[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017130653A1 - 無人移動体および無人移動体を用いた検査方法 - Google Patents

無人移動体および無人移動体を用いた検査方法 Download PDF

Info

Publication number
WO2017130653A1
WO2017130653A1 PCT/JP2017/000202 JP2017000202W WO2017130653A1 WO 2017130653 A1 WO2017130653 A1 WO 2017130653A1 JP 2017000202 W JP2017000202 W JP 2017000202W WO 2017130653 A1 WO2017130653 A1 WO 2017130653A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
unmanned
moving body
electric wire
connection mechanism
Prior art date
Application number
PCT/JP2017/000202
Other languages
English (en)
French (fr)
Inventor
靖之 福島
浩 磯部
康寛 松永
直哉 小長井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017130653A1 publication Critical patent/WO2017130653A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing or receiving articles, liquids, or the like, in flight
    • B64D1/02Dropping, ejecting, or releasing articles
    • B64D1/08Dropping, ejecting, or releasing articles the articles being load-carrying devices
    • B64D1/12Releasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/21Rotary wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to an unmanned moving body for inspecting an inspection object and an inspection method using the unmanned moving body.
  • a bridge inspection vehicle (bridge checker) is used for inspection of a bridge.
  • the operator is carrying out the inspection by performing rope access, so the burden on the operator is great.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-034428 discloses a method for inspecting a bridge.
  • Patent Document 1 discloses a method for inspecting a bridge using an aerial mobile device. The aerial mobile device photographs the degree of cracks and damage that occur in the members that make up the bridge. The damage status of the bridge is investigated by analyzing the captured data.
  • Patent Document 2 Japanese Patent Publication No. 2013-542360 discloses a method for inspecting a rotor blade of a wind power generation facility.
  • Patent Document 2 discloses a method of changing the temperature inside the rotor blade using an air heat device and observing this from the outside with an infrared camera mounted on an unmanned airplane or the like. The defect of the rotor blade is found by observing the difference in temperature change between the normal part and the abnormal part with an infrared camera or the like.
  • Patent Document 3 Japanese Patent Laid-Open No. 2013-1120278 discloses an unmanned traveling vehicle that is suitable for investigation of a disaster area such as in a nuclear facility. Patent Document 3 discloses an unmanned traveling vehicle for investigation that includes a main body covered with a crawler and an investigation sensor device mounted on the upper portion of the main body.
  • the ground wire of the mounted inspection apparatus can only be connected to the power source mounted on the unmanned moving body.
  • the unmanned moving body is equipped with a motor for driving the unmanned moving body and a driver for controlling the motor.
  • these ground lines should be connected to the power source mounted on the small unmanned moving body as well. I can only do that.
  • the present invention has been made in order to solve the above-described problems, and can perform an inspection using an unmanned moving body and an unmanned moving body that can reduce an influence of noise and obtain an output signal having a high S / N ratio. It aims to provide a method.
  • an inspection apparatus that inspects the inspection object, and extends toward the inspection object, and at least a ground line of the inspection apparatus. And a connection mechanism that is provided on the electric wire and is connected to the inspection object to electrically connect the electric wire to the inspection object, and a winding mechanism that winds the electric wire.
  • the unmanned moving body is further provided with a rotary wing and configured as an unmanned flying body.
  • connection mechanism is preferably connected to a lightning arrester to be inspected.
  • the lightning striker is a receptor provided on a rotor blade of a wind power generation facility.
  • connection mechanism is connected to an attachment provided in the receptor.
  • the unmanned moving body includes an inspection device that inspects an inspection object, and And an electric wire serving as a ground wire of the electronic device, and a connection mechanism that is provided on the electric wire and connected to the inspection object to electrically connect the electric wire to the inspection object.
  • the unmanned moving body is moved to approach the inspection object, the connection mechanism is connected to the inspection object, and the connection mechanism is connected to the inspection object. And a step of inspecting the inspection object by the inspection device.
  • the unmanned moving body further includes a rotary wing and is configured as an unmanned flying body.
  • connection mechanism is preferably connected to a lightning arrester to be inspected.
  • the lightning striker is a receptor provided on a rotor blade of a wind power generation facility.
  • the receptor is provided with an attachment for connecting to the connection mechanism.
  • the connection mechanism is connected to the attachment.
  • the unmanned moving body and the inspection method using the unmanned moving body according to the present invention it is possible to reduce the influence of noise and obtain an output signal with a high S / N ratio. Can provide the inspection method.
  • the inspection object of the inspection method using the unmanned mobile body and the unmanned mobile body of the present embodiment is not limited to this, and can be used for inspection of bridges, high-rise buildings, factory plants, and other structures.
