[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017130708A1 - 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 - Google Patents

蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 Download PDF

Info

Publication number
WO2017130708A1
WO2017130708A1 PCT/JP2017/000747 JP2017000747W WO2017130708A1 WO 2017130708 A1 WO2017130708 A1 WO 2017130708A1 JP 2017000747 W JP2017000747 W JP 2017000747W WO 2017130708 A1 WO2017130708 A1 WO 2017130708A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
learning
start position
opening start
fuel tank
Prior art date
Application number
PCT/JP2017/000747
Other languages
English (en)
French (fr)
Inventor
啓太 福井
善和 宮部
Original Assignee
トヨタ自動車株式会社
愛三工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 愛三工業株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201780008463.4A priority Critical patent/CN108603465A/zh
Priority to US16/072,405 priority patent/US20180363593A1/en
Priority to DE112017000517.5T priority patent/DE112017000517T5/de
Publication of WO2017130708A1 publication Critical patent/WO2017130708A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0836Arrangement of valves controlling the admission of fuel vapour to an engine, e.g. valve being disposed between fuel tank or absorption canister and intake manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/089Layout of the fuel vapour installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4516Gas separation or purification devices adapted for specific applications for fuel vapour recovery systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0872Details of the fuel vapour pipes or conduits

Definitions

  • the present disclosure relates to an evaporative fuel processing apparatus including a block valve installed in a vapor passage connecting a fuel tank and a canister, and a valve opening start position learning method of the block valve.
  • the valve opening start position of the block valve is learned based on the change in the internal pressure of the fuel tank when the block valve driven by the stepping motor and the axial distance between the valve body and the valve seat of the block valve are changed.
  • An evaporative fuel processing device including a control device is known (for example, see Patent Document 1).
  • the control device of the fuel vapor processing apparatus moves the valve body in the valve opening direction from the valve closing limit position of the block valve by a predetermined stroke, and the internal pressure of the fuel tank is set to the previously detected value. On the other hand, it is determined whether or not it has decreased by a predetermined value or more.
  • the control device determines that the internal pressure of the fuel tank has decreased by a predetermined value or more with respect to the previous detection value, the control device regards that the block valve has started to open, and based on the total stroke amount from the valve closing limit position.
  • the learning value of the valve opening start position is calculated. Further, the control device determines whether or not the increase in the internal pressure of the fuel tank is within the allowable range, and the increase in the internal pressure of the fuel tank is outside the allowable range during or before learning the valve opening start position of the block valve. If it is determined that the learning is, the learning of the valve opening start position is interrupted or prohibited.
  • the detection value of the sensor that detects the internal pressure of the fuel tank changes not only according to the fuel evaporation state in the fuel tank but also depending on the behavior of the vehicle equipped with the evaporated fuel processing device, that is, the behavior of the fuel in the fuel tank. . Therefore, even if learning of the valve opening start position of the blocking valve is once started, if the internal pressure (detected value) of the fuel tank changes due to, for example, a change in the behavior of the fuel accompanying the traveling of the vehicle, the learning of the valve opening start position is performed. It may be interrupted. Therefore, when learning of the valve opening start position is interrupted, it is preferable to complete learning of the valve opening start position as soon as possible when execution of learning is allowed thereafter.
  • the invention of the present disclosure makes it possible to quickly complete the learning of the valve opening start position when learning of the valve opening start position of the blocking valve once started is interrupted and then the execution of learning is permitted.
  • the main purpose is to do.
  • the evaporative fuel processing apparatus is an evaporative fuel processing apparatus including a block valve installed in a vapor passage connecting a fuel tank and a canister and having a valve body that moves forward and backward in an axial direction with respect to a valve seat.
  • a control device that controls opening and closing of a valve and learns a valve opening start position of the blocking valve based on a change in internal pressure of the fuel tank when an axial distance between the valve body and the valve seat is changed.
  • a control device that performs learning of the valve opening start position using the command value of the axial distance immediately before the interruption as an initial command value.
  • the control device of this fuel vapor processing apparatus learns the valve opening start position of the block valve based on the change in the internal pressure of the fuel tank when the axial distance between the valve body and the valve seat of the block valve is changed. Yes, when the learning is interrupted during learning of the valve opening start position, the command value of the axial distance immediately before the interruption is stored. Then, when the learning timing of the next valve opening start position comes after the interruption of learning, the control device performs learning of the valve opening start position using the command value of the axial distance immediately before the interruption as an initial command value. .
  • control device when the internal pressure of the fuel tank is equal to or lower than a first threshold value lower than the standard atmospheric pressure, or equal to or higher than a second threshold value higher than the standard atmospheric pressure, Learning may be performed.
  • the fuel tank may store fuel supplied to an engine mounted on a vehicle, and the control device learns the valve opening start position when the vehicle stops. There may be.
  • a valve opening start position learning method for a sealing valve in an evaporative fuel processing apparatus is provided in a vapor passage that connects a fuel tank and a canister and has a valve body that moves forward and backward in an axial direction with respect to a valve seat.
  • a valve opening start position learning method for a sealing valve in an evaporative fuel processing apparatus including: (a) controlling the opening and closing of the blocking valve and changing an axial distance between the valve body and the valve seat Learning a valve opening start position of the blocking valve based on a change in internal pressure of the fuel tank, and step (a) includes a step immediately before the interruption when the learning is interrupted during learning of the valve opening start position.
  • the axial distance command value is stored, and when the learning timing of the next valve opening start position comes after the learning is interrupted, the axial distance command value immediately before the interruption is used as the initial command value for the opening.
  • the learning timing of the next valve opening start position comes after the learning is interrupted, the axial distance command value immediately before the interruption is used as the initial
