[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017122822A1 - Production intermediate of depsipeptide compound, and method for producing same - Google Patents

Production intermediate of depsipeptide compound, and method for producing same Download PDF

Info

Publication number
WO2017122822A1
WO2017122822A1 PCT/JP2017/001140 JP2017001140W WO2017122822A1 WO 2017122822 A1 WO2017122822 A1 WO 2017122822A1 JP 2017001140 W JP2017001140 W JP 2017001140W WO 2017122822 A1 WO2017122822 A1 WO 2017122822A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
tritylthio
compound
configuration
Prior art date
Application number
PCT/JP2017/001140
Other languages
French (fr)
Japanese (ja)
Inventor
千加史 石岡
憲 西條
加藤 正
紘一 成田
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2017122822A1 publication Critical patent/WO2017122822A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/60Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses

Definitions

  • the present invention relates to a method for producing an optically active amide carboxylic acid derivative useful as an intermediate for producing a depsipeptide compound, which is expected as an excellent novel molecular target anticancer agent, and a novel production intermediate thereof.
  • HDAC histone deacetylase
  • PI3K phosphatidyl inositol 3-kinase
  • R 1 ′ represents an amino acid side chain, a lower alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group
  • R 3 ′ and R 4 ′ are the same or different and represent hydrogen
  • An atom, an amino acid side chain, a lower alkyl group, a lower alkylidene group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group is represented.
  • the broken bond represents a single bond or a double bond.
  • the present invention seeks to solve the problems of such conventional methods, and provides a method for producing a depsipeptide compound intermediate that can be achieved in a shorter reaction step, and a production intermediate and a method for producing the same.
  • the purpose is to provide.
  • the present inventor has established an efficient method for obtaining an important intermediate of a depsipeptide compound, which is expected as an excellent novel molecular target anticancer agent, as a single optical isomer in a short process. Completed the invention.
  • the present invention includes the following aspects.
  • R 1 represents an amino acid side chain other than hydrogen, methyl and n-butyl
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • * represents an asymmetric carbon.
  • represents an asymmetric carbon, D configuration or L configuration
  • TrS represents a tritylthio group.
  • R 1 represents an amino acid side chain other than hydrogen, methyl, and n-butyl. * Represents an asymmetric carbon, and is a configuration of 3′R or 3 ′S. ⁇ indicates an asymmetric carbon. And represents the configuration of D or L. TrS represents a tritylthio group.)
  • R 1 represents an amino acid side chain other than hydrogen and methyl
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • represents an asymmetric carbon, D Body or L configuration.
  • R 1 is hydrogen, amino acid side chain other than methyl and n- butyl, The process according to claim 3.
  • R 1 represents an amino acid side chain other than hydrogen, methyl and n-butyl
  • R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms
  • * represents an asymmetric carbon.
  • represents an asymmetric carbon, D configuration or L configuration
  • TrS represents a tritylthio group.
  • the present invention also includes the following aspects.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent.
  • R 5 is as described above. * Represents an asymmetric carbon, and the bond indicated by a wavy line is a mixture of 3′R and 3 ′S configurations.
  • R 5 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent. * Represents an asymmetric carbon, and the bond shown by a wavy line is a 3′R isomer or a 3 ′S isomer. A mixture of configurations.)
  • the number of steps is shorter than that of the conventional method, and the formula (1) is an important common intermediate of depsipeptide compounds represented by formulas (1) and (2).
  • An optically active amide carboxylic acid derivative represented by IV) can be obtained.
  • the number of steps from the starting material to the compound represented by the formula (IV) can be reduced from 14 steps of the conventional method to 6 steps, and the total yield of important intermediates and the overall reaction can be reduced. Efficiency can be improved dramatically.
  • production costs can be reduced, production management, etc. can be greatly improved, and depsipeptide compounds expected as excellent novel molecular target anticancer agents can be efficiently produced. It becomes possible.
  • the compounds of formula (1) and (2) can be synthesized by following the schemes A and B below. it can.
  • the hydroxyl group of the compound of the formula (II) is protected with a p-methoxybenzyl (hereinafter referred to as “PMB”) group.
  • PMB p-methoxybenzyl
  • the compound of the formula (II ′) is a known compound described in the literature (see Non-Patent Documents 1 to 3 above), but the compound of the formula (II) in which the hydroxyl group is unprotected is a novel compound not described in the literature. is there.
  • step (i) the compounds of formulas (II ′) and (3) are condensed, and then the PMB group is removed and ester hydrolysis is performed to obtain a tetrapeptide derivative (compound of formula (4)).
  • step (ii) intramolecular esterification and intramolecular disulfide bond formation are performed to achieve synthesis of the depsipeptide compound (1).
  • the synthesis of the depsipeptide compound (2) is carried out in the same manner as in the method of Scheme A as shown in Scheme B. That is, in step (i), the compounds of formulas (II ′) and (5) are condensed to obtain a tetrapeptide derivative (compound of formula (6)).
  • step (ii) intramolecular esterification, intramolecular disulfide bond formation, and tert-butyldimethylsilyl (hereinafter referred to as “TBS”) group deprotection are sequentially performed to synthesize a compound of formula (2) Has been completed.
  • TBS tert-butyldimethylsilyl
  • R 1 represents an amino acid side chain, an alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group, preferably an amino acid side chain.
  • R 3 and R 4 are the same or different and each represents a hydrogen atom, an amino acid side chain, a lower alkyl group, a lower alkylidene group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group.
  • a broken bond represents a single bond or a double bond.
  • Non-patent documents 1 to 3 describe the synthesis route and detailed synthesis method of the compound of formula (II ′).
  • Schemes C, D and E a method for synthesizing the compound of formula (II ′) will be described.
  • commercially available 1,3-propanediol compound of formula (7)
  • an intermediate sulfone formula (12) Compound
  • the other optically active aldehyde compound of formula (16)
  • is the other intermediate is a known compound and is synthesized according to the method described in the literature (Non-patent Document 4).
  • hydrocarbon group means a hydrocarbon group in which the group is linear, branched, cyclic, or a combination thereof.
  • the hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • hydrocarbon groups having 1 to 10 carbon atoms include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, aralkyl groups, and the like.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, Examples thereof include alkyl groups such as decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • alkenyl group examples include alkenyl groups such as vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group and decenyl group.
  • alkynyl group examples include alkynyl groups such as ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group and the like.
  • aryl group examples include aryl groups such as a phenyl group, a tolyl group, and a naphthyl group.
  • Alkyl group represents an arylalkyl group.
  • examples of the “aralkyl group” include benzyl group, 1-phenylethyl group, naphthalen-1-ylmethyl group, naphthalen-2-ylmethyl group and the like.
  • alkylidene group examples include methylene, ethylidene, propylidene, cyclopropylidene, butylidene, pentylidene, hexylidene and the like.
  • hydrocarbon group examples include lower hydrocarbon groups such as those having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms.
  • substituents that the hydrocarbon group may have include halogen groups such as a fluoro group, a chloro group, a bromo group, and an iodo group, a nitro group, a cyano group, a hydroxyl group, a hydroxyl group protected with a protective group, an amino group, and a protective group. And an amino group protected with a group.
  • the number of substituents is exemplified by about 1 to 3.
  • hydroxyl protecting group examples include a lower alkyl group, a benzyl group, a p-methoxybenzyl group (PMB group), a tert-butyldimethylsilyl group (TBS group), and the like.
  • the “lower alkyl group” means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, for example, methyl group, ethyl group, isopropyl group, t-butyl group, propyl group.
  • Protecting groups for amino groups include tert-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Cbz group), 9-fluorenylmethyloxycarbonyl group (Fmoc group), p-toluenesulfonyl group (tosyl group) Etc. are exemplified.
  • amino acid side chain other than hydrogen, methyl and n-butyl refers to any amino acid side chain moiety present in natural or unnatural amino acids (particularly ⁇ -amino acids) other than glycine, alanine and norleucine.
  • Examples of natural amino acid side chain moieties are —CH (CH 3 ) 2 [valine], —CH 2 CH (CH 3 ) 2 [leucine], —CH ( CH 3 ) CH 2 CH 3 [isoleucine], — (CH 2 ) 4 NH 2 [lysine], — (CH 2 ) 3 NHC ( ⁇ NH) NH 2 [arginine], —CH 2 (5-1H-imidazolyl) [Histidine], —CH 2 CONH 2 [asparagine], —CH 2 CO 2 H [aspartic acid], —CH 2 SH [cysteine], —CH 2 CH 2 CONH 2 [glutamine], —CH 2 CH 2 CO 2 H [glutamate], - CH 2 C 6 H 5 [ phenylalanine], - CH 2 (4- OH-C 6 H 4) [ tyrosine], - CH 2 (3-1H- indolyl) [T
  • Examples of the unnatural amino acid side chain moiety are —CH 2 CH 3 [ ⁇ -aminobutyric acid], —CH 2 CH 2 CH (CH 3 ) 2 [ Homoleucine], —CH 2 C 6 H 11 [cyclohexylalanine], — (CH 2 ) 3 NHCONH 2 [citrulline], —CH 2 CH 2 OH [homoserine], — (CH 2 ) 3 NH 2 [ornithine] and the like can give.
  • amino acid side chains of nonpolar or low polarity amino acids such as valine, leucine, isoleucine, phenylalanine, methionine, homoleucine, cyclohexylalanine and the like are preferable.
  • amino acid side chain other than hydrogen and methyl refers to the amino acid side chain and n-butyl described above as “amino acid side chain other than hydrogen, methyl and n-butyl”.
  • TrS represents the following tritylthio group.
  • * represents an asymmetric carbon and is a configuration of 3'R or 3'S.
  • represents an asymmetric carbon, and is a D configuration or an L configuration. That is, the compound of the formula (I) represents any one of the following compounds.
  • the isomer mixture of the present invention contains the compound represented by the formula (IIIa) and the compound represented by the formula (IIIb) constituting the isomer mixture in an arbitrary ratio.
  • a racemate containing an equal amount of each isomer may be used.
  • represents an asymmetric carbon and has a configuration of either D-form or L-form.
  • the compound of the formula (IV) refers to a compound represented by the following formula (IVa).
  • the compound of the formula (IV) refers to a compound represented by the following formula (IVb). Note that the configuration of the asymmetric carbon is maintained through the reaction of the present invention.
  • R 3 , R 3 ′, R 4 and R 4 ′ are monovalent groups (for example, hydrogen atom, amino acid side chain, lower alkyl group, lower alkenyl group, substituted or unsubstituted aryl group or substituted Or an unsubstituted aralkyl group), the bond is a single bond.
  • R 3 , R 3 ′, R 4 and R 4 ′ are divalent groups (for example, alkylidene groups), the bond is a double bond.
  • the compound of the formula (IIb) having a 3′R configuration is useful as an intermediate for the production of romidepsin (a cancer molecular target therapeutic agent), which is a kind of depsipeptide compound (see Non-Patent Document 1). .
  • optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib), respectively, and the optically active amide carboxylic acid derivatives represented by the formulas (IIa) and (IIb) are novel compounds not described in the literature, It is a compound first discovered by the present inventors.
  • Steps (i) and (ii)] (E) -5-tritylthio-2-pentenal represented by formula (V) in step (ii) is a known compound, and is commercially available according to known methods (Non-Patent Documents 5 and 6) (formula (22) Can be synthesized through two steps (see Reference Examples 1 and 2).
  • Step (iii) In the step (iii), an acetate ester derivative represented by the formula (VI) is added to (E) -5-tritylthio-2-pentenal represented by the formula (V) in the presence of a base to obtain a compound represented by the formula (VII) (RS, E) -3-Hydroxy-7-tritylthio-4-heptenoate derivative, which is a mixture of the isomers shown (see Example 1).
  • Usable bases include, for example, alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal alkoxides such as potassium tert-butoxide and sodium tert-butoxide; lithium diisopropylamide (LDA), lithium isopropylcyclohexyl Examples thereof include alkali metal amides such as amide, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, and potassium bistrimethylsilylamide. Two or more of these bases may be used in combination. Alkali metal amides are preferable, and LDA is more preferable.
  • the base used is 0.1 to 10 equivalents, preferably 0.8 to 1.2 equivalents, based on the acetate derivative.
  • the reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step.
  • hydrocarbon solvents such as pentane, hexane, benzene, toluene and xylene; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, chloroform, 1,1,1-trichloroethane and monochlorobenzene; diethyl ether, Ether solvents such as tetrahydrofuran (THF), 1,4-dioxane, dimethoxyethane and cyclopentylmethyl ether; acetonitrile, propionitrile, nitromethane, nitroethane, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc.
  • polar aprotic solvents such as benzane, hexane, benzene, tol
  • reaction temperature can vary depending on the solvent used, it can usually be carried out from ⁇ 100 ° C. to the reflux temperature of the reaction solvent.
  • LDA low density polyethylene glycol
  • it is preferably carried out at ⁇ 80 to ⁇ 20 ° C.
  • the reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
  • the acetic acid ester derivative used is used in an amount of 1.0 to 10.0 equivalents relative to (E) -5-tritylthio-2-pentenal (compound represented by the formula (V)). 0-4.0 equivalents are used.
  • the obtained product (compound of formula (VII)) can be subjected to usual post-treatment.
  • the normal post-treatment includes, for example, quench (reaction stop) and extraction.
  • it can refine
  • the product (compound represented by the formula (VII)) is an isomer mixture in which the configuration of hydroxyl groups is mixed (in some embodiments, a racemate (an equivalent mixture of R and S forms)). As obtained.
  • step (iv) the (RS, E) -3-hydroxy-7-tritylthio-4-heptenoate derivative, which is a mixture of isomers represented by formula (VII), is hydrolyzed in the presence of a base or an acid.
  • Examples of the base used in this step include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate.
  • Examples of the acid include sulfuric acid, hydrochloric acid, phosphoric acid and acetic acid. Preferred is a base, and more preferred is sodium hydroxide.
  • the reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step.
  • solvents such as methanol, ethanol, isopropyl alcohol and tert-butyl alcohol
  • ether solvents such as THF and 1,4-dioxane
  • polar aprotic solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide Sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and water.
  • Preferred are methanol, ethanol, THF, acetonitrile, and water, and more preferred are methanol, ethanol, and water.
  • reaction temperature can vary depending on the solvent used, it can usually be carried out from ⁇ 100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 80 ° C.
  • the reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
  • the obtained product (compound of formula (III)) can be subjected to usual post-treatment. Furthermore, it can refine
  • Step (v) is represented by formula (IV) in the presence of a condensing agent to (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid, which is a racemate represented by formula (III).
  • the optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib) are each converted into a single optical compound by reacting the optically active amino acid derivative, and separating and purifying the resulting two diastereomeric mixtures. It is produced as an isomer (see Examples 3 to 5).
  • Examples of the condensing agent used in this step include 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (BOP), 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexa Phosphonium condensing agents such as fluorophosphate (PyBOP) and chlorotripyrrolidinophosphonium hexafluorophosphate (PyCrop); N, N′-diisopropylcarbodiimide (DIC) and 1-ethyl-3- (3-dimethylamino) Carbodiimide condensing agents such as propyl) carbodiimide (EDC); triazine condensates such as (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholium chloride n-hydrate Agent; N, N′-carbonylimidazole (CDI ) I
  • additives can be added to make the reaction proceed more efficiently.
  • Usable additives include triazole compounds such as 1-hydroxybenzotriazole (HOBt) and 1-hydroxyazabenzotriazole (HOAt); triatylamine, pyridine, 4-dimethylaminopyridine, diethylamine and N, N- Examples thereof include amine compounds such as diisopropylethylamine. An amine compound is preferred, and N, N-diisopropylethylamine is therefore preferred.
  • the reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step.
  • solvents such as methanol, ethanol, isopropyl alcohol and tert-butyl alcohol
  • hydrocarbon solvents such as pentane, hexane, benzene, toluene and xylene
  • ether solvents such as diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, dimethoxyethane and cyclopentylmethyl ether
  • acetonitrile, propionitrile, nitromethane, nitroethane examples thereof include polar aprotic solvents such as N, N-dimethylformamide, N, N-di
  • reaction temperature can vary depending on the solvent used, it can usually be carried out from ⁇ 100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 50 ° C.
  • the reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
  • Separation and purification of the two diastereomeric mixtures produced should be carried out by applying conventional techniques such as precipitation, crystallization, gel filtration and silica gel column chromatography. Each compound can be obtained as a single optical isomer.
  • a preferred separation / purification method is silica gel column chromatography.
  • a method using an optical resolving agent is known as a method for preparing an optically active compound.
  • an optical resolution agent it is necessary to operate the optical resolution agent before performing optical resolution and to remove the optical resolution agent after performing optical resolution.
  • there is no need to perform such an operation in this step and there is a feature in that optical resolution of a compound used in the next step is performed as it is.
  • the optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib) are hydrolyzed in the presence of a base or an acid to give the corresponding formulas (IIa) and (IIb), respectively.
  • a base or an acid which is an optically active amide carboxylic acid derivative.
  • the base used in this step include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate.
  • the acid include sulfuric acid, hydrochloric acid, phosphoric acid and acetic acid. Preferred is a base, and more preferred is lithium hydroxide.
  • the reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step.
  • solvents such as methanol, ethanol, isopropyl alcohol and t-butyl alcohol
  • ether solvents such as THF and 1,4-dioxane
  • polar aprotic solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide Sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and water.
  • you may mix and use 2 or more types among the said solvent.
  • Preferred are methanol, ethanol, THF, acetonitrile, and water, and more preferred are methanol, ethanol, and water.
  • reaction temperature can vary depending on the solvent used, it can usually be carried out from ⁇ 100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 80 ° C.
  • the reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 5 hours.
  • the obtained product (compounds of the formulas (IIa) and (IIb)) can be subjected to usual post-treatment. Furthermore, it can refine
  • the transformation shown in the following scheme G is carried out according to the methods described in Patent Document 1 and Non-Patent Documents 1 and 2, and depsipeptide It was confirmed that a similar compound (compound of formula (1′a)) can be synthesized (see Reference Examples 4 to 7).
  • the optically active tripeptide derivative represented by the formula (3a) was prepared according to the method described in Non-Patent Documents 1 and 2 (see Reference Example 3). Note that the production intermediate represented by the formula (IIa-1) does not require a step of deprotecting the protecting group because the hydroxyl group is unprotected. Therefore, by using the production intermediate of the present invention, the desired depsipeptide compound can be produced with a smaller number of steps than in the conventional method (see Scheme A).
  • n-butyllithium 1.6 M hexane solution, 27.9 ml, 45 mmol
  • diisopropylamine 6.0 ml, 42 mmol
  • tetrahydrofuran 28 ml
  • ethyl acetate VI-1 (4.0 ml, 42 mmol) was slowly added dropwise to the reaction solution at ⁇ 78 ° C., and the mixture was stirred at the same temperature for 30 minutes.
  • the diastereomeric mixture was further separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1) to give (S, E) -isomer (Ia-1) (1.30 g, 23%) and ( R, E) -isomer (Ib-1) (1.30 g, 23%) was obtained.
  • the total yield (total yield) of the (S, E) -isomer (Ia-1) and (R, E) -isomer (Ib-1) was 2.83 g (50%) and 2.78 g (49%), respectively. )Met.
  • Acrolein (22) (1.3 ml, 20 mmol) and triethylamine (2.8 ml, 20 mmol) were added to a solution of triphenylmethanethiol (5.00 g, 18 mmol) in dichloromethane (36 ml) at room temperature, and the same temperature was maintained for 1 hour. Stir. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 3- (tritylthio) propanal (23) (6.45 g, 100%) as a white solid. This compound was used in the next reaction without purification (see Reference Example 2). .
  • the reaction mixture was diluted with ethyl acetate (200 ml) and washed with 3M aqueous hydrochloric acid (50 ml ⁇ 2), saturated aqueous sodium hydrogen carbonate (50 ml ⁇ 2) and saturated brine (80 ml). After drying the organic layer over anhydrous sodium sulfate, the solvent was distilled off, and 2- ⁇ (R) -2-[(S) -2- (tert-butoxycarbonylamino) -3- (tritylthio) propanamide] -3- (Naphthalen-1-yl) propanamide ⁇ acetic acid methyl ester (28) was obtained. This compound was used in the next reaction without purification.
  • HATU '-Tetramethyluronium hexafluorophosphate
  • the obtained residue was purified by silica gel column chromatography (chloroform / methanol 40: 1) to obtain (7S, 11R, 14S, 17R, E) -7-hydroxy-11-isopropyl-17- (naphthalen-1-ylmethyl). ) -9,12,15,18-tetraoxo-1,1,1-triphenyl-14-tritylthiomethyl-2-thia-10,13,16,19-tetraaza-5-henecocene-21-acid methyl ester (24) (242 mg, 92%) was obtained as a white amorphous.
  • the compound of the formula (II) according to the present invention is useful as an intermediate for producing a depsipeptide compound which is expected as an excellent novel molecular target anticancer agent.
  • the depsipeptide compounds of the formulas (1) and (2) obtained using the compound of the formula (II) according to the present invention have a completely new mechanism of action of HDAC / PI3K double inhibition. As disclosed in International Publication (Patent Document 1), it is also effective against intractable cancers that are ineffective against cancer drugs. In addition, since the depsipeptide compound is a molecular target drug that acts specifically on cancer, it has little effect on cells and tissues other than cancer cells, and it is heavy even when used at high doses for living organisms. It is also disclosed in the above publication that the possibility of serious side effects is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing an industrially advantageous method for producing an optically active amidocarboxylic acid derivative, which is an important intermediate of a depsipeptide compound expected to be an excellent novel molecular target anticancer agent, a production intermediate of the depsipeptide compound, and a method for producing the production intermediate. The present invention provides an optically active amidocarboxylic acid ester derivative represented by formula (I) below (in the formula, R1, R2, *, †, and TrS are the same as described in the specification).

