WO2017122897A1 - 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 - Google Patents
참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 Download PDFInfo
- Publication number
- WO2017122897A1 WO2017122897A1 PCT/KR2016/009374 KR2016009374W WO2017122897A1 WO 2017122897 A1 WO2017122897 A1 WO 2017122897A1 KR 2016009374 W KR2016009374 W KR 2016009374W WO 2017122897 A1 WO2017122897 A1 WO 2017122897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- virus
- rsiv
- sea bream
- nucleotide sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
- B23K37/047—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/02—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K37/00—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
- B23K37/04—Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
- B23K37/0461—Welding tables
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25H—WORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
- B25H1/00—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
- B25H1/10—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby with provision for adjusting holders for tool or work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25H—WORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
- B25H1/00—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
- B25H1/14—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby with provision for adjusting the bench top
- B25H1/18—Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby with provision for adjusting the bench top in inclination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B2221/00—Methods and means for joining members or elements
- B63B2221/02—Methods and means for joining members or elements by welding
Definitions
- the present invention relates to a gene marker for the identification and detection of the causative virus of sea bream iridovirus disease, which is the causative virus of aquatic organisms, and to a method for discriminating and detecting the causal virus using the same.
- Iridovirus (RSIV) / specific genes of Infectious Spleen and Kidney Necrosis Virus (ISKNV); Or (ii) selecting and amplifying a DNA sequence encoding a specific gene that distinguishes RSIV from RSIV / RSKNV, and then hybridizing and hybridizing a peptide nucleic acid (PNA) that specifically recognizes the amplification product.
- ISKNV Infectious Spleen and Kidney Necrosis Virus
- the present invention relates to a method of obtaining a melting curve for each temperature by controlling a temperature of a product, and determining a virus type from a melting temperature or analyzing whether a fish is infected with the virus type by analyzing the obtained melting curve.
- Red sea bream iridoviral disease is a viral disease that causes serious damage in major marine fish farming in Korea.
- Various molecular diagnostic methods and kits have been developed as a method for diagnosing fish viral diseases, and after performing a general polymerase chain reaction (PCR) method, an amplification product of the reaction is confirmed by electrophoresis or a TaqMan probe. Or, the method of confirming with real-time PCR using SYBR Green is mainly used.
- PCR polymerase chain reaction
- Red sea bream iridovirus disease not only occurs mainly in cultured red snapper, but is also an important cause of death in more than 30 marine cultured fishes, and is known to occur mainly in perch and flounder.
- the first occurrence of RSIVD was recorded in 1990 from aquaculture red snapper on Shikoku Island, Japan, and RSIVD has become a major cause of mass mortality in red snapper.
- RSIV and ISKNV should be simultaneously analyzed for accurate diagnosis of RSIVD.
- serological methods such as staining using tissue smear samples and IFAT using MAbs are used.
- molecular diagnosis conventional PCR using two types of primers is performed according to OIE standard. do.
- OIE protocol 1 OIE 1
- OIE protocol 2 OIE 4
- RSIV / ISKNV is used when OIE 1 is used. While all can be detected, only RSIV can be detected when using OIE 4. Therefore, for the diagnosis and determination of RSIV / ISKNV, two PCR steps should be performed according to the OIE standard.
- the present inventors discriminate fish disease virus without sequencing step or before sequencing step whether RSIV / ISKNV or PCR product for identifying or detecting RSIV / ISKNV or RSIV, which is the causative virus of aquatic biological infection.
- RSIV Red Sea Bream Iridovirus
- ISKNV ISKNV
- a nucleotide sequence of a specific gene that distinguishes RSIV from RSIV / RSKNV is selected as a gene marker for virus type discrimination and / or detection, using peptide nucleic acid and primer pairs specific for the gene marker.
- Different virus types show different amplification and melting curves of fluorescence By ensuring that the effect of a simple, rapid, accurate determination of the type of fish diseases causing virus, and have completed the present invention.
- An object of the present invention is to provide a genetic marker, primer pair, and PNA probe for the identification or detection of the causative virus of sea bream iridovirus disease which is a marine organism infectious disease causative virus.
- Another object of the present invention is to provide a composition and kit for discriminating or detecting a causative virus of red seabream iridovirus disease comprising the primer pair and the PNA probe.
- Another object of the present invention is to determine the type of the causal virus or cause the individual by obtaining the Tm value according to hybridization of the PNA probe to the region of the virus marker gene specific virus markers amplified using the primer pair
- the present invention provides a method for detecting a virus infection.
- the present invention is to determine or detect the Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 7 Provide a genetic marker for RSIV or infectious spleen and kidney necrosis virus (ISKNV), a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 7
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention also provides a genetic marker for the identification or detection of Red Sea Bream Iridovirus (RSIV), which is a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 8.
- RSIV Red Sea Bream Iridovirus
- the present invention is also used for the identification or detection of Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), a causative agent of aquatic organisms infectious diseases represented by the nucleotide sequences of SEQ ID NO: 3 and SEQ ID NO: 4 Provide primer pairs.
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention also provides a primer pair for the identification or detection of Red Sea Bream Iridovirus (RSIV), which is a causative agent of aquatic organisms infectious diseases represented by the nucleotide sequences of SEQ ID NO: 5 and SEQ ID NO: 6.
- RSIV Red Sea Bream Iridovirus
- the present invention also provides a PNA probe for the identification or detection of Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 1 do.
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention also provides a PNA probe for discriminating or detecting red sea bream iridovirus (RSIV), which is a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 2.
- RSIV red sea bream iridovirus
- the present invention also provides a composition and kit for discriminating or detecting a causative virus of aquatic infectious diseases comprising the primer pair and the PNA probe.
- the present invention also provides
- step (c) obtaining a melting curve for each temperature while increasing the temperature of the product hybridized with the PNA probe in step (b);
- step (d) determining the virus type of the causative virus of aquatic organisms infectious diseases from the melting temperature or detecting whether the fish is infected with the virus type by analyzing the melting curve obtained in step (c);
- It provides a method for determining or detecting aquatic infectious diseases causal virus comprising a.
- 1 is a conceptual diagram showing the technical characteristics of the step of obtaining the amplification curve for determining the virus type or virus infection of the individual.
- FIG. 2 is a schematic diagram showing a step of obtaining a melting curve according to hybridization of peptide nucleic acids in a virus type determination method and an individual virus infection detection method.
- Figure 3 is a gene position diagram for explaining the nucleotide sequence region included in the primer and peptide nucleic acid in the amplification product derived by the detection "PCR protocol 1 (OIE 1)" method according to the OIE standard of RSIV / ISKNV.
- OIE 1 PCR protocol 1
- Figure 4 is a gene position diagram for explaining the nucleotide sequence region contained in the primer and peptide nucleic acid in the amplification product derived by the detection "PCR protocol 2 (OIE 4)" method according to the OIE standard of RSIV
- FIGS. 5 and 6 show amplification curves and melting curves according to the RSIV / ISKNV detection method using primers and peptide nucleic acids for each virus type described in FIGS. 1 to 4.
- the present invention provides a marker for identifying RSIV / ISKNV, which is a causative agent of red snapper virus, and developing a method for detecting an individual (eg, a fish) infected with the causative virus. And a causal virus of aquatic organism infectious disease using a primer pair and a peptide nucleic acid probe (PNA probe) for determining the virus type corresponding to the marker, and the type of each causal virus could be determined.
- PNA probe peptide nucleic acid probe
- the cause virus can be identified / detected by type
- an oligomer mixture comprising a PNA probe for RSIV / ISKNV detection (SEQ ID NO: 1) and a primer pair (SEQ ID NO: 3 and SEQ ID NO: 4) capable of simultaneously detecting RSIV and ISKNV;
- oligomer mixtures comprising a detection PNA probe (SEQ ID NO: 2) and a primer pair (SEQ ID NO: 5 and SEQ ID NO: 6) specific for RSIV;
- composition or kit comprising a red sea bream iridovirus causative virus was able to detect and determine the type of each causal virus.
- the present invention in one aspect, for the identification or detection of Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), which is the causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 7 It relates to genetic markers.
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention relates to a genetic marker for identifying or detecting red sea bream iridovirus (RSIV), which is a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 8.
- RSIV red sea bream iridovirus
- the present invention in another aspect, the determination of the Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), a causative agent of aquatic organisms infectious diseases represented by the nucleotide sequences of SEQ ID NO: 3 and SEQ ID NO: 4 Or to a primer pair for detection.
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention relates to a pair of primers for the identification or detection of Red Sea Bream Iridovirus (RSIV), a causative agent of aquatic organisms infectious diseases represented by the nucleotide sequences of SEQ ID NOs: 5 and 6.
- RSIV Red Sea Bream Iridovirus
- the present invention provides a PNA for the determination or detection of Red Sea Bream Iridovirus (RSIV) or infectious spleen and kidney necrosis virus (ISKNV), which is a causative agent of aquatic organisms infectious disease represented by the nucleotide sequence of SEQ ID NO: 1 Relates to a probe.
- RSIV Red Sea Bream Iridovirus
- ISKNV infectious spleen and kidney necrosis virus
- the present invention relates to a PNA probe for discriminating or detecting red sea bream iridovirus (RSIV), which is a causative agent of aquatic biological infectious disease represented by the nucleotide sequence of SEQ ID NO: 2.
- RSIV red sea bream iridovirus
- a reporter and a fluorescent material of a quencher capable of quenching the reporter fluorescence may bind to both ends.
- the reporter is reported as FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, Cy3 and Cy5.
- the quencher may be one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
- TAMRA 6-carboxytetramethyl-rhodamine
- BHQ1, BHQ2 and Dabcyl but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
- PNA Peptide nucleic acid
- Peptide nucleic acid is artificially synthesized as one of the gene recognition materials, such as LNA (Locked nucleic acid) or MNA (Mopholino nucleic acid), the basic skeleton is composed of polyamide (polyamide).
- PNA has very high affinity and selectivity, and has high stability against nucleases, so that it is not degraded by existing restriction enzymes.
- thermal properties and chemical properties are high and easy to store and not easily decomposed.
- PNAs form double strands through hybridization with native nucleic acids of complementary base sequences.
- PNA / DNA double strands are more stable than DNA / DNA double strands and PNA / RNA double strands are more stable than DNA / RNA double strands.
- PNA has a greater ability to detect single nucleotide polymorphism (SNP) than natural nucleic acid because of its large degree of double strand instability due to single base mismatch.
- SNP single nucleotide polymorphism
- the PNA-DNA binding ability is much better than the DNA-DNA binding force, so that there is a difference of about 10 to 15 ° C even in one nucleotide miss match.