  • FIG. 1 is a schematic configuration diagram illustrating an evaporated fuel processing apparatus 20 according to the present disclosure.
  • evaporative fuel generated in a fuel tank 10 storing fuel supplied to a combustion chamber 2 of an engine (internal combustion engine) 1 mounted on a vehicle (not shown) leaks to the outside. It is for suppressing the above.
  • the air purified by the air cleaner 3 is sucked into the combustion chambers 2 via the intake pipe 4, the throttle valve 5, an intake valve (not shown), and the like.
  • the fuel is injected from the fuel injection valve 6 in 4p or in each combustion chamber 2.
  • the engine 1 is controlled by an electronic control unit (hereinafter referred to as “ECU”) 8 which is a microcomputer including a CPU (not shown).
  • ECU electronice control unit
  • the vehicle on which the engine 1 is mounted may have only the engine 1 as a power source that outputs driving power, and includes a hybrid that includes an electric motor that can output driving power in addition to the engine 1. It may be a vehicle.
  • the fuel tank 10 regulates a fuel inlet pipe 11 for supplying fuel into the fuel tank 10 through a fuel filler port of a vehicle (not shown), a vent line 12, and a reverse flow of fuel from the fuel tank 10 to the fuel filler port.
  • a check valve 13 a fuel sender gauge 14 for detecting the level of fuel in the fuel tank 10 using a float, a tank internal pressure sensor 15 for detecting the internal pressure Ptk of the fuel tank 10, and the like.
  • Each of the fuel sender gauge 14 and the tank internal pressure sensor 15 transmits a signal indicating the detected value to the ECU 8.
  • a fuel passage 16 is connected to the upper portion of the fuel tank 10, and a fuel pump module 17 controlled by the ECU 8 and connected to the fuel passage 16 is disposed in the fuel tank 10. The fuel injected by the fuel pump module 17 is supplied to the fuel injection valve 6 of the engine 1 through the fuel passage 16.
  • the evaporative fuel processing device 20 is installed in the middle of a canister 22, a vapor passage 24 connecting the fuel tank 10 and the canister 22, a purge passage 26, an atmospheric passage 28, and a vapor passage 24.
  • Block valve 30 The canister 22 has activated carbon as an adsorbent disposed therein, and adsorbs the evaporated fuel in the fuel tank 10 with the adsorbent.
  • One end portion (upstream end portion) of the vapor passage 24 is connected to the fuel tank 10 so as to communicate with the gas layer portion in the fuel tank 10, and the other end portion (downstream end portion) of the vapor passage 24 is
  • the canister 22 is connected to communicate with the inside of the canister 22.
  • One end (upstream end) of the purge passage 26 is connected to the canister 22 so as to communicate with the inside of the canister 22, and the other end (downstream end) of the purge passage 26 is connected to the engine 1.
  • the intake pipe 4 is connected downstream of the throttle valve 5.
  • a purge valve 27 that can shut off the purge passage 26 is provided in the middle of the purge passage 26.
  • the purge valve 27 is an on-off valve controlled by the ECU 8, and is normally maintained in a closed state.
  • one end of the atmospheric passage 28 is connected to the canister 22 via a key-off pump module 40 as a diagnostic part used for failure diagnosis of the evaporated fuel processing apparatus 20.
  • the key-off pump module 40 includes a switching valve (shutoff valve) 41 and a vacuum pump (decompression pump) 45 that are open / close valves controlled by the ECU 8, and a canister internal pressure sensor 47 that detects the internal pressure Pc of the canister 22 and transmits it to the ECU 8.
  • the switching valve 41 allows communication between the inside of the canister 22 and the atmospheric passage 28 when the valve is open, and blocks communication between the two when the valve is closed.
  • the vacuum pump 45 can depressurize (depressurize) the inside of the canister 22 with the switching valve 41 closed.
  • An air filter 29 is installed in the middle of the atmospheric passage 28, and the other end of the atmospheric passage 28 is open to the atmosphere.
  • the block valve 30 is a flow rate adjustment valve controlled by the ECU 8, blocks the vapor passage 24 when the valve is closed, blocks communication between the fuel tank 10 and the canister 22, and flows through the vapor passage 24 when the valve is open.
  • the flow rate of the gas to be adjusted is adjusted.
  • the blocking valve 30 includes a casing 31, a valve seat 32 formed in the casing 31, a valve body 33 disposed in the casing 31 so as to be movable in the axial direction, and a valve guide (not shown) disposed in the casing 31.
  • a stepping motor 34 connected to the valve body 33 via the. The stepping motor 34 is controlled by the ECU 8 and moves the valve body 33 forward and backward relative to the valve seat 32 in the axial direction.
  • valve body 33 With the operation of the stepping motor 34, the valve body 33 approaches the valve seat 32, and a sealing member (not shown) of the valve body 33 comes into contact with the valve seat 32, thereby closing the closing valve 30. Further, the valve element 33 is separated from the valve seat 32 in accordance with the operation of the stepping motor 34, and a sealing member (not shown) of the valve element 33 is separated from the valve seat 32, so that the blocking valve 30 is opened.
  • the blocking valve 30 is maintained in the closed state, and the fuel vapor in the fuel tank 10 flows into the canister 22. There is no. Further, while the vehicle is parked, the purge passage 26 is maintained in the shut-off state by closing the purge valve 27, and the canister 22 is in communication with the atmospheric passage 28 by opening the switching valve 41. Maintained. Further, in the fuel vapor processing apparatus 20, the ECU 8 diagnoses whether there is a leak in the vapor passage 24 or the purge passage 26 at the time of key-off of the vehicle with the ignition switch (start switch) turned off (when the operation of the engine 1 is stopped). .
  • the ECU 8 opens the purge valve 27 in a state where the interior of the canister 22 is in communication with the atmospheric passage 28. As a result, the intake negative pressure of the engine 1 (intake pipe 4) is supplied into the canister 22 via the purge passage 26, so that air flows into the canister 22 from the atmospheric passage 28.
  • the ECU 8 opens the closing valve 30 to execute the pressure relief of the fuel tank 10.
  • the gas (evaporated fuel) in the fuel tank 10 flows into the canister 22 through the vapor passage 24 (blocking valve 30).
  • the adsorbent of the canister 22 is purged by air or the like flowing into the canister 22, and the evaporated fuel separated from the adsorbent is guided to the intake pipe 4 of the engine 1 together with air and burns in the combustion chamber 2. Be made.
  • FIG. 2 is a flowchart showing an example of a valve opening start position learning routine executed by the ECU 8.
  • the vehicle in the valve opening start position learning routine of FIG. 2, the vehicle is stopped and the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 is lower than the first threshold value Pa, which is lower than the standard atmospheric pressure. Or when it is equal to or higher than the second threshold Pb higher than the standard atmospheric pressure.
  • the ECU 8 when starting the valve opening start position learning routine, the ECU 8 (CPU not shown) first inputs the value of the learning interruption history flag Fi (step S100).
  • the learning interruption history flag Fi is set to 0 when this routine is normally completed at the previous execution, and is set to 1 when this routine is interrupted at the previous execution and does not complete normally. It is what is done.
  • the ECU 8 determines whether or not there is a learning interruption history based on the value of the learning interruption history flag Fi (step S110).