Description

デプシペプチド類化合物の製造中間体及びその製造方法Intermediate for producing depsipeptide compounds and method for producing the same
 本発明は、優れた新規分子標的抗がん剤として期待される、デプシペプチド類化合物の製造中間体として有用な、光学活性アミドカルボン酸誘導体の製造方法及び新規なその製造中間体に関する。 The present invention relates to a method for producing an optically active amide carboxylic acid derivative useful as an intermediate for producing a depsipeptide compound, which is expected as an excellent novel molecular target anticancer agent, and a novel production intermediate thereof.
 本発明者らは、ヒストン脱アセチル化酵素(histone deacetylase;以下「HDAC」と記す)及びホスファチジルイノシトール 3-キナーゼ(phosphatidyl inositol 3-kinase;以下「PI3K」と記す)の二重阻害作用を有し、新しい分子標的抗がん剤としての用途が期待される、式(1’)及び(2’)で示されるデプシペプチド類化合物を見いだした(特許文献1)。 The present inventors have a dual inhibitory action of histone deacetylase (histone deacetylase; hereinafter referred to as “HDAC”) and phosphatidyl inositol 3-kinase (hereinafter referred to as “PI3K”). The inventors have found a depsipeptide compound represented by the formulas (1 ′) and (2 ′), which is expected to be used as a new molecular target anticancer agent (Patent Document 1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R’は、アミノ酸側鎖、低級アルキル基、置換もしくは無置換のアリール基又は置換もしくは無置換のアラルキル基を表し、R3’及びR4’は、同一又は異なって、水素原子、アミノ酸側鎖、低級アルキル基、低級アルキリデン基、置換もしくは無置換のアリール基又は置換もしくは無置換のアラルキル基を表す。
破線の結合は、単結合又は二重結合を表す。)
 これまでに知られているデプシペプチド類化合物(1)及び(2)の合成経路及び詳しい合成法は、特許文献1~6及び非特許文献1~14に記載されているが、多段階の反応工程を要し、工業的な大量生産には不向きな方法であった。
Wherein R 1 ′ represents an amino acid side chain, a lower alkyl group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group, and R 3 ′ and R 4 ′ are the same or different and represent hydrogen An atom, an amino acid side chain, a lower alkyl group, a lower alkylidene group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group is represented.
The broken bond represents a single bond or a double bond. )
Synthetic pathways and detailed synthesis methods of depsipeptide compounds (1) and (2) known so far are described in Patent Documents 1 to 6 and Non-Patent Documents 1 to 14, but a multi-step reaction process is described. Therefore, this method is not suitable for industrial mass production.
国際公開公報WO2013047509 A1International Publication Gazette WO2013047509 A1 国際公開公報WO2009141657 A1International Publication WO2009141657 A1 国際公開公報WO2009022182 A1International Publication WO2009022182 A1 国際公開公報WO2006129105 A1International Publication WO2006129105 A1 国際公開公報WO2006129105 A1International Publication WO2006129105 A1 国際公開公報WO2015131355 A1International Publication WO2015131355 A1
 上述した従来法に比べ、より短い反応工程で製造中間体を取得するための方法論の開発が望まれていた。本発明は、このような従来法が有していた問題を解決しようとするものであり、より短い反応工程で達成できるデプシペプチド類化合物中間体の製造方法、並びにその製造中間体及びその製造方法を提供することを目的とする。 Development of a methodology for obtaining a production intermediate in a shorter reaction step has been desired compared to the conventional method described above. The present invention seeks to solve the problems of such conventional methods, and provides a method for producing a depsipeptide compound intermediate that can be achieved in a shorter reaction step, and a production intermediate and a method for producing the same. The purpose is to provide.
 本発明者は、優れた新規分子標的抗がん剤として期待されるデプシペプチド類化合物の重要中間体を、短工程でかつ、単一の光学異性体として取得する効率的な方法を確立し、本発明を完成した。 The present inventor has established an efficient method for obtaining an important intermediate of a depsipeptide compound, which is expected as an excellent novel molecular target anticancer agent, as a single optical isomer in a short process. Completed the invention.
 本発明は、以下の態様を包含する。 The present invention includes the following aspects.
 項1、下記式(I) Item 1, the following formula (I)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Rは水素、メチル及びn-ブチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
で示される光学活性アミドカルボン酸エステル誘導体。
(Wherein R 1 represents an amino acid side chain other than hydrogen, methyl and n-butyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, and * represents an asymmetric carbon. 3′R or 3 ′S configuration, † represents an asymmetric carbon, D configuration or L configuration, and TrS represents a tritylthio group.)
An optically active amide carboxylic acid ester derivative represented by:
 項2、下記式(II) Item 2, the following formula (II)
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式中、Rは水素、メチル及びn-ブチル以外のアミノ酸側鎖を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
で示される光学活性アミドカルボン酸誘導体。
(In the formula, R 1 represents an amino acid side chain other than hydrogen, methyl, and n-butyl. * Represents an asymmetric carbon, and is a configuration of 3′R or 3 ′S. † indicates an asymmetric carbon. And represents the configuration of D or L. TrS represents a tritylthio group.)
An optically active amide carboxylic acid derivative represented by
 項3、下記式(III) Item 3, the following formula (III)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、*は不斉炭素を表し、波線で示す結合は3’R体及び3’S体の立体配置の混合物である。TrSはトリチルチオ基を表す。)
で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸に、下記式(IV)
(In the formula, * represents an asymmetric carbon, and the bond indicated by a wavy line is a mixture of 3′R and 3 ′S configurations. TrS represents a tritylthio group.)
(RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid represented by the following formula (IV):
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式中、Rは水素及びメチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。†は不斉炭素を表し、D体またはL体の立体配置である。)
で示される光学活性アミノ酸エステル誘導体を反応させる工程、及び
生成する2種類のジアステレオマー混合物を分離する工程
を含むことを特徴とする、下記式(I)
(Wherein R 1 represents an amino acid side chain other than hydrogen and methyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, † represents an asymmetric carbon, D Body or L configuration.)
Comprising the step of reacting the optically active amino acid ester derivative represented by formula (I) and the step of separating the two diastereomeric mixtures to be produced.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、R、R及び†は前記のとおりである。*は不斉炭素を表し、3’R体または3’S体の立体配置である。)
で示されるアミドカルボン酸エステル誘導体を単一の光学異性体として得る製造方法。
(Wherein, R 1, R 2 and † are as defined above. * Represents an asymmetric carbon, a configuration of the 3'R, or 3'S body.)
A production method for obtaining an amide carboxylate derivative represented by the formula:
 項4、Rが水素、メチル及びn-ブチル以外のアミノ酸側鎖である、項3に記載の製造方法。 Section 4, R 1 is hydrogen, amino acid side chain other than methyl and n- butyl, The process according to claim 3.
 項5、下記式(I) Item 5, the following formula (I)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、Rは水素、メチル及びn-ブチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
で示される光学活性アミドカルボン酸エステル誘導体を加水分解する工程を含むことを特徴とする、下記式(II)
(Wherein R 1 represents an amino acid side chain other than hydrogen, methyl and n-butyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, and * represents an asymmetric carbon. 3′R or 3 ′S configuration, † represents an asymmetric carbon, D configuration or L configuration, and TrS represents a tritylthio group.)
And a step of hydrolyzing the optically active amide carboxylic acid ester derivative represented by formula (II):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、R、*及び†は前記のとおりである)
で示される光学活性アミドカルボン酸誘導体の製造方法。
(Wherein R 1 , * and † are as defined above)
The manufacturing method of the optically active amide carboxylic acid derivative shown by these.
 本発明はまた、以下の態様をも包含する。 The present invention also includes the following aspects.
 ・下記式(V) ・ The following formula (V)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
で示される(E)-5-トリチルチオ-2-ペンテナールに、塩基存在下、下記式(VI) (E) -5-tritylthio-2-pentenal represented by the following formula (VI) in the presence of a base:
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式中、Rは置換基を有してもよい炭素数1~10のアルキル基を表す。)
で示される酢酸エステル誘導体を反応させることを特徴とする、下記式(VII)
(In the formula, R 5 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent.)
Wherein the acetate derivative represented by formula (VII) is reacted.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式中、Rは前記のとおりである。*は不斉炭素を表し、波線で示す結合は3’R体及び3’S体の立体配置の混合物である。)
で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸エステル誘導体の製造方法。
(In the formula, R 5 is as described above. * Represents an asymmetric carbon, and the bond indicated by a wavy line is a mixture of 3′R and 3 ′S configurations.)
(RS, E) -3-Hydroxy-7-tritylthio-4-heptenoic acid ester derivative, which is a mixture of isomers represented by
 ・下記式(VII) ・ The following formula (VII)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、Rは置換基を有してもよい炭素数1~10のアルキル基を表す。*は不斉炭素を表し、波線で示す結合は3’R体及び3’S体の立体配置の混合物である。)
で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸エステル誘導体を加水分解することを特徴とする、下記式(III)
(Wherein R 5 represents an alkyl group having 1 to 10 carbon atoms which may have a substituent. * Represents an asymmetric carbon, and the bond shown by a wavy line is a 3′R isomer or a 3 ′S isomer. A mixture of configurations.)
(RS, E) -3-hydroxy-7-tritylthio-4-heptenoate derivative, which is a mixture of isomers represented by the following formula (III):
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式中、*及び波線の結合は前記のとおりである)
で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸の製造方法。
(In the formula, the combination of * and the wavy line is as described above.)
(RS, E) -3-Hydroxy-7-tritylthio-4-heptenoic acid, which is a mixture of isomers represented by
 本発明の製造方法及び製造中間体を用いることにより、従来法に比べて、より短い工程数で、式(1)及び(2)で示されるデプシペプチド類化合物の重要共通中間体である、式(IV)で示される光学活性アミドカルボン酸誘導体を得ることができる。また、本発明によれば、出発原料から式(IV)で示される化合物までの工程数を従来法の14工程から6工程に削減することができ、重要中間体の総収率及び全体の反応効率を飛躍的に向上させることができる。その結果、本発明によれば、製造コストの削減、製造管理等を大幅に向上させることができ、優れた新規分子標的抗がん剤として期待されるデプシペプチド類化合物を効率的に製造することが可能となる。 By using the production method and the production intermediate of the present invention, the number of steps is shorter than that of the conventional method, and the formula (1) is an important common intermediate of depsipeptide compounds represented by formulas (1) and (2). An optically active amide carboxylic acid derivative represented by IV) can be obtained. In addition, according to the present invention, the number of steps from the starting material to the compound represented by the formula (IV) can be reduced from 14 steps of the conventional method to 6 steps, and the total yield of important intermediates and the overall reaction can be reduced. Efficiency can be improved dramatically. As a result, according to the present invention, production costs can be reduced, production management, etc. can be greatly improved, and depsipeptide compounds expected as excellent novel molecular target anticancer agents can be efficiently produced. It becomes possible.
  本発明により製造することのできる光学活性アミドカルボン酸誘導体(式(II’)の化合物)からは下記のスキームA及びBに従うことにより、式(1)及び(2)の化合物を合成することができる。スキームBに示した式(II’)の化合物は、式(II)の化合物の水酸基がp-メトキシベンジル(p-methoxybenzyl;以下「PMB」と記す)基で保護されたものである。なお、式(II’)の化合物は、文献記載の公知化合物(上記非特許文献1~3参照)であるが、水酸基が無保護である式(II)の化合物は文献未載の新規化合物である。まず始めに、スキームAの各工程について説明する。工程(i)において、式(II’)及び(3)の化合物を縮合させ、次いで、PMB基の除去及びエステル加水分解を行い、テトラペプチド誘導体(式(4)の化合物)を得ている。工程(ii)において、分子内エステル化及び分子内ジスルフィド結合形成を行い、デプシペプチド類化合物(1)の合成を達成している。一方、デプシペプチド類化合物(2)の合成は、スキームBに示したように、上記スキームAの方法と同様に行っている。すなわち、工程(i)において、式(II’)及び(5)の化合物を縮合させて、テトラペプチド誘導体(式(6)の化合物)を得ている。工程(ii)において、分子内エステル化、分子内ジスルフィド結合形成及びtert-ブチルジメチルシリル(tert-butyldimethylsilyl;以下「TBS」と記す)基の脱保護を順次行い、式(2)の化合物の合成を完了している。上記スキームA及びBに示したデプシペプチド類化合物(式(1)及(2)の化合物)の合成法の特徴は、光学活性アミドカルボン酸誘導体(II’)を共通の中間体として用いている点である。 From the optically active amide carboxylic acid derivative (compound of formula (II ′)) that can be produced according to the present invention, the compounds of formula (1) and (2) can be synthesized by following the schemes A and B below. it can. In the compound of the formula (II ′) shown in Scheme B, the hydroxyl group of the compound of the formula (II) is protected with a p-methoxybenzyl (hereinafter referred to as “PMB”) group. The compound of the formula (II ′) is a known compound described in the literature (see Non-Patent Documents 1 to 3 above), but the compound of the formula (II) in which the hydroxyl group is unprotected is a novel compound not described in the literature. is there. First, each step of Scheme A will be described. In step (i), the compounds of formulas (II ′) and (3) are condensed, and then the PMB group is removed and ester hydrolysis is performed to obtain a tetrapeptide derivative (compound of formula (4)). In step (ii), intramolecular esterification and intramolecular disulfide bond formation are performed to achieve synthesis of the depsipeptide compound (1). On the other hand, the synthesis of the depsipeptide compound (2) is carried out in the same manner as in the method of Scheme A as shown in Scheme B. That is, in step (i), the compounds of formulas (II ′) and (5) are condensed to obtain a tetrapeptide derivative (compound of formula (6)). In step (ii), intramolecular esterification, intramolecular disulfide bond formation, and tert-butyldimethylsilyl (hereinafter referred to as “TBS”) group deprotection are sequentially performed to synthesize a compound of formula (2) Has been completed. A feature of the synthesis method of the depsipeptide compounds shown in the above-mentioned schemes A and B (compounds of the formulas (1) and (2)) is that the optically active amide carboxylic acid derivative (II ′) is used as a common intermediate. It is.
 スキームA Scheme A
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(Rは、アミノ酸側鎖、アルキル基、置換もしくは無置換のアリール基又は置換もしくは無置換のアラルキル基を表し、好ましくは、アミノ酸側鎖を表す。
3及びR4は、同一又は異なって、水素原子、アミノ酸側鎖、低級アルキル基、低級アルキリデン基、置換もしくは無置換のアリール基又は置換もしくは無置換のアラルキル基を表す。
破線の結合は、単結合または二重結合を表す。)
 スキームB
(R 1 represents an amino acid side chain, an alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted aralkyl group, preferably an amino acid side chain.
R 3 and R 4 are the same or different and each represents a hydrogen atom, an amino acid side chain, a lower alkyl group, a lower alkylidene group, a substituted or unsubstituted aryl group or a substituted or unsubstituted aralkyl group.
A broken bond represents a single bond or a double bond. )
Scheme B
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、R、R及び破線の結合は前記のとおりである)
 式(II’)の化合物の合成経路及び詳しい合成法は、上記非特許文献1~3に記載されている。スキームC,D及びEを参照して、式(II’)の化合物の合成法を説明する。まず始めに、スキームCに示すように、市販の1,3-プロパンジオール(式(7)の化合物)を出発原料として用い、5工程を経て、中間体であるスルホン体(式(12)の化合物)を合成している。また、もう一方の中間体である光学活性アルデヒド体(式(16)の化合物)は公知化合物であり、文献記載の方法(非特許文献4)に従って合成している。すなわち、スキームDに示すように、市販のL-(-)-リンゴ酸(式(13)の化合物)を出発原料として用い、3工程を経て式(16)の化合物に変換している。次いで、スキームEに示すように、両中間体(式(12)及び(16)の化合物)を連結し、さらに、5工程を経て、式(II’)で示される光学活性アミドアルボン酸誘導体を得ている。
(Wherein R 1 , R 3 and the bond of the broken line are as described above)
Non-patent documents 1 to 3 describe the synthesis route and detailed synthesis method of the compound of formula (II ′). With reference to Schemes C, D and E, a method for synthesizing the compound of formula (II ′) will be described. First, as shown in Scheme C, commercially available 1,3-propanediol (compound of formula (7)) was used as a starting material, and after 5 steps, an intermediate sulfone (formula (12) Compound). The other optically active aldehyde (compound of formula (16)), which is the other intermediate, is a known compound and is synthesized according to the method described in the literature (Non-patent Document 4). That is, as shown in Scheme D, a commercially available L-(−)-malic acid (compound of formula (13)) is used as a starting material, which is converted into a compound of formula (16) through three steps. Next, as shown in Scheme E, both intermediates (compounds of formulas (12) and (16)) are linked, and further through five steps, the optically active amide arbonic acid derivative represented by formula (II ′) is converted. It has gained.
 スキームC Scheme C
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 スキームD Scheme D
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 しかしながら、上記スキームC,D及びEで示した合成経路では、重要中間体である式(II’)の化合物を得るまでの工程数が多く(出発原料である式(7)及び(13)の化合物から全14工程)、また、総収率が低い(~10%程度)ことが問題となっていた。本発明は、前記従来技術に鑑みてなされたものであり、工程数及び収率の点で優れた、デプシペプチド類化合物中間体の製造方法、並びに該方法に好適に使用しうる製造中間体及びその製造方法を提供することを目的とする。 However, in the synthetic routes shown in the above schemes C, D, and E, the number of steps required to obtain the compound of formula (II ′), which is an important intermediate, is large (in formulas (7) and (13) as starting materials). 14 steps from the compound), and the total yield was low (about 10%). The present invention has been made in view of the above prior art, and is excellent in terms of the number of steps and yield, a method for producing a depsipeptide compound intermediate, a production intermediate that can be suitably used in the method, and the method An object is to provide a manufacturing method.
 スキームE Scheme E
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
(式中、Rは前記のとおりである)
 本明細書において、「炭化水素基」とは、基が直鎖状、分岐鎖状、環状もしくはこれらの組み合わせの炭化水素基を意味する。炭化水素基は、飽和の炭化水素基であっても不飽和の炭化水素基であってもよい。
(Wherein R 1 is as described above)
In the present specification, the “hydrocarbon group” means a hydrocarbon group in which the group is linear, branched, cyclic, or a combination thereof. The hydrocarbon group may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
 「炭素数1~10の炭化水素基」の例としては、アルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基等が例示される。 Examples of “hydrocarbon groups having 1 to 10 carbon atoms” include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, aralkyl groups, and the like.
 「アルキル基」としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のアルキル基があげられる。 Examples of the “alkyl group” include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, Examples thereof include alkyl groups such as decyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
 「アルケニル基」としては、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基等のアルケニル基があげられる。 Examples of the “alkenyl group” include alkenyl groups such as vinyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group and decenyl group.
 「アルキニル基」としては、エチニル基、プロピニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、ノニニル基、デシニル基等のアルキニル基があげられる。 Examples of the “alkynyl group” include alkynyl groups such as ethynyl group, propynyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, decynyl group and the like.
 「アリール基」としては、フェニル基、トリル基、ナフチル基等のアリール基があげられる。 Examples of the “aryl group” include aryl groups such as a phenyl group, a tolyl group, and a naphthyl group.
 「アラルキル基」はアリールアルキル基を表す。「アラルキル基」の例としては、ベンジル基、1-フェニルエチル基、ナフタレン-1-イルメチル基、ナフタレン-2-イルメチル基等があげられる。 "Aralkyl group" represents an arylalkyl group. Examples of the “aralkyl group” include benzyl group, 1-phenylethyl group, naphthalen-1-ylmethyl group, naphthalen-2-ylmethyl group and the like.
 「アルキリデン基」としては、メチレン、エチリデン、プロピリデン、シクロプロピリデン、ブチリデン、ペンチリデン、ヘキシリデン等があげられる。 Examples of the “alkylidene group” include methylene, ethylidene, propylidene, cyclopropylidene, butylidene, pentylidene, hexylidene and the like.
 炭化水素基の好ましい例としては、低級の炭化水素基、例えば、炭素数1~6、特に炭素数1~3のものが挙げられる。 Preferred examples of the hydrocarbon group include lower hydrocarbon groups such as those having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms.
 炭化水素基が有してもよい置換基としては、フルオロ基、クロル基、ブロモ基、ヨード基等のハロゲン基、ニトロ基、シアノ基、水酸基、保護基で保護された水酸基、アミノ基及び保護基で保護されたアミノ基等があげられる。置換基を有する場合、置換基の数としては1~3個程度が例示される。 Examples of the substituent that the hydrocarbon group may have include halogen groups such as a fluoro group, a chloro group, a bromo group, and an iodo group, a nitro group, a cyano group, a hydroxyl group, a hydroxyl group protected with a protective group, an amino group, and a protective group. And an amino group protected with a group. In the case of having a substituent, the number of substituents is exemplified by about 1 to 3.
 水酸基の保護基としては、低級アルキル基、ベンジル基、p-メトキシベンジル基(PMB基)、tert-ブチルジメチルシリル基(TBS基)などが例示される。前記において、「低級アルキル基」とは、炭素数1~6の直鎖状、分岐鎖状もしくは環状のアルキル基を意味し、例えば、メチル基、エチル基、イソプロピル基、t-ブチル基、プロピル基、シクロプロピル基、ブチル基、イソブチル基、シクロブチル基、ペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基等があげられる。アミノ基の保護基としては、tert-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基(Cbz基)、9-フルオレニルメチルオキシカルボニル基(Fmoc基)、p-トルエンスルホニル基(トシル基)などが例示される。 Examples of the hydroxyl protecting group include a lower alkyl group, a benzyl group, a p-methoxybenzyl group (PMB group), a tert-butyldimethylsilyl group (TBS group), and the like. In the above, the “lower alkyl group” means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms, for example, methyl group, ethyl group, isopropyl group, t-butyl group, propyl group. Group, cyclopropyl group, butyl group, isobutyl group, cyclobutyl group, pentyl group, cyclopentyl group, hexyl group, cyclohexyl group and the like. Protecting groups for amino groups include tert-butoxycarbonyl group (Boc group), benzyloxycarbonyl group (Cbz group), 9-fluorenylmethyloxycarbonyl group (Fmoc group), p-toluenesulfonyl group (tosyl group) Etc. are exemplified.
 「水素、メチル及びn-ブチル以外のアミノ酸側鎖」とは、グリシン、アラニン及びノルロイシン以外の天然もしくは非天然アミノ酸中(特に、α-アミノ酸)に存在する任意のアミノ酸側鎖部分を指す。天然アミノ酸側鎖部分の例(括弧内にそれが由来するアミノ酸名を記す)としては、-CH(CH[バリン]、-CHCH(CH[ロイシン]、-CH(CH)CHCH[イソロイシン]、-(CHNH[リジン]、-(CHNHC(=NH)NH[アルギニン]、-CH(5-1H-イミダゾリル)[ヒスチジン]、-CHCONH[アスパラギン]、-CHCOH[アスパラギン酸]、-CHSH[システイン]、-CHCHCONH[グルタミン]、-CHCHCOH[グルタミン酸]、-CH[フェニルアラニン]、-CH(4-OH-C)[チロシン]、-CH(3-1H-インドリル)[トリプトファン]、-CHCHSCH[メチオニン]、-CHOH[セリン]、-CH(OH)CH[スレオニン]等があげられる。また、非天然アミノ酸側鎖部分の例(括弧内にそれが由来するアミノ酸名を記す)としては、-CHCH[α-アミノ酪酸]、-CHCHCH(CH[ホモロイシン]、-CH11[シクロヘキシルアラニン]、-(CHNHCONH[シトルリン]、-CHCHOH[ホモセリン]、-(CHNH[オルニチン]等があげられる。中でも、バリン、ロイシン、イソロイシン、フェニルアラニン、メチオニン、ホモロイシン、シクロヘキシルアラニン等の非極性または極性が低いアミノ酸のアミノ酸側鎖が好ましい。 “Amino acid side chain other than hydrogen, methyl and n-butyl” refers to any amino acid side chain moiety present in natural or unnatural amino acids (particularly α-amino acids) other than glycine, alanine and norleucine. Examples of natural amino acid side chain moieties (the name of the amino acid from which it is derived are shown in parentheses) are —CH (CH 3 ) 2 [valine], —CH 2 CH (CH 3 ) 2 [leucine], —CH ( CH 3 ) CH 2 CH 3 [isoleucine], — (CH 2 ) 4 NH 2 [lysine], — (CH 2 ) 3 NHC (═NH) NH 2 [arginine], —CH 2 (5-1H-imidazolyl) [Histidine], —CH 2 CONH 2 [asparagine], —CH 2 CO 2 H [aspartic acid], —CH 2 SH [cysteine], —CH 2 CH 2 CONH 2 [glutamine], —CH 2 CH 2 CO 2 H [glutamate], - CH 2 C 6 H 5 [ phenylalanine], - CH 2 (4- OH-C 6 H 4) [ tyrosine], - CH 2 (3-1H- indolyl) [Toriputofu Down], - CH 2 CH 2 SCH 3 [ methionine], - CH 2 OH [serine], - CH (OH) CH 3 [ threonine], and the like. Examples of the unnatural amino acid side chain moiety (the amino acid name from which it is derived are shown in parentheses) are —CH 2 CH 3 [α-aminobutyric acid], —CH 2 CH 2 CH (CH 3 ) 2 [ Homoleucine], —CH 2 C 6 H 11 [cyclohexylalanine], — (CH 2 ) 3 NHCONH 2 [citrulline], —CH 2 CH 2 OH [homoserine], — (CH 2 ) 3 NH 2 [ornithine] and the like can give. Among these, amino acid side chains of nonpolar or low polarity amino acids such as valine, leucine, isoleucine, phenylalanine, methionine, homoleucine, cyclohexylalanine and the like are preferable.
 なお、「非天然アミノ酸」とは、通常の天然のタンパク質中に存在しないアミノ酸を指す。
「水素及びメチル以外のアミノ酸側鎖」とは上記「水素、メチル及びn-ブチル以外の アミノ酸側鎖」として記載したアミノ酸側鎖及びn-ブチルを指す。
The “unnatural amino acid” refers to an amino acid that does not exist in normal natural proteins.
“Amino acid side chain other than hydrogen and methyl” refers to the amino acid side chain and n-butyl described above as “amino acid side chain other than hydrogen, methyl and n-butyl”.
 「TrS」は、下記のトリチルチオ基を表す。 “TrS” represents the following tritylthio group.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(I)において、*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。すなわち、式(I)の化合物は、下記のいずれかの化合物を表す。 In the formula (I), * represents an asymmetric carbon and is a configuration of 3'R or 3'S. † represents an asymmetric carbon, and is a D configuration or an L configuration. That is, the compound of the formula (I) represents any one of the following compounds.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式中、R及びRは前記のとおりである。)
 式(II)において、*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。すなわち、式(II)の化合物は、下記のいずれかの化合物を表す。
(Wherein R 1 and R 2 are as described above.)
In formula (II), * represents an asymmetric carbon and is a configuration of 3′R or 3 ′S. † represents an asymmetric carbon, and is a D configuration or an L configuration. That is, the compound of the formula (II) represents any of the following compounds.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、Rは前記のとおりである。)
 式(III)において、*は不斉炭素を表し、波線で示す結合は3’R体及び3’S体の立体配置の混合物である。すなわち、式(III)で示される異性体混合物は、下記式(IIIa)で示される3’R体の化合物及び下記式(IIIb)で示される3’S体の化合物の混合物である。
(Wherein R 1 is as described above.)