  • the unmanned moving body is not limited to the unmanned flying body, and includes a vehicle that travels on the inspection object or travels on the ground toward the inspection object.
  • FIG. 1 is a front view showing an external appearance of the wind power generation facility in the present embodiment.
  • the wind power generation facility 1 includes a tower 5, a nacelle 2 mounted on the top of the tower 5, a rotor 3 mounted on the nacelle 2, and three rotor blades 4 (4a, 4b and 4c).
  • the center side end of the rotor blade 4 is connected to the rotor 3.
  • the rotor blade 4 can rotate in the direction of the angle ⁇ shown in FIG. 1 about an axis extending in the nacelle 2 in the horizontal direction. This rotation can be stopped by a brake mechanism (not shown).
  • the rotor blade 4 can be rotated around an axis extending in the longitudinal direction of each of the rotor blades 4a, 4b and 4c by a rotation mechanism (not shown).
  • the rotation about the longitudinal direction of the rotor blade 4 can be performed in the direction of the angle ⁇ or the pitch angle shown in FIG. This rotation can be stopped by a brake mechanism (not shown).
  • FIG. 2 is a front view showing the structure of the tip of the rotor blade of the wind power generation facility.
  • FIG. 2 shows a state where the ventral side or the back side of the rotor blade 4 is stopped approximately perpendicular to the ground.
  • a receptor (lightning receiving portion) 6 is provided at the tip of the rotor blade 4.
  • a down conductor 7 is connected to the receptor 6.
  • the receptor 6 is a metal member exposed on the surface of the rotor blade 4.
  • FIG. 2 shows the receptor 6 in which a circular metal part is exposed.
  • the receptor 6 can have various shapes other than circular.
  • the entire tip of the rotor blade 4 can be used as the receptor 6.
  • the down conductor 7 is a conducting wire that extends through the interior of the rotor blade 4 to the root of the rotor blade 4.
  • the receptor 6 and the down conductor 7 are provided for flowing a lightning current when the rotor blade 4 receives lightning to the ground. The lightning current is released to the ground electrode via the receptor 6, the down conductor 7, the nacelle 2 and the tower 5.
  • FIG. 3 is a plan view showing the structure of the unmanned air vehicle in the present embodiment.
  • FIG. 4 is a front view showing the structure of the unmanned air vehicle in the present embodiment.
  • the unmanned aerial vehicle 8 includes an unmanned aerial vehicle body 21, a motor 9, and a rotor blade 10 connected to the motor 9.
  • the unmanned air vehicle body 21 has a controller 11 that controls the airframe.
  • An inverter 12 that drives the motor 9 and a wireless communication unit 13 that performs wireless communication are connected to the controller 11.
  • the unmanned air vehicle body 21 is formed in a substantially rectangular shape in plan view.
  • the motor 9 and the rotor blade 10 are provided at the tip of each of the four arms 22 extending in the diagonal direction of the unmanned air vehicle body 21.
  • the external shape of the unmanned air vehicle body 21 and the number of motors 9 and rotor blades 10 can be variously changed.
  • the unmanned air vehicle 8 communicates with other devices by the wireless communication unit 13 and flies by manual operation or automatic operation.
  • the unmanned air vehicle 8 is equipped with various sensors such as a GPS unit, a magnetic sensor, a gyro sensor, and a barometer (not shown).
  • the unmanned air vehicle 8 flies while performing three-dimensional positioning by controlling the number of rotations of the rotor blade 10 and the like based on the values obtained from these sensors.
  • the unmanned air vehicle 8 has an inspection device 14 for inspecting the rotor blade 4.
  • the inspection device 14 performs various inspections in cooperation with the controller 11.
  • the inspection includes an operation for acquiring the state of the rotor blade 4, for example, various inspections such as photography with a camera and a hammering inspection.
  • the inspection also includes the work of measuring the inspection object.
  • the inspection device 14 When a photograph is taken, the inspection device 14 includes a camera. When the hammering inspection is performed, the inspection device 14 includes a hammering inspection device.
  • the hammering inspection apparatus includes a striking unit that strikes the rotor blade 4 and a sensor that acquires vibration generated in the rotor blade 4 by the striking unit.
  • a solenoid actuator or the like can be used as the striking portion.
  • the sensor a sensor capable of measuring vibration such as an acceleration pickup can be used. This sensor may be disposed on the rotor blade 4 and vibration generated by the striking unit may be acquired by the sensor of the rotor blade 4.
  • a maintenance unit that is integral with or separate from the inspection device 14 may be provided.
  • the unmanned air vehicle 8 has an electric wire 16 constituting a ground wire, a winding mechanism 15 that winds and sends out the electric wire 16 by a motor (not shown), and a leg portion 23 at a lower portion thereof.
  • the winding mechanism 15 has a drum (not shown) and a motor that rotationally drives the drum.
  • the electric wire 16 is wound around the drum.
  • winding mechanism 15 can be omitted when the electric wire 16 is always used with the same length and the electric wire 16 does not become an obstacle even when the electric wire 16 is suspended during the flight.
  • the leg portion 23 is composed of four rod-like members protruding downward.
  • the unmanned air vehicle 8 can be landed stably by bringing the tip of the leg 23 into contact with the inspection object.
