine cooling circuit 11 falls below the switching preparation temperature, the temperature of the cooling water in the capacitor circuit 12 is raised above the heat retention temperature. The switching preparation temperature is a temperature slightly higher than the switching temperature. The switching preparation temperature is 70 ° C., for example.
そして、コンデンサ回路12の冷却水温度とエンジン冷却回路11の冷却水温度との差が許容範囲内になったら、ヒータコア22をエンジン経路部11a側からコンデンサ経路部12a側に繋ぎ替える。許容範囲は、ヒータコア22に流入する冷却水の温度変動を許容できる温度範囲であり、例えば3℃である。すなわち、コンデンサ回路12の冷却水温度とエンジン冷却回路11の冷却水温度とが同程度になったら、ヒータコア22をエンジン経路部11a側からコンデンサ経路部12a側に繋ぎ替える。
When the difference between the cooling water temperature of the condenser circuit 12 and the cooling water temperature of the engine cooling circuit 11 falls within the allowable range, the heater core 22 is switched from the engine path portion 11a side to the capacitor path portion 12a side. The allowable range is a temperature range in which the temperature fluctuation of the cooling water flowing into the heater core 22 can be allowed, and is 3 ° C., for example. That is, when the cooling water temperature of the capacitor circuit 12 and the cooling water temperature of the engine cooling circuit 11 become approximately the same, the heater core 22 is switched from the engine path portion 11a side to the capacitor path portion 12a side.
換言すれば、制御装置60は、ヒータコア22をエンジン経路部11a側からコンデンサ経路部12a側に繋ぎ替えるタイミングが近づいていない場合は、コンデンサ回路12の冷却水をコンデンサ31で極力加熱しない。
In other words, the control device 60 does not heat the cooling water of the capacitor circuit 12 with the capacitor 31 as much as possible when the timing for switching the heater core 22 from the engine path portion 11a side to the capacitor path portion 12a is not approaching.
これにより、ヒータコア22がエンジン経路部11aに接続されているときにコンデンサ回路12の冷却水温度を必要以上に上昇させなくて済むため、コンデンサ回路12の冷却水温度を維持するために圧縮機51で消費される動力を低減できる。
Thereby, when the heater core 22 is connected to the engine path portion 11a, the cooling water temperature of the capacitor circuit 12 does not need to be increased more than necessary. Therefore, the compressor 51 is used to maintain the cooling water temperature of the capacitor circuit 12. Can reduce the power consumed.
制御装置60は、エンジン冷却回路11の冷却水の温度が必要冷却水温度を下回ると、コンデンサ回路12の冷却水温度を保温温度よりも上昇させる。必要冷却水温度は、エンジン21の作動(具体的には燃焼や摺動)を正常に保つために必要な冷却水温度の下限値である。必要冷却水温度は、例えば40℃である。
When the temperature of the cooling water in the engine cooling circuit 11 falls below the required cooling water temperature, the control device 60 raises the cooling water temperature in the capacitor circuit 12 above the heat retention temperature. The required cooling water temperature is a lower limit value of the cooling water temperature necessary for maintaining normal operation of the engine 21 (specifically, combustion and sliding). The required cooling water temperature is 40 ° C., for example.
これにより、エンジン冷却回路11の冷却水の温度が必要冷却水温度を下回ったときにコンデンサ経路部12aの冷却水の熱をエンジン経路部11aの冷却水に供給することによってエンジン経路部11aの冷却水の温度を必要冷却水温度以上に維持することが可能になる。
Thereby, when the temperature of the cooling water of the engine cooling circuit 11 falls below the required cooling water temperature, the cooling of the engine path 11a is supplied by supplying the heat of the cooling water of the condenser path 12a to the cooling water of the engine path 11a. It becomes possible to maintain the temperature of water above the required cooling water temperature.
切替準備温度または必要冷却水温度は昇温開始温度である。制御装置60は、エンジン冷却回路11の冷却水の温度が昇温開始温度を下回ると、コンデンサ回路12の冷却水温度を保温温度よりも上昇させるようにコンデンサ31による冷却水の加熱を開始する。
The switch preparation temperature or required cooling water temperature is the temperature rise start temperature. When the temperature of the cooling water in the engine cooling circuit 11 falls below the temperature rise start temperature, the control device 60 starts heating the cooling water by the capacitor 31 so as to raise the temperature of the cooling water in the capacitor circuit 12 above the heat retention temperature.
上述のように、ヒータコア22をエンジン経路部11a側からコンデンサ経路部12a側に繋ぎ替える前に、コンデンサ回路12の冷却水をコンデンサ31で加熱してコンデンサ回路12の冷却水温度を保温温度よりも上昇させる。
As described above, before the heater core 22 is connected from the engine path portion 11a side to the capacitor path portion 12a side, the cooling water of the capacitor circuit 12 is heated by the capacitor 31 so that the cooling water temperature of the capacitor circuit 12 is higher than the heat retention temperature. Raise.
このとき、外気温が低いほど冷凍サイクル50の性能が下がってコンデンサ回路12の冷却水温度を上昇させるために必要な時間が延び、ヒータコア22の接続切替に時間がかかる。
At this time, the lower the outside air temperature, the lower the performance of the refrigeration cycle 50 and the longer the time necessary for raising the cooling water temperature of the condenser circuit 12, and it takes time to switch the connection of the heater core 22.
この点に鑑みて、制御装置60は、暖房負荷が高いほど、コンデンサ回路12の冷却水の保温温度を高く設定する。これにより、外気温が低い場合、必要な冷却水温度上昇幅を抑えて切替所要時間を短縮する。
In view of this point, the control device 60 sets the temperature of the cooling water for the condenser circuit 12 to be higher as the heating load is higher. As a result, when the outside air temperature is low, the required cooling water temperature rise is suppressed and the time required for switching is shortened.
制御装置60は、ヒータコア22の接続切替前に冷却水温度を保温温度よりも上昇させる時(以下、冷却水温度上昇時と言う。)に圧縮機51で消費される動力を極力少なくするために次のような制御を行う。
In order to reduce the power consumed by the compressor 51 as much as possible when the control device 60 raises the cooling water temperature above the heat retention temperature (hereinafter referred to as the cooling water temperature rise) before switching the connection of the heater core 22. The following control is performed.
まず、エンジン冷却回路11の冷却水の温度の下降速度から、吹出変動許容量まで下がる時間(以下、下降時間と言う。)を算出する。吹出変動許容量は、例えば3℃程度である。
First, the time (hereinafter, referred to as the descent time) to decrease from the rate of decrease in the temperature of the cooling water in the engine cooling circuit 11 to the blowout variation allowable amount is calculated. The blowout variation allowable amount is, for example, about 3 ° C.
