[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017122916A1 - Cement-free binder and application thereof - Google Patents

Cement-free binder and application thereof Download PDF

Info

Publication number
WO2017122916A1
WO2017122916A1 PCT/KR2016/012775 KR2016012775W WO2017122916A1 WO 2017122916 A1 WO2017122916 A1 WO 2017122916A1 KR 2016012775 W KR2016012775 W KR 2016012775W WO 2017122916 A1 WO2017122916 A1 WO 2017122916A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
cement
binder
concrete
parts
Prior art date
Application number
PCT/KR2016/012775
Other languages
French (fr)
Korean (ko)
Inventor
오재은
전동호
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to CN201680078357.9A priority Critical patent/CN108473373A/en
Priority to RU2018129097A priority patent/RU2705646C1/en
Publication of WO2017122916A1 publication Critical patent/WO2017122916A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/12Acids or salts thereof containing halogen in the anion
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/28Cements from oil shales, residues or waste other than slag from combustion residues, e.g. ashes or slags from waste incineration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to cementless binders and applications thereof, and more particularly, to a technique for preparing cementless binder compositions comprising fly ashes and chemically active agents and applying them to mortars and concrete.
  • the present inventors have studied in view of the above problems, as a result, by combining a chemical active agent in a fly ash to a specific composition can be produced cementless binder material excellent in compressive strength, using it, low cost, high strength, light weight, heavy metal adsorption It has been found that it is possible to provide mortar and concrete with sound absorption performance.
  • Another object of the present invention is to provide a mortar and concrete having a low cost, high strength, light weight, heavy metal adsorption and sound absorption performance using the cement cement binder according to the present invention.
  • Still another object of the present invention is to provide a method for producing a cement binder paste using the cement binder according to the present invention.
  • a cementless binder comprising 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ).
  • a cement mortar comprising the cement cement binder.
  • a cementless concrete including the cementless binder is provided.
  • a cementless concrete product including the cementless concrete is provided.
  • the cement binder Since the cement binder is manufactured by recycling industrial by-products, it is environmentally friendly and has excellent compressive strength, dryness density, and heavy metal adsorption performance after curing. Accordingly, the mortar and concrete having low cost and high strength, light weight, heavy metal adsorption, and sound absorption performance can be provided using the cementless binder composition.
  • Example 1 is a graph showing the compressive strength (MPa) according to the curing period (days) of cement cement binder (9 kinds) prepared from Example 1.
  • Figure 2 is a graph showing the compressive strength (MPa) according to the curing period (days) of cement cement binder (6 kinds) prepared from Example 2 and Comparative Example 1.
  • Example 3 is a graph showing the results of measuring the dry density after curing the cement cement binder (6 kinds) prepared in Example 2 and Comparative Example 1 for 28 days.
  • FIG. 4 is a graph showing the results of measuring the adsorption function of heavy metal (chromium) of CF_0.7, CCF_0.4 and CCF_0.7 cured in the form of blocks according to Preparation Example 2, and powder of CCF_ powder.
  • a cementless binder comprising 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ).
  • the fly ash may be referred to as ash generated after burning coal (that is, coal fly ash).
  • the fly ash refers to coal ash collected by a dust collector from flue gas of a boiler combusting pulverized coal.
  • the fly ash is generated by incineration of paper ash sludge generated as a by-product from the paper mill, blast furnace slag obtained by collecting impurities from iron ore in the blast furnace, or incineration of general waste. It is a different material than waste.
  • the fly ash may include SiO 2, Al 2 O 3, Fe 2 O 3, CaO and MgO.
  • the fly ash may include SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and MgO in a weight ratio of 28.5 to 66.0: 12.5 to 55.0: 1.1 to 25.5: 1.4 to 22.4: 0.1 to 4.8.
  • the fly ash may include SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and MgO in a weight ratio of 48.8 to 66.0: 17.0 to 27.8: 1.1 to 13.9: 3.1 to 10.1: 0.3 to 2.0 have.
  • the fly ash may further include one or more components selected from the group consisting of Na 2 O, K 2 O, P 2 O 5 , TiO 2 , MnO, and SO 3 .
  • the fly ash may include the components described in Composition Examples 1 to 6 of Table 1 in parts by weight.
  • Composition example 1 Composition example 2
  • Composition example 3 Composition example 4
  • Composition example 5 Composition example 6 SiO 2 28.5 ⁇ 59.7 37.8-58.5 35.6 ⁇ 57.2 50.2 ⁇ 59.7 48.8-66.0 28.5-66.0 Al 2 O 3 12.5-35.6 19.1 ⁇ 28.6 18.8-55.0 14.0 ⁇ 32.4 17.0 ⁇ 27.8 12.5-55.0 Fe 2 O 3 2.6-21.2 6.8-25.5 2.3-19.3 2.7-14.4 1.1-13.9 1.1-25.5 CaO 0.5-28.9 1.4-22.4 1.1-7.0 0.6-2.6 2.9 to 5.3 1.4-22.4 MgO 0.6 to 3.8 0.7 ⁇ 4.8 0.7 ⁇ 4.8 0.1-2.1 0.3 ⁇ 2.0 0.1-4.8 Na 2 O 0.1-1.9 0.3 ⁇ 1.8 0.6 ⁇ 1.3 0.5 ⁇ 1.2 0.2-1.3 0.1-1.9 K 2 O 0.4-4 0.9-2.6 0.8 ⁇ 0.9 0.8 ⁇
  • the workability is improved when manufacturing the cement binder, the heat of hardening is alleviated, the long-term strength is improved, and the material separation between the binder and water is reduced even at a high water / binder ratio (W / B). It can happen and be economical.
  • the calcium oxide acts as a chemical activator for expressing strength, but fly ash and calcium oxide alone are difficult to express strength. Specifically, when calcium chloride is additionally included, calcium chloride acts as a chemical activator for accelerating the expression rate of strength. It was confirmed that the strength was significantly improved.
  • the strength of the C-S-H increases depending on the reaction of the components.
  • the calcium chloride may improve the adsorption capacity of heavy metals by reacting with other components in the curing process to generate hydrocalumite.
  • the fly ash is included 60 to 87% by weight relative to the weight of the cement binder.
  • the content of the fly ash is within the above range, workability in manufacturing is improved, heat of curing is alleviated, strength is improved, and material separation between binder and water may occur less even at a high water / binder ratio (W / B). .
  • the calcium oxide is included in 10 to 35% by weight based on the weight of the cement cement binder.
  • the calcium oxide is less than 10% by weight based on the weight of the cement binder, it is difficult to express the strength, and when it exceeds 35% by weight, it is impossible to form a paste mixed with fly ash, calcium oxide, calcium chloride and water.
  • the calcium chloride is contained in 1 to 15% by weight based on the weight of the cement cement binder. When the content of calcium chloride is out of the above range, the strength after curing significantly decreases.
  • the cementless binder may include 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide, and 3 to 10% by weight of calcium chloride, based on the weight thereof.
  • the cementless binder may include 70 to 78% by weight of fly ash, 16 to 24% by weight of calcium oxide, and 6 to 10% by weight of calcium chloride.
  • the cementless binder may include 72 to 76 wt% of fly ash, 18 to 22 wt% of calcium oxide, and 6 to 8 wt% of calcium chloride.
  • the cementless binder may be a mixture of 13 to 50 parts by weight of calcium oxide and 1 to 17 parts by weight of calcium chloride based on 100 parts by weight of the fly ash.
  • the calcium oxide may be mixed in an amount of 17 to 40 parts by weight, more preferably 3 to 15 parts by weight based on 100 parts by weight of the fly ash.
  • the calcium oxide may be mixed in an amount of 25-30 parts by weight, more preferably 7-9 parts by weight, based on 100 parts by weight of the fly ash.
  • the weight ratio of each component may be adjusted within the range of the content in the cement cement binder does not deviate from 60 to 87% by weight, 10 to 35% by weight of calcium oxide and 1 to 15% by weight of calcium chloride.
  • the cementless binder may have a compressive strength of 10 MPa or more, 15 MPa or more, preferably 20 MPa or more, 30 MPa or more, 40 MPa or more, or 45 MPa or more during curing for 28 days.
  • the cementless binder includes 70 to 85 wt% of the fly ash, 12 to 27 wt% of the calcium oxide, and 3 to 10 wt% of the calcium chloride, and may have a compressive strength of 20 MPa or more upon curing for 28 days. have.
  • the binder may have a compressive strength of 10 to 50 MPa, 15 to 50 MPa, 20 to 50 MPa, 30 to 50 MPa, 40 to 50 MPa, or 45 to 50 MPa during curing for 28 days.
  • the compressive strength of the binder is measured on the basis of 28 days after curing, it was confirmed that in the case of cementless binder according to the invention measured up to 40 ⁇ 50 MPa.
  • the binder may have a dry density of 0.85 to 1.2 g / cm 3 during curing for 28 days.
  • the dry density means the density of the cured binder when the cured binder is dried at 100 to 110 ° C. until there is no variation in weight, and the moisture is not contained in the cured binder.
  • the cementless binder may have a hydrogen ion concentration (pH) in the range of 12.5 to 14.
  • pH hydrogen ion concentration
  • the cementless binder has a powder form and can be mixed with other materials to be used in construction or civil engineering.
  • the cement binder has a high content of fly ash, which can significantly reduce carbon dioxide generation compared to conventional cement, and significantly lower the product cost by using low cost components. Physical properties such as can be exhibited.
  • the cement binder is high in strength and low in dry density after curing, it can exhibit a high strength and light weight characteristics, which complements the low strength of the weakness of the natural lightweight binder.
  • the cement binder exhibits excellent physical properties in terms of adsorption of heavy metals after curing.
  • the cementless binder is not burned, unlike the existing organic insulating material, because it is made of a material that does not emit toxic gas can be used as a heat-resistant and non-flammable insulation and sound-absorbing material.
  • the material can be used in a variety of construction or civil engineering sites because the flame resistance and non-combustibility can be maintained even if the curing conditions are different.
  • cementless mortar and cementless concrete including the cementless binder is provided.
  • a cementless concrete product including the cementless concrete is provided.
  • the cementless concrete product comprises concrete piles, bricks, blocks, tiles, boundary stones, sewer pipes, prestressed concrete, concrete panels, concrete pipes, aerated concrete, manholes, asphalt concrete, reinforced concrete, and concrete structures. It may include.
  • step (A) preferably 17 to 40 parts by weight of the calcium oxide and 3 to 15 parts by weight of the calcium chloride may be mixed with respect to 100 parts by weight of the fly ash.
  • the mixing ratio of each component may be adjusted within the range of the content in the dry mixed powder 60 ⁇ 87% by weight, 10 ⁇ 35% by weight of calcium oxide and 1 ⁇ 15% by weight of calcium chloride.
  • 40 to 70 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder.
  • workability of the dough may be greatly reduced, and when it is mixed at more than 70 parts by weight, the curing time becomes considerably longer. The strength may drop sharply.
  • the cement binder paste according to the present invention prepared by mixing water in the numerical range may have a large amount of internal voids after curing (curing), and thus may have an improved sound absorption effect, heat insulation effect, and heavy metal adsorption capacity. have.
  • 40 to 60 parts by weight of water or 40 to 50 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder.
  • step (B) may be mixed with 40 to 50 parts by weight of water with respect to 100 parts by weight of the dry mixed powder, it may be more advantageous for the cement binder paste to exhibit a high compressive strength after curing within the blending ratio.
  • step (B) may be mixed with 60 to 70 parts by weight of water with respect to 100 parts by weight of the dry mixed powder, when the cemented binder binder is cured and dried after curing and drying in the blending ratio, high light weight, sound absorption and thermal insulation It may be more advantageous to exert.
  • the dry mixed powder is prepared by mixing 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide and 3 to 10% by weight of calcium chloride;
  • step (B) 40 to 50 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder.
  • the material separation between the binder and the water is reduced, the workability is improved, the initial crack is excellent, the state can be homogeneous while the long-term strength is excellent.
  • the cement binder paste thus prepared may be cured through curing.
  • the cement binder paste can be cured in a constant temperature and humidity conditions of 50 ⁇ 70 °C and relative humidity 70 ⁇ 100% range. More specifically, the curing may be carried out at a constant temperature and humidity conditions of 55 ⁇ 60 °C and 95 ⁇ 100% relative humidity. In addition, the curing may be performed for 3 to 30 days, or may be performed for 20 to 30 days.
  • various building materials may be added to the cement binder paste.
  • the additionally added building materials may be aggregates, fibers, binders, additives commonly used in construction or civil engineering.
  • the cement binder paste When the cement binder paste is cured in the mold, it may be cured in a block form or the like. Alternatively, the cementless binder paste may be pulverized after curing and processed into a powder form.
  • the powdered cementless binder after curing can significantly improve the heavy metal adsorption capacity.
  • 60 to 70 parts by weight of water is mixed with 100 parts by weight of dry mixed powder containing 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide (CaO) and 3 to 10% by weight of calcium chloride (CaCl 2 ).
  • the powder obtained by curing and pulverizing the resulting paste can be very light and heavy metal adsorption capacity.
  • the cement binder paste is also used in concrete products such as concrete piles, bricks, blocks, tiles, boundary stones, sewer pipes, prestressed concrete, concrete panels, concrete pipes, aerated concrete, manholes, asphalt concrete, reinforced concrete, and concrete structures It can be cured in the form.
  • the cementless binder paste may be applied to a construction site such as concrete construction and may be cured into a part of a building.
  • a large amount of internal voids may be formed through absolute drying.
  • the absolute drying may be performed at a temperature condition of 80 °C to 120 °C, more specifically 90 °C to 120 °C, for example 100 °C.
  • the absolute drying may be performed for 12 to 36 hours, more specifically for 24 to 30 hours.
  • the cutting density can be adjusted to 0.85 to 1.2 g / cm 3, or 0.85 to 1.0 g / cm 3.
  • Pastes were formed by adding water to the dry mixed powder (cementless binder) having various compositions prepared in Examples 1 and 2 and Comparative Example 1, respectively. At this time, 40 parts by weight of water was added to 100 parts by weight of the dry mixed powder prepared in Example 1, and 70 parts by weight of water was added to 100 parts by weight of the dry mixed powder prepared in Examples 2 and Comparative Example 1.
  • Curing block was prepared by curing the cementless binder paste prepared in Preparation Example 1 for 28 days while maintaining the temperature at 60 ° C. and relative humidity of 70 to 100% in a cubic mold each having a width, length, and height of 50 mm.
  • the cement cement binder according to the present invention exhibits high strength and light weight after curing (curing) is low, it can be seen that can replace the commercial cement.
  • Example 2 The paste obtained by adding water to the cement cement binder (dry mixed powder) prepared in Example 2 and Comparative Example 1 was maintained at 60 ° C. and a relative humidity of 70 to 100% in a cubic mold each having 50 mm in width, length, and height.
  • Each cured block sample was prepared by curing for 3 days.
  • some cured block samples were ground to obtain cured powder samples.
  • Table 1 The binder composition, mixing ratio with water, and crushing of each of these cured blocks and cured powder samples are summarized in Table 1 below.
  • Table 1 The binder composition, mixing ratio with water, and crushing of each of these cured blocks and cured powder samples are summarized in Table 1 below.
  • Table 1 The binder composition, mixing ratio with water, and crushing of each of these cured blocks and cured powder samples are summarized in Table 1 below.
  • the dry density of the hardened block samples was measured and summarized together in Table 1.
  • the samples were immersed in a chromium solution at 415.5 mg / L for 2 days to adsorb chromium, and the chromium concentration (before and after adsorption) of the aqueous chromium solution was measured using ICP-OES equipment, and is shown in FIG. 4.
  • CCF_0.7 has a lower dry density than CCF_0.4, while in Figure 4, heavy metal (chromium) adsorption capacity is relatively higher than CCF_0.4, and the lower the dry density, the more voids are formed. This means that the adsorption of heavy metals can be carried out more easily.
  • CF_0.7 according to the comparative example is similar to CCF_0.7 and cutting density according to the embodiment, but in Figure 4 it was evaluated that the heavy metal (chromium) adsorption capacity is much lower than CCF_0.7. This is due to the fact that CF_0.7 does not contain calcium chloride, so that no reaction product hydrocalumite was produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a cement-free binder and an application thereof. More specifically, the present invention provides an eco-friendly cement-free binder comprising fly ash, calcium oxide, and calcium chloride in a particular formulation, wherein the cement-free binder can be used and applied as mortar and concrete having low cost, high strength, light weight, and heavy metal adsorption and sound absorption performances, and thus can have great economic effects.