- the difference in binding force it is possible to detect SNP (Single-nucleotide polymorphism) and change in nucleotides of In / Del.
- the length of the PNA sequence according to the present invention is not particularly limited, but may be produced in a length of 12 to 18mer so as to include a specific sequence (eg, nucleotide variation or single nucleotide polymorphism (SNP)) according to the virus type. have.
- the PNA probe may be designed to have a desired Tm value by adjusting the length of the PNA probe, or even a PNA probe of the same length may be adjusted by changing the base sequence.
- PNA probes have a higher binding force than DNA and have a higher basic Tm value, so that the PNA probe can be designed with a shorter length than DNA, so that even neighboring base mutations or SNPs can be detected.
- the difference in Tm value is very small, about 0.5 ° C, which requires additional analysis program or detailed temperature change or correction. Therefore, when two or more base mutations or SNPs appear, the analysis is performed. Although it was difficult, the PNA probe according to the present invention is not affected by the sequence and SNP of the PNA probe, and thus can be easily analyzed.
- HRM High Resolution Melt
- the PNA probe when the PNA probe includes 14 base sequences, it is preferable to have a sequence corresponding to the base mutation or SNP region of the virus at one or more positions of the center sequences.
- the PNA probe may have a structural modification including a sequence corresponding to a nucleotide variation or SNP site of the virus in the center of the base sequence, through which the melting temperature with the perfect nucleic acid (perfect match) Tm) can make the difference even larger.
- the present invention relates to a composition and kit for determining or detecting aquatic infectious agent causative virus comprising the primer pair and the PNA probe.
- the present invention provides a composition for detecting a red seabream iridovirus causative virus comprising a primer pair represented by a nucleotide sequence of SEQ ID NO: 3 and SEQ ID NO: 4, and a PNA probe represented by a nucleotide sequence of SEQ ID NO: 1 Can provide.
- Red Sea Bream Iridovirus comprising a primer pair represented by the nucleotide sequences of SEQ ID NO: 5 and SEQ ID NO: 6, and a PNA probe represented by the nucleotide sequence of SEQ ID NO: 2 It is possible to provide a kit for discrimination or detection.
- kits for detecting a red snapper virus causing virus comprising a primer pair represented by a nucleotide sequence of SEQ ID NO: 3 and SEQ ID NO: 4, and a PNA probe represented by a nucleotide sequence of SEQ ID NO: 1.
- Red Sea Bream Iridovirus comprising a primer pair represented by the nucleotide sequences of SEQ ID NO: 5 and SEQ ID NO: 6, and a PNA probe represented by the nucleotide sequence of SEQ ID NO: 2
- RSIV Red Sea Bream Iridovirus
- kits of the present invention may optionally include reagents necessary to conduct target nucleic acid amplification reactions (eg, PCR reactions) such as buffers, DNA polymerase cofactors and deoxyribonucleotide-5-triphosphates.
- reagents necessary to conduct target nucleic acid amplification reactions eg, PCR reactions
- the kits of the present invention may also include various polynucleotide molecules, reverse transcriptases, various buffers and reagents, and antibodies that inhibit DNA polymerase activity.
- the optimum amount of reagent used in a particular reaction of the kit can be easily determined by those skilled in the art having learned the disclosure herein.
- the equipment of the present invention can be manufactured in a separate package or compartment containing the aforementioned components.
- the kit may consist of a PNA-based multiple assay kit capable of detecting and / or discriminating gene sequences for distinguishing RSIV / ISKNV, comprising one 2x qPCR premix tube and one oligomer mix tube. tube), wherein the oligomer mixture may be characterized by comprising one or more TaqMan probes, PNA probes of SEQ ID NO: 1 or SEQ ID NO: 2 and primers selected from two or more primers of SEQ ID NO: 3 to SEQ ID NO: 6 (See Table 1).
- a single base mutation of a target nucleic acid and a mutation due to a deletion or insertion of a base can be effectively detected through a lysis curve analysis by a PNA probe, and thus the species of a virus can be determined.
- the present invention (i) specific genes of Red Sea Bream Iridovirus (RSIV) / Infectious Spleen and Kidney Necrosis Virus (ISKNV); Or (ii) performing detection PCR according to OIE criteria for RSIV and / or RSKNV for identification or detection according to a specific gene that distinguishes RSIV from RSIV / RSKNV, and then sequenced the gene sequence corresponding to the PCR product.
- RSIV Red Sea Bream Iridovirus
- ISKNV Infectious Spleen and Kidney Necrosis Virus
- step (c) obtaining a melting curve for each temperature while increasing the temperature of the product hybridized with the PNA probe in step (b);
- step (d) determining the virus type of the causative virus of aquatic organisms infectious diseases from the melting temperature or detecting whether the fish is infected with the virus type by analyzing the melting curve obtained in step (c);
- It relates to a method for determining or detecting aquatic infectious agent virus comprising a.
- step (c) obtaining a melting curve for each temperature while increasing the temperature of the product hybridized with the PNA probe in step (b);
- step (D) through the analysis of the melting curve obtained in the step (c) it can provide a method for detecting a red seabream iridovirus causal virus comprising the step of detecting whether or not the sea urchin seaweed virus causing virus from the melting temperature.
- step (c) obtaining a melting curve for each temperature while increasing the temperature of the product hybridized with the PNA probe in step (b);
- step (d) detecting red sea bream iridovirus (RSIV) from the melting temperature by analyzing the melting curve obtained in step (c) or determining whether the virus is infected with red sea bream iridovirus (red) Sea Bream Iridovirus (RSIV) can be provided for the identification or detection method.
- RSIV red sea bream iridovirus
- the amplification curve may be obtained by additionally including a TaqMan probe when amplifying the gene marker sequence using the primer pair.
- two or more target nucleic acids are used, and the reporter labeled on the PNA probe is different for each target nucleic acid, thereby determining or detecting the virus type of at least one aquatic infectious agent causative virus through detection of the two or more target nucleic acids.
- the amplification may be performed by a real-time polymerase chain reaction (PCR) method.
- PCR polymerase chain reaction
- a sample sample includes various samples, and preferably, a biosample is analyzed using the method of the present invention. More preferably, the sample may be a sample mixed with the virus species described in the present invention or a sample of an individual infected with the virus (for example, fish, etc.), and may be a plant, animal, human, fungus, bacteria, or organism of viral origin. Samples can be analyzed. When analyzing a sample of mammalian or human origin, the sample may be derived from a specific tissue or organ. Representative examples of tissues include connective, skin, muscle or nerve tissue.
- organs include eyes, brain, lungs, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gallbladder, stomach, small intestine, testes, ovaries, uterus, rectum, nervous system, Glands and internal vessels are included.
- the biosample to be analyzed includes any cell, tissue, fluid from a biological source, or any other medium that can be well analyzed by the present invention, which is the consumption of humans, animals, humans or animals. Samples obtained from food prepared for use are included.
- the biological sample to be analyzed includes a bodily fluid sample, which includes blood, serum, plasma, lymph, breast milk, urine, feces, ocular fluid, saliva, semen, brain extracts (e.g., brain grinds), spinal fluid, appendix, spleen And tonsil tissue extracts, but is not limited thereto.
- a bodily fluid sample which includes blood, serum, plasma, lymph, breast milk, urine, feces, ocular fluid, saliva, semen, brain extracts (e.g., brain grinds), spinal fluid, appendix, spleen And tonsil tissue extracts, but is not limited thereto.
- 'Target nucleic acid', 'synthetic DNA' or 'synthetic oligo' of the present invention means a nucleic acid sequence (including base mutation or SNP) to be detected or not, and encodes a protein having a physiological and biochemical function.
- a specific site of the nucleic acid sequence of the target gene 'and is annealed or hybridized with a primer or probe under hybridization, annealing or amplification conditions.
- Hybridization' of the present invention is meant that complementary single stranded nucleic acids form a double-stranded nucleic acid.
- Hybridization can occur when the complementarity between two nucleic acid strands is perfect or even when some mismatch base is present.
- the degree of complementarity required for hybridization may vary depending on the hybridization conditions, and may be particularly controlled by temperature.
- the melting curve analysis may be performed by a method of Fluorescence Melting Curve Analysis (FMCA).
- FMCA Fluorescence Melting Curve Analysis
- the PNA probe including the reporter and the quencher of the present invention hybridizes with the target nucleic acid and generates a fluorescence signal, and as the temperature increases, the PNA probe rapidly melts with the target nucleic acid at an appropriate melting temperature of the probe, thereby extinguishing the fluorescent signal.
- the PNA probe shows the expected melting temperature (Tm) value when it is in perfect hybridization with the target nucleic acid sequence, but is incompletely mismatched with the target nucleic acid in which the base mutation is present. It is characterized by showing (Tm) value.
- the 'base mutation' of the present invention is a mutation in the nucleotide sequence of the target nucleic acid, characterized in that it comprises a single nucleotide polymorphism (SNP), as well as a mutation occurs by substitution, deletion or insertion of the base
- the PNA probe of the present invention may be analyzed through a melting curve analysis that a mutation occurs due to substitution, deletion or insertion of the SNP of the target nucleic acid or the base of the target nucleic acid.
- a reporter and a fluorescent material of a quencher capable of quenching the reporter fluorescence may bind to both ends.
- the reporter is reported as FAM (6-carboxyfluorescein), Texas red, HEX (2 ', 4', 5 ', 7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, Cy3 and Cy5.
- the quencher may be one or more selected from the group consisting of TAMRA (6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 and Dabcyl, but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
- TAMRA 6-carboxytetramethyl-rhodamine
- BHQ1, BHQ2 and Dabcyl but is not limited thereto, preferably Dabcyl You can use (FAM-labeled).
- the Tm value is also changed according to the difference between the nucleotides of the PNA probe and the nucleotides of the DNA complementarily binding thereto, thereby facilitating the development of an application using the same.
- PNA probes are analyzed using a hybridization method that is different from the hydrolysis method of TaqMan probes. Probes that play similar roles include molecular beacon probes and scorpion probes. There is.
- a probe containing a base (s) that recognizes a particular sequence and a set of forward / reverse primers for PCR Do.
- the PCR conditions can be used in the conventional method, after the completion of the PCR (melting) process is required and each time the increase in 0.5 °C to obtain the Tm value by measuring the intensity of fluorescence.
- the general real-time PCR (real-time PCR) device is widely spread and has the advantage that does not require additional program purchase or minute temperature changes, such as high resolution melting (HRM).
- HRM high resolution melting
- the melting curve analysis of the present invention is a method for analyzing the melting temperature of a double-stranded nucleic acid formed of a target nucleic acid DNA or RNA and a probe. Such a method is called a melting curve analysis because it is performed by Tm analysis or analysis of the said double chain melting curve, for example.