In the formula (III), * represents an asymmetric carbon, and the bond indicated by the wavy line is a mixture of 3′R and 3 ′S configurations. That is, the isomer mixture represented by the formula (III) is a mixture of a 3′R compound represented by the following formula (IIIa) and a 3 ′S compound represented by the following formula (IIIb).
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 本発明の異性体混合物は、異性体混合物を構成する式(IIIa)で示される化合物と式(IIIb)で示される化合物を任意の比率で含む。各異性体を等量含有するラセミ体であってもよい。 The isomer mixture of the present invention contains the compound represented by the formula (IIIa) and the compound represented by the formula (IIIb) constituting the isomer mixture in an arbitrary ratio. A racemate containing an equal amount of each isomer may be used.
 式(IV)において、†は不斉炭素を表し、D体またはL体のいずれかの立体配置である。D体である場合は、式(IV)の化合物は下記式(IVa)で示される化合物を指す。L体である場合は、式(IV)の化合物は下記式(IVb)で示される化合物を指す。なお、当該不斉炭素の立体配置は、本発明の反応をとおして保持される。 In the formula (IV), † represents an asymmetric carbon and has a configuration of either D-form or L-form. In the case of D form, the compound of the formula (IV) refers to a compound represented by the following formula (IVa). In the case of the L form, the compound of the formula (IV) refers to a compound represented by the following formula (IVb). Note that the configuration of the asymmetric carbon is maintained through the reaction of the present invention.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
(式中、R及びRは前記のとおりである。)
 本明細書において、下記の破線の結合は、単結合又は二重結合を示す。
(Wherein R 1 and R 2 are as described above.)
In the present specification, the following broken bond indicates a single bond or a double bond.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 具体的には、R、R’、R及びR’が1価の基(例えば、水素原子、アミノ酸側鎖、低級アルキル基、低級アルケニル基、置換もしくは無置換のアリール基又は置換もしくは無置換のアラルキル基など)である場合は、当該結合は単結合である。 Specifically, R 3 , R 3 ′, R 4 and R 4 ′ are monovalent groups (for example, hydrogen atom, amino acid side chain, lower alkyl group, lower alkenyl group, substituted or unsubstituted aryl group or substituted Or an unsubstituted aralkyl group), the bond is a single bond.
 R、R’、R及びR’が2価の基(例えば、アルキリデン基など)である場合は、当該結合は二重結合である。 When R 3 , R 3 ′, R 4 and R 4 ′ are divalent groups (for example, alkylidene groups), the bond is a double bond.
 <製造方法>
 光学活性アミドカルボン酸誘導体(式(IIa)及び(IIb)の化合物)を製造するための合成経路は、下記のスキームFに示すとおりである。式(IIa)の化合物は3’Sの立体配置を有し、式(IIb)の化合物は3’Rの立体配置を有し、両化合物はそれぞれ単一の光学異性体として得ることができる。デプシペプチド類化合物の製造中間体として通常用いられるのは、3’Sの立体配置を有する式(IIa)の化合物である(前記非特許文献1~3及び参考例4~7参照)。一方、3’Rの立体配置を有する式(IIb)の化合物は、デプシペプチド類化合物の一種であるロミデプシン(がん分子標的治療薬)の製造中間体として有用である(前記非特許文献1参照)。
<Manufacturing method>
The synthetic route for producing optically active amide carboxylic acid derivatives (compounds of formulas (IIa) and (IIb)) is as shown in Scheme F below. The compound of formula (IIa) has a 3 ′S configuration, the compound of formula (IIb) has a 3′R configuration, and both compounds can be obtained as single optical isomers. A compound of the formula (IIa) having a 3 ′S configuration is usually used as an intermediate for producing a depsipeptide compound (see Non-Patent Documents 1 to 3 and Reference Examples 4 to 7). On the other hand, the compound of the formula (IIb) having a 3′R configuration is useful as an intermediate for the production of romidepsin (a cancer molecular target therapeutic agent), which is a kind of depsipeptide compound (see Non-Patent Document 1). .
 スキームF Scheme F
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
(式中、R、R、R、*、†及び波線の結合は前記のとおりである)
 スキームFにおいて、式(V)で示される(E)-5-トリチルチオ-2-ペンテナールは文献記載(非特許文献5、6)の既知化合物であり、また、式(VII)(R=tert-ブチル)の両エナンチオマーである(S,E)- 及び(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸tert-ブチルエステル(特許文献2)、及び式(III)の両エナンチオマーである(S,E)- 及び(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸(非特許文献7~12)も既知化合物である。一方、式(Ia)及び(Ib)でそれぞれ示される光学活性アミドカルボン酸エステル誘導体、式(IIa)及び(IIb)でそれぞれ示される光学活性アミドカルボン酸誘導体は文献未載の新規化合物であり、本発明者によって初めて見いだされた化合物である。
(Wherein R 1 , R 2 , R 5 , *, † and the wavy line are as described above)
In Scheme F, (E) -5-tritylthio-2-pentenal represented by the formula (V) is a known compound described in the literature (Non-Patent Documents 5 and 6), and is represented by the formula (VII) (R = tert- (S, E)-and (R, E) -3-hydroxy-7-tritylthio-4-heptenoic acid tert-butyl ester (Patent Document 2) and both enantiomers of formula (III) (S, E)-and (R, E) -3-hydroxy-7-tritylthio-4-heptenoic acid (Non-Patent Documents 7 to 12) are also known compounds. On the other hand, the optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib), respectively, and the optically active amide carboxylic acid derivatives represented by the formulas (IIa) and (IIb) are novel compounds not described in the literature, It is a compound first discovered by the present inventors.
 以下に、スキームFの各工程(工程(i)~(vi))について説明する。 Hereinafter, each step of the scheme F (steps (i) to (vi)) will be described.
 [工程(i)及び(ii)]
 工程(ii)における式(V)で示される(E)-5-トリチルチオ-2-ペンテナールは既知化合物であり、公知の方法(非特許文献5、6)に従い、市販のアクロレイン(式(22)の化合物)を出発原料として用い、2工程を経て合成することができる(参考例1,2参照)。
[Steps (i) and (ii)]
(E) -5-tritylthio-2-pentenal represented by formula (V) in step (ii) is a known compound, and is commercially available according to known methods (Non-Patent Documents 5 and 6) (formula (22) Can be synthesized through two steps (see Reference Examples 1 and 2).
 [工程(iii)]
 工程(iii)は、式(V)で示される(E)-5-トリチルチオ-2-ペンテナールに、塩基存在下、式(VI)で示される酢酸エステル誘導体を付加させて、式(VII)で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸エステル誘導体を製造するものである(実施例1参照)。
[Step (iii)]
In the step (iii), an acetate ester derivative represented by the formula (VI) is added to (E) -5-tritylthio-2-pentenal represented by the formula (V) in the presence of a base to obtain a compound represented by the formula (VII) (RS, E) -3-Hydroxy-7-tritylthio-4-heptenoate derivative, which is a mixture of the isomers shown (see Example 1).
 使用可能な塩基としては、例えば、水素化ナトリウム及び水素化カリウム等の水素化アルカリ金属;カリウム-tert-ブトキシド、ナトリウム-tert-ブトキシド等のアルカリ金属アルコキシド;リチウムジイソプロピルアミド(LDA)、リチウムイソプロピルシクロヘキシルアミド、リチウムビストリメチルシリルアミド、ナトリウムビストリメチルシリルアミド及びカリウムビストリメチルシリルアミド等のアルカリ金属アミドがあげられる。これらの塩基は、2種類以上を併用しても良い。好ましくは、アルカリ金属アミドであり、さらに好ましくは、LDAである。 Usable bases include, for example, alkali metal hydrides such as sodium hydride and potassium hydride; alkali metal alkoxides such as potassium tert-butoxide and sodium tert-butoxide; lithium diisopropylamide (LDA), lithium isopropylcyclohexyl Examples thereof include alkali metal amides such as amide, lithium bistrimethylsilylamide, sodium bistrimethylsilylamide, and potassium bistrimethylsilylamide. Two or more of these bases may be used in combination. Alkali metal amides are preferable, and LDA is more preferable.
 用いられる塩基は、酢酸エステル誘導体に対して、0.1~10当量が用いられるが、好適には0.8~1.2当量が用いられる。 The base used is 0.1 to 10 equivalents, preferably 0.8 to 1.2 equivalents, based on the acetate derivative.
 反応は溶媒中で行うことが好ましく、用いられる溶媒としては、この工程の反応に悪影響を及ぼさないものであれば、どのようなものを用いても良い。例えば、ペンタン、ヘキサン、ベンゼン、トルエン及びキシレン等の炭化水素系溶媒;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、1,1,1-トリクロロエタン及びモノクロロベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、ジメトキシエタン及びシクロペンチルメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル、ニトロメタン、ニトロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びジメチルスルホキシド等の極性非プロトン性溶媒があげられる。また、上記溶媒のうち、2種類以上を混合して用いても良い。好ましくは、エーテル系溶媒であり、さらに好ましくは、THFである。 The reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step. For example, hydrocarbon solvents such as pentane, hexane, benzene, toluene and xylene; halogenated hydrocarbon solvents such as dichloromethane, 1,2-dichloroethane, chloroform, 1,1,1-trichloroethane and monochlorobenzene; diethyl ether, Ether solvents such as tetrahydrofuran (THF), 1,4-dioxane, dimethoxyethane and cyclopentylmethyl ether; acetonitrile, propionitrile, nitromethane, nitroethane, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc. And polar aprotic solvents. Moreover, you may mix and use 2 or more types among the said solvent. An ether solvent is preferable, and THF is more preferable.
 反応温度は用いる溶媒により変化しうるが、通常は-100℃から反応溶媒の還流温度で行うことができる。例えば、塩基としてLDAを用いる場合は、-80~-20℃で行うことが望ましい。 Although the reaction temperature can vary depending on the solvent used, it can usually be carried out from −100 ° C. to the reflux temperature of the reaction solvent. For example, when LDA is used as the base, it is preferably carried out at −80 to −20 ° C.
 反応時間は用いる溶媒及び反応温度により変化しうるが、通常は10分~24時間である。好ましくは、30分~3時間である。 The reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
 用いられる酢酸エステル誘導体は、(E)-5-トリチルチオ-2-ペンテナール(式(V)で示される化合物)に対して、1.0~10.0当量が用いられるが、好適には3.0~4.0当量が用いられる。 The acetic acid ester derivative used is used in an amount of 1.0 to 10.0 equivalents relative to (E) -5-tritylthio-2-pentenal (compound represented by the formula (V)). 0-4.0 equivalents are used.
 得られた生成物(式(VII)の化合物)は、通常の後処理に付すことができる。ここで通常の後処理とは、例えば、クエンチ(反応停止)及び抽出等があげられる。さらに、沈殿、結晶化、ゲル濾過及びシリカゲルカラムクロマトグラフィー等の慣用の手法を必要に応じて適用して、精製することができる。 The obtained product (compound of formula (VII)) can be subjected to usual post-treatment. Here, the normal post-treatment includes, for example, quench (reaction stop) and extraction. Furthermore, it can refine | purify by applying conventional methods, such as precipitation, crystallization, gel filtration, and silica gel column chromatography, as needed.
 本工程の反応によれば、生成物(式(VII)で示される化合物)は水酸基の立体配置が混ざった異性体混合物(ある態様では、ラセミ体(R体及びS体の等量混合物))として得られる。 According to the reaction in this step, the product (compound represented by the formula (VII)) is an isomer mixture in which the configuration of hydroxyl groups is mixed (in some embodiments, a racemate (an equivalent mixture of R and S forms)). As obtained.
 [工程(iv)]
 工程(iv)は、式(VII)で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸エステル誘導体を、塩基または酸存在下にて、加水分解することにより、式(III)で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸を製造するものである(実施例2参照)。
[Step (iv)]
In step (iv), the (RS, E) -3-hydroxy-7-tritylthio-4-heptenoate derivative, which is a mixture of isomers represented by formula (VII), is hydrolyzed in the presence of a base or an acid. Thus, (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid, which is a mixture of isomers represented by the formula (III), is produced (see Example 2).
 本工程で用いられる塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム及び炭酸水素リチウム等があげられる。また、酸としては、硫酸、塩酸、リン酸及び酢酸等があげられる。好ましくは、塩基であり、さらに好ましくは、水酸化ナトリウムである。 Examples of the base used in this step include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate. . Examples of the acid include sulfuric acid, hydrochloric acid, phosphoric acid and acetic acid. Preferred is a base, and more preferred is sodium hydroxide.
 反応は溶媒中で行うことが好ましく、用いられる溶媒としては、この工程の反応に悪影響を及ぼさないものであれば、どのようなものを用いても良い。例えば、メタノール、エタノール、イソプロピルアルコール及びtert-ブチルアルコール等のアルコール系溶媒;THF及び1,4-ジオキサン等のエーテル系溶媒;アセトニトリル、N,N-ジメチルホルムアミド及びジメチルスルホキシド等の極性非プロトン性溶媒;硫酸、塩酸、リン酸、酢酸及び水等があげられる。また、上記溶媒のうち、2種類以上を混合して用いても良い。好ましくは、メタノール、エタノール、THF、アセトニトリル及び水であり、さらに好ましくは、メタノール、エタノール及び水である。 The reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step. For example, alcohol solvents such as methanol, ethanol, isopropyl alcohol and tert-butyl alcohol; ether solvents such as THF and 1,4-dioxane; polar aprotic solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide Sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and water. Moreover, you may mix and use 2 or more types among the said solvent. Preferred are methanol, ethanol, THF, acetonitrile, and water, and more preferred are methanol, ethanol, and water.
 反応温度は用いる溶媒により変化しうるが、通常は-100℃から反応溶媒の還流温度で行うことができる。好ましくは、0~80℃である。 Although the reaction temperature can vary depending on the solvent used, it can usually be carried out from −100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 80 ° C.
 反応時間は用いる溶媒及び反応温度により変化しうるが、通常は10分~24時間である。好ましくは、30分~3時間である。 The reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
 得られた生成物(式(III)の化合物)は、通常の後処理に付すことができる。さらに、沈殿、結晶化、ゲル濾過及びシリカゲルカラムクロマトグラフィー等の慣用の手法を必要に応じて適用して、精製することができる。 The obtained product (compound of formula (III)) can be subjected to usual post-treatment. Furthermore, it can refine | purify by applying conventional methods, such as precipitation, crystallization, gel filtration, and silica gel column chromatography, as needed.
 [工程(v)]
 工程(v)は、式(III)で示されるラセミ体である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸に、縮合剤存在下にて、式(IV)で示される光学活性アミノ酸誘導体を反応させ、生成する2種類のジアステレオマー混合物を分離・精製することにより、式(Ia)及び(Ib)で示される光学活性アミドカルボン酸エステル誘導体をそれぞれ単一の光学異性体として製造するものである(実施例3~5参照)。
[Step (v)]
Step (v) is represented by formula (IV) in the presence of a condensing agent to (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid, which is a racemate represented by formula (III). The optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib) are each converted into a single optical compound by reacting the optically active amino acid derivative, and separating and purifying the resulting two diastereomeric mixtures. It is produced as an isomer (see Examples 3 to 5).
 本工程で用いられる縮合剤としては、例えば、1H-ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスホニウムヘキサフルオロりん酸塩(BOP)、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)及びクロロトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyClop)等のホスホニウム系縮合剤;N,N’-ジイソプロピルカルボジイミド(DIC)及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)等のカルボジイミド系縮合剤;(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリウム=クロリドn水和物等のトリアジン系縮合剤;N,N’-カルボニルイミダゾール(CDI)等のイミダゾール系縮合剤;O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(HBTU)及びO-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(HATU)等のウロニウム系縮合剤があげられる。好ましくは、ホスホニウム系縮合剤であり、より好ましくは、PyBOPである。 Examples of the condensing agent used in this step include 1H-benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphate (BOP), 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexa Phosphonium condensing agents such as fluorophosphate (PyBOP) and chlorotripyrrolidinophosphonium hexafluorophosphate (PyCrop); N, N′-diisopropylcarbodiimide (DIC) and 1-ethyl-3- (3-dimethylamino) Carbodiimide condensing agents such as propyl) carbodiimide (EDC); triazine condensates such as (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholium chloride n-hydrate Agent; N, N′-carbonylimidazole (CDI ) Imidazole condensing agents; O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HBTU) and O- (7-azabenzotriazole -1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HATU) and the like. Preferred is a phosphonium condensing agent, and more preferred is PyBOP.
 本工程では、反応をより効率的に進行させるため、添加剤を加えることができる。使用可能な添加剤としては、1-ヒドロキシベンゾトリアゾール(HOBt)及び1-ヒドロキシアザベンゾトリアゾール(HOAt)等のトリアゾール系化合物;トリアチルアミン、ピリジン、4-ジメチルアミノピリジン、ジエチルアミン及びN,N-ジイソプロピルエチルアミン等のアミン系化合物があげられる。好ましくは、アミン系化合物であり、依り好ましくは、N,N-ジイソプロピルエチルアミンである。 In this step, additives can be added to make the reaction proceed more efficiently. Usable additives include triazole compounds such as 1-hydroxybenzotriazole (HOBt) and 1-hydroxyazabenzotriazole (HOAt); triatylamine, pyridine, 4-dimethylaminopyridine, diethylamine and N, N- Examples thereof include amine compounds such as diisopropylethylamine. An amine compound is preferred, and N, N-diisopropylethylamine is therefore preferred.
 反応は溶媒中で行うことが好ましく、用いられる溶媒としては、この工程の反応に悪影響を及ぼさないものであれば、どのようなものを用いても良い。例えば、メタノール、エタノール、イソプロピルアルコール及びtert-ブチルアルコール等のアルコール系溶媒;ペンタン、ヘキサン、ベンゼン、トルエン及びキシレン等の炭化水素系溶媒;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、1,1,1-トリクロロエタン及びモノクロロベンゼン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン、ジメトキシエタン及びシクロペンチルメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル、ニトロメタン、ニトロエタン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びジメチルスルホキシド等の極性非プロトン性溶媒があげられる。また、上記溶媒のうち、2種類以上を混合して用いても良い。好ましくは、極性非プロトン性溶媒であり、さらに好ましくは、アセトニトリルである。 The reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step. For example, alcohol solvents such as methanol, ethanol, isopropyl alcohol and tert-butyl alcohol; hydrocarbon solvents such as pentane, hexane, benzene, toluene and xylene; dichloromethane, 1,2-dichloroethane, chloroform, 1,1,1 -Halogenated hydrocarbon solvents such as trichloroethane and monochlorobenzene; ether solvents such as diethyl ether, tetrahydrofuran (THF), 1,4-dioxane, dimethoxyethane and cyclopentylmethyl ether; acetonitrile, propionitrile, nitromethane, nitroethane, Examples thereof include polar aprotic solvents such as N, N-dimethylformamide, N, N-dimethylacetamide and dimethyl sulfoxide. Moreover, you may mix and use 2 or more types among the said solvent. A polar aprotic solvent is preferred, and acetonitrile is more preferred.
 反応温度は用いる溶媒により変化しうるが、通常は-100℃から反応溶媒の還流温度で行うことができる。好ましくは、0~50℃である。 Although the reaction temperature can vary depending on the solvent used, it can usually be carried out from −100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 50 ° C.
 反応時間は用いる溶媒及び反応温度により変化しうるが、通常は10分~24時間である。好ましくは、30分~3時間である。 The reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 3 hours.
 生成した2種類のジアステレオマー混合物(化合物(Ia)及び(Ib)の混合物)の分離・精製は、沈殿、結晶化、ゲル濾過及びシリカゲルカラムクロマトグラフィー等の慣用の手法を適用して行うことができ、それぞれの化合物を単一の光学異性体として得ることができる。好ましい分離・精製方法は、シリカゲルカラムクロマトグラフィーである。 Separation and purification of the two diastereomeric mixtures produced (mixtures of compounds (Ia) and (Ib)) should be carried out by applying conventional techniques such as precipitation, crystallization, gel filtration and silica gel column chromatography. Each compound can be obtained as a single optical isomer. A preferred separation / purification method is silica gel column chromatography.
 なお、本工程において、水酸基が無保護である式(III)で示される化合物を用いることが重要なポイントであり、もし水酸基がPMB基で保護された化合物を用いた場合には、生成する2種類のジアステレオマー混合物の分離・精製は困難となり、対応する光学活性アミドカルボン酸エステル誘導体を単一の光学異性体として得ることは困難である(参考例8参照)。 In this step, it is an important point to use a compound represented by the formula (III) in which the hydroxyl group is unprotected. If a compound in which the hydroxyl group is protected by a PMB group is used, the compound is produced. Separation / purification of a mixture of various diastereomers is difficult, and it is difficult to obtain a corresponding optically active amide carboxylic acid ester derivative as a single optical isomer (see Reference Example 8).
 また、光学活性化合物の調製方法として、光学分割剤を用いた手法が知られている。しかしながら、光学分割剤を用いる場合は、光学分割を行う前に光学分割剤を作用させ、光学分割を行った後に光学分割剤を取り除く操作が必要である。これに対して、本工程ではこのような操作を行う必要がなく、そのまま次の工程に用いる化合物の光学分割を行っている点にも特徴がある。 In addition, a method using an optical resolving agent is known as a method for preparing an optically active compound. However, when an optical resolution agent is used, it is necessary to operate the optical resolution agent before performing optical resolution and to remove the optical resolution agent after performing optical resolution. On the other hand, there is no need to perform such an operation in this step, and there is a feature in that optical resolution of a compound used in the next step is performed as it is.
 [工程(vi)]
 工程(vi)は、式(Ia)及び(Ib)で示される光学活性アミドカルボン酸エステル誘導体を、塩基または酸存在下にて、加水分解することにより、それぞれ対応する式(IIa)及び(IIb)で示される光学活性アミドカルボン酸誘導体を製造するものである。(実施例6~11参照)
 本工程で用いられる塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、炭酸水素ナトリウム、炭酸水素カリウム及び炭酸水素リチウム等があげられる。また、酸としては、硫酸、塩酸、リン酸及び酢酸等があげられる。好ましくは、塩基であり、さらに好ましくは、水酸化リチウムである。
[Step (vi)]
In the step (vi), the optically active amide carboxylic acid ester derivatives represented by the formulas (Ia) and (Ib) are hydrolyzed in the presence of a base or an acid to give the corresponding formulas (IIa) and (IIb), respectively. ) Which is an optically active amide carboxylic acid derivative. (See Examples 6 to 11)
Examples of the base used in this step include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, sodium bicarbonate, potassium bicarbonate, and lithium bicarbonate. . Examples of the acid include sulfuric acid, hydrochloric acid, phosphoric acid and acetic acid. Preferred is a base, and more preferred is lithium hydroxide.
 反応は溶媒中で行うことが好ましく、用いられる溶媒としては、この工程の反応に悪影響を及ぼさないものであれば、どのようなものを用いても良い。例えば、メタノール、エタノール、イソプロピルアルコール及びt-ブチルアルコール等のアルコール系溶媒;THF及び1,4-ジオキサン等のエーテル系溶媒;アセトニトリル、N,N-ジメチルホルムアミド及びジメチルスルホキシド等の極性非プロトン性溶媒;硫酸、塩酸、リン酸、酢酸及び水等があげられる。また、上記溶媒のうち、2種類以上を混合して用いても良い。好ましくは、メタノール、エタノール、THF、アセトニトリル及び水であり、さらに好ましくは、メタノール、エタノール及び水である。 The reaction is preferably performed in a solvent, and any solvent may be used as long as it does not adversely affect the reaction in this step. For example, alcohol solvents such as methanol, ethanol, isopropyl alcohol and t-butyl alcohol; ether solvents such as THF and 1,4-dioxane; polar aprotic solvents such as acetonitrile, N, N-dimethylformamide and dimethyl sulfoxide Sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and water. Moreover, you may mix and use 2 or more types among the said solvent. Preferred are methanol, ethanol, THF, acetonitrile, and water, and more preferred are methanol, ethanol, and water.
 反応温度は用いる溶媒により変化しうるが、通常は-100℃から反応溶媒の還流温度で行うことができる。好ましくは、0~80℃である。 Although the reaction temperature can vary depending on the solvent used, it can usually be carried out from −100 ° C. to the reflux temperature of the reaction solvent. Preferably, it is 0 to 80 ° C.
 反応時間は用いる溶媒及び反応温度により変化しうるが、通常は10分~24時間である。好ましくは、30分~5時間である。 The reaction time may vary depending on the solvent used and the reaction temperature, but is usually 10 minutes to 24 hours. Preferably, it is 30 minutes to 5 hours.
 得られた生成物(式(IIa)及び(IIb)の化合物)は、通常の後処理に付すことができる。さらに、沈殿、結晶化、ゲル濾過及びシリカゲルカラムクロマトグラフィー等の慣用の手法を必要に応じて適用して、精製することができる。 The obtained product (compounds of the formulas (IIa) and (IIb)) can be subjected to usual post-treatment. Furthermore, it can refine | purify by applying conventional methods, such as precipitation, crystallization, gel filtration, and silica gel column chromatography, as needed.
 以上の合成経路によって得られた光学活性アミドカルボン酸誘導体(IIa-1)を用いて、前記特許文献1及び非特許文献1,2に記載の方法に従って、下記スキームGに示す変換を行い、デプシペプチド類化合物(式(1’a)の化合物)が合成できることを確認した(参考例4~7参照)。式(3a)で示される光学活性トリペプチド誘導体は、前記非特許文献1,2に記載の方法に従って調製した(参考例3参照)。なお、式(IIa-1)で示される製造中間体は、水酸基が無保護であるため、保護基を脱保護する工程が必要ない。従って、本発明の製造中間体を用いることにより、従来法(スキームA参照)に比べて、より少ない工程数で目的とするデプシペプチド類化合物を製造することができる。 Using the optically active amide carboxylic acid derivative (IIa-1) obtained by the above synthetic route, the transformation shown in the following scheme G is carried out according to the methods described in Patent Document 1 and Non-Patent Documents 1 and 2, and depsipeptide It was confirmed that a similar compound (compound of formula (1′a)) can be synthesized (see Reference Examples 4 to 7). The optically active tripeptide derivative represented by the formula (3a) was prepared according to the method described in Non-Patent Documents 1 and 2 (see Reference Example 3). Note that the production intermediate represented by the formula (IIa-1) does not require a step of deprotecting the protecting group because the hydroxyl group is unprotected. Therefore, by using the production intermediate of the present invention, the desired depsipeptide compound can be produced with a smaller number of steps than in the conventional method (see Scheme A).
 スキームG Scheme G
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
(式中、R、R及び破線の結合は前記のとおりである) (Wherein R 1 , R 3 and the bond of the broken line are as described above)
 以下、実施例及び参考例により、本発明をさらに詳細に説明するが、本発明がこれらに限定されるものでないことは言うまでもない。 Hereinafter, the present invention will be described in more detail with reference to examples and reference examples, but it goes without saying that the present invention is not limited to these examples.
 実施例1 Example 1
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 アルゴン雰囲気下、ジイソプロピルアミン(6.0 ml, 42 mmol)のテトラヒドロフラン(28 ml)溶液に、-78℃でn-ブチルリチウム(1.6Mヘキサン溶液, 27.9 ml, 45 mmol)をゆっくり滴下し、同温度で30分間撹拌した。次いで、反応溶液に-78℃で酢酸エチルエステル(VI-1)(4.0 ml, 42 mmol)をゆっくり滴下し、同温度で30分間撹拌した。さらに、反応溶液に-78℃で(E)-5-トリチルチオ-2-ペンテナール(V)(4.45 g, 12 mmol)のテトラヒドロフラン(36 ml)溶液をゆっくり滴下し、同温度で1時間撹拌した。反応混合物に飽和塩化アンモニウム水溶液(50 ml)を加え、反応をクエンチ(停止)し、次いで酢酸エチル(50 ml×3)で抽出した。抽出液を飽和食塩水(80 ml)で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸エチルエステル(ラセミ混合物)(VII-1)(4.73 g, 88%)を淡黄色固体として得た。本化合物は精製することなく、次の反応の反応に用いた(実施例2参照)。
Mp. 94-96℃. 1H NMR (400 MHz, CDCl3)δ: 1.24 (3H, t, J = 6.3 Hz), 2.04-2.10 (2H, m), 2.18-2.22 (2H, m), 2.42-2.52 (2H, m), 2.86 (1H, d, J = 4.4 Hz), 4.14 (2H, q, J = 7.2 Hz), 4.40-4.46 (1H, m), 5.38-5.44 (1H, m), 5.53-5.61 (1H, m), 7.19-7.41 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 14.1, 31.3, 31.4, 41.4, 60.7, 66.6, 68.6, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.1, 132.0, 144.9 (3C), 172.2 ppm. FT-IR (KBr): 3454, 3056, 2980, 2925, 1733, 1594, 1489, 1444, 1371, 1275, 1182, 1097, 1033, 971, 852, 743, 700 620 cm-1. HRMS (FAB) C28H31O3S [(M+H)+] 計算値 447.1994; 実測値 447.1992.