Description

무시멘트 결합재 및 이의 응용Cement cement binder and its application
본 발명은 무시멘트 결합재 및 이의 응용에 관한 것으로, 보다 상세하게는 플라이애시 및 화학적 활성제를 포함하는 무시멘트 결합재 조성물을 제조하고, 이를 모르타르 및 콘크리트에 응용하는 기술에 관한 것이다.FIELD OF THE INVENTION The present invention relates to cementless binders and applications thereof, and more particularly, to a technique for preparing cementless binder compositions comprising fly ashes and chemically active agents and applying them to mortars and concrete.
최근 세계적으로 지구온난화 문제가 중대한 화두가 됨에 따라 탄소중심의 환경정책이 시행되고 있어, 건설 산업에서도 이산화탄소를 줄이기 위한 다양한 노력이 시도되고 있다. 현재 건설 산업에서 가장 널리 사용되고 있는 포틀랜드 시멘트는 석회질 원료와 점토질 원료를 적당한 비율로 혼합해 분쇄한 것으로서, 그 제조과정 중에 지구 온난화의 주범인 CO2를 다량 배출하여 자연환경에 대한 부정적인 재료로 인식되고 있다. As global warming has become a hot topic in recent years, carbon-based environmental policies have been implemented, and various efforts have been made to reduce carbon dioxide in the construction industry. Portland cement most widely used in the current construction industry as crushing mix of calcareous material and clay material in any ratio, and its manufacturing process massive emissions culprit of CO 2 global warming while being recognized as negative materials about the natural environment have.
이에 따라 기존 시멘트를 대체하기 위한 저탄소 무시멘트 결합재에 대한 연구가 진행되어 왔고, 최근에는 국내를 비롯하여 호주, 미국, 일본 및 유럽 등에서 알루미노규산염(aluminosilicate)계 광물을 함유하는 다양한 산업부산물을 시멘트 대신 활용하는 모르타르 및 콘크리트가 개발되고 있다. 예를 들어, 제지공장에서 부산물로 발생하는 제지슬러지를 소각 처리한 후 폐기되는 제지애시, 또는 용광로에서 철광석으로부터 선철을 만들 때 생기는 불순물을 수집하여 얻은 고로슬래그에, 알칼리 활성제를 첨가하여 강도를 발현하는 기술 등이 알려져 있다(한국 등록특허 공보 제10-1524298호 참조).Accordingly, research has been conducted on low-carbon cementless binders to replace existing cement, and recently, various industrial by-products containing aluminosilicate minerals in Korea, Australia, USA, Japan, and Europe have been replaced by cement. Utilizing mortar and concrete is being developed. For example, an alkali activator is added to the blast furnace slag obtained by incineration of paper sludge generated as a by-product from a paper mill, or from blast furnace slag obtained by collecting impurities from iron ore in a blast furnace. Techniques, and the like are known (see Korean Patent Publication No. 10-1524298).
그러나 종래의 무시멘트 결합재 기술들은 대부분 포틀랜드 시멘트의 압축 강도를 재현하지 못하거나 높은 제조 단가를 필요로 하였고, 또는 수소이온농도(pH)가 최고 수치인 14를 넘는 고부식성 용액을 사용해 취급이 어려운 문제가 있었다. 또한, 최근 경제적인 측면에서 모르타르 및 콘크리트의 혼화재로서 플라이애시(fly ash)를 일부 도입하고 있지만, 주로 활성도가 낮은 저칼슘 플라이애시를 사용함으로써 압축강도 등의 물성을 충분히 달성하기 어렵고, 대부분 배합설계 시스템에 의한 체계적인 배합선정이 이루어지지 않은채 단지 일부 시멘트 성분을 플라이애시로 대체 사용하고 있는 수준이다. 이에 따라, 최근에는 많은 양의 플라이애시를 포함하면서도 시멘트 재료로서의 중요한 물리적 특성인 압축강도, 유동성, 열전도도 등을 향상시키기 위한 연구가 확대되고 있다.However, most cementless binder technologies do not reproduce the compressive strength of most Portland cements or require high manufacturing costs, or are difficult to handle with highly corrosive solutions exceeding 14, the highest pH. There was. In addition, although some fly ash has been introduced as an admixture of mortar and concrete in terms of economic aspects, it is difficult to sufficiently achieve physical properties such as compressive strength by using low calcium fly ash having mainly low activity. Only some cement components are being replaced by fly ash without systematic formulation selection by the system. Accordingly, in recent years, studies to improve compressive strength, flowability, thermal conductivity, etc., which are important physical properties as cement materials, including a large amount of fly ash, have been expanded.
본 발명자들이 상기와 같은 문제점을 고려하여 연구한 결과, 플라이애시에 화학적 활성제를 특정 조성으로 배합하여 압축강도가 우수한 무시멘트 결합재를 제조할 수 있으며, 이를 이용하여 저비용이면서, 고강도, 경량화, 중금속 흡착 및 흡음 성능을 갖는 모르타르 및 콘크리트를 제공할 수 있음을 알아내었다.The present inventors have studied in view of the above problems, as a result, by combining a chemical active agent in a fly ash to a specific composition can be produced cementless binder material excellent in compressive strength, using it, low cost, high strength, light weight, heavy metal adsorption It has been found that it is possible to provide mortar and concrete with sound absorption performance.
따라서 본 발명의 목적은 플라이애시 및 화학적 활성제를 포함하는 무시멘트 결합재를 제공하는 것이다.It is therefore an object of the present invention to provide a cementless binder comprising a fly ash and a chemical active agent.
본 발명의 다른 목적은 본 발명에 따른 무시멘트 결합재를 이용하여 저비용이면서, 고강도, 경량화, 중금속 흡착 및 흡음 성능을 갖는 모르타르 및 콘크리트를 제공하는 것이다.Another object of the present invention is to provide a mortar and concrete having a low cost, high strength, light weight, heavy metal adsorption and sound absorption performance using the cement cement binder according to the present invention.
본 발명의 또 다른 목적은 본 발명에 따른 무시멘트 결합재를 이용하여 무시멘트 결합재 페이스트를 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing a cement binder paste using the cement binder according to the present invention.
본 발명의 일 측면에 따르면, 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%를 포함하는 무시멘트 결합재가 제공된다.According to one aspect of the present invention, there is provided a cementless binder comprising 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ).
본 발명의 다른 측면에 따르면, 상기 무시멘트 결합재를 포함하는 무시멘트 모르타르가 제공된다.According to another aspect of the present invention, there is provided a cement mortar comprising the cement cement binder.
본 발명의 또 다른 측면에 따르면, 상기 무시멘트 결합재를 포함하는 무시멘트 콘크리트가 제공된다.According to another aspect of the present invention, a cementless concrete including the cementless binder is provided.
본 발명의 또 다른 측면에 따르면, 상기 무시멘트 콘크리트를 포함하는 무시멘트 콘크리트 제품이 제공된다.According to another aspect of the present invention, a cementless concrete product including the cementless concrete is provided.
본 발명의 또 다른 측면에 따르면, (A) 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%가 혼합된 건조 혼합 분말을 제조하는 단계; 및 (B) 상기 제조된 건조 혼합 분말에 물을 혼합하여 페이스트를 생성하는 단계를 포함하는, 무시멘트 결합재 페이스트의 제조방법이 제공된다.According to another aspect of the invention, (A) 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ) to prepare a dry mixed powder step; And (B) mixing the prepared dry mixed powder with water to produce a paste, wherein the cement binder paste is prepared.
상기 무시멘트 결합재는 산업부산물을 재활용하여 제조되므로 친환경적이면서 양생 후 압축강도와 절건밀도 및 중금속 흡착 성능이 우수하다. 이에 따라 상기 무시멘트 결합재 조성물을 이용하여 저비용이면서 고강도, 경량화, 중금속 흡착 및 흡음 성능이 뛰어난 모르타르 및 콘크리트를 제공할 수 있다.Since the cement binder is manufactured by recycling industrial by-products, it is environmentally friendly and has excellent compressive strength, dryness density, and heavy metal adsorption performance after curing. Accordingly, the mortar and concrete having low cost and high strength, light weight, heavy metal adsorption, and sound absorption performance can be provided using the cementless binder composition.
도 1은 실시예 1로부터 제조된 무시멘트 결합재(9종)의 양생기간(일)에 따른 압축강도(MPa)를 나타낸 그래프이다.1 is a graph showing the compressive strength (MPa) according to the curing period (days) of cement cement binder (9 kinds) prepared from Example 1.
도 2는 실시예 2 및 비교예 1로부터 제조된 무시멘트 결합재(6종)의 양생기간(일)에 따른 압축강도(MPa)를 나타낸 그래프이다.Figure 2 is a graph showing the compressive strength (MPa) according to the curing period (days) of cement cement binder (6 kinds) prepared from Example 2 and Comparative Example 1.
도 3은 실시예 2 및 비교예 1로부터 제조된 무시멘트 결합재(6종)를 28일간 양생시킨 후 절건밀도를 측정한 결과 그래프이다.3 is a graph showing the results of measuring the dry density after curing the cement cement binder (6 kinds) prepared in Example 2 and Comparative Example 1 for 28 days.
도 4는 제조예 2에 따라 블록 형태로 경화된 CF_0.7, CCF_0.4 및 CCF_0.7과, 분말 형태인 CCF_분말의 중금속(크롬) 흡착기능을 측정한 결과 그래프이다.4 is a graph showing the results of measuring the adsorption function of heavy metal (chromium) of CF_0.7, CCF_0.4 and CCF_0.7 cured in the form of blocks according to Preparation Example 2, and powder of CCF_ powder.
이하에서, 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 측면에 따르면, 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%를 포함하는 무시멘트 결합재가 제공된다.According to one aspect of the present invention, there is provided a cementless binder comprising 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ).
