WO2017119110A1 - レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 - Google Patents
レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 Download PDFInfo
- Publication number
- WO2017119110A1 WO2017119110A1 PCT/JP2016/050405 JP2016050405W WO2017119110A1 WO 2017119110 A1 WO2017119110 A1 WO 2017119110A1 JP 2016050405 W JP2016050405 W JP 2016050405W WO 2017119110 A1 WO2017119110 A1 WO 2017119110A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- sample
- battery
- pure water
- mass
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06H—MARKING, INSPECTING, SEAMING OR SEVERING TEXTILE MATERIALS
- D06H3/00—Inspecting textile materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
- G01N5/02—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0431—Cells with wound or folded electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/049—Processes for forming or storing electrodes in the battery container
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
- H01M4/0447—Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a redox flow battery which is one of storage batteries, an electrode used for a redox flow battery, and a method for evaluating characteristics of an electrode used for a storage battery such as a redox flow battery.
- the present invention relates to a redox flow battery having a low internal resistance, and an electrode characteristic evaluation method capable of simply evaluating the characteristics of an electrode used in a storage battery such as a redox flow battery.
- RF battery redox flow battery
- MW class megawatt class
- SOC State of Charge
- the battery output and battery capacity can be designed independently and the design freedom is high, and it is expected to be suitable for storage batteries for power system stabilization applications. Is done.
- An RF battery typically includes a battery cell including a positive electrode to which a positive electrode electrolyte is supplied, a negative electrode to which a negative electrode electrolyte is supplied, and a diaphragm interposed between both electrodes. And for the positive electrode and the negative electrode, a fiber cloth (Patent Document 1) composed of carbon fibers such as carbon felt is used.
- Patent Document 1 discloses that cell resistance can be reduced by applying a hydrophilic treatment such as heat treatment, laser treatment, or ion implantation method to a fiber cloth as compared to the case of no treatment.
- a post-treatment electrode may have an increased internal resistance as shown in a test example to be described later. Therefore, a redox flow battery (RF battery) that can reduce the internal resistance more reliably and an electrode that can more reliably construct an RF battery having a low internal resistance are desired.
- RF battery redox flow battery
- One of the reasons why the internal resistance is high even in the post-treated electrode may be that the hydrophilic state is not properly maintained. Even when the hydrophilization treatment is performed under the same conditions, there is a possibility that the hydrophilization state changes during storage or transportation of the post-treatment electrode. Particularly, in a high-power redox flow battery, the number of electrodes used is large (a plurality of sets of positive electrodes and negative electrodes are provided), or electrodes having a relatively large area are used. Therefore, there is a possibility that an electrode in which the hydrophilic state is not appropriate is included in the plurality of electrodes, or a region (local degradation region) in which the hydrophilic state is not appropriate is included in one electrode.
- an RF battery having a low internal resistance can be constructed more reliably if the hydrophilicity of the electrode is determined just before the assembly of the RF battery and the RF battery is assembled using only good electrodes.
- a method that can easily evaluate the hydrophilicity of an electrode has not been studied.
- the number of oxygen atoms and carbon atoms of the treated electrode is measured by X-ray photoelectron spectroscopy, and the R value of the treated electrode is measured by Raman spectroscopy analysis. It is disclosed that the conditions for the hydrophilic treatment are adjusted so that the ratio and the R value are in a specific range.
- X-ray photoelectron spectroscopy and Raman spectroscopy analysis takes time, for example, by placing a sample in a dedicated device. When examining a plurality of electrodes, it is necessary to place the sample in a dedicated device one by one, which further takes time. Furthermore, these analysis costs are generally high, leading to increased costs. Therefore, it is desired that the electrode characteristics such as hydrophilicity can be more easily evaluated for the electrodes used in storage batteries such as RF batteries.
- the present invention has been made in view of the above circumstances, and one of its purposes is to provide a redox flow battery having a low internal resistance and a redox flow battery electrode capable of constructing a redox flow battery having a low internal resistance. It is in.