  • the shape of the leg part 23 can be made into various shapes according to the inspection object. Further, wheels for moving the unmanned aerial vehicle 8 may be provided in place of or in addition to the leg portion 23.
  • the electric wire 16 is made of a metal wire such as a coated copper wire.
  • the wire 16 can be made of various materials and forms as long as it can be wound up.
  • the electric wire 16 hangs downward from the lower surface of the unmanned air vehicle 8 in a state where the electric wire 16 is sent out by the winding mechanism 15 as illustrated.
  • the electric wire 16 can be accommodated in the unmanned air vehicle 8 by winding the electric wire 16 by the winding mechanism 15. By housing the electric wire 16, the electric wire 16 can be stably held during the flight of the unmanned air vehicle 8. In order to inspect the unmanned air vehicle 8 while moving on the rotor blade, the electric wire 16 is preferably long in a necessary range.
  • the electric wire 16 functions as a ground wire for all electronic devices such as the motor 9, the controller 11, the inverter 12, the wireless communication unit 13, and various sensors mounted on the unmanned air vehicle 8 and the inspection device 14.
  • the electronic device connected to the electric wire 16 can be selected as necessary, and only some of the electronic devices can be connected.
  • a connection mechanism 17 for connecting to the receptor 6 is provided at the tip of the electric wire 16.
  • the connection mechanism 17 When the connection mechanism 17 is connected to the receptor 6, the electric wire 16 and the receptor 6 are electrically connected.
  • the electronic device and the inspection device 14 electrically connected to the electric wire 16 are grounded via the wind power generation equipment that is the inspection object.
  • connection mechanism 17 is easily removable such as a magnet. By providing the connection mechanism 17 at the tip of the electric wire 16, the connection of the electric wire 16 to the receptor 6 is facilitated.
  • the connection mechanism 17 is not necessarily provided at the tip of the electric wire 16.
  • the place connected by the connection mechanism 17 is not limited to the receptor 6 which is a lightning receiving part.
  • the inspection object when the inspection object is made of metal, the inspection object can be used as a part of the ground line by connecting the connection mechanism 17 to a portion where the metal is exposed.
  • a dedicated connection terminal for connecting the connection mechanism 17 may be provided in advance on the inspection object.
  • the dedicated connection terminals may be provided at a plurality of locations.
  • connection mechanism 17 may be provided on the surface of the receptor 6.
  • a hook-shaped electrode adapted to the shape of the connection mechanism 17 or a magnet for magnetizing the connection mechanism 17 is conceivable.
  • the connection mechanism 17 can be composed of a magnetic material such as iron.
  • FIG. 5 is a front view showing the position of the rotor blade when the inspection is performed in the present embodiment.
  • the rotor blade 4a to be inspected is stopped so as to be substantially horizontal with the ground.
  • the rotor blade 4a is stopped so that the trailing edge and the leading edge are aligned in the horizontal direction.
  • the unmanned air vehicle 8 is caused to fly to the vicinity of the sky above the rotor blade 4a.
  • FIG. 6 is a front view showing a state in which the rotor blade is inspected by using the unmanned airplane according to the present embodiment.
  • the unmanned air vehicle 8 is positioned almost directly above the receptor 6 and landed on the rotor blade 4. After landing, the electric wire 16 is sent out and the connection mechanism 17 of the electric wire 16 is connected to the receptor 6. After connecting the connection mechanism 17, the electric wire 16 is sent out to a desired length by the winding mechanism 15, and the unmanned air vehicle 8 is moved to the inspection position of the rotor blade 4. While the connection mechanism 17 is in contact with the receptor 6, the rotor blade 4 is inspected by the mounted inspection device 14.
  • the inspection is performed by connecting the electric wire 16 to the receptor 6 as a ground line, so that it is possible to reduce the noise generated from the motor 9 and the inverter 12 from being mixed into the output signal of the inspection device 14. As a result, the S / N ratio of the output signal of the inspection result can be improved.
  • the electric wire 16 is wound up by the winding mechanism 15. Even when the electric wire 16 is sufficiently long, the electric wire 16 can be stably held by winding the electric wire 16 with the winding mechanism 15.
  • the unmanned air vehicle 8 was landed on the rotor blade 4.
  • the electric wire 16 is sent out and the connection mechanism 17 is connected to the receptor 6 with the unmanned air vehicle 8 floating in the air. Also good.
  • the output signal of the inspection result is recorded in the controller 11.
  • the inspection result may be transmitted to another device on the ground by the wireless communication unit 13.
  • Maintenance work of the rotor blade 4 can be performed.
  • Maintenance work by the unmanned air vehicle 8 includes defect repair work and cleaning work of the rotor blade 4.
  • 1 wind power generation equipment 2 nacelles, 3 rotors, 4 (4a, 4b, 4c) rotor blades, 5 towers, 6 receptors, 7 down conductors, 8 unmanned air vehicles, 9 motors, 10 rotor blades, 11 controllers, 12 inverters, 13 wireless communication units, 14 inspection equipment, 15 winding mechanism, 16 electric wires, 17 connection mechanism, 21 unmanned air vehicle body, 22 arms, 23 legs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Wind Motors (AREA)