상기 플라이애시는, 구체적으로, 석탄을 태운 뒤 발생하는 회분(즉 coal fly ash)이라 할 수 있다. 예를 들어, 상기 플라이애시는 미분탄을 연소하는 보일러의 연도가스로부터 집진기로 채취한 석탄재를 의미한다. 이에 따라 상기 플라이애시는, 제지공장에서 부산물로 발생하는 제지슬러지를 소각 처리한 후 폐기되는 제지애시, 용광로에서 철광석으로부터 선철을 만들 때 생기는 불순물을 수집하여 얻은 고로슬래그, 또는 일반 쓰레기를 소각하여 발생하는 폐기물과는 다른 물질이다. Specifically, the fly ash may be referred to as ash generated after burning coal (that is, coal fly ash). For example, the fly ash refers to coal ash collected by a dust collector from flue gas of a boiler combusting pulverized coal. Accordingly, the fly ash is generated by incineration of paper ash sludge generated as a by-product from the paper mill, blast furnace slag obtained by collecting impurities from iron ore in the blast furnace, or incineration of general waste. It is a different material than waste.
바람직하게는, 상기 플라이애시는 SiO2, Al2O3, Fe2O3, CaO 및 MgO를 포함할 수 있다. 구체적으로, 상기 플라이애시는 SiO2, Al2O3, Fe2O3, CaO 및 MgO를 28.5~66.0 : 12.5~55.0 : 1.1~25.5 : 1.4~22.4 : 0.1~4.8의 중량비로 포함할 수 있다. 보다 구체적으로, 상기 플라이애시는 SiO2, Al2O3, Fe2O3, CaO 및 MgO를 48.8~66.0 : 17.0~27.8 : 1.1~13.9 : 3.1~10.1 : 0.3~2.0의 중량비로 포함할 수 있다. 또한, 상기 플라이애시는 Na2O, K2O, P2O5, TiO2, MnO, 및 SO3로 이루어진 군으로부터 선택되는 하나 이상의 성분을 더 포함할 수 있다.Preferably, the fly ash may include SiO 2, Al 2 O 3, Fe 2 O 3, CaO and MgO. Specifically, the fly ash may include SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and MgO in a weight ratio of 28.5 to 66.0: 12.5 to 55.0: 1.1 to 25.5: 1.4 to 22.4: 0.1 to 4.8. . More specifically, the fly ash may include SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and MgO in a weight ratio of 48.8 to 66.0: 17.0 to 27.8: 1.1 to 13.9: 3.1 to 10.1: 0.3 to 2.0 have. In addition, the fly ash may further include one or more components selected from the group consisting of Na 2 O, K 2 O, P 2 O 5 , TiO 2 , MnO, and SO 3 .
구체적인 예로서, 상기 플라이애시는 하기 표 1의 조성예 1 내지 6에 기재된 성분들을 각각의 중량부로 포함할 수 있다.As a specific example, the fly ash may include the components described in Composition Examples 1 to 6 of Table 1 in parts by weight.
구 분division 플라이애시의 구성 성분 (중량부)Composition of fly ash (parts by weight)
조성예 1Composition example 1 조성예 2Composition example 2 조성예 3Composition example 3 조성예 4Composition example 4 조성예 5Composition example 5 조성예 6Composition example 6
SiO2 SiO 2 28.5~59.728.5 ~ 59.7 37.8~58.537.8-58.5 35.6~57.235.6 ~ 57.2 50.2~59.750.2 ~ 59.7 48.8~66.048.8-66.0 28.5~66.028.5-66.0
Al2O3 Al 2 O 3 12.5~35.612.5-35.6 19.1~28.619.1 ~ 28.6 18.8~55.018.8-55.0 14.0~32.414.0 ~ 32.4 17.0~27.817.0 ~ 27.8 12.5~55.012.5-55.0
Fe2O3 Fe 2 O 3 2.6~21.22.6-21.2 6.8~25.56.8-25.5 2.3~19.32.3-19.3 2.7~14.42.7-14.4 1.1~13.91.1-13.9 1.1~25.51.1-25.5
CaOCaO 0.5~28.90.5-28.9 1.4~22.41.4-22.4 1.1~7.01.1-7.0 0.6~2.60.6-2.6 2.9~5.32.9 to 5.3 1.4~22.41.4-22.4
MgOMgO 0.6~3.80.6 to 3.8 0.7~4.80.7 ~ 4.8 0.7~4.80.7 ~ 4.8 0.1~2.10.1-2.1 0.3~2.00.3 ~ 2.0 0.1~4.80.1-4.8
Na2ONa 2 O 0.1~1.90.1-1.9 0.3~1.80.3 ~ 1.8 0.6~1.30.6 ~ 1.3 0.5~1.20.5 ~ 1.2 0.2~1.30.2-1.3 0.1~1.90.1-1.9
K2OK 2 O 0.4~40.4-4 0.9~2.60.9-2.6 0.8~0.90.8 ~ 0.9 0.8~4.70.8 ~ 4.7 1.1~2.91.1 to 2.9 0.4~4.70.4-4.7
P2O5 P 2 O 5 0.1~1.70.1-1.7 0.1~0.30.1-0.3 1.1~1.51.1 to 1.5 0.1~0.60.1-0.6 0.2~3.90.2-3.9 0.1~3.90.1-3.9
TiO2 TiO 2 0.5~2.60.5-2.6 1.1~1.61.1 to 1.6 0.2~0.70.2-0.7 1.0~2.71.0-2.7 1.3~3.71.3 ~ 3.7 0.2~3.70.2-3.7
MnOMnO 0.03~0.20.03-0.2 -- -- 0.5~1.40.5-1.4 -- 0~1.40 to 1.4
SO3 SO 3 0.1~12.70.1-12.7 0.1~2.10.1-2.1 1.0~2.91.0-2.9 -- 0.1~0.60.1-0.6 0~12.70-12.7
상기 조성의 플라이애시를 포함함으로써, 무시멘트 결합재 제조 시 가공성이 개선되며, 경화열이 완화됨과 더불어 장기적인 강도가 향상되고, 높은 물/결합재(W/B) 비율에서도 결합재-물 간의 재료 분리가 적게 일어나며 경제적일 수 있다. By including the fly ash of the above composition, the workability is improved when manufacturing the cement binder, the heat of hardening is alleviated, the long-term strength is improved, and the material separation between the binder and water is reduced even at a high water / binder ratio (W / B). It can happen and be economical.
상기 산화칼슘은 강도를 발현하기 위한 화학적 활성제로 작용하는데, 플라이애시 및 산화칼슘만으로는 강도의 발현이 어렵고, 특이하게도 염화칼슘을 추가로 포함시키면 염화칼슘이 강도의 발현속도를 가속시키는 화학적 활성제로서 작용하여 압축강도가 상당히 향상되는 것이 확인되었다. The calcium oxide acts as a chemical activator for expressing strength, but fly ash and calcium oxide alone are difficult to express strength. Specifically, when calcium chloride is additionally included, calcium chloride acts as a chemical activator for accelerating the expression rate of strength. It was confirmed that the strength was significantly improved.
즉 상기 무시멘트 결합재를 양생시에 성분들의 반응에 따른 내부의 C-S-H(calcium-silicate-hydrate) 비율이 증가하여 강도가 우수해질 수 있다. 또한, 상기 염화칼슘은 양생 과정에서 다른 성분과 반응하여 하이드로칼루마이트(hydrocalumite)를 생성함으로써 중금속 흡착 능력을 향상시킬 수 있다.That is, when curing the cement binder, the strength of the C-S-H (calcium-silicate-hydrate) increases depending on the reaction of the components. In addition, the calcium chloride may improve the adsorption capacity of heavy metals by reacting with other components in the curing process to generate hydrocalumite.
상기 플라이애시는 무시멘트 결합재의 중량 대비 60~87 중량%로 포함된다. 플라이애시의 함량이 상기 범위 내일 때, 제조시의 가공성이 개선되며 경화열이 완화됨과 더불어 강도가 향상되고 높은 물/결합재(W/B) 비율에서도 결합재-물 간의 재료 분리가 보다 적게 일어날 수 있다.The fly ash is included 60 to 87% by weight relative to the weight of the cement binder. When the content of the fly ash is within the above range, workability in manufacturing is improved, heat of curing is alleviated, strength is improved, and material separation between binder and water may occur less even at a high water / binder ratio (W / B). .
상기 산화칼슘은 무시멘트 결합재의 중량을 기준으로 10~35 중량%로 포함된다. 상기 산화칼슘은 무시멘트 결합재의 중량 대비 10 중량% 미만인 경우에는 강도가 발현되기 어려우며, 35 중량%를 초과하는 경우에는 플라이애시, 산화칼슘, 염화칼슘 및 물을 혼합한 페이스트의 성형이 불가능하게 된다.The calcium oxide is included in 10 to 35% by weight based on the weight of the cement cement binder. When the calcium oxide is less than 10% by weight based on the weight of the cement binder, it is difficult to express the strength, and when it exceeds 35% by weight, it is impossible to form a paste mixed with fly ash, calcium oxide, calcium chloride and water.
상기 염화칼슘은 무시멘트 결합재의 중량을 기준으로 1~15 중량%로 포함된다. 염화칼슘의 함량이 상기 범위를 벗어나게 되면 양생 후의 강도가 상당히 저하된다.The calcium chloride is contained in 1 to 15% by weight based on the weight of the cement cement binder. When the content of calcium chloride is out of the above range, the strength after curing significantly decreases.
바람직한 일례로서, 상기 무시멘트 결합재는 이의 중량 대비 플라이애시 70~85 중량%, 산화칼슘 12~27 중량%, 및 염화칼슘 3~10 중량%를 포함할 수 있다. 또는, 상기 무시멘트 결합재는 플라이애시 70~78중량%, 산화칼슘 16~24 중량%, 및 염화칼슘 6~10 중량%를 포함할 수 있다. 또는, 상기 무시멘트 결합재는 플라이애시 72~76 중량%, 산화칼슘 18~22 중량% 및 염화칼슘 6~8 중량%를 포함할 수 있다.As a preferred example, the cementless binder may include 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide, and 3 to 10% by weight of calcium chloride, based on the weight thereof. Alternatively, the cementless binder may include 70 to 78% by weight of fly ash, 16 to 24% by weight of calcium oxide, and 6 to 10% by weight of calcium chloride. Alternatively, the cementless binder may include 72 to 76 wt% of fly ash, 18 to 22 wt% of calcium oxide, and 6 to 8 wt% of calcium chloride.
바람직한 다른 예로서, 상기 무시멘트 결합재는 플라이애시 100 중량부에 대하여 산화칼슘 13~50 중량부 및 염화칼슘 1~17 중량부가 혼합된 것일 수 있다. 또는, 상기 플라이애시 100 중량부에 대해서 상기 산화칼슘이 17~40 중량부, 보다 바람직하게는 3~15 중량부의 양으로 혼합될 수 있다. 또는, 상기 플라이애시 100 중량부에 대해서 상기 산화칼슘이 25~30 중량부, 보다 바람직하게는 7~9 중량부의 양으로 혼합될 수 있다. 이때 상기 각 성분별 중량비는 무시멘트 결합재 내의 함량이 플라이애시 60~87 중량%, 산화칼슘 10~35 중량% 및 염화칼슘 1~15 중량%를 벗어나지 않는 범위 내에서 조절될 수 있다. As another preferred example, the cementless binder may be a mixture of 13 to 50 parts by weight of calcium oxide and 1 to 17 parts by weight of calcium chloride based on 100 parts by weight of the fly ash. Alternatively, the calcium oxide may be mixed in an amount of 17 to 40 parts by weight, more preferably 3 to 15 parts by weight based on 100 parts by weight of the fly ash. Alternatively, the calcium oxide may be mixed in an amount of 25-30 parts by weight, more preferably 7-9 parts by weight, based on 100 parts by weight of the fly ash. At this time, the weight ratio of each component may be adjusted within the range of the content in the cement cement binder does not deviate from 60 to 87% by weight, 10 to 35% by weight of calcium oxide and 1 to 15% by weight of calcium chloride.