  • step S110 When the ECU 8 determines that the learning interruption history flag Fi is 0 and there is no learning interruption history (step S110: YES), the ECU 8 performs a predetermined limit closing step S0 with respect to the stepping motor 34 of the block valve 30.
  • An initial step Sint as a command value is set (step S120).
  • the limit valve closing step S0 the valve body 33 is moved from a state in which the closing valve 30 is completely closed to a state immediately before the valve member 33 is in contact with the valve seat 32 until the valve is opened. It is predetermined as a step amount of the stepping motor 34 (a command value for an axial distance between the valve element 33 and the valve seat 32).
  • step S110 determines that the learning interruption history flag Fi is 1 and there is a learning interruption history (step S110: NO)
  • it is stored (stored) in a RAM (not shown) of the ECU 8.
  • step SA is set as the initial step Sint (step S125).
  • the post-addition step SA corresponds to a command value for the axial distance between the valve element 33 and the valve seat 32 used for the control of the stepping motor 34.
  • step S120 or S125 the ECU 8 controls the stepping motor 34 so that the rotor of the stepping motor 34 rotates (high-speed rotation) by the set initial step Sint, and adds the initial step Sint as a post-step SA.
  • the data is stored in the RAM (step S130). Further, the ECU 8 inputs the value of the vehicle travel flag and the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 (step S140), and based on the value of the vehicle travel flag and the internal pressure Ptk of the fuel tank 10 It is determined whether or not an execution condition for learning the valve opening start position is satisfied (step S150).
  • the vehicle travel flag is set to the value 1 while the vehicle is traveling, and is set to the value 0 while the vehicle is stopped.
  • the ECU 8 determines that the vehicle travel flag is 0 and the vehicle is stopped and the internal pressure Ptk is equal to or lower than the first threshold value Pa or the internal pressure Ptk is equal to or higher than the second threshold value Pb. Then, it is determined that the execution condition for learning the valve opening start position is satisfied.
  • step S150 When it is determined in step S150 that the execution condition for learning the valve opening start position is satisfied, the ECU 8 causes the rotor of the stepping motor 34 to rotate by a predetermined learning step SL (for example, several steps).
  • the stepping motor 34 is controlled (step S160).
  • the ECU 8 stores the value obtained by adding the learning step SL to the post-addition step SA at that time in the RAM as a new post-addition step SA (step S170).
  • the ECU 8 is based on the internal pressure Ptk of the fuel tank 10 detected by the tank internal pressure sensor 15 until the predetermined time (for example, several hundred mSec) elapses after the rotor rotates by the learning step SL.
  • the predetermined time for example, several hundred mSec
  • a change amount ⁇ Ptk of the internal pressure Ptk is acquired (calculated) (step S180). Then, the ECU 8 determines whether or not the absolute value of the acquired change amount ⁇ Ptk is equal to or greater than a predetermined threshold value ⁇ Pref (positive value) (step S190).
  • step S190 When it is determined in step S190 that the absolute value of the change amount ⁇ Ptk of the internal pressure Ptk is less than the threshold value ⁇ Pref, the ECU 8 has not caused a substantial change in the internal pressure Ptk of the fuel tank 10 and the block valve 30 is opened. Therefore, the processing after step S140 described above is executed again. On the other hand, when it is determined in step S190 that the absolute value of the change amount ⁇ Ptk of the internal pressure Ptk is equal to or greater than the threshold value ⁇ Pref, the ECU 8 substantially increases the internal pressure Ptk of the fuel tank 10 by opening the block valve 30.
  • the post-addition step SA stored in the RAM at that time (stored in the RAM in the immediately preceding step S170) is used as the valve opening start step SS that is the learned value of the valve opening start position.
  • the data is stored in the RAM (step S200).
  • the ECU 8 sets the learning interruption history flag Fi to the value 0 (step S210) and ends this routine. Further, when the processing after step S140 is executed again, if it is determined in step S150 that the execution condition for learning the valve opening start position is not satisfied, the ECU 8 interrupts learning of the valve opening start position. Then, after setting the learning interruption history flag Fi to the value 1 (step S220), this routine is ended.
  • the ECU 8 that is the control device of the fuel vapor processing apparatus 20 executes the valve opening start position learning routine of FIG. 2, and the step amount of the stepping motor 34 of the block valve 30, that is, the valve body 33 and the valve seat 32.
  • the valve opening start position of the blocking valve 30 is learned based on the change in the internal pressure Ptk of the fuel tank 10 when the axial distance is changed. Further, when the learning, that is, the valve opening start position learning routine is interrupted during learning of the valve opening start position (step S150: NO), the ECU 8 performs an addition step SA corresponding to the command value of the axial distance immediately before the interruption. Is stored in the RAM (step S170 immediately before a negative determination is made in step S150).
  • the ECU 8 performs an initial instruction on the command value of the post-addition step SA stored in the RAM at that time, that is, the axial distance immediately before the interruption.
  • the value is set as a value (step S125), and learning of the valve opening start position is executed.
  • the command value of the axial distance in the state where the closing valve 30 is reliably closed as in the limit valve closing step S0 is set as the initial command value.
  • learning of the valve opening start position can be completed more quickly.
  • the evaporated fuel processing apparatus 20 of the present disclosure includes the valve body 33 that is installed in the vapor passage 24 that connects the fuel tank 10 and the canister 22 and that moves forward and backward in the axial direction with respect to the valve seat 32.
  • the closing valve 30 is controlled to open and close, and the opening of the closing valve 30 based on the change in the internal pressure Ptk of the fuel tank 10 when the axial distance between the valve body 33 and the valve seat 32 is changed.
  • ECU8 which learns a starting position.
  • the ECU 8 serving as the control device interrupts the learning during learning of the valve opening start position (step S150: NO)
  • the post-addition step SA corresponding to the command value of the axial distance immediately before the interruption is stored in the RAM.
  • Step S170 and when the learning timing of the next valve opening start position arrives after interruption of learning, the post-addition step SA as the axial distance instruction value immediately before interruption is set as the initial instruction value.
  • Step S125 learning of the valve opening start position is executed. Thereby, when learning of the valve opening start position of the blocking valve 30 once started is interrupted and learning is permitted thereafter, learning of the valve opening start position can be completed more quickly. Become.
  • the invention of the present disclosure can be used in the manufacturing industry of a fuel vapor processing apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁を含む蒸発燃料処理装置の制御装置は、弁体と弁座との軸方向距離を変化させたときの燃料タンクの内圧変化に基づいて封鎖弁の開弁開始位置を学習するものであって、開弁開始位置の学習中に該学習を中断させる際に、中断直前の軸方向距離の指令値を記憶し、学習の中断後に次の開弁開始位置の学習タイミングが到来した際に、中断直前の軸方向距離の指令値を初期指令値として開弁開始位置の学習を実行する。