次に、冷凍サイクル50のヒートポンプ性能マップ等に基づいて、下降時間が経過したときにコンデンサ回路12の冷却水の温度がエンジン冷却回路11の冷却水の温度と同等になるように圧縮機51の回転数および作動時間を決める。これにより、圧縮機51の消費動力が必要最低限に最適化されるため、省動力化できる。
Next, based on the heat pump performance map of the refrigeration cycle 50 and the like, the compressor 51 is configured so that the temperature of the cooling water in the condenser circuit 12 becomes equal to the temperature of the cooling water in the engine cooling circuit 11 when the falling time has elapsed. Determine the speed and operating time. Thereby, since the power consumption of the compressor 51 is optimized to the minimum necessary, it is possible to save power.
制御装置60は、冷却水温度上昇時の圧縮機51の回転数を、エンジン冷却回路11の冷却水の温度またはコンデンサ回路12の冷却水の温度に応じて変化させる。
The control device 60 changes the rotation speed of the compressor 51 when the cooling water temperature rises according to the temperature of the cooling water in the engine cooling circuit 11 or the temperature of the cooling water in the capacitor circuit 12.
例えば、制御装置60は、冷却水温度上昇時の圧縮機51の回転数を、エンジン冷却回路11の冷却水温度の下降速度が速いほど高くする。例えば、制御装置60は、冷却水温度上昇時の圧縮機51の回転数を、コンデンサ回路12の冷却水の温度が低いほど高くする。例えば、制御装置60は、圧縮機51の起動からヒータコア22の接続先切替までの時間を、圧縮機51の回転数が高いほど短くする。
For example, the control device 60 increases the rotational speed of the compressor 51 when the cooling water temperature rises as the cooling water temperature descending speed of the engine cooling circuit 11 increases. For example, the control device 60 increases the rotational speed of the compressor 51 when the cooling water temperature rises as the cooling water temperature in the capacitor circuit 12 decreases. For example, the control device 60 shortens the time from the start of the compressor 51 to the switching of the connection destination of the heater core 22 as the rotational speed of the compressor 51 is higher.
本実施形態では、制御装置60は、遮断弁25および切替弁40がヒータコア22とエンジン経路部11aとの間で冷却水を循環させている場合、コンデンサ経路部12aの冷却水の温度を保温温度(換言すれば所定温度)以上になるようにコンデンサ31や第2ラジエータ33の作動(例えばコンデンサ31や第2ラジエータ33の温度調整能力)を制御する。
In the present embodiment, when the shutoff valve 25 and the switching valve 40 circulate cooling water between the heater core 22 and the engine path portion 11a, the control device 60 sets the temperature of the cooling water in the capacitor path portion 12a to the heat retaining temperature. The operation of the capacitor 31 and the second radiator 33 (for example, the temperature adjustment capability of the capacitor 31 and the second radiator 33) is controlled so as to be equal to or higher than (a predetermined temperature in other words).
これによると、ヒータコア22とエンジン経路部11aとの間で冷却水が循環する状態から、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する状態に切り替えた際、ヒータコア22に流入する冷却水の温度変動を抑制できるので、車室内へ吹き出される空気の温度変動を抑制でき、ひいては乗員が不快感を感じることを抑制できる。
According to this, when switching from the state in which the cooling water circulates between the heater core 22 and the engine path portion 11a to the state in which the cooling water circulates between the heater core 22 and the capacitor path portion 12a, the refrigerant flows into the heater core 22. Since the temperature fluctuation of the cooling water can be suppressed, the temperature fluctuation of the air blown into the passenger compartment can be suppressed, and consequently, the passenger can be prevented from feeling uncomfortable.
空調モードが非暖房モードである場合、車室内へ吹き出される空気の温度が変動しても乗員が不快感を感じにくい。換言すれば、空調モードが暖房モードである場合、車室内へ吹き出される空気の温度が変動すると乗員が不快感を感じやすい。この点に鑑みて、制御装置60は、暖房モードである場合、非暖房モードである場合と比較して保温温度を高くする。
When the air conditioning mode is the non-heating mode, even if the temperature of the air blown into the passenger compartment fluctuates, it is difficult for passengers to feel uncomfortable. In other words, when the air conditioning mode is the heating mode, the occupant tends to feel uncomfortable when the temperature of the air blown into the passenger compartment fluctuates. In view of this point, the control device 60 increases the heat retention temperature in the heating mode compared to the non-heating mode.
これにより、暖房モードである場合、コンデンサ経路部12aの冷却水の温度を高くできるので、車室内へ吹き出される空気の温度が変動して乗員が不快感を感じることを一層抑制できる。また、非暖房モードである場合、コンデンサ経路部12aの冷却水の温度を低くできるので、電気機器32の冷却効率を高めることができる。
Thereby, in the heating mode, the temperature of the cooling water in the condenser passage portion 12a can be increased, so that the temperature of the air blown into the passenger compartment can be further prevented from feeling uncomfortable. Moreover, since it is possible to lower the temperature of the cooling water in the condenser path portion 12a in the non-heating mode, the cooling efficiency of the electric device 32 can be increased.
暖房負荷が高いほど、ヒータコア22に流入する冷却水の温度を高くする必要がある。この点に鑑みて、制御装置60は、暖房負荷が高いほど保温温度を高くする。具体的には、制御装置60は、目標吹出温度TAOが高いほど保温温度を高くする。これにより、暖房負荷が高いときであってもヒータコア22に流入する冷却水の温度変動を抑制できる。
As the heating load is higher, the temperature of the cooling water flowing into the heater core 22 needs to be increased. In view of this point, the control device 60 increases the heat insulation temperature as the heating load increases. Specifically, the control device 60 increases the heat retention temperature as the target blowing temperature TAO is higher. Thereby, the temperature fluctuation of the cooling water flowing into the heater core 22 can be suppressed even when the heating load is high.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、エンジン経路部11aの冷却水の温度が切替温度以下になるとヒータコア22とコンデンサ経路部12aとの間で冷却水が循環するように遮断弁25および切替弁40の作動を制御する。そして、制御装置60は、保温温度を切替温度以下に設定する。
In the present embodiment, when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the heater core 22 and the capacitor path to pass when the temperature of the cooling water in the engine path portion 11a falls below the switching temperature. The operation of the shutoff valve 25 and the switching valve 40 is controlled so that the cooling water circulates between the parts 12a. And the control apparatus 60 sets heat retention temperature to below switching temperature.