상기 무시멘트 결합재는 28일간 양생 시의 압축강도가 10 MPa 이상, 15 MPa 이상, 바람직하게는 20 MPa 이상, 30 MPa 이상, 40 MPa 이상, 또는 45 MPa 이상일 수 있다. 예를 들어, 상기 무시멘트 결합재는 상기 플라이애시 70~85 중량%, 상기 산화칼슘 12~27 중량% 및 상기 염화칼슘 3~10 중량%를 포함하고, 28일간 양생 시 20 MPa 이상의 압축강도를 가질 수 있다. 구체적으로, 상기 결합재는 28일간 양생 시의 압축강도가 10~50 MPa, 15~50 MPa, 20~50 MPa, 30~50 MPa, 40~50 MPa, 또는 45~50 MPa일 수 있다. 일반적으로 결합재의 압축강도는 28일 양생 후를 기준으로 측정되는데, 본 발명에 따른 무시멘트 결합재의 경우 40~50 MPa까지 측정되는 것을 확인하였다.The cementless binder may have a compressive strength of 10 MPa or more, 15 MPa or more, preferably 20 MPa or more, 30 MPa or more, 40 MPa or more, or 45 MPa or more during curing for 28 days. For example, the cementless binder includes 70 to 85 wt% of the fly ash, 12 to 27 wt% of the calcium oxide, and 3 to 10 wt% of the calcium chloride, and may have a compressive strength of 20 MPa or more upon curing for 28 days. have. Specifically, the binder may have a compressive strength of 10 to 50 MPa, 15 to 50 MPa, 20 to 50 MPa, 30 to 50 MPa, 40 to 50 MPa, or 45 to 50 MPa during curing for 28 days. In general, the compressive strength of the binder is measured on the basis of 28 days after curing, it was confirmed that in the case of cementless binder according to the invention measured up to 40 ~ 50 MPa.
또한 상기 결합재는 28일간 양생 시 절건밀도가 0.85~1.2 g/㎤일 수 있다. 상기 절건밀도는, 경화된 결합재를 100~110℃에서 무게 변동이 없을 때까지 건조하여, 경화된 결합재에 들어있는 수분이 전혀 없는 상태로 하였을 때의 경화된 결합재의 밀도를 의미한다.In addition, the binder may have a dry density of 0.85 to 1.2 g / cm 3 during curing for 28 days. The dry density means the density of the cured binder when the cured binder is dried at 100 to 110 ° C. until there is no variation in weight, and the moisture is not contained in the cured binder.
상기 무시멘트 결합재는 수소이온농도(pH) 범위가 12.5 내지 14일 수 있다. 무시멘트 결합재의 pH가 상기 바람직한 범위 내일 때, 철근 등의 금속 부식을 방지하여 안전성이 높으면서도 포틀랜드 시멘트처럼 분말 형태로 포대에 담아 판매가 가능하고 인체에 해가 적어 취급성이 높을 수 있다.The cementless binder may have a hydrogen ion concentration (pH) in the range of 12.5 to 14. When the pH of the cement binder is within the above preferred range, it is possible to prevent corrosion of metals such as reinforcing bars and to sell in bags in powder form like Portland cement, and to be handled with less harm to the human body.
상기 무시멘트 결합재는 분말 형태를 가짐으로써 다른 재료들과 혼합되어 건축 또는 토목 현장에 사용될 수 있다.The cementless binder has a powder form and can be mixed with other materials to be used in construction or civil engineering.
이와 같이 상기 무시멘트 결합재는 플라이애시를 고함량으로 사용하여 이산화탄소 발생량을 기존 시멘트보다 획기적으로 줄일 수 있고, 저가의 성분들을 사용하여 제품 단가를 획기적으로 낮추면서도, 종래 시멘트와 비교하여 동등 이상의 압축 강도 등의 물성을 발휘할 수 있다. As such, the cement binder has a high content of fly ash, which can significantly reduce carbon dioxide generation compared to conventional cement, and significantly lower the product cost by using low cost components. Physical properties such as can be exhibited.
또한, 상기 무시멘트 결합재는 양생 이후의 절건밀도가 낮으면서도 강도가 높아서, 천연 경량 결합재의 취약점인 낮은 강도를 보완한, 고강도 및 경량화 특성을 발휘할 수 있다. 그 외에도 상기 무시멘트 결합재는 양생 이후 중금속 흡착성 등의 면에서도 우수한 물성을 발휘한다. In addition, the cement binder is high in strength and low in dry density after curing, it can exhibit a high strength and light weight characteristics, which complements the low strength of the weakness of the natural lightweight binder. In addition, the cement binder exhibits excellent physical properties in terms of adsorption of heavy metals after curing.
아울러, 상기 무시멘트 결합재는 기존 유기 단열재와 달리 불에 타지 않고, 유독가스 배출이 없는 재료로 이루어져 있기 때문에 내연성 및 불연성의 단열재 및 흡음재료로 사용할 수 있다. 또한, 본 재료는 양생 조건을 달리하여도 내연성 및 불연성은 그대로 유지될 수 있으므로 다양한 건축 또는 토목 현장에서 활용될 수 있다.In addition, the cementless binder is not burned, unlike the existing organic insulating material, because it is made of a material that does not emit toxic gas can be used as a heat-resistant and non-flammable insulation and sound-absorbing material. In addition, the material can be used in a variety of construction or civil engineering sites because the flame resistance and non-combustibility can be maintained even if the curing conditions are different.
본 발명의 다른 측면에 따르면, 상기 무시멘트 결합재를 포함하는 무시멘트 모르타르 및 무시멘트 콘크리트가 제공된다.According to another aspect of the present invention, cementless mortar and cementless concrete including the cementless binder is provided.
본 발명의 또 다른 측면에 따르면, 상기 무시멘트 콘크리트를 포함하는 무시멘트 콘크리트 제품이 제공된다.According to another aspect of the present invention, a cementless concrete product including the cementless concrete is provided.
일 구현예에 따르면, 상기 무시멘트 콘크리트 제품은 콘크리트 파일, 벽돌, 블록, 타일, 경계석, 하수관, 프리스트레스트 콘크리트, 콘크리트 패널, 콘크리트 관, 기포 콘크리트, 맨홀, 아스팔트 콘크리트, 철근 콘크리트, 및 콘크리트 구조물을 포함할 수 있다.According to one embodiment, the cementless concrete product comprises concrete piles, bricks, blocks, tiles, boundary stones, sewer pipes, prestressed concrete, concrete panels, concrete pipes, aerated concrete, manholes, asphalt concrete, reinforced concrete, and concrete structures. It may include.
본 발명의 또 다른 측면에 따르면, (A) 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%가 혼합된 건조 혼합 분말을 제조하는 단계; 및 (B) 상기 제조된 건조 혼합 분말에 물을 혼합하여 페이스트를 생성하는 단계를 포함하는 무시멘트 결합재 페이스트의 제조방법이 개시된다.According to another aspect of the invention, (A) 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ) to prepare a dry mixed powder step; And (B) is disclosed a method of producing a cement binder paste comprising the step of mixing the prepared dry mixed powder with water to produce a paste.
상기 단계 (A)에서, 바람직하게는 상기 플라이애시 100 중량부에 대하여 상기 산화칼슘 17~40 중량부 및 상기 염화칼슘 3~15 중량부가 혼합될 수 있다. 이때 상기 각 성분별 혼합비는 건조 혼합 분말 내의 함량이 플라이애시 60~87 중량%, 산화칼슘 10~35 중량% 및 염화칼슘 1~15 중량%를 벗어나지 않는 범위 내에서 조절될 수 있다.In the step (A), preferably 17 to 40 parts by weight of the calcium oxide and 3 to 15 parts by weight of the calcium chloride may be mixed with respect to 100 parts by weight of the fly ash. At this time, the mixing ratio of each component may be adjusted within the range of the content in the dry mixed powder 60 ~ 87% by weight, 10 ~ 35% by weight of calcium oxide and 1 ~ 15% by weight of calcium chloride.
상기 단계 (B)에서, 상기 건조 혼합 분말 100 중량부에 대하여 물 40~70 중량부가 혼합될 수 있다. 특히, 상기 건조 혼합 분말 100 중량부에 대하여 물이 40 중량부 미만으로 혼합되는 경우에는 반죽 등의 시공성(workability)이 크게 떨어질 수 있으며, 70 중량부 초과로 혼합되는 경우에는 경화시간이 상당히 길어지면서 강도가 급격히 저하될 수 있다. 상기 수치범위로 물을 혼합하여 제조한 본 발명에 따른 무시멘트 결합재 페이스트는 양생(경화) 이후에 다량의 내부 공극이 존재할 수 있고, 이에 따라 향상된 흡음 효과, 단열 효과, 및 중금속 흡착 능력을 가질 수 있다. 보다 구체적으로, 상기 건조 혼합 분말 100 중량부에 대하여 물 40~60 중량부, 또는 물 40~50 중량부가 혼합될 수 있다.In the step (B), 40 to 70 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder. Particularly, when water is mixed at less than 40 parts by weight with respect to 100 parts by weight of the dry mixed powder, workability of the dough may be greatly reduced, and when it is mixed at more than 70 parts by weight, the curing time becomes considerably longer. The strength may drop sharply. The cement binder paste according to the present invention prepared by mixing water in the numerical range may have a large amount of internal voids after curing (curing), and thus may have an improved sound absorption effect, heat insulation effect, and heavy metal adsorption capacity. have. More specifically, 40 to 60 parts by weight of water or 40 to 50 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder.
일례로서, 단계 (B)에서 상기 건조 혼합 분말 100 중량부에 대하여 물 40~50 중량부로 혼합될 수 있는데, 상기 배합비율 내일 때 무시멘트 결합재 페이스트가 양생 후에 높은 압축강도를 발휘하는데 보다 유리할 수 있다. 다른 예로서, 단계 (B)에서 상기 건조 혼합 분말 100 중량부에 대하여 물 60~70 중량부로 혼합될 수 있는데, 상기 배합비율 내일 때 무시멘트 결합재 페이스트가 양생 및 건조 후에 높은 경량성, 흡음성 및 단열성을 발휘하는데 보다 유리할 수 있다.As an example, in the step (B) may be mixed with 40 to 50 parts by weight of water with respect to 100 parts by weight of the dry mixed powder, it may be more advantageous for the cement binder paste to exhibit a high compressive strength after curing within the blending ratio. . As another example, in the step (B) may be mixed with 60 to 70 parts by weight of water with respect to 100 parts by weight of the dry mixed powder, when the cemented binder binder is cured and dried after curing and drying in the blending ratio, high light weight, sound absorption and thermal insulation It may be more advantageous to exert.