- Another object of the present invention is to provide an electrode characteristic evaluation method that can easily and accurately evaluate the characteristics of an electrode used in a storage battery such as a redox flow battery.
- An electrode characteristic evaluation method is an electrode characteristic evaluation method for evaluating the characteristics of an electrode used in a storage battery including an electrolytic solution, Dropping a predetermined amount of pure water from above the sample in a state where a sample of a predetermined size collected from the electrode is horizontally placed; And a step of measuring the mass of the sample after standing the sample on which the pure water has been dropped vertically and examining the amount of the pure water adhering to the sample.
- a redox flow battery is a redox flow battery including one or more electrode pairs including a positive electrode and a negative electrode that are supplied with an electrolyte and perform a battery reaction,
- the total area of the electrodes is 40000 cm 2 or more;
- a sample of a predetermined size collected from an arbitrary position of the stacked electrodes is placed horizontally, a predetermined amount of pure water is dropped from above the sample, and the sample on which the pure water has been dropped is dropped.
- the adhesion rate is 1% or more.
- An electrode for a redox flow battery is an electrode for a redox flow battery used in a redox flow battery in which an electrolytic solution is supplied to perform a battery reaction,
- the area is 500 cm 2 or more,
- a sample of a predetermined size collected from an arbitrary position is placed horizontally, a predetermined amount of pure water is dropped from above the sample, and the sample on which the pure water has been dropped is set up vertically and then
- the adhesion rate is 1% or more.
- the electrode characteristic evaluation method described above can easily and accurately evaluate the characteristics of electrodes used in storage batteries.
- the above redox flow battery has low internal resistance.
- the above redox flow battery electrode can construct a redox flow battery with low internal resistance.
- FIG. 1 is a schematic configuration diagram illustrating an example of a cell stack provided in the redox flow battery according to Embodiment 1.
- An electrode characteristic evaluation method is an electrode characteristic evaluation method for evaluating the characteristics of an electrode used in a storage battery including an electrolytic solution, Dropping a predetermined amount of pure water from above the sample in a state where a sample of a predetermined size collected from the electrode is horizontally placed; And a step of measuring the mass of the sample after standing the sample on which the pure water has been dropped vertically and examining the amount of the pure water adhering to the sample.
- the electrode characteristic evaluation method described above is a simple operation in which pure water is dropped in a state where a sample collected from the electrode (or the electrode itself) is laid down horizontally, and then the sample is stood and then the mass is measured.
- the above-described dedicated device is unnecessary and can be easily implemented. For this reason, shortening of working time and cost can be expected.
- the above-described electrode property evaluation method can quantitatively evaluate the hydrophilicity of the electrode with the electrolytic solution for the following reason.
- the mass of the sample after dropping is larger than the mass of the sample before dropping by the amount of pure water attached.
- it is a sample collected from an electrode in an inappropriate hydrophilic state, it does not substantially adhere by repelling the dropped pure water, etc., and the mass change of the sample before and after dropping is very small, or The sample mass does not change substantially.
- the above-mentioned electrode which is easy to attach pure water is excellent in hydrophilicity.
- An electrode having excellent hydrophilicity can easily permeate the electrolytic solution and perform a good battery reaction. Therefore, when used in a storage battery such as a redox flow battery, the internal resistance can be lowered. Therefore, it can be said that the mass change of the sample before and after the dropping can be used as the degree of quality of the hydrophilic state.
- the electrode characteristic evaluation method described above can easily and accurately evaluate characteristics such as the hydrophilicity of the electrode with the electrolyte.
- a redox flow battery having a plurality of sets of positive electrode and negative electrode
- An RF battery can be constructed using only the selected good products.
- the above-described electrode characteristic evaluation method can contribute to the construction of a storage battery such as an RF battery having a low internal resistance.
- a storage battery such as an RF battery having a low internal resistance.