Abstract

検査対象物の検査を行なう移動可能な無人移動体(8)は、検査対象物の検査を行なう検査機器(14)と、検査対象物に向かって延出し、少なくとも検査機器(14)のグランド線となる電線(16)と、電線(16)に設けられ検査対象物に接続されて電線(16)を検査対象物に電気的に接続する接続機構(17)と、電線(16)を巻き取る巻取機構(15)とを備えている。

Description

無人移動体および無人移動体を用いた検査方法
 この発明は、検査対象物の検査を行なう無人移動体および無人移動体を用いた検査方法に関する。
 橋梁や風力発電設備のロータブレードなどの点検方法として、目視検査や打音検査などが実施されている。たとえば橋梁の検査では、橋梁点検車(ブリッジチェッカー)が利用されている。しかし、橋梁点検車でも検査が困難な場所では、作業者がロープアクセスを行なって検査を行なっているため、作業者の負担が大きかった。
 風力発電設備のロータブレードの検査においても、作業者がロータブレードの一本ごとにロープアクセスを行なっている。作業者が数十メートルものロータブレードを上から下へ降下する形で検査を行なっているため、作業者の負担が大きかった。
 その一方、小型の無人移動体に検査装置を搭載し、無人移動体を用いて検査を実施することで、作業者への負担を軽減する提案がなされている。
 橋梁の検査方法を開示したものとして特許文献1(特開2015-034428号公報)がある。特許文献1には、空中移動機器を用いて橋梁を検査する方法が開示されている。空中移動機器は、橋梁を構成する部材に生じるひび割れや損傷の程度を撮影する。撮影したデータを分析することで、橋梁の損傷状態を調査している。
 風力発電設備のロータブレードの検査方法を開示したものとして特許文献2(特表2013-542360号公報)がある。特許文献2には、空気熱デバイスを用いてロータブレード内部の温度を変化させ、無人飛行機などに搭載した赤外線カメラなどでこれを外側から観察する方法が開示されている。赤外線カメラなどにより正常部と異常部の温度変化の差異を観察することで、ロータブレードの欠陥を見つけている。
 原子力施設内等の被災地の調査に適した無人走行の調査用移動体を開示したものとして特許文献3(特開2013-112028号公報)がある。特許文献3は、クローラで覆われた本体と、本体の上部に装着された調査用センサ機器などを備えた無人走行の調査用移動体を開示している。
特開2015-034428号公報 特表2013-542360号公報 特開2013-112028号公報
 しかしながら、上述したような小型の無人移動体においては、搭載した検査装置のグランド線は、無人移動体に搭載した電源に接続することしかできない。無人移動体は、無人移動体を駆動するためのモータや、モータなどを制御するためのドライバを備えているが、これらのグランド線も同様に、小型無人移動体に搭載した電源に接続することしかできない。
 そのため、モータやドライバから発生する多くの電気ノイズが検査装置から出力される信号に混入し、出力信号のS/N比を低下させてしまうという問題があった。
 この発明は、上記課題を解決するためになされたものであり、ノイズの影響を軽減して、高いS/N比の出力信号を得ることができる、無人移動体および無人移動体を用いた検査方法を提供することを目的とする。
 この発明に基づいた検査対象物の検査を行なう移動可能な無人移動体に従えば、検査対象物の検査を行なう検査機器と、検査対象物に向かって延出し、少なくとも上記検査機器のグランド線となる電線と、上記電線に設けられ、検査対象物に接続されて上記電線を検査対象物に電気的に接続する接続機構と、上記電線を巻き取る巻取機構とを備えている。
 上記無人移動体において好ましくは、回転翼をさらに備え、無人飛行体として構成されている。
 上記無人移動体において好ましくは、上記接続機構は、検査対象物の受雷器に接続される。
 上記無人移動体において好ましくは、上記受雷器は、風力発電設備のロータブレードに設けられたレセプターである。
 上記無人移動体において好ましくは、上記接続機構は、上記レセプターに設けられたアタッチメントに接続されるものである。
 この発明に基づいた移動可能な無人移動体を用いて検査対象物の検査を行なう、無人移動体を用いた検査方法に従えば、上記無人移動体は、検査対象物の検査を行なう検査機器と、少なくとも上記電子機器のグランド線となる電線と、上記電線に設けられ検査対象物に接続されて上記電線を検査対象物に電気的に接続する接続機構とを備えている。上記検査方法は、上記無人移動体を移動させて検査対象物に接近する工程と、上記接続機構を上記検査対象物に接続する工程と、上記接続機構を上記検査対象物に接続した状態で、上記検査機器により上記検査対象物の検査を行なう工程とを備えている。
 上記無人移動体を用いた検査方法において好ましくは、上記無人移動体は回転翼をさらに備え無人飛行体として構成されている。
 上記無人移動体を用いた検査方法において好ましくは、上記接続機構は、検査対象物の受雷器に接続されている。
 上記無人移動体を用いた検査方法において好ましくは、上記受雷器は、風力発電設備のロータブレードに設けられたレセプターである。
 上記無人移動体を用いた検査方法において好ましくは、上記レセプターには上記接続機構と接続するためのアタッチメントが設けられている。上記接続機構を検査対象物に接続する工程においては、上記接続機構は、上記アタッチメントに接続される。
 本発明に係る無人移動体および無人移動体を用いた検査方法によると、ノイズの影響を軽減して、高いS/N比の出力信号を得ることができる、無人移動体および無人移動体を用いた検査方法を提供することができる。