Under an argon atmosphere, n-butyllithium (1.6 M hexane solution, 27.9 ml, 45 mmol) was slowly added dropwise to a solution of diisopropylamine (6.0 ml, 42 mmol) in tetrahydrofuran (28 ml) at −78 ° C. at the same temperature. Stir for 30 minutes. Next, ethyl acetate (VI-1) (4.0 ml, 42 mmol) was slowly added dropwise to the reaction solution at −78 ° C., and the mixture was stirred at the same temperature for 30 minutes. Further, a solution of (E) -5-tritylthio-2-pentenal (V) (4.45 g, 12 mmol) in tetrahydrofuran (36 ml) was slowly added dropwise to the reaction solution at −78 ° C., followed by stirring at the same temperature for 1 hour. Saturated aqueous ammonium chloride (50 ml) was added to the reaction mixture to quench the reaction and then extracted with ethyl acetate (50 ml × 3). The extract was washed with saturated brine (80 ml) and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid ethyl ester (racemic mixture) (VII-1) (4.73 g, 88%) was obtained as a pale yellow solid. Obtained. This compound was used for the next reaction without purification (see Example 2).
Mp. 94-96 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ: 1.24 (3H, t, J = 6.3 Hz), 2.04-2.10 (2H, m), 2.18-2.22 (2H, m), 2.42 -2.52 (2H, m), 2.86 (1H, d, J = 4.4 Hz), 4.14 (2H, q, J = 7.2 Hz), 4.40-4.46 (1H, m), 5.38-5.44 (1H, m), 5.53-5.61 (1H, m), 7.19-7.41 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 14.1, 31.3, 31.4, 41.4, 60.7, 66.6, 68.6, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.1, 132.0, 144.9 (3C), 172.2 ppm. FT-IR (KBr): 3454, 3056, 2980, 2925, 1733, 1594, 1489, 1444, 1371, 1275, 1182 , 1097, 1033, 971, 852, 743, 700 620 cm −1 . HRMS (FAB) C 28 H 31 O 3 S [(M + H) + ] calculated 447.1994; measured 447.1992.
 実施例2 Example 2
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 (RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸エチルエステル(ラセミ混合物)(VII-1)(4.73 g, 11 mmol)のエタノール/テトラヒドロフラン(1:1, 60 ml)の混合溶液に、室温で20%水酸化ナトリウム水溶液(7.8 ml)を加え、1 時間攪拌した。反応混合物に1M塩酸を加えてpH2-3に調整し、酢酸エチル(50 ml×3)で抽出した。抽出液を飽和食塩水(80 ml)で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧下留去した。得られた残留物を酢酸エチル/ヘキサン(1:1)で再結晶し、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III)(4.40 g, 99%)を淡黄色針状晶として得た。
Mp. 131-133℃. 1H NMR (400 MHz, CDCl3)δ: 2.05-2.10 (2H, m), 2.19-2.23 (2H, m), 2.49-2.59 (2H, m), 4.45 (1H, dd, J = 11.2, 7.3 Hz), 5.42 (1H, dd, J = 15.6, 6.3 Hz), 5.59 (1H, dt, J = 15.6, 6.8 Hz), 7.19-7.41 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 31.3, 31.4, 41.2, 66.6, 68.5, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.7, 131.6, 144.9 (3C), 176.9 ppm. FT-IR (KBr): 3395, 3055, 3030, 2924, 1711, 1594, 1489, 1443, 1279, 1183, 1033, 970, 910, 742, 700 cm-1. HRMS (FAB) C26H26O3SNa [(M+Na)+] 計算値 441.1500; 実測値 441.1513.
(RS, E) -3-Hydroxy-7-tritylthio-4-heptenoic acid ethyl ester (racemic mixture) (VII-1) (4.73 g, 11 mmol) in ethanol / tetrahydrofuran (1: 1, 60 ml) A 20% aqueous sodium hydroxide solution (7.8 ml) was added to the mixed solution at room temperature, and the mixture was stirred for 1 hour. The reaction mixture was adjusted to pH 2-3 with 1M hydrochloric acid and extracted with ethyl acetate (50 ml × 3). The extract was washed with saturated brine (80 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was recrystallized from ethyl acetate / hexane (1: 1) to give (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid (racemic mixture) (III) (4.40 g, 99%) was obtained as pale yellow needles.
Mp. 131-133 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ: 2.05-2.10 (2H, m), 2.19-2.23 (2H, m), 2.49-2.59 (2H, m), 4.45 (1H, dd, J = 11.2, 7.3 Hz), 5.42 (1H, dd, J = 15.6, 6.3 Hz), 5.59 (1H, dt, J = 15.6, 6.8 Hz), 7.19-7.41 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 31.3, 31.4, 41.2, 66.6, 68.5, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.7, 131.6, 144.9 (3C), 176.9 ppm. FT-IR (KBr): 3395, 3055, 3030, 2924, 1711, 1594, 1489, 1443, 1279, 1183, 1033, 970, 910, 742, 700 cm −1 .HRMS (FAB) C 26 H 26 O 3 SNa [( M + Na) + ] Calculated 441.1500; Found 441.1513.
 実施例3 Example 3
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 アルゴン雰囲気下、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III)(4.40 g, 11 mmol)及びD-バリンメチルエステル塩酸塩(IV-1)(2.64 g, 16 mmol)の無水アセトニトリル(50 ml)溶液に、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)(8.20 g, 16 mmol)及びN,N-ジイソプロピルエチルアミン(11 ml, 63 mmol)を室温で加え、同温で2時間撹拌した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ia-1)(1.53 g, 27%)、そのジアステレオマーである(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ib-1)(1.48 g, 26%)及び両化合物の混合物(ジアステレオマー混合物)(2.55 g, 46%)を得た。ジアステレオマー混合物は、さらにシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製することにより、(S,E)-異性体(Ia-1)(1.30 g, 23%)及び(R,E)-異性体(Ib-1)(1.30 g, 23%)を得た。(S,E)-異性体(Ia-1)および(R,E)-異性体(Ib-1)の総収量(総収率)は、それぞれ2.83 g(50%)、2.78 g(49%)であった。 Under an argon atmosphere, (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid (racemic mixture) (III) (4.40 g, 11 mmol) and D-valine methyl ester hydrochloride (IV-1) (2.64 g, 16 mmol) in anhydrous acetonitrile (50 ml) was added 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (8.20 g, 16 mmol) and N, N- Diisopropylethylamine (11 mL, 63 mL) was added at room temperature, and the mixture was stirred at the same temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (Ia-1) (1.53 g, 27%), its diastereomer (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide ] 3-methylbutanoic acid methyl ester (Ib-1) (1.48 g, 26%) and a mixture of both compounds (diastereomer mixture) (2.55 g, 46%) were obtained. The diastereomeric mixture was further separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1) to give (S, E) -isomer (Ia-1) (1.30 g, 23%) and ( R, E) -isomer (Ib-1) (1.30 g, 23%) was obtained. The total yield (total yield) of the (S, E) -isomer (Ia-1) and (R, E) -isomer (Ib-1) was 2.83 g (50%) and 2.78 g (49%), respectively. )Met.
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ia-1):無色油状物.[α]D 25 = -12.6 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.89 (3H, d, J = 6.8 Hz), 0.93 (3H, d, J = 6.8 Hz), 2.04-2.09 (2H, m), 2.12-2.22 (3H, m), 2.34-2.46 (2H, m), 3.43 (1H, br s), 3.73 (3H, s), 4.40-4.44 (1H, m), 4.54 (1H, dd, J = 8.8, 4.9 Hz), 5.42 (1H, dd, J = 15.1, 6.3 Hz), 5.57 (1H, dt, J = 15.1, 6.8 Hz), 6.40 (1H, d, J = 8.3 Hz), 7.18-7.44 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ:17.8, 19.0, 31.0, 31.3, 31.4, 43.0, 52.2, 57.1, 66.6, 69.2, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.2, 144.9 (3C), 171.7, 172.5 ppm. FT-IR (neat): 3320, 3057, 2963, 2928, 1741, 1650, 1538, 1489, 1443, 1313, 1209, 1153, 1034, 974, 744, 700 cm-1. HRMS (FAB) C32H38NO4S [(M+H)+] 計算値 532.2522 ; 実測値 532.2536.
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ib-1):無色油状物.[α]D 25 = -0.6 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.88 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 2.04-2.22 (5H, m), 2.12-2.22 (3H, m), 2.35 (1H, dd, J = 15.1, 8.8 Hz), 2.45 (1H, dd, J = 15.1, 3.9 Hz), 3.44 (1H, br s), 3.72 (3H, s), 4.39-4.43 (1H, m), 4.55 (1H, dd, J = 8.3, 4.9 Hz), 5.42 (1H, dd, J = 15.1, 6.8 Hz), 5.56 (1H, dt, J = 15.6, 5.9 Hz), 6.40 (1H, d, J = 8.8 Hz), 7.16-7.41 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ:17.7, 18.9, 31.2, 31.3, 31.4, 42.6, 52.1, 56.9, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.5 (6C), 130.1, 132.2, 144.9 (3C), 171.6, 172.4 ppm. FT-IR (neat): 3326, 3057, 2962, 1741, 1649, 1535, 1490, 1443, 1372, 1313, 1266, 1207, 1033, 974, 744, 700 cm-1. HRMS (FAB) C32H38NO4S [(M+H)+] 計算値 532.2522 ; 実測値 532.2535.
(R) -2-[(S, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (Ia-1): colorless oil. [α] D 25 = -12.6 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.89 (3H, d, J = 6.8 Hz), 0.93 (3H, d, J = 6.8 Hz), 2.04-2.09 (2H, m), 2.12-2.22 (3H, m), 2.34-2.46 (2H, m), 3.43 (1H, br s), 3.73 (3H, s), 4.40-4.44 (1H , m), 4.54 (1H, dd, J = 8.8, 4.9 Hz), 5.42 (1H, dd, J = 15.1, 6.3 Hz), 5.57 (1H, dt, J = 15.1, 6.8 Hz), 6.40 (1H, d, J = 8.3 Hz), 7.18-7.44 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 17.8, 19.0, 31.0, 31.3, 31.4, 43.0, 52.2, 57.1, 66.6, 69.2, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.2, 144.9 (3C), 171.7, 172.5 ppm. FT-IR (neat): 3320, 3057, 2963, 2928, 1741, 1650, 1538, 1489, 1443, 1313, 1209, 1153, 1034, 974, 744, 700 cm −1 . HRMS (FAB) C 32 H 38 NO 4 S [(M + H) + ] calculated 532.2522; measured 532.2536.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (Ib-1): colorless oil. [α] D 25 = −0.6 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.88 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 2.04-2.22 (5H, m), 2.12-2.22 (3H, m), 2.35 (1H, dd, J = 15.1, 8.8 Hz), 2.45 (1H, dd, J = 15.1, 3.9 Hz), 3.44 (1H, br s), 3.72 (3H, s), 4.39-4.43 (1H, m), 4.55 (1H, dd, J = 8.3, 4.9 Hz), 5.42 (1H, dd, J = 15.1, 6.8 Hz) , 5.56 (1H, dt, J = 15.6, 5.9 Hz), 6.40 (1H, d, J = 8.8 Hz), 7.16-7.41 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 17.7 , 18.9, 31.2, 31.3, 31.4, 42.6, 52.1, 56.9, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.5 (6C), 130.1, 132.2, 144.9 (3C), 171.6, 172.4 ppm. IR (neat): 3326, 3057, 2962, 1741, 1649, 1535, 1490, 1443, 1372, 1313, 1266, 1207, 1033, 974, 744, 700 cm -1 . HRMS (FAB) C 32 H 38 NO 4 S [(M + H) + ] calculated 532.2522; found 532.2535.
 実施例4 Example 4
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 アルゴン雰囲気下、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III)(100 mg, 0.24 mmol)及びD-メチオニンメチルエステル塩酸塩(IV-2)(71.5 mg, 0.36 mmol)の無水アセトニトリル (2.4 ml) 溶液に、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)(186 mg, 0.36 mmol)及びN,N-ジイソプロピルエチルアミン(0.24 ml, 1.4 mmol)を加え、同温で2時間撹拌した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (ヘキサン/酢酸エチル 1:1) で分離・精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-4-(メチルチオ)ブタン酸メチルエステル(Ia-2)(34.2 mg, 25%)、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-4-(メチルチオ)ブタン酸メチルエステル(Ib-2)(21.8 mg, 16%)及び両化合物の混合物(ジアステレオマー混合物)(78.0 mg, 58%)を得た。ジアステレオマー混合物は、さらにシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製することにより、(S,E)-異性体(Ia-2)(33.5 mg, 25%)及び(R,E)-異性体(Ib-2)(44.5 mg, 33%)を得た。(S,E)-異性体(Ia-2)及び(R,E)-異性体(Ib-2)の総収量(総収率)は、それぞれ67.7 mg(50%)、66.3 mg(49%)であった。 (RS, E) -3-Hydroxy-7-tritylthio-4-heptenoic acid (racemic mixture) (III) (100 mg, 0.24 mmol) and D-methionine methyl ester hydrochloride (IV-2) under argon atmosphere (71.5 (mg, 0.36 の mmol) in anhydrous acetonitrile (2.4 ml) solution was added 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (186 mg, 0.36 mmol) and N, N- Diisopropylethylamine (0.24 ml, 1.4 mmol) was added, and the mixture was stirred at the same temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide]. -4- (Methylthio) butanoic acid methyl ester (Ia-2) (34.2 mg, 25%), (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -4 -(Methylthio) butanoic acid methyl ester (Ib-2) (21.8 mg, 16%) and a mixture of both compounds (diastereomeric mixture) (78.0 mg, 58%) were obtained. The diastereomeric mixture was further separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1) to give (S, E) -isomer (Ia-2) (33.5 mg, 25%) and ( R, E) -isomer (Ib-2) (44.5 mg, 33%) was obtained. The total yields (total yield) of (S, E) -isomer (Ia-2) and (R, E) -isomer (Ib-2) were 67.7 mg (50%) and 66.3 mg (49%), respectively. )Met.
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-4-(メチルチオ)ブタン酸メチルエステル(Ia-2):無色油状物.[α]D 25 = -21.0 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 1.95-1.99 (1H, m), 2.06-2.09 (5H, m), 2.12-2.23 (3H, m), 2.33-2.40 (2H, m), 2.50 (2H, t, J = 7.6 Hz), 3.34 (1H, d, J = 2.9 Hz), 3.75 (3H, s), 4.40-4.45 (1H, m), 4.71 (1H, td, J = 7.6, 5.0 Hz), 5.41 (1H, dd, J = 15.6, 6.3 Hz), 5.57 (1H, dt, J = 15.6, 6.3 Hz), 6.55 (1H, d, J = 7.8 Hz), 7.19-7.41 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 15.5, 30.0, 31.3, 31.4, 31.5, 43.0, 51.5, 52.6, 66.6, 69.2, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.2, 132.1, 144.9 (3C), 171.6, 172.4 ppm. FT-IR (neat): 3309, 3057, 2951, 2918, 1741, 1651, 1534, 1489, 1443, 1367, 1273, 1224, 1178, 1034, 973, 910, 743, 701 cm-1. HRMS (FAB) C32H38NO4S2 [(M+H)+] 計算値 564.2242; 実測値 564.2222.
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-4-(メチルチオ)ブタン酸メチルエステル(Ib-2):無色油状物. [α]D 25 = -8.2 (c = 0.85, CHCl3). 1H NMR (400 MHz, CDCl3) δ: 1.91-2.00 (1H, m), 2.04-2.10 (5H, m), 2.10-2.26 (3H, m), 2.35 (1H, dd, J = 15.1, 8.8 Hz), 2.44 (1H, dd, J = 15.4, 3.2 Hz), 2.46-2.53 (2H, m), 3.28 (1H, d, J = 3.4 Hz), 3.75 (3H, s), 4.40-4.44 (1H, m), 4.72 (1H, td, J = 7.3, 4.9 Hz), 5.42 (1H, dd, J = 15.6, 6.3 Hz), 5.57 (1H, dt, J = 15.6, 5.9 Hz), 6.54 (1H, d, J = 7.8 Hz), 7.19-7.44 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 15.5, 29.9, 31.3, 31.4, 31.5, 42.7, 51.4, 52.6, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.1, 144.5 (3C), 171.4, 172.3 ppm. FT-IR (neat): 3308, 3057, 2951, 2919, 1742, 1649, 1541, 1489, 1442, 1364, 1274, 1216, 1176, 1034, 971, 744, 701 cm-1. HRMS (FAB) C32H38NO4S2 [(M+H)+] 計算値 564.2242 ; 実測値 564.2228.
(R) -2-[(S, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -4- (methylthio) butanoic acid methyl ester (Ia-2): colorless oil. [Α] D 25 = -21.0 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.95-1.99 (1H, m), 2.06-2.09 (5H, m), 2.12-2.23 (3H, m) , 2.33-2.40 (2H, m), 2.50 (2H, t, J = 7.6 Hz), 3.34 (1H, d, J = 2.9 Hz), 3.75 (3H, s), 4.40-4.45 (1H, m), 4.71 (1H, td, J = 7.6, 5.0 Hz), 5.41 (1H, dd, J = 15.6, 6.3 Hz), 5.57 (1H, dt, J = 15.6, 6.3 Hz), 6.55 (1H, d, J = 7.8 Hz), 7.19-7.41 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 15.5, 30.0, 31.3, 31.4, 31.5, 43.0, 51.5, 52.6, 66.6, 69.2, 126.6 (3C) , 127.8 (6C), 129.6 (6C), 130.2, 132.1, 144.9 (3C), 171.6, 172.4 ppm. FT-IR (neat): 3309, 3057, 2951, 2918, 1741, 1651, 1534, 1489, 1443, 1367, 1273, 1224, 1178, 1034, 973, 910, 743, 701 cm -1 . HRMS (FAB) C 32 H 38 NO 4 S 2 [(M + H) + ] calculated 564.2242; measured 564.2222.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -4- (methylthio) butanoic acid methyl ester (Ib-2): colorless oil. [Α] D 25 = -8.2 (c = 0.85, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.91-2.00 (1H, m), 2.04-2.10 (5H, m), 2.10-2.26 (3H, m) , 2.35 (1H, dd, J = 15.1, 8.8 Hz), 2.44 (1H, dd, J = 15.4, 3.2 Hz), 2.46−2.53 (2H, m), 3.28 (1H, d, J = 3.4 Hz), 3.75 (3H, s), 4.40−4.44 (1H, m), 4.72 (1H, td, J = 7.3, 4.9 Hz), 5.42 (1H, dd, J = 15.6, 6.3 Hz), 5.57 (1H, dt, J = 15.6, 5.9 Hz), 6.54 (1H, d, J = 7.8 Hz), 7.19-7.44 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 15.5, 29.9, 31.3, 31.4, 31.5, 42.7, 51.4, 52.6, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.1, 144.5 (3C), 171.4, 172.3 ppm. FT-IR (neat): 3308, 3057, 2951, 2919, 1742, 1649, 1541, 1489, 1442, 1364, 1274, 1216, 1176, 1034, 971, 744, 701 cm -1 . HRMS (FAB) C 32 H 38 NO 4 S 2 [(M + H) + ] Calculated 564.2242 ; Actual value 564.2228.
 実施例5 Example 5
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 アルゴン雰囲気下、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III)(100 mg, 0.24 mmol)及びD-フェニルアラニンメチルエステル塩酸塩(IV-3)(77.2 mg, 0.36 mmol)の無水アセトニトリル(2.4 ml)溶液に、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)(186 mg, 0.36 mmol)及びN,N-ジイソプロピルエチルアミン(0.24 ml, 1.43 mmol)を加え、同温で2時間撹拌した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ia-3)(31.4 mg, 23%)、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ib-3)(31.4 mg, 23%)及び両化合物の混合物(ジアステレオマー混合物)(73.5 mg, 53%)を得た。ジアステレオマー混合物は、さらにシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製することにより、(S,E)-異性体(Ia-3)(36.0 mg, 26%)及び(R,E)-異性体(Ib-3)(37.4 mg, 27%)を得た。(S,E)-異性体(Ia-3)及び(R,E)-異性体(Ib-3)の総収量(総収率)は、それぞれ67.4 mg(49%)、68.8 mg(50%)であった。 (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid (racemic mixture) (III) (100 mg, 0.24 mmol) and D-phenylalanine methyl ester hydrochloride (IV-3) under an argon atmosphere (77.2 mg, 0.36 mmol) in anhydrous acetonitrile (2.4 ml) was added 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (186 mg, 0.36 mmol) and N, N- Diisopropylethylamine (0.24 ml, 1.43 mmol) was added and stirred at the same temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3-Phenylpropanoic acid methyl ester (Ia-3) (31.4 mg, 23%), (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3-phenyl Propanic acid methyl ester (Ib-3) (31.4 mg, 23%) and a mixture of both compounds (diastereomer mixture) (73.5 mg, 53%) were obtained. The diastereomeric mixture was further separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1) to give (S, E) -isomer (Ia-3) (36.0 mg, 26%) and ( R, E) -isomer (Ib-3) (37.4 mg, 27%) was obtained. The total yields (total yield) of (S, E) -isomer (Ia-3) and (R, E) -isomer (Ib-3) were 67.4 mg (49%) and 68.8 mg (50%), respectively. )Met.
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ia-3):無色油状物. [α]D 25 = -35.7 (c = 1.1, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 2.02-2.08 (2H, m), 2.17-2.21 (2H, m), 2.26-2.37 (2H, m), 3.06 (1H, dd, J = 13.7, 6.3 Hz), 3.16 (1H, dd, J = 13.9, 5.6 Hz), 3.25 (1H, d, J = 3.4 Hz), 3.75 (3H, s), 4.34-4.39 (1H, m), 4.86 (1H, dt, J = 7.8, 6.3 Hz), 5.35 (1H, dd, J = 15.6, 6.3 Hz), 5.53 (1H, dt, J = 15.1, 6.8 Hz), 6.26 (1H, d, J = 7.8 Hz), 7.08-7.10 (2H, m), 7.18-7.22 (3H, m), 7.25-7.41 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 31.3, 31.4, 37.7, 42.8, 52.4, 53.1, 66.6, 69.2, 126.6 (3C), 127.2, 127.9 (6C), 128.6 (2C), 129.2 (2C), 129.6 (6C), 130.2, 132.1, 135.7, 144.9 (3C), 171.4, 172.0 ppm. FT-IR (neat): 3314, 3057, 3029, 2951, 1742, 1649, 1534, 1490, 1443, 1367, 1217, 1081, 1034, 971, 744, 700 cm-1. HRMS (FAB) C36H38NO4S [(M+H)+] 計算値 580.2522; 実測値 580.2526.
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ib-3):無色油状物. [α]D 25 = -26.6 (c = 1.1, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 2.03-2.08 (2H, m), 2.17-2.22 (2H, m), 2.28 (1H, dd, J = 15.1, 8.8 Hz), 2.37 (1H, dd, J = 15.4, 3.2 Hz), 3.06 (1H, dd, J = 14.1, 5.9 Hz), 3.06 (1H, dd, J = 14.1, 5.9 Hz), 3.15 (1H, dd, J = 13.9, 5.6 Hz), 3.15 (1H, d, J = 3.4 Hz), 3.73 (3H, s), 4.34-4.37 (1H, m), 4.88 (1H, dt, J = 7.8, 5.9 Hz), 5.38 (1H, dd, J = 15.6, 6.3 Hz), 5.53 (1H, dt, J = 14.6, 6.3 Hz), 6.25 (1H, d, J = 7.8 Hz), 7.07-7.10 (2H, m), 7.18-7.22 ppm (3H, m), 7.24-7.43 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 31.3, 31.4, 37.8, 42.6, 52.4, 53.0, 66.6, 69.1, 126.6 (3C), 127.2, 127.8 (6C), 128.6 (2C), 129.2 (2C), 129.6 (6C), 130.1, 132.1, 135.7, 144.9 (3C), 171.2, 171.9 ppm. FT-IR (neat): 3309, 3059, 3029, 2951, 1744, 1651, 1532, 1491, 1443, 1368, 1217, 1081, 1034, 973, 854, 744, 700 cm-1. HRMS (FAB) C36H38NO4S [(M+H)+] 計算値 580.2522; 実測値 580.2543.
(R) -2-[(S, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-phenylpropanoic acid methyl ester (Ia-3): colorless oil. [Α] D 25 = − 35.7 (c = 1.1, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 2.02-2.08 (2H, m), 2.17-2.21 (2H, m), 2.26-2.37 (2H, m), 3.06 (1H, dd, J = 13.7, 6.3 Hz), 3.16 (1H, dd, J = 13.9, 5.6 Hz), 3.25 (1H, d, J = 3.4 Hz), 3.75 (3H, s), 4.34-4.39 ( 1H, m), 4.86 (1H, dt, J = 7.8, 6.3 Hz), 5.35 (1H, dd, J = 15.6, 6.3 Hz), 5.53 (1H, dt, J = 15.1, 6.8 Hz), 6.26 (1H , d, J = 7.8 Hz), 7.08-7.10 (2H, m), 7.18-7.22 (3H, m), 7.25-7.41 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 31.3 , 31.4, 37.7, 42.8, 52.4, 53.1, 66.6, 69.2, 126.6 (3C), 127.2, 127.9 (6C), 128.6 (2C), 129.2 (2C), 129.6 (6C), 130.2, 132.1, 135.7, 144.9 ( 3C), 171.4, 172.0 ppm. FT-IR (neat): 3314, 3057, 3029, 2951, 1742, 1649, 1534, 1490, 1443, 1367, 1217, 1081, 1034, 971, 744, 700 cm -1 . HRMS (FAB) C 36 H 38 NO 4 S [(M + H) + ] calculated 580.2522; found 580.2526.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-phenylpropanoic acid methyl ester (Ib-3): colorless oil. [Α] D 25 = − 26.6 (c = 1.1, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 2.03-2.08 (2H, m), 2.17-2.22 (2H, m), 2.28 (1H, dd, J = 15.1, 8.8 Hz), 2.37 (1H, dd, J = 15.4, 3.2 Hz), 3.06 (1H, dd, J = 14.1, 5.9 Hz), 3.06 (1H, dd, J = 14.1, 5.9 Hz), 3.15 (1H, dd, J = 13.9, 5.6 Hz), 3.15 (1H, d, J = 3.4 Hz), 3.73 (3H, s), 4.34-4.37 (1H, m), 4.88 (1H, dt, J = 7.8, 5.9 Hz ), 5.38 (1H, dd, J = 15.6, 6.3 Hz), 5.53 (1H, dt, J = 14.6, 6.3 Hz), 6.25 (1H, d, J = 7.8 Hz), 7.07-7.10 (2H, m) , 7.18–7.22 ppm (3H, m), 7.24–7.43 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 31.3, 31.4, 37.8, 42.6, 52.4, 53.0, 66.6, 69.1, 126.6 (3C), 127.2, 127.8 (6C), 128.6 (2C), 129.2 (2C), 129.6 (6C), 130.1, 132.1, 135.7, 144.9 (3C), 171.2, 171.9 ppm. FT-IR (neat): 3309 , 3059, 3029, 2951, 1744, 1651, 1532, 1 . 491, 1443, 1368, 1217 , 1081, 1034, 973, 854, 744, 700 cm -1 HRMS (FAB) C 36 H 38 NO 4 S [(M + H) +] calcd 580.2522; found 580.2543.
 実施例6 Example 6
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ia-1)(112 mg, 0.21 mmol)のメタノール(4 ml)溶液に、0℃で1M水酸化リチウム水溶液(1 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(50 ml×3)で抽出した。抽出液を飽和食塩水(80 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸(IIa-1)(107 mg, 99%)を白色アモルファスとして得た。本化合物は精製することなく、参考例4の反応に用いた。
[α]D 25 = -16.9 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.88 (3H, d, J = 6.8 Hz), 0.93 (3H, d, J = 6.8 Hz), 2.01-2.07 (2H, m), 2.12-2.20 (3H, m), 2.38 (2H, d, J = 6.3 Hz), 4.41-4.46 (2H, m), 5.38 (1H, dd, J = 15.2, 6.0 Hz), 5.53 (1H, dt, J = 15.0, 6.3 Hz), 6.85 (1H, d, J = 8.3 Hz), 7.18-7.44 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 17.7, 19.2, 30.4, 31.3, 31.4, 43.4, 57.5, 66.6, 69.2, 126.6 (3C), 127.9 (6C), 129.5 (6C), 130.0, 132.0, 144.8 (3C), 172.6, 175.1 ppm. FT-IR (neat): 3330, 3057, 3018, 2964, 2928, 1716, 1646, 1541, 1489, 1444, 1218, 1034, 972, 744, 700, 617 cm-1. HRMS (FAB) C31H36NO4S [(M+H)+] 計算値 518.2365; 実測値 518.2383.
(R) -2-[(S, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (Ia-1) (112 mg, 0.21 mmol) in methanol (4 ml) To the solution was added 1M lithium hydroxide aqueous solution (1 ml) at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (50 ml × 3). The extract was washed with saturated brine (80 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give (R) -2-[(S, E) -3-hydroxy-7-tritylthio- 4-Heptenamide] -3-methylbutanoic acid (IIa-1) (107 mg, 99%) was obtained as a white amorphous. This compound was used in the reaction of Reference Example 4 without purification.
[α] D 25 = -16.9 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.88 (3H, d, J = 6.8 Hz), 0.93 (3H, d, J = 6.8 Hz), 2.01-2.07 (2H, m), 2.12-2.20 (3H, m), 2.38 (2H, d, J = 6.3 Hz), 4.41-4.46 (2H, m), 5.38 (1H, dd, J = 15.2, 6.0 Hz), 5.53 (1H, dt, J = 15.0, 6.3 Hz), 6.85 (1H, d, J = 8.3 Hz), 7.18-7.44 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 17.7, 19.2, 30.4, 31.3, 31.4, 43.4, 57.5, 66.6, 69.2, 126.6 (3C), 127.9 (6C), 129.5 (6C), 130.0, 132.0, 144.8 (3C), 172.6, 175.1 ppm FT-IR (neat): 3330, 3057, 3018, 2964, 2928, 1716, 1646, 1541, 1489, 1444, 1218, 1034, 972, 744, 700, 617 cm −1 . HRMS (FAB) C 31 H 36 NO 4 S [(M + H) + ] calculated 518.2365; measured 518.2383.
 実施例7 Example 7
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(Ib-1)(207 mg, 0.39 mmol)のメタノール(4 ml)溶液に、0℃で1M水酸化リチウム水溶液(1 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(30 ml×3)で抽出した。抽出液を飽和食塩水(60 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール 8:1)で精製し、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸(IIb-1)(193 mg, 96%)を白色アモルファスとして得た。
[α]D 25 = -2.4 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.89 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 2.01-2.07 (2H, m), 2.17-2.20 (3H, m), 2.38-2.45 (2H, m), 4.36-4.41 (1H, m), 4.52 (1H, dd, J = 8.5, 4.6 Hz), 5.39 (1H, dd, J = 15.4, 6.1 Hz), 5.52 (1H, dt, J = 15.6, 6.3 Hz), 6.79 (1H, d, J = 8.8 Hz), 7.17-7.40 ppm (15H, m). 13C NMR (100 MHz, CDCl3/CD3OD 10:1)δ: 17.6, 19.0, 30.8, 31.3, 31.4, 42.7, 57.1, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.5 (6C), 130.2, 132.0, 144.8 (3C), 172.3, 174.5 ppm. FT-IR (neat): 3338, 3057, 3017, 2964, 2930, 1717, 1647, 1541, 1489, 1444, 1217, 1034, 971, 744, 700 cm-1. HRMS (FAB) C31H36NO4S [(M+H)+] 計算値 518.2365; 実測値 518.2357.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (Ib-1) (207 mg, 0.39 mmol) in methanol (4 ml) To the solution was added 1M lithium hydroxide aqueous solution (1 ml) at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (30 ml × 3). The extract was washed with saturated brine (60 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- Methylbutanoic acid (IIb-1) (193 mg, 96%) was obtained as a white amorphous.