これによると、保温温度が切替温度を上回る温度に設定されている場合と比較して、コンデンサ31で冷却水を加熱するために消費される動力を抑制できる。
According to this, compared with the case where the heat retention temperature is set to a temperature higher than the switching temperature, the power consumed for heating the cooling water by the capacitor 31 can be suppressed.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、エンジン経路部11aの冷却水の温度が切替温度以下になり且つエンジン経路部11aの冷却水とコンデンサ経路部12aの冷却水との温度差が許容範囲内になるとヒータコア22とコンデンサ経路部12aとの間で冷却水が循環するように遮断弁25および切替弁40の作動を制御する。
In the present embodiment, when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the temperature of the cooling water in the engine path portion 11a to be equal to or lower than the switching temperature and the engine path portion 11a. Control of the shutoff valve 25 and the switching valve 40 so that the cooling water circulates between the heater core 22 and the condenser path 12a when the temperature difference between the cooling water of the condenser and the cooling water of the condenser path 12a falls within an allowable range. To do.
これにより、ヒータコア22とエンジン経路部11aとの間で冷却水が循環する状態から、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する状態に切り替えた際、ヒータコア22に流入する冷却水の温度変動を一層抑制できる。
As a result, when the cooling water is circulated between the heater core 22 and the engine path portion 11a and the cooling water is circulated between the heater core 22 and the capacitor path portion 12a, the cooling that flows into the heater core 22 is switched. Water temperature fluctuation can be further suppressed.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、エンジン経路部11aの冷却水の温度が昇温開始温度を下回るとコンデンサ経路部12aの冷却水の温度を保温温度よりも高くするようにコンデンサ31の作動を制御する。昇温開始温度は、切替準備温度または必要冷却水温度である。
In the present embodiment, when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 causes the condenser path portion when the temperature of the cooling water in the engine path portion 11a falls below the temperature rise start temperature. The operation of the condenser 31 is controlled so that the temperature of the cooling water 12a is higher than the heat retention temperature. The temperature increase start temperature is a switching preparation temperature or a required cooling water temperature.
これによると、昇温開始温度が切替準備温度である場合、ヒータコア22とエンジン経路部11aとの間で冷却水が循環する状態からヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する状態に切り替えるタイミングが近づいたらコンデンサ経路部12aの冷却水温度を保温温度よりも上昇させてエンジン経路部11aの冷却水温度に近づけるので、保温温度を低く設定することができる。そのため、コンデンサ31で冷却水の温度を調整するために圧縮機51で消費される動力を低減できる。
According to this, when the temperature rise start temperature is the switching preparation temperature, the cooling water circulates between the heater core 22 and the condenser path portion 12a from the state where the cooling water circulates between the heater core 22 and the engine path portion 11a. When the timing for switching to the state approaches, the cooling water temperature of the capacitor path portion 12a is raised above the heat retention temperature to approach the cooling water temperature of the engine path portion 11a, so that the heat retention temperature can be set low. Therefore, since the condenser 31 adjusts the temperature of the cooling water, the power consumed by the compressor 51 can be reduced.
昇温開始温度が必要冷却水温度である場合、コンデンサ経路部12aの冷却水の熱をエンジン経路部11aの冷却水に供給することによってエンジン経路部11aの冷却水の温度を必要冷却水温度に維持することが可能になる。
When the temperature rise start temperature is the required cooling water temperature, the temperature of the cooling water in the engine path portion 11a is set to the required cooling water temperature by supplying the heat of the cooling water in the capacitor path portion 12a to the cooling water in the engine path portion 11a. It becomes possible to maintain.
保温温度を低く設定するほど圧縮機51で消費される動力を低減できるが、保温温度を低く設定した場合、ヒータコア22の接続先を切り替えるタイミングが近づいたときにコンデンサ経路部12aの冷却水の温度をエンジン経路部11aの冷却水温度に近づけるための冷却水温度上昇幅が大きくなるので、コンデンサ経路部12aの冷却水の温度を速やかに上昇させる必要が生じる。
The power consumed by the compressor 51 can be reduced as the heat retention temperature is set lower. However, when the heat retention temperature is set lower, the temperature of the cooling water in the condenser path portion 12a approaches when the timing for switching the connection destination of the heater core 22 approaches. Therefore, it is necessary to quickly increase the temperature of the cooling water in the capacitor path portion 12a.
圧縮機51の回転数を高くすればコンデンサ経路部12aの冷却水の温度を速やかに上昇させることができるが、圧縮機51の回転数を高くすると乗員が圧縮機51の作動音を異音として感じやすくなる。車両の走行速度が高くなると風切音が大きくなるので、圧縮機51の回転数を高くしても圧縮機51の作動音が風切音にかき消され、乗員が圧縮機51の作動音を感じにくくなる。
If the rotation speed of the compressor 51 is increased, the temperature of the cooling water in the condenser path portion 12a can be quickly increased. However, if the rotation speed of the compressor 51 is increased, the occupant makes the operation sound of the compressor 51 abnormal. It becomes easier to feel. Since the wind noise increases as the vehicle speed increases, the operating noise of the compressor 51 is drowned out by the wind noise even when the rotation speed of the compressor 51 is increased, and the passenger feels the operating noise of the compressor 51. It becomes difficult.
この点に鑑みて、制御装置60は、車両の走行速度が高いほど保温温度を低く設定する。これにより、コンデンサ経路部12aの冷却水温度を保温温度に維持するために消費される動力を低減できる。車両の走行速度は、図示しない車速センサによって検出可能である。
In view of this point, the control device 60 sets the heat insulation temperature lower as the traveling speed of the vehicle is higher. Thereby, the power consumed in order to maintain the cooling water temperature of the capacitor | condenser path | route part 12a at heat retention temperature can be reduced. The traveling speed of the vehicle can be detected by a vehicle speed sensor (not shown).
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、エンジン経路部11aの冷却水の温度の下降速度と切替温度とコンデンサ経路部12aの冷却水の温度とに基づいて圧縮機51の回転数を決定する。
In this embodiment, when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 reduces the cooling water temperature of the engine path portion 11a, the switching temperature, and the capacitor path portion 12a. The rotation speed of the compressor 51 is determined based on the temperature of the cooling water.
これにより、ヒータコア22の接続先を切り替えるタイミングが近づいたときにコンデンサ経路部12aの冷却水の温度を保温温度よりも上昇させてエンジン経路部11aの冷却水温度に近づけるために圧縮機51で消費される動力を抑制できる。
As a result, when the timing for switching the connection destination of the heater core 22 approaches, the temperature of the cooling water in the condenser path portion 12a is raised above the heat retaining temperature and consumed by the compressor 51 to approach the cooling water temperature of the engine path portion 11a. Can be suppressed.