- a probe complementary to a particular nucleotide sequence (including base mutation or SNP) of the detection target (target) a hybrid (double chain DNA) of the target single-stranded DNA of the detection sample with the probe is formed.
- heat processing is performed to this hybrid formation body, and the dissociation (fusion) of a hybrid with temperature rise is detected by the change of signals, such as absorbance.
- the Tm value is determined based on the detection result to determine the presence or absence of a specific nucleotide sequence.
- the Tm value is higher as the homology of the hybrid body is higher, and lower as the homology is lower. For this reason, the Tm value (evaluation reference value) is calculated
- the measured value is about the same as the evaluation reference value, it can be determined that there is a match, that is, a specific sequence exists in the target DNA, and if the measured value is lower than the evaluation reference value, there is a mismatch, that is, a mutation in the target DNA. You can judge that you do not.
- Fluorescence melting curve analysis of the present invention is a method of analyzing the melting curve using a fluorescent material, more specifically, the melting curve can be analyzed using a probe containing a fluorescent material.
- the fluorescent material may be a reporter and a quencher, and may be an intercalating fluorescent material.
- the Real-Time Polymerase Chain Reaction (PCR) method of the present invention allows the fluorescent material to be interchelated with a double strand DNA chain during the PCR process and increases the temperature with the amplification of the PCR product.
- the pattern of the melting curve that reduces the amount of fluorescent material present between the double strands of DNA, in particular the temperature (Tm) at which the DNA is fused (denatured) is analyzed to determine the specific sequence (base mutation, including SNP). With or without virus types can be detected and / or determined.
- the PNA probe may generate a fluorescent signal after hybridization with a target nucleic acid. As the temperature increases, it rapidly melts from the target nucleic acid at the proper melting temperature of the probe, thereby extinguishing the fluorescent signal.
- the present invention is capable of detecting the presence or absence of base mutation of the target nucleic acid through high resolution fluorescence melting curve analysis (FMCA) obtained from the fluorescence signal according to the temperature change.
- FMCA fluorescence melting curve analysis
- the PNA probe according to the present invention shows the expected melting temperature (Tm) value when it is in perfect hybridization with the target nucleic acid sequence, but is incompletely mismatched with the target nucleic acid in which the base mutation is present. It may be characterized by showing a low melting temperature (Tm) value.
- Example 1 Gene marker for discrimination or detection of causative virus of sea bream iridovirus, and primer and PNA probe specific for the virus
- RSIV Red Sea Bream Iridovirus
- ISKNV Infectious Spleen and Kidney Necrosis Virus
- the sequence of the gene fragment synthesized by the "PCR protocol 1 (OIE 1)" method for detecting the OIE standard of RSIV / ISKNV is transferred to the nucleotide database (nucleotide database) of the National Center for Biotechnology Information (NCBI). By comparing with the registered nucleotide sequence, we tried to secure the nucleotide sequence of the gene for each virus type.
- OIE 1 PCR protocol 1
- RSIV / ISKNV represented by 5'-CCATGTACAACATGCTC-3 '(SEQ ID NO: 7) was secured, and the nucleotide sequence was selected as a gene marker for identifying or detecting RSIV / ISKNV.
- a primer pair (Forward primer 1, Reverse primer 1) represented by SEQ ID NO: 3 and SEQ ID NO: 4 as a primer for DNA amplification of the genetic marker and PNA 1 represented by SEQ ID NO: 1 as a hybridization probe of the genetic marker Produced.
- FIG. 3 is a nucleotide sequence diagram showing a part of the gene of RSIV / ISKNV, a base sequence for discrimination / detection, and a base sequence of PNA derived therefrom, and the base sequence of the PNA probe is indicated in blue.
- the sequence of the gene fragment synthesized by the "PCR protocol 2 (OIE 4)" method for detecting the OIE standard of RSIV / ISKNV is transferred to the nucleotide database (nucleotide database) of the National Center for Biotechnology Information (NCBI). By comparing with the registered nucleotide sequence, we tried to secure the nucleotide sequence of the gene for each virus type.
- a base sequence having a single nucleotide polymorphism (SNP) of RSIV capable of discriminating between RSIV and ISKNV represented by 5'-ACCAAGTTCATCATCT-3 '(SEQ ID NO: 8) is obtained, and the base sequence is RSIV.
- SNP single nucleotide polymorphism
- a primer pair (Forward primer 2, Reverse primer 2) represented by SEQ ID NO: 5 and SEQ ID NO: 6 as a primer for DNA amplification of the genetic marker and PNA 2 represented by SEQ ID NO: 2 as a hybridization probe of the genetic marker Produced.
- FIG. 4 is a nucleotide sequence diagram showing an example of a part of the gene of RSIV / ISKNV and a base sequence for discrimination / detection and a PNA derived therefrom, and the base sequence of the PNA probe is indicated in blue.
- PNA probe and primer sequences according to the present invention were determined and shown in Table 1.
- TaqMan and PNA probes were prepared by combining FAM, TexasRed and Cy5, respectively, so that the same fluorescence was not included. Then, PNA probes were prepared using the nucleotide sequences, reporters, and quenchers as shown in Table 1.
- the PNA probe used in the present invention was designed using PNA probe designer (Applied biosystems, USA), PNA probe was synthesized by HPLC purification method in Panazine (Panagene, Korea), the purity of all synthesized probes using mass spectrometry (Needed to avoid unnecessary secondary structures of the probe for more effective binding with the target nucleic acid).
- amplification curves and lysis curves were derived for DNA samples of red snapper Iridovirus disease causative virus, and analyzed for the identification or detection of causal viruses.
- a TaqMan probe (and corresponding primer set) for identifying or detecting the causative virus according to the OIE (Office of International Epizootics) standard may be used.
- PCR was performed using the CFX96 TM Real-Time System (BIO-RAD, USA), and all PCR conditions used asymmetric PCR to generate single stranded target nucleic acids.
- the composition of the reactants for asymmetric PCR is shown in Table 2.
- Table 2 The composition of the reactants for asymmetric PCR is shown in Table 2.
- real-time PCR was performed by adding 1 ⁇ l viral DNA.
- 1 ⁇ l of the template DNA of each virus was added, followed by PCR.
- Table 3 shows the amplification conditions and hybridization conditions of the reactants, and shows the process of amplifying and hybridizing the viral DNA sample and then raising the temperature of the hybridized product. The procedure was performed by real-time PCR.
- various fluorescent reporters may be combined with PNA probes as shown in Table 1 below.
- the virus-specific fluorescence amplification curve is confirmed so that the virus type can be determined by the fluorescent reporter (RSIV / ISKNV detection by TexasRed fluorescence).
- the melting curve analysis was performed as in Example 2, and then the resulting fluorescent signal and Tm value were digitized to the perfect match temperature. That is, a range of ⁇ 2 ° C. of the perfect match temperature is made, and if the Tm value for an unknown viral DNA sample is within the above range, the virus type can be determined and specified.
- 5 and 6 show amplification curves and fusion curves for each fluorescence obtained by applying peptide nucleic acid of SEQ ID NO: 1 or SEQ ID NO: 2 to a viral DNA sample according to the present invention. Or it was shown that it can be detected.
- the present invention selects genetic markers for the identification and / or detection of causative viruses of red seabream iridovirus disease, and (i) Red Sea Bream Iridovirus (RSIV) / Infectious Spleen and Kidney Necrosis Virus. , ISKNV) specific genes; Or (ii) using a peptide nucleic acid and primer pair specific for a specific gene marker that distinguishes RSIV from RSIV / RSKNV, resulting in amplification and melting curves of different fluorescence for each virus type. There is an effect capable of accurately determining and detecting whether the fish is infected with the virus.
- RSIV Red Sea Bream Iridovirus
- ISKNV Red Sea Bream Iridovirus
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Immunology (AREA)
- Optics & Photonics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Combustion & Propulsion (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 수산생물전염병 원인바이러스인 참돔 이리도바이러스병 원인바이러스의 판별 및 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 판별 및 검출 방법에 관한 것으로, 더욱 자세하게는 (i) 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)/감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)의 특정 유전자; 또는 (ii) RSIV/RSKNV로부터 RSIV를 구분하는 특정 유전자를 코딩하는 DNA 염기서열을 선정하여 증폭시킨 다음, 증폭산물을 특이적으로 인식하는 펩티드핵산(Peptide Nucleic Acid, PNA)을 혼성화시키고, 혼성화된 산물의 온도 조절을 통해 온도별 융해곡선을 얻고, 상기 얻은 융해곡선의 분석을 통해 융해온도로부터 바이러스 유형을 판별하거나 어류의 상기 바이러스 유형의 감염 여부를 검출하는 방법에 관한 것이다.
Description
본 발명은 수산생물전염병 원인바이러스인 참돔 이리도바이러스병 원인바이러스의 판별 및 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 판별 및 검출 방법에 관한 것으로, 더욱 자세하게는 (i) 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)/감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)의 특정 유전자; 또는 (ii) RSIV/RSKNV로부터 RSIV를 구분하는 특정 유전자를 코딩하는 DNA 염기서열을 선정하여 증폭시킨 다음, 증폭산물을 특이적으로 인식하는 펩티드핵산(Peptide Nucleic Acid, PNA)을 혼성화시키고, 혼성화된 산물의 온도 조절을 통해 온도별 융해곡선을 얻고, 상기 얻은 융해곡선의 분석을 통해 융해온도로부터 바이러스 유형을 판별하거나 어류의 상기 바이러스 유형의 감염 여부를 검출하는 방법에 관한 것이다.
참돔 이리도바이러스병(red sea bream iridoviral disease, RSIVD)은 우리나라에서 양식하는 주요 해산어류에서 심각한 피해를 야기하는 바이러스성 질병으로서, 수산생물전염병으로 지정되어 있다.
어류 바이러스질병의 진단 방법으로 다양한 분자 진단 방법 및 키트 등이 개발되어 있으며 일반적인 중합효소연쇄반응(polymerase chain reaction, PCR)법을 수행한 다음, 상기 반응의 증폭산물을 전기영동법으로 확인하거나, TaqMan probe 또는 SYBR Green을 이용하여 Real-time PCR법 등으로 확인하는 방법이 주로 많이 사용되고 있다.