Description

蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法
 本開示は、燃料タンクとキャニスタとを結ぶベーパ通路に設置された封鎖弁を含む蒸発燃料処理装置および当該封鎖弁の開弁開始位置学習方法に関する。
 従来、ステッピングモータにより駆動される封鎖弁と、当該封鎖弁の弁体と弁座との軸方向距離を変化させたときの燃料タンクの内圧変化に基づいて当該封鎖弁の開弁開始位置を学習する制御装置とを含む蒸発燃料処理装置が知られている(例えば、特許文献1参照)。この蒸発燃料処理装置の制御装置は、開弁開始位置の学習に際して、封鎖弁の閉弁限界位置から弁体を所定ストロークずつ開弁方向に移動させると共に、燃料タンクの内圧が前回の検出値に対して所定値以上低下しているか否かを判定する。そして、当該制御装置は、燃料タンクの内圧が前回の検出値に対して所定値以上低下したと判定すると、封鎖弁が開弁し始めたとみなし、閉弁限界位置からのトータルのストローク量に基づいて開弁開始位置の学習値を算出する。また、当該制御装置は、燃料タンクの内圧上昇量が許容範囲内であるか否かを判定し、封鎖弁の開弁開始位置の学習中あるいは学習前に燃料タンクの内圧上昇量が許容範囲外であると判定した場合、当該開弁開始位置の学習を中断あるいは禁止する。
特開2015-110914号公報
 ここで、燃料タンクの内圧を検出するセンサの検出値は、当該燃料タンクにおける燃料の蒸発状態のみならず、蒸発燃料処理装置を搭載した車両の挙動すなわち燃料タンク内の燃料の挙動によっても変化する。従って、封鎖弁の開弁開始位置の学習が一旦開始されても、例えば車両の走行に伴う燃料の挙動の変化によって燃料タンクの内圧(検出値)が変化すると、当該開弁開始位置の学習が中断されてしまうことがある。従って、開弁開始位置の学習が中断された場合には、その後に学習の実行が許容された際に、できるだけ速やかに開弁開始位置の学習を完了させることが好ましい。
 そこで、本開示の発明は、一旦開始された封鎖弁の開弁開始位置の学習が中断され、その後に学習の実行が許容された際に、当該開弁開始位置の学習を速やかに完了可能にすることを主目的とする。
 本開示の蒸発燃料処理装置は、燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁を含む蒸発燃料処理装置において、前記封鎖弁を開閉制御すると共に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習する制御装置であって、前記開弁開始位置の学習中に該学習を中断させる際に、中断直前の前記軸方向距離の指令値を記憶し、前記学習の中断後に次の前記開弁開始位置の学習タイミングが到来した際に、前記中断直前の前記軸方向距離の指令値を初期指令値として前記開弁開始位置の学習を実行する制御装置を備えるものである。
 この蒸発燃料処理装置の制御装置は、封鎖弁の弁体と弁座との軸方向距離を変化させたときの燃料タンクの内圧変化に基づいて当該封鎖弁の開弁開始位置を学習するものであり、開弁開始位置の学習中に当該学習を中断させる際に、中断直前の軸方向距離の指令値を記憶する。そして、当該制御装置は、学習の中断後に次の開弁開始位置の学習タイミングが到来した際に、当該中断直前の軸方向距離の指令値を初期指令値として開弁開始位置の学習を実行する。これにより、学習中断後の次の開弁開始位置の学習に際して、例えば封鎖弁が確実に閉弁している状態での軸方向距離の指令値を初期指令値として学習を実行する場合に比べて、開弁開始位置の学習をより速やかに完了させることが可能となる。
 また、前記制御装置は、前記燃料タンクの前記内圧が標準大気圧よりも低い第1閾値以下であるか、あるいは前記標準大気圧よりも高い第2閾値以上である場合、前記開弁開始位置の学習を実行するものであってもよい。
 更に、前記燃料タンクは、車両に搭載されるエンジンに供給される燃料を貯留するものであってもよく、前記制御装置は、前記車両の停車時に前記開弁開始位置の学習を実行するものであってもよい。
 本開示の蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法は、燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁を含む蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法であって、(a)前記封鎖弁を開閉制御すると共に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習するステップを含み、ステップ(a)は、前記開弁開始位置の学習中に該学習を中断させる際に、中断直前の前記軸方向距離の指令値を記憶し、前記学習の中断後に次の前記開弁開始位置の学習タイミングが到来した際に、前記中断直前の前記軸方向距離の指令値を初期指令値として前記開弁開始位置の学習を実行するものである。
 かかる方法によれば、一旦開始された封鎖弁の開弁開始位置の学習が中断され、その後に学習の実行が許容された際に、当該開弁開始位置の学習を速やかに完了することが可能となる。
本開示の蒸発燃料処理装置を示す概略構成図である。 本開示の蒸発燃料処理装置において実行される開弁開始位置学習ルーチンの一例を示すフローチャートである。
 次に、図面を参照しながら本開示の発明を実施するための形態について説明する。
 図1は、本開示の蒸発燃料処理装置20を示す概略構成図である。同図に示す蒸発燃料処理装置20は、図示しない車両に搭載されるエンジン(内燃機関)1の燃焼室2に供給される燃料を貯留する燃料タンク10で発生した蒸発燃料が外部へと漏洩するのを抑制するためのものである。ここで、エンジン1では、エアクリーナ3にて清浄された空気が吸気管4、スロットルバルブ5、図示しない吸気バルブ等を介して各燃焼室2内に吸入され、吸入空気に対しては、吸気ポート4pあるいは各燃焼室2内で燃料噴射弁6から燃料が噴射される。そして、空気と燃料との混合気が各燃焼室2で図示しない点火プラグからの電気火花によって爆発燃焼することで、ピストン7が往復運動することになる。かかるエンジン1は、図示しないCPU等を含むマイクロコンピュータである電子制御ユニット(以下「ECU」という)8により制御される。なお、エンジン1が搭載される車両は、エンジン1のみを走行用の動力を出力する動力源として有するものであってもよく、エンジン1に加えて走行用の動力を出力可能な電動機を含むハイブリッド車両であってもよい。