일 구현예에 따르면, 단계 (A)에서, 상기 건조 혼합 분말이 플라이애시 70~85 중량%, 산화칼슘 12~27 중량% 및 염화칼슘 3~10 중량%를 혼합하여 제조되고; 단계 (B)에서, 상기 건조 혼합 분말 100 중량부에 대하여 물 40~50 중량부가 혼합될 수 있다. 상기 일 구현예에 따르면, 결합재-물 간의 재료 분리가 줄어들고 시공성이 향상되며 초기균열없고 장기 강도가 우수하면서 상태가 균질해질 수 있다.According to one embodiment, in step (A), the dry mixed powder is prepared by mixing 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide and 3 to 10% by weight of calcium chloride; In step (B), 40 to 50 parts by weight of water may be mixed with respect to 100 parts by weight of the dry mixed powder. According to the above embodiment, the material separation between the binder and the water is reduced, the workability is improved, the initial crack is excellent, the state can be homogeneous while the long-term strength is excellent.
이와 같이 제조된 무시멘트 결합재 페이스트는 양생을 거쳐 경화될 수 있다. 구체적으로, 상기 무시멘트 결합재 페이스트를 50~70℃ 및 상대습도 70~100% 범위의 항온항습 조건에서 양생할 수 있다. 보다 구체적으로, 상기 양생은 55~60℃ 및 상대습도 95~100%의 항온항습 조건에서 수행될 수 있다. 또한, 상기 양생은 3일 내지 30일간 수행될 수 있으며, 또는 20일 내지 30일간 수행될 수 있다. The cement binder paste thus prepared may be cured through curing. Specifically, the cement binder paste can be cured in a constant temperature and humidity conditions of 50 ~ 70 ℃ and relative humidity 70 ~ 100% range. More specifically, the curing may be carried out at a constant temperature and humidity conditions of 55 ~ 60 ℃ and 95 ~ 100% relative humidity. In addition, the curing may be performed for 3 to 30 days, or may be performed for 20 to 30 days.
또한, 상기 양생시에는 상기 무시멘트 결합재 페이스트에 다양한 건축 재료가 첨가될 수 있다. 상기 추가로 첨가되는 건축 재료로는 건축이나 토목 분야에서 통상적으로 사용되는 골재, 섬유, 결합재, 첨가제들이 가능하다.In addition, during the curing, various building materials may be added to the cement binder paste. The additionally added building materials may be aggregates, fibers, binders, additives commonly used in construction or civil engineering.
상기 무시멘트 결합재 페이스트가 몰드에서 양생될 경우 블록 형태 등으로 경화될 수 있다. 또는, 상기 무시멘트 결합재 페이스트는 경화 이후 분쇄되어 분말 형태로 가공될 수 있다. 특히, 경화 이후 분말화된 무시멘트 결합재는 중금속 흡착 능력이 현저히 향상될 수 있다. 일례로서, 플라이애시 70~85 중량%, 산화칼슘(CaO) 12~27 중량% 및 염화칼슘(CaCl2) 3~10 중량%가 혼합된 건조 혼합 분말 100 중량부에 물 60~70 중량부를 혼합하여 생성된 페이스트를 양생 및 분쇄하여 얻은 분말은 경량성 및 중금속 흡착 능력이 매우 우수할 수 있다.When the cement binder paste is cured in the mold, it may be cured in a block form or the like. Alternatively, the cementless binder paste may be pulverized after curing and processed into a powder form. In particular, the powdered cementless binder after curing can significantly improve the heavy metal adsorption capacity. As an example, 60 to 70 parts by weight of water is mixed with 100 parts by weight of dry mixed powder containing 70 to 85% by weight of fly ash, 12 to 27% by weight of calcium oxide (CaO) and 3 to 10% by weight of calcium chloride (CaCl 2 ). The powder obtained by curing and pulverizing the resulting paste can be very light and heavy metal adsorption capacity.
또한 상기 무시멘트 결합재 페이스트는 콘크리트 제품, 예를 들어 콘크리트 파일, 벽돌, 블록, 타일, 경계석, 하수관, 프리스트레스트 콘크리트, 콘크리트 패널, 콘크리트 관, 기포 콘크리트, 맨홀, 아스팔트 콘크리트, 철근 콘크리트, 및 콘크리트 구조물 형태로 경화될 수 있다. 또는 상기 무시멘트 결합재 페이스트는 콘크리트 시공 등의 건설 현장에 적용되어 건축물의 일부의 형태로 경화될 수 있다.The cement binder paste is also used in concrete products such as concrete piles, bricks, blocks, tiles, boundary stones, sewer pipes, prestressed concrete, concrete panels, concrete pipes, aerated concrete, manholes, asphalt concrete, reinforced concrete, and concrete structures It can be cured in the form. Alternatively, the cementless binder paste may be applied to a construction site such as concrete construction and may be cured into a part of a building.
또한, 상기 무시멘트 결합재 페이스트는 경화된 이후 절대건조를 거쳐 다량의 내부 공극이 형성될 수 있다. 상기 절대건조는 80℃ 내지 120℃, 보다 구체적으로는 90℃ 내지 120℃, 예를 들어 100℃의 온도 조건으로 수행될 수 있다. 또한, 상기 절대건조는 12 내지 36 시간, 보다 구체적으로는 24 내지 30 시간 동안 수행될 수 있다. 그 결과 절건밀도가 0.85~1.2 g/㎤, 또는 0.85~1.0 g/㎤로 조절될 수 있다.In addition, after the cement binder paste is cured, a large amount of internal voids may be formed through absolute drying. The absolute drying may be performed at a temperature condition of 80 ℃ to 120 ℃, more specifically 90 ℃ to 120 ℃, for example 100 ℃. In addition, the absolute drying may be performed for 12 to 36 hours, more specifically for 24 to 30 hours. As a result, the cutting density can be adjusted to 0.85 to 1.2 g / cm 3, or 0.85 to 1.0 g / cm 3.
이하 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 단 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 이들로 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following Examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto.
이하의 실시예에서는 하동 화력발전소에서 수득한 플라이애시를 사용하였으며, 이의 구체적인 조성을 XRF를 통해 분석한 결과는 다음과 같다.In the following examples, the fly ash obtained from the Hadong thermal power plant was used, the specific composition of the analysis by XRF results are as follows.
플라이애시 조성(하동 화력발전소)Fly Ash (Hadong Thermal Power Plant)
성분ingredient 중량부Parts by weight
SiO2 SiO 2 62.262.2
Al2O3 Al 2 O 3 22.822.8
Fe2O3 Fe 2 O 3 6.06.0
CaOCaO 3.13.1
K2OK 2 O 1.61.6
TiO2 TiO 2 1.31.3
MgOMgO 1.01.0
Na2ONa 2 O 0.60.6
SO3 SO 3 0.60.6
P2O5 P 2 O 5 0.30.3
BaOBaO 0.10.1
SrOSrO 0.10.1
ZrO2 ZrO 2 0.10.1
실시예 1: 무시멘트 결합재의 제조Example 1 Preparation of Cementless Binder
플라이애시, 산화칼슘 및 염화칼슘을 하기 표 3과 같은 중량비율로 혼합하여 총 9종의 건조 혼합 분말(무시멘트 결합재)을 제조하였다. Fly ash, calcium oxide and calcium chloride were mixed at a weight ratio as shown in Table 3 below to prepare a total of nine dry mixed powders (cement free binder).
샘플Sample 플라이애시(중량%)Fly ash (% by weight) 산화칼슘(중량%)Calcium Oxide (wt%) 염화칼슘(중량%)Calcium chloride (wt%)
1One 8787 1010 33
22 8282 1515 33
33 7777 2020 33
44 8484 1010 66
55 7979 1515 66
66 7474 2020 66
77 8181 1010 99
88 7676 1515 99
99 7171 2020 99
실시예 2: 무시멘트 결합재의 제조Example 2: Preparation of Cementless Binder
플라이애시, 산화칼슘 및 염화칼슘을 하기 표 4와 같은 중량비율로 혼합하여 총 4종의 건조 혼합 분말(무시멘트 결합재)을 제조하였다. Fly ash, calcium oxide and calcium chloride were mixed at a weight ratio as shown in Table 4 to prepare a total of four dry mixed powders (cement binder).
샘플Sample 플라이애시(중량%)Fly ash (% by weight) 산화칼슘(중량%)Calcium Oxide (wt%) 염화칼슘(중량%)Calcium chloride (wt%)
1One 7575 2020 55
22 6565 3030 55
33 7070 2020 1010
44 6060 3030 1010
비교예 1: 무시멘트 결합재의 제조Comparative Example 1: Preparation of Cementless Binder
플라이애시, 산화칼슘 및 염화칼슘을 하기 표 5와 같은 중량비율로 혼합하여, 총 5종의 건조 혼합 분말(무시멘트 결합재)을 제조하였다.Fly ash, calcium oxide and calcium chloride were mixed at a weight ratio as shown in Table 5 below to prepare a total of five dry mixed powders (cement free binder).
샘플Sample 플라이애시(중량%)Fly ash (% by weight) 산화칼슘(중량%)Calcium Oxide (wt%) 염화칼슘(중량%)Calcium chloride (wt%)
1One 8080 2020 00
22 7070 3030 00
33 6060 4040 00
44 5555 4040 55
55 5050 4040 1010
제조예 1: 무시멘트 결합재 페이스트의 제조Preparation Example 1 Preparation of Cementless Binder Paste
상기 실시예 1 및 2, 및 비교예 1에서 제조한 다양한 조성의 건조 혼합 분말(무시멘트 결합재)에 물을 첨가하여 페이스트를 각각 생성하였다. 이때, 상기 실시예 1에서 제조된 건조 혼합 분말 100 중량부에 대해 물 40 중량부가 첨가되었고, 상기 실시예 2 및 비교예 1에서 제조된 건조 혼합 분말 100 중량부에 대해 물 70 중량부가 첨가되었다.Pastes were formed by adding water to the dry mixed powder (cementless binder) having various compositions prepared in Examples 1 and 2 and Comparative Example 1, respectively. At this time, 40 parts by weight of water was added to 100 parts by weight of the dry mixed powder prepared in Example 1, and 70 parts by weight of water was added to 100 parts by weight of the dry mixed powder prepared in Examples 2 and Comparative Example 1.
제조예 2: 무시멘트 결합재 페이스트의 양생(경화)Preparation Example 2 Curing of Cemented Binder Paste (Hardening)
앞서 제조예 1에서 제조한 무시멘트 결합재 페이스트를 가로, 세로 및 높이가 각각 50mm 인 입방면체 몰드에서 60℃ 및 상대습도 70~100%로 유지하면서 28일간 양생하여 경화 블록을 제조하였다. Curing block was prepared by curing the cementless binder paste prepared in Preparation Example 1 for 28 days while maintaining the temperature at 60 ° C. and relative humidity of 70 to 100% in a cubic mold each having a width, length, and height of 50 mm.
시험예 1: 압축강도 평가Test Example 1: Evaluation of Compressive Strength
상기 실시예 1로부터 제조된 무시멘트 결합재(총 9 가지) 100 중량부에 대해, 제조예 1 및 2의 절차대로 물 40 중량부를 첨가하여 페이스트를 얻은 뒤 가로, 세로 및 높이가 각각 50mm인 입방면체 몰드에서 60℃ 및 상대습도 100%로 양생하면서 3일째 및 28일째의 압축강도를 측정하였다. 압축강도는 KS L 5105 혹은 JIS R 5201에서 기술된 시멘트 모르타르의 압축강도 시험법에 준하여 측정하였고, 샘플별로 3개 시편의 압축강도의 평균을 취하여, 하기 표 6 및 7, 및 도 1에 나타내었다.For 100 parts by weight of cement cement binder (9 kinds) prepared from Example 1, 40 parts by weight of water was added according to the procedures of Preparation Examples 1 and 2 to obtain a paste, and the cubes each having a width, a length, and a height of 50 mm each. Compressive strength at 3 and 28 days was measured while curing at 60 ° C. and 100% relative humidity in the mold. The compressive strength was measured according to the compressive strength test method of cement mortar described in KS L 5105 or JIS R 5201, and the average compressive strength of three specimens per sample was shown in Tables 6, 7, and 1 below. .