현재, 법정 전염병에 대한 표준 진단법으로, 일반적인 유전자 진단법인 종래 PCR(conventional PCR)법이 지정되어 있다. RSIV/ISKNV의 경우 Real-time PCR 기반의 진단법이 개발되어 있지 않아 종래 PCR법을 수행하여 PCR 증폭산물을 전기영동으로 확인한 다음, 세계동물보건기구(World Organization for Animal Health, OIE)의 수생동물위생규약(Aquatic Animal Health Code)의 기준에 따른 진단을 수행하도록 규정되어 있다. RSIVD의 진단을 위해서는, 이들 바이러스의 특성상 DNA 바이러스인 RSIV는 감염조직으로부터 DNA를 분리하고, PCR를 진행해야 하는 단점이 있다. 따라서 RSIV/ISKNV를 동시에 분석하기 위한 진단법은 현재까지 보고된 바로는 없는 실정이다.
참돔 이리도바이러스병(RSIVD)은 양식 참돔에 주로 발생할 뿐만 아니라, 30종 이상의 해산 양식어류에서 폐사를 유발하는 중요한 원인이며, 농어목과 가자미목에 주로 발생하는 것으로 알려져 있다. RSIVD의 첫 번째 발생 사례는 1990년 일본 시코쿠 섬의 양식 참돔에서 발생한 것으로 기록된 바 있으며, RSIVD는 참돔 치어의 대량 폐사의 주요인이 되고 있다.
최근, RSIVD의 원인바이러스로 RSIV 이외에 이리도바이러스과(Iridovirus family)의 감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)가 밝혀진 바 있으므로 RSIVD의 정확한 진단을 위해서는 RSIV 및 ISKNV를 동시에 분석할 필요가 있다. RSIV/ISKNV 진단에는 조직 smear 샘플을 이용한 염색법, MAb를 이용한 IFAT 등의 혈청학적 진단 방법이 사용되고 있으며, 분자 진단의 경우 OIE 기준에 따라 2종류의 프라이머를 사용한 종래(conventional) PCR법을 수행하여 진단한다.
OIE 기준에 따른 RSIV/ISKNV의 진단용 PCR의 경우 프라이머 쌍, OIE protocol 1(OIE 1), OIE protocol 2(OIE 4)(Kurita et al., 1998)가 확보되어 있으며, OIE 1 사용 시 RSIV/ISKNV 모두 검출이 가능한 반면, OIE 4 사용 시 RSIV만을 검출할 수 있다. 따라서 RSIV/ISKNV의 진단 및 판별을 위해서는 OIE 기준에 따라 2번의 PCR 단계를 걸쳐야 한다.
이러한 기술적 배경하에서, 본 발명자들은 수산생물전염병의 원인바이러스인 RSIV/ISKNV 또는 RSIV의 판별 또는 검출용 PCR 산물의 특이/비특이적 증폭여부를 시퀀싱 단계 없이 또는 시퀀싱 단계 전에 어류 질병 바이러스를 판별하고, 상기 원인바이러스에 감염된 개체(예컨대, 어류)를 검출하는 방법을 개발하고자 예의 노력한 결과, 어류 질병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)/감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)의 특정 유전자, 또는 RSIV/RSKNV로부터 RSIV를 구분하는 특정 유전자의 염기서열을 바이러스 유형 판별 및/또는 검출용 유전자 마커로 선정하고, 상기 유전자 마커에 특이적인 펩티드핵산 및 프라이머 쌍을 이용하여 바이러스 유형마다 서로 다른 형광의 증폭 및 융해곡선을 나타내게 함으로써 어류 질병 원인바이러스의 유형을 간단·신속·정확하게 판별할 수 있는 효과가 있음을 확인하고, 본 발명을 완성하였다.
발명의 요약
본 발명의 목적은 수산생물전염병 원인바이러스인 참돔 이리도바이러스병 원인바이러스의 판별 또는 검출용 유전자 마커, 프라이머 쌍 및 PNA 프로브를 제공하는 데 있다.
본 발명의 다른 목적은 상기 프라이머 쌍 및 상기 PNA 프로브를 포함하는 참돔 이리도바이러스병 원인바이러스의 판별 또는 검출용 조성물 및 키트를 제공하는 데 있다.
본 발명의 또 다른 목적은 상기 프리이머 쌍을 이용하여 증폭된 참돔 이리도바이러스병 원인바이러스 특이적 유전자 마커 영역에 상기 PNA 프로브의 혼성화에 따른 Tm값을 얻어 상기 원인바이러스의 유형을 판별하거나 개체의 원인바이러스 감염 여부를 검출하는 방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 서열번호 7의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 유전자 마커를 제공한다.
본 발명은 또한, 서열번호 8의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 유전자 마커를 제공한다.
본 발명은 또한, 서열번호 3 및 서열번호 4의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 프라이머 쌍을 제공한다.
본 발명은 또한, 서열번호 5 및 서열번호 6의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 프라이머 쌍을 제공한다.
본 발명은 또한, 서열번호 1의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 PNA 프로브를 제공한다.
본 발명은 또한, 서열번호 2의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 PNA 프로브를 제공한다.
본 발명은 또한, 상기 프라이머 쌍, 및 상기 PNA 프로브를 포함하는 수산생물전염병 원인바이러스의 판별 또는 검출용 조성물 및 키트를 제공한다.
본 발명은 또한,
(a) 검체 시료로부터 표적 핵산을 추출하는 단계;
(b) 상기 표적 핵산에 포함된 수산생물전염병 원인바이러스의 유전자 마커 염기서열을 상기 프라이머 쌍을 이용하여 증폭시키고, 상기 증폭된 유전자 마커 서열단편에 상기 PNA 프로브를 혼성화시키는 단계;
(c) 상기 (b) 단계에서 PNA 프로브로 혼성화된 산물의 온도를 높이면서 온도별 융해곡선을 얻는 단계; 및
(d) 상기 (c) 단계에서 얻은 융해곡선의 분석을 통해 융해온도로부터 수산생물전염병 원인바이러스의 바이러스 유형을 판별하거나 어류의 상기 바이러스 유형의 감염 여부를 검출하는 단계;
를 포함하는 수산생물전염병 원인바이러스의 판별 또는 검출 방법을 제공한다.
도 1은 바이러스 유형의 판별 또는 개체의 바이러스 감염 검출용 증폭곡선을 얻는 단계의 기술적 특징을 나타내는 개념도이다.
도 2는 바이러스 유형의 판별 방법 및 개체의 바이러스 감염 검출 방법에 있어, 펩티드핵산의 혼성화에 따른 융해곡선을 얻는 단계를 나타내는 모식도이다.
도 3은 RSIV/ISKNV의 OIE 기준에 따른 검출용“PCR protocol 1(OIE 1)”법으로 도출된 증폭산물에서 프라이머 및 펩티드핵산이 포함하고 있는 염기서열 부위를 설명하기 위한 유전자 위치도이다.
도 4는 RSIV의 OIE 기준에 따른 검출용“PCR protocol 2(OIE 4)”법으로 도출된 증폭산물에서 프라이머 및 펩티드핵산이 포함하고 있는 염기서열 부위를 설명하기 위한 유전자 위치도이다
도 5 및 도 6은 도 1~도 4에서 설명한 바이러스 유형별 프라이머 및 펩티드핵산을 이용한 RSIV/ISKNV 검출방법에 따른 증폭곡선과 융해곡선 그래프를 나타낸 것이다.
발명의 상세한 설명 및 바람직한
구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명은 일 양태에서 참돔 이리도바이러스병 원인바이러스인 RSIV/ISKNV를 판별하고, 상기 원인바이러스에 감염된 개체(예컨대, 어류)를 검출하는 방법을 개발하고자, 바이러스 유형에 따른 특이적 염기서열을 가지는 마커 및 상기 마커에 대응되는 바이러스 유형 판별용 프라이머 쌍 및 펩티드핵산 프로브(peptide nucleic acid probe, PNA probe)을 이용하여 수산생물전염병의 원인바이러스를 검출하고 각각의 원인바이러스의 유형을 판별할 수 있었다.
더욱 상세하게 설명하면, 상기 원인바이러스를 유형별로 판별/검출할 수 있는,
(1) RSIV 및 ISKNV를 동시에 검출(simultaneous detection)할 수 있는 RSIV/ISKNV 검출용 PNA 프로브(서열번호 1) 및 프라이머 쌍(서열번호 3 및 서열번호 4)을 포함하는 올리고머 혼합물; 및
(2) RSIV에 특이적인 검출용 PNA 프로브(서열번호 2) 및 프라이머 쌍(서열번호 5 및 서열번호 6)을 포함하는 올리고머 혼합물;
을 포함하는 조성물 또는 키트를 이용하여 참돔 이리도바이러스병 원인바이러스를 검출하고 각각의 원인바이러스의 유형을 판별할 수 있었다.
따라서, 본 발명은 일 관점에서, 서열번호 7의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 유전자 마커에 관한 것이다.
본 발명은 다른 관점에서, 서열번호 8의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 유전자 마커에 관한 것이다.
본 발명은 또 다른 관점에서, 서열번호 3 및 서열번호 4의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 프라이머 쌍에 관한 것이다.
본 발명은 또 다른 관점에서, 서열번호 5 및 서열번호 6의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 프라이머 쌍에 관한 것이다.
본 발명은 또 다른 관점에서, 서열번호 1의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)의 판별 또는 검출용 PNA 프로브에 관한 것이다.
본 발명은 또 다른 관점에서, 서열번호 2의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 PNA 프로브에 관한 것이다.
본 발명의 상기 PNA 프로브는 양 말단에 리포터(reporter)와 리포터 형광을 소광(quenching)할 수 있는 소광자(quencher)의 형광 물질이 결합할 수 있다. 상기 리포터(reporter)는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, Cy3 및 Cy5로 구성되는 군에서 선택되는 하나 이상일 수 있으며, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl로 구성되는 군에서 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니며, 바람직하게는 Dabcyl(FAM-labeled)을 사용할 수 있다.
펩티드핵산(Peptide nucleic acid, PNA)은 핵산염기가 인산 결합이 아닌 펩티드 결합으로 연결된 유사 DNA로 1991년에 Nielsen 등에 의해 처음으로 합성되었다. PNA는 자연계에서는 발견되지 않고 인공적으로 화학적인 방법으로 합성된다.
펩티드핵산은 LNA(Locked nucleic acid) 또는 MNA(Mopholino nucleic acid)와 같이 유전자 인식물질의 하나로 인공적으로 합성하며, 기본 골격이 포리아미드(polyamide)로 구성되어 있다. PNA는 친화도(affinity)와 선택성(selectivity)이 매우 우수하며, 핵산분해효소에 대한 안정성이 높아 현존하는 제한효소(restriction enzyme)로 분해되지 않는다. 또한, 열/화학적으로 물성 및 안정성이 높아 보관이 용이하고 쉽게 분해되지 않는 장점이 있다.