- a redox flow battery (RF battery) includes a stack of one or more pairs of electrodes each including a positive electrode and a negative electrode that are supplied with an electrolyte and perform a battery reaction. Because The total area of the electrodes is 40000 cm 2 or more; In a state where a sample of a predetermined size collected from an arbitrary position of the stacked electrodes is placed horizontally, a predetermined amount of pure water is dropped from above the sample, and the sample on which the pure water has been dropped is dropped. When the mass of this sample is measured after standing vertically, and the value obtained by dividing the amount obtained by subtracting the mass of the sample before dropping from the measured value by the mass of the pure water dropped, the adhesion rate is 1% or more.
- the above-mentioned “total area of electrodes” is an area obtained by the product of the number of stacked electrodes and the area of one surface facing the stacking direction of one electrode.
- the RF battery described above can be said to be a battery having a large total electrode area and a large output. Moreover, it can be said that said RF battery is equipped with the electrode which has the adhesion rate of the electrode of both electrodes as large as 1% or more, and is excellent in hydrophilicity. Therefore, the above RF battery can be used as a battery that can perform a battery reaction well, have a low internal resistance, and can maintain a high output for a long time. In addition, any electrode provided in the above RF battery satisfies the adhesion rate of 1% or more, so that the battery characteristics are likely to be stable over a long period of time compared to the case where the electrode has an adhesion rate of less than 1%. It is expected that the low internal resistance can be maintained well.
- the adhesion rate of the positive electrode group is uniform and the adhesion rate of the negative electrode group is uniform.
- the adhesion rate is uniform over the whole positive electrode, and the adhesion rate is uniform over the whole negative electrode.
- Such a configuration is expected to have good battery characteristics (especially low internal resistance) over a long period of time because of the small variation in electrode quality.
- the adhesion rate of the positive electrode group is sufficiently large and the adhesion rate of the negative electrode group is sufficiently large.
- the said form is a single cell battery provided with a large-area electrode, the adhesion rate is sufficiently large over the entire positive electrode, and the adhesion rate is sufficiently large over the entire negative electrode. Therefore, the said form can be utilized as a high output battery which can perform a battery reaction more favorably and has smaller internal resistance.
- variation in the adhesion rate in the electrode of each electrode will be 5% or less in the said form, it can be said that it is equipped with an electrode with high quality and a small dispersion
- An electrode for a redox flow battery (RF battery) is an electrode for a redox flow battery used in a redox flow battery in which an electrolytic solution is supplied to perform a battery reaction,
- the area is 500 cm 2 or more, In a state where a sample of a predetermined size collected from an arbitrary position is placed horizontally, a predetermined amount of pure water is dropped from above the sample, and the sample on which the pure water has been dropped is set up vertically and then When the mass of the sample is measured, and the value obtained by dividing the amount obtained by subtracting the mass of the sample before dropping from the measured value by the mass of the pure water added dropwise is the adhesion rate, the adhesion rate is 1% or more.
- the “area” is one surface of the sheet-like electrode or its opposite surface, and is the area of the surface facing the electrode of the other electrode when it is assembled to the RF battery as one electrode.
- the above-mentioned RF battery electrode is used for high-power batteries because of its large area.
- the RF battery electrode has a high adhesion rate of 1% or more and is excellent in hydrophilicity. Therefore, when the RF battery electrode described above is used in an RF battery, a battery reaction can be satisfactorily performed, and an RF battery that has a low internal resistance and can maintain a large output for a long time can be constructed.
- the above-mentioned electrode for an RF battery has an adhesion rate of 1% or more over substantially the entire region, and has characteristics over a long period of time as compared with a case where the adhesion rate includes a region of less than 1%. Therefore, it is expected that an RF battery capable of maintaining a state in which the internal resistance is low and the internal resistance is low can be constructed.