[α] D 25 = −2.4 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.89 (3H, d, J = 6.8 Hz), 0.92 (3H, d, J = 6.8 Hz), 2.01−2.07 (2H, m), 2.17−2.20 (3H, m), 2.38−2.45 (2H, m), 4.36−4.41 (1H, m), 4.52 (1H, dd, J = 8.5, 4.6 Hz), 5.39 (1H, dd, J = 15.4, 6.1 Hz), 5.52 (1H, dt, J = 15.6, 6.3 Hz), 6.79 (1H, d, J = 8.8 Hz), 7.17-7.40 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 17.6, 19.0, 30.8, 31.3, 31.4, 42.7, 57.1, 66.6, 69.1, 126.6 (3C), 127.8 (6C), 129.5 (6C), 130.2, 132.0, 144.8 (3C), 172.3, 174.5 ppm. FT-IR (neat): 3338, 3057, 3017, 2964, 2930, 1717, 1647, 1541, 1489, 1444, 1217, 1034, 971, 744, 700 cm -1 . HRMS (FAB) C 31 H 36 NO 4 S [(M + H) + ] calculated 518.2365; measured 518.2357.
 実施例8 Example 8
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-(メチルチオ)ブタン酸メチルエステル(Ia-2)(19.8 mg, 35 μmol)のメタノール(1.2 ml)溶液に、0℃で1M水酸化リチウム水溶液(0.4 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-(メチルチオ)ブタン酸(IIa-2)(17.6 mg, 91%) を白色アモルファスとして得た。
[α]D 25 = -7.0 (c = 1.6, CHCl3). 1H NMR (400 MHz, CDCl3/CD3OD 10:1)δ: 1.84-1.94 (1H, m), 2.02-2.12 (6H, m), 2.16-2.23 (2H, m), 2.30-2.35 (2H, m), 2.46-2.54 (2H, m), 4.39-4.44 (2H, m), 5.40 (1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 7.18-7.55 ppm (15H, m). 13C NMR (100 MHz, CDCl3/CD3OD 10:1)δ: 15.1, 29.5, 30.2, 31.2, 31.4, 43.3, 52.9, 66.5, 68.8, 126.5 (3C), 127.7 (6C), 129.4 (6C), 129.5, 132.4, 144.7 (3C), 172.3, 174.3 ppm. FT-IR (neat): 3316, 3057, 2923, 2853, 1717, 1644, 1592, 1488, 1443, 1281, 1219, 1184, 1034, 970, 743, 620 cm-1. HRMS (FAB) C31H36NO4S2 [(M+H)+] 計算値 550.2086; 実測値 550.2094.
(R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- (methylthio) butanoic acid methyl ester (Ia-2) (19.8 mg, 35 μmol) in methanol ( 1.2 ml), 1M aqueous lithium hydroxide solution (0.4 ml) was added to the solution at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- (Methylthio) butanoic acid (IIa-2) (17.6 mg, 91%) was obtained as a white amorphous.
[α] D 25 = −7.0 (c = 1.6, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 1.84−1.94 (1H, m), 2.02−2.12 (6H m), 2.16−2.23 (2H, m), 2.30−2.35 (2H, m), 2.46−2.54 (2H, m), 4.39−4.44 (2H, m), 5.40 (1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 7.18-7.55 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 15.1, 29.5 , 30.2, 31.2, 31.4, 43.3, 52.9, 66.5, 68.8, 126.5 (3C), 127.7 (6C), 129.4 (6C), 129.5, 132.4, 144.7 (3C), 172.3, 174.3 ppm. FT-IR (neat) : 3316, 3057, 2923, 2853, 1717, 1644, 1592, 1488, 1443, 1281, 1219, 1184, 1034, 970, 743, 620 cm −1 .HRMS (FAB) C 31 H 36 NO 4 S 2 [( M + H) + ] Calculated 550.2086; Found 550.2094.
 実施例9 Example 9
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-(メチルチオ)ブタン酸メチルエステル(Ib-2)(23.8 mg, 42 μmol)のメタノール(1.4 ml)溶液に、0℃で1M水酸化リチウム水溶液(0.5 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-(メチルチオ)ブタン酸(IIb-2)(22.3 mg, 96%) を白色アモルファスとして得た。
[α]D 25 = 5.7 (c = 0.91, CHCl3). 1H NMR (400 MHz, CDCl3/CD3OD 10:1)δ: 1.89-1.98 (1H, m), 2.03-2.14 (6H, m), 2.18-2.22 (2H, m), 2.30-2.42 (2H, m), 2.47-2.54 (2H, m), 4.35-4.40 (1H, m), 4.43-4.46 (1H, m), 5.42 (1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 7.06-7.49 ppm (15H, m). 13C NMR (100 MHz, CDCl3/CD3OD 10:1)δ: 15.1, 29.5, 30.1, 31.2, 31.4, 42.9, 52.5, 66.5, 68.8, 126.5 (3C), 127.7 (6C), 129.4 (6C), 129.6, 132.4, 144.7 (3C), 172.2, 173.9 ppm. FT-IR (neat): 3320, 3057, 2922, 2853, 1716, 1645, 1594, 1489, 1443, 1281, 1218, 1184, 1034, 971, 744, 618 cm-1. HRMS (FAB) C31H36NO4S2 [(M+H)+] 計算値 550.2086; 実測値 550.2070.
(R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- (methylthio) butanoic acid methyl ester (Ib-2) (23.8 mg, 42 μmol) in methanol ( 1.4 ml) was added 1M aqueous lithium hydroxide solution (0.5 ml) at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- (Methylthio) butanoic acid (IIb-2) (22.3 mg, 96%) was obtained as a white amorphous.
[α] D 25 = 5.7 (c = 0.91, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 1.89-1.98 (1H, m), 2.03-2.14 (6H, m), 2.18-2.22 (2H, m), 2.30-2.42 (2H, m), 2.47-2.54 (2H, m), 4.35-4.40 (1H, m), 4.43-4.46 (1H, m), 5.42 ( 1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 7.06-7.49 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 / CD 3 OD 10 : 1) δ: 15.1, 29.5, 30.1, 31.2, 31.4, 42.9, 52.5, 66.5, 68.8, 126.5 (3C), 127.7 (6C), 129.4 (6C), 129.6, 132.4, 144.7 (3C), 172.2, 173.9 FT-IR (neat): 3320, 3057, 2922, 2853, 1716, 1645, 1594, 1489, 1443, 1281, 1218, 1184, 1034, 971, 744, 618 cm −1 . HRMS (FAB) C 31 H 36 NO 4 S 2 [(M + H) + ] Calculated 550.2086; Found 550.2070.
 実施例10 Example 10
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ia-3)(31.4 mg, 54 μmol)のメタノール(1.2 ml)溶液に、0℃で1M水酸化リチウム水溶液(0.4 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸(IIa-3)(30.5 mg, 99%) を白色アモルファスとして得た。
[α]D 25 = -10.0 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3/CD3OD 10:1)δ: 1.97-2.02 (2H, m), 2.12-2.26 (4H, m), 2.91 (1H, dd, J = 13.7, 8.8 Hz), 3.20 (1H, dd, J = 13.9, 4.1 Hz), 4.32 (1H, dd, J = 11.7, 6.3 Hz), 4.58-4.62 (1H, m), 5.28 (1H, dd, J = 15.6, 5.9 Hz), 5.42 (1H, dt, J = 15.6, 6.3 Hz), 7.14-7.41 ppm (20H, m). 13C NMR (100 MHz, CDCl3/CD3OD 10:1)δ: 31.2, 31.3, 36.9, 43.2, 54.8, 66.4, 68.6, 126.5 (3C), 126.5, 127.7 (6C), 128.2 (2C), 129.0 (2C), 129.3, 129.4 (6C), 132.3, 137.0, 144.7 (3C), 172.3, 172.4 ppm. FT-IR (neat): 3320, 3059, 3029, 2925, 1741, 1644, 1580, 1490, 1443, 1217, 1081, 1034, 972, 751, 700, 617 cm-1. HRMS (FAB) C35H36NO4SK [(M+K)+] 計算値 604.1924; 実測値 604.1911.
(R) -2-[(S, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-phenylpropanoic acid methyl ester (Ia-3) (31.4 mg, 54 μmol) in methanol (1.2 ml) ) 1M aqueous lithium hydroxide solution (0.4 ml) was added to the solution at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- Phenylpropanoic acid (IIa-3) (30.5 mg, 99%) was obtained as a white amorphous.
[α] D 25 = −10.0 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 1.97−2.02 (2H, m), 2.12−2.66 (4H , m), 2.91 (1H, dd, J = 13.7, 8.8 Hz), 3.20 (1H, dd, J = 13.9, 4.1 Hz), 4.32 (1H, dd, J = 11.7, 6.3 Hz), 4.58-4.62 ( 1H, m), 5.28 (1H, dd, J = 15.6, 5.9 Hz), 5.42 (1H, dt, J = 15.6, 6.3 Hz), 7.14-7.41 ppm (20H, m). 13 C NMR (100 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 31.2, 31.3, 36.9, 43.2, 54.8, 66.4, 68.6, 126.5 (3C), 126.5, 127.7 (6C), 128.2 (2C), 129.0 (2C), 129.3, 129.4 (6C), 132.3, 137.0, 144.7 (3C), 172.3, 172.4 ppm. FT-IR (neat): 3320, 3059, 3029, 2925, 1741, 1644, 1580, 1490, 1443, 1217, 1081, 1034, 972, 751, 700, 617 cm −1 . HRMS (FAB) C 35 H 36 NO 4 SK [(M + K) + ] calculated 604.1924; measured 604.1911.
 実施例11 Example 11
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸メチルエステル(Ib-3)(31.9 mg, 55 μmol)のメタノール(1.2 ml)溶液に、0℃で1M水酸化リチウム水溶液(0.4 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-フェニルプロパン酸(IIb-3)(27.3 mg, 88%) を白色アモルファスとして得た。
[α]D 25 = -3.05 (c = 0.91, CHCl3). 1H NMR (400 MHz, CDCl3/CD3OD 10:1)δ: 2.00-2.04 (2H, m), 2.14-2.30 (4H, m), 2.99 (1H, dd, J = 13.7, 7.8 Hz), 3.19 (1H, dd, J = 13.9, 4.1 Hz), 4.22-4.26 (1H, m), 4.58-4.61 (1H, m), 5.30 (1H, dd, J = 15.4, 6.1 Hz), 5.43 (1H, dt, J = 15.1, 6.3 Hz), 7.15-7.39 ppm (20H, m). 13C NMR (100 MHz, CDCl3/CD3OD 10:1)δ: 31.1, 31.3, 37.1, 42.2, 54.5, 66.4, 68.7, 126.5 (3C), 126.6, 127.7 (6C), 128.2 (2C), 129.1 (2C), 129.4 (6C), 129.5, 132.2, 136.9, 144.7 (3C), 172.2, 172.3 ppm. FT-IR (neat): 3316, 3060, 3029, 2925, 2853, 1715, 1644, 1495, 1444, 1217, 1082, 1034, 972, 744, 700, 620 cm-1. HRMS (FAB) C35H36NO4S [(M+H)+] 計算値 566.2365; 実測値 566.2378.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -3-phenylpropanoic acid methyl ester (Ib-3) (31.9 mg, 55 μmol) in methanol (1.2 ml ) 1M aqueous lithium hydroxide solution (0.4 ml) was added to the solution at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3- Phenylpropanoic acid (IIb-3) (27.3 mg, 88%) was obtained as a white amorphous.
[α] D 25 = −3.05 (c = 0.91, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 2.00−2.04 (2H, m), 2.14−2.30 (4H , m), 2.99 (1H, dd, J = 13.7, 7.8 Hz), 3.19 (1H, dd, J = 13.9, 4.1 Hz), 4.22-4.26 (1H, m), 4.58-4.61 (1H, m), 5.30 (1H, dd, J = 15.4, 6.1 Hz), 5.43 (1H, dt, J = 15.1, 6.3 Hz), 7.15-7.39 ppm (20H, m). 13 C NMR (100 MHz, CDCl 3 / CD 3 OD 10: 1) δ: 31.1, 31.3, 37.1, 42.2, 54.5, 66.4, 68.7, 126.5 (3C), 126.6, 127.7 (6C), 128.2 (2C), 129.1 (2C), 129.4 (6C), 129.5, 132.2, 136.9, 144.7 (3C), 172.2, 172.3 ppm. FT-IR (neat): 3316, 3060, 3029, 2925, 2853, 1715, 1644, 1495, 1444, 1217, 1082, 1034, 972, 744, 700 , 620 cm -1 HRMS (FAB) C 35 H 36 NO 4 S [(M + H) +] calcd 566.2365;. Found 566.2378.
 実施例12 Example 12
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 アルゴン雰囲気下、(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III)(1.20 g, 2.9 mmol)及びD-ノルロイシンメチルエステル塩酸塩(IV-4)(683 mg, 3.7 mmol)の無水アセトニトリル(39 ml)溶液に、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)(1.94 g, 3.7 mmol)及びN,N-ジイソプロピルエチルアミン(2.5 ml, 15 mmol)を加え、同温で2時間撹拌した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ia-4)(400 mg, 26%)、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ib-4)(416 mg, 27%)及び両化合物の混合物(ジアステレオマー混合物)(262 mg, 17%)を得た。ジアステレオマー混合物は、さらにシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:1)で分離・精製することにより、(S,E)-異性体(Ia-4)(139 mg, 9%)及び(R,E)-異性体(Ib-4)(123 mg, 8%)を得た。(S,E)-異性体(Ia-3)及び(R,E)-異性体(Ib-3)の総収量(総収率)は、それぞれ539 mg(35%)、539 mg(35%)であった。 Under an argon atmosphere, (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid (racemic mixture) (III) (1.20 g, 2.9 mmol) and D-norleucine methyl ester hydrochloride (IV-4 ) (683 mg, 3.7 mmol) in anhydrous acetonitrile (39 ml), 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (1.94 (g, 3.7 mmol) and N, N -Diisopropylethylamine (2.5 ml, 15 ml) was added and stirred at the same temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1), and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] Hexanoic acid methyl ester (Ia-4) (400 mg, 26%), (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid methyl ester (Ib -4) (416 mg, 27%) and a mixture of both compounds (diastereomer mixture) (262 mg, 17%). The diastereomeric mixture was further separated and purified by silica gel column chromatography (hexane / ethyl acetate 1: 1) to give (S, E) -isomer (Ia-4) (139 mg, 9%) and ( R, E) -isomer (Ib-4) (123 mg, 8%) was obtained. The total yields (total yields) of (S, E) -isomer (Ia-3) and (R, E) -isomer (Ib-3) were 539 mg (35%) and 539 mg (35%), respectively. )Met.
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ia-4):無色油状物. [α]D 25 = -13.1 (c = 0.85, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.89 (1H, t, J = 6.9 Hz), 1.38-1.22 (4H, m), 1.65 (1H, ddd, J = 21.3, 10.7, 6.9 Hz), 1.83 (1H, ddd, J = 14.5, 10.6, 5.5 Hz), 2.07 (2H, dd, J = 14.2, 7.1 Hz), 2.19 (2H, dd, J = 13.5, 6.4 Hz), 2.43-2.31 (2H, m), 3.50 (1H, br s), 3.74 (s, 3H), 4.42 (1H, br s), 4.58 (1H, td, J = 7.7, 5.4 Hz), 5.57 (1H, dt, J = 13.8, 6.6 Hz), 7.21-7.40 ppm (15H, m).
13C NMR (100 MHz, CDCl3)δ: 13.6, 22.0, 27.2, 31.1, 31.3, 31.6, 42.8, 52.0, 52.1, 66.4, 68.9, 126.5 (3C), 127.7 (6C), 129.5 (6C), 129.7, 132.3, 144.8 (3C), 171.6, 173.2 ppm. FT-IR (neat): 3058, 2955, 2928, 2861, 1741, 1539, 1488, 1443, 1374, 1281, 1217, 1183, 1082, 972, 850, 679, 661, 617 cm-1. HRMS (FAB) C33H40NO4S [(M+H)+] 計算値 546.2633; 実測値 546.2676.
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ia-4):無色油状物. [α]D 25 = -0.8 (c = 0.85, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.88 (3H, t, J = 7.0 Hz), 1.22-1.35 (4H, m), 1.59-1.71 (1H, m), 1.83 (1H, ddd, J = 15.1, 10.6, 5.5 Hz), 2.07 (2H, dd, J = 13.2, 6.2 Hz), 2.20 (2H, t, J = 7.2 Hz), 2.35 (1H, dd, J = 15.3, 8.6 Hz), 2.44 (1H, dd, J = 15.3, 3.2 Hz, 1H), 3.43 (1H, br s), 3.74 (s, 3H), 4.42 (1H, br s), 4.60 (1H, td, J = 7.7, 5.4 Hz), 5.42 (1H, dd, J = 15.4, 6.3 Hz), 5.55 (1H, dt, J = 15.4, 6.6 Hz), 7.21-7.40 ppm (15H, m).13C NMR (100 MHz, CDCl3)δ: 13.7, 22.1, 27.2, 31.2, 31.3, 31.9, 42.5, 51.9, 52.2, 66.5, 69.0, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.2, 144.9 (3C), 171.5, 173.1 ppm. FT-IR (neat): 3056, 2954, 2928, 2861, 1742, 1648, 1648, 1595, 1541, 1489, 1443, 1374, 1213, 1154, 1081, 1034, 971, 849, 744, 700, 676, 621 cm-1. HRMS (FAB) C33H40NO4S [(M+H)+] 計算値 546.2633; 実測値 546.2676.
(R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid methyl ester (Ia-4): colorless oil. [Α] D 25 = −13.1 (c = 0.85, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.89 (1H, t, J = 6.9 Hz), 1.38-1.22 (4H, m), 1.65 (1H, ddd, J = 21.3, 10.7, 6.9 Hz), 1.83 (1H, ddd, J = 14.5, 10.6, 5.5 Hz), 2.07 (2H, dd, J = 14.2, 7.1 Hz), 2.19 (2H, dd, J = 13.5, 6.4 Hz), 2.43-2.31 (2H, m), 3.50 (1H, br s), 3.74 (s, 3H), 4.42 (1H, br s), 4.58 (1H, td, J = 7.7, 5.4 Hz), 5.57 (1H, dt, J = 13.8, 6.6 Hz), 7.21-7.40 ppm (15H, m).
13 C NMR (100 MHz, CDCl 3 ) δ: 13.6, 22.0, 27.2, 31.1, 31.3, 31.6, 42.8, 52.0, 52.1, 66.4, 68.9, 126.5 (3C), 127.7 (6C), 129.5 (6C), 129.7 , 132.3, 144.8 (3C), 171.6, 173.2 ppm. FT-IR (neat): 3058, 2955, 2928, 2861, 1741, 1539, 1488, 1443, 1374, 1281, 1217, 1183, 1082, 972, 850, 679, 661, 617 cm −1 . HRMS (FAB) C 33 H 40 NO 4 S [(M + H) + ] calculated 546.2633; measured 546.2676.
(R) -2-[(R, E) -3-Hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid methyl ester (Ia-4): colorless oil. [Α] D 25 = −0.8 (c = 0.85, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.88 (3H, t, J = 7.0 Hz), 1.22-1.35 (4H, m), 1.59-1.71 (1H, m), 1.83 (1H, ddd, J = 15.1, 10.6, 5.5 Hz), 2.07 (2H, dd, J = 13.2, 6.2 Hz), 2.20 (2H, t, J = 7.2 Hz), 2.35 (1H, dd, J = 15.3 , 8.6 Hz), 2.44 (1H, dd, J = 15.3, 3.2 Hz, 1H), 3.43 (1H, br s), 3.74 (s, 3H), 4.42 (1H, br s), 4.60 (1H, td, J = 7.7, 5.4 Hz), 5.42 (1H, dd, J = 15.4, 6.3 Hz), 5.55 (1H, dt, J = 15.4, 6.6 Hz), 7.21-7.40 ppm (15H, m). 13 C NMR ( 100 MHz, CDCl 3 ) δ: 13.7, 22.1, 27.2, 31.2, 31.3, 31.9, 42.5, 51.9, 52.2, 66.5, 69.0, 126.6 (3C), 127.8 (6C), 129.6 (6C), 130.0, 132.2, 144.9 (3C), 171.5, 173.1 ppm. FT-IR (neat): 3056, 2954, 2928, 2861, 1742, 1648, 1648, 1595, 1541, 1489, 1443, 1374, 1213, 1154, 1081, 1034, 971, 849, 744, 700, 676, 621 cm -1 . HRM S (FAB) C 33 H 40 NO 4 S [(M + H) +] calcd 546.2633; found 546.2676.
 実施例13 Example 13
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 (R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ia-4)(399 mg, 0.73 mmol)のメタノール(7 ml)溶液に、0℃で1M水酸化リチウム水溶液(2.2 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(20 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸(IIa-4)(349 mg, 89%) を白色アモルファスとして得た。
[α]D 25 = -13.6 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.89 (3H, t, J = 7.0 Hz), 1.24-1.38 (4H, m), 1.61-1.73 (1H, m), 1.81-1.93 (1H, m), 2.06 (1H, dd, J = 14.0, 7.1 Hz), 2.20 (1h, t, J = 7.1 Hz), 2.38 (2H, t, J = 6.1 Hz), 4.39-4.55(2H, m), 5.40 (1H, dd, J = 15.4, 6.1 Hz), 5.51-5.61 (1H, m), 6.57 (1H, s), 7.18-7.40 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 13.7, 22.1, 27.4, 31.2, 43.3, 52.4, 60.4, 66.5, 69.0, 126.6 (3C), 127.8 (6C), 129.6 (6C), 129.9, 132.1, 144.9 (3C), 172.5, 175.6 ppm. FT-IR (neat): 2956, 2928, 2861, 2360, 2341, 2087, 1644, 1557, 1540, 1488, 1444, 1219, 1033, 970, 742, 700, 669, 618 cm-1. HRMS (FAB) C32H37NO4SNa [(M+Na)+] 計算値 554.2341; 実測値 554.2336.
To a solution of (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid methyl ester (Ia-4) (399 mg, 0.73 mmol) in methanol (7 ml) 1 M aqueous lithium hydroxide solution (2.2 ml) was added at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (20 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1) and (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid. (IIa-4) (349 mg, 89%) was obtained as a white amorphous.
[α] D 25 = -13.6 ( c = 1.0, CHCl 3) 1 H NMR (400 MHz, CDCl 3) δ:. 0.89 (3H, t, J = 7.0 Hz), 1.24-1.38 (4H, m), 1.61-1.73 (1H, m), 1.81-1.93 (1H, m), 2.06 (1H, dd, J = 14.0, 7.1 Hz), 2.20 (1h, t, J = 7.1 Hz), 2.38 (2H, t, J = 6.1 Hz), 4.39-4.55 (2H, m), 5.40 (1H, dd, J = 15.4, 6.1 Hz), 5.51-5.61 (1H, m), 6.57 (1H, s), 7.18-7.40 ppm ( 13 C NMR (100 MHz, CDCl 3 ) δ: 13.7, 22.1, 27.4, 31.2, 43.3, 52.4, 60.4, 66.5, 69.0, 126.6 (3C), 127.8 (6C), 129.6 (6C), 129.9, 132.1, 144.9 (3C), 172.5, 175.6 ppm. FT-IR (neat): 2956, 2928, 2861, 2360, 2341, 2087, 1644, 1557, 1540, 1488, 1444, 1219, 1033, 970, 742 , 700, 669, 618 cm -1 . HRMS (FAB) C 32 H 37 NO 4 SNa [(M + Na) + ] calculated 554.2341; found 554.2336.
 実施例14 Example 14
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 (R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸メチルエステル(Ib-4)(50.0 mg, 0.092 mol)のメタノール(1.8 ml)溶液に、0℃で1M水酸化リチウム水溶液(0.6 ml)を加え、室温で2時間攪拌した。反応混合物に1M塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(20 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー (クロロホルム/メタノール 8:1) で精製し、(R)-2-[(R,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-ヘキサン酸(IIb-4)(44.6 mg, 92%) を白色アモルファスとして得た。
[α]D 25 = 0.4 (c = 1.1, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.86-0.89(3H, m), 1.23-1.30 (4H, m), 1.65-1.70 (1H, m), 1.84-1.87 (1H, m), 2.03-2.08 (3H, m), 2.19 (2H, t, J = 7.3 Hz), 2.35 (1H, dd, J = 15.1, 8.3 Hz), 2.42 (1H, dd, J = 15.1, 3.4 Hz), 4.39-4.42 (1H, m), 4.53 (1H, dd, J = 12.7, 7.3 Hz), 5.41 (1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 6.65 (1H, d, J = 7.8 Hz), 7.18-7.444 ppm (15H, m). 13C NMR (100 MHz, CDCl3)δ: 13.8, 22.2, 27.4, 31.3, 31.4, 31.6, 42.6, 52.3, 66.6, 69.1, 126.6 (3C), 127.9 (6C), 129.6 (6C), 130.3, 132.0, 144.9 (3C), 172.1, 175.8 ppm. FT-IR (neat): 3324, 3058, 2956, 2928, 2861, 1717, 1645, 1541, 1489, 1444, 1217, 1082, 1034, 972, 744, 617 cm-1. HRMS (FAB) C32H37NO4SNa [(M+Na)+] 計算値 554.2341; 実測値 554.2338.
To a solution of (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid methyl ester (Ib-4) (50.0 mg, 0.092 mol) in methanol (1.8 ml) 1 M aqueous lithium hydroxide solution (0.6 ml) was added at 0 ° C., and the mixture was stirred at room temperature for 2 hours. A 1M aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (20 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 8: 1), and (R) -2-[(R, E) -3-hydroxy-7-tritylthio-4-heptenamide] -hexanoic acid. (IIb-4) (44.6 mg, 92%) was obtained as a white amorphous.
[α] D 25 = 0.4 ( c = 1.1, CHCl 3) 1 H NMR (400 MHz, CDCl 3) δ:. 0.86-0.89 (3H, m), 1.23-1.30 (4H, m), 1.65-1.70 ( 1H, m), 1.84-1.87 (1H, m), 2.03-2.08 (3H, m), 2.19 (2H, t, J = 7.3 Hz), 2.35 (1H, dd, J = 15.1, 8.3 Hz), 2.42 (1H, dd, J = 15.1, 3.4 Hz), 4.39-4.42 (1H, m), 4.53 (1H, dd, J = 12.7, 7.3 Hz), 5.41 (1H, dd, J = 15.4, 6.1 Hz), 5.54 (1H, dt, J = 15.6, 6.3 Hz), 6.65 (1H, d, J = 7.8 Hz), 7.18-7.444 ppm (15H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 13.8, 22.2, 27.4, 31.3, 31.4, 31.6, 42.6, 52.3, 66.6, 69.1, 126.6 (3C), 127.9 (6C), 129.6 (6C), 130.3, 132.0, 144.9 (3C), 172.1, 175.8 ppm. FT-IR (neat):. 3324, 3058 , 2956, 2928, 2861, 1717, 1645, 1541, 1489, 1444, 1217, 1082, 1034, 972, 744, 617 cm -1 HRMS (FAB) C 32 H 37 NO 4 SNa [(M + Na) + ] calculated 554.2341; found 554.2338.
[参考例]
 参考例1
[Reference example]
Reference example 1
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 トリフェニルメタンチオール(5.00 g, 18 mmol)のジクロロメタン(36 ml)溶液に、室温でアクロレイン(22)(1.3 ml, 20 mmol)及びトリエチルアミン(2.8 ml, 20 mmol)を加え、同温で1時間撹拌した。反応終了後、溶媒を減圧下留去し、3-(トリチルチオ)プロパナール(23)(6.45 g, 100%)を白色固体として得た。本化合物は精製することなく、次の反応に用いた(参考例2参照)。
Mp. 107-110℃ (CHCl3/hexane).1H NMR (400 MHz, CDCl3)δ: 2.35-2.38 (2H, m), 2.44-2.48 (2H, m), 7.20-7.40 ppm (15H, m), 9.56 ppm (1H, s).13C NMR (100 MHz, CDCl3)δ: 24.3, 42.3, 66.9, 126.7 (3C), 127.9 (6C), 129.4 (6C), 144.4 (3C), 200.2 ppm. FT-IR (KBr): 3061, 3030, 2966, 2933, 2888, 2838, 2740, 1726, 1490, 1443, 1080, 745, 701 cm-1. FAB-MS: 289 [(M-C2H3O)+], 275 [(M-C3H5O)+], 243 [(M-C3H5OS)+], 89 [(M-C19H15)+].
Acrolein (22) (1.3 ml, 20 mmol) and triethylamine (2.8 ml, 20 mmol) were added to a solution of triphenylmethanethiol (5.00 g, 18 mmol) in dichloromethane (36 ml) at room temperature, and the same temperature was maintained for 1 hour. Stir. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain 3- (tritylthio) propanal (23) (6.45 g, 100%) as a white solid. This compound was used in the next reaction without purification (see Reference Example 2).
. Mp 107-110 ℃ (CHCl 3 / hexane) 1 H NMR (400 MHz, CDCl 3) δ:. 2.35-2.38 (2H, m), 2.44-2.48 (2H, m), 7.20-7.40 ppm (15H, . m), 9.56 ppm (1H , s) 13 C NMR (100 MHz, CDCl 3) δ: 24.3, 42.3, 66.9, 126.7 (3C), 127.9 (6C), 129.4 (6C), 144.4 (3C), 200.2 FT-IR (KBr): 3061, 3030, 2966, 2933, 2888, 2838, 2740, 1726, 1490, 1443, 1080, 745, 701 cm -1 . FAB-MS: 289 [(M-C 2 H 3 O) + ], 275 [(M−C 3 H 5 O) + ], 243 [(M−C 3 H 5 OS) + ], 89 [(M−C 19 H 15 ) + ].
 参考例2 Reference example 2
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 3-(トリチルチオ)プロパナール(23)(6.45 g, 0.19 mmol)のトルエン(36 ml)溶液に、(トリフェニルホスホラニリデン)アセトアルデヒド(5.51 g, 18 mmol)を加え、3時間加熱還流した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/ジクロロメタン 1:1)で精製し、(E)-5-トリチルチオ-2-ペンテナール(V)(3.19 g, 46%)を淡黄色固体として得た。クロロホルム/ヘキサン(1:4)で再結晶することにより、淡黄色針状晶を得た。
Mp. 146-148℃. 1H NMR (400 MHz, CDCl3)δ: 2.26-2.37 (4H, m), 5.97 (1H, ddt, J = 15.6, 7.8, 1.5 Hz), 6.62 (1H, dt, J = 15.6, 6.3 Hz), 7.20-7.40 (15H, m), 9.42 ppm (1H, d, J = 7.8 Hz). 13C NMR (100 MHz, CDCl3)δ: 30.0, 31.7, 67.0, 126.8 (3C), 127.9 (6C), 129.5 (6C), 133.6, 144.4 (3C), 155.6, 193.6 ppm. FT-IR (KBr): 2924, 2853, 1685, 1487, 1440, 1180, 1111, 1035, 983, 764, 740, 701 cm-1. HRMS (FAB) C24H21O3S [(M-H)+] 計算値 357.1312 ; 実測値 357.1304.
(Triphenylphosphoranylidene) acetaldehyde (5.51 g, 18 mmol) was added to a toluene (36 ml) solution of 3- (tritylthio) propanal (23) (6.45 g, 0.19 mmol), and the mixture was heated to reflux for 3 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / dichloromethane 1: 1) to obtain (E) -5-tritylthio-2-pentenal (V) (3.19 g, 46%) as a pale yellow solid. . Recrystallization from chloroform / hexane (1: 4) gave pale yellow needles.
Mp. 146-148 ° C. 1 H NMR (400 MHz, CDCl 3 ) δ: 2.26-2.37 (4H, m), 5.97 (1H, ddt, J = 15.6, 7.8, 1.5 Hz), 6.62 (1H, dt, J = 15.6, 6.3 Hz), 7.20-7.40 (15H, m), 9.42 ppm (1H, d, J = 7.8 Hz). 13 C NMR (100 MHz, CDCl 3 ) δ: 30.0, 31.7, 67.0, 126.8 ( 3C), 127.9 (6C), 129.5 (6C), 133.6, 144.4 (3C), 155.6, 193.6 ppm. FT-IR (KBr): 2924, 2853, 1685, 1487, 1440, 1180, 1111, 1035, 983, 764, 740, 701 cm −1 . HRMS (FAB) C 24 H 21 O 3 S [(M−H) + ] calculated value 357.1312; actual value 357.1304.
 参考例3 Reference example 3
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 3-(1-ナフチル)-D-アラニン(25)(3.00 g, 12 mmol)のテトラヒドロフラン/水(1:1, 40 ml)の混合溶液に、二炭酸ジ-tert-ブチル(2.86 g, 13 mmol)及び水酸化ナトリウム(1.43 g, 36 mmol)を加え、室温で16時間攪拌した。反応終了後、テトラヒドロフランを減圧下留去し、残留物をジクロロメタン(200 ml)で希釈し、次いで3M塩酸水溶液を加え、水層をpH4に調整した。有機層を分離し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去し、(R)-2-(tert-ブトキシカルボニルアミノ)-3-(ナフタレン-1-イル)プロパン酸(26)(1.64 g)を得た。本化合物は精製することなく、次の反応に用いた。 To a mixed solution of 3- (1-naphthyl) -D-alanine (25) (3.00 g, 12 mmol) in tetrahydrofuran / water (1: 1, 40 ml) was added di-tert-butyl dicarbonate (2.86 g, 13). mmol) and sodium hydroxide (1.43 g, 36 mmol) were added, and the mixture was stirred at room temperature for 16 hours. After completion of the reaction, tetrahydrofuran was distilled off under reduced pressure. The residue was diluted with dichloromethane (200 ml), then 3M aqueous hydrochloric acid solution was added to adjust the aqueous layer to pH 4. The organic layer was separated and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give (R) -2- (tert-butoxycarbonylamino) -3- (naphthalen-1-yl) propanoic acid (26) ( 1.64 g) was obtained. This compound was used in the next reaction without purification.
 上記の(R)-2-(tert-ブトキシカルボニルアミノ)-3-(ナフタレン-1-イル)プロパン酸(26)(1.64 g, 13 mmol)のアセトニトリル(40 ml)溶液に、0℃でグリシンメチルエステル塩酸塩(1.64 g, 13 mmol)を加え、さらに、同温度で1-ヒドロキシベンゾトリアゾール(HOBt)(2.41 g, 18 mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩(EDC・HCl)(3.42 g, 18 mmol)及びN,N-ジイソプロピルエチルアミン(16.2 ml, 95 mmol)を順次加え、室温で3時間撹拌した。反応混合物を酢酸エチル(200 ml)で希釈し、3M塩酸水溶液(50 ml×2)、飽和炭酸水素ナトリウム水溶液(50 ml×2)及び飽和食塩水(70 ml)で順次洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去し、(R)-2-[2-(tert-ブトキシカルボニルアミノ)-3-(ナフタレン-1-イル)プロパナミド]酢酸メチルエステル(27)を得た。本化合物は精製することなく、次の反応に用いた。 Glycine was added to a solution of (R) -2- (tert-butoxycarbonylamino) -3- (naphthalen-1-yl) propanoic acid (26) (1.64 g, 13 mmol) in acetonitrile (40 ml) at 0 ° C. Methyl ester hydrochloride (1.64 g, 13 mmol) was added, and 1-hydroxybenzotriazole (HOBt) (2.41 g, 18 mmol), 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride was added at the same temperature. Salt (EDC.HCl) (3.42 g, 18 mmol) and N, N-diisopropylethylamine (16.2 ml, 95 mmol) were sequentially added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was diluted with ethyl acetate (200 ml) and washed successively with 3M aqueous hydrochloric acid (50 ml x 2), saturated aqueous sodium bicarbonate (50 ml x 2) and saturated brine (70 ml). The organic layer was dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give (R) -2- [2- (tert-butoxycarbonylamino) -3- (naphthalen-1-yl) propanamide] acetic acid methyl ester ( 27) was obtained. This compound was used in the next reaction without purification.