PNA는 상보적인 염기 서열의 천연 핵산과 혼성화(hybridization) 반응을 통해 이중가닥을 형성한다. 길이가 같은 경우 PNA/DNA 이중가닥은 DNA/DNA 이중가닥보다, PNA/RNA 이중가닥은 DNA/RNA 이중가닥보다 안정하다. 또한, PNA는 단일 염기 부정합(single base mismatch) 때문에 이중 가닥이 불안정해지는 정도가 크기 때문에 SNP(single nucleotide polymorphism)를 검출하는 능력이 천연핵산보다 더 뛰어나다
또한, DNA-DNA 결합력보다 PNA-DNA 결합력이 매우 우수하여 1개의 뉴클레오티드 미스 매치(nucleotide miss match)에도 10~15℃ 가량 차이가 난다. 이러한 결합력의 차이를 이용하여 SNP(Single-nucleotide polymorphism) 및 In/Del의 뉴클레오티드(nucleotide)의 변화를 검출(detection)할 수 있게 된다.
본 발명에 따른 PNA 염기서열의 길이는 특별히 제한되지는 않지만, 바이러스 종류에 따른 특정 염기서열(예컨대, 염기변이 또는 단일염기 다형성(single nucleotide polymorphism, SNP))이 포함되도록 12~18mer 길이로 제작할 수 있다. 이때, PNA 프로브의 길이를 조절하여 원하는 Tm값을 가지도록 PNA 프로브를 디자인할 수도 있고, 같은 길이의 PNA 프로브라도 염기서열에 변화를 주어 Tm값을 조절하는 것도 가능하다. 또한, PNA 프로브는 DNA보다 결합력이 우수하여 기본적인 Tm값이 높기 때문에 DNA보다 짧은 길이로 디자인이 가능하여 가깝게 이웃한 염기변이 또는 SNP라도 검출이 가능하다. 기존의 HRM(High Resolution Melt) 방법에 의하면 Tm값의 차이가 약 0.5℃로 매우 적어서 추가적인 분석프로그램이나 세밀한 온도 변화 또는 보정을 필요로 하고, 이 때문에 2개 이상의 염기변이 또는 SNP가 나타날 경우에는 분석이 어려웠지만, 본 발명에 따른 PNA 프로브는 PNA 프로브의 서열과 SNP에 대해서는 영향을 받지 않아 간편하게 분석이 가능하다.
본 발명에서와 같이, PNA 프로브가 14개의 염기서열을 포함하는 경우에는, 가운데 염기서열 중 하나 이상의 위치에 바이러스의 염기변이 또는 SNP 부위에 상응하는 서열을 가지는 것이 바람직하다. 또한, PNA 프로브는 염기서열의 가운데 부분에 바이러스의 염기변이 또는 SNP 부위에 상응하는 서열을 포함하여 구조적인 변형을 가질 수 있고, 이를 통해 완전한 혼성화를 이루는 표적 핵산(perfect match)과의 융해온도(Tm) 차이를 더욱 크게 할 수 있다.
본 발명은 또 다른 관점에서, 상기 프라이머 쌍, 및 상기 PNA 프로브를 포함하는 수산생물전염병 원인바이러스의 판별 또는 검출용 조성물 및 키트에 관한 것이다.
본 발명은 일 양태에 있어서, 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 1의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스병 원인바이러스의 검출용 조성물을 제공할 수 있다.
본 발명은 다른 양태에 있어서, 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 2의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 키트를 제공할 수 있다.
본 발명은 다른 양태에 있어서, 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 1의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스병 원인바이러스의 검출용 키트를 제공할 수 있다.
본 발명은 다른 양태에 있어서, 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 2의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 조성물을 제공할 수 있다.
본 발명의 키트는 버퍼, DNA 중합효소 조인자 및 데옥시리보뉴클레오타이드-5-트리포스페이트와 같은 표적 핵산 증폭 반응(예컨대, PCR 반응)을 실시하는데 필요한 시약을 선택적으로 포함할 수 있다. 선택적으로, 본 발명의 키트는 또한 다양한 폴리뉴클레오타이드 분자, 역전사효소, 다양한 버퍼 및 시약, 및 DNA 중합효소 활성을 억제하는 항체를 포함할 수 있다. 또한, 상기 키트는 특정 반응에서 사용되는 시약의 최적량은, 본 명세서에 개시사항을 습득한 당업자에 의해서 용이하게 결정될 수 있다. 전형적으로, 본 발명의 장비는 앞서 언급된 구성 성분들을 포함하는 별도의 포장 또는 컴파트먼트(compartment)로 제작될 수 있다.
상기 키트는, RSIV/ISKNV의 구별용 유전자 염기서열을 검출 및/또는 판별할 수 있는, PNA 기반의 다중 분석 키트로 구성될 수 있으며, 1개의 2x qPCR premix tube 및 1개의 올리고머 혼합물 튜브(oligomer mix tube)를 포함하며, 상기 올리고머 혼합물은 1개의 TaqMan 프로브, 서열번호 1 또는 서열번호 2의 PNA 프로브 및 서열번호 3~서열번호 6의 프라이머에서 2 이상 선택되는 프라이머를 포함하여 이루어진 것을 특징으로 할 수 있다(표 1 참조).
상기 키트를 이용하면, PNA 프로브에 의한 용해곡선 분석을 통하여 표적 핵산의 단일염기변이 및 염기의 결손 또는 삽입에 의한 변이를 효과적으로 검출할 수 있고, 이를 통하여 바이러스의 종 판별이 가능하다.
한편, 본 발명에서는 (i) 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)/감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)의 특정 유전자; 또는 (ii) RSIV/RSKNV로부터 RSIV를 구분하는 특정 유전자에 따른 판별 또는 검출을 위해 RSIV 및/또는 RSKNV에 대하여 OIE 기준에 따른 검출용 PCR을 수행한 다음, 상기 PCR 산물에 상응하는 유전자 염기서열을 비교 분석하여, 서열번호 1 또는 서열번호 2의 염기서열로 표시되는 PNA 프로브를 제작하였고, 상기 PNA 및 서열번호 3~서열번호 6의 염기서열로 표시되는 프라이머를 이용하여 합성된 PCR 증폭산물에 PNA 프로브를 혼성화시켜 얻은 융해곡선으로부터 융해온도(Tm)를 확인하여 RSIV 및/또는 RSKNV를 판별하고 검출할 수 있었다.
따라서, 본 발명은 또 다른 관점에서,
(a) 검체 시료로부터 표적 핵산을 추출하는 단계;
(b) 상기 표적 핵산에 포함된 수산생물전염병 원인바이러스의 유전자 마커 염기서열을 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍 또는 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍을 이용하여 증폭시키고, 상기 증폭된 유전자 마커 서열단편에 제4항 내지 제8항 중 어느 한 항의 PNA 프로브를 혼성화시키는 단계;
(c) 상기 (b) 단계에서 PNA 프로브로 혼성화된 산물의 온도를 높이면서 온도별 융해곡선을 얻는 단계; 및
(d) 상기 (c) 단계에서 얻은 융해곡선의 분석을 통해 융해온도로부터 수산생물전염병 원인바이러스의 바이러스 유형을 판별하거나 어류의 상기 바이러스 유형의 감염 여부를 검출하는 단계;
를 포함하는 수산생물전염병 원인바이러스의 판별 또는 검출 방법에 관한 것이다.
본 발명은 일 양태에 있어서,
(a) 검체 시료로부터 표적 핵산을 추출하는 단계;
(b) 상기 표적 핵산에 포함된 참돔 이리도바이러스병 원인바이러스의 유전자 마커 염기서열을 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍을 이용하여 증폭시키고, 상기 증폭된 유전자 마커 서열단편에 서열번호 1로 표시되는 PNA 프로브를 혼성화시키는 단계;
(c) 상기 (b) 단계에서 PNA 프로브로 혼성화된 산물의 온도를 높이면서 온도별 융해곡선을 얻는 단계; 및
(d) 상기 (c) 단계에서 얻은 융해곡선의 분석을 통해 융해온도로부터 참돔 이리도바이러스병 원인바이러스의 감염 여부를 검출하는 단계를 포함하는 참돔 이리도바이러스병 원인바이러스의 검출 방법을 제공할 수 있다.
본 발명의 다른 양태에 있어서,
(a) 검체 시료로부터 표적 핵산을 추출하는 단계;
(b) 상기 표적 핵산에 포함된 참돔 이리도바이러스의 유전자 마커 염기서열을 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍을 이용하여 증폭시키고, 상기 증폭된 유전자 마커 서열단편에 서열번호 2로 표시되는 PNA 프로브를 혼성화시키는 단계;
(c) 상기 (b) 단계에서 PNA 프로브로 혼성화된 산물의 온도를 높이면서 온도별 융해곡선을 얻는 단계; 및
(d) 상기 (c) 단계에서 얻은 융해곡선의 분석을 통해 융해온도로부터 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)를 검출하거나 상기 바이러스의 감염 여부를 판별하는 단계를 포함하는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출 방법을 제공할 수 있다.
본 발명에 있어서, 상기 (b) 단계에서 상기 프라이머 쌍을 이용하여 상기 유전자 마커 염기서열을 증폭 시 TaqMan 프로브를 추가로 포함시켜 증폭곡선을 얻는 것을 특징으로 할 수 있다.
본 발명에 있어서, 2 이상의 표적 핵산을 사용하고, PNA 프로브에 표지되는 리포터를 표적 핵산별로 다르게 하여, 2 이상의 표적 핵산 검출을 통해 하나 이상의 수산생물전염병 원인바이러스의 바이러스 유형을 판별 또는 검출하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 증폭은 실시간 PCR(Real-Time Polymerase Chain Reaction)방법으로 수행하는 것을 특징으로 할 수 있다.
본 발명에서 "검체 시료"는 다양한 시료를 포함하며, 바람직하게는, 본 발명의 방법을 이용하여 생물시료(biosample)를 분석한다. 보다 바람직하게는, 본 발명에 기재된 바이러스 종(species)과 혼합된 시료이거나 상기 바이러스에 감염된 개체(예컨대, 어류 등)의 시료일 수 있으며, 식물, 동물, 인간, 균류, 박테리아 및 바이러스 기원의 생물시료가 분석될 수 있다. 포유류 또는 인간 기원의 시료를 분석하는 경우, 상기 시료는 특정 조직 또는 기관으로부터 유래될 수 있다. 조직의 대표적인 예로는, 결합, 피부, 근육 또는 신경 조직이 포함된다. 기관의 대표적인 예로는, 눈, 뇌, 폐, 간, 비장, 골수, 흉선, 심장, 림프, 혈액, 뼈, 연골, 췌장, 신장, 담낭, 위, 소장, 고환, 난소, 자궁, 직장, 신경계, 선 및 내부 혈관이 포함된다. 분석되는 생물시료는 생물학적 근원으로부터 나온 어떠한 세포, 조직, 유체액(fluid), 또는 본 발명에 의하여 잘 분석될 수 있는 어떠한 다른 매질(medium)도 포함하며, 이는 인간, 동물, 인간 또는 동물의 소비를 위하여 제조된 음식으로부터 얻은 시료가 포함된다. 또한, 분석되는 생물시료는 체액 시료를 포함하며, 이는 혈액, 혈청, 혈장, 림프, 모유, 소변, 분변, 안구 유액, 타액, 정액, 뇌 추출물(예컨대, 뇌 분쇄물), 척수액, 충수, 비장 및 편도선 조직 추출물이 포함되나, 이에 한정되는 것은 아니다.