この発明に基づいた実施の形態における風力発電設備の外観を示す正面図である。 この発明に基づいた実施の形態における風力発電設備のロータブレードの先端部の構造を示す正面図である。 この発明に基づいた実施の形態における無人飛行体の構造を示す平面図である。 この発明に基づいた実施の形態における無人飛行体の構造を示す正面図である。 この発明に基づいた実施の形態において検査を行なうときのロータブレードの位置を示す正面図である。 この発明に基づいた実施の形態において、無人飛行体を用いてロータブレードを検査する状態を示す正面図である。
 この発明に基づいた実施の形態における無人移動体および無人移動体を用いた検査方法について、図を参照しながら説明する。本実施の形態においては、小型の無人飛行体を用いて風力発電設備のロータブレードの検査を行なう場合について説明する。
 本実施の形態の無人移動体および無人移動体を用いた検査方法の検査対象物は、これに限定されるものではなく、橋梁、高層建築、工場プラントその他の構築物の検査にも用いることができる。また無人移動体は無人飛行体に限定されるものではなく、検査対象物上を走行したり、検査対象物に向かって地上を走行するものなども含む。
 図1は、本実施の形態における風力発電設備の外観を示す正面図である。風力発電設備1は、タワー5と、タワー5の上部に搭載されたナセル2と、ナセル2に搭載されているロータ3と、3枚のロータブレード4(4a,4bおよび4c)を有する。ロータブレード4の中心側端部はロータ3に接続されている。ロータブレード4は、ナセル2内を水平方向に延びる軸を中心に図1に示す角度φの方向に回転することが可能である。この回転は図示しないブレーキ機構によって停止させることが可能である。
 また、ロータブレード4は、図示しない回転機構によって各ロータブレード4a,4bおよび4cの長手方向に延びる軸を中心として回転が可能である。ロータブレード4の長手方向を軸とする回転は、図1に示す角度θまたはピッチ角の方向に回転が可能とされている。この回転は図示しないブレーキ機構によって停止させることが可能である。
 図2は、風力発電設備のロータブレードの先端部の構造を示す正面図である。図2は、ロータブレード4の腹側または背側を地面とおおよそ垂直に停止させた状態を示している。ロータブレード4の先端部にはレセプター(受雷部)6が設けられている。レセプター6にはダウンコンダクタ7が接続されている。レセプター6はロータブレード4の表面に露出する金属部材である。図2では、円形の金属部分が露出するレセプター6を示している。レセプター6は、円形以外の種々の形状とすることができる。ロータブレード4の先端部の全体をレセプター6とすることもできる。
 ダウンコンダクタ7は、一端がレセプター6に電気的に接続されている。ダウンコンダクタ7は、ロータブレード4の内部を通ってロータブレード4の付け根まで延びる導線である。レセプター6およびダウンコンダクタ7は、ロータブレード4が受雷した際の雷電流を大地に流すために設けられている。雷電流は、レセプター6、ダウンコンダクタ7、ナセル2およびタワー5を経由して接地極へと逃がされる。
 図3は本実施の形態における無人飛行体の構造を示す平面図である。図4は本実施の形態における無人飛行体の構造を示す正面図である。
 無人飛行体8は、無人飛行体本体21と、モータ9と、モータ9に接続された回転翼10とを有する。無人飛行体本体21は、機体制御を行なうコントローラ11を有している。コントローラ11には、モータ9を駆動させるインバータ12および無線通信を行う無線通信ユニット13が接続されている。
 無人飛行体本体21は平面視略矩形に形成されている。無人飛行体本体21の対角線方向に延びる4本のアーム22の各々の先端に、モータ9および回転翼10が設けられている。無人飛行体本体21の外形ならびにモータ9および回転翼10の数などは種々変更することができる。
 無人飛行体8は、無線通信ユニット13で他装置と通信を行ない、マニュアル操縦または自動操縦で飛行する。無人飛行体8は、図示しないGPSユニットや磁気センサ、ジャイロセンサ、気圧計などの各種センサを搭載している。無人飛行体8は、これらのセンサから得られた値により回転翼10の回転数などを制御することで、3次元の位置決めを行ないながら飛行する。
 無人飛行体8はロータブレード4の検査を行なう検査機器14を有している。検査機器14はコントローラ11と協調しながら各種の検査を行なう。検査には、ロータブレード4の状態を取得する作業、たとえばカメラによる写真撮影や打音検査など種々の検査が含まれる。また検査には、検査対象物を測定する作業も含む。
 写真撮影が行われる場合には、検査機器14にカメラが含まれる。打音検査が行われる場合には、検査機器14に打音検査装置が含まれる。打音検査装置は、ロータブレード4を打撃する打撃部と、打撃部によってロータブレード4に発生した振動を取得するセンサとを含む。打撃部としてはソレノイドアクチュエータなどを用いることができる。センサとしては、加速度ピックアップなど振動を測定可能なものを用いることができる。このセンサをロータブレード4に配置し、打撃部によって発生した振動をロータブレード4のセンサで取得してもよい。
 無人飛行体8により、検査以外のメンテナンスなどを行なう場合には、検査機器14と一体または別体のメンテナンスユニットを設けてもよい。
 無人飛行体8はその下部に、グランド線を構成する電線16と、図示しないモータによって電線16を巻き上げおよび送り出す巻取機構15と、脚部23とを有している。巻取機構15は、図示しないドラムとドラムを回転駆動するモータとを有している。電線16はドラムに巻き付けられている。