 燃料タンク10は、図示しない車両の給油口を介して当該燃料タンク10内に燃料を供給するための燃料インレットパイプ11や、ベントライン12、燃料タンク10内から給油口への燃料の逆流を規制する逆止弁13、フロートにより燃料タンク10内の燃料の液面レベルを検出する燃料センダーゲージ14、燃料タンク10の内圧Ptkを検出するタンク内圧センサ15等を有する。燃料センダーゲージ14およびタンク内圧センサ15は、それぞれ検出値を示す信号をECU8に送信する。また、燃料タンク10の上部には、燃料通路16が接続されており、燃料タンク10内には、ECU8により制御されると共に燃料通路16に接続された燃料ポンプモジュール17が配置されている。エンジン1の燃料噴射弁6には、燃料ポンプモジュール17により圧送される燃料が燃料通路16を介して供給される。
 図1に示すように、蒸発燃料処理装置20は、キャニスタ22と、燃料タンク10とキャニスタ22とを結ぶベーパ通路24と、パージ通路26と、大気通路28と、ベーパ通路24の中途に設置された封鎖弁30とを含む。キャニスタ22は、その内部に配置された吸着材としての活性炭を有し、燃料タンク10内の蒸発燃料を当該吸着材により吸着するものである。ベーパ通路24の一端部(上流側端部)は、燃料タンク10内の気層部と連通するように当該燃料タンク10に接続され、ベーパ通路24の他端部(下流側端部)は、キャニスタ22の内部と連通するように当該キャニスタ22に接続される。
 また、パージ通路26の一端部(上流側端部)は、キャニスタ22の内部と連通するように当該キャニスタ22に接続され、パージ通路26の他端部(下流側端部)は、エンジン1のスロットルバルブ5よりも下流側で吸気管4に接続されている。そして、パージ通路26の中途には、パージ通路26を遮断可能なパージ弁27が設置されている。パージ弁27は、ECU8により制御される開閉弁であり、通常閉弁状態に維持される。更に、大気通路28の一端部は、蒸発燃料処理装置20の故障診断に使用される診断用部品としてのキーオフポンプモジュール40を介してキャニスタ22に接続されている。キーオフポンプモジュール40は、それぞれECU8により制御される開閉弁である切換弁(遮断弁)41および真空ポンプ(減圧ポンプ)45と、キャニスタ22の内圧Pcを検出してECU8に送信するキャニスタ内圧センサ47とを含むものである。切換弁41は、開弁状態でキャニスタ22の内部と大気通路28との連通を許容し、閉弁状態で両者の連通を遮断するものである。真空ポンプ45は、切換弁41の閉弁状態でキャニスタ22の内部を減圧(負圧化)可能なものである。また、大気通路28の中途には、エアフィルタ29が設置されており、大気通路28の他端部は大気開放されている。
 封鎖弁30は、ECU8により制御される流量調整弁であり、閉弁状態でベーパ通路24を封鎖して燃料タンク10とキャニスタ22との連通を遮断すると共に、開弁状態でベーパ通路24を流通する気体の流量を調整するものである。封鎖弁30は、ケーシング31と、ケーシング31に形成された弁座32と、ケーシング31内に軸方向に移動自在に配置される弁体33と、ケーシング31内に配置されると共に図示しないバルブガイドを介して弁体33に連結されるステッピングモータ34とを含む。ステッピングモータ34は、ECU8により制御され、弁体33を弁座32に対して軸方向に進退移動させる。ステッピングモータ34の作動に伴って弁体33が弁座32に接近し、当該弁体33の図示しないシール部材が弁座32に当接することで封鎖弁30が閉弁する。また、ステッピングモータ34の作動に伴って弁体33が弁座32から離間し、当該弁体33の図示しないシール部材が弁座32から離間することで封鎖弁30が開弁する。
 上述のような蒸発燃料処理装置20において、車両の駐車中(エンジン1の運転停止中)、封鎖弁30は閉弁状態に維持され、燃料タンク10内の蒸発燃料がキャニスタ22内に流入することはない。また、車両の駐車中、パージ通路26は、パージ弁27が閉弁されることで遮断状態に維持され、キャニスタ22は、切換弁41が開弁されることで大気通路28に連通された状態に維持される。更に、蒸発燃料処理装置20では、イグニッションスイッチ(スタートスイッチ)がオフされた車両のキーオフ時(エンジン1の運転停止時)に、ECU8によってベーパ通路24やパージ通路26のリークの有無が診断される。
 一方、車両のイグニッションスイッチがオンされると、予め定められた学習実行条件が成立した際に、弁体33と弁座32との軸方向距離を変化させたときの燃料タンク10の内圧変化に基づいて、封鎖弁30の開弁開始位置の学習が実行される。また、車両の走行中に予め定められたパージ条件が成立すると、ECU8は、キャニスタ22の内部が大気通路28に連通された状態でパージ弁27を開弁させる。これにより、エンジン1(吸気管4)の吸気負圧がパージ通路26を介してキャニスタ22内に供給されることで、キャニスタ22内に大気通路28から空気が流入する。更に、ECU8は、パージ弁27が開弁されており、かつ燃料タンク10の内圧Ptkが所定値以上である場合、当該燃料タンク10の圧抜きを実行すべく封鎖弁30を開弁させる。これにより、ベーパ通路24(封鎖弁30)を介してキャニスタ22内に燃料タンク10内の気体(蒸発燃料)が流入するようになる。そして、キャニスタ22の吸着材は、当該キャニスタ22内に流入する空気等によりパージされ、吸着材から離脱した蒸発燃料は、空気と共にエンジン1の吸気管4へと導かれて燃焼室2内で燃焼させられる。
 次に、図2を参照しながら、蒸発燃料処理装置20における封鎖弁30の開弁開始位置の学習手順について説明する。図2は、ECU8により実行される開弁開始位置学習ルーチンの一例を示すフローチャートである。
 本実施形態において、図2の開弁開始位置学習ルーチンは、車両が停車しており、かつタンク内圧センサ15により検出される燃料タンク10の内圧Ptkが標準大気圧よりも低い第1閾値Pa以下であるか、あるいは標準大気圧よりも高い第2閾値Pb以上である場合に実行される。図2に示すように、開弁開始位置学習ルーチンの開始に際して、ECU8(図示しないCPU)は、まず学習中断履歴フラグFiの値を入力する(ステップS100)。学習中断履歴フラグFiは、本ルーチンが前回の実行時に正常に完了した場合に値0に設定されると共に、本ルーチンが前回の実行時に中断されて正常に完了しなかった場合に値1に設定されるものである。続いて、ECU8は、学習中断履歴フラグFiの値に基づいて学習の中断履歴の有無を判定する(ステップS110)。