第2ラジエータ33は、コンデンサ経路部12aの冷却水と外気とを熱交換させてコンデンサ経路部12aの冷却水の熱を外気に放熱させる。これにより、コンデンサ経路部12aの冷却水の温度が電気機器32の廃熱によって許容温度を超えることを抑制できる。
The second radiator 33 exchanges heat between the cooling water of the condenser path portion 12a and the outside air to dissipate the heat of the cooling water of the condenser path portion 12a to the outside air. Thereby, it can suppress that the temperature of the cooling water of the capacitor | condenser path | route part 12a exceeds allowable temperature with the waste heat of the electric equipment 32. FIG.
冷凍サイクル50は、冷媒流れを逆転させることができるようになってもよい。冷凍サイクル50の冷媒流れを逆転させた場合、コンデンサ31に、膨張弁52で減圧膨張された低圧冷媒が流れるので、コンデンサ31は、冷却水の熱を冷媒に吸熱させる吸熱器として機能する。
The refrigeration cycle 50 may be able to reverse the refrigerant flow. When the refrigerant flow of the refrigeration cycle 50 is reversed, the low-pressure refrigerant decompressed and expanded by the expansion valve 52 flows to the condenser 31, so that the condenser 31 functions as a heat absorber that absorbs the heat of the cooling water.
すなわち、冷凍サイクル50の冷媒流れを逆転させた場合、コンデンサ31は、冷凍サイクル50の低圧側冷媒とコンデンサ経路部12aの冷却水とを熱交換させてコンデンサ経路部12aの冷却水の熱を冷凍サイクル50の低圧側冷媒に放熱させる。
That is, when the refrigerant flow of the refrigeration cycle 50 is reversed, the condenser 31 exchanges heat between the low-pressure side refrigerant of the refrigeration cycle 50 and the cooling water of the condenser path portion 12a to refrigerate the heat of the cooling water of the condenser path portion 12a. Heat is released to the low-pressure side refrigerant of the cycle 50.
これにより、コンデンサ経路部12aの冷却水の温度が電気機器32の廃熱によって許容温度を超えることを抑制できる。
Thereby, it is possible to suppress the temperature of the cooling water in the capacitor path portion 12a from exceeding the allowable temperature due to the waste heat of the electric device 32.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、第2ラジエータ33へのコンデンサ経路部12aの冷却水の流れが遮断されるように切替弁40の作動を制御する。
In the present embodiment, when the cooling water circulates between the heater core 22 and the engine path portion 11a, the control device 60 blocks the flow of the cooling water in the condenser path portion 12a to the second radiator 33. The operation of the switching valve 40 is controlled.
これによると、エンジン21の廃熱を利用して暖房している場合、電気機器32の廃熱が第2ラジエータ33で外気に放熱されることを抑制できるので、電気機器32の廃熱をコンデンサ回路12の冷却水に蓄えることができる。
According to this, when the waste heat of the engine 21 is used for heating, it is possible to suppress the waste heat of the electric device 32 from being radiated to the outside air by the second radiator 33. It can be stored in the cooling water of the circuit 12.
そのため、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環する状態になったときにコンデンサ経路部12aの冷却水に蓄えられた電気機器32の廃熱を利用して暖房できるので、廃熱を有効活用できる。
Therefore, when the cooling water circulates between the heater core 22 and the condenser path portion 12a, the waste heat of the electric device 32 stored in the cooling water of the condenser path portion 12a can be used for heating. Effective use of heat.
例えば、制御装置60は、コンデンサ経路部12aの冷却水の温度が切替温度を超えた場合、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環するように遮断弁25および切替弁40の作動を制御する。
For example, when the temperature of the cooling water in the condenser path portion 12a exceeds the switching temperature, the control device 60 sets the shutoff valve 25 and the switching valve 40 so that the cooling water circulates between the heater core 22 and the condenser path portion 12a. Control the operation.
これにより、コンデンサ経路部12aの冷却水に蓄えられた電気機器32の廃熱を暖房に有効利用できる。
Thereby, the waste heat of the electric equipment 32 stored in the cooling water of the condenser path portion 12a can be effectively used for heating.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合において、コンデンサ経路部12aの冷却水の温度が許容温度を超えた場合、第2ラジエータ33に冷却水が絞られた流量で流れるように切替弁40の作動を制御する。
In the present embodiment, when the coolant is circulating between the heater core 22 and the engine path portion 11a, the control device 60 performs the second operation when the temperature of the coolant water in the capacitor path portion 12a exceeds the allowable temperature. The operation of the switching valve 40 is controlled so that the cooling water flows through the radiator 33 at a flow rate that is reduced.
これにより、コンデンサ経路部12aの冷却水の温度が電気機器32の耐熱温度を超えることを抑制できる。
Thereby, it is possible to suppress the temperature of the cooling water in the capacitor path portion 12a from exceeding the heat resistance temperature of the electric device 32.
本実施形態では、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合、ヒータコア22とコンデンサ経路部12aとの間で冷却水が循環している場合と比較して、冷却水の吐出流量が少なくなるようにコンデンサポンプ30の作動を制御する。
In the present embodiment, the control device 60 is configured such that the cooling water is circulated between the heater core 22 and the engine path portion 11a, the cooling water is circulated between the heater core 22 and the condenser path portion 12a, and In comparison, the operation of the condenser pump 30 is controlled such that the discharge flow rate of the cooling water is reduced.
これにより、電気機器32の廃熱をコンデンサ経路部12aの冷却水に蓄えている場合、コンデンサポンプ30の消費動力を低減できる。
Thereby, when the waste heat of the electric device 32 is stored in the cooling water of the condenser path portion 12a, the power consumption of the condenser pump 30 can be reduced.
例えば、制御装置60は、ヒータコア22とエンジン経路部11aとの間で冷却水が循環している場合において、コンデンサ経路部12aの冷却水の温度が許容温度を超えている場合、コンデンサ経路部12aの冷却水の温度が許容温度以下である場合と比較して、冷却水の吐出流量が多くなるようにコンデンサポンプ30の作動を制御する。これにより、電気機器32の冷却が不十分になることを抑制できる。
For example, when the coolant is circulating between the heater core 22 and the engine path portion 11a and the temperature of the coolant in the capacitor path portion 12a exceeds the allowable temperature, the control device 60 determines that the capacitor path portion 12a The operation of the condenser pump 30 is controlled so that the cooling water discharge flow rate increases compared to the case where the temperature of the cooling water is equal to or lower than the allowable temperature. Thereby, it can suppress that cooling of the electric equipment 32 becomes inadequate.