3일 압축강도(MPa)3-day compressive strength (MPa) 산화칼슘 중량비율Calcium oxide weight ratio
10 중량%10 wt% 15 중량%15 wt% 20 중량%20 wt%
염화칼슘 중량비율Calcium chloride weight ratio 3 중량%3 wt% 21.521.5 27.227.2 30.030.0
6 중량%6 wt% 14.514.5 30.230.2 34.634.6
9 중량%9 wt% 12.212.2 25.325.3 34.834.8
28일 압축강도(MPa)28 Day Compressive Strength (MPa) 산화칼슘 중량비율Calcium oxide weight ratio
10 중량%10 wt% 15 중량%15 wt% 20 중량%20 wt%
염화칼슘 중량비율Calcium chloride weight ratio 3 중량%3 wt% 25.325.3 33.933.9 36.936.9
6 중량%6 wt% 21.721.7 39.639.6 46.246.2
9 중량%9 wt% 16.516.5 33.733.7 44.644.6
상기 표 6 및 7, 및 도 1에서 보듯이, 양생기간 28일의 산화칼슘 20 중량% 및 염화칼슘 6 중량% (플라이애시 74 중량%)의 배합에서 최고 강도를 나타내었다.As shown in Tables 6, 7, and 1, the highest strength was shown in the formulation of 20% by weight of calcium oxide and 6% by weight of calcium chloride (74% by weight fly ash) during the 28 days curing period.
또한 상기 실시예 2 및 비교예 1로부터 제조된 무시멘트 결합재(총 6 가지) 100 중량부에 대해, 제조예 1 및 2의 절차대로 물 70 중량부를 첨가하여 페이스트를 얻은 뒤 가로, 세로 및 높이가 각각 50mm인 입방면체 몰드에서 60℃ 및 상대습도 100%로 양생하면서 3일째 및 28일째의 압축강도를 측정하였다. 압축강도는 KS L 5105 혹은 JIS R 5201에서 기술된 시멘트 모르타르의 압축강도 시험법에 준하여 측정하였고, 샘플별로 3개 시편의 압축강도의 평균을 취하여, 하기 표 8 및 9, 및 도 2에 나타내었다.In addition, to 100 parts by weight of cement cement binder (6 kinds) prepared from Example 2 and Comparative Example 1, 70 parts by weight of water was added according to the procedures of Preparation Examples 1 and 2 to obtain a paste. The compressive strengths of the 3rd and 28th days were measured while curing at 60 ° C. and 100% relative humidity in a 50 mm cube mold. The compressive strength was measured according to the compressive strength test method of cement mortar described in KS L 5105 or JIS R 5201, and the average compressive strength of three specimens was taken for each sample and shown in Tables 8 and 9, and FIG. 2. .
3일 압축강도(MPa)3-day compressive strength (MPa) 산화칼슘 중량비율Calcium oxide weight ratio
20 중량%20 wt% 30 중량%30 wt% 40 중량%40 wt%
염화칼슘 중량비율Calcium chloride weight ratio 0 중량%0 wt% 2.22.2 3.43.4 성형불가Molding impossible
5 중량%5 wt% 8.78.7 11.911.9 성형불가Molding impossible
10 중량%10 wt% 1717 20.620.6 성형불가Molding impossible
28일 압축강도(MPa)28 Day Compressive Strength (MPa) 산화칼슘 중량비율Calcium oxide weight ratio
20 중량%20 wt% 30 중량%30 wt% 40 중량%40 wt%
염화칼슘 중량비율Calcium chloride weight ratio 0 중량%0 wt% 6.36.3 8.58.5 성형불가Molding impossible
5 중량%5 wt% 18.918.9 2727 성형불가Molding impossible
10 중량%10 wt% 24.424.4 31.131.1 성형불가Molding impossible
상기 표 8 및 9, 및 도 2에서 보듯이, 양생기간 28일의 산화칼슘 30 중량% 및 염화칼슘 10 중량% (플라이애시 60 중량%)의 배합에서 최고강도를 나타내었다. 또한, 산화칼슘의 함량이 30 중량% 초과(플라이애시 100 중량부에 대하여 50 중량부 초과)인 경우에는 페이스트의 성형 자체가 불가능하였다.As shown in Table 8 and 9, and Figure 2, the highest strength in the combination of 30% by weight of calcium oxide and 10% by weight of calcium chloride (60% by weight fly ash) for 28 days curing period. In addition, when the content of calcium oxide was more than 30% by weight (more than 50 parts by weight based on 100 parts by weight of the fly ash), molding of the paste itself was impossible.
시험예 2: 절건밀도 측정Test Example 2: Measurement of dry density
상기 실시예 2 및 비교예 1로부터 제조된 무시멘트 결합재(총 6가지) 100 중량부에 대해, 제조예 1 및 2의 절차대로 물 70 중량부를 첨가하여 페이스트를 얻은 뒤 가로, 세로 및 높이가 각각 50mm인 입방면체 몰드에서 60℃ 및 상대습도 100%로 28일간 양생시켰다. 이를 100℃에서 하루 동안 건조시켜 측정한 절건밀도를 도 3에 나타내었다.To 100 parts by weight of cement cement binder (6 kinds) prepared from Example 2 and Comparative Example 1, 70 parts by weight of water was added according to the procedures of Preparation Examples 1 and 2 to obtain a paste, and then the width, length, and height were respectively. Cured for 28 days at 60 ℃ and 100% relative humidity in a 50mm cube mold. It was shown in Figure 3 the dry density measured by drying for one day at 100 ℃.
도 3과 상기 표 6 내지 9를 통하여, 본 발명에 따른 무시멘트 결합재는 양생(경화) 이후에 절건밀도가 낮아 경량이면서도 높은 고강도를 발휘하므로, 상용의 시멘트를 대체할 수 있음을 확인할 수 있다.3 and Tables 6 to 9, the cement cement binder according to the present invention exhibits high strength and light weight after curing (curing) is low, it can be seen that can replace the commercial cement.
시험예 3: 중금속(크롬) 흡착기능 평가Test Example 3 Evaluation of Heavy Metal (Chrome) Adsorption Function
실시예 2 및 비교예 1에서 제조된 무시멘트 결합재(건조 혼합 분말)에 물을 첨가하여 얻은 페이스트를 가로, 세로 및 높이가 각각 50mm인 입방면체 몰드에서 60℃ 및 상대습도 70~100%로 유지하면서 3일간 양생하여 각각의 경화 블록 샘플을 제조하였다. 또한, 일부 경화 블록 샘플을 분쇄하여 경화 분말 샘플을 얻었다. 이들 각각의 경화 블록 및 경화 분말 샘플의 결합재 조성, 물과의 혼합 비율 및 분쇄 여부를 하기 표 1에 정리하였다. 또한 경화 블록 샘플들의 절건밀도를 측정하여 표 1에 함께 정리하였다.The paste obtained by adding water to the cement cement binder (dry mixed powder) prepared in Example 2 and Comparative Example 1 was maintained at 60 ° C. and a relative humidity of 70 to 100% in a cubic mold each having 50 mm in width, length, and height. Each cured block sample was prepared by curing for 3 days. In addition, some cured block samples were ground to obtain cured powder samples. The binder composition, mixing ratio with water, and crushing of each of these cured blocks and cured powder samples are summarized in Table 1 below. In addition, the dry density of the hardened block samples was measured and summarized together in Table 1.
샘플종류Sample Type 무시멘트 결합재 (중량%)Cementless binder (% by weight) 물(중량부) (무시멘트결합재 100중량부당)Water (parts by weight) (per 100 parts by weight of cementless binder) 분쇄여부Crushing 절건 밀도 (g/㎤)Drying density (g / cm 3)
플라이애시Fly ash 산화칼슘Calcium oxide 염화칼슘Calcium chloride
CF_0.7CF_0.7 8080 2020 00 7070 -- 0.950.95
CCF_0.4CCF_0.4 7070 2020 1010 4040 -- 1.21.2
CCF_0.7CCF_0.7 7070 2020 1010 7070 -- 0.940.94
CCF_분말CCF_Powder 7070 2020 1010 7070 분쇄smash --
상기 샘플들을 415.5 mg/L 농도의 크롬 용액에 2일간 침지하여 크롬을 흡착시키고, ICP-OES 장비를 이용하여 크롬 수용액의 크롬 농도(흡착 전/후)를 측정하여 도 4에 나타내었다. The samples were immersed in a chromium solution at 415.5 mg / L for 2 days to adsorb chromium, and the chromium concentration (before and after adsorption) of the aqueous chromium solution was measured using ICP-OES equipment, and is shown in FIG. 4.
상기 표 10을 보면 CCF_0.7은 CCF_0.4보다 절건밀도가 낮은 반면, 도 4를 보면 중금속(크롬) 흡착 능력이 CCF_0.4보다 상대적으로 높았으며, 이는 절건밀도가 낮을수록 공극이 많이 형성된 형태로서 중금속의 흡착이 더욱 용이하게 수행될 수 있다는 것을 의미한다.In Table 10, CCF_0.7 has a lower dry density than CCF_0.4, while in Figure 4, heavy metal (chromium) adsorption capacity is relatively higher than CCF_0.4, and the lower the dry density, the more voids are formed. This means that the adsorption of heavy metals can be carried out more easily.
또한, 표 10을 보면 비교예에 따른 CF_0.7는 실시예에 따른 CCF_0.7과 절건밀도와 비슷하지만, 도 4를 보면 중금속(크롬) 흡착 능력이 CCF_0.7보다 매우 낮게 평가되었다. 이는 CF_0.7에 염화칼슘이 포함되지 않아 반응생성물인 하이드로칼루마이트(hydrocalumite)가 생성되지 않았기 때문인 것으로 해석된다.In addition, in Table 10, CF_0.7 according to the comparative example is similar to CCF_0.7 and cutting density according to the embodiment, but in Figure 4 it was evaluated that the heavy metal (chromium) adsorption capacity is much lower than CCF_0.7. This is due to the fact that CF_0.7 does not contain calcium chloride, so that no reaction product hydrocalumite was produced.
또한, 경화 블록을 분쇄하여 얻은 CCF_분말의 경우, 크롬 용액에 침지할 경우 표면적 향상으로 인하여 2일 후의 크롬 농도가 초기 크롬 농도 대비 62.5%까지 현저히 감소된 것을 확인할 수 있었다.In addition, in the case of CCF_powder obtained by pulverizing the hardening block, when immersed in the chromium solution, it was confirmed that the chromium concentration after 2 days was significantly reduced to 62.5% compared to the initial chromium concentration due to the surface area improvement.
그러므로 도 4를 통해, 결합재 및 물의 혼합 비율 뿐만 아니라 염화칼슘의 포함여부 또한 중금속 흡착기능에 기여한다는 것을 확인할 수 있으며, 또한 경화 블록을 분말로 분쇄하여 사용할 경우, 블록 상태로 사용하는 경우보다 중금속 흡착 능력이 향상된다는 것을 확인할 수 있었다.Therefore, it can be seen from FIG. 4 that the mixing ratio of the binder and water as well as the inclusion of calcium chloride also contribute to the heavy metal adsorption function. Also, when the hardened block is pulverized into powder, the heavy metal adsorption capacity is higher than that of the block state. It was confirmed that this is improved.