 ECU8は、学習中断履歴フラグFiが値0であって学習の中断履歴がないと判定した場合(ステップS110:YES)、予め定められた限界閉弁ステップS0を封鎖弁30のステッピングモータ34に対する初期指令値としての初期ステップSintに設定する(ステップS120)。限界閉弁ステップS0は、封鎖弁30が完全に閉弁している状態から、弁体33のシール部材が弁座32に当接している開弁に至る直前の状態まで当該弁体33を移動させるためのステッピングモータ34のステップ量(弁体33と弁座32との軸方向距離の指令値)として予め定められたものである。これに対して、ECU8は、学習中断履歴フラグFiが値1であって学習の中断履歴があると判定した場合(ステップS110:NO)、当該ECU8の図示しないRAMに記憶(格納)されている加算後ステップSAを初期ステップSintに設定する(ステップS125)。加算後ステップSAは、ステッピングモータ34の制御に供された弁体33と弁座32との軸方向距離の指令値に相当する。
 ステップS120またはS125の処理の後、ECU8は、設定した初期ステップSintだけステッピングモータ34のロータが回転(高速回転)するように当該ステッピングモータ34を制御すると共に、初期ステップSintを加算後ステップSAとしてRAMに記憶させる(ステップS130)。更に、ECU8は、車両走行フラグの値およびタンク内圧センサ15により検出された燃料タンク10の内圧Ptkを入力し(ステップS140)、当該車両走行フラグの値および燃料タンク10の内圧Ptkに基づいて、開弁開始位置の学習の実行条件が成立しているか否かを判定する(ステップS150)。車両走行フラグは、車両の走行中に値1に設定に設定されると共に、車両の停車中に値0に設定されるものである。ステップS150において、ECU8は、車両走行フラグが値0であって車両が停車しており、かつ内圧Ptkが上記第1閾値Pa以下であるか、あるいは内圧Ptkが上記第2閾値Pb以上である場合、開弁開始位置の学習の実行条件が成立していると判定する。
 ステップS150にて開弁開始位置の学習の実行条件が成立していると判定した場合、ECU8は、ステッピングモータ34のロータが予め定められた学習用ステップSL(例えば、数ステップ)だけ回転するように当該ステッピングモータ34を制御する(ステップS160)。更に、ECU8は、その時点の加算後ステップSAに学習用ステップSLを加算した値を新たな加算後ステップSAとしてRAMに記憶させる(ステップS170)。次いで、ECU8は、タンク内圧センサ15により検出される燃料タンク10の内圧Ptkに基づいて、ロータが学習用ステップSLだけ回転してから所定時間(例えば、数百mSec)が経過するまでの間の内圧Ptkの変化量ΔPtkを取得(算出)する(ステップS180)。そして、ECU8は、取得した変化量ΔPtkの絶対値が予め定められた閾値ΔPref(正の値)以上であるか否かを判定する(ステップS190)。
 ステップS190にて内圧Ptkの変化量ΔPtkの絶対値が閾値ΔPref未満であると判定した場合、ECU8は、燃料タンク10の内圧Ptkの実質的な変化が生じておらず、封鎖弁30が開弁に至っていないとみなし、上述のステップS140以降の処理を再度実行する。これに対して、ステップS190にて内圧Ptkの変化量ΔPtkの絶対値が閾値ΔPref以上であると判定した場合、ECU8は、封鎖弁30が開弁することで燃料タンク10の内圧Ptkに実質的な変化が生じたとみなし、その時点でRAMに記憶されている加算後ステップSA(直前のステップS170にてRAMに記憶されたもの)を開弁開始位置の学習値である開弁開始ステップSSとしてRAMに記憶させる(ステップS200)。そして、ECU8は、学習中断履歴フラグFiを値0に設定した上で(ステップS210)、本ルーチンを終了させる。また、ステップS140以降の処理が再度実行される際に、ステップS150にて開弁開始位置の学習の実行条件が成立していないと判定した場合、ECU8は、開弁開始位置の学習を中断させ、学習中断履歴フラグFiを値1に設定した上で(ステップS220)、本ルーチンを終了させる。
 上述のように、蒸発燃料処理装置20の制御装置であるECU8は、図2の開弁開始位置学習ルーチンを実行して、封鎖弁30のステッピングモータ34のステップ量すなわち弁体33と弁座32との軸方向距離を変化させたときの燃料タンク10の内圧Ptkの変化に基づいて当該封鎖弁30の開弁開始位置を学習する。また、ECU8は、開弁開始位置の学習中に当該学習すなわち開弁開始位置学習ルーチンを中断させる際に(ステップS150:NO)、中断直前の軸方向距離の指令値に相当する加算後ステップSAをRAMに記憶させている(ステップS150にて否定判断がなされた直前のステップS170)。そして、ECU8は、学習の中断後に次の開弁開始位置の学習タイミングが到来した際に、その時点でRAMに記憶されている加算後ステップSAすなわち中断直前の軸方向距離の指令値を初期指令値として設定し(ステップS125)、開弁開始位置の学習を実行していく。これにより、学習中断後の次の開弁開始位置の学習に際して、上記限界閉弁ステップS0のような封鎖弁30が確実に閉弁している状態での軸方向距離の指令値を初期指令値として学習を実行する場合に比べて、開弁開始位置の学習をより速やかに完了させることが可能となる。
 以上説明したように、本開示の蒸発燃料処理装置20は、燃料タンク10とキャニスタ22とを結ぶベーパ通路24に設置されると共に弁座32に対して軸方向に進退移動する弁体33を有する封鎖弁30と、当該封鎖弁30を開閉制御すると共に、弁体33と弁座32との軸方向距離を変化させたときの燃料タンク10の内圧Ptkの変化に基づいて封鎖弁30の開弁開始位置を学習するECU8とを含む。そして、制御装置としてのECU8は、開弁開始位置の学習中に当該学習を中断させる際に(ステップS150:NO)、中断直前の軸方向距離の指令値に相当する加算後ステップSAをRAMに記憶させており(ステップS170)、学習の中断後に次の開弁開始位置の学習タイミングが到来した際に、中断直前の軸方向距離の指令値としての加算後ステップSAを初期指令値に設定し(ステップS125)、開弁開始位置の学習を実行する。これにより、一旦開始された封鎖弁30の開弁開始位置の学習が中断され、その後に学習の実行が許容された際に、当該開弁開始位置の学習をより速やかに完了させることが可能となる。
 なお、本開示の発明は上記実施形態に何ら限定されるものではなく、本開示の外延の範囲内において様々な変更をなし得ることはいうまでもない。更に、上記実施形態は、あくまで発明の概要の欄に記載された発明の具体的な一形態に過ぎず、発明の概要の欄に記載された発明の要素を限定するものではない。
 本開示の発明は、蒸発燃料処理装置の製造産業等において利用可能である。