- a redox flow battery (RF battery) according to an embodiment of the present invention an electrode for an RF battery according to an embodiment of the present invention, and an electrode characteristic evaluation method according to an embodiment of the present invention are described in detail.
- the same reference numerals indicate the same names.
- FIG. 1 First, with reference to FIG. 1 and FIG. 2, the outline
- ions shown in the positive electrode tank 106 and the negative electrode tank 107 are examples of ion species included in the electrolyte solution of each electrode.
- a solid line arrow means charging, and a broken line arrow means discharging.
- the RF battery 1 (Outline of RF battery) is used by constructing an RF battery system provided with a circulation mechanism that circulates and supplies an electrolytic solution to the RF battery 1 as shown in FIG.
- the RF battery 1 is typically connected to a power generation unit 300 and a load 400 such as a power system or a consumer via an AC / DC converter 200, a substation facility 210, and the like.
- the RF battery 1 performs charging using the power generation unit 300 as a power supply source and discharging using the load 400 as a power supply target.
- Examples of the power generation unit 300 include a solar power generator, a wind power generator, and other general power plants.
- the RF battery 1 mainly includes a battery cell 100 including a positive electrode 10c to which a positive electrode electrolyte is supplied, a negative electrode 10a to which a negative electrode electrolyte is supplied, and a diaphragm 11 interposed between the electrodes 10c and 10a of both electrodes. This is a component.
- the RF battery 1 is a multi-cell battery including one or more electrode pairs including a positive electrode 10c and a negative electrode 10a that are supplied with an electrolytic solution and perform a battery reaction, or a single cell battery including a pair of electrodes 10c and 10a. is there.
- a bipolar plate 12 (FIG. 2) is provided between adjacent battery cells 100 and 100.
- the electrode 10 provided in the RF battery 1 is a reaction field in which an electrolyte containing an active material is supplied and an active material (ion) in the electrolyte performs a battery reaction, and is configured from a porous body so that the electrolyte can be circulated. Is done.
- the diaphragm 11 is a positive / negative separation member that separates the electrodes 10c and 10a of both electrodes and transmits predetermined ions.
- the bipolar plate 12 is a flat plate member whose front and back surfaces are sandwiched between the electrodes 10c and 10a of both electrodes, and is a conductive member that allows current to flow but does not allow electrolyte solution to pass through.
- the bipolar plate 12 is typically used in a state of a frame assembly 15 including a frame 150 arranged on the outer periphery of the bipolar plate 12 as shown in FIG.
- the frame 150 is opened on the front and back surfaces thereof, and the liquid supply holes 152c and 152a that supply the electrolytic solution of each electrode to the electrode 10 disposed on the bipolar plate 12, and the drainage holes 154c that discharge the electrolytic solution of each electrode. , 154a.
- the RF battery 1 in this example is a multi-cell battery including a plurality of battery cells 100, and is a high-power battery in which the total area of the plurality of electrodes 10 is 40000 cm 2 or more.
- the plurality of battery cells 100 are stacked and used in a form called a cell stack.
- the cell stack is configured by repeatedly laminating a bipolar plate 12 of one frame assembly 15, a positive electrode 10c, a diaphragm 11, a negative electrode 10a, a bipolar plate 12 of another frame assembly 15, and so on.
- the high-power RF battery 1 may be used in a form in which a predetermined number of battery cells 100 are subcell stacks and a plurality of subcell stacks are stacked.
- a current collector plate (not shown) is disposed in place of the bipolar plate 12 on the electrodes 10 positioned at both ends of the battery cell 100 in the stacking direction of the subcell stack or the cell stack.
- end plates 170 and 170 are disposed at both ends in the stacking direction of the battery cells 100 in the cell stack.
- the pair of end plates 170, 170 are connected and integrated by a connecting member 172 such as a long bolt.
- the RF battery system includes an RF battery 1 and the following circulation mechanism (FIG. 1).