Claims (15)

  1. 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%를 포함하는 무시멘트 결합재.Cement cement binder comprising 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ).
  2. 제 1 항에 있어서, The method of claim 1,
    상기 플라이애시 70~85 중량%, 상기 산화칼슘 12~27 중량% 및 상기 염화칼슘 3~10 중량%를 포함하는 것을 특징으로 하는, 무시멘트 결합재.70 to 85% by weight of the fly ash, 12 to 27% by weight of the calcium oxide and 3 to 10% by weight of the calcium chloride, cementless binder.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 플라이애시 100 중량부에 대하여 상기 산화칼슘 17~40 중량부 및 상기 염화칼슘 3~15 중량부가 혼합되는 것을 특징으로 하는, 무시멘트 결합재.Cerium cement binder, characterized in that 17 to 40 parts by weight of the calcium oxide and 3 to 15 parts by weight of the calcium chloride are mixed with respect to 100 parts by weight of the fly ash.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 플라이애시가 석탄을 태운 뒤 발생하는 회분(coal fly ash)으로서 SiO2, Al2O3, Fe2O3, CaO 및 MgO를 28.5~66.0 : 12.5~55.0 : 1.1~25.5 : 1.4~22.4 : 0.1~4.8의 중량비로 포함하는 것을 특징으로 하는, 무시멘트 결합재.SiO 2 , Al 2 O 3 , Fe 2 O 3 , CaO and MgO 28.5 to 66.0: 12.5 to 55.0: 1.1 to 25.5: 1.4 to 22.4 as ash fly generated after the fly ash burned coal (coal fly ash) Cement cement binder, characterized in that it comprises in a weight ratio of 0.1 to 4.8.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 무시멘트 결합재가 12.5 내지 14의 수소이온농도(pH)를 갖는 것을 특징으로 하는, 무시멘트 결합재.Cementium binder, characterized in that the cementless binder has a hydrogen ion concentration (pH) of 12.5 to 14.
  6. 제 1 항에 있어서, The method of claim 1,
    상기 무시멘트 결합재가 28일간 양생 시 10 MPa 이상의 압축강도를 갖는 것을 특징으로 하는, 무시멘트 결합재.The cementless binder is characterized in that it has a compressive strength of 10 MPa or more when cured for 28 days.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 무시멘트 결합재가 The cement binder is
    상기 플라이애시 70~85 중량%, 상기 산화칼슘 12~27 중량% 및 상기 염화칼슘 3~10 중량%를 포함하고,70 to 85 wt% of the fly ash, 12 to 27 wt% of the calcium oxide, and 3 to 10 wt% of the calcium chloride,
    28일간 양생 시 20 MPa 이상의 압축강도를 갖는 것을 특징으로 하는, 무시멘트 결합재.Cement cement binder, characterized in that having a compressive strength of 20 MPa or more during 28 days curing.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 무시멘트 결합재를 포함하는 무시멘트 모르타르.Cement cement mortar comprising the cement cement binder according to any one of claims 1 to 7.
  9. 제 1 항 내지 제 7 항 중 어느 한 항에 따른 무시멘트 결합재를 포함하는 무시멘트 콘크리트.A cementless concrete comprising a cementless binder according to any one of claims 1 to 7.
  10. 제 9 항에 따른 무시멘트 콘크리트를 포함하는 무시멘트 콘크리트 제품.Cementless concrete product comprising cementless concrete according to claim 9.
  11. 제 10 항에 있어서, The method of claim 10,
    상기 콘크리트 제품이 콘크리트 파일, 벽돌, 블록, 타일, 경계석, 하수관, 프리스트레스트 콘크리트, 콘크리트 패널, 콘크리트 관, 기포 콘크리트, 맨홀, 아스팔트 콘크리트, 철근 콘크리트, 및 콘크리트 구조물을 포함하는 것을 특징으로 하는, 콘크리트 제품.Concrete, characterized in that the concrete product comprises concrete piles, bricks, blocks, tiles, boundary stones, sewer pipes, prestressed concrete, concrete panels, concrete pipes, aerated concrete, manholes, asphalt concrete, reinforced concrete, and concrete structures product.
  12. (A) 플라이애시 60~87 중량%, 산화칼슘(CaO) 10~35 중량% 및 염화칼슘(CaCl2) 1~15 중량%가 혼합된 건조 혼합 분말을 제조하는 단계; 및(A) preparing a dry mixed powder mixed with 60 to 87% by weight of fly ash, 10 to 35% by weight of calcium oxide (CaO) and 1 to 15% by weight of calcium chloride (CaCl 2 ); And
    (B) 상기 제조된 건조 혼합 분말에 물을 혼합하여 페이스트를 생성하는 단계를 포함하는, 무시멘트 결합재 페이스트의 제조방법.(B) mixing the water to the prepared dry mixed powder to produce a paste, comprising the cement binder paste.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 단계 (A)에서, 상기 플라이애시 100 중량부에 대하여 산화칼슘 17~40 중량부 및 염화칼슘 3~15 중량부가 혼합되는 것을 특징으로 하는, 무시멘트 결합재 페이스트의 제조방법.In the step (A), characterized in that 17 to 40 parts by weight of calcium oxide and 3 to 15 parts by weight of calcium chloride are mixed with respect to 100 parts by weight of the fly ash, the cement binder paste manufacturing method.
  14. 제 12 항에 있어서, The method of claim 12,
    상기 단계 (B)에서, 상기 건조 혼합 분말 100 중량부에 대하여 물 40~70 중량부가 혼합되는 것을 특징으로 하는, 무시멘트 결합재 페이스트의 제조방법.In the step (B), 40 to 70 parts by weight of water is mixed with respect to 100 parts by weight of the dry mixed powder, the cement binder paste manufacturing method.
  15. 제 12 항에 있어서, The method of claim 12,
    단계 (A)에서, 상기 건조 혼합 분말이 플라이애시 70~85 중량%, 산화칼슘 12~27 중량% 및 염화칼슘 3~10 중량%를 혼합하여 제조되고;In step (A), the dry mixed powder is prepared by mixing 70-85 wt% of fly ash, 12-27 wt% of calcium oxide and 3-10 wt% of calcium chloride;
    단계 (B)에서, 상기 건조 혼합 분말 100 중량부에 대하여 물 40~50 중량부가 혼합되는 것을 특징으로 하는, 무시멘트 결합재 페이스트의 제조방법.In step (B), characterized in that 40 to 50 parts by weight of water is mixed with respect to 100 parts by weight of the dry mixed powder, manufacturing method of cement binder paste.
PCT/KR2016/012775 2016-01-11 2016-11-08 Cement-free binder and application thereof WO2017122916A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680078357.9A CN108473373A (en) 2016-01-11 2016-11-08 Cement-free adhesive and use thereof
RU2018129097A RU2705646C1 (en) 2016-01-11 2016-11-08 Cement-free binder and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160003160A KR101773961B1 (en) 2016-01-11 2016-01-11 Cementless binder and application thereof
KR10-2016-0003160 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017122916A1 true WO2017122916A1 (en) 2017-07-20