Claims (4)

  1.  燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁を含む蒸発燃料処理装置において、
     前記封鎖弁を開閉制御すると共に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習する制御装置であって、前記開弁開始位置の学習中に該学習を中断させる際に、中断直前の前記軸方向距離の指令値を記憶し、前記学習の中断後に次の前記開弁開始位置の学習タイミングが到来した際に、前記中断直前の前記軸方向距離の指令値を初期指令値として前記開弁開始位置の学習を実行する制御装置を備える蒸発燃料処理装置。
  2.  請求項1に記載の蒸発燃料処理装置において、
     前記制御装置は、前記燃料タンクの前記内圧が標準大気圧よりも低い第1閾値以下であるか、あるいは前記標準大気圧よりも高い第2閾値以上である場合、前記開弁開始位置の学習を実行する蒸発燃料処理装置。
  3.  請求項1または2に記載の蒸発燃料処理装置において、
     前記燃料タンクは、車両に搭載されるエンジンに供給される燃料を貯留し、
     前記制御装置は、前記車両の停車時に前記開弁開始位置の学習を実行する蒸発燃料処理装置。
  4.  燃料タンクとキャニスタとを結ぶベーパ通路に設置されると共に弁座に対して軸方向に進退移動する弁体を有する封鎖弁を含む蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法であって、
    (a)前記封鎖弁を開閉制御すると共に、前記弁体と前記弁座との軸方向距離を変化させたときの前記燃料タンクの内圧変化に基づいて前記封鎖弁の開弁開始位置を学習するステップを含み、ステップ(a)は、前記開弁開始位置の学習中に該学習を中断させる際に、中断直前の前記軸方向距離の指令値を記憶し、前記学習の中断後に次の前記開弁開始位置の学習タイミングが到来した際に、前記中断直前の前記軸方向距離の指令値を初期指令値として前記開弁開始位置の学習を実行する蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法。
PCT/JP2017/000747 2016-01-27 2017-01-12 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法 WO2017130708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780008463.4A CN108603465A (zh) 2016-01-27 2017-01-12 蒸发燃料处理装置和蒸发燃料处理装置中的密封阀的阀打开开始位置的学习方法
US16/072,405 US20180363593A1 (en) 2016-01-27 2017-01-12 Vaporized fuel treatment device and learning method of valve opening start position of sealing valve in vaporized fuel treatment device
DE112017000517.5T DE112017000517T5 (de) 2016-01-27 2017-01-12 Kraftstoffdampfbehandlungsvorrichtung und Lernmethode einer Ventilöffnungsstartposition eines Dichtungsventils in einer Kraftstoffdampfbehandlungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013418A JP2017133411A (ja) 2016-01-27 2016-01-27 蒸発燃料処理装置
JP2016-013418 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130708A1 true WO2017130708A1 (ja) 2017-08-03