 上記の(R)-2-[2-(tert-ブトキシカルボニルアミノ)-3-(ナフタレン-1-イル)プロパナミド]酢酸メチルエステル(27)のジクロロメタン(40 ml)溶液に、0℃でトリフルオロ酢酸(10 ml)を加え、室温で1時間攪拌した。反応終了後、溶媒を減圧下留去し、(R)-2-[2-アミノ-3-(ナフタレン-1-イル)プロパナミド]酢酸メチルエステルトリフルオロ酢酸塩を得た。本化合物をアセトニトリル(40 ml)に溶解し、次いで、0℃で(S)-2-(tert-ブトキシカルボニルアミノ)-3-(トリチルチオ)プロパン酸(6.61 g, 14 mmol)、1-ヒドロキシベンゾトリアゾール(HOBt)(2.41 g, 18 mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(3.42 g, 18 mmol)及びN,N-ジイソプロピルエチルアミン(16.2 mL, 95 mmol)を順次加え、室温で3時間撹拌した。反応混合物を酢酸エチル(200 ml)で希釈し、3M塩酸水溶液(50 ml×2)、飽和炭酸水素ナトリウム水溶液(50 mL×2)及び飽和食塩水(80 ml)で洗浄した。有機層を無水硫酸ナトリウムで乾燥後、溶媒を留去し、2-{(R)-2-[(S)-2-(tert-ブトキシカルボニルアミノ)-3-(トリチルチオ)プロパナミド]-3-(ナフタレン-1-イル)プロパナミド}酢酸メチルエステル(28)を得た。本化合物は精製することなく、次の反応に用いた。 To a solution of the above (R) -2- [2- (tert-butoxycarbonylamino) -3- (naphthalen-1-yl) propanamide] acetic acid methyl ester (27) in dichloromethane (40 ml) at 0 ° C. Acetic acid (10 ml) was added and stirred at room temperature for 1 hour. After completion of the reaction, the solvent was distilled off under reduced pressure to obtain (R) -2- [2-amino-3- (naphthalen-1-yl) propanamide] acetic acid methyl ester trifluoroacetate. This compound was dissolved in acetonitrile (40 ml), then (S) -2- (tert-butoxycarbonylamino) -3- (tritylthio) propanoic acid (6.61 g, 14 mmol), 1-hydroxybenzo Triazole (HOBt) (2.41 g, 18 mmol), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC · HCl) (3.42 g, 18 mmol) and N, N-diisopropylethylamine (16.2 mL) , 95 mmol), and the mixture was stirred at room temperature for 3 hours. The reaction mixture was diluted with ethyl acetate (200 ml) and washed with 3M aqueous hydrochloric acid (50 ml × 2), saturated aqueous sodium hydrogen carbonate (50 ml × 2) and saturated brine (80 ml). After drying the organic layer over anhydrous sodium sulfate, the solvent was distilled off, and 2-{(R) -2-[(S) -2- (tert-butoxycarbonylamino) -3- (tritylthio) propanamide] -3- (Naphthalen-1-yl) propanamide} acetic acid methyl ester (28) was obtained. This compound was used in the next reaction without purification.
 上記の2-{(R)-2-[(S)-2-(tert-ブトキシカルボニルアミノ)-3-(トリチルチオ)プロパナミド]-3-(ナフタレン-1-イル)プロパナミド}酢酸メチルエステル(28)のジクロロメタン(40 ml)溶液に、0℃で三フッ化ホウ素ジエチルエーテル錯体(3.8 ml, 30 mmol)をゆっくり滴下し、室温で3時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液(20 ml)を加え、クロロホルム(30 ml×3)で抽出した。抽出液を飽和食塩水(50 ml)で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧下留去し、得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール 40:1)で精製し、2-{(R)-2-[(S)-2-アミノ-3-(トリチルチオ)プロパナミド]-3-(ナフタレン-1-イル)プロパナミド}酢酸メチルエステル(3a)(5.36 g, 71%, 5工程)を白色アモルファスとして得た。
[α]D 25 = 13.8 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 1.27-1.30 (2H, m), 2.42 (1H, dd, J = 12.9, 8.0 Hz), 2.55 (1H, dd, J = 12.9, 4.1 Hz), 2.83 (1H, dd, J = 7.8, 4.4 Hz) 3.49 (1H, dd, J = 14.4, 7.6 Hz), 3.55 (1H, dd, J = 14.1, 7.3 Hz), 3.64 (3H, s), 3.70 (1H, dd, J = 18.0, 4.9 Hz), 3.91 (1H, dd, J = 18.0, 5.9 Hz), 4.73 (1H, q, J = 7.5 Hz), 6.40 (1H, t, J = 5.4 Hz), 7.17-7.30 (11H, m), 7.37-7.40 (6H, m), 7.43-7.54 (3H, m), 7.65-7.69 (1H, m), 7.80-7.81 (1H, m), 8.12 (1H, d, J = 8.3 Hz) ppm. 13C NMR (100 MHz, CDCl3)δ: 34.6, 36.9, 41.0, 52.2, 53.7, 53.9, 67.0, 123.6, 125.3, 125.7, 126.4, 126.8 (3C), 127.6, 127.7, 127.9 (6C), 128.8, 129.5 (6C), 132.0, 132.7, 133.8, 144.5 (3C), 169.6, 171.0, 173.4 ppm. FT-IR (neat): 3316, 3058, 2950, 1750, 1657, 1596, 1511, 1443, 1398, 1372, 1211, 1033, 849, 748, 700 cm-1. HRMS (FAB) C38H38N3O4S [(M+H)+] 計算値 632.2583 ; 実測値 632.2601.
2-{(R) -2-[(S) -2- (tert-butoxycarbonylamino) -3- (tritylthio) propanamide] -3- (naphthalen-1-yl) propanamide} acetic acid methyl ester (28 ) In dichloromethane (40 ml) was slowly added dropwise boron trifluoride diethyl ether complex (3.8 ml, 30 mmol) at 0 ° C. and stirred at room temperature for 3 hours. A saturated aqueous sodium hydrogen carbonate solution (20 ml) was added to the reaction mixture, and the mixture was extracted with chloroform (30 ml × 3). The extract was washed with saturated brine (50 ml) and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (chloroform / methanol 40: 1) to give 2-{(R) -2-[(S) -2-amino-3- (Tritylthio) propanamide] -3- (naphthalen-1-yl) propanamide} acetic acid methyl ester (3a) (5.36 g, 71%, 5 steps) was obtained as a white amorphous.
[α] D 25 = 13.8 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.27-1.30 (2H, m), 2.42 (1H, dd, J = 12.9, 8.0 Hz) , 2.55 (1H, dd, J = 12.9, 4.1 Hz), 2.83 (1H, dd, J = 7.8, 4.4 Hz) 3.49 (1H, dd, J = 14.4, 7.6 Hz), 3.55 (1H, dd, J = 14.1, 7.3 Hz), 3.64 (3H, s), 3.70 (1H, dd, J = 18.0, 4.9 Hz), 3.91 (1H, dd, J = 18.0, 5.9 Hz), 4.73 (1H, q, J = 7.5 Hz), 6.40 (1H, t, J = 5.4 Hz), 7.17-7.30 (11H, m), 7.37-7.40 (6H, m), 7.43-7.54 (3H, m), 7.65-7.69 (1H, m) , 7.80-7.81 (1H, m), 8.12 (1H, d, J = 8.3 Hz) ppm. 13 C NMR (100 MHz, CDCl 3 ) δ: 34.6, 36.9, 41.0, 52.2, 53.7, 53.9, 67.0, 123.6 , 125.3, 125.7, 126.4, 126.8 (3C), 127.6, 127.7, 127.9 (6C), 128.8, 129.5 (6C), 132.0, 132.7, 133.8, 144.5 (3C), 169.6, 171.0, 173.4 ppm. FT-IR ( neat): 3316, 3058, 2950, 1750, 1657, 1596, 1511, 1443, 1398, 1372, 1211, 1033, 849, 748, 700 cm −1 . HRMS (FAB) C 38 H 38 N 3 O 4 S [ (M + H) + ] Calculated value 632.2583; Actual value 632.2601.
 参考例4 Reference example 4
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 アルゴン雰囲気下、(R)-2-[(S,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸(IIa-1)(107 mg, 0.21 mmol)及び2-{(R)-2-[(S)-2-アミノ-3-(トリチルチオ)プロパナミド]-3-(ナフタレン-1-イル)プロパナミド}酢酸メチルエステル(3a)(133 mg, 0.21 mmol)の無水ジクロロメタン(2 ml)溶液に、-20℃で1-ヒドロキシアザベンゾトリアゾール(HOAt)(37.3 mg, 0.27 mmol)、O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロりん酸塩(HATU)(104 mg, 0.27 mmol)及びN,N-ジイソプロピルエチルアミン(93 μl, 0.55 mmol)を順次加え、同温度にて3時間撹拌した。反応混合物に3%塩酸水溶液(1 ml)を加え、クロロホルム(5 ml×3)で抽出した。抽出液を飽和炭酸水素ナトリウム水溶液(8 ml)及び飽和食塩水(8 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール 40:1)で精製し、(7S,11R,14S,17R,E)-7-ヒドロキシ-11-イソプロピル-17-(ナフタレン-1-イルメチル)-9,12,15,18-テトラオキソ-1,1,1-トリフェニル-14-トリチルチオメチル-2-チア-10,13,16,19-テトラアザ-5-ヘンエイコセン-21-酸メチルエステル(24)(242 mg, 92%)を白色アモルファスとして得た。 Under an argon atmosphere, (R) -2-[(S, E) -3-hydroxy-7-tritylthio-4-heptenamide] -3-methylbutanoic acid (IIa-1) (107 mg, 0.21 mmol) and 2- { (R) -2-[(S) -2-Amino-3- (tritylthio) propanamide] -3- (naphthalen-1-yl) propanamide} acetic acid methyl ester (3a) (133amg, 0.21 mmol) in anhydrous dichloromethane (2 ml) solution to 1-hydroxyazabenzotriazole (HOAt) (37.3 mg, 0.27 mmol), O- (7-azabenzotriazol-1-yl) -N, N, N ′, N at −20 ° C. '-Tetramethyluronium hexafluorophosphate (HATU) (104 mg, 0.27 mmol) and N, N-diisopropylethylamine (93 µl, 0.55 mmol) were sequentially added and stirred at the same temperature for 3 hours. To the reaction mixture was added 3% aqueous hydrochloric acid (1 ml), and the mixture was extracted with chloroform (5 ml x 3). The extract was washed with saturated aqueous sodium hydrogen carbonate solution (8 ml) and saturated brine (8 ml), dried over anhydrous sodium sulfate, and the solvent was evaporated. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 40: 1) to obtain (7S, 11R, 14S, 17R, E) -7-hydroxy-11-isopropyl-17- (naphthalen-1-ylmethyl). ) -9,12,15,18-tetraoxo-1,1,1-triphenyl-14-tritylthiomethyl-2-thia-10,13,16,19-tetraaza-5-henecocene-21-acid methyl ester (24) (242 mg, 92%) was obtained as a white amorphous.
 水酸基が保護されていない化合物(IIa-1)を使用できることは、驚くべき結果であった。
[α]D 25 = -1.6 (c = 1.0, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 0.85 (3H, d, J = 7.3 Hz), 0.90 (3H, d, J = 6.8 Hz), 2.00-2.22 (7H, m) 2.44 (1H, dd, J = 12.7, 5.4 Hz), 2.58 (1H, dd, J = 12.7, 7.8 Hz), 3.53 (1H, dd, J = 15.1, 9.3 Hz), 3.67 (3H, s), 3.70-3.79 (2H, m), 3.88-3.91 (1H, m), 3.95-4.03 (2H, m), 4.10 (1H, dd, J = 6.8, 4.9 Hz), 4.85 (1H, td, J = 8.8, 4.7 Hz), 5.11-5.17 (2H, m), 6.69-6.73 (1H, m), 7.05-7.12 (2H, m), 7.15-7.24 (16H, m), 7.26-7.33 (10H, m), 7.38-7.49 (9H, m), 7.61 (1H, d, J = 7.8 Hz), 7.75 (1H, d, J = 7.8 Hz), 8.13 ppm (1H, d, J = 8.8 Hz).13C NMR (100 MHz, CDCl3)δ: 17.5, 19.3, 29.4, 31.1, 31.3, 32.9, 33.7, 41.0, 43.3, 52.1, 52.9, 53.6, 59.6, 66.6, 67.0, 69.2, 123.5, 125.3, 125.6, 126.2, 126.6 (3C), 126.9 (3C), 127.2, 127.8 (6C), 128.0 (6C), 128.55, 128.60, 129.3 (6C), 129.5 (6C), 129.6, 131.9, 132.3, 133.1, 133.7, 144.0 (3C), 144.8 (3C), 169.9, 170.1, 171.4, 172.0, 172.6 ppm. FT-IR (neat): 3375, 3276, 3059, 2960, 1740, 1687, 1631, 1525, 1443, 1397, 1219, 1083, 1035, 969, 745, 700 cm-1. HRMS (FAB) C69H71N4O7S2 [(M+H)+] 計算値 1131.4764 ; 実測値 1131.4757.
It was a surprising result that the compound (IIa-1) in which the hydroxyl group is not protected can be used.
[α] D 25 = −1.6 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.85 (3H, d, J = 7.3 Hz), 0.90 (3H, d, J = 6.8 Hz), 2.00−2.22 (7H, m) 2.44 (1H, dd, J = 12.7, 5.4 Hz), 2.58 (1H, dd, J = 12.7, 7.8 Hz), 3.53 (1H, dd, J = 15.1, 9.3 Hz), 3.67 (3H, s), 3.70-3.79 (2H, m), 3.88-3.91 (1H, m), 3.95-4.03 (2H, m), 4.10 (1H, dd, J = 6.8, 4.9 Hz) , 4.85 (1H, td, J = 8.8, 4.7 Hz), 5.11-5.17 (2H, m), 6.69-6.73 (1H, m), 7.05-7.12 (2H, m), 7.15-7.24 (16H, m) , 7.26-7.33 (10H, m), 7.38-7.49 (9H, m), 7.61 (1H, d, J = 7.8 Hz), 7.75 (1H, d, J = 7.8 Hz), 8.13 ppm (1H, d, . J = 8.8 Hz) 13 C NMR (100 MHz, CDCl 3) δ: 17.5, 19.3, 29.4, 31.1, 31.3, 32.9, 33.7, 41.0, 43.3, 52.1, 52.9, 53.6, 59.6, 66.6, 67.0, 69.2, 123.5, 125.3, 125.6, 126.2, 126.6 (3C), 126.9 (3C), 127.2, 127.8 (6C), 128.0 (6C), 128.55, 128.60, 129.3 (6C), 129.5 (6C), 129.6, 131.9, 132.3, 133.1, 133.7, 144.0 (3C), 144.8 (3C), 169.9, 170.1, 171.4, 172.0, 172.6 ppm. FT-IR (neat): 3375, 3276, 3059, 2960, 1740, 1687, 1631, 152 5, 1443, 1397, 1219, 1083, 1035, 969, 745, 700 cm −1 . HRMS (FAB) C 69 H 71 N 4 O 7 S 2 [(M + H) + ] calculated 1131.4764; measured 1131.4757 .
 参考例5 Reference Example 5
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 (7S,11R,14S,17R,E)-7-ヒドロキシ-11-イソプロピル-17-(ナフタレン-1-イルメチル)-9,12,15,18-テトラオキソ-1,1,1-トリフェニル-14-トリチルチオメチル-2-チア-10,13,16,19-テトラアザ-5-ヘンエイコセン-21-酸メチルエステル(24)(121 mg, 0.11 mmol)のテトラヒドロフラン/水(4:1, 2 ml)の混合溶液に、0℃で水酸化リチウム1水和物(43.3 mg, 0.21 mmol)を加え、同温度にて 1 時間撹拌した。反応混合物に3%塩酸水溶液を加え、pH2-3に調整した後、酢酸エチル(10 ml×3)で抽出した。抽出液を飽和食塩水(10 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去し、(7S,11R,14S,17R,E)-7-ヒドロキシ-11-イソプロピル-17-(ナフタレン-1-イルメチル)-9,12,15,18-テトラオキソ-1,1,1-トリフェニル-14-トリチルチオメチル-2-チア-10,13,16,19-テトラアザ-5-ヘンエイコセン-21-酸(4a)(115 mg, 93%)を白色アモルファスとして得た。本化合物は精製することなく、次の反応に用いた(参考例6参照)。[α]D 25 = -7.4 (c = 1.1, CHCl3). 1H NMR (400 MHz, DMSO-D6)δ: 0.64 (3H, d, J = 6.8 Hz), 0.66 (3H, d, J = 6.8 Hz), 1.83-1.86 (3H, m), 2.01-2.04 (2H, m), 2.20-2.30 (4H, m), 3.11-3.58 (4H, m), 4.08-4.15 (3H, m), 4.52 (1H, dd, J = 13.7, 7.3 Hz), 5.24-5.35 (2H, m), 7.13-7.25 (31H, m), 7.36-7.42 (2H, m), 7.62 (1H, d, J = 7.8 Hz), 7.78-7.82 (2H, m), 8.05 ppm (1H, d, J = 7.3 Hz); 13C NMR (100 MHz, DMSO-D6)δ: 17.7, 19.2, 30.29, 30.33, 30.9, 31.1, 33.2, 42.3, 43.5, 52.2, 55.0, 57.4, 65.9, 66.0, 68.1, 123.5, 125.2, 125.4, 125.9, 126.6 (3C), 126.7 (3C), 126.8, 127.2, 127.3, 127.9 (6C), 128.0 (6C), 128.5, 129.01 (6C), 129.04 (6C), 131.5, 133.25, 133.34, 134.2, 144.2 (3C), 144.5 (3C), 169.4, 170.1, 170.4, 171.0, 171.8 ppm. FT-IR (neat): 3294, 3058, 3017, 2963, 2928, 1643, 1597, 1538, 1491, 1444, 1397, 1218, 1034, 971, 751, 700, 622 cm-1. HRMS (FAB) C68H68N4O7S2K[(M+K)+] 計算値 1155.4166; 実測値1155.4167. (7S, 11R, 14S, 17R, E) -7-hydroxy-11-isopropyl-17- (naphthalen-1-ylmethyl) -9,12,15,18-tetraoxo-1,1,1-triphenyl-14 -Tritylthiomethyl-2-thia-10,13,16,19-tetraaza-5-heneicosene-21-acid methyl ester (24) (121 mg, 0.11 mmol) in tetrahydrofuran / water (4: 1, 2 ml) To the mixed solution was added lithium hydroxide monohydrate (43.3 mg, 0.21 mmol) at 0 ° C., and the mixture was stirred at the same temperature for 1 hour. A 3% aqueous hydrochloric acid solution was added to the reaction mixture to adjust to pH 2-3, followed by extraction with ethyl acetate (10 ml × 3). The extract was washed with saturated brine (10 ml) and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give (7S, 11R, 14S, 17R, E) -7-hydroxy-11-isopropyl-17. -(Naphthalen-1-ylmethyl) -9,12,15,18-tetraoxo-1,1,1-triphenyl-14-tritylthiomethyl-2-thia-10,13,16,19-tetraaza-5 Henicosen-21-acid (4a) (115 mg, 93%) was obtained as a white amorphous. This compound was used in the next reaction without purification (see Reference Example 6). [α] D 25 = −7.4 (c = 1.1, CHCl 3 ). 1 H NMR (400 MHz, DMSO-D 6 ) δ: 0.64 (3H, d, J = 6.8 Hz), 0.66 (3H, d, J = 6.8 Hz), 1.83-1.86 (3H, m), 2.01-2.04 (2H, m), 2.20-2.30 (4H, m), 3.11-3.58 (4H, m), 4.08-4.15 (3H, m), 4.52 (1H, dd, J = 13.7, 7.3 Hz), 5.24-5.35 (2H, m), 7.13-7.25 (31H, m), 7.36-7.42 (2H, m), 7.62 (1H, d, J = 7.8 Hz), 7.78-7.82 (2H, m), 8.05 ppm (1H, d, J = 7.3 Hz); 13 C NMR (100 MHz, DMSO-D 6 ) δ: 17.7, 19.2, 30.29, 30.33, 30.9, 31.1 , 33.2, 42.3, 43.5, 52.2, 55.0, 57.4, 65.9, 66.0, 68.1, 123.5, 125.2, 125.4, 125.9, 126.6 (3C), 126.7 (3C), 126.8, 127.2, 127.3, 127.9 (6C), 128.0 ( 6C), 128.5, 129.01 (6C), 129.04 (6C), 131.5, 133.25, 133.34, 134.2, 144.2 (3C), 144.5 (3C), 169.4, 170.1, 170.4, 171.0, 171.8 ppm. FT-IR (neat) :. 3294, 3058, 3017, 2963, 2928, 1643, 1597, 1538, 1491, 1444, 1397, 1218, 1034, 971, 751, 700, 622 cm -1 HRMS (FAB) C 68 H 68 N 4 O 7 S 2 K [(M + K) + ] Calculated 1155.4166; Found 1155.4167.
 参考例6 Reference Example 6
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 アルゴン雰囲気下、(7S,11R,14S,17R,E)-7-ヒドロキシ-11-イソプロピル-17-(ナフタレン-1-イルメチル)-9,12,15,18-テトラオキソ-1,1,1-トリフェニル-14-トリチルチオメチル-2-チア-10,13,16,19-テトラアザ-5-ヘンエイコセン-21-酸(4a)(115 mg, 0.10 mmol)の無水ジクロロメタン/テトラヒドロフラン(5:1, 2.4 ml)の混合溶液に 2-メチル-6-ニトロ安息香酸無水物(MNBA)(47.9 mg, 0.14 mmol)及び4-ジメチルアミノピリジン(DMAP)(39.2 mg, 0.32 mmol)を加え、室温にて1時間撹拌した。反応混合物に飽和炭酸水素ナトリウム水溶液(1 ml)を加え、クロロホルム(5 ml×3)で抽出した。抽出液を飽和食塩水(8 ml)で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 1:4)で精製し、(6R,9S,12R,16S)-12-イソプロピル-6-(ナフタレン-1-イルメチル)-16-[(E)-4-トリチルチオ-1-ブテン-1-イル]-9-(トリチルチオ)メチル-1-オキサ-4,7,10,13-テトラアザシクロヘキサデカン-2,5,8,11,14-ペンタオン(25)(65.6 mg, 58%)を白色アモルファスとして得た。[α]D 25 = 11.4 (c = 1.0, CHCl3).1H NMR (400 MHz, CDCl3)δ: 0.84 (3H, d, J = 6.8 Hz), 0.91 (3H, d, J = 6.8 Hz), 1.90-2.04 (3H, m), 2.16-2.20 (2H, m), 2.25-2.43 (3H, m), 2.87 (1H, t, J = 11.0 Hz), 3.26-3.32 (2H, m), 3.47-3.52 (1H, m), 3.87-3.92 (1H, m), 3.99 (1H, dd, J = 16.8, 5.6 Hz), 4.07-4.12 (1H, m), 4.46-4.51 (1H, m), 5.30 (1H, dd, J = 15.4, 6.6 Hz), 5.39-5.44 (1H, m), 5.52 (1H, dt, J = 15.1, 7.3 Hz), 6.21 (1H, d, J = 6.3 Hz), 6.99 (1H, t, J = 7.6 Hz), 7.12-7.21 (17H, m), 7.23-7.30 (9H, m), 7.33-7.43 (10H, m), 7.58 (1H, d, J = 8.3 Hz), 7.75-7.78 (1H, m), 8.08 (1H, d, J = 7.8 Hz) ppm; 13C NMR (100 MHz, CDCl3)δ: 18.2, 19.5, 29.7, 30.9, 31.1, 31.3, 33.6, 41.8, 42.0, 54.4, 56.3, 58.5, 66.6, 66.9, 72.2, 123.7, 125.3, 125.7, 126.3, 126.6 (3C), 126.8 (3C), 127.38, 127.43, 127.85 (6C), 127.93 (6C), 128.61, 128.64, 129.4 (6C), 129.5 (6C), 131.8, 132.4, 133.6, 133.8, 144.3 (3C), 144.8 (3C), 168.8, 169.4, 170.5, 170.8, 173.0 ppm. FT-IR (neat): 3306, 3056, 3015, 2961, 2930, 1741, 1659, 1530, 1444, 1319, 1274, 1216, 1034, 972, 753, 700 cm-1. HRMS (FAB) C68H66N4O6S2 [(M+H)+] 計算値 1099.4502 ; 実測値 1099.4497. Under an argon atmosphere, (7S, 11R, 14S, 17R, E) -7-hydroxy-11-isopropyl-17- (naphthalen-1-ylmethyl) -9,12,15,18-tetraoxo-1,1,1- Triphenyl-14-tritylthiomethyl-2-thia-10,13,16,19-tetraaza-5-heneicosene-21-acid (4a) (115 mg, 0.10 mmol) in anhydrous dichloromethane / tetrahydrofuran (5: 1, 2.4 ml) was added 2-methyl-6-nitrobenzoic anhydride (MNBA) (47.9 mg, 0.14 mmol) and 4-dimethylaminopyridine (DMAP) (39.2 mg, 0.32 mmol) at room temperature. Stir for 1 hour. Saturated aqueous sodium hydrogen carbonate solution (1 ml) was added to the reaction mixture, and the mixture was extracted with chloroform (5 ml × 3). The extract was washed with saturated brine (8 ml) and dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate 1: 4), and (6R, 9S, 12R, 16S) -12-isopropyl-6- (naphthalen-1-ylmethyl) -16- [ (E) -4-tritylthio-1-buten-1-yl] -9- (tritylthio) methyl-1-oxa-4,7,10,13-tetraazacyclohexadecane-2,5,8,11,14 -Pentaone (25) (65.6 mg, 58%) was obtained as a white amorphous. [α] D 25 = 11.4 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 0.84 (3H, d, J = 6.8 Hz), 0.91 (3H, d, J = 6.8 Hz ), 1.90−2.04 (3H, m), 2.16−2.20 (2H, m), 2.25−2.43 (3H, m), 2.87 (1H, t, J = 11.0 Hz), 3.26−3.32 (2H, m), 3.47−3.52 (1H, m), 3.87−3.92 (1H, m), 3.99 (1H, dd, J = 16.8, 5.6 Hz), 4.07−4.12 (1H, m), 4.46−4.51 (1H, m), 5.30 (1H, dd, J = 15.4, 6.6 Hz), 5.39-5.44 (1H, m), 5.52 (1H, dt, J = 15.1, 7.3 Hz), 6.21 (1H, d, J = 6.3 Hz), 6.99 (1H, t, J = 7.6 Hz), 7.12-7.21 (17H, m), 7.23-7.30 (9H, m), 7.33-7.43 (10H, m), 7.58 (1H, d, J = 8.3 Hz), 7.75-7.78 (1H, m), 8.08 (1H, d, J = 7.8 Hz) ppm; 13 C NMR (100 MHz, CDCl 3 ) δ: 18.2, 19.5, 29.7, 30.9, 31.1, 31.3, 33.6, 41.8, 42.0, 54.4, 56.3, 58.5, 66.6, 66.9, 72.2, 123.7, 125.3, 125.7, 126.3, 126.6 (3C), 126.8 (3C), 127.38, 127.43, 127.85 (6C), 127.93 (6C), 128.61, 128.64, 129.4 (6C), 129.5 (6C), 131.8, 132.4, 133.6, 133.8, 144.3 (3C), 144.8 (3C), 168.8, 169.4, 170.5, 170.8, 173.0 ppm. FT-IR (neat): 3306, 3056 , 3015, 2961, 2930, 1741, 1659, 1530, 1444, 1319, 1274, 1216, 1034, 972, 753, 700 cm −1 .HRMS (FAB) C 68 H 66 N 4 O 6 S 2 [(M + H) + ] Calculated value 1099.4502; Actual value 1099.4497.
 参考例7 Reference Example 7
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 ヨウ素(154 mg, 0.6 mmol)のジクロロメタン/メタノール(9:1, 86 ml)の混合溶液に、室温で(6R,9S,12R,16S)-12-イソプロピル-6-(ナフタレン-1-イルメチル)-16-[(E)-4-トリチルチオ-1-ブテン-1-イル]-9-(トリチルチオ)メチル-1-オキサ-4,7,10,13-テトラアザシクロヘキサデカン-2,5,8,11,14-ペンタオン(25)(66.6 mg, 60 μmol)のジクロロメタン/メタノール (9:1, 15 ml) の混合溶液を室温でゆっくり滴下し、同温で10分間撹拌した。反応混合物に0.2Mアスコルビン酸ナトリウム水溶液/0.2Mクエン酸水溶液の混合溶液(pH4.0緩衝液,30 ml)を加え、酢酸エチル(100 ml×3)で抽出した。抽出液を飽和食塩水(100 ml×2)で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール 20:1)で精製し、デプシペプチド類化合物(1’a-1)(35.3 mg, 95%)を白色アモルファスとして得た。[α]D 25 = 58.0 (c = 0.70, CHCl3). 1H NMR (400 MHz, CDCl3)δ: 1.00 (3H, d, J = 6.8 Hz), 1.02 (3H, d, J = 5.9 Hz), 2.06-2.15 (1H, m), 2.50-2.56 (2H, m), 2.86-2.76 (1H, m), 2.94-3.12 (4H, m), 3.42 (1H, dd, J = 15.9, 11.5 Hz), 3.70 (1H, dd, J = 14.4, 10.5 Hz), 3.86-4.01 (3H, m), 4.06 (1H, dd, J = 14.4, 3.7 Hz), 4.50-4.56 (1H, m), 4.59 (1H, dd, J = 17.6, 6.8 Hz), 5.72-5.75 (2H, m), 5.79-5.87 (1H, m), 6.17 (1H, d, J = 4.4 Hz), 7.03 (1H, d, J = 5.4 Hz), 7.22 (1H, d, J = 7.3 Hz), 7.27 (1H, d, J = 6.3 Hz), 7.37 (1H, t, J = 7.6 Hz), 7.45-7.49 (2H, m), 7.55 (1H, d, J = 7.3 Hz), 7.73 (1H, d, J = 8.3 Hz), 7.83-7.87 (1H, m), 7.95-7.97 (1H, m). 13C NMR (100 MHz, CDCl3)δ: 19.38, 19.40, 29.2, 30.8, 31.1, 33.6, 37.5, 38.0, 43.2, 54.6, 56.9, 61.7, 69.4, 123.3, 125.4, 125.6, 126.1, 127.3, 127.4, 129.0, 129.7, 130.7, 131.9, 134.0, 134.9, 168.2, 169.6 (2C), 170.2, 172.1 ppm. FT-IR (neat): 3333, 3010, 2965, 2933, 1743, 1654, 1521, 1437, 1396, 1263, 1186, 979, 757, 667 cm-1. HRMS (FAB) C30H37N4O6S2 [(M+H)+] 計算値 613.2155 ; 実測値 613.2176. (6R, 9S, 12R, 16S) -12-isopropyl-6- (naphthalen-1-ylmethyl) in a mixed solution of iodine (154 mg, 0.6 mmol) in dichloromethane / methanol (9: 1, 86 ml) at room temperature -16-[(E) -4-tritylthio-1-buten-1-yl] -9- (tritylthio) methyl-1-oxa-4,7,10,13-tetraazacyclohexadecane-2,5,8 , 11,14-Pentaone (25) (66.6 mg, 60 μmol) in dichloromethane / methanol (9: 1, 15 ml) was slowly added dropwise at room temperature and stirred at the same temperature for 10 minutes. A 0.2 M aqueous solution of sodium ascorbate / 0.2 M aqueous citric acid solution (pH 4.0 buffer, 30 ml) was added to the reaction mixture, and the mixture was extracted with ethyl acetate (100 ml × 3). The extract was washed with saturated brine (100 ml × 2), dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (chloroform / methanol 20: 1) to obtain a depsipeptide compound (1′a-1) (35.3 mg, 95%) as a white amorphous. [α] D 25 = 58.0 (c = 0.70, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ: 1.00 (3H, d, J = 6.8 Hz), 1.02 (3H, d, J = 5.9 Hz) ), 2.06−2.15 (1H, m), 2.50−2.56 (2H, m), 2.86−2.76 (1H, m), 2.94−3.12 (4H, m), 3.42 (1H, dd, J = 15.9, 11.5 Hz ), 3.70 (1H, dd, J = 14.4, 10.5 Hz), 3.86-4.01 (3H, m), 4.06 (1H, dd, J = 14.4, 3.7 Hz), 4.50-4.56 (1H, m), 4.59 ( 1H, dd, J = 17.6, 6.8 Hz), 5.72-5.75 (2H, m), 5.79-5.87 (1H, m), 6.17 (1H, d, J = 4.4 Hz), 7.03 (1H, d, J = 5.4 Hz), 7.22 (1H, d, J = 7.3 Hz), 7.27 (1H, d, J = 6.3 Hz), 7.37 (1H, t, J = 7.6 Hz), 7.45-7.49 (2H, m), 7.55 (1H, d, J = 7.3 Hz), 7.73 (1H, d, J = 8.3 Hz), 7.83-7.87 (1H, m), 7.95-7.97 (1H, m). 13 C NMR (100 MHz, CDCl 3 ) δ: 19.38, 19.40, 29.2, 30.8, 31.1, 33.6, 37.5, 38.0, 43.2, 54.6, 56.9, 61.7, 69.4, 123.3, 125.4, 125.6, 126.1, 127.3, 127.4, 129.0, 129.7, 130.7, 131.9, 134.0 , 134.9, 168.2, 169.6 (2C ), 170.2, 172.1 ppm FT-IR (neat):. 3333, 3010, 2965, 2933, 1743, 1654, 1521, 1437, 1396, 1263, 1186, 979, 757, 667 cm . 1 HRMS (FAB) C 30 H 37 N 4 O 6 S 2 [(M + H) +] calcd 613.2155; found 613.2176.
 参考例8 Reference Example 8
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 アルゴン雰囲気下、(RS,E)-3-[(p-メトキシベンジル)オキシ]-7-トリチルチオ-4-へプテン酸(ラセミ混合物)(III’)(10.8 mg, 20 μmol)及びD-バリンメチルエステル塩酸塩(IV-1)(5.0 mg, 30 μmol)の無水アセトニトリル(2 ml)溶液に、1H-ベンゾトリアゾール-1-イルオキシトリピロリジノホスホニウムヘキサフルオロりん酸塩(PyBOP)(15.6 mg, 30 μmol)及びN,N-ジイソプロピルエチルアミン(20.4 μl, 0.12 mmol)を室温で加え、同温で2時間撹拌した。反応終了後、溶媒を減圧下留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル 3:1)で精製し、(R)-2-[(RS,E)-3-[(p-メトキシベンジル)オキシ]-7-トリチルチオ-4-ヘプテナミド]-3-メチルブタン酸メチルエステル(ジアステレオマー混合物)(I’-1)(11.5 mg, 88%)を得た。本ジアステレオマー混合物は、実施例3の場合とは異なり、シリカゲルカラムクロマトグラフィーによる分離は不可能であった。 Under an argon atmosphere, (RS, E) -3-[(p-methoxybenzyl) oxy] -7-tritylthio-4-heptenoic acid (racemic mixture) (III ') (10.8 mg, 20 μmol) and D-valine 1H-benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (15.6 mg) was added to a solution of methyl ester hydrochloride (IV-1) (5.0 mg, 30 μmol) in anhydrous acetonitrile (2 ml). , 30 μmol) and N, N-diisopropylethylamine (20.4 μl, 0.12 mol) were added at room temperature and stirred at the same temperature for 2 hours. After completion of the reaction, the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane / ethyl acetate 3: 1), and (R) -2-[(RS, E) -3-[(p-methoxybenzyl) oxy] -7- Tritylthio-4-heptenamide] -3-methylbutanoic acid methyl ester (mixture of diastereomers) (I′-1) (11.5 mg, 88%) was obtained. Unlike the case of Example 3, this diastereomeric mixture could not be separated by silica gel column chromatography.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 本発明による式(II)の化合物は、優れた新規分子標的抗がん剤として期待されるデプシペプチド類化合物の製造中間体として有用である。 The compound of the formula (II) according to the present invention is useful as an intermediate for producing a depsipeptide compound which is expected as an excellent novel molecular target anticancer agent.
 本発明による式(II)の化合物を用いて得られる式(1)及び(2)のデプシペプチド類化合物は、HDAC/PI3K二重阻害というまったく新しい作用機序を有しており、従来の抗がん剤には無効な難治性がんに対しても有効であることは、国際公開公報(前記特許文献1)に開示されているとおりである。また、上記デプシペプチド類化合物は、がん特異的に作用する分子標的薬剤であることから、がん細胞以外の細胞や組織に与える影響は少なく、生体に対しても高用量で使用しても重篤な副作用が起こる可能性が低いことも上記公報に開示されているとおりである。 The depsipeptide compounds of the formulas (1) and (2) obtained using the compound of the formula (II) according to the present invention have a completely new mechanism of action of HDAC / PI3K double inhibition. As disclosed in International Publication (Patent Document 1), it is also effective against intractable cancers that are ineffective against cancer drugs. In addition, since the depsipeptide compound is a molecular target drug that acts specifically on cancer, it has little effect on cells and tissues other than cancer cells, and it is heavy even when used at high doses for living organisms. It is also disclosed in the above publication that the possibility of serious side effects is low.
 そして、上記デプシペプチド類化合物を、ヒトを含む動物に対してがん化学療法剤として使用すること、及びこれら化合物を用いた医薬組成物や化学製品の製造については、上記公報を参照することにより、当業者に明らかであろう。 And, for the use of the depsipeptide compounds as cancer chemotherapeutic agents for animals including humans, and for the production of pharmaceutical compositions and chemical products using these compounds, by referring to the above publication, It will be apparent to those skilled in the art.