본 발명의 '표적 핵산', '합성 DNA' 또는 '인공합성 올리고'는 검출 여부를 판별하고자 하는 핵산 서열(염기변이 또는 SNP 포함)을 의미하며, 생리ㆍ생화학적 기능을 가지는 단백질을 코딩하는 '표적 유전자'의 핵산 서열의 특정 부위를 포함하고, 혼성화, 어닐링 또는 증폭 조건 하에서 프라이머 또는 프로브와 어닐링 또는 혼성화된다.
본 발명의 '혼성화'는 상보적인 단일가닥 핵산들이 이중-가닥 핵산을 형성하는 것을 의미한다. 혼성화는 2개의 핵산 가닥 간의 상보성이 완전할 경우(perfect match) 일어나거나 또는 일부 부정합(mismatch) 염기가 존재하여도 일어날 수 있다. 혼성화에 필요한 상보성의 정도는 혼성화 조건에 따라 달라질 수 있으며, 특히 온도에 의하여 조절될 수 있다.
본 발명에 있어서, 상기 융해곡선 분석은 FMCA(Fluorescence Melting Curve Analysis; 형광융해곡선분석) 방법으로 수행하는 것을 특징으로 할 수 있다.
본 발명의 리포터 및 소광자가 포함된 PNA 프로브는 표적 핵산과 혼성화된 후 형광 신호가 발생하며, 온도가 올라감에 따라 프로브의 적정 융해 온도에서 표적 핵산과 빠르게 융해되어 형광 신호가 소광되며, 이러한 온도 변화에 따른 상기 형광 신호로부터 얻어진 고해상도의 융해곡선 분석을 통하여 표적 핵산의 염기 변성(염기변이 또는 SNP 포함) 유무를 검출할 수 있다. 상기 PNA 프로브는 표적 핵산 염기서열과 완전한 혼성화(perfect match)를 이루는 경우 예상된 융해온도(Tm) 값을 보이지만, 염기변이가 존재하는 표적 핵산과는 불완전한 혼성화(mismatch)를 이루어서 예상보다 낮은 융해온도(Tm) 값을 보이는 것이 특징이다.
본 발명의 '염기변이'는 표적 핵산의 염기서열에 변이가 일어난 것으로, 단일염기 다형성(single nucleotide polymorphism, SNP)뿐만 아니라, 염기의 치환, 결실 또는 삽입되어 변이가 일어난 것을 포함하는 것을 특징으로 하며, 본 발명의 PNA 프로브는 표적 핵산의 SNP 또는 표적 핵산의 염기가 치환, 결실 또는 삽입되어 변이가 일어난 것을 융해곡선 분석을 통해 분석할 수 있다.
본 발명의 상기 PNA 프로브는 양 말단에 리포터(reporter)와 리포터 형광을 소광(quenching)할 수 있는 소광자(quencher)의 형광 물질이 결합할 수 있다. 상기 리포터(reporter)는 FAM(6-carboxyfluorescein), Texas red, HEX(2',4',5',7',-tetrachloro-6-carboxy-4,7-dichlorofluorescein), JOE, Cy3 및 Cy5로 구성되는 군에서 선택되는 하나 이상일 수 있으며, 상기 소광자는 TAMRA(6-carboxytetramethyl-rhodamine), BHQ1, BHQ2 및 Dabcyl로 구성되는 군에서 선택되는 하나 이상일 수 있으나, 이에 한정되는 것은 아니며, 바람직하게는 Dabcyl(FAM-labeled)을 사용할 수 있다.
PNA 프로브의 뉴클레오티드와 이에 상보적으로 결합하는 DNA의 뉴클레오티드의 차이에 따라서도 Tm값의 변화를 나타내어 이를 이용한 애플리케이션(application)의 개발이 용이하다. PNA 프로브는 TaqMan 프로브의 가수분해방법(hydrolysis method)과는 다른 혼성화방법(hybridization method)를 이용하여 분석하며 비슷한 역할을 하는 프로브로는 분자 비컨 프로브(molecular beacon probe), 스코피언 프로브(scorpion probe)가 있다.
PNA 프로브를 이용한 특정 염기서열(예컨대, 염기변이 또는 SNP) 분석을 위해서는 우선 특정 염기서열을 인식하는 염기(들)가 포함된 프로브와 PCR을 위한 정방향/역방향(Forward/Reverse) 프라이머 세트만 있으면 충분하다. 상기 PCR 조건은 기존의 방법을 사용가능하며 PCR이 끝난 후 융해(melting) 과정이 필요하고 0.5℃ 씩 증가할 때마다 형광의 세기를 측정하여 Tm값을 얻는다. 특히 일반적인 실시간 PCR(real-time PCR) 장치는 널리 보급되어 있으며 HRM(High resolution melting)과 같이 부가적인 프로그램 구입이나 세밀한 온도변화를 요구하지 않는 장점이 있다.
본 발명의 융해곡선 분석은 표적 핵산인 DNA 또는 RNA와 프로브로 형성되는 이중쇄 핵산의 융해온도를 해석하는 방법이다. 이러한 방법은 예컨대, Tm 해석, 또는 상기 이중쇄의 융해곡선의 해석에 의해 행해지기 때문에, 융해곡선 분석이라고 불리고 있다. 검출 대상(표적)의 특정 염기서열(염기변이 또는 SNP 포함)에 상보적인 프로브를 이용하여, 검출 시료의 표적 단일쇄 DNA와 상기 프로브와의 하이브리드(이중쇄 DNA)를 형성시킨다. 계속해서, 이 하이브리드 형성체에 가열 처리를 실시하고, 온도 상승에 따른 하이브리드의 해리(융해)를, 흡광도 등의 시그널의 변동에 의해 검출한다. 그리고, 이 검출 결과에 기초하여 Tm값을 결정함으로써, 특정 염기서열의 유무를 판단하는 방법이다. Tm값은 하이브리드 형성체의 상동성이 높을수록 높고, 상동성이 낮을수록 낮아진다. 이 때문에, 검출 대상의 특정 염기서열과 그것에 상보적인 프로브와의 하이브리드 형성체에 대해서 미리 Tm값(평가 기준값)을 구해 두고, 검출 시료의 표적 단일쇄 DNA와 상기 프로브와의 Tm값(측정값)을 측정하여, 측정값이 평가 기준값과 동일한 정도이면, 매치, 즉 표적 DNA에 특정 염기서열이 존재한다고 판단할 수 있고, 측정값이 평가 기준값 보다 낮으면, 미스매치, 즉 표적 DNA에 변이가 존재하지 않는다고 판단할 수 있다.
본 발명의 형광융해곡선 분석은 형광물질을 사용하여 융해곡선을 분석하는 방법으로, 보다 구체적으로, 형광물질을 포함하는 프로브를 이용하여 융해곡선을 분석할 수 있다. 형광물질은 리포터 및 소광자일 수 있으며, 인터컬레이팅 형광물질일 수 있다.
본 발명의 리얼타임 PCR(Real-Time Polymerase Chain Reaction) 방법은, 형광물질이 PCR 과정에서 이중가닥(double strand) DNA 사슬에 결합(interchelating)되도록 하고 PCR 산물의 증폭과 함께, 온도를 높여 주어 DNA 이중 가닥을 풀어줌으로써 DNA 이중 가닥 사이에 존재하는 형광물질의 양이 줄어들게 되는 융해곡선의 패턴, 특히 DNA가 융해(변성)되는 온도(Tm)를 분석하여 특정 염기서열(염기변이, SNP 포함)의 유무로 바이러스 유형의 검출 및/또는 판별이 가능하다.
도 1 또는 도 2는 일 실시예에 따른 바이러스 판별 또는 검출용 펩티드핵산의 기술적 특징을 설명하기 위한 개념도이고, 여기에 나타난 바와 같이, PNA 프로브는 표적 핵산과 혼성화된 후 형광 신호를 발생시킬 수 있으며, 온도가 올라감에 따라 프로브의 적정 융해온도에서 표적 핵산으로부터 빠르게 융해되어 형광신호를 소광시킨다. 본 발명은 이러한 온도 변화에 따른 상기 형광 신호로부터 얻어진 고 해상도의 융해곡선 분석(fluorescence melting curve analysis; FMCA)을 통하여, 표적 핵산의 염기변이 유무를 검출할 수 있는 것이다. 본 발명에 따른 PNA 프로브는 표적 핵산 염기서열과 완전한 혼성화(perfect match)를 이루는 경우 예상된 융해온도(Tm) 값을 보이지만, 염기변이가 존재하는 표적 핵산과는 불완전한 혼성화(mismatch)를 이루어서 예상보다 낮은 융해온도(Tm) 값을 보이는 것을 특징으로 할 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예 1: 참돔 이리도바이러스병 원인바이러스의 판별 또는 검출용 유전자 마커, 및 상기 바이러스에 특이적인 프라이머 및 PNA 프로브 제작
1-1: 참돔 이리도바이러스병 원인바이러스: RSIV(Red Sea Bream Iridovirus)/ISKNV(Infectious Spleen and Kidney Necrosis Virus)
RSIV/ISKNV의 OIE 기준의 검출용 “PCR protocol 1(OIE 1)”법으로 합성되는 유전자 단편의 서열을 미국 국립생물공학정보센터(National Center for Biotechnology Information, NCBI)의 뉴클레오티드 DB(nucleotide database)에 등록된 염기서열과 비교 분석하여 바이러스 유형별 유전자의 염기서열을 확보하고자 하였다.
그 결과, 5'-CCATGTACAACATGCTC-3'(서열번호 7)로 표시되는 RSIV/ISKNV의 공통적인 염기서열을 확보하고, 상기 염기서열을 RSIV/ISKNV의 판별 또는 검출용 유전자 마커로 선정하였다.
또한, 상기 유전자 마커의 DNA 증폭용 프라이머로 서열번호 3 및 서열번호 4로 표시되는 프라이머 쌍(Forward primer 1, Reverse primer 1) 및 상기 유전자 마커의 혼성화용 프로브로 서열번호 1로 표시되는 PNA 1을 제작하였다.