Family

ID=59398018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000747 WO2017130708A1 (ja) 2016-01-27 2017-01-12 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法

Country Status (5)

Country Link
US (1) US20180363593A1 (ja)
JP (1) JP2017133411A (ja)
CN (1) CN108603465A (ja)
DE (1) DE112017000517T5 (ja)
WO (1) WO2017130708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840990B2 (en) * 2018-10-16 2023-12-12 Toyota Jidosha Kabushiki Kaisha Fuel vapor treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014832A (ja) * 2019-07-12 2021-02-12 株式会社デンソー 蒸発燃料処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008974A (ja) * 1998-06-25 2000-01-11 Toyota Motor Corp 蒸発燃料処理装置の故障診断装置
JP2014080879A (ja) * 2012-10-15 2014-05-08 Denso Corp 蒸発燃料処理装置
JP2015102009A (ja) * 2013-11-25 2015-06-04 愛三工業株式会社 蒸発燃料処理装置
JP2015110913A (ja) * 2013-12-06 2015-06-18 愛三工業株式会社 蒸発燃料処理装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228421A (en) * 1992-10-28 1993-07-20 Ford Motor Company Idle speed control system
US8640676B2 (en) * 2010-03-11 2014-02-04 Honda Motor Co., Ltd. Evaporated fuel treatment apparatus
JP5177165B2 (ja) * 2010-04-15 2013-04-03 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP5936985B2 (ja) * 2012-10-12 2016-06-22 愛三工業株式会社 蒸発燃料処理装置
CN105765207B (zh) * 2013-11-25 2018-04-03 爱三工业株式会社 蒸发燃料处理装置
DE102014017159B4 (de) * 2013-11-25 2017-01-26 Aisan Kogyo Kabushiki Kaisha Kraftstoffdampfverarbeitungsvorrichtung
JP6177675B2 (ja) * 2013-12-06 2017-08-09 愛三工業株式会社 蒸発燃料処理装置
JP6133201B2 (ja) 2013-12-06 2017-05-24 愛三工業株式会社 蒸発燃料処理装置
JP6073212B2 (ja) * 2013-12-06 2017-02-01 愛三工業株式会社 蒸発燃料処理装置
JP6247151B2 (ja) * 2014-05-19 2017-12-13 愛三工業株式会社 蒸発燃料処理装置
DE112015004005B4 (de) * 2014-09-01 2020-03-12 Aisan Kogyo Kabushiki Kaisha Verarbeitungsvorrichtung für verdampften Kraftstoff
CN106574576B (zh) * 2014-09-01 2019-04-05 爱三工业株式会社 蒸发燃料处理装置
JP6534604B2 (ja) * 2015-11-19 2019-06-26 愛三工業株式会社 蒸発燃料処理装置
JP6586369B2 (ja) * 2016-01-27 2019-10-02 愛三工業株式会社 蒸発燃料処理装置
JP6588357B2 (ja) * 2016-02-10 2019-10-09 トヨタ自動車株式会社 蒸発燃料処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000008974A (ja) * 1998-06-25 2000-01-11 Toyota Motor Corp 蒸発燃料処理装置の故障診断装置
JP2014080879A (ja) * 2012-10-15 2014-05-08 Denso Corp 蒸発燃料処理装置
JP2015102009A (ja) * 2013-11-25 2015-06-04 愛三工業株式会社 蒸発燃料処理装置
JP2015110913A (ja) * 2013-12-06 2015-06-18 愛三工業株式会社 蒸発燃料処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840990B2 (en) * 2018-10-16 2023-12-12 Toyota Jidosha Kabushiki Kaisha Fuel vapor treatment apparatus

Also Published As

Publication number Publication date
JP2017133411A (ja) 2017-08-03
US20180363593A1 (en) 2018-12-20
CN108603465A (zh) 2018-09-28
DE112017000517T5 (de) 2018-10-11

Similar Documents

Publication Publication Date Title
JP6588357B2 (ja) 蒸発燃料処理装置
JP6586369B2 (ja) 蒸発燃料処理装置
US7152587B2 (en) Evaporated fuel treatment device of internal combustion engine and evaporated fuel treatment method
JP5936985B2 (ja) 蒸発燃料処理装置
US8627802B2 (en) Evaporated fuel treatment apparatus and method of detecting failure in control valve
CN110945230B (zh) 蒸发燃料处理装置的泄漏检测装置
JP5672454B2 (ja) 内燃機関の燃料蒸発ガス排出抑止装置
US9523316B2 (en) Vaporized fuel processing apparatus
JP4359096B2 (ja) 蒸発燃料処理装置
JP2019183677A (ja) 蒸発燃料処理装置
WO2017130708A1 (ja) 蒸発燃料処理装置および蒸発燃料処理装置における封鎖弁の開弁開始位置学習方法
JP6612729B2 (ja) 蒸発燃料処理装置
JP4526901B2 (ja) 蒸発燃料処理システムの診断装置
JP2018119452A (ja) 蒸発燃料処理装置
JP6683594B2 (ja) 蒸発燃料処理装置
WO2021039152A1 (ja) 蒸発燃料処理装置
JP2018123699A (ja) 蒸発燃料処理装置
JP2023142741A (ja) 燃料供給処理装置
JP2005076469A (ja) 蒸発燃料処理システムの診断装置および診断方法
JP2018119417A (ja) 燃料タンクシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000517

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743939

Country of ref document: EP

Kind code of ref document: A1