Claims (6)

  1.  下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素、メチル及びn-ブチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
    で示される光学活性アミドカルボン酸エステル誘導体。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents an amino acid side chain other than hydrogen, methyl and n-butyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, and * represents an asymmetric carbon. 3′R or 3 ′S configuration, † represents an asymmetric carbon, D configuration or L configuration, and TrS represents a tritylthio group.)
    An optically active amide carboxylic acid ester derivative represented by:
  2.  下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素、メチル及びn-ブチル以外のアミノ酸側鎖を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
    で示される光学活性アミドカルボン酸誘導体。
    The following formula (II)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents an amino acid side chain other than hydrogen, methyl, and n-butyl. * Represents an asymmetric carbon, and is a configuration of 3′R or 3 ′S. † indicates an asymmetric carbon. And represents the configuration of D or L. TrS represents a tritylthio group.)
    An optically active amide carboxylic acid derivative represented by
  3.  下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    (式中、*は不斉炭素を表し、波線で示す結合は3’R体及び3’S体の立体配置の混合物である。TrSはトリチルチオ基を表す。)
    で示される異性体混合物である(RS,E)-3-ヒドロキシ-7-トリチルチオ-4-ヘプテン酸に、下記式(IV)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは水素及びメチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。†は不斉炭素を表し、D体またはL体の立体配置である。)
    で示される光学活性アミノ酸エステル誘導体を反応させる工程、及び
    生成する2種類のジアステレオマー混合物を分離する工程
    を含むことを特徴とする、下記式(I)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R、R及び†は前記のとおりである。*は不斉炭素を表し、3’R体または3’S体の立体配置である。)
    で示されるアミドカルボン酸エステル誘導体を単一の光学異性体として得る製造方法。
    Formula (III) below
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, * represents an asymmetric carbon, and the bond indicated by a wavy line is a mixture of 3′R and 3 ′S configurations. TrS represents a tritylthio group.)
    (RS, E) -3-hydroxy-7-tritylthio-4-heptenoic acid represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 1 represents an amino acid side chain other than hydrogen and methyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, † represents an asymmetric carbon, D Body or L configuration.)
    Comprising the step of reacting the optically active amino acid ester derivative represented by formula (I) and the step of separating the two diastereomeric mixtures to be produced.
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, R 1, R 2 and † are as defined above. * Represents an asymmetric carbon, a configuration of the 3'R, or 3'S body.)
    A production method for obtaining an amide carboxylate derivative represented by the formula:
  4.  Rが水素、メチル及びn-ブチル以外のアミノ酸側鎖である、請求項3に記載の製造方法。 The production method according to claim 3, wherein R 1 is an amino acid side chain other than hydrogen, methyl and n-butyl.
  5.  下記式(I)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rは水素及びメチル以外のアミノ酸側鎖を表し、Rは置換基を有してもよい炭素数1~10の炭化水素基を表す。*は不斉炭素を表し、3’R体または3’S体の立体配置である。†は不斉炭素を表し、D体またはL体の立体配置である。TrSはトリチルチオ基を表す。)
    で示される光学活性アミドカルボン酸エステル誘導体を加水分解する工程を含むことを特徴とする、下記式(II)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R、*及び†は前記のとおりである)
    で示される光学活性アミドカルボン酸誘導体の製造方法。
    Formula (I)
    Figure JPOXMLDOC01-appb-C000006
    (Wherein R 1 represents an amino acid side chain other than hydrogen and methyl, R 2 represents an optionally substituted hydrocarbon group having 1 to 10 carbon atoms, * represents an asymmetric carbon, 3 (It is the configuration of 'R form or 3' S form. † represents an asymmetric carbon, is the configuration of D form or L form. TrS represents a tritylthio group.)
    And a step of hydrolyzing the optically active amide carboxylic acid ester derivative represented by formula (II):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein R 1 , * and † are as defined above)
    The manufacturing method of the optically active amide carboxylic acid derivative shown by these.
  6.  Rが水素、メチル及びn-ブチル以外のアミノ酸側鎖である、請求項5に記載の製造方法。 The production method according to claim 5, wherein R 1 is an amino acid side chain other than hydrogen, methyl and n-butyl.
PCT/JP2017/001140 2016-01-13 2017-01-13 Production intermediate of depsipeptide compound, and method for producing same WO2017122822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004070A JP2019052091A (en) 2016-01-13 2016-01-13 Production intermediate of depsipeptide compound and method for producing the same
JP2016-004070 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122822A1 true WO2017122822A1 (en) 2017-07-20