- the circulation mechanism includes a positive electrode tank 106 that stores a positive electrode electrolyte that is circulated and supplied to the positive electrode 10 c, a negative electrode tank 107 that stores a negative electrode electrolyte that is circulated and supplied to the negative electrode 10 a, and a space between the positive electrode tank 106 and the RF battery 1.
- the liquid supply holes 152 c and 152 a and the drain holes 154 c and 154 a constitute a flow path for the electrolytic solution, and pipes 108 to 111 are connected to the pipe lines.
- the RF battery system uses a positive electrode electrolyte circulation path including the positive electrode tank 106 and the pipes 108 and 110 and a negative electrode electrolyte circulation path including the negative electrode tank 107 and the pipes 109 and 111 to perform positive electrode electrolysis on the positive electrode 10c.
- the liquid is circulated and supplied, and the negative electrode electrolyte is circulated and supplied to the negative electrode 10a.
- the RF battery 1 performs charging / discharging in accordance with the valence change reaction of ions serving as active materials in the electrolyte solution of each electrode.
- a known configuration can be used as appropriate.
- the electrodes 10c and 10a of each electrode are qualitatively excellent in hydrophilicity, and quantitatively, the adhesion rate of pure water described later satisfies a specific range.
- the electrode 10 will be described in more detail.
- the electrode 10 is a sheet-like member composed mainly of a carbon material such as carbon fiber, graphite fiber, carbon powder, carbon black, or carbon nanotube, and a porous body having a plurality of open pores.
- the carbon material is excellent in electrical conductivity, chemical resistance and oxidation resistance.
- hydrophilicity with electrolyte solution can be improved by performing the hydrophilization treatment to the porous body which mainly has a carbon material. Therefore, a porous body mainly composed of a carbon material subjected to a hydrophilization treatment is suitable for the electrode 10 that is required to have conductivity, resistance to an electrolytic solution, hydrophilicity with an electrolytic solution, and the like.
- the electrode 10 that has been subjected to a hydrophilic treatment generally includes a hydrophilic group containing an oxygen atom.
- the amount of oxygen (such as the number of atoms) contained in the electrode 10 can be measured by using, for example, X-ray photoelectron spectroscopy (see Patent Document 1).
- porous body mainly composed of a carbon material include sheet-like fiber aggregates such as carbon felt, carbon paper, and carbon cloth, and other carbon foams.
- Each of the positive electrode 10c and the negative electrode 10a in this example is a fiber aggregate of sheet material, and has been subjected to a hydrophilic treatment.
- the electrode 10 can take various planar shapes.
- FIG. 2 illustrates rectangular (including square) electrodes 10c and 10a.
- examples of the planar shape of the electrode 10 include a circle, an ellipse, and a polygon.
- the shape and size of each electrode 10 are made equal.
- the plurality of sets of the positive electrode 10c and the negative electrode 10a provided in the RF battery 1 of this example are substantially the same size.
- the areas of the surfaces S 10 (also facing the diaphragm 11) facing each other in the electrodes 10c, 10a of both electrodes are substantially equal.
- the total area of the surface S 10 of the plurality of positive electrode 10c is 20000 cm 2 or more.
- the total area of the surface S 10 of the plurality of negative electrode 10a is at 20000 cm 2 or more, equal to the total area of the plurality of positive electrodes 10c described above.
- the total area of the plurality of electrodes 10 described above is the total area of the plurality of sets of the positive electrode 10c and the negative electrode 10a.
- the total area of the plurality of electrodes 10 can be appropriately selected according to the output of the RF battery 1.
- the RF battery 1 of Embodiment 1 is characterized in that the adhesion rate obtained by performing the following hydrophilic test on the electrodes 10c and 10a of each electrode is 1% or more.
- ⁇ Hydrophilic test ⁇ A sample of a predetermined size is taken from an arbitrary position of the stacked positive electrode 10c and negative electrode 10a. A predetermined amount of pure water is dropped from above the sample in a state where the collected sample is placed horizontally, and after standing the sample to which pure water has been dropped vertically, the mass m1 of this sample is measured.