例えば、制御装置60は、第2ラジエータ33にコンデンサ経路部12aの冷却水が流れている場合、第2ラジエータ33へのコンデンサ経路部12aの冷却水の流れが遮断されている場合と比較して、冷却水の吐出流量が多くなるようにコンデンサポンプ30の作動を制御する。これにより、電気機器32の冷却が不十分になることを抑制できる。
For example, the control device 60 compares the cooling water flow of the condenser path portion 12a to the second radiator 33 when the cooling water of the condenser path portion 12a flows to the second radiator 33. The operation of the condenser pump 30 is controlled so that the discharge flow rate of the cooling water increases. Thereby, it can suppress that cooling of the electric equipment 32 becomes inadequate.
(他の実施形態)
上記実施形態を例えば以下のように種々変形可能である。 (Other embodiments)
The above embodiment can be variously modified as follows, for example.
上記実施形態を例えば以下のように種々変形可能である。 (Other embodiments)
The above embodiment can be variously modified as follows, for example.
(1)上記実施形態では、コンデンサ回路12の冷却水温度をコンデンサ31や第2ラジエータ33によって調整するが、コンデンサ回路12の冷却水温度を電気ヒータや燃焼式ヒータによって調整してもよい。
(1) In the above embodiment, the cooling water temperature of the capacitor circuit 12 is adjusted by the capacitor 31 and the second radiator 33, but the cooling water temperature of the capacitor circuit 12 may be adjusted by an electric heater or a combustion heater.
他の熱源の廃熱の受熱能力を調整できる熱交換器によってコンデンサ回路12の冷却水温度を調整してもよい。他の熱源の廃熱の受熱能力を調整できる熱交換器は、例えば、コンデンサ回路12の冷却水と、他の冷却水回路の冷却水とを熱交換させる熱交換器である。
The cooling water temperature of the condenser circuit 12 may be adjusted by a heat exchanger that can adjust the heat receiving ability of waste heat from other heat sources. The heat exchanger that can adjust the heat receiving capability of the waste heat of other heat sources is, for example, a heat exchanger that exchanges heat between the cooling water of the condenser circuit 12 and the cooling water of the other cooling water circuit.
(2)上記実施形態では、切替弁40は五方弁であるが、五方弁の代わりに複数の二方弁や三方弁が用いられていてもよい。
(2) In the above embodiment, the switching valve 40 is a five-way valve, but a plurality of two-way valves or three-way valves may be used instead of the five-way valve.
(3)上記実施形態では、エンジン冷却回路11およびコンデンサ回路12を流れる熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
(3) In the above embodiment, the cooling water is used as the heat medium flowing through the engine cooling circuit 11 and the capacitor circuit 12, but various media such as oil may be used as the heat medium.
熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
Nanofluid may be used as the heat medium. A nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed. In addition to the effect of lowering the freezing point as in the case of cooling water using ethylene glycol (so-called antifreeze liquid), the following effects can be obtained by mixing the nanoparticles with the heat medium.
すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
That is, the effect of improving the thermal conductivity in a specific temperature range, the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature The effect which improves the fluidity | liquidity of can be acquired.
このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
According to this, since the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量を増加させることができる。熱媒体自体の蓄冷熱量とは、顕熱による蓄冷熱の量のことである。
Also, since the heat capacity of the heat medium can be increased, the amount of heat stored in the heat medium itself can be increased. The amount of cold storage heat of the heat medium itself is the amount of cold storage heat by sensible heat.
蓄冷熱量を増加させることにより、圧縮機51を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理装置10の省動力化が可能になる。
Even if the compressor 51 is not operated by increasing the amount of cold storage heat, it is possible to control the temperature and cooling of the equipment using the cold storage heat for a certain amount of time. Motorization becomes possible.
ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
The aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained. The aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT、グラフェン、グラファイトコアシェル型ナノ粒子、およびAuナノ粒子含有CNTなどを用いることができる。CNTとは、カーボンナノチューブのことである。グラファイトコアシェル型ナノ粒子とは、上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体のことである。
Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT, graphene, graphite core-shell nanoparticle, Au nanoparticle-containing CNT, and the like can be used as the constituent atoms of the nanoparticle. CNT is a carbon nanotube. The graphite core-shell type nanoparticle is a particle body having a structure such as a carbon nanotube surrounding the atom.
(4)上記実施形態の冷凍サイクル50では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
(4) In the refrigeration cycle 50 of the above embodiment, a chlorofluorocarbon refrigerant is used as the refrigerant. However, the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. May be.
(5)上記実施形態の冷凍サイクル50は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
(5) The refrigeration cycle 50 of the above embodiment constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
Claims (16)
- 熱媒体が流れる第1熱媒体経路部(12a)および第2熱媒体経路部(11a)と、
前記第2熱媒体経路部(11a)を流れる前記熱媒体に廃熱を供給する廃熱供給機器(21)と、
車室内へ送風される空気と前記熱媒体を熱交換して前記空気を加熱する加熱用熱交換器(22)と、
前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環する状態と、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環する状態とを切り替える切替部(25、40)と、
前記第1熱媒体経路部(12a)の前記熱媒体の温度を調整する調整部(31、33)と、
前記切替部(25、40)が前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体を循環させている場合、前記第1熱媒体経路部(12a)の前記熱媒体の温度が所定温度以上になるように前記調整部(31、33)の作動を制御する制御部(60)とを備える車両用熱管理装置。 A first heat medium path portion (12a) and a second heat medium path portion (11a) through which the heat medium flows;
A waste heat supply device (21) for supplying waste heat to the heat medium flowing through the second heat medium path (11a);
A heating heat exchanger (22) for exchanging heat between the air blown into the passenger compartment and the heat medium to heat the air;
A state in which the heat medium circulates between the heat exchanger for heating (22) and the first heat medium path part (12a), and the heat exchanger for heating (22) and the second heat medium path part. (11a) and a switching unit (25, 40) for switching the state in which the heat medium circulates;
Adjusting units (31, 33) for adjusting the temperature of the heat medium in the first heat medium path (12a);
When the switching unit (25, 40) circulates the heat medium between the heating heat exchanger (22) and the second heat medium path part (11a), the first heat medium path part A vehicle heat management apparatus comprising: a control unit (60) that controls the operation of the adjusting units (31, 33) so that the temperature of the heat medium in (12a) is equal to or higher than a predetermined temperature. - 前記制御部(60)は、前記車室内を暖房する暖房モードである場合、前記車室内を暖房しない非暖房モードである場合と比較して前記所定温度を高くする請求項1に記載の車両用熱管理装置。 The said control part (60) is for vehicles of Claim 1 which makes the said predetermined temperature high compared with the case where it is the non-heating mode which does not heat the said vehicle interior, when it is the heating mode which heats the said vehicle interior. Thermal management device.