도 3은 RSIV/ISKNV의 상기 유전자의 일부와 판별/검출용 염기서열 및 이로부터 도출된 PNA의 염기서열 일례를 나타내는 염기서열도이고, PNA 프로브 해당 염기서열은 파란색으로 표기하였다.
1-2: 참돔 이리도바이러스병 원인바이러스: RSIV
RSIV/ISKNV의 OIE 기준의 검출용 “PCR protocol 2(OIE 4)”법으로 합성되는 유전자 단편의 서열을 미국 국립생물공학정보센터(National Center for Biotechnology Information, NCBI)의 뉴클레오티드 DB(nucleotide database)에 등록된 염기서열과 비교 분석하여 바이러스 유형별 유전자의 염기서열을 확보하고자 하였다.
그 결과, 5'-ACCAAGTTCATCATCT-3'(서열번호 8)로 표시되는 RSIV 및 ISKNV 간의 판별이 가능한 RSIV의 단일염기 다형성(single nucleotide polymorphism, SNP)을 가지는 염기서열을 확보하고, 상기 염기서열을 RSIV의 판별 또는 검출용 유전자 마커로 선정하였다.
또한, 상기 유전자 마커의 DNA 증폭용 프라이머로 서열번호 5 및 서열번호 6으로 표시되는 프라이머 쌍(Forward primer 2, Reverse primer 2) 및 상기 유전자 마커의 혼성화용 프로브로 서열번호 2로 표시되는 PNA 2를 제작하였다.
도 4는 RSIV/ISKNV의 상기 유전자의 일부와 판별/검출용 염기서열 및 이로부터 도출된 PNA의 염기서열 일례를 나타내는 염기서열도이고, PNA 프로브 해당 염기서열은 파란색으로 표기하였다.
이와 같이, 본 발명에 따른 PNA 프로브 및 프라이머 염기서열을 결정하였고, 표 1에 나타내었다.
구분 | 이름 | 서열번호 | 서열(5'-> 3') | 변형(형광 리포터) | 타깃 |
PNA 프로브 | PNA 1 | 서열번호1 | CCATGTACAACATGCTC | TexasRed, Dabsyl | RSIV, ISKNV |
PNA 2 | 서열번호2 | AGATGATGAACTTGGT | Cy5, Dabsyl | RSIV | |
프라이머 | Forward primer 1 | 서열번호3 | CTCAAACACTCTGGCTCATC | ㅡ | RSIV, ISKNV |
Reverse primer 1 | 서열번호4 | GCACCAACACATCTCCTATC | ㅡ | RSIV, ISKNV | |
Forward primer 2 | 서열번호5 | CGGGGGCAATGACGACTACA | ㅡ | RSIV | |
Reverse primer 2 | 서열번호6 | CCGCCTGTGCCTTTTCTGGA | ㅡ | RSIV | |
바이러스 마커 | VM 1 | 서열번호7 | CCATGTACAACATGCTC | ㅡ | RSIV/ISKNV |
VM 2 | 서열번호8 | ACCAAGTTCATCATCT | ㅡ | RSIV |
TaqMan 및 PNA 프로브 등은 같은 형광이 포함되지 않도록 각각 FAM, TexasRed, Cy5를 결합하여 제작하였다. 그런 다음, 표 1에 나타난 바와 같은 염기서열과 리포터 및 소광자로 PNA 프로브를 제작하였다. 본 발명에서 사용한 PNA 프로브는 PNA 프로브 디자이너(Applied biosystems, 미국)를 이용하여 설계하였고, PNA 프로브는 파나진(Panagene, 한국)에서 HPLC 정제 방법으로 합성하였고, 합성된 모든 프로브의 순도는 질량분석법을 이용하여 확인하였다(표적 핵산과의 더 효과적인 결합을 위해 프로브의 불필요한 이차구조는 피하도록 제작함).
실시예 2: 바이러스의 판별 또는 검출용 Real-Time PCR의 확립
실시예 1에서 제작된 PNA 프로브 및 프라이머를 이용하여, 참돔 이리도바이러스병 원인바이러스의 DNA 샘플에 대하여 증폭곡선 및 용해곡선을 도출하였고, 이를 분석하여 원인바이러스의 판별 또는 검출을 수행하였다. 이때, OIE(Office of International Epizootics, 세계동물보건기구) 기준에 따른 상기 원인바이러스의 판별 또는 검출용 TaqMan 프로브(및 이와 상응하는 프라이머 세트)를 이용할 수 있다.
PCR은 CFX96™ Real-Time 시스템(BIO-RAD 사, 미국)을 이용하여 수행하였으며, 모든 PCR 조건은 단일가닥 표적핵산을 생성하기 위해 비대칭 PCR(asymmetric PCR)을 이용하였다.
비대칭 PCR을 위한 반응물의 조성은 표 2에 나타내었다. PCR master mix를 만든 후 1μl 바이러스 DNA를 첨가하여 Real-time PCR을 수행하였다. 서로 다른 바이러스 유형을 동시에 판별 또는 검출하고자 할 경우, 각 바이러스의 주형 DNA를 1μl씩 참가한 다음, PCR을 수행하였다.
조성 | 용량 |
2X qRT PCR Premix (TaqMan용) | 10 μL |
RSIV/ISKNV Oligomer Mix | 8.5 μL |
RSIV, ISKNV | PNA probe (5 pmole) |
Forward primer (1 pmole) | |
Reverse primer (10 pmole) | |
RSIV | PNA probe (5 pmole) |
Forward primer (20 pmole) | |
Reverse primer (2 pmole) | |
주형 DNA | ㅡ |
증류수 | up to 20μL |
표 3은 반응물의 증폭 조건 및 혼성화 반응 조건을 나타낸 것으로, 바이러스 DNA 샘플을 증폭하고 혼성화한 다음, 상기 혼성화된 산물의 온도를 높이는 과정을 나타낸 것이다. 상기 과정은 Real-time PCR로 수행되었다.
단계 | 온도(℃) | 반응시간 및 사이클 |
UDG incubation | 50 | 5 min (optional) |
Initial denaturation | 95 | 10 min |
35-40 cycles | 95 | 30 sec |
56 | 60 sec (FAM, TexasRed) | |
74 | 60 sec | |
Re-denaturation | 95 | 5 min |
Probe binding | 75 | 30 sec |
75 | 30 sec | |
Melting | 35 to 80 | Increment 1.0℃, 5 sec (HEX, TexasRed, Cy5) |
실시예 3: Real-time PCR의 증폭 곡선 및 융해곡선에 따른 바이러스의 판별 또는 검출 방법
본 발명에 따른 판별 또는 검출 방법으로 Real-time PCR를 수행하여 하나 이상의 바이러스를 함유하는 샘플을 다중 검출하고자 하는 경우, 표 1에 나타난 바와 같이 다양한 형광 리포터를 PNA 프로브에 결합시켜 사용할 수 있다.
예컨대, 표 4에 나타난 바와 같이, 형광 리포터로 바이러스 종류를 판별할 수 있도록 바이러스 특이적 형광 증폭곡선을 확인한다(TexasRed 형광으로 RSIV/ISKNV 검출).
형광 리포터 | 바이러스 종류 |
TexasRed | RSIV/ISKNV |
또한, 본 발명에 따른 판별 또는 검출 방법으로 Real-time PCR를 수행하여 RSIV와 ISKNV의 판별을 하고자 하는 경우, 표 5와 같은 융해온도 및 형광별 스코어 표를 미리 만들어 놓고, 이를 활용하는 것이 가능하다.
실시예 2에서와 같이 융해곡선 분석을 수행한 다음, 도출한 형광 신호 및 Tm값을, 상보성이 완전한 때의(perfect match) 온도에 맞추어 디지털화하였다. 즉, perfect match 온도의 ±2℃ 범위를 만들고, 미지의 바이러스 DNA 샘플에 대한 Tm값이 상기 범위 안에 들면 바이러스 유형을 특정하여 판별할 수 있다.
도 5 및 도 6은 본 발명에 따른 서열번호 1 또는 서열번호 2의 펩티드핵산을 바이러스 DNA 샘플에 대하여 적용하여 얻은 증폭곡선 및 형광별 융해곡선 그래프를 나타낸 것으로, 각각의 바이러스 또는 동시에 여러 바이러스의 판별 또는 검출이 가능한 것으로 나타났다.
형광 리포터 | Tm(℃) | 바이러스 |
TexasRed, Cy5 | 64, 67 | RSIV |
TexasRed | 64 | ISKNV |
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명은 참돔 이리도바이러스병 원인바이러스의 판별 및/또는 검출용 유전자 마커를 선정하여, (i) 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)/감염성 비장 및 신장 괴사 바이러스(Infectious Spleen and Kidney Necrosis Virus, ISKNV)의 특정 유전자; 또는 (ii) RSIV/RSKNV로부터 RSIV를 구분하는 특정 유전자 마커에 특이적인 펩티드핵산 및 프라이머 쌍을 이용하여 바이러스 유형마다 서로 다른 형광의 증폭 및 융해곡선을 나타내게 함으로써 수산생물전염병 원인바이러스를 간단·신속·정확하게 판별하고, 어류의 상기 바이러스의 감염 여부를 검출할 수 있는 효과가 있다.
전자파일 첨부하였음.
Claims (15)
- 서열번호 7의 염기서열로 표시되는 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커.
- 제1항에 있어서, 상기 참돔 이리도바이러스병 원인바이러스는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV); 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)인 것을 특징으로 하는 마커.
- 서열번호 8의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 유전자 마커.
- 서열번호 1의 염기서열로 표시되는 참돔 이리도바이러스병 원인바이러스의 검출용 PNA 프로브.
- 제4항에 있어서, 리포터 및 소광자 중에서 어느 하나 이상이 결합되어 있는 것을 특징으로 하는 PNA 프로브.
- 제4항에 있어서, 상기 참돔 이리도바이러스병 원인바이러스는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV) 또는 감염성 비장 및 신장 괴사바이러스(ISKNV)인 것을 특징으로 하는 PNA 프로브.
- 서열번호 2의 염기서열로 표시되는 수산생물전염병 원인바이러스인 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 PNA 프로브.
- 제7항에 있어서, 리포터 및 소광자 중에서 어느 하나 이상이 결합되어 있는 것을 특징으로 하는 PNA 프로브.
- 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 1의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스병 원인바이러스의 검출용 조성물.
- 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 2의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 조성물.
- 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 1의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스병 원인바이러스의 검출용 키트.