- the details of the hydrophilicity test will be described in the electrode characteristic evaluation method.
- a sample is taken from the positive electrode 10c at an arbitrary stacking position among the pair of stacked electrodes 10c and 10a.
- the adhesion rate of the sample satisfies 1% or more. That is, the adhesion rate of all the electrodes provided in the RF battery 1 satisfies 1% or more.
- the adhesion rate of each electrode 10c, 10a is less than 1%, the internal resistance (equal to the cell resistance in the case of a single cell battery) increases.
- the RF battery 1 including the electrode 10 having a high adhesion rate can easily permeate the electrolyte solution and can perform a battery reaction satisfactorily. As a result, the internal resistance can be more reliably reduced. Therefore, the adhesion rate is preferably 2% or more, 3% or more, or 20% or more. As the adhesion rate is further increased, the variation in adhesion rate (described later) between the electrodes 10c and 10a of each electrode is also reduced.
- the adhesion rate is 80% or more (variation within 20%), 90% or more (variation 10%). Within a range of 95% or more (variation within 5%), particularly 98% or more (within variation of 2%).
- An RF battery having high reliability with respect to hydrophilicity by measuring the adhesion rate for all the electrodes 10 included in the RF battery 1 and measuring all the variations in the adhesion ratio of the electrodes 10c and 10a of each electrode. One can say.
- the electrode 10 at an arbitrary stacking position satisfies the above adhesion rate of 1% or more, but if the electrodes 10 are compared with each other, there may be a large variation in the adhesion rate. Even in a multi-cell battery, if the variation in the adhesion rate is small, it is expected that the hydrophilicity and battery reactivity of each electrode 10 are easily made uniform, and as a result, the internal resistance is easily lowered. Accordingly, the adhesion rate of each electrode 10 satisfies 1% or more, the variation in the adhesion rate in the positive electrode 10c satisfies 5% or less, and the variation in the adhesion rate in the negative electrode 10a satisfies 5% or less.
- the variation in the adhesion rate in the electrodes 10c and 10a of each electrode satisfies 3% or less, 2% or less, 1.5% or less, and further 1% or less. If the RF battery 1 is constructed using only the electrodes 10 having the same adhesion rate by selecting the electrodes based on the size of the adhesion rate using the electrode characteristic evaluation method described later, the variation in the adhesion rate will be described. Can be easily reduced.
- the size of the sample used for the measurement of the adhesion rate can be appropriately selected within a range that does not affect the design dimensions of the electrode 10.
- the sample may be cut out from the electrode 10 according to the selected size.
- the electrode 10 itself can also be used as a sample. In particular, for an unused RF battery 1 that is not impregnated with an electrolytic solution, if the electrode 10 itself extracted from an arbitrary stacking position is used as an adhesion rate measurement sample, the electrode after the adhesion rate measurement is used as the RF battery 1. Available. This also applies to Embodiment 2 described later.
- the electrode 10 can be manufactured using a known manufacturing method.
- a hydrophilic treatment is performed.
- the hydrophilic treatment include a heat treatment, a plasma method, a photochemical method (utilization of a mercury lamp, various laser beams, etc.), an ion implantation method, and the like.
- Known conditions can be used as the conditions for the hydrophilic treatment (see Patent Document 1, etc.).
- the heat treatment conditions include the following.
- An atmosphere containing oxygen such as an air atmosphere (heating temperature) of about 500 ° C. to 700 ° C. (holding time) of about 20 minutes to about 8 hours
- a value obtained by dividing the mass M0 of the electrode after the hydrophilic treatment (M0-M1) by the mass M0 before the hydrophilic treatment ((M0-M1) obtained by subtracting the mass M1 of the electrode after the hydrophilic treatment from the mass M0 of the electrode before the hydrophilic treatment. ) / M0) ⁇ 100 is the mass reduction rate (%), the mass reduction rate is preferably 70% or less (see also test examples described later). This is because an electrode having a high mass reduction rate is liable to deteriorate battery reactivity and increase internal resistance due to reasons such as thermal denaturation of the carbon material and reduction of conductive components.