- 前記制御部(60)は、暖房負荷が高いほど前記所定温度を高くする請求項1または2に記載の車両用熱管理装置。 The vehicle thermal management device according to claim 1 or 2, wherein the control unit (60) increases the predetermined temperature as the heating load increases.
- 前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記第2熱媒体経路部(11a)の前記熱媒体の温度が切替温度以下になると前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環するように前記切替部(25、40)の作動を制御するようになっており、
前記所定温度は前記切替温度以下の温度に設定されている請求項1ないし3のいずれか1つに記載の車両用熱管理装置。 When the heat medium is circulated between the heating heat exchanger (22) and the second heat medium path part (11a), the control unit (60) When the temperature of the heat medium of 11a) is equal to or lower than the switching temperature, the switching unit (22) and the switching unit (22a) are circulated between the heating heat exchanger (22) and the first heat medium path unit (12a). 25, 40) is controlled,
The vehicle thermal management device according to any one of claims 1 to 3, wherein the predetermined temperature is set to a temperature equal to or lower than the switching temperature. - 前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記第2熱媒体経路部(11a)の前記熱媒体の温度が切替温度以下になり且つ前記第2熱媒体経路部(11a)の前記熱媒体と前記第1熱媒体経路部(12a)の前記熱媒体との温度差が許容範囲内になると前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環するように前記切替部(25、40)の作動を制御する請求項1ないし3のいずれか1つに記載の車両用熱管理装置。 When the heat medium is circulated between the heating heat exchanger (22) and the second heat medium path part (11a), the control unit (60) The temperature of the heat medium in 11a) is equal to or lower than the switching temperature, and the temperature difference between the heat medium in the second heat medium path section (11a) and the heat medium in the first heat medium path section (12a) is allowable. The operation of the switching unit (25, 40) is controlled so that the heat medium circulates between the heat exchanger (22) for heating and the first heat medium path part (12a) when it is within the range. Item 4. The vehicle thermal management device according to any one of Items 1 to 3.
- 前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記第2熱媒体経路部(11a)の前記熱媒体の温度が昇温開始温度を下回ると前記第1熱媒体経路部(12a)の前記熱媒体の温度を前記所定温度よりも高くするように前記調整部(31)の作動を制御する請求項5に記載の車両用熱管理装置。 When the heat medium is circulated between the heating heat exchanger (22) and the second heat medium path part (11a), the control unit (60) When the temperature of the heat medium of 11a) falls below the temperature rise start temperature, the adjustment unit (31) operates so that the temperature of the heat medium of the first heat medium path section (12a) becomes higher than the predetermined temperature. The vehicle thermal management device according to claim 5, wherein the vehicle thermal management device is controlled.
- 冷凍サイクル(50)の低圧冷媒を吸入して高圧冷媒を吐出する圧縮機(51)を備え、
前記調整部は、前記高圧冷媒と前記熱媒体とを熱交換させて前記熱媒体を加熱する熱交換器(31)を有しており、
前記制御部(60)は、車両の走行速度が高いほど前記所定温度を低く設定する請求項6に記載の車両用熱管理装置。 A compressor (51) for sucking the low-pressure refrigerant of the refrigeration cycle (50) and discharging the high-pressure refrigerant;
The adjustment unit includes a heat exchanger (31) that heats the heat medium by exchanging heat between the high-pressure refrigerant and the heat medium,
The vehicle thermal management device according to claim 6, wherein the control unit (60) sets the predetermined temperature to be lower as the traveling speed of the vehicle is higher. - 冷凍サイクル(50)の低圧冷媒を吸入して高圧冷媒を吐出する圧縮機(51)を備え、
前記調整部は、前記高圧冷媒と前記熱媒体とを熱交換させて前記熱媒体を加熱する熱交換器(31)を有しており、
前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記第2熱媒体経路部(11a)の前記熱媒体の温度の下降速度と前記切替温度と前記第1熱媒体経路部(12a)の前記熱媒体の温度とに基づいて前記圧縮機(51)の回転数を決定する請求項6に記載の車両用熱管理装置。 A compressor (51) for sucking the low-pressure refrigerant of the refrigeration cycle (50) and discharging the high-pressure refrigerant;
The adjustment unit includes a heat exchanger (31) that heats the heat medium by exchanging heat between the high-pressure refrigerant and the heat medium,
When the heat medium is circulated between the heating heat exchanger (22) and the second heat medium path part (11a), the control unit (60) The rotational speed of the compressor (51) is determined based on the temperature decrease rate of the heat medium in 11a), the switching temperature, and the temperature of the heat medium in the first heat medium path section (12a). The thermal management apparatus for vehicles as described in 6. - 前記廃熱供給機器(21)は第2廃熱供給機器であり、
さらに、前記第1熱媒体経路部(12a)を流れる前記熱媒体に廃熱を供給する第1廃熱供給機器(32)を備え、
前記調整部は、前記第1熱媒体経路部(12a)の前記熱媒体と外気とを熱交換させて前記第1熱媒体経路部(12a)の前記熱媒体の熱を前記外気に放熱させる外気放熱器(33)を有している請求項1ないし8のいずれか1つに記載の車両用熱管理装置。 The waste heat supply device (21) is a second waste heat supply device,
And a first waste heat supply device (32) for supplying waste heat to the heat medium flowing through the first heat medium path (12a),
The adjustment unit is configured to exchange heat between the heat medium of the first heat medium path part (12a) and the outside air, and to dissipate heat of the heat medium of the first heat medium path part (12a) to the outside air. The vehicle thermal management device according to any one of claims 1 to 8, further comprising a radiator (33). - 前記廃熱供給機器(21)は第2廃熱供給機器であり、
さらに、前記第1熱媒体経路部(12a)を流れる前記熱媒体に廃熱を供給する第1廃熱供給機器(32)を備え、
前記調整部は、冷凍サイクル(50)の低圧冷媒と前記熱媒体とを熱交換させて前記熱媒体の熱を前記低圧冷媒に放熱させる熱交換器(31)を有している請求項1ないし6のいずれか1つに記載の車両用熱管理装置。 The waste heat supply device (21) is a second waste heat supply device,
And a first waste heat supply device (32) for supplying waste heat to the heat medium flowing through the first heat medium path (12a),
The said adjustment | control part has a heat exchanger (31) which heat-exchanges the low pressure refrigerant | coolant of a refrigerating cycle (50), and the said heat medium, and makes the heat of the said heat medium radiate | emit to the said low pressure refrigerant | coolant. The thermal management apparatus for vehicles as described in any one of 6. - 廃熱を熱媒体に供給する第1廃熱供給機器(32)と、