 なお、電線16を常に同じ長さで用い、飛行中に電線16が垂下していても障害にならないような使用方法の場合には、巻取機構15を省略することもできる。
 本実施の形態では、脚部23は下方に突出する4本の棒状部材により構成されている。脚部23の先端を検査対象物に当接することで無人飛行体8を安定して着陸させることができる。脚部23の形状は、検査対象物に適合させて種々の形状とすることができる。また、脚部23に代えて、あるいは、脚部23に加えて、無人飛行体8を移動させるための車輪を設けてもよい。
 電線16はたとえば被覆された銅線などの金属線で構成されている。電線16は巻き取りが可能な導線であれば種々の材質および形態のものを用いることができる。電線16は、巻取機構15により電線16を送り出した状態において、図示するように無人飛行体8の下面から下方に向かって垂下する。
 一方、巻取機構15により電線16を巻き取ることにより電線16を無人飛行体8に収納することができる。電線16を収納することで、無人飛行体8の飛行中に電線16を安定して保持することができる。無人飛行体8をロータブレード上を移動させながら検査等するために、電線16は必要な範囲で長尺であることが好ましい。
 電線16は、無人飛行体8に搭載されたモータ9、コントローラ11、インバータ12および無線通信ユニット13、各種センサなどのすべての電子機器や検査機器14のグランド線として機能する。電線16に接続する電子機器は必要に応じて選択して、一部の電子機器のみを接続することもできる。
 電線16の先端にはレセプター6に接続するための接続機構17が設けられている。接続機構17がレセプター6に接続されると、電線16とレセプター6とが電気的に接続される。電線16がレセプター6に接続されることで、電線16に電気的に接続された電子機器や検査機器14は、検査対象物である風力発電設備を介して大地に接地される。
 接続機構17は、たとえば磁石のように容易に脱着可能なものが好ましい。接続機構17を電線16の先端に設けることにより、電線16のレセプター6への接続が容易となる。ただし、接続機構17は必ずしも電線16の先端に設けなくてもよい。また、接続機構17により接続される場所は、受雷部であるレセプター6に限定されない。たとえば、検査対象物が金属製である場合には、金属が露出した箇所に接続機構17を接続することにより、検査対象物をグランド線の一部として用いることができる。
 レセプター6に代えて、接続機構17を接続するための専用の接続端子を検査対象物に予め設けてもよい。当該専用の接続端子を複数個所に設けてもよい。
 レセプター6の表面に、接続機構17の接続を容易にするためのアタッチメントを設けてもよい。アタッチメントとしては、たとえば接続機構17の形状に適合したフック状の電極や、接続機構17を磁着するための磁石などが考えられる。アタッチメントを磁石で構成した場合には、接続機構17を鉄などの磁性材料で構成することができる。
 本実施の形態における無人飛行体8を用いた風力発電設備のロータブレード4の検査方法について説明する。
 図5は、本実施の形態において検査を行なうときのロータブレードの位置を示す正面図である。まず、図5に示すように、検査の対象となるロータブレード4aを地面と略水平となるように停止させる。ロータブレード4aは、トレーリングエッジおよびリーデングエッジが水平方向に並ぶように停止させる。無人飛行体8をロータブレード4aの上空付近まで飛行させる。
 図6は本実施の形態における無人飛行機を用いてロータブレードを検査する状態を示す正面図である。
 図6に示すように無人飛行体8をレセプター6の略直上に位置させ、ロータブレード4に着陸させる。着陸後、電線16を送り出して電線16の接続機構17をレセプター6に接続する。接続機構17を接続した後、電線16を巻取機構15で所望の長さまで送り出し、無人飛行体8をロータブレード4の検査位置まで移動させる。接続機構17をレセプター6に接触させた状態で、搭載した検査機器14によりロータブレード4の検査を実施する。
 このように電線16をグランド線としてレセプター6に接続して検査を行なうことで、モータ9やインバータ12などから発生するノイズが検査機器14の出力信号に混入することを低減することができる。その結果、検査結果の出力信号のS/N比を改善することができる。検査実施後、巻取機構15で電線16を巻き取る。電線16を十分に長いものとした場合でも、巻取機構15で電線16を巻き取ることで、電線16を安定して保持することができる。
 上記の例では無人飛行体8をロータブレード4上に着陸させた。無人飛行体8をロータブレード4上に着陸させずに空中で検査を行なう場合には、無人飛行体8が空中に浮上した状態で、電線16を送り出して接続機構17をレセプター6に接続させてもよい。
 検査結果の出力信号はコントローラ11に記録される。検査結果を無線通信ユニット13で地上にある他装置に送信してもよい。
 上述のような無人飛行体8にメンテナンスユニットを設けた場合には、ロータブレード4のメンテナンス作業を行なうことができる。無人飛行体8によるメンテナンス作業には、ロータブレード4の欠陥修復作業、清掃作業などが含まれる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 風力発電設備、2 ナセル、3 ロータ、4(4a,4b,4c) ロータブレード、5 タワー、6 レセプター、7 ダウンコンダクタ、8 無人飛行体、9 モータ、10 回転翼、11 コントローラ、12 インバータ、13 無線通信ユニット、14 検査機器、15 巻取機構、16 電線、17 接続機構、21 無人飛行体本体、22 アーム、23 脚部。