Family

ID=59311207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001140 WO2017122822A1 (en) 2016-01-13 2017-01-13 Production intermediate of depsipeptide compound, and method for producing same

Country Status (2)

Country Link
JP (1) JP2019052091A (en)
WO (1) WO2017122822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861267A (en) * 2021-10-25 2021-12-31 深圳湾实验室坪山生物医药研发转化中心 Depsipeptide compound LZG-PKU-H and synthesis method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009141657A1 (en) * 2008-05-22 2009-11-26 Karus Therapeutics Limited Depsipeptides and their therapeutic use
JP2010510302A (en) * 2006-11-23 2010-04-02 ユニバーシティ、オブ、サウサンプトン Depsipeptides and their therapeutic use
WO2013047509A1 (en) * 2011-09-30 2013-04-04 国立大学法人東北大学 Novel phosphatidylinositol-3-kinase inhibitor and pharmaceutical composition
WO2015131355A1 (en) * 2014-03-05 2015-09-11 清安医药科技武汉有限公司 Preparation of natural product histone deacetylase inhibitor thailandepsin b

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510302A (en) * 2006-11-23 2010-04-02 ユニバーシティ、オブ、サウサンプトン Depsipeptides and their therapeutic use
WO2009141657A1 (en) * 2008-05-22 2009-11-26 Karus Therapeutics Limited Depsipeptides and their therapeutic use
WO2013047509A1 (en) * 2011-09-30 2013-04-04 国立大学法人東北大学 Novel phosphatidylinositol-3-kinase inhibitor and pharmaceutical composition
WO2015131355A1 (en) * 2014-03-05 2015-09-11 清安医药科技武汉有限公司 Preparation of natural product histone deacetylase inhibitor thailandepsin b

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIYA TAKIZAWA ET AL.: "Synthetic Studies on Spiruchostatin A, a Potent Histone Deacetylase Inhibitor", JOURNAL OF TOHOKU PHARMACEUTICAL UNIVERSITY, vol. 54, 2007, pages 33 - 47 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861267A (en) * 2021-10-25 2021-12-31 深圳湾实验室坪山生物医药研发转化中心 Depsipeptide compound LZG-PKU-H and synthesis method and application thereof
CN113861267B (en) * 2021-10-25 2023-06-27 深圳湾实验室坪山生物医药研发转化中心 Depsipeptide compound LZG-PKU-H and synthetic method and application thereof

Also Published As

Publication number Publication date
JP2019052091A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
KR102122575B1 (en) Methods for synthesizing amatoxin building block and amatoxins
WO2005105826A1 (en) Tyropeptin a analogue
US6235717B1 (en) Pharmaceutical compounds
CA2190570C (en) Process for producing 3-amino-2-oxo-1-halogenopropane derivatives
WO2003059866A1 (en) Geranyl compounds
EP3280721B1 (en) Process for preparation of nitrogen mustard derivatives
US20220089522A1 (en) Method of preparing a don prodrug from l-glutamic acid
WO2017122822A1 (en) Production intermediate of depsipeptide compound, and method for producing same
JP2024009021A (en) Method for synthesis of cyclic depsipeptides
US6639094B2 (en) Process for producing α-aminoketone derivatives
JP4642476B2 (en) Synthesis of (R) and (S) -aminocarnitine and its derivatives from D- and L-aspartic acid
JP3855323B2 (en) Method for producing 3-amino-2-oxo-1-halogenopropane derivative
MX2010008430A (en) 2-amino-2-phenylalkanol derivatives, preparation thereof and pharmaceutical compositions containing same.
JP3855317B2 (en) Process for producing α-hydroxy-β-aminocarboxylic acid
JP2005041854A (en) Optically active n-(2-substituted-3-halopropionyl)amino acid, method for producing the same, and method for producing optically active n-(2-substituted-3-acylthiopropionyl)amino acid using the same
JP3285398B2 (en) Method for producing urethane compound
RU2817013C1 (en) Method for synthesis of cyclic depsipeptides
KR100434915B1 (en) Method for producing optically active cyanohydrin
JP2682034B2 (en) Method for producing (1R, 2S) -cis-2-aminocyclopentanecarboxylic acid
JPH10291970A (en) Production of alpha,beta-unsaturated amino acid derivative
Yuan et al. Part I. Asymmetric synthesis of 2, 6-diaminopimelic acids (DAP) and γ-D (L)-glutamyl-L-meso-diaminopimelic acid dipeptide. Part II. Total synthesis of TAN-1057 and analogues
Perambuduru Synthetic methods for biologically relevant organofluorine compounds
JP2004512261A (en) Branched-chain amino acids
JPH11315064A (en) Production of optically active phenylpropionic acid derivative
JPH09278734A (en) Production of optically active cyanohydrin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP