[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017121380A1 - 一种随机接入方法及装置 - Google Patents

一种随机接入方法及装置 Download PDF

Info

Publication number
WO2017121380A1
WO2017121380A1 PCT/CN2017/071105 CN2017071105W WO2017121380A1 WO 2017121380 A1 WO2017121380 A1 WO 2017121380A1 CN 2017071105 W CN2017071105 W CN 2017071105W WO 2017121380 A1 WO2017121380 A1 WO 2017121380A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
preamble
rnti
prachwinlen
communication node
Prior art date
Application number
PCT/CN2017/071105
Other languages
English (en)
French (fr)
Inventor
陆婷
戴博
余媛芳
邹伟
戴谦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610286416.3A external-priority patent/CN106973441B/zh
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/068,853 priority Critical patent/US10736149B2/en
Priority to ES17738193T priority patent/ES2809724T3/es
Priority to EP17738193.6A priority patent/EP3404991B1/en
Priority to EP23171205.0A priority patent/EP4221436A1/en
Priority to EP20186397.4A priority patent/EP3755110B1/en
Priority to KR1020187023225A priority patent/KR102687897B1/ko
Priority to JP2018536228A priority patent/JP6936232B2/ja
Publication of WO2017121380A1 publication Critical patent/WO2017121380A1/zh
Priority to US16/937,133 priority patent/US11051346B2/en
Priority to US17/346,047 priority patent/US11818762B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application relates to, but is not limited to, the field of communications, and in particular, to a random access method and apparatus.
  • Machine Type Communication is an important subject of the fifth generation of mobile communication technology (5G) and an important application field for wireless communication in the future.
  • MTC Machine Type Communication
  • NB-IoT Narrow Band-Internet of Things
  • the terminal characteristics such as low cost, low power consumption, low mobility, and low throughput.
  • Hzz Hzz
  • low-throughput wireless communication services are provided for NB-IoT low-cost terminals (UE, User Equipment).
  • the terminal adopts a contention access mechanism, first transmitting a preamble, and then transmitting the position of the third subframe after the last subframe of the preamble.
  • a random access (RA, Random Access) response window is started, and a random access response (RAR, Random Access Response) message is received.
  • the length of the RA response window is configured by system messages, and the maximum length is 10 radio subframes (ie, 1 radio frame).
  • the terminal demodulates the Physical Downlink Control Channel (PDCCH) by using a random access-Radio Network Temporary Identity (RA-RNTI) in the RA response window, and then demodulates the physical downlink shared channel (
  • the PDSCH Physical Downlink Shared Channel
  • the MAC Medium Access Control (MAC) Protocol Data Unit (PDU) including its RAR.
  • the time-frequency position of the preamble determines the value of the RA-RNTI, and the base station and the terminal each calculate a consistent RA-RNTI value according to the time-frequency position of the preamble.
  • the calculation formula of RA-RNTI is as follows:
  • RA-RNTI 1+t_id+10 ⁇ f_id
  • the t_id is a sequence number of the first subframe in which the preamble is transmitted, that is, the first subframe, and the value ranges from [1, 10), that is, 0 ⁇ t_id ⁇ 10, and the f_id is a physical random access channel in the subframe ( PRACH, Physical Random Access Channel), in ascending order, in the range of [0, 6), that is, 0 ⁇ f_id ⁇ 6.
  • PRACH Physical Random Access Channel
  • f_id is always equal to 0
  • the above formula can be simplified as:
  • t_id indicates the sequence number of the first subframe in which the terminal sends the preamble.
  • Radio frame therefore, the RA response windows of the two terminals receiving the RAR cannot overlap, and the collision can be avoided by the isolation of the RA response window; (3) if the two terminals transmit the preamble in different subframes of different radio frames, Calculate different RA-RNTIs to avoid collisions.
  • the calculation of the RA-RNTI only needs to reflect the difference of the different preamble transmission start subframes.
  • the related research introduces the repetition function of uplink transmission and downlink transmission, that is, whether the terminal sends an uplink message or a base station.
  • the reception effect is guaranteed by a certain number of repetitions.
  • the time required for the terminal to receive the downlink message or the base station to receive the uplink message may be extended. Therefore, in the related research, the value range of the RA response window is expanded, and the maximum is 400 subframes, that is, 40 radio frames.
  • the concept of coverage level is introduced in the related research to reflect the difference in coverage of different terminals. It can be considered that the uplink and downlink channels of terminals with the same coverage level can adopt the same repetition factor, and the length of the RA response window can also be same.
  • FIG. 1 is a schematic diagram showing an overlap of RA response windows of two terminals caused by an extension of the RA response window.
  • the subframe marked by the grid is the starting subframe position of the transmitting preamble
  • the slash marked sub-frame is the RA response window position.
  • the two terminals may need to demodulate the PDCCH twice in the overlapping RA response window, which increases power consumption.
  • the two terminals happen to adopt the same preamble sequence number, their RAR content is the same, and will need to be processed through the subsequent conflict resolution process. At least one terminal access failure is equivalent to the introduction. Additional conflicts.
  • the embodiment of the invention provides a random access method and device, which can ensure that when the random access (RA, Random Access) response windows of the terminal overlap, no additional conflicts are generated, and the power consumption of the terminal is reduced.
  • RA Random Access
  • a random access method includes: a communication node acquiring random access information, where the random access information includes: a sequence number of a subframe for transmitting a preamble, a sequence number of a radio frame for transmitting a preamble; and the communication The node determines the RA-RNTI according to the random access information.
  • the embodiment of the present invention further provides a random access method, including: the communication node acquires random access information, where the random access information includes: a time domain location index information for transmitting a preamble, and a frequency domain location index information for transmitting a preamble.
  • the communication node determines the RA-RNTI based on the random access information.
  • the embodiment of the present invention further provides a random access method, including: a communication node acquiring random access information, where the random access information includes: a time domain location index information of a preamble sent by a terminal, and a frequency domain location where the terminal sends a preamble Index information; the communication node determines the RA-RNTI based on the random access information.
  • An embodiment of the present invention further provides a random access method, including: a communication node acquiring a random access information correlation factor; and the communication node determining an RA-RNTI according to the random access information correlation factor.
  • the embodiment of the present invention further provides a random access device, which is applied to a communication node, and includes: an information acquiring module, configured to acquire random access information, where the random access information includes: sending The sequence number of the preamble subframe, the sequence number of the radio frame transmitting the preamble, and the processing module, configured to determine the RA-RNTI according to the random access information.
  • a random access device which is applied to a communication node, and includes: an information acquiring module, configured to acquire random access information, where the random access information includes: sending The sequence number of the preamble subframe, the sequence number of the radio frame transmitting the preamble, and the processing module, configured to determine the RA-RNTI according to the random access information.
  • the embodiment of the present invention further provides a random access method, including: the communication node acquires random access information, and the communication node determines the random access response window related information according to the random access information.
  • the embodiment of the present invention further provides a random access method, including: a communication node acquiring random access information, where the random access information includes: a sequence number of a superframe for transmitting a preamble; and the communication node is randomly connected according to the The incoming information determines the RA-RNTI.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement any of the above random access methods.
  • FIG. 1 is a schematic diagram showing an overlap of RA response windows of two terminals caused by an extension of the RA response window;
  • FIG. 3 is a schematic diagram of an application example 1 of the fifth embodiment
  • FIG. 5 is a schematic diagram of a random access device according to an embodiment of the present disclosure.
  • FIG. 6 is a flowchart of another random access method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a random access method according to an embodiment of the present invention. as shown in picture 2,
  • the random access method provided in this embodiment includes the following steps:
  • Step 201 The communication node acquires random access information, where the random access information includes: a sequence number of a preamble transmitting subframe, and a sequence number of a radio frame that transmits the preamble;
  • Step 202 The communication node determines a random access radio network temporary identifier (RA-RNTI) according to the random access information.
  • RA-RNTI random access radio network temporary identifier
  • the communication node is, for example, a terminal or a base station.
  • the terminal may determine the RA-RNTI according to the random access information of the terminal, and the base station may determine the RA-RNTI according to the random access information of the corresponding terminal.
  • the random access information may include: a sequence number of a start or end subframe in which the preamble is transmitted, a sequence number of a start or end radio frame in which the preamble is transmitted.
  • the sequence number of the starting subframe for transmitting the preamble may be determined according to the sequence number of the subframe that sends the non-starting position of the preamble and the corresponding information, or may be based on the wireless sending the non-starting position of the preamble.
  • the sequence number of the frame and the corresponding information determine the sequence number of the starting radio frame for transmitting the preamble.
  • step 202 may include the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+t_id+k1 ⁇ u_id;
  • t_id is the sequence number of the start (ie, the first) subframe of the preamble
  • u_id is the sequence number of the start (ie, the first) radio frame of the preamble.
  • the random access information may further include: a random access (RA) response window length, and an interval length of the preamble, where the interval length may be obtained by calculation or pre-configuration.
  • RA random access
  • step 202 may include the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+t_id+k1 ⁇ v_id;
  • n0 and k1 are coefficients
  • t_id is the sequence number of the starting subframe in which the preamble is transmitted
  • v_id is a comprehensive factor determined according to one or a combination of the following:
  • the interval length at which the preamble is sent which can be obtained by calculation or pre-configuration.
  • V_id u_id mod WLen
  • V_id u_id mod(WLen/10); or,
  • V_id (u_id ⁇ 10) mod WLen
  • u_id is the sequence number of the starting radio frame of the preamble
  • WLen is the length of the RA response window, in units of subframes
  • mod represents modulo
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • V_id ((u_id ⁇ 10)/PRACHWinLen)mod WLen; or,
  • V_id ((u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen); or,
  • V_id ((u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen+1);
  • u_id is the sequence number of the starting radio frame for transmitting the preamble
  • PRACHWinLen is the interval length for transmitting the preamble.
  • the interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window, in units of subframes, mod indicates modulo .
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • V_id ((u_id ⁇ 10)/PRACHWinLen)mod WLen; or,
  • V_id ((u_id ⁇ 10)/PRACHWinLen)mod ceil(WLen/PRACHWinLen); or,
  • V_id ((u_id ⁇ 10)/PRACHWinLen) mod(floor(WLen/PRACHWinLen)+1);
  • u_id is the sequence number of the starting radio frame for transmitting the preamble
  • PRACHWinLen is the interval length for transmitting the preamble.
  • the interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window, in units of subframes, mod indicates modulo ,ceil() means round up (ie Represents the return of the smallest integer greater than or equal to the specified expression.
  • floor() means rounding down (that is, returning the largest integer less than or equal to the specified expression).
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • V_id (u_id/PRACHWinLen)mod(WLen/10); or,
  • V_id (u_id/PRACHWinLen)mod(WLen/(PRACHWinLen ⁇ 10)); or,
  • V_id (u_id/PRACHWinLen)mod((WLen/(PRACHWinLen ⁇ 10))+1);
  • u_id is the sequence number of the starting radio frame for transmitting the preamble
  • PRACHWinLen is the interval length for transmitting the preamble.
  • the interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window, in units of subframes, mod indicates modulo .
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • V_id (u_id/PRACHWinLen)mod(WLen/10); or,
  • V_id (u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen ⁇ 10)); or,
  • V_id (u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen ⁇ 10))+1);
  • u_id is the sequence number of the starting radio frame for transmitting the preamble
  • PRACHWinLen is the interval length for transmitting the preamble.
  • the interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window, in units of subframes, mod indicates modulo , ceil () means rounded up, floor () means rounded down.
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • step 202 may include the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+(((t_id+u_id ⁇ 10)/PRACHWinLen)mod WLen); or,
  • RA_RNTI n0+(((t_id+u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen)); or,
  • RA_RNTI n0+(((t_id+u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen+1));
  • t_id is the sequence number of the starting subframe of the preamble
  • u_id is the preamble.
  • PRACHWinLen is the interval length of the preamble. The interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window
  • mod is the modulo
  • n0 is the coefficient.
  • n0 is, for example, 1.
  • WLen can be replaced by WLen'
  • WLen' WLen-2.
  • PRACHWinLen represents the interval length of the preamble transmitted in the same subframe, that is, the interval length between adjacent (closest) two preambles transmitted in the same subframe of different radio frames, in frame Units are in units of sub-frames.
  • PRACHWinLen indicates the interval length at which the preamble is transmitted in the same subframe, and the interval length can be calculated by:
  • PRACHWinLen COM PRACH /N PRACH_PerFrame ;
  • COM PRACH is the least common multiple of P preamble and N PRACH_PerFrame ;
  • N PRACH_PerFrame indicates the number of PRACH resources configured in each radio frame
  • P preamble indicates the repetition factor of the preamble
  • PRACHWinLen 10 ⁇ P preamble /N PRACH_PerFrame ;
  • the PRACHWinLen indicates the interval length of the preamble
  • the N PRACH_PerFrame indicates the number of PRACH resources configured in each radio frame
  • the P preamble indicates the repetition factor of the preamble.
  • PRACHWinLen indicates the interval length at which the preamble is transmitted, and is determined according to one or a combination of the following:
  • the starting subframe number of the PRACH resource
  • the number of PRACH resources configured in each radio frame is the number of PRACH resources configured in each radio frame
  • the repeating factor of the preamble is the repeating factor of the preamble.
  • PRACHWinLen represents the interval length of the pre-configured transmission preamble, and the unit may be one of the following: a frame, a subframe, and a maximum number of transmission preambles.
  • the sequence number of the radio frame currently available for transmitting the preamble is greater than or equal to MAX FrameIndex - PRACHWinLen, skip the frames and re-detect the wireless that can be used to transmit the preamble from the radio frame with sequence number 0. Frame, where MAX FrameIndex is the maximum value of the radio frame number.
  • the random access method provided in this embodiment may further include: when the determined RA-RNTI exceeds a maximum value within a predetermined value range, the communication node determines that the RA-RNTI is Predetermined value.
  • step 202 may include:
  • the calculation of the RA-RNTI also corresponds to the coverage level.
  • terminals at different coverage levels can search for PDCCH in different search spaces, that is, even if the RA-RNTIs of the two terminals are the same, the response windows overlap, and they need to be solved because they are at different coverage levels.
  • the PDCCH is also different, and no additional collisions are generated. Therefore, in the study of the optimization of the RA-RNTI calculation formula, the present application does not temporarily consider the influence of different coverage levels in order to simplify the design.
  • the embodiment of the present invention further provides a random access method, including: the communication node acquires random access information, where the random access information includes: a time domain location index information for transmitting a preamble, and a frequency domain location index information for transmitting a preamble.
  • the communication node determines the RA-RNTI based on the random access information.
  • frequency domain information may be added in the calculation of the RA-RNTI.
  • determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+t_id+k1 ⁇ v_id+WLen ⁇ w_id;
  • t_id is the sequence number of the starting subframe in which the preamble is transmitted
  • w_id is the frequency domain position index of the transmitting preamble
  • WLen is the length of the RA response window
  • V_id is a composite factor determined according to one or a combination of the following:
  • the starting subframe number of the PRACH resource
  • the interval length at which the preamble is sent which can be obtained by calculation or pre-configuration.
  • V_id (u_id/PRACHWinLen)mod(WLen/10); or,
  • V_id (u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen ⁇ 10)); or,
  • V_id (u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen ⁇ 10))+1);
  • u_id is the sequence number of the starting radio frame for transmitting the preamble
  • PRACHWinLen is the interval length for transmitting the preamble.
  • the interval length can be obtained by calculation or pre-configuration.
  • WLen is the length of the RA response window, in units of subframes, mod indicates modulo , ceil () means rounded up, floor () means rounded down.
  • PRACHWinLen represents the interval length of the preamble transmitted in the same subframe, that is, the interval length between adjacent (closest) two preambles transmitted in the same subframe of different radio frames, in frame Units are in units of sub-frames.
  • PRACHWinLen indicates the interval length at which the preamble is transmitted in the same subframe, and the interval length can be calculated by:
  • PRACHWinLen COM PRACH /N PRACH_PerFrame ;
  • COM PRACH is the least common multiple of P preamble and N PRACH_PerFrame ;
  • N PRACH_PerFrame indicates the number of PRACH resources configured in each radio frame
  • P preamble indicates the repetition factor of the preamble
  • WLen may be replaced by WLen', wherein
  • MAX(t_id) represents the maximum value in the range of t_id
  • MAX(u_id) represents the maximum value in the range of u_id
  • u_id is the sequence number of the starting radio frame of the preamble
  • t_id is the starting subframe of the preamble. Serial number.
  • the random access method in this embodiment may further include: when the determined RA-RNTI exceeds a maximum within a predetermined value range At the time of the value, the communication node determines that the RA-RNTI is a predetermined value.
  • the determining, by the communications node, the RA-RNTI according to the random access information may include:
  • the calculation of the RA-RNTI also corresponds to the coverage level.
  • the embodiment of the present invention further provides a random access method, including: the communication node acquires random access information, where the random access information includes: the time domain location index information of the preamble sent by the terminal, and the frequency domain location of the preamble sent by the terminal. Index information; the communication node determines the RA-RNTI based on the random access information.
  • the random access information may further include one or a combination of the following: an RA response window length, and an interval length of the preamble, which may be obtained by calculation or pre-configuration.
  • the determining, by the communications node, the RA-RNTI according to the random access information may include: the communications node determining that the RA-RNTI is:
  • RA_RNTI n0+s_id+w_id ⁇ PRACHWinLen;
  • n0 is a coefficient
  • s_id is a time domain location index of the preamble sent by the terminal
  • w_id is a frequency domain location index of the preamble sent by the terminal
  • PRACHWinLen is a length of the interval for transmitting the preamble, and the interval length can be obtained by calculation or pre-configuration.
  • n0 is, for example, 1.
  • PRACHWinLen represents the interval length of the preamble transmitted in the same subframe, that is, the interval length between adjacent (closest) two preambles transmitted in the same subframe of different radio frames, in frame Units are in units of sub-frames.
  • PRACHWinLen indicates the interval length at which the preamble is transmitted in the same subframe, and the interval length can be calculated by:
  • PRACHWinLen COM PRACH /N PRACH_PerFrame ;
  • COM PRACH is the least common multiple of P preamble and N PRACH_PerFrame ;
  • N PRACH_PerFrame indicates the number of PRACH resources configured in each radio frame
  • P preamble indicates the repetition factor of the preamble
  • PRACHWinLen 10 ⁇ P preamble /N PRACH_PerFrame ;
  • the PRACHWinLen indicates the interval length of the preamble
  • the N PRACH_PerFrame indicates the number of PRACH resources configured in each radio frame
  • the P preamble indicates the repetition factor of the preamble.
  • PRACHWinLen indicates the interval length at which the preamble is transmitted, and may be determined according to one or a combination of the following:
  • the starting subframe number of the PRACH resource
  • the number of PRACH resources configured in each radio frame is the number of PRACH resources configured in each radio frame
  • the repeating factor of the preamble is the repeating factor of the preamble.
  • PRACHWinLen represents the interval length of the pre-configured transmission preamble, and the unit may be one of the following: a frame, a subframe, and a maximum number of transmission preambles.
  • the determining, by the communications node, the RA-RNTI according to the random access information may include: the communications node determining that the RA-RNTI is:
  • RA_RNTI n0+w_id+s_id ⁇ PRACHFreLen;
  • n0 is a coefficient
  • s_id is a time domain location index for transmitting a preamble
  • w_id is a transmission
  • PRACHFreLen is the frequency domain interval length for transmitting the preamble or the maximum number of preambles that can be transmitted in the frequency domain multiplexing.
  • n0 is, for example, 1.
  • the maximum number of preambles that can be transmitted in the frequency domain multiplexing is, for example, the maximum number of terminals or the maximum number of preambles.
  • the PRACHFreLen indicates the length of the frequency domain interval for transmitting the preamble, and may be determined according to one of the following information or a combination thereof: the physical random access channel may be used to transmit the frequency domain resource configuration information of the preamble, and the frequency hopping mode.
  • the time domain location index information may include any of the following:
  • the sequence number of the radio frame to which the preamble is sent is sent.
  • the frequency domain location index information may include any of the following:
  • the random access method in this embodiment may further include: when the determined RA-RNTI exceeds a maximum within a predetermined value range At the time of the value, the communication node determines that the RA-RNTI is a predetermined value.
  • the determining, by the communications node, the RA-RNTI according to the random access information may include:
  • the calculation of the RA-RNTI also corresponds to the coverage level.
  • the embodiment of the present invention further provides a random access method, including: the communication node acquires a random access information correlation factor; and the communication node determines the RA-RNTI according to the random access information correlation factor.
  • the determining, by the communications node, the RA-RNTI according to the random access information correlation factor may include: the communications node determining that the RA-RNTI is:
  • n0 is a coefficient
  • N is the number of random access information correlation factors
  • c i is a random access information correlation factor
  • MAX(c i-1 ) represents the maximum value of c i-1 .
  • n0 is, for example, 1.
  • the random access information correlation factor may include any one or a combination of the following:
  • the number of PRACH resources configured in each radio frame is the number of PRACH resources configured in each radio frame
  • the random access method in this embodiment may further include: when the determined RA-RNTI exceeds a maximum within a predetermined value range At the time of the value, the communication node determines that the RA-RNTI is a predetermined value.
  • the determining, by the communications node, the RA-RNTI according to the random access information correlation factor may include:
  • the calculation of the RA-RNTI also corresponds to the coverage level.
  • RA_RNTI 1+t_id+10 ⁇ u_id
  • the t_id is the sequence number of the first subframe in which the terminal sends the preamble
  • the u_id is the sequence number of the first radio frame in which the terminal transmits the preamble.
  • the range of the value of the u_id is [0, 1023], and the range of the value of the t_id is [1, 10). Therefore, the range of the RA-RNTI value obtained by the RA-RNTI calculation formula provided in this embodiment is [1] , 10240].
  • RA_RNTI 1+t_id+10 ⁇ v_id
  • the t_id is the sequence number of the first subframe in which the terminal sends the preamble
  • the v_id is the sequence number of the first radio frame in which the terminal transmits the preamble
  • the length of the RA response window in consideration of the current coverage level of the terminal and the interval at which the terminal transmits the preamble.
  • v_id ((u_id ⁇ 10)/PRACHWinLen) mod WLen
  • PRACHWinLen is the interval length of the transmitted preamble calculated based on the PRACH resource configuration and the repetition factor of the preamble under the current coverage level (hereinafter referred to as: repetition factor).
  • the terminal may calculate the PRACHWinLen according to the subframe number and the repetition factor that the base station configures for each radio frame that can be used to transmit the preamble.
  • WLen is the RA response window length (in wireless subframes) at the current coverage level.
  • RA_RNTI 1+t_id+10 ⁇ v_id
  • the t_id is the sequence number of the first subframe in which the terminal sends the preamble
  • the v_id is the sequence number of the first radio frame in which the terminal transmits the preamble, and considers the current coverage level of the terminal.
  • the composite factor of the length of the RA response window and the length of the interval at which the terminal transmits the preamble (in units of wireless subframes).
  • v_id ((u_id ⁇ 10)/PRACHWinLen) mod WLen
  • PRACHWinLen is the interval length of the transmitted preamble calculated based on the PRACH resource configuration and the repetition factor of the preamble in the current coverage level (hereinafter referred to as the repetition factor).
  • PRACHWinLen 10 ⁇ P preamble /N PRACH_PerFrame ,
  • P represents the preamble of the preamble repetition factor at the terminal level of current coverage
  • N PRACH_PerFrame denotes the number of the base station PRACH resource configuration of each radio frame.
  • WLen is the RA response window length (in units of wireless subframes) under the current coverage level.
  • RA_RNTI 1+(((t_id+u_id ⁇ 10)/PRACHWinLen)mod WLen),
  • the t_id is the sequence number of the start subframe of the preamble
  • the u_id is the sequence number of the start radio frame of the preamble.
  • the PRACHWinLen is the preamble sent by the terminal according to the PRACH resource configuration information and the repetition factor of the preamble of the current coverage level of the terminal.
  • the length of the interval, WLen is the length of the RA response window under the current coverage level of the terminal, and mod indicates the modulo.
  • PRACHWinLen should be the same.
  • the available PRACH resources can be grouped according to PRACHWinLen, and each group of available PRACH resources can only be occupied by one user. Therefore, the PRACHWinLen can be further divided into a plurality of PRACH resource groups in the RA response window, and the maximum number of users that can overlap each other with the RA response window can be considered to be equal to the available PRACH resources.
  • the number of groups +1 (the reference user and other users who can send the preamble and initiate the RA response window within the user's RA response window) and map the actual frame numbers of these users to a set of consecutive frames that may result in overlapping RA response windows. On the serial number.
  • RA_RNTI 1+t_id+10 ⁇ v_id
  • the t_id is the sequence number of the first subframe in which the terminal sends the preamble
  • the v_id is the sequence number of the first radio frame in which the terminal transmits the preamble, and considers the length of the RA response window in the current coverage level of the terminal and the preamble sent by the terminal.
  • V_id ((u_id ⁇ 10)/PRACHWinLen)mod(WLen/PRACHWinLen+1),
  • the u_id is the sequence number of the first radio frame in which the terminal sends the preamble; the PRACHWinLen indicates the interval length of the preamble to be transmitted, and the calculation manner is the same as that in the second embodiment or the third embodiment, and therefore is not described here; WLen is the RA under the current coverage level.
  • the response window length (in subframes).
  • the range of RA-RNTI values calculated based on the formula provided in this embodiment is [1, 10 ⁇ (WLen/PRACHWinLen+1)].
  • the maximum WLen 400 subframe, the repetition factor is 8, and each radio frame is configured with two radio subframes as PRACH resources, and the RA-RNTI value ranges from [1, 110].
  • the base station will reasonably configure the RA response window size according to the repetition factor.
  • the ratio of WLen to PRACHWinLen is non-integer, it needs to be rounded and then calculated according to the formula.
  • the rounding manner is, for example, rounding down.
  • the embodiments of the present invention are not limited thereto.
  • Embodiment 5 is exemplified below by a plurality of examples.
  • the repetition factor is 2
  • the first two subframes of each radio frame are PRACH resources
  • the RA response window is 20
  • the user situation that needs to distinguish the RA_RNTI is as shown in FIG. 3, where the grid marked subframe is a preamble transmission location.
  • the sub-frame marked by the slash is the RA response window position.
  • UE1 is the same as the RA_RNTI of UE3
  • UE2 is the same as the RA_RNTI of UE4, but is allowed because their response windows do not overlap.
  • each radio frame is configured with 10 subframes as PRACH resources, and the RA response window is 20, the user situation that needs to distinguish the RA_RNTI is as shown in FIG. 4, wherein the grid marked subframe is a preamble transmission location.
  • the slash marked sub-frame is the RA response window position.
  • UE1 is the same as the RA_RNTI of UE11, it is allowed because their response windows do not overlap.
  • RA_RNTI 1+(((t_id+u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen+1)),
  • the t_id is the sequence number of the start subframe of the preamble
  • the u_id is the sequence number of the start radio frame of the preamble.
  • the PRACHWinLen is the preamble sent by the terminal according to the PRACH resource configuration information and the repetition factor of the preamble of the current coverage level of the terminal.
  • the length of the interval, WLen is the length of the RA response window under the current coverage level of the terminal, and mod indicates the modulo.
  • RA_RNTI 1+t_id+10 ⁇ v_id
  • the t_id is the sequence number of the first subframe in which the terminal sends the preamble
  • the v_id is the sequence number of the first radio frame in which the terminal transmits the preamble, and considers the length of the RA response window in the current coverage level of the terminal and the preamble sent by the terminal.
  • u_id is the sequence number of the first radio frame in which the terminal sends the preamble.
  • PRACHWinLen is the interval length of the transmitted preamble calculated based on the PRACH resource configuration and the repetition factor of the preamble under the current coverage level.
  • WLen is the RA response window length under the current coverage level of the terminal, and mod indicates the modulo.
  • RA_RNTI 1+(((t_id+u_id ⁇ 10)/PRACHWinLen) mod(WLen/PRACHWinLen)),
  • the t_id is the sequence number of the start subframe of the preamble
  • the u_id is the sequence number of the start radio frame of the preamble.
  • the PRACHWinLen is the preamble sent by the terminal according to the PRACH resource configuration information and the repetition factor of the preamble of the current coverage level of the terminal.
  • the length of the interval, WLen is the length of the RA response window under the current coverage level of the terminal, and mod indicates the modulo.
  • RA_RNTI 1+s_id+w_id ⁇ PRACHWinLen
  • the s_id is the sequence number of the starting subframe in which the terminal sends the preamble
  • the w_id is the starting frequency domain location index of the preamble sent by the terminal
  • the interval length of the preamble sent by the terminal is the PRACHWinLen.
  • RA_RNTI 1+w_id+s_id ⁇ PRACHFreLen
  • the s_id is the sequence number of the starting subframe for transmitting the preamble
  • the w_id is the frequency domain location index for transmitting the preamble
  • the PRACHFreLen is the frequency domain interval length for transmitting the preamble.
  • the PRACHFreLen may be determined according to one or a combination of the following information: the physical random access channel may be used to transmit the frequency domain resource configuration information of the preamble and the frequency hopping mode.
  • RA_RNTI n0+t_id+k1 ⁇ v_id
  • n0 and k1 are coefficients
  • t_id is the sequence number of the starting subframe in which the preamble is transmitted
  • v_id is a comprehensive factor determined according to one or a combination of the following:
  • the interval length at which the preamble is sent which can be obtained by calculation or pre-configuration.
  • V_id u_id mod WLen
  • V_id u_id mod(WLen/10); or,
  • V_id (u_id ⁇ 10) mod WLen
  • u_id is the sequence number of the first radio frame of the preamble sent by the terminal
  • WLen is the length of the RA response window in the current coverage level (in units of wireless subframes)
  • mod indicates modulo
  • FIG. 5 is a schematic diagram of a random access device according to an embodiment of the present invention. As shown in FIG. 5, the random access device provided in this embodiment is applied to a communication node, and includes:
  • the information obtaining module 501 is configured to acquire random access information.
  • the processing module 502 is configured to determine the RA-RNTI according to the random access information.
  • the random access information may include: a sequence number of the subframe in which the preamble is transmitted, and a sequence number of the radio frame in which the preamble is transmitted.
  • the random access information may include: time domain location index information for transmitting the preamble and frequency domain location index information for transmitting the preamble.
  • the random access information may include: the time domain location index information of the preamble sent by the terminal, and the frequency domain location index information of the preamble sent by the terminal.
  • the random access information may further include: an RA response window length, and an interval length of the transmission preamble, wherein the interval length may be obtained by calculation or pre-configuration.
  • the embodiment of the present invention further provides a random access device, which is applied to a communication node, and includes: an information acquiring module configured to acquire a random access information correlation factor; and a processing module configured to determine the RA according to the random access information correlation factor -RNTI.
  • the functions of the information acquisition module are implemented, for example, by a wireless communication unit and a calculator, such as a processor having a computing function.
  • a wireless communication unit such as a processor having a computing function.
  • the embodiments of the present invention are not limited thereto.
  • the functions of the above modules may also be implemented by a processor executing programs and/or instructions stored in the memory.
  • the FDD system is taken as an example.
  • the main scenario of generating additional collisions is that two terminals in the same coverage level send preambles in the same subframe of different radio frames, and their response window length exceeds one radio frame, and overlapping. Based on the existing RA-RNTI calculation formula containing only subframe information, the two are identical in the same search space for demodulating the RA-RNTI of the PDCCH, and an additional collision is generated.
  • the embodiment of the present invention introduces a factor that reflects the difference of the preamble transmission start radio frame or reflects the frequency domain location index information of the preamble in the RA-RNTI calculation formula, thereby ensuring that when the RA response window of the terminal overlaps, Generate additional conflicts and reduce terminal power consumption.
  • the embodiment further provides a random access method, including the following steps:
  • Step 601 The communication node acquires random access information.
  • Step 602 The communication node determines the random access response window related information according to the random access information.
  • the random access information may include one or a combination of the following:
  • a downlink control channel transmission period (PDCCH period) or a function as an input thereof;
  • Downlink control channel transmission interval (PDCCH transmission duration) or a function with it as an input;
  • PDSCH period downlink shared channel transmission period or a function that takes it as an input
  • Downlink shared channel transmission duration (PDSCH transmission duration) or a function of inputting it;
  • Upstream channel repetition information or a function that takes it as input
  • Uplink access channel transmission period PRACH period
  • PRACH period Uplink access channel transmission period
  • the uplink access channel transmission interval (PRACH transmission duration) or a function of its input.
  • the random access response window related information may include:
  • an embodiment of the present invention further provides a random access method, including the following steps:
  • the communication node acquires the random access information, where the random access information includes: a sequence number of the superframe that sends the preamble;
  • the communication node determines the RA-RNTI based on the random access information.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+k1 ⁇ HSFN_id
  • n0 and k1 are coefficients
  • HSFN_id is the sequence number of the superframe for transmitting the preamble.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+k1 ⁇ f(HSFN_id);
  • f() represents a function with HSFN_id as input
  • HSFN_id is a sequence number of a superframe for transmitting preamble.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA_RNTI n0+m ⁇ f(ki,C i );
  • f() represents a function with ki, C i as input, C i is random access information, and n0, m, and ki are coefficients.
  • the random access information may include one or a combination of the following:
  • a PDCCH period of the downlink control channel or a function of the input thereof wherein the unit of the PDCCH period may be a superframe, a frame, a subframe, a second (s), a millisecond (ms), or other time units;
  • a PRACH period of the random access channel or a function of the input thereof wherein the unit of the PRACH period may be a superframe, a frame, a subframe, an s, an ms, or other time unit;
  • the unit of the Preamble period can be a PRACH period, a PDCCH period, a super frame, a frame, a subframe, s, ms or other time unit;
  • the maximum length M W_RAR of the RA response window length W_RAR where the unit of M W_RAR may be a PDCCH period, a PRACH period, a super frame, a frame, a subframe, an s, an ms, or other time units;
  • the number of repetitions of the downlink control channel, Ri, or a function of its input is the number of repetitions of the downlink control channel, Ri, or a function of its input.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA-RNTI n0+k1 ⁇ band_id+k2 ⁇ floor(SFN_id/minPeriod)+k2 ⁇ ceil(HSFNnumber/minPeriod) ⁇ (HSFN_id mod M W_RAR );
  • n0 is the coefficient
  • minPeriod is the minimum period of random access
  • the unit of minPeriod is the frame
  • M W_RAR is the maximum length of the RA response window length W_RAR
  • the unit of M W_RAR is the super frame
  • floor() means rounding down
  • Ceil() means round up
  • the band_id is the frequency band index of the preamble
  • the SFN_id is the sequence number of the radio frame that transmits the preamble
  • the HSFNnumber is the number of radio frames included in one superframe
  • the HSFN_id is the sequence number of the superframe that transmits the preamble.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA-RNTI n0+k1 ⁇ band_id+k2 ⁇ floor(SFN_id/minPeriod)+floor(Rmax/z) ⁇ [k2 ⁇ ceil(HSFNnumber/minPeriod) ⁇ (HSFN_id mod M W_RAR )],
  • minPeriod is the minimum period of random access
  • the unit of minPeriod is the frame
  • M W_RAR is the maximum length of the RA response window length W_RAR
  • the unit of M W_RAR is the super frame
  • floor() means rounding down
  • Ceil() means round up
  • z is a first threshold, and the value ranges from a positive integer.
  • the z value can be one of the following: 2048, 1024, 512, 256, 128, 64.
  • k1 can be 1, and k2 can be the maximum number of bands in the system (eg, 4).
  • Band_id is the frequency band index of the preamble
  • SFN_id is the sequence number of the radio frame that transmits the preamble
  • HSFNnumber is the number of radio frames included in one superframe
  • HSFN_id is the sequence number of the superframe that transmits the preamble
  • Rmax is the effective duration of the downlink control channel search space. The number of subframes.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA-RNTI n0+k1 ⁇ band_id+k2 ⁇ [floor(Rmax/z) ⁇ (HSFN_id mod M W_RAR )]+k3 ⁇ floor(SFN_id/minPeriod),
  • n0 is a coefficient and floor() means rounding down
  • z is a first threshold, and the value ranges from a positive integer.
  • the z value can be one of the following: 2048, 1024, 512, 256, 128, 64.
  • k1 can be 1, and k2 can be the maximum number of bands in the system (eg, 4).
  • M W_RAR is the maximum length of the RA response window length W_RAR
  • the band_id is the frequency band index of the preamble
  • the SFN_id is the sequence number of the radio frame that transmits the preamble
  • Rmax is the number of valid subframes in the downlink control channel search space
  • the HSFN_id is the preamble.
  • the serial number of the superframe, minPeriod is the minimum period of random access.
  • the determining, by the communication node, the RA-RNTI according to the random access information may include: the communication node determining that the RA-RNTI is:
  • RA-RNTI n0+k1 ⁇ band_id+k2 ⁇ (HSFN_id mod M W_RAR )+k3 ⁇ M W_RAR ⁇ floor(SFN_id/minPeriod),
  • n0 is a coefficient
  • floor() means rounding down
  • ki is the maximum value after the previous one or more factors are summed
  • k1 can be 1
  • k2 can be the maximum number of bands in the system (eg: 4).
  • M W_RAR is the maximum length of the RA response window length W_RAR
  • the band_id is the frequency band index of the preamble
  • the SFN_id is the sequence number of the radio frame that transmits the preamble
  • the HSFN_id is the sequence number of the super frame that transmits the preamble
  • the minPeriod is the random access minimum period.
  • n0 has a value of one.
  • the M W_RAR may be determined according to a PDCCH period of the downlink control channel; M W — RAR is a maximum number of superframes corresponding to the PDCCH period ⁇ k, or the M W —RAR is a maximum superframe corresponding to the RAR detection window. Quantity; where k is a coefficient.
  • At least one of the following may be determined according to at least one of a valid subframe number Rmax of the downlink control channel search space, a transmission period of the downlink control channel, and a RAR window length: an RA-RNTI calculation formula, a minPeriod value.
  • determining a value of minPeriod according to at least one of Rmax, a transmission period of a downlink control channel, and a RAR window length may include:
  • minPeriod as the minimum period of PRACH, for example: 4 radio frames; or,
  • minPeriod Determine minPeriod according to the value of Rmax; for example, when Rmax is greater than x1, minPeriod is 16, 32, 64, 128, 256, 512, and when Rmax is less than or equal to x1, minPeriod is 4; or,
  • the minPeriod is determined according to the value of the transmission period of the downlink control channel; for example, when the transmission period of the downlink control channel is greater than x2, the minPeriod is 32, 64, 128, 256, 512, and the transmission period of the downlink control channel is less than or equal to x2, minPeriod Is 4; or,
  • minPeriod is determined according to the RAR window length; for example, the RAR window length is greater than x3, the minPeriod is 32, 64, 128, 256, 512, the RAR window length is less than or equal to x3, and the minPeriod is 4.
  • x1 may be 128, x2 may be 512, and x3 may be 512 radio frames.
  • determining the RA-RNTI calculation formula according to at least one of Rmax, a transmission period of the downlink control channel, and a RAR window length may include:
  • the RA-RNTI calculation formula is determined according to Rmax; for example, when Rmax is greater than x1, the RA-RNTI is determined according to the superframe, the frame, and the band_id, and when Rmax is less than or equal to x1, the RA-RNTI is determined according to the frame and the band_id;
  • the RA-RNTI determines according to the superframe, the frame, and the band_id, and the transmission period of the downlink control channel is less than or equal to x2.
  • the RA-RNTI is determined according to the frame and the band_id;
  • the RA-RNTI calculation formula is determined according to the RAR window length; for example, the RAR window length is greater than x3, the RA-RNTI is determined according to the super frame, the frame, and the band_id, and the RAR window length is less than or equal to x3, and the RA-RNTI is determined according to the frame and the band_id.
  • x1 may be 128, x2 may be 512, and x3 may be 512 radio frames.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented by the processor to implement any of the above random access methods.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • An embodiment of the present application provides a random access method and apparatus, and by introducing a factor that reflects a difference in a starting radio frame of a preamble or a frequency domain location index information that transmits a preamble in a calculation formula of the RA-RNTI, ensuring that the terminal is When the RA response windows overlap, no additional collisions occur and the terminal consumes less power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公布一种随机接入方法及装置;上述随机接入方法包括:通信节点获取随机接入信息;通信节点根据随机接入信息确定RA-RNTI;其中,随机接入信息包括:发送前导preamble的子帧的序号以及发送preamble的无线帧的序号;或者,随机接入信息包括:发送preamble的时域位置索引以及发送preamble的频域位置索引。

Description

一种随机接入方法及装置 技术领域
本申请涉及但不限于通信领域,尤其涉及一种随机接入方法及装置。
背景技术
机器类型通信(MTC,Machine Type Communication)是第五代移动通信技术(5G)目前研究的一个重要课题,也是未来无线通信的一个重要应用领域。在MTC课题里,针对低成本、低功耗、低移动性、低吞吐量等终端特性,提出了窄带物联网(NB-IoT,Narrow Band-Internet of Things)研究子课题,也就是在200千赫兹(khz)的频带内为NB-IoT低成本终端(UE,User Equipment)提供低吞吐量的无线通信服务。
在原有的长期演进(LTE,Long Term Evolution)空中接口初始建立流程中,终端采用竞争接入机制,首先发送前导(preamble),之后在发送preamble的最后1个子帧后的第三个子帧的位置启动随机接入(RA,Random Access)响应窗,等待接收随机接入响应(RAR,Random Access Response)消息。RA响应窗的长度是通过系统消息配置的,最大长度为10个无线子帧(即1个无线帧)。终端在RA响应窗内采用随机接入无线网络临时标识(RA-RNTI,Random Access-Radio Network Temporary Identity)解调物理下行控制信道(PDCCH,Physical Downlink Control Channel),进而解调物理下行共享信道(PDSCH,Physical Downlink Shared Channel)来获取包含其RAR的介质访问控制(MAC,Medium Access Control)协议数据单元(PDU,Protocol Data Unit)。preamble的时频位置决定了RA-RNTI的值,基站和终端各自根据preamble的时频位置,来计算得到一致的RA-RNTI值。在相关标准中,RA-RNTI的计算公式如下:
RA-RNTI=1+t_id+10×f_id,
其中,t_id表示发送preamble的起始子帧(即第一个子帧)的序号,取值范围为[1,10),即0≤t_id<10,f_id是子帧内物理随机接入信道(PRACH,Physical Random Access Channel)的频域位置,按升序排列,取值范围为[0, 6),即0≤f_id<6。根据上述公式,RA-RNTI的取值范围为[1,60]。
对于频分双工(FDD,Frequency Division Duplexing)系统,f_id总是等于0,上述公式可以简化为:
RA-RNTI=1+t_id,
其中,t_id表示终端发送preamble的第一个子帧的序号。
根据以上内容可知:(1)如果两个终端在相同无线帧的相同子帧发送preamble,它们的RA响应窗重叠,基站发送RAR用于加扰PDCCH信道的RA-RNTI也相同,只能通过后续的冲突解决来处理;(2)如果两个终端在不同无线帧的相同子帧发送preamble,虽然基站发送RAR用于加扰PDCCH信道的RA-RNTI相同,但是因为RA响应窗不会长于1个无线帧,因此,这两个终端接收RAR的RA响应窗不可能重叠,可以通过RA响应窗的隔离来避免冲突;(3)如果两个终端在不同无线帧的不同子帧发送preamble,可以通过计算得到的不同RA-RNTI来避免冲突。
综上所述,基于相关标准的RA响应窗的取值范围,RA-RNTI的计算只需要反映不同的preamble传输起始子帧的差异即可。
然而,针对MTC以及NB-IoT通信场景,考虑到低成本终端收发能力有限,或者处于覆盖较差的场景,相关研究中引入了上行发送和下行发送的重复功能,即无论终端发送上行消息还是基站发送下行消息时,通过一定次数的重复来保证接收效果。相应地,终端接收下行消息或基站接收上行消息所需要的时间可能延长,因此,相关研究中将RA响应窗的取值范围进行了扩大,最大为400个子帧,即40个无线帧。
相关研究中另外引入了覆盖等级的概念,来反映不同终端所处区域覆盖情况的差异,可以认为,处于相同覆盖等级的终端的上下行信道可以采用相同的重复因子,RA响应窗的长度也可以一样。
结合前述分析,可以看到,由于延长后的RA响应窗可以超过1个无线帧,对于两个终端在不同无线帧的相同子帧发送preamble的情况,他们的RA响应窗有可能重叠。图1为RA响应窗延长造成两个终端的RA响应窗重叠的示意图。在图1中,网格标记的子帧为发送preamble的起始子帧位置, 斜线标记的子帧为RA响应窗位置。然而,根据现有RA-RNTI计算公式,图1所示两个终端的RA-RNTI相同;一方面,两个终端可能会在重叠的RA响应窗内需要解调两次PDCCH,会增加耗电,另一方面,如果两个终端恰好采用了相同的preamble序号,则他们的RAR内容也一样,会需要通过后续的冲突解决流程来处理,其中至少会有一个终端接入失败,相当于引入了额外的冲突。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种随机接入方法及装置,能够确保当终端的随机接入(RA,Random Access)响应窗重叠时,不会产生额外的冲突,并减少终端耗电。
本发明实施例一种随机接入方法,包括:通信节点获取随机接入信息,其中,所述随机接入信息包括:发送preamble的子帧的序号、发送preamble的无线帧的序号;所述通信节点根据所述随机接入信息确定RA-RNTI。
本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,其中,所述随机接入信息包括:发送preamble的时域位置索引信息、发送preamble的频域位置索引信息;所述通信节点根据所述随机接入信息确定RA-RNTI。
本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,其中,所述随机接入信息包括:终端发送preamble的时域位置索引信息、终端发送preamble的频域位置索引信息;所述通信节点根据所述随机接入信息确定RA-RNTI。
本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息相关因子;所述通信节点根据所述随机接入信息相关因子确定RA-RNTI。
本发明实施例还提供一种随机接入装置,应用于通信节点,包括:信息获取模块,配置为获取随机接入信息,其中,所述随机接入信息包括:发送 preamble的子帧的序号、发送preamble的无线帧的序号;处理模块,配置为根据所述随机接入信息确定RA-RNTI。
本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,通信节点根据所述随机接入信息确定随机接入响应窗相关信息。
本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,其中,所述随机接入信息包括:发送preamble的超帧的序号;所述通信节点根据所述随机接入信息确定RA-RNTI。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述任一种随机接入方法。
本发明实施例通过在RA-RNTI的计算公式中引入能反映发送preamble起始无线帧差异的因子或者反映发送preamble的频域位置索引信息,确保当终端的RA响应窗重叠时,不会产生额外的冲突,并减少终端耗电。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为RA响应窗延长造成两个终端的RA响应窗重叠的示意图;
图2为本发明实施例提供的一种随机接入方法的流程图;
图3为实施例五的应用实例一的示意图;
图4为实施例五的应用实例二的示意图;
图5为本发明实施例提供的一种随机接入装置的示意图;
图6为本发明实施例提供的另一种随机接入方法的流程图。
本发明的实施方式
以下结合附图对本发明实施例进行详细说明,应当理解,以下所说明的实施例仅用于说明和解释本申请,并不用于限定本申请。
图2为本发明实施例提供的一种随机接入方法的流程图。如图2所示, 本实施例提供的随机接入方法,包括以下步骤:
步骤201:通信节点获取随机接入信息;其中,随机接入信息包括:发送前导(preamble)的子帧的序号、发送preamble的无线帧的序号;
步骤202:通信节点根据随机接入信息确定随机接入无线网络临时标识(RA-RNTI)。
其中,通信节点例如为终端或基站。终端可以根据本终端的随机接入信息确定RA-RNTI,基站可以根据相应终端的随机接入信息确定RA-RNTI。
在示例性实施方式中,随机接入信息可以包括:发送preamble的起始或结束子帧的序号、发送preamble的起始或结束无线帧的序号。然而,本发明实施例对此并不限定。于其他示例性实施方式中,可以根据发送preamble的非起始位置的子帧的序号及相应信息来确定发送preamble的起始子帧的序号,或者,可以根据发送preamble的非起始位置的无线帧的序号及相应信息来确定发送preamble的起始无线帧的序号。
在示例性实施方式中,步骤202可以包括:通信节点确定RA-RNTI为:
RA_RNTI=n0+t_id+k1×u_id;
其中,n0、k1为系数,t_id为发送preamble的起始(即第一个)子帧的序号,u_id为发送preamble的起始(即第一个)无线帧的序号。
其中,n0例如为1;k1例如为10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
在示例性实施方式中,随机接入信息还可以包括:随机接入(RA,Random Access)响应窗长度、发送preamble的间隔长度,其中,该间隔长度可以通过计算或者预配置获得。
在示例性实施方式中,步骤202可以包括:通信节点确定RA-RNTI为:
RA_RNTI=n0+t_id+k1×v_id;
其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号,v_id为根据以下之一或其组合确定的综合因子:
发送preamble的起始无线帧的序号;
RA响应窗长度;
发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
其中,n0例如为1;k1例如为10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
在示例性实施方式中,
v_id=u_id mod WLen;或者,
v_id=u_id mod(WLen/10);或者,
v_id=(u_id×10)mod WLen;
其中,u_id为发送preamble的起始无线帧的序号,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,
v_id=((u_id×10)/PRACHWinLen)mod WLen;或者,
v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen);或者,
v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1);
其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,
v_id=((u_id×10)/PRACHWinLen)mod WLen;或者,
v_id=((u_id×10)/PRACHWinLen)mod ceil(WLen/PRACHWinLen);或者,
v_id=((u_id×10)/PRACHWinLen)mod(floor(WLen/PRACHWinLen)+1);
其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整(即 表示返回大于或等于指定表达式的最小整数),floor()表示向下取整(即表示返回小于或等于指定表达式的最大整数)。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,
v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
v_id=(u_id/PRACHWinLen)mod(WLen/(PRACHWinLen×10));或者,
v_id=(u_id/PRACHWinLen)mod((WLen/(PRACHWinLen×10))+1);
其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,
v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
v_id=(u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen×10));或者,
v_id=(u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen×10))+1);
其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整,floor()表示向下取整。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,步骤202可以包括:通信节点确定RA-RNTI为:
RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod WLen);或者,
RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen));或者,
RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1));
其中,t_id为发送preamble的起始子帧的序号,u_id为发送preamble的 起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,以子帧为单位,WLen为RA响应窗长度,mod表示取模,n0为系数。
其中,n0例如为1。
其中,WLen可以由WLen’替换,WLen’=WLen-2。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的(最接近的)两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度可以通过如下方式计算获得:
PRACHWinLen=COMPRACH/NPRACH_PerFrame
其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
在示例性实施方式中,PRACHWinLen=10×Ppreamble/NPRACH_PerFrame
其中,PRACHWinLen表示发送preamble的间隔长度,NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
在示例性实施方式中,PRACHWinLen表示发送preamble的间隔长度,根据以下之一或其组合确定:
PRACH资源起始无线子帧序号;
在每个无线帧配置的PRACH资源数量;
在每个无线帧配置的可用于发送preamble的子帧序号;
preamble格式;
preamble的重复因子。
在示例性实施方式中,PRACHWinLen表示预配置的发送preamble的间隔长度,单位可以是以下之一:帧、子帧、传输preamble的最大数量。
在示例性实施方式中,若当前可以用于发送preamble的无线帧的序号大于或等于MAXFrameIndex–PRACHWinLen,则跳过这些帧,从序号为0的无线帧开始重新检测能够用于发送preamble的无线帧,其中,MAXFrameIndex为无线帧序号的最大值。
在示例性实施方式中,在步骤202之后,本实施例提供的随机接入方法还可以包括:当确定的RA-RNTI超过预定取值范围内的最大值时,通信节点确定该RA-RNTI为预定值。
在示例性实施方式中,步骤202可以包括:
当以下随机接入信息之一或其组合对应于覆盖等级:RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,则RA-RNTI的计算也对应于该覆盖等级。
需要说明的是,相关研究已明确,处于不同覆盖等级的终端可以在不同搜索空间搜索PDCCH,即,即便两个终端的RA-RNTI相同,响应窗也重叠,由于他们处于不同覆盖等级,需要解调的PDCCH也不同,不会产生额外的冲突。因此,本申请在研究RA-RNTI计算公式的优化时,暂时不考虑不同覆盖等级的影响,以便简化设计。
另外,针对MTC以及NB-IoT通信场景,还引入了更多的窄带资源,不同终端可以在不同窄带位置发送preamble并在对应位置接收RAR,因此,本申请在研究RA-RNTI计算公式的优化时,暂时不考虑不同窄带资源的影响,以便简化设计。
此外,本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,其中,随机接入信息包括:发送preamble的时域位置索引信息、发送preamble的频域位置索引信息;通信节点根据随机接入信息确定RA-RNTI。
其中,当无线帧或子帧的数量不够时,在RA-RNTI的计算中可以加入频域信息。
在示例性实施方式中,通信节点根据随机接入信息确定RA-RNTI可以包括:通信节点确定RA-RNTI为:
RA_RNTI=n0+t_id+k1×v_id+WLen×w_id;
其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号;w_id为发送preamble的频域位置索引;WLen为RA响应窗长度;
v_id为根据以下之一或其组合确定的综合因子:
发送preamble的无线帧的序号;
PRACH资源起始无线子帧序号;
RA响应窗长度;
发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
其中,n0例如为1;k1例如为10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
在示例性实施方式中,
v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
v_id=(u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen×10));或者,
v_id=(u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen×10))+1);
其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整,floor()表示向下取整。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的(最接近的)两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度可以通过如下方式计算获得:
PRACHWinLen=COMPRACH/NPRACH_PerFrame
其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
在示例性实施方式中,WLen可以由WLen’替换,其中,
WLen’=n0+MAX(t_id)+k1×MAX(u_id),
MAX(t_id)表示t_id取值范围内的最大值,MAX(u_id)表示u_id取值范围内的最大值,u_id为发送preamble的起始无线帧的序号,t_id为发送preamble的起始子帧的序号。
其中,n0例如为1;k1例如为10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI之后,本实施例的随机接入方法还可以包括:当确定的RA-RNTI超过预定取值范围内的最大值时,通信节点确定该RA-RNTI为预定值。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI,可以包括:
当以下随机接入信息之一或其组合对应于覆盖等级:RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,则RA-RNTI的计算也对应于该覆盖等级。
此外,本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息,其中,随机接入信息包括:终端发送preamble的时域位置索引信息、终端发送preamble的频域位置索引信息;通信节点根据随机接入信息确定RA-RNTI。
在示例性实施方式中,随机接入信息还可以包括以下之一或其组合:RA响应窗长度、发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI可以包括:所述通信节点确定RA-RNTI为:
RA_RNTI=n0+s_id+w_id×PRACHWinLen;
其中,n0为系数,s_id为终端发送preamble的时域位置索引,w_id为终端发送preamble的频域位置索引,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
其中,n0例如为1。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的(最接近的)两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
在示例性实施方式中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度可以通过如下方式计算获得:
PRACHWinLen=COMPRACH/NPRACH_PerFrame
其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
在示例性实施方式中,PRACHWinLen=10×Ppreamble/NPRACH_PerFrame
其中,PRACHWinLen表示发送preamble的间隔长度,NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
在示例性实施方式中,PRACHWinLen表示发送preamble的间隔长度,可以根据以下之一或其组合确定:
PRACH资源起始无线子帧序号;
在每个无线帧配置的PRACH资源数量;
在每个无线帧配置的可用于发送preamble的子帧序号;
preamble格式;
preamble的重复因子。
在示例性实施方式中,PRACHWinLen表示预配置的发送preamble的间隔长度,单位可以是以下之一:帧、子帧、传输preamble的最大数量。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI可以包括:所述通信节点确定RA-RNTI为:
RA_RNTI=n0+w_id+s_id×PRACHFreLen;
其中,n0为系数,s_id为发送preamble的时域位置索引,w_id为发送 preamble的频域位置索引,PRACHFreLen为发送preamble的频域间隔长度或者为可以在频域复用发送preamble的最大数量。
其中,n0例如为1。
其中,可以在频域复用发送preamble的最大数量例如为最大终端数量或最大preamble数量。
在示例性实施方式中,PRACHFreLen表示发送preamble的频域间隔长度,可以根据以下信息之一或其组合确定:物理随机接入信道可用于传输preamble的频域资源配置信息、跳频模式。
在示例性实施方式中,时域位置索引信息可以包括以下任一项:
发送preamble的子帧的序号;
发送preamble的无线帧的序号。
在示例性实施方式中,频域位置索引信息可以包括以下任一项:
发送preamble的起始频域位置索引;
发送preamble的频域位置偏置;
发送preamble的频域子载波索引。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI之后,本实施例的随机接入方法还可以包括:当确定的RA-RNTI超过预定取值范围内的最大值时,所述通信节点确定该RA-RNTI为预定值。
在示例性实施方式中,所述通信节点根据所述随机接入信息确定RA-RNTI可以包括:
当以下随机接入信息之一或其组合对应于覆盖等级:RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,则RA-RNTI的计算也对应于该覆盖等级。
此外,本发明实施例还提供一种随机接入方法,包括:通信节点获取随机接入信息相关因子;通信节点根据随机接入信息相关因子确定RA-RNTI。
在示例性实施方式中,所述通信节点根据随机接入信息相关因子确定RA-RNTI,可以包括:所述通信节点确定RA-RNTI为:
Figure PCTCN2017071105-appb-000001
其中,n0为系数,N为随机接入信息相关因子的个数,ci为随机接入信息相关因子,
Figure PCTCN2017071105-appb-000002
MAX(ci-1)表示ci-1的最大值。
其中,n0例如为1。
在示例性实施方式中,随机接入信息相关因子可以包括以下任一项或其组合:
发送preamble的起始子帧的序号;
发送preamble的起始无线帧的序号;
在每个无线帧内配置的PRACH资源数量;
preamble的重复因子;
发送preamble的结束子帧的序号;
发送preamble的结束无线帧的序号;
发送preamble的频域位置偏置;
发送preamble的频域子载波索引;
RA响应窗长度。
在示例性实施方式中,所述通信节点根据随机接入信息相关因子确定RA-RNTI之后,本实施例的随机接入方法还可以包括:当确定的RA-RNTI超过预定取值范围内的最大值时,通信节点确定该RA-RNTI为预定值。
在示例性实施方式中,所述通信节点根据随机接入信息相关因子确定RA-RNTI,可以包括:
当以下随机接入信息之一或其组合对应于覆盖等级:RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,则RA-RNTI的计算也对应于该覆盖等级。
下面通过多个实施例对本申请提供的RA-RNTI的计算方式进行举例说 明。
实施例一
于本实施例中,RA_RNTI=1+t_id+10×u_id,
其中,t_id为终端发送preamble的第一个子帧的序号,u_id为终端发送preamble的第一个无线帧的序号。
其中,u_id的取值范围为[0,1023],t_id的取值范围为[1,10),因此,基于本实施例提供的RA-RNTI计算公式得到的RA-RNTI值的范围为[1,10240]。
实施例二
于本实施例中,RA_RNTI=1+t_id+10×v_id,
其中,t_id为终端发送preamble的第一个子帧的序号,v_id为考虑了终端发送preamble的第一个无线帧的序号以及考虑了终端当前覆盖等级下的RA响应窗长度以及终端发送preamble的间隔长度(以无线子帧为单位)后的综合因子。
本实施例中,v_id=((u_id×10)/PRACHWinLen)mod WLen,
其中,u_id为终端发送preamble的第一个无线帧的序号。PRACHWinLen为基于PRACH资源配置以及当前覆盖等级下preamble的重复因子(下文简称为:重复因子)计算得到的发送preamble的间隔长度。于此,终端可以根据基站在每个无线帧配置的可用于发送preamble的子帧序号以及重复因子计算得到PRACHWinLen。WLen是当前覆盖等级下的RA响应窗长度(以无线子帧为单位)。
基于本实施例提供的公式计算得到的RA-RNTI值的范围为[1,10×WLen]。以最大的WLen=400子帧为例,RA-RNTI值的范围为[1,4000]。
实施例三
于本实施例中,RA_RNTI=1+t_id+10×v_id,
其中,t_id为终端发送preamble的第一个子帧的序号,v_id为考虑了终端发送preamble的第一个无线帧的序号,并考虑了终端当前覆盖等级下的 RA响应窗长度以及终端发送preamble的间隔长度(以无线子帧为单位)后的综合因子。
本实施例中,v_id=((u_id×10)/PRACHWinLen)mod WLen,
其中,u_id是终端发送preamble的第一个无线帧的序号。PRACHWinLen是基于PRACH资源配置以及当前覆盖等级下preamble的重复因子(后文简称重复因子)计算得到的发送preamble的间隔长度。
其中,可以按照如下公式简单推算PRACHWinLen:
PRACHWinLen=10×Ppreamble/NPRACH_PerFrame
其中,Ppreamble表示终端当前覆盖等级下preamble的重复因子,这里NPRACH_PerFrame表示基站在每个无线帧内配置的PRACH资源数量。
其中,WLen是当前覆盖等级下的RA响应窗长度(以无线子帧为单位)。
基于本实施例提供的公式计算得到的RA-RNTI值的范围为[1,10×WLen]。以最大的WLen=400子帧为例,RA-RNTI值的范围为[1,4000]。
实施例四
于本实施例中,
RA_RNTI=1+(((t_id+u_id×10)/PRACHWinLen)mod WLen),
其中,t_id为终端发送preamble的起始子帧的序号,u_id为终端发送preamble的起始无线帧的序号,PRACHWinLen为根据PRACH资源配置信息以及终端当前覆盖等级下preamble的重复因子确定的终端发送preamble的间隔长度,WLen为终端当前覆盖等级下的RA响应窗长度,mod表示取模。其中,上述参数的取值可以参照实施例二或实施例三,故于此不再赘述。
实施例五
考虑到对同一个覆盖等级而言,每个用户的PRACH重复因子相同,因此,PRACHWinLen应相同。如此,可以根据PRACHWinLen,将可用的PRACH资源分组,每组可用的PRACH资源只能被一个用户占用。因此,可以在RA响应窗内进一步按照PRACHWinLen平均分为若干个PRACH资源组,可以认为能够出现相互重叠的RA响应窗的最大用户数等于可用的PRACH资源 组数目+1(基准用户以及能在该用户的RA响应窗内发送preamble并启动RA响应窗的其他用户),并将这些用户的实际帧号映射到可能产生RA响应窗重叠的一组连续帧序号上。
于本实施例中,RA_RNTI=1+t_id+10×v_id,
其中,t_id为终端发送preamble的第一个子帧的序号,v_id是考虑了终端发送preamble的第一个无线帧的序号,并考虑了终端当前覆盖等级下的RA响应窗长度以及终端发送preamble的间隔长度(以无线子帧为单位)后的综合因子。
于本实施例中,
v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1),
其中,u_id是终端发送preamble的第一个无线帧的序号;PRACHWinLen表示发送preamble的间隔长度,计算方式同实施例二或实施例三,故于此不再赘述;WLen是当前覆盖等级下的RA响应窗长度(以子帧为单位)。
基于本实施例提供的公式计算得到的RA-RNTI值的范围为[1,10×(WLen/PRACHWinLen+1)]。
以最大的WLen=400子帧,重复因子为8,每个无线帧配置2个无线子帧作为PRACH资源为例,RA-RNTI值的范围为[1,110]。
一般来说,基站会根据重复因子来合理配置RA响应窗大小,重复因子越大,RA响应窗越长,因此,在合理的配置下,上述RA-RNTI取值范围可以进一步缩小。
另外,在实际应用中,若WLen与PRACHWinLen的比值为非整数,需要进行取整处理,再根据公式计算。其中,所述取整方式例如为向下取整。然而,本发明实施例对此并不限定。
另外,考虑到最接近的两个用户的RA响应窗也不是完全重叠的,至少会前后各差1个子帧,因此,上述实施例提供的公式中的WLen可以替换为WLen’,其中,WLen’=WLen-2。
以下通过多个实例对实施例五进行举例说明。
实例一
假设重复因子为2,每个无线帧配置前2个子帧为PRACH资源,RA响应窗长20,则需要区分RA_RNTI的用户情况如图3所示,其中,网格标记的子帧为preamble发送位置,斜线标记的子帧为RA响应窗位置。
本实例中,根据实施例五提供的计算公式可知:
PRACHWinLen=10×重复因子/NPRACH_PerFrame=10×2/2=10;
UE1的
Figure PCTCN2017071105-appb-000003
Figure PCTCN2017071105-appb-000004
UE2的
Figure PCTCN2017071105-appb-000005
Figure PCTCN2017071105-appb-000006
UE3的
Figure PCTCN2017071105-appb-000007
Figure PCTCN2017071105-appb-000008
UE4的
Figure PCTCN2017071105-appb-000009
Figure PCTCN2017071105-appb-000010
其中,
Figure PCTCN2017071105-appb-000011
表示向下取整。
虽然UE1与UE3的RA_RNTI相同,UE2与UE4的RA_RNTI相同,但因为他们的响应窗不重叠,所以是允许的。
实例二
假设重复因子为2,每个无线帧配置10个子帧为PRACH资源,RA响应窗长20,则需要区分RA_RNTI的用户情况如图4所示,其中,网格标记的子帧为preamble发送位置,斜线标记的子帧为RA响应窗位置。
本实例中,根据实施例五提供的计算公式可知:
PRACHWinLen=10×重复因子/NPRACH_PerFrame=10×2/10=2;
UE1的RA_RNTI=1+0+10×((512×10/2)mod((20-2)/2+1))=1+0+10×(2560mod 10)=1+0=1;
UE2的RA_RNTI=1+2+10×((512×10/2)mod((20-2)/2+1))=1+2+10×(2560mod 10)=3+0=3;
UE3的RA_RNTI=1+4+10×((512×10/2)mod((20-2)/2+1))=1+4+ 10×(2560mod 10)=5+0=5;
UE4的RA_RNTI=1+6+10×((512×10/2)mod((20-2)/2+1))=1+6+10×(2560mod 10)=7+0=7;
UE5的RA_RNTI=1+8+10×((512×10/2)mod((20-2)/2+1))=1+8+10×(2560mod 10)=9+0=9;
UE6的RA_RNTI=1+0+10×((513×10/2)mod((20-2)/2+1))=1+0+10×(2565mod 10)=1+50=51;
....
UE9的RA_RNTI=1+6+10×((513×10/2)mod((20-2)/2+1))=1+6+10×(2565mod 10)=7+50=57;
UE10的RA_RNTI=1+8+10×((513×10/2)mod((20-2)/2+1))=1+8+10×(2565mod 10)=9+50=59;
UE11的RA_RNTI=1+0+10×((514×10/2)mod((20-2)/2+1))=1+0+10×(2570mod 10)=1+0=1。
UE1虽然与UE11的RA_RNTI相同,但因为他们的响应窗不重叠,所以是允许的。
实施例六
于本实施例中,
RA_RNTI=1+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1)),
其中,t_id为终端发送preamble的起始子帧的序号,u_id为终端发送preamble的起始无线帧的序号,PRACHWinLen为根据PRACH资源配置信息以及终端当前覆盖等级下preamble的重复因子确定的终端发送preamble的间隔长度,WLen为终端当前覆盖等级下的RA响应窗长度,mod表示取模。其中,上述参数的取值可以参照实施例二或实施例三,故于此不再赘述。
实施例七
于本实施例中,RA_RNTI=1+t_id+10×v_id;
其中,t_id为终端发送preamble的第一个子帧的序号,v_id为考虑了终端发送preamble的第一个无线帧的序号,并考虑了终端当前覆盖等级下的RA响应窗长度以及终端发送preamble的间隔长度(以无线子帧为单位)后的综合因子。
其中,v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen),
其中,u_id是终端发送preamble的第一个无线帧的序号。PRACHWinLen是基于PRACH资源配置以及当前覆盖等级下preamble的重复因子计算得到的发送preamble的间隔长度。WLen为终端当前覆盖等级下的RA响应窗长度,mod表示取模。其中,上述参数的取值可以参照实施例二或实施例三,故于此不再赘述。
实施例八
于本实施例中,
RA_RNTI=1+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen)),
其中,t_id为终端发送preamble的起始子帧的序号,u_id为终端发送preamble的起始无线帧的序号,PRACHWinLen为根据PRACH资源配置信息以及终端当前覆盖等级下preamble的重复因子确定的终端发送preamble的间隔长度,WLen为终端当前覆盖等级下的RA响应窗长度,mod表示取模。其中,上述参数的取值可以参照实施例二或实施例三,故于此不再赘述。
此外,考虑到最接近的两个用户的RA响应窗也不是完全重叠的,至少会前后各差1个子帧,因此,实施例二至八提供的公式中的WLen可以替换为WLen’,其中,WLen’=WLen-2。
实施例九
于本实施例中,RA_RNTI=1+s_id+w_id×PRACHWinLen,
其中,s_id为终端发送preamble的起始子帧的序号,w_id为终端发送preamble的起始频域位置索引,PRACHWinLen为终端发送preamble的间隔长度。
其中,PRACHWinLen的取值可以参照实施例二或实施例三,故于此不再赘述。
实施例十
于本实施例中,RA_RNTI=1+w_id+s_id×PRACHFreLen,
其中,s_id为发送preamble的起始子帧的序号,w_id为发送preamble的频域位置索引,PRACHFreLen为发送preamble的频域间隔长度。
其中,PRACHFreLen可以根据以下信息之一或其组合确定:物理随机接入信道可用于传输preamble的频域资源配置信息、跳频模式。
实施例十一
于本实施例中,RA_RNTI=n0+t_id+k1×v_id;
其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号,v_id为根据以下之一或其组合确定的综合因子:
发送preamble的起始无线帧的序号;
RA响应窗长度;
发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
其中,n0例如为1;k1例如为10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
其中,
v_id=u_id mod WLen;或者,
v_id=u_id mod(WLen/10);或者,
v_id=(u_id×10)mod WLen;
其中,u_id为终端发送preamble的第一个无线帧的序号,WLen是当前覆盖等级下的RA响应窗长度(以无线子帧为单位),mod表示取模。
图5为本发明实施例提供的随机接入装置的示意图。如图5所示,本实施例提供的随机接入装置,应用于通信节点,包括:
信息获取模块501,配置为获取随机接入信息;
处理模块502,配置为根据随机接入信息确定RA-RNTI。
其中,随机接入信息可以包括:发送preamble的子帧的序号、发送preamble的无线帧的序号。或者,随机接入信息可以包括:发送preamble的时域位置索引信息、发送preamble的频域位置索引信息。或者,随机接入信息可以包括:终端发送preamble的时域位置索引信息、终端发送preamble的频域位置索引信息。
在示例性实施方式中,随机接入信息还可以包括:RA响应窗长度、发送preamble的间隔长度,其中,该间隔长度可以通过计算或者预配置获得。
此外,本发明实施例还提供一种随机接入装置,应用于通信节点,包括:信息获取模块,配置为获取随机接入信息相关因子;处理模块,配置为根据随机接入信息相关因子确定RA-RNTI。
于实际应用中,信息获取模块的功能例如由无线通信单元以及计算器实现,处理模块例如为具有计算功能的处理器。然而,本发明实施例对此并不限定。上述模块的功能还可以由处理器执行存储在存储器的程序和/或指令实现。
另外,关于本实施例提供的随机接入装置的相关处理过程可以参照上述方法实施例的描述,故于此不再赘述。
于实际应用中,以FDD系统为例,产生额外冲突的主要场景是:两个处于相同覆盖等级的终端在不同无线帧的相同子帧发送preamble,他们的响应窗长度超过1个无线帧,且重叠。基于现有只包含子帧信息的RA-RNTI计算公式,两者在相同搜索空间用于解调PDCCH的RA-RNTI相同,产生了额外的冲突。针对此,本发明实施例在RA-RNTI计算公式中引入能反映preamble发送起始无线帧差异的因子或者反映发送preamble的频域位置索引信息,从而保证当终端的RA响应窗重叠时,不会产生额外的冲突,并减少终端耗电。
如图6所示,本实施例还提供一种随机接入方法,包括以下步骤:
步骤601:通信节点获取随机接入信息;
步骤602:通信节点根据随机接入信息确定随机接入响应窗相关信息。
其中,随机接入信息可以包括以下之一或其组合:
下行信道重复信息或以其为输入的函数;
下行控制信道传输周期(PDCCH period)或以其为输入的函数;
下行控制信道传输间隔(PDCCH transmission duration)或以其为输入的函数;
下行共享信道传输周期(PDSCH period)或以其为输入的函数;
下行共享信道传输间隔(PDSCH transmission duration)或以其为输入的函数;
上行信道重复信息或以其为输入的函数;
上行接入信道传输周期(PRACH period)或以其为输入的函数;
上行接入信道传输间隔(PRACH transmission duration)或以其为输入的函数。
其中,随机接入响应窗相关信息可以包括:
随机接入响应窗起始时刻;
随机接入响应窗起始的时域位置;
随机接入响应窗起始时刻与前导发送结束时刻之间的间隔。
此外,本发明实施例还提供一种随机接入方法,包括以下步骤:
通信节点获取随机接入信息,其中,随机接入信息包括:发送preamble的超帧的序号;
通信节点根据随机接入信息确定RA-RNTI。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:所述通信节点确定RA-RNTI为:
RA_RNTI=n0+k1×HSFN_id;
其中,n0、k1为系数,HSFN_id为发送preamble的超帧的序号。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:所述通信节点确定RA-RNTI为:
RA_RNTI=n0+k1×f(HSFN_id);
其中,n0、k1为系数,f()表示以HSFN_id为输入的函数,HSFN_id为发送preamble的超帧的序号。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:所述通信节点确定RA-RNTI为:
RA_RNTI=n0+m×f(ki,Ci);
其中,f()表示以ki,Ci为输入的函数,Ci为随机接入信息,n0、m、ki为系数。
在示例性实施方式中,随机接入信息可以包括以下之一或其组合:
发送preamble的超帧的序号HSFN_id或以其为输入的函数;
发送preamble的无线帧的序号SFN_id或以其为输入的函数;
发送preamble的子帧的序号subSFN_id或以其为输入的函数;
发送preamble的频域位置索引f_id或以其为输入的函数;
发送preamble的频率偏置f_offset或以其为输入的函数;
发送preamble的子载波索引tone_id或以其为输入的函数;
发送preamble的频段索引band_id或以其为输入的函数;
下行控制信道的发送周期(PDCCH period)或以其为输入的函数,其中,PDCCH period的单位可以是超帧、帧、子帧、秒(s)、毫秒(ms)或其他时间单位;
随机接入信道的发送周期(PRACH period)或以其为输入的函数,其中,PRACH period的单位可以是超帧、帧、子帧、s、ms或其他时间单位;
发送preamble的间隔长度(Preamble period)或以其为输入的函数,其中,该间隔长度可以通过计算或者预配置获得,Preamble period的单位可以是PRACH period、PDCCH period、超帧、帧、子帧、s、ms或其他时间单位;
RA响应窗长度W_RAR或以其为输入的函数,其中,W_RAR的单位可以是PDCCH period、PRACH period、超帧、帧、子帧、s、ms或其他时间单位;
RA响应窗长度W_RAR持续的最大长度MW_RAR,其中,MW_RAR的单位 可以是PDCCH period、PRACH period、超帧、帧、子帧、s、ms或其他时间单位;
一个超帧内包含的无线帧数目(HSFNnumber)或以其为输入的函数;
下行控制信道搜索空间持续的有效子帧数目Rmax或以其为输入的函数;
下行控制信道的重复次数Ri或以其为输入的函数。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:通信节点确定RA-RNTI为:
RA-RNTI=n0+k1×band_id+k2×floor(SFN_id/minPeriod)+k2×ceil(HSFNnumber/minPeriod)×(HSFN_id mod MW_RAR);
其中,n0为系数,minPeriod为随机接入最小周期,minPeriod的单位是帧,MW_RAR为RA响应窗长度W_RAR持续的最大长度,MW_RAR的单位是超帧;floor()表示向下取整,ceil()表示向上取整;ki为正整数,i=1,2;比如,k1可以为1,k2可以为系统中频段(band)的最大数量(如:4);
band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFNnumber为一个超帧内包含的无线帧数目,HSFN_id为发送preamble的超帧的序号。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:通信节点确定RA-RNTI为:
RA-RNTI=n0+k1×band_id+k2×floor(SFN_id/minPeriod)+floor(Rmax/z)×[k2×ceil(HSFNnumber/minPeriod)×(HSFN_id mod MW_RAR)],
其中,n0为系数,minPeriod为随机接入最小周期,minPeriod的单位是帧,MW_RAR为RA响应窗长度W_RAR持续的最大长度,MW_RAR的单位是超帧;floor()表示向下取整,ceil()表示向上取整;
z为第一阈值,取值范围为正整数,比如,z值可以为以下之一:2048、1024、512、256、128、64。
其中,ki可以为正整数,i=1,2。比如,k1可以为1,k2可以为系统中band的最大数量(如:4)。
band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFNnumber为一个超帧内包含的无线帧数目,HSFN_id为发送preamble的超帧的序号,Rmax为下行控制信道搜索空间持续的有效子帧数目。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:通信节点确定RA-RNTI为:
RA-RNTI=n0+k1×band_id+k2×[floor(Rmax/z)×(HSFN_id mod MW_RAR)]+k3×floor(SFN_id/minPeriod),
其中,n0为系数,floor()表示向下取整;
z为第一阈值,取值范围为正整数,比如,z值可以为以下之一:2048、1024、512、256、128、64。
其中,ki的取值为在其之前一项或多项因子求和后的最大值,ki为正整数,i=1,2,3。比如,k1可以为1,k2可以为系统中band的最大数量(如:4)。
MW_RAR为RA响应窗长度W_RAR持续的最大长度,band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,Rmax为下行控制信道搜索空间持续的有效子帧数目,HSFN_id为发送preamble的超帧的序号,minPeriod为随机接入最小周期。
在示例性实施方式中,所述通信节点根据随机接入信息确定RA-RNTI可以包括:通信节点确定RA-RNTI为:
RA-RNTI=n0+k1×band_id+k2×(HSFN_id mod MW_RAR)+k3×MW_RAR×floor(SFN_id/minPeriod),
其中,n0为系数,floor()表示向下取整;ki的取值为在其之前一项或多项因子求和后的最大值,ki为正整数,i=1,2,3;比如,k1可以为1,k2可以为系统中band的最大数量(如:4)。
MW_RAR为RA响应窗长度W_RAR持续的最大长度,band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFN_id为发送preamble的超帧的序号,minPeriod为随机接入最小周期。
在示例性实施方式中,n0的取值为1。
在示例性实施方式中,MW_RAR可以根据下行控制信道的发送周期(PDCCH period)确定;MW_RAR为PDCCH period×k对应的最大超帧数量,或者,MW_RAR为RAR检测窗对应的最大超帧数量;其中,k为系数。
在示例性实施方式中,根据下行控制信道搜索空间持续的有效子帧数目Rmax、下行控制信道的发送周期、RAR窗长中至少之一可以确定以下至少一项:RA-RNTI计算公式、minPeriod取值。
在示例性实施方式中,根据Rmax、下行控制信道的发送周期、RAR窗长中至少之一确定minPeriod取值,可以包括:
确定minPeriod为PRACH最小周期,比如:4个无线帧;或者,
根据Rmax取值确定minPeriod;比如:Rmax大于x1时,minPeriod为16、32、64、128、256、512,Rmax小于或等于x1时,minPeriod为4;或者,
根据下行控制信道的发送周期的取值确定minPeriod;比如:下行控制信道的发送周期大于x2时,minPeriod为32、64、128、256、512,下行控制信道的发送周期小于或等于x2时,minPeriod为4;或者,
根据RAR窗长确定minPeriod取值;比如:RAR窗长大于x3,minPeriod为32、64、128、256、512,RAR窗长小于或等于x3,minPeriod为4。
在示例性实施方式中,x1可以为128,x2可以为512,x3可以为512个无线帧。
在示例性实施方式中,根据Rmax、下行控制信道的发送周期、RAR窗长中至少之一确定RA-RNTI计算公式,可以包括:
根据Rmax确定RA-RNTI计算公式;比如:Rmax大于x1时,RA-RNTI根据超帧、帧、band_id确定,Rmax小于或等于x1时,RA-RNTI根据帧、band_id确定;
或者,根据下行控制信道的发送周期确定RA-RNTI计算公式;比如:下行控制信道的发送周期大于x2时,RA-RNTI根据超帧、帧、band_id确定,下行控制信道的发送周期小于或等于x2时,RA-RNTI根据帧、band_id确定;
或者,根据RAR窗长确定RA-RNTI计算公式;比如:RAR窗长大于x3,RA-RNTI根据超帧、帧、band_id确定,RAR窗长小于或等于x3,RA-RNTI根据帧、band_id确定。
在示例性实施方式中,x1可以为128,x2可以为512,x3可以为512个无线帧。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述任一种随机接入方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
本申请实施例提供一种随机接入方法及装置,通过在RA-RNTI的计算公式中引入能反映发送preamble起始无线帧差异的因子或者反映发送preamble的频域位置索引信息,确保当终端的RA响应窗重叠时,不会产生额外的冲突,并减少终端耗电。

Claims (71)

  1. 一种随机接入方法,包括:
    通信节点获取随机接入信息,其中,所述随机接入信息包括:发送前导preamble的子帧的序号、发送preamble的无线帧的序号;
    所述通信节点根据所述随机接入信息确定随机接入无线网络临时标识RA-RNTI。
  2. 根据权利要求1所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+t_id+k1×u_id;
    其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号,u_id为发送preamble的起始无线帧的序号。
  3. 根据权利要求1所述的随机接入方法,其中,所述随机接入信息还包括以下之一或其组合:随机接入RA响应窗长度、发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
  4. 根据权利要求3所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+t_id+k1×v_id;
    其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号,v_id为根据以下之一或其组合确定的综合因子:
    发送preamble的起始无线帧的序号;
    RA响应窗长度;
    发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
  5. 根据权利要求4所述的随机接入方法,其中,
    v_id=u_id mod WLen;或者,
    v_id=u_id mod(WLen/10);或者,
    v_id=(u_id×10)mod WLen;
    其中,u_id为发送preamble的起始无线帧的序号,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
  6. 根据权利要求4所述的随机接入方法,其中,
    v_id=((u_id×10)/PRACHWinLen)mod WLen;或者,
    v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen);或者,
    v_id=((u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1);
    其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
  7. 根据权利要求4所述的随机接入方法,其中,
    v_id=((u_id×10)/PRACHWinLen)mod WLen;或者,
    v_id=((u_id×10)/PRACHWinLen)mod ceil(WLen/PRACHWinLen);或者,
    v_id=((u_id×10)/PRACHWinLen)mod(floor(WLen/PRACHWinLen)+1);
    其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整,floor()表示向下取整。
  8. 根据权利要求4所述的随机接入方法,其中,
    v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
    v_id=(u_id/PRACHWinLen)mod(WLen/(PRACHWinLen×10));或者,
    v_id=(u_id/PRACHWinLen)mod((WLen/(PRACHWinLen×10))+1);
    其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模。
  9. 根据权利要求4所述的随机接入方法,其中,
    v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
    v_id=(u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen×10));或者,
    v_id=(u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen×10))+1);
    其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整,floor()表示向下取整。
  10. 根据权利要求3所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod WLen);或者,
    RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen));或者,
    RA_RNTI=n0+(((t_id+u_id×10)/PRACHWinLen)mod(WLen/PRACHWinLen+1));
    其中,t_id为发送preamble的起始子帧的序号,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,以子帧为单位,WLen为RA响应窗长度,mod表示取模,n0为系数。
  11. 根据权利要求4、6至10任一项所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
  12. 根据权利要求11所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度通过如下方式计算获得:
    PRACHWinLen=COMPRACH/NPRACH_PerFrame
    其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
    NPRACH_PerFrame表示在每个无线帧内配置的物理随机接入信道PRACH资源数量,Ppreamble表示preamble的重复因子。
  13. 根据权利要求4、6至10任一项所述的随机接入方法,其中,
    PRACHWinLen=10×Ppreamble/NPRACH_PerFrame
    其中,PRACHWinLen表示发送preamble的间隔长度,NPRACH_PerFrame表示在每个无线帧内配置的物理随机接入信道PRACH资源数量,Ppreamble表示preamble的重复因子。
  14. 根据权利要求4、6至10任一项所述的随机接入方法,其中,PRACHWinLen表示发送preamble的间隔长度,根据以下之一或其组合确定:
    物理随机接入信道PRACH资源起始无线子帧序号;
    在每个无线帧配置的PRACH资源数量;
    在每个无线帧配置的可用于发送preamble的子帧序号;
    preamble格式;
    preamble的重复因子。
  15. 根据权利要求4、6至10任一项所述的随机接入方法,其中,PRACHWinLen表示预配置的发送preamble的间隔长度,单位可以是以下之一:帧、子帧、传输preamble的最大数量。
  16. 根据权利要求4、6至15任一项所述的随机接入方法,其中,若当前可以用于发送preamble的无线帧的序号大于或等于MAXFrameIndex–PRACHWinLen,则跳过这些帧,从序号为0的无线帧开始重新检测能够用于发送preamble的无线帧,其中,MAXFrameIndex为无线帧序号的最大值。
  17. 根据权利要求5至10任一项所述的随机接入方法,其中,WLen由WLen’替换,其中,WLen’=WLen-2。
  18. 根据权利要求2、4至10任一项所述的随机接入方法,其中,n0=1。
  19. 根据权利要求2、4至9任一项所述的随机接入方法,其中,k1=10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
  20. 根据权利要求1所述的随机接入方法,所述通信节点根据所述随机接入信息确定RA-RNTI之后,所述随机接入方法还包括:当所述确定的RA-RNTI超过预定取值范围内的最大值时,所述通信节点确定该RA-RNTI为预定值。
  21. 根据权利要求1所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI,包括:
    当以下随机接入信息之一或其组合对应于覆盖等级:随机接入RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,则所述RA-RNTI的计算也对应于该覆盖等级。
  22. 一种随机接入方法,包括:
    通信节点获取随机接入信息,其中,所述随机接入信息包括:发送前导preamble的时域位置索引信息、发送preamble的频域位置索引信息;
    所述通信节点根据所述随机接入信息确定随机接入无线网络临时标识RA-RNTI。
  23. 根据权利要求22所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+t_id+k1×v_id+WLen×w_id;
    其中,n0、k1为系数,t_id为发送preamble的起始子帧的序号;
    w_id为发送preamble的频域位置索引;
    WLen为随机接入RA响应窗长度;
    v_id为根据以下之一或其组合确定的综合因子:
    发送preamble的无线帧的序号;
    物理随机接入信道PRACH资源起始无线子帧序号;
    RA响应窗长度;
    发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
  24. 根据权利要求23所述的随机接入方法,其中,
    v_id=(u_id/PRACHWinLen)mod(WLen/10);或者,
    v_id=(u_id/PRACHWinLen)mod ceil(WLen/(PRACHWinLen×10));或者,
    v_id=(u_id/PRACHWinLen)mod(floor(WLen/(PRACHWinLen×10))+1);
    其中,u_id为发送preamble的起始无线帧的序号,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得,WLen为RA响应窗长度,以子帧为单位,mod表示取模,ceil()表示向上取整,floor()表示向下取整。
  25. 根据权利要求24所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
  26. 根据权利要求25所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度通过如下方式计算获得:
    PRACHWinLen=COMPRACH/NPRACH_PerFrame
    其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
    NPRACH_PerFrame表示在每个无线帧内配置的物理随机接入信道PRACH资源数量,Ppreamble表示preamble的重复因子。
  27. 根据权利要求24所述的随机接入方法,其中,WLen由WLen’替换,其中,WLen’=n0+MAX(t_id)+k1×MAX(u_id),MAX(t_id)表示t_id取值范围内的最大值,MAX(u_id)表示u_id取值范围内的最大值,u_id为发送preamble的起始无线帧的序号,t_id为发送preamble的起始子帧的序号。
  28. 根据权利要求23或27所述的随机接入方法,其中,n0=1,k1=10,或者,k1=1+MAX(t_id),MAX(t_id)表示t_id取值范围内的最大值,t_id为发送preamble的起始子帧的序号。
  29. 根据权利要求22所述的随机接入方法,所述通信节点根据所述随机接入信息确定RA-RNTI之后,所述随机接入方法还包括:当所述确定的RA-RNTI超过预定取值范围内的最大值时,所述通信节点确定该RA-RNTI为预定值。
  30. 根据权利要求22所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI,包括:
    当以下随机接入信息之一或其组合对应于覆盖等级:随机接入RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,
    则所述RA-RNTI的计算也对应于该覆盖等级。
  31. 一种随机接入方法,包括:
    通信节点获取随机接入信息,其中,所述随机接入信息包括:终端发送前导preamble的时域位置索引信息、终端发送preamble的频域位置索引信息;
    所述通信节点根据所述随机接入信息确定随机接入无线网络临时标识RA-RNTI。
  32. 根据权利要求31所述的随机接入方法,其中,所述随机接入信息还包括以下之一或其组合:随机接入RA响应窗长度、发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
  33. 根据权利要求32所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+s_id+w_id×PRACHWinLen;
    其中,n0为系数,s_id为终端发送preamble的时域位置索引,w_id为终端发送preamble的频域位置索引,PRACHWinLen为发送preamble的间隔长度,该间隔长度可以通过计算或者预配置获得。
  34. 根据权利要求33所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,即相邻的两个在不同无线帧的相同子帧发送的preamble之间的间隔长度,以帧为单位或者以子帧为单位。
  35. 根据权利要求34所述的随机接入方法,其中,PRACHWinLen表示在相同子帧发送preamble的间隔长度,该间隔长度通过如下方式计算获得:
    PRACHWinLen=COMPRACH/NPRACH_PerFrame
    其中,COMPRACH为Ppreamble和NPRACH_PerFrame的最小公倍数;
    NPRACH_PerFrame表示在每个无线帧内配置的物理随机接入信道PRACH资源数量,Ppreamble表示preamble的重复因子。
  36. 根据权利要求33所述的随机接入方法,其中,
    PRACHWinLen=10×Ppreamble/NPRACH_PerFrame
    其中,PRACHWinLen表示发送preamble的间隔长度,NPRACH_PerFrame表示在每个无线帧内配置的PRACH资源数量,Ppreamble表示preamble的重复因子。
  37. 根据权利要求33所述的随机接入方法,其中,PRACHWinLen表示发送preamble的间隔长度,根据以下之一或其组合确定:
    物理随机接入信道PRACH资源起始无线子帧序号;
    在每个无线帧配置的PRACH资源数量;
    在每个无线帧配置的可用于发送preamble的子帧序号;
    preamble格式;
    preamble的重复因子。
  38. 根据权利要求33所述的随机接入方法,其中,PRACHWinLen表示预配置的发送preamble的间隔长度,单位可以是以下之一:帧、子帧、传输preamble的最大数量。
  39. 根据权利要求31所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+w_id+s_id×PRACHFreLen;
    其中,n0为系数,s_id为发送preamble的时域位置索引,w_id为发送preamble的频域位置索引,PRACHFreLen为发送preamble的频域间隔长度或者为可以在频域复用发送preamble的最大数量。
  40. 根据权利要求33或39所述的随机接入方法,其中,n0=1。
  41. 根据权利要求39所述的随机接入方法,其中,PRACHFreLen表示发送preamble的频域间隔长度,根据以下信息之一或其组合确定:物理随机 接入信道可用于传输preamble的频域资源配置信息、跳频模式。
  42. 根据权利要求31至41任一项所述的随机接入方法,其中,所述时域位置索引信息包括以下任一项:
    发送preamble的子帧的序号;
    发送preamble的无线帧的序号。
  43. 根据权利要求31至41任一项所述的随机接入方法,其中,所述频域位置索引信息包括以下任一项:
    发送preamble的起始频域位置索引;
    发送preamble的频域位置偏置;
    发送preamble的频域子载波索引。
  44. 根据权利要求31所述的随机接入方法,所述通信节点根据所述随机接入信息确定RA-RNTI之后,所述随机接入方法还包括:当所述确定的RA-RNTI超过预定取值范围内的最大值时,所述通信节点确定该RA-RNTI为预定值。
  45. 根据权利要求31所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI,包括:
    当以下随机接入信息之一或其组合对应于覆盖等级:随机接入RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,
    则所述RA-RNTI的计算也对应于该覆盖等级。
  46. 一种随机接入方法,包括:
    通信节点获取随机接入信息相关因子;
    所述通信节点根据所述随机接入信息相关因子确定随机接入无线网络临时标识RA-RNTI。
  47. 根据权利要求46所述的随机接入方法,其中,所述通信节点根据所述随机接入信息相关因子确定RA-RNTI,包括:
    所述通信节点确定RA-RNTI为:
    Figure PCTCN2017071105-appb-100001
    其中,n0为系数,N为随机接入信息相关因子的个数,ci为随机接入信息相关因子,
    Figure PCTCN2017071105-appb-100002
    MAX(ci-1)表示ci-1的最大值。
  48. 根据权利要求47所述的随机接入方法,其中,n0=1。
  49. 根据权利要求46所述的随机接入方法,其中,所述随机接入信息相关因子包括以下任一项或其组合:
    发送preamble的起始子帧的序号;
    发送preamble的起始无线帧的序号;
    在每个无线帧内配置的物理随机接入信道PRACH资源数量;
    preamble的重复因子;
    发送preamble的结束子帧的序号;
    发送preamble的结束无线帧的序号;
    发送preamble的频域位置偏置;
    发送preamble的频域子载波索引;
    随机接入RA响应窗长度。
  50. 根据权利要求46所述的随机接入方法,所述通信节点根据所述随机接入信息相关因子确定RA-RNTI之后,所述随机接入方法还包括:当所述确定的RA-RNTI超过预定取值范围内的最大值时,所述通信节点确定该RA-RNTI为预定值。
  51. 根据权利要求46所述的随机接入方法,其中,所述通信节点根据所述随机接入信息相关因子确定RA-RNTI,包括:
    当以下随机接入信息之一或其组合对应于覆盖等级:随机接入RA响应窗长度、preamble的重复因子、发送preamble的间隔长度,
    则所述RA-RNTI的计算也对应于该覆盖等级。
  52. 一种随机接入装置,应用于通信节点,包括:
    信息获取模块,配置为获取随机接入信息,其中,所述随机接入信息包括:发送前导preamble的子帧的序号、发送preamble的无线帧的序号;
    处理模块,配置为根据所述随机接入信息确定随机接入无线网络临时标识RA-RNTI。
  53. 一种随机接入方法,包括:
    通信节点获取随机接入信息;
    所述通信节点根据所述随机接入信息确定随机接入响应窗相关信息。
  54. 根据权利要求53所述的随机接入方法,其中,所述随机接入信息包括以下之一或其组合:
    下行信道重复信息或以其为输入的函数;
    下行控制信道传输周期PDCCH period或以其为输入的函数;
    下行控制信道传输间隔PDCCH transmission duration或以其为输入的函数;
    下行共享信道传输周期PDSCH period或以其为输入的函数;
    下行共享信道传输间隔PDSCH transmission duration或以其为输入的函数;
    上行信道重复信息或以其为输入的函数;
    上行接入信道传输周期PRACH period或以其为输入的函数;
    上行接入信道传输间隔PRACH transmission duration或以其为输入的函数。
  55. 根据权利要求53所述的随机接入方法,其中,所述随机接入响应窗相关信息包括:
    随机接入响应窗起始时刻;
    随机接入响应窗起始的时域位置;
    随机接入响应窗起始时刻与前导发送结束时刻之间的间隔。
  56. 一种随机接入方法,包括:
    通信节点获取随机接入信息,其中,所述随机接入信息包括:发送前导preamble的超帧的序号;
    所述通信节点根据所述随机接入信息确定随机接入无线网络临时标识RA-RNTI。
  57. 根据权利要求56所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+k1×HSFN_id;
    其中,n0、k1为系数,HSFN_id为发送preamble的超帧的序号。
  58. 根据权利要求56所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+k1×f(HSFN_id);
    其中,n0、k1为系数,f()表示以HSFN_id为输入的函数,HSFN_id为发送preamble的超帧的序号。
  59. 根据权利要求56所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA_RNTI=n0+m×f(ki,Ci);
    其中,f()表示以ki,Ci为输入的函数,Ci为随机接入信息,n0、m、ki为系数。
  60. 根据权利要求56至59任一项所述的随机接入方法,其中,所述随机接入信息包括以下之一或其组合:
    发送preamble的超帧的序号HSFN_id或以其为输入的函数;
    发送preamble的无线帧的序号SFN_id或以其为输入的函数;
    发送preamble的子帧的序号subSFN_id或以其为输入的函数;
    发送preamble的频域位置索引f_id或以其为输入的函数;
    发送preamble的频率偏置f_offset或以其为输入的函数;
    发送preamble的子载波索引tone_id或以其为输入的函数;
    发送preamble的频段索引band_id或以其为输入的函数;
    下行控制信道的发送周期PDCCH period或以其为输入的函数;
    随机接入信道的发送周期PRACH period或以其为输入的函数;
    发送preamble的间隔长度Preamble period或以其为输入的函数,该间隔长度可以通过计算或者预配置获得;
    随机接入RA响应窗长度W_RAR或以其为输入的函数;
    RA响应窗长度W_RAR持续的最大长度MW_RAR
    一个超帧内包含的无线帧数目HSFN number或以其为输入的函数;
    下行控制信道搜索空间持续的有效子帧数目Rmax或以其为输入的函数;
    下行控制信道的重复次数Ri或以其为输入的函数。
  61. 根据权利要求56至60任一项所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA-RNTI=n0+k1×band_id+k2×floor(SFN_id/minPeriod)+k2×ceil(HSFNnumber/minPeriod)×(HSFN_id mod MW_RAR);
    其中,n0为系数,minPeriod为随机接入最小周期,minPeriod的单位是帧,MW_RAR为RA响应窗长度W_RAR持续的最大长度,MW_RAR的单位是超帧;
    ki为正整数,i=1,2;
    floor()表示向下取整,ceil()表示向上取整;
    band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFNnumber为一个超帧内包含的无线帧数目,HSFN_id为发送preamble的超帧的序号。
  62. 根据权利要求56至60任一项所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA-RNTI=n0+k1×band_id+k2×floor(SFN_id/minPeriod)+floor(Rmax/z)×[k2×ceil(HSFNnumber/minPeriod)×(HSFN_id mod MW_RAR)],
    其中,n0为系数,minPeriod为随机接入最小周期,minPeriod的单位是帧,MW_RAR为RA响应窗长度W_RAR持续的最大长度,MW_RAR的单位是超帧;
    z为第一阈值,取值范围为正整数;
    ki为正整数,i=1,2;
    floor()表示向下取整,ceil()表示向上取整;
    band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFNnumber为一个超帧内包含的无线帧数目,HSFN_id为发送preamble的超帧的序号,Rmax为下行控制信道搜索空间持续的有效子帧数目。
  63. 根据权利要求56至60任一项所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA-RNTI=n0+k1×band_id+k2×[floor(Rmax/z)×(HSFN_id mod MW_RAR)]+k3×floor(SFN_id/minPeriod),
    其中,n0为系数,z为第一阈值,取值范围为正整数;
    ki的取值为在其之前一项或多项因子求和后的最大值,ki为正整数,i=1,2,3;
    floor()表示向下取整;
    MW_RAR为RA响应窗长度W_RAR持续的最大长度,band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,Rmax为下行控制信道搜索空间持续的有效子帧数目,HSFN_id为发送preamble的超帧 的序号,minPeriod为随机接入最小周期。
  64. 根据权利要求56至60任一项所述的随机接入方法,其中,所述通信节点根据所述随机接入信息确定RA-RNTI包括:
    所述通信节点确定RA-RNTI为:
    RA-RNTI=n0+k1×band_id+k2×(HSFN_id mod MW_RAR)+k3×MW_RAR×floor(SFN_id/minPeriod),
    其中,n0为系数,ki的取值为在其之前一项或多项因子求和后的最大值,ki为正整数,i=1,2,3;floor()表示向下取整;
    MW_RAR为RA响应窗长度W_RAR持续的最大长度,band_id为发送preamble的频段索引,SFN_id为发送preamble的无线帧的序号,HSFN_id为发送preamble的超帧的序号,minPeriod为随机接入最小周期。
  65. 根据权利要求56至64任一项所述的随机接入方法,其中,n0的取值为1。
  66. 根据权利要求56至64任一项所述的随机接入方法,其中,MW_RAR根据下行控制信道的发送周期PDCCH period确定;MW_RAR为PDCCH period×k对应的最大超帧数量,或者,MW_RAR为随机接入响应RAR检测窗对应的最大超帧数量,其中,k为系数。
  67. 根据权利要求56至66任一项所述的随机接入方法,其中,根据下行控制信道搜索空间持续的有效子帧数目Rmax、下行控制信道的发送周期、随机接入响应RAR窗长中至少之一确定以下至少一项:RA-RNTI计算公式、随机接入最小周期minPeriod取值。
  68. 根据权利要求67所述的随机接入方法,其中,所述根据下行控制信道搜索空间持续的有效子帧数目Rmax、下行控制信道的发送周期、RAR窗长中至少之一确定minPeriod取值,包括:
    确定minPeriod为PRACH最小周期;或者,
    根据Rmax的取值确定minPeriod;或者,
    根据下行控制信道的发送周期的取值确定minPeriod;或者,
    根据RAR窗长确定minPeriod。
  69. 根据权利要求67所述的随机接入方法,其中,所述根据下行控制信道搜索空间持续的有效子帧数目Rmax、下行控制信道的发送周期、RAR窗长中至少之一确定RA-RNTI计算公式,包括:
    根据Rmax确定RA-RNTI计算公式;或者,
    根据下行控制信道的发送周期确定RA-RNTI计算公式;或者,
    根据RAR窗长确定RA-RNTI计算公式。
  70. 根据权利要求61至64任一项所述的随机接入方法,其中,k1为1,k2为系统中频段band的最大数量。
  71. 根据权利要求62或63所述的随机接入方法,其中,z的取值范围包括:2048、1024、512、256、128、64。
PCT/CN2017/071105 2016-01-13 2017-01-13 一种随机接入方法及装置 WO2017121380A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/068,853 US10736149B2 (en) 2016-01-13 2017-01-13 Method and apparatus for random access
ES17738193T ES2809724T3 (es) 2016-01-13 2017-01-13 Método de acceso aleatorio, nodo de comunicación y medio legible por ordenador no transitorio
EP17738193.6A EP3404991B1 (en) 2016-01-13 2017-01-13 Random access method, communication node and non-transitory computer-readable medium
EP23171205.0A EP4221436A1 (en) 2016-01-13 2017-01-13 A method and apparatus for random access
EP20186397.4A EP3755110B1 (en) 2016-01-13 2017-01-13 A method and apparatus for random access
KR1020187023225A KR102687897B1 (ko) 2016-01-13 2017-01-13 랜덤 액세스 방법 및 장치
JP2018536228A JP6936232B2 (ja) 2016-01-13 2017-01-13 ランダムアクセス方法および装置
US16/937,133 US11051346B2 (en) 2016-01-13 2020-07-23 Method and apparatus for random access
US17/346,047 US11818762B2 (en) 2016-01-13 2021-06-11 Method and apparatus for random access

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610020739.8 2016-01-13
CN201610020739 2016-01-13
CN201610081474 2016-02-05
CN201610081474.2 2016-02-05
CN201610286416.3A CN106973441B (zh) 2016-01-13 2016-04-29 一种随机接入方法及装置
CN201610286416.3 2016-04-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/068,853 A-371-Of-International US10736149B2 (en) 2016-01-13 2017-01-13 Method and apparatus for random access
US16/937,133 Continuation US11051346B2 (en) 2016-01-13 2020-07-23 Method and apparatus for random access

Publications (1)

Publication Number Publication Date
WO2017121380A1 true WO2017121380A1 (zh) 2017-07-20

Family

ID=59310788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071105 WO2017121380A1 (zh) 2016-01-13 2017-01-13 一种随机接入方法及装置

Country Status (1)

Country Link
WO (1) WO2017121380A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030084A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE OF GENERATION AND / OR MANAGEMENT OF RNTI
CN109392180A (zh) * 2017-08-11 2019-02-26 中国移动通信有限公司研究院 一种随机接入方法、网络侧设备和移动通信终端
WO2020050660A1 (en) * 2018-09-05 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260136A1 (en) * 2009-04-10 2010-10-14 Nokia Corporation Random access channel response handling with aggregated component carriers
CN102651853A (zh) * 2011-02-28 2012-08-29 北京三星通信技术研究有限公司 M2m终端随机接入方法
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
WO2015042866A1 (en) * 2013-09-27 2015-04-02 Alcatel Lucent Methods and devices for random access
CN105338589A (zh) * 2014-08-11 2016-02-17 中兴通讯股份有限公司 随机接入响应消息的传输方法及装置
CN105451360A (zh) * 2014-09-26 2016-03-30 夏普株式会社 用于配置随机接入响应窗的方法以及基站和用户设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100260136A1 (en) * 2009-04-10 2010-10-14 Nokia Corporation Random access channel response handling with aggregated component carriers
CN102651853A (zh) * 2011-02-28 2012-08-29 北京三星通信技术研究有限公司 M2m终端随机接入方法
CN103582073A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种mtc ue接入lte系统的方法、演进的基站
WO2015042866A1 (en) * 2013-09-27 2015-04-02 Alcatel Lucent Methods and devices for random access
CN105338589A (zh) * 2014-08-11 2016-02-17 中兴通讯股份有限公司 随机接入响应消息的传输方法及装置
CN105451360A (zh) * 2014-09-26 2016-03-30 夏普株式会社 用于配置随机接入响应窗的方法以及基站和用户设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030084A1 (en) * 2017-08-11 2019-02-14 Telefonaktiebolaget Lm Ericsson (Publ) TECHNIQUE OF GENERATION AND / OR MANAGEMENT OF RNTI
CN109392180A (zh) * 2017-08-11 2019-02-26 中国移动通信有限公司研究院 一种随机接入方法、网络侧设备和移动通信终端
CN111034328A (zh) * 2017-08-11 2020-04-17 瑞典爱立信有限公司 用于生成和/或管理rnti的技术
US11229058B2 (en) 2017-08-11 2022-01-18 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating and/or managing RNTIs
US20220095386A1 (en) * 2017-08-11 2022-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Technique for Generating and/or Managing RNTIs
EP3979755A1 (en) * 2017-08-11 2022-04-06 Telefonaktiebolaget LM Ericsson (publ) Technique for generating rntis
US11711854B2 (en) 2017-08-11 2023-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Technique for generating and/or managing RNTIs
CN111034328B (zh) * 2017-08-11 2023-08-18 瑞典爱立信有限公司 用于生成和/或管理rnti的技术
WO2020050660A1 (en) * 2018-09-05 2020-03-12 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier
US11202320B2 (en) 2018-09-05 2021-12-14 Samsung Electronics Co., Ltd. Method and apparatus of performing random access on unlicensed carrier

Similar Documents

Publication Publication Date Title
US11818762B2 (en) Method and apparatus for random access
CN103748942B (zh) 随机接入方法、基站及终端
JP6204599B2 (ja) ランダムアクセスにおいてリソースを事前決定するための方法、ユーザ機器、および基地局
WO2020198912A1 (zh) 随机接入方法、装置及计算机可读存储介质
CN108029120B (zh) 用于为低复杂度窄带终端指示对随机接入过程中的harq消息分配的资源的方法
US10212573B2 (en) Coverage-deficient terminal connection procedures
CN106455095B (zh) 一种数据传输方法及装置
WO2016023379A1 (zh) 随机接入响应消息的传输方法及装置
WO2017121097A1 (zh) 非授权频谱上指示上行子帧的方法及装置
EP3166364B1 (en) Physical downlink data channel transmission method, base station and user equipment
CN111385909B (zh) 信号传输方法、ue、基站以及计算机可读介质
CN111757503A (zh) 一种资源确定方法和装置
CN106664689B (zh) 一种物理下行控制信道的传输方法及装置
CN107026721B (zh) 前导序列的发送和接收方法、装置及系统
CN110447290B (zh) 无线通信方法、终端设备和网络设备
WO2017121380A1 (zh) 一种随机接入方法及装置
CN113490285A (zh) 一种传输方法及装置、计算机可读存储介质
CN113424641B (zh) 无线通信网络中的随机接入
CN113647133B (zh) 发送、接收反馈信息的方法和设备
WO2020030145A1 (zh) 一种数据传输方法、基站及终端
CN118741750A (zh) 信号传输方法、ue、基站以及计算机可读介质
CN114073162B (zh) 用于随机接入过程的方法和装置
CN114073162A (zh) 用于随机接入过程的方法和装置
JP2017216746A (ja) ランダムアクセスにおいてリソースを事前決定するための方法、ユーザ機器、および基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018536228

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023225

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023225

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017738193

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738193

Country of ref document: EP

Effective date: 20180813