Claims (10)

  1.  検査対象物の検査を行なう移動可能な無人移動体であって、
     検査対象物の検査を行なう検査機器と、
     検査対象物に向かって延出し、少なくとも前記検査機器のグランド線となる電線と、
     前記電線に設けられ、検査対象物に接続されて前記電線を検査対象物に電気的に接続する接続機構と、
     前記電線を巻き取る巻取機構とを備えた、無人移動体。
  2.  回転翼をさらに備え、無人飛行体として構成された、請求項1に記載の無人移動体。
  3.  前記接続機構は、検査対象物の受雷器に接続される、請求項1または請求項2に記載の無人移動体。
  4.  前記受雷器は、風力発電設備のロータブレードに設けられたレセプターである、請求項3に記載の無人移動体。
  5.  前記接続機構は、前記レセプターに設けられたアタッチメントに接続されるものである、請求項1から請求項4のいずれか1項に記載の無人移動体。
  6.  移動可能な無人移動体を用いて検査対象物の検査を行なう、無人移動体を用いた検査方法であって、
     前記無人移動体は、検査対象物の検査を行なう検査機器と、少なくとも前記電子機器のグランド線となる電線と、前記電線に設けられ検査対象物に接続されて前記電線を検査対象物に電気的に接続する接続機構とを備え、
     前記検査方法は、
     前記無人移動体を移動させて検査対象物に接近する工程と、
     前記接続機構を前記検査対象物に接続する工程と、
     前記接続機構を前記検査対象物に接続した状態で、前記検査機器により前記検査対象物の検査を行なう工程とを備えた、無人移動体を用いた検査方法。
  7.  前記無人移動体は回転翼をさらに備え無人飛行体として構成された、請求項6に記載の無人移動体を用いた検査方法。
  8.  前記接続機構は、検査対象物の受雷器に接続される、請求項6または請求項7に記載の無人移動体を用いた検査方法。
  9.  前記受雷器は、風力発電設備のロータブレードに設けられたレセプターである、請求項8に記載の無人移動体を用いた検査方法。
  10.  前記レセプターには前記接続機構と接続するためのアタッチメントが設けられ、
     前記接続機構を検査対象物に接続する工程においては、前記接続機構は、前記アタッチメントに接続する、請求項6から請求項9のいずれか1項に記載の無人移動体を用いた検査方法。
PCT/JP2017/000202 2016-01-27 2017-01-06 無人移動体および無人移動体を用いた検査方法 WO2017130653A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016013068A JP2017132333A (ja) 2016-01-27 2016-01-27 無人移動体および無人移動体を用いた検査方法
JP2016-013068 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017130653A1 true WO2017130653A1 (ja) 2017-08-03