Family

ID=59311720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012775 WO2017122916A1 (en) 2016-01-11 2016-11-08 Cement-free binder and application thereof

Country Status (4)

Country Link
KR (1) KR101773961B1 (en)
CN (1) CN108473373A (en)
RU (1) RU2705646C1 (en)
WO (1) WO2017122916A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982087B1 (en) * 2017-07-25 2019-06-03 주식회사 하우이씨엠 A method of manufacturing a board using bottom ash, and a board manufactured thereby
WO2019112079A1 (en) * 2017-12-05 2019-06-13 한양대학교 에리카산학협력단 Alkali-activated binder structure comprising ion exchange resin, and manufacturing method therefor
KR102100404B1 (en) * 2018-06-27 2020-04-13 울산과학기술원 White hardened product and composition for preparing same
KR102041733B1 (en) * 2018-12-05 2019-11-08 한국석회석신소재연구재단 Ca-based Flue-gas Desulfurization Absorbent Containing CFBC Fly-ash And Manufacturing Method Thereof
US11414353B2 (en) 2019-04-23 2022-08-16 King Fahd University Of Petroleum And Minerals Room temperature cured green concrete derived from natural pozzolan and nanosilica
CN111704433A (en) * 2020-07-02 2020-09-25 中国海洋石油集团有限公司 Composite curing agent and application thereof
KR102265152B1 (en) 2020-11-05 2021-06-15 주식회사 위드엠텍 Eco-friendly Binder Composition for Construction
CN113860784A (en) * 2021-11-02 2021-12-31 惠州市惠政新材料科技有限公司 Powder admixture and concrete containing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070404A (en) * 2007-12-27 2009-07-01 전남대학교산학협력단 Preparation of blended cement compositions using reduction electric arc furnace slag
KR20140008060A (en) * 2012-07-10 2014-01-21 한일시멘트 (주) The composite of non-cement based on blast furnace slag and fly ash, manufacturing method of dry mortar using the it
KR101366003B1 (en) * 2013-04-26 2014-02-25 한일에코산업 주식회사 Method for producing concrete block using non-cement binder
KR20150129350A (en) * 2014-05-12 2015-11-20 주식회사에스피엠 A Composite of non-cement type binder with eco-friendly properties
KR20160001348A (en) * 2014-06-27 2016-01-06 현대제철 주식회사 No cement binder and the manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1081140A (en) * 1993-09-09 1994-01-26 武汉工业大学 High-performance non-cement powdered coal ash brick
RU2101251C1 (en) * 1995-08-15 1998-01-10 Акционерное общество открытого типа Сибирская научно-производственная инвестиционная фирма строительных материалов Concrete mix
US20060070406A1 (en) * 2004-09-28 2006-04-06 Orgyr Technologies Ltd. Use of coal ash for the safe disposal of mineral waste
CN1654402A (en) * 2005-02-25 2005-08-17 黄振利 Cooked fly ash gypsum and its preparation method
NL1031142C2 (en) * 2006-02-14 2007-08-16 Mega Tech Holding Bv Binder composition, construction composition comprising this binder composition as well as method for the preparation of the construction composition and use thereof.
RU2379262C1 (en) * 2008-07-24 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Тверской государственный технический университет" Composition for making unautoclaved gas concrete and method for mixing thereof
CN101829668B (en) * 2010-05-28 2012-06-20 济南市琦泉热电有限责任公司 Process for producing high-strength compound ash from boiler ash of circulating fluid bed
KR101296591B1 (en) * 2012-04-20 2013-08-14 오스템임플란트 주식회사 Post treatment device for ha coating layer of dental implant surface
KR101296159B1 (en) * 2013-03-13 2013-08-28 국보환경(주) Method for manufacturing and composite of base asphalt using aged asphalt concrete and cementless binder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090070404A (en) * 2007-12-27 2009-07-01 전남대학교산학협력단 Preparation of blended cement compositions using reduction electric arc furnace slag
KR20140008060A (en) * 2012-07-10 2014-01-21 한일시멘트 (주) The composite of non-cement based on blast furnace slag and fly ash, manufacturing method of dry mortar using the it
KR101366003B1 (en) * 2013-04-26 2014-02-25 한일에코산업 주식회사 Method for producing concrete block using non-cement binder
KR20150129350A (en) * 2014-05-12 2015-11-20 주식회사에스피엠 A Composite of non-cement type binder with eco-friendly properties
KR20160001348A (en) * 2014-06-27 2016-01-06 현대제철 주식회사 No cement binder and the manufacturing method thereof

Also Published As

Publication number Publication date
KR101773961B1 (en) 2017-09-04
KR20170083818A (en) 2017-07-19
CN108473373A (en) 2018-08-31
RU2705646C1 (en) 2019-11-11

Similar Documents

Publication Publication Date Title
WO2017122916A1 (en) Cement-free binder and application thereof
Muraleedharan et al. Factors affecting the mechanical properties and microstructure of geopolymers from red mud and granite waste powder: A review
US6482258B2 (en) Fly ash composition for use in concrete mix
WO2016072622A2 (en) Cement-free accelerating admixture and cement-free composition including same
Okoye Geopolymer binder: A veritable alternative to Portland cement
WO2011087304A2 (en) Alkali-activated binding material having no cement and comprising a complex alkali activator, and mortar or concrete using same
US6251178B1 (en) Fly ash composition
US10807911B2 (en) Concrete composition and production method therefor
Benabed et al. Experimental study on the reuse of cathode ray tubes funnel glass as fine aggregate for developing an ecological self-compacting mortar incorporating metakaolin
US8206503B2 (en) Method and composition for making a concrete product from sludge
KR101779565B1 (en) Eco-friendly cement concrete composition for ready-mixed concrete
CN108821692A (en) A kind of sand base water-permeable brick and preparation method thereof of electric arc furnace steel slag preparation
KR101859704B1 (en) Blast furnace slag based no cement binder containing calcium chloride
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
WO2017131330A1 (en) Solidifying agent including oyster shells treated with sulfuric acid, and construction method using same
US6997984B2 (en) Cement admixture
WO2017023050A1 (en) Method for manufacturing magnesia phosphate composite using ferronickel slag powder and magnesia phosphate composite manufactured by same using ferronickel slag powder
WO2018155806A1 (en) Mine liner composition
WO2010101412A2 (en) Method for producing artificial lightweight aggregates using cold- or hot-rolled mill sludge
US20190308909A1 (en) Sintered ceramics
Sivaprasad et al. Effect of silica fume on steel slag concrete
KR100566948B1 (en) Recycling method for waste concrete
JP5506367B2 (en) Hydraulic composition
SU1502524A1 (en) Concrete mix
JP4567504B2 (en) Fired product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885227

Country of ref document: EP

Kind code of ref document: A1