- 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍, 및 서열번호 2의 염기서열로 표시되는 PNA 프로브를 포함하는 참돔 이리도바이러스(Red Sea Bream Iridovirus, RSIV)의 판별 또는 검출용 키트.
- 다음 단계를 포함하는 수산생물전염병 원인바이러스의 판별 또는 검출 방법:(a) 검체 시료로부터 표적 핵산을 추출하는 단계;(b) 상기 표적 핵산에 포함된 수산생물전염병 원인바이러스의 유전자 마커 염기서열을 서열번호 3 및 서열번호 4의 염기서열로 표시되는 프라이머 쌍 또는 서열번호 5 및 서열번호 6의 염기서열로 표시되는 프라이머 쌍을 이용하여 증폭시키고, 상기 증폭된 유전자 마커 서열단편에 제4항 내지 제8항 중 어느 한 항의 PNA 프로브를 혼성화시키는 단계;(c) 상기 (b) 단계에서 PNA 프로브로 혼성화된 산물의 온도를 높이면서 온도별 융해곡선을 얻는 단계; 및(d) 상기 (c) 단계에서 얻은 융해곡선의 분석을 통해 융해온도로부터 수산생물전염병 원인바이러스의 바이러스 유형을 판별하거나 어류의 상기 바이러스 유형의 감염 여부를 검출하는 단계.
- 제13항에 있어서, 상기 (b) 단계에서 상기 프라이머 쌍을 이용하여 상기 유전자 마커 염기서열을 증폭 시 TaqMan 프로브를 추가로 포함시켜 증폭곡선을 얻는 것을 특징으로 하는 방법.
- 제13항에 있어서, 2 이상의 표적 핵산을 사용하고, PNA 프로브에 표지되는 리포터를 표적 핵산별로 다르게 하여, 2 이상의 표적 핵산 검출을 통해 하나 이상의 수산생물전염병 원인바이러스의 바이러스 유형을 판별 또는 검출하는 것을 특징으로 하는 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160005615A KR101642783B1 (ko) | 2016-01-15 | 2016-01-15 | 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 |
KR10-2016-0005615 | 2016-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017122897A1 true WO2017122897A1 (ko) | 2017-07-20 |
Family
ID=56617202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/009374 WO2017122897A1 (ko) | 2016-01-15 | 2016-08-24 | 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101642783B1 (ko) |
WO (1) | WO2017122897A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113215167A (zh) * | 2021-05-24 | 2021-08-06 | 广西科学院 | 核酸适配体及其在检测大口黑鲈虹彩病毒感染的细胞中的应用 |
CN117385053A (zh) * | 2023-10-08 | 2024-01-12 | 山东省渔业发展和资源养护总站 | 一种与海水鲈鱼生长性状相连锁的分子标记位点 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101642784B1 (ko) * | 2016-01-15 | 2016-07-27 | 대한민국 | 바이러스성 출혈성 패혈증 바이러스 판별용 유전자 마커, 및 이를 이용한 원인바이러스의 판별방법 |
CN110042174A (zh) * | 2019-04-09 | 2019-07-23 | 广东省农业科学院动物卫生研究所 | 海鲈虹彩病毒的检测方法与试剂盒 |
CN114807149B (zh) * | 2022-03-21 | 2023-11-17 | 华南农业大学 | 一种特异性识别大口黑鲈虹彩病毒的核酸适配体及其应用 |
CN116555433B (zh) * | 2022-12-28 | 2024-03-19 | 中国水产科学研究院南海水产研究所 | 一种用于鉴别黄鳍棘鲷和平鲷的引物、试剂盒及应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102559928A (zh) * | 2011-12-28 | 2012-07-11 | 中国海洋大学 | 特异性引物组、包含其的试剂盒、使用方法及检测方法 |
KR20150028063A (ko) * | 2013-09-05 | 2015-03-13 | 주식회사 시선바이오머티리얼스 | 리포터 및 소광자가 결합된 프로브를 이용한 액상형 어레이 및 이를 이용한 표적핵산 또는 돌연변이 검출방법 |
KR101557844B1 (ko) * | 2013-11-29 | 2015-10-06 | 한국해양과학기술원 | 이리도바이러스를 검출하기 위한 등온증폭 반응용 프라이머 세트, 이를 포함하는 프라이머 조성물, 및 이를 이용한 이리도바이러스 검출방법 |
-
2016
- 2016-01-15 KR KR1020160005615A patent/KR101642783B1/ko active IP Right Grant
- 2016-08-24 WO PCT/KR2016/009374 patent/WO2017122897A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102559928A (zh) * | 2011-12-28 | 2012-07-11 | 中国海洋大学 | 特异性引物组、包含其的试剂盒、使用方法及检测方法 |
KR20150028063A (ko) * | 2013-09-05 | 2015-03-13 | 주식회사 시선바이오머티리얼스 | 리포터 및 소광자가 결합된 프로브를 이용한 액상형 어레이 및 이를 이용한 표적핵산 또는 돌연변이 검출방법 |
KR101557844B1 (ko) * | 2013-11-29 | 2015-10-06 | 한국해양과학기술원 | 이리도바이러스를 검출하기 위한 등온증폭 반응용 프라이머 세트, 이를 포함하는 프라이머 조성물, 및 이를 이용한 이리도바이러스 검출방법 |
Non-Patent Citations (2)
Title |
---|
KIM, JIN WOO ET AL.: "Diagnosis Case of Viral Hemorrhagic Septicemia (VHS) for Adult Paralichthys Olivaceus", KOREAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, vol. 45, no. 6, 2012, pages 666 - 674, XP055401235 * |
MANUALS OF DIAGNOSTIC TESTS FOR AQUATIC ANIMALS, 2009, XP055400683 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113215167A (zh) * | 2021-05-24 | 2021-08-06 | 广西科学院 | 核酸适配体及其在检测大口黑鲈虹彩病毒感染的细胞中的应用 |
CN113215167B (zh) * | 2021-05-24 | 2023-11-17 | 广西科学院 | 核酸适配体及其在检测大口黑鲈虹彩病毒感染的细胞中的应用 |
CN117385053A (zh) * | 2023-10-08 | 2024-01-12 | 山东省渔业发展和资源养护总站 | 一种与海水鲈鱼生长性状相连锁的分子标记位点 |
CN117385053B (zh) * | 2023-10-08 | 2024-04-05 | 山东省渔业发展和资源养护总站 | 一种与海水鲈鱼生长性状相连锁的分子标记位点 |
Also Published As
Publication number | Publication date |
---|---|
KR101642783B1 (ko) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017122896A1 (ko) | 수산생물전염병 원인바이러스의 판별 및 검출용 유전자 마커,및 이를 이용한 원인바이러스의 판별 및 검출 방법 | |
WO2017122897A1 (ko) | 참돔 이리도바이러스병 원인바이러스의 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 | |
WO2017099445A1 (ko) | 어류 에드와드 감염증과 연쇄구균 감염증 원인세균의 판별 및 검출용 유전자 마커, 및 이를 이용한 원인세균의 판별 및 검출 방법 | |
WO2018174318A1 (ko) | 양기능성 pna 프로브를 이용한 융해곡선 분석방법, 및 이를 이용한 현미부수체 불안정성의 진단방법 및 현미부수체 불안정성 진단용 키트 | |
WO2015126078A1 (ko) | 핵산과 신호 프로브의 비대칭 등온증폭을 이용한 핵산의 검출방법 | |
KR102044683B1 (ko) | 콕시엘라 버네티 검출용 pna 프로브 및 이를 이용한 콕시엘라 버네티 검출방법 | |
WO2017030322A1 (ko) | 바이러스성 출혈성 패혈증 바이러스의 지역 특이적 유전형 판별용 프로브 및 그 용도 | |
KR101986193B1 (ko) | 유전성 난청 검출용 pna 프로브 및 이를 이용한 유전성 난청 검출방법 | |
KR102061896B1 (ko) | 소 바이러스성 설사 바이러스 유전형 판별용 pna 프로브 및 이를 이용한 소 바이러스성 설사 바이러스 유전형 판별방법 | |
KR101782489B1 (ko) | 바이러스성 출혈성 패혈증 바이러스의 검출용 pna 프로브 및 그 용도 | |
WO2022005255A2 (ko) | Pna 프로브를 이용한 코로나바이러스감염증-19을 일으키는 sars-cov-2 및 살베코바이러스의 동시 진단방법 및 진단용 키트 | |
WO2018092998A1 (ko) | 바이러스성 출혈성 패혈증 바이러스의 유전자 변이 검출방법 | |
WO2022203297A1 (ko) | 가이드 프로브 및 클램핑 프로브를 이용한 표적핵산 증폭방법 및 이를 포함하는 표적핵산 증폭용 조성물 | |
KR101737314B1 (ko) | 큰징거미새우 노다바이러스 검출용 유전자 마커, 및 이를 이용한 바이러스의 검출 방법 | |
WO2021201601A1 (ko) | Rt-lamp를 이용한 코로나바이러스감염증-19을 일으키는 sars-cov-2의 검출용 pna 프로브와 프라이머 및 이를 이용한 감염여부 판별방법 | |
WO2018048021A1 (ko) | Pna 프로브 및 융해곡선분석을 이용한 미토콘드리아 dna의 snp 분석방법 | |
WO2022124823A1 (ko) | 새우 급성간췌장괴사병 진단용 조성물 | |
KR101737318B1 (ko) | 노랑머리병 바이러스 검출용 유전자 마커, 및 이를 이용한 바이러스의 검출 방법 | |
KR101911220B1 (ko) | 돼지열병 바이러스 백신주 접종 돼지 및 돼지열병 바이러스 야외주 감염 돼지의 감별용 pna 프로브 및 이를 이용한 감별방법 | |
KR101644776B1 (ko) | 참돔 이리도바이러스 검출용 유전자 마커, 및 이를 이용한 원인바이러스의 검출 방법 | |
KR101737322B1 (ko) | 잉어봄바이러스병 바이러스 검출용 유전자 마커, 및 이를 이용한 바이러스의 검출 방법 | |
KR101677952B1 (ko) | 연쇄구균 감염증 원인세균인 락토코카스 가비에의 판별 및 검출용 유전자 마커, 및 이를 이용한 원인세균의 판별 및 검출 방법 | |
WO2022114720A1 (ko) | 높은 특이도의 표적핵산 증폭방법 및 이를 이용한 표적핵산 증폭용 조성물 | |
WO2023121335A1 (ko) | 유행성궤양증후군 검출용 조성물 및 이의 검출방법 | |
KR101737313B1 (ko) | 전염성 근괴사증 바이러스 검출용 유전자 마커, 및 이를 이용한 바이러스의 검출 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16885208 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16885208 Country of ref document: EP Kind code of ref document: A1 |