廃熱を前記熱媒体に供給し、前記第1廃熱供給機器(32)と比較して許容温度が高くなっている第2廃熱供給機器(21)と、
車室内へ送風される空気と前記熱媒体を熱交換して前記空気を加熱する加熱用熱交換器(22)と、
前記熱媒体が流れ、前記第1廃熱供給機器(32)が配置された第1熱媒体経路部(12a)と、
前記熱媒体が流れ、前記第2廃熱供給機器(21)が配置された第2熱媒体経路部(11a)と、
前記第1熱媒体経路部(12a)の前記熱媒体と外気とを熱交換させることによって、前記第1熱媒体経路部(12a)の前記熱媒体の熱を前記外気に放熱させる外気放熱器(33)と、
前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環する状態と、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環する状態とを切り替えるとともに、前記外気放熱器(33)に前記第1熱媒体経路部(12a)の前記熱媒体が流れる状態と、前記外気放熱器(33)への前記第1熱媒体経路部(12a)の前記熱媒体の流れが遮断される状態とを切り替える切替部(25、40)と、
前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記外気放熱器(33)への前記第1熱媒体経路部(12a)の前記熱媒体の流れが遮断されるように前記切替部(40)の作動を制御する制御部(60)とを備える車両用熱管理装置。 A first waste heat supply device (32) for supplying waste heat to the heat medium;
A second waste heat supply device (21) for supplying waste heat to the heat medium and having an allowable temperature higher than that of the first waste heat supply device (32);
A heating heat exchanger (22) for exchanging heat between the air blown into the passenger compartment and the heat medium to heat the air;
A first heat medium path section (12a) in which the heat medium flows and the first waste heat supply device (32) is disposed;
A second heat medium path section (11a) in which the heat medium flows and the second waste heat supply device (21) is disposed;
An external air radiator that dissipates heat from the heat medium in the first heat medium path portion (12a) to the outside air by exchanging heat between the heat medium in the first heat medium path portion (12a) and the outside air. 33)
A state in which the heat medium circulates between the heat exchanger for heating (22) and the first heat medium path part (12a), and the heat exchanger for heating (22) and the second heat medium path part. (11a) and the state where the heat medium circulates, and the outside air radiator (33), the state where the heat medium flows in the first heat medium path (12a), and the outside air radiator. A switching unit (25, 40) for switching between a state in which the flow of the heat medium in the first heat medium path part (12a) to (33) is blocked;
When the heat medium circulates between the heat exchanger for heating (22) and the second heat medium path part (11a), the first heat medium path part to the outside air radiator (33) A vehicle heat management apparatus comprising: a control unit (60) that controls the operation of the switching unit (40) so that the flow of the heat medium in (12a) is blocked. - 前記制御部(60)は、前記第1熱媒体経路部(12a)の前記熱媒体の温度が切替温度を超えた場合、前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環するように前記切替部(25、40)の作動を制御する請求項11に記載の車両用熱管理装置。 When the temperature of the heat medium in the first heat medium path part (12a) exceeds a switching temperature, the control unit (60) is configured to change the heating heat exchanger (22) and the first heat medium path part ( 12. The vehicle thermal management device according to claim 11, wherein the operation of the switching unit (25, 40) is controlled so that the heat medium circulates between the vehicle and the heat medium.
- 前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合において、前記第1熱媒体経路部(12a)の前記熱媒体の温度が許容温度を超えた場合、前記外気放熱器(33)に前記熱媒体が絞られた流量で流れるように前記切替部(40)の作動を制御する請求項11または12に記載の車両用熱管理装置。 In the case where the heat medium is circulated between the heat exchanger for heating (22) and the second heat medium path part (11a), the control unit (60) is configured such that the first heat medium path part is When the temperature of the heat medium of (12a) exceeds an allowable temperature, the operation of the switching unit (40) is controlled so that the heat medium flows in the outside air radiator (33) at a flow rate that is throttled. The vehicle thermal management device according to 11 or 12.
- 前記第1熱媒体経路部(12a)の前記熱媒体を吸入して吐出するポンプ(30)を備え、
前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合、前記加熱用熱交換器(22)と前記第1熱媒体経路部(12a)との間で前記熱媒体が循環している場合と比較して、前記熱媒体の吐出流量が少なくなるように前記ポンプ(30)の作動を制御する請求項11または12に記載の車両用熱管理装置。 A pump (30) for sucking and discharging the heat medium in the first heat medium path (12a);
When the heating medium is circulated between the heating heat exchanger (22) and the second heat medium path section (11a), the control unit (60) is configured to heat the heating heat exchanger (22). ) And the first heat medium path portion (12a), the operation of the pump (30) is controlled so that the discharge flow rate of the heat medium is reduced compared to the case where the heat medium is circulating. The vehicle thermal management device according to claim 11 or 12. - 前記第1熱媒体経路部(12a)の前記熱媒体を吸入して吐出するポンプ(30)を備え、
前記制御部(60)は、前記加熱用熱交換器(22)と前記第2熱媒体経路部(11a)との間で前記熱媒体が循環している場合において、前記第1熱媒体経路部(12a)の前記熱媒体の温度が許容温度を超えている場合、前記第1熱媒体経路部(12a)の前記熱媒体の温度が前記許容温度以下である場合と比較して、前記熱媒体の吐出流量が多くなるように前記ポンプ(30)の作動を制御する請求項14に記載の車両用熱管理装置。 A pump (30) for sucking and discharging the heat medium in the first heat medium path (12a);
In the case where the heat medium is circulated between the heat exchanger for heating (22) and the second heat medium path part (11a), the control unit (60) is configured such that the first heat medium path part is When the temperature of the heat medium in (12a) exceeds the allowable temperature, the heat medium is compared with the case where the temperature of the heat medium in the first heat medium path section (12a) is equal to or lower than the allowable temperature. The vehicle thermal management device according to claim 14, wherein the operation of the pump (30) is controlled so that a discharge flow rate of the vehicle increases. - 前記第1熱媒体経路部(12a)の前記熱媒体を吸入して吐出するポンプ(30)を備え、
前記制御部(60)は、前記外気放熱器(33)に前記第1熱媒体経路部(12a)の前記熱媒体が流れている場合、前記外気放熱器(33)への前記第1熱媒体経路部(12a)の前記熱媒体の流れが遮断されている場合と比較して、前記熱媒体の吐出流量が多くなるように前記ポンプ(30)の作動を制御する請求項14に記載の車両用熱管理装置。 A pump (30) for sucking and discharging the heat medium in the first heat medium path (12a);