- the mass reduction rate is preferably 65% or less, 60% or less, 50% or less, 20% or less, 10% or less, more preferably 5% or less, and ideally 0% (not decreasing).
- heat treatment is performed as a hydrophilic treatment, the mass reduction rate tends to increase if the heating temperature is too high or the holding time is too long.
- the bipolar plate 12 is a conductive material having a low electric resistance, and is made of a conductive plastic that does not react with the electrolytic solution and has resistance (chemical resistance, acid resistance, etc.) to the electrolytic solution.
- the frame 150 is made of a resin having excellent resistance to an electrolytic solution and excellent electrical insulation. Examples of the diaphragm 11 include an ion exchange membrane such as a cation exchange membrane or an anion exchange membrane.
- the electrolytic solution used for the RF battery 1 includes active material ions such as metal ions and non-metal ions.
- active material ions such as metal ions and non-metal ions.
- a V-based electrolyte containing vanadium (V) ions (FIG. 1) having different valences can be given.
- Mn—Ti electrolyte solution examples thereof include a Mn—Ti electrolyte solution.
- an aqueous solution containing at least one acid or acid salt selected from sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid can be used.
- the RF battery 1 of Embodiment 1 is a high-power battery including a plurality of sets of positive electrodes 10c and negative electrodes 10a, the adhesion rate of pure water at each electrode 10c, 10a is 1% or more, Since the cell includes the electrode 10 having excellent hydrophilicity, the internal resistance is low. For example, the RF battery 1 having an internal resistance of 1 ⁇ ⁇ cm 2 or less can be used. This effect will be specifically described in Test Example 1.
- the RF battery 1 has a high adhesion rate of all the electrodes 10 and preferably a small variation in the adhesion rate, the battery characteristics are easily stabilized over a long period of time, and the internal resistance is kept low. And is expected to provide high output.
- the RF battery 1 of Embodiment 1 can easily grasp the quality of the characteristics, a reduction in cost can be expected in this respect.
- the RF battery of the second embodiment is a single cell battery including a single battery cell 100, and is a high output battery having a large electrode. Specifically, none of the area of the surface S 10 facing the positive electrode 10c in the area and the negative electrode 10a of the surface S 10 facing the negative electrode 10a of the positive electrode 10c is at 500 cm 2 or more.
- the adhesion rate of pure water obtained by conducting the above-described hydrophilic test on a sample of a predetermined size collected from an arbitrary position for each electrode 10c, 10a is 1% or more. Meet. This electrode 10 does not have local portions where the adhesion rate is low, and substantially the entire region satisfies the adhesion rate of 1% or more.
- the adhesion rate is preferably 2% or more, 3% or more, 20% or more, 80% or more, 90% or more, more preferably 95% or more, and particularly 98% or more.
- the variation in the adhesion amount obtained by comparing the measurement points is preferably 5% or less, preferably 3% or less, 2% or less, 1.5% or less, and more preferably 1% or less.
- the electrode 10 When the sample used for the measurement of the adhesion rate is, for example, the electrode 10 itself, the electrode 10 is virtually divided into a plurality of regions of a predetermined size, and pure water is dropped on each small region to adhere the adhesion rate. Can be easily measured whether or not the adhesion rate of the entire region is substantially 1% or more. For example, when dropping using a micropipette or the like, the dropping for each region can be easily performed by an operation of shifting the dropping position by a predetermined length. Further, if the mass m1 is measured with the holding time for standing the sample after dropping as an extremely short time as described later, this mass can be regarded as the mass for each small region. If an adhesion rate for each small region is measured for an unused RF battery not impregnated with an electrolyte solution, the electrode after the measurement of the adhesion rate can be used for the RF battery.