Family

ID=59398084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000202 WO2017130653A1 (ja) 2016-01-27 2017-01-06 無人移動体および無人移動体を用いた検査方法

Country Status (2)

Country Link
JP (1) JP2017132333A (ja)
WO (1) WO2017130653A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333132B2 (en) * 2020-04-17 2022-05-17 General Electric Company System and method for lighting protection system inspection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120136630A1 (en) * 2011-02-04 2012-05-31 General Electric Company Method and system for wind turbine inspection
US20140168420A1 (en) * 2011-04-26 2014-06-19 Eads Deutschland Gmbh Method and System for Inspecting a Surface Area for Material Defects
JP2015034428A (ja) * 2013-08-09 2015-02-19 一般財団法人土木研究センター 橋梁の損傷状態調査システム、橋梁の損傷状態調査方法および空中移動機器
DE202014006541U1 (de) * 2014-08-14 2015-11-19 AVAILON GmbH Unbemanntes Fluggerät zur Durchführung einer Blitzschutzmessung an einer Windenergieanlage
JP2015217901A (ja) * 2014-05-21 2015-12-07 株式会社快適空間Fc マルチコプター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120136630A1 (en) * 2011-02-04 2012-05-31 General Electric Company Method and system for wind turbine inspection
US20140168420A1 (en) * 2011-04-26 2014-06-19 Eads Deutschland Gmbh Method and System for Inspecting a Surface Area for Material Defects
JP2015034428A (ja) * 2013-08-09 2015-02-19 一般財団法人土木研究センター 橋梁の損傷状態調査システム、橋梁の損傷状態調査方法および空中移動機器
JP2015217901A (ja) * 2014-05-21 2015-12-07 株式会社快適空間Fc マルチコプター
DE202014006541U1 (de) * 2014-08-14 2015-11-19 AVAILON GmbH Unbemanntes Fluggerät zur Durchführung einer Blitzschutzmessung an einer Windenergieanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333132B2 (en) * 2020-04-17 2022-05-17 General Electric Company System and method for lighting protection system inspection

Also Published As

Publication number Publication date
JP2017132333A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
JP2017166382A (ja) 無人移動体および無人移動体を用いた検査方法
JP6584859B2 (ja) 風力タービンでの避雷測定を実行するための無人航空機及び方法
CN101381002B (zh) 一种用于检测输电线路绝缘子的飞行机器人
EP3267189B1 (en) Defect inspection device, defect inspection method, and program
JP6749003B2 (ja) 検査装置
CN110466760A (zh) 一种电力巡检无人机用辅助机械臂及其控制系统
CN107380420A (zh) 一种基于无人机机械臂的起重机金属结构检测装置及方法
JP2017115787A (ja) 風力発電設備のメンテナンス方法および無人飛行機
US20100103260A1 (en) Wind turbine inspection
JP6262318B1 (ja) ケーブル点検装置
WO2017010206A1 (ja) 風力発電設備のメンテナンス方法および無人飛行機
JP6505927B1 (ja) 無人小型飛行体を用いた点検方法及びこれに用いる無人小型飛行体
CN102628425A (zh) 用于风力涡轮机检查的方法和系统
JP6897319B2 (ja) インフラ設備
JP2016135046A (ja) 検査装置及び検査方法
CN206362918U (zh) 用于高空试验接线无人机平台的遥控接线装置
CN207208467U (zh) 一种基于无人机机械臂的起重机金属结构检测装置
KR20190016484A (ko) Ndt 검사들을 위한 무인 항공기들의 사용
JP7021470B2 (ja) 風力発電設備の検査装置及び風力発電設備の検査方法
WO2017110743A1 (ja) 大型構造物のメンテナンス方法および風力発電設備のメンテナンス方法ならびに無人飛行機
WO2017130653A1 (ja) 無人移動体および無人移動体を用いた検査方法
JP2020138639A (ja) 無人飛行体を用いた構造物検査装置
JP2017125493A (ja) 大型構造物のメンテナンス方法および無人飛行機
KR101965362B1 (ko) 송전선 이착륙 기반 송전선 점검용 무인항공기
KR102302568B1 (ko) 송전 구조물 감시용 무인항공기의 비행경로 설정 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17743887

Country of ref document: EP

Kind code of ref document: A1