When the heat medium of the first heat medium path portion (12a) flows through the outside air radiator (33), the control unit (60) is configured to supply the first heat medium to the outside air radiator (33). The vehicle according to claim 14, wherein the operation of the pump (30) is controlled such that the discharge flow rate of the heat medium is increased as compared with a case where the flow of the heat medium in the path portion (12a) is interrupted. Thermal management device.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/073,357 US20190030991A1 (en) | 2016-01-29 | 2017-01-20 | Thermal management device for vehicle |
DE112017000575.2T DE112017000575T5 (en) | 2016-01-29 | 2017-01-20 | THERMAL MANAGEMENT DEVICE FOR A VEHICLE |
CN201780008430.XA CN108778797B (en) | 2016-01-29 | 2017-01-20 | Heat management device for vehicle |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-015614 | 2016-01-29 | ||
JP2016015614 | 2016-01-29 | ||
JP2016-236055 | 2016-12-05 | ||
JP2016236055A JP6551374B2 (en) | 2016-01-29 | 2016-12-05 | Vehicle thermal management device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130846A1 true WO2017130846A1 (en) | 2017-08-03 |
Family
ID=59398047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001837 WO2017130846A1 (en) | 2016-01-29 | 2017-01-20 | Heat management device for vehicle |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017130846A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021142793A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | On-vehicle temperature control system |
JP2021142794A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | On-vehicle temperature control system |
CN113474190A (en) * | 2019-02-28 | 2021-10-01 | 株式会社电装 | Thermal management system |
CN114654961A (en) * | 2022-02-23 | 2022-06-24 | 浙江银轮机械股份有限公司 | Automobile thermal management system and new energy automobile |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08258548A (en) * | 1995-03-23 | 1996-10-08 | Matsushita Electric Ind Co Ltd | Automotive air conditioners |
JP2000203247A (en) * | 1999-01-12 | 2000-07-25 | Zexel Corp | Heat accumulating unit, and heating system with same |
JP2009180103A (en) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | Coolant circulation device |
WO2014112183A1 (en) * | 2013-01-18 | 2014-07-24 | カルソニックカンセイ株式会社 | Refrigerant circulation device, vehicle air-conditioning apparatus, control method for refrigerant circulation device, and program |
WO2016035511A1 (en) * | 2014-09-04 | 2016-03-10 | トヨタ自動車株式会社 | Heat management system for vehicles |
-
2017
- 2017-01-20 WO PCT/JP2017/001837 patent/WO2017130846A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08258548A (en) * | 1995-03-23 | 1996-10-08 | Matsushita Electric Ind Co Ltd | Automotive air conditioners |
JP2000203247A (en) * | 1999-01-12 | 2000-07-25 | Zexel Corp | Heat accumulating unit, and heating system with same |
JP2009180103A (en) * | 2008-01-29 | 2009-08-13 | Toyota Motor Corp | Coolant circulation device |
WO2014112183A1 (en) * | 2013-01-18 | 2014-07-24 | カルソニックカンセイ株式会社 | Refrigerant circulation device, vehicle air-conditioning apparatus, control method for refrigerant circulation device, and program |
WO2016035511A1 (en) * | 2014-09-04 | 2016-03-10 | トヨタ自動車株式会社 | Heat management system for vehicles |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113474190A (en) * | 2019-02-28 | 2021-10-01 | 株式会社电装 | Thermal management system |
CN113474190B (en) * | 2019-02-28 | 2024-05-17 | 株式会社电装 | Thermal management system |
JP2021142793A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | On-vehicle temperature control system |
JP2021142794A (en) * | 2020-03-10 | 2021-09-24 | トヨタ自動車株式会社 | On-vehicle temperature control system |
US11724570B2 (en) * | 2020-03-10 | 2023-08-15 | Toyota Jidosha Kabushiki Kaisha | Vehicle-mounted temperature control system |
JP7327221B2 (en) | 2020-03-10 | 2023-08-16 | トヨタ自動車株式会社 | In-vehicle temperature control system |
JP7415683B2 (en) | 2020-03-10 | 2024-01-17 | トヨタ自動車株式会社 | In-vehicle temperature control system |
US12083862B2 (en) | 2020-03-10 | 2024-09-10 | Toyota Jidosha Kabushiki Kaisha | Vehicle-mounted temperature control system |
JP7616297B2 (en) | 2020-03-10 | 2025-01-17 | トヨタ自動車株式会社 | Vehicle temperature control system |
CN114654961A (en) * | 2022-02-23 | 2022-06-24 | 浙江银轮机械股份有限公司 | Automobile thermal management system and new energy automobile |
CN114654961B (en) * | 2022-02-23 | 2024-04-26 | 浙江银轮机械股份有限公司 | Automobile heat management system and new energy automobile |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6551374B2 (en) | Vehicle thermal management device | |
US11299014B2 (en) | Refrigeration cycle device | |
US11498391B2 (en) | Air conditioner | |
CN108779942B (en) | Refrigeration cycle device | |
JP6555112B2 (en) | Refrigeration cycle equipment | |
JP6708099B2 (en) | Refrigeration cycle equipment | |
JP6398764B2 (en) | Thermal management system for vehicles | |
US20170197490A1 (en) | Refrigeration cycle device | |
US11897316B2 (en) | Refrigeration cycle device | |
WO2015015754A1 (en) | Refrigeration cycle device for vehicle | |
WO2017056867A1 (en) | Vehicular heat management device | |
CN111094028A (en) | Air conditioner for vehicle | |
CN108291473B (en) | Cooling system for vehicle | |
WO2018042859A1 (en) | Refrigeration cycle device | |
WO2019031123A1 (en) | Air-conditioning apparatus | |
WO2015115050A1 (en) | Vehicle heat management system | |
WO2017130846A1 (en) | Heat management device for vehicle | |
WO2016067598A1 (en) | Cooling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744076 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112017000575 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17744076 Country of ref document: EP Kind code of ref document: A1 |