- the substantially the adhesion rate over the entire region satisfies 1% or more, preferably the electrode 10 such smaller variation in the deposition rate, for example, After appropriate hydrophilization treatment, it is obtained by managing so that the hydrophilization state does not change during storage or transportation.
- the RF battery of Embodiment 2 is a high-power battery including a pair of large positive electrode 10c and negative electrode 10a, the adhesion rate of pure water at an arbitrary position of each electrode 10c, 10a is 1%. As described above, since the entire region is provided with the electrode 10 having excellent hydrophilicity, the internal resistance is low. In addition, since the RF battery has a high adhesion rate over substantially the entire region of the electrodes 10c and 10a of each electrode as described above, and preferably has a small variation in the adhesion rate, the battery characteristics are easily stabilized over a long period of time. It is expected that a high output can be provided while maintaining a low internal resistance state.
- the electrode characteristic evaluation method according to the first embodiment relates to an electrode used for a storage battery including an electrolytic solution, for example, a storage battery including an electrolytic solution containing an active material, such as the RF battery 1 according to the first and second embodiments described above. This is used when evaluating the characteristics. This characteristic is hydrophilicity with the electrolyte in the electrode.
- the method for evaluating the characteristics of the electrode according to the first embodiment uses the amount of the liquid soaked and adhered to the electrode when the liquid is dropped on the sample collected from the electrode as a hydrophilicity index with the electrolytic solution. Assess quantitatively.
- a predetermined amount of pure water (mass m2) from above the sample is placed in a state where a sample having a predetermined size and a mass m0 collected from the electrode is placed horizontally.
- the evaluation is based on the adhesion rate (%), if the adhesion rate is 1% or more as described above, it can be determined that the electrode is excellent in hydrophilicity.
- a sample to be measured may be collected from an electrode before being assembled to a storage battery such as an RF battery.
- a storage battery having a small internal resistance can be constructed by using only “non-defective products” having a high adhesion rate and the like and excellent hydrophilicity in a storage battery such as an RF battery.
- a plurality of electrodes having a size including a tolerance in a predetermined design dimension may be prepared. With such an electrode, a sample of an arbitrary size can be collected within a range that does not affect a predetermined design dimension. If a sample is prepared as described above, a total number test can be performed, and the reliability of the adhesion rate and the reliability of variation in the adhesion rate can be improved.
- the evaluation of this electrode can be regarded as the evaluation of the plurality of electrodes. That is, it can be a sampling test.
- the sampling test is performed, hydrophilicity of a plurality of electrodes can be evaluated in a shorter time, and the workability is excellent. Even in this case, if the number of samples is increased, the reliability of the adhesion rate and the reliability of variations in the adhesion rate can be improved.
- a sample can be taken from the electrode 10 provided in a storage battery such as the RF battery 1.
- the electrode 10 itself provided in the RF battery 1 or the like is used as it is for a sample without cutting, or one electrode 10 is used as it is without cutting small, so that it is hydrophilic to a plurality of virtual small regions. You can do a test. This makes it easy to perform a 100% test.
- the size of each small region for example, as 100% the area of the surface S 10 of the electrodes 10, 10% or less, 5% or less, if more than 1%, measured variation in the deposition rate of the above-described high precision it can.
- the sample size can be selected as appropriate.
- a rectangular (including square) plate having a width of about 20 mm to 40 mm and a length of about 20 mm to 40 mm is easy to handle.
- sample arrangement The collected plate-like sample is arranged so that one surface thereof and the opposite surface thereof are horizontal. Can be placed on a horizontal platform. Before placing the sample horizontally, the mass m0 (g) of the sample is measured.
- ⁇ Drip of pure water A commercially available thing can be utilized for the pure water dripped at a sample.
- the mass m2 (g) of pure water to be dropped can be appropriately selected according to the size of the sample or the size of the virtually divided small region. For example, in the case of a sample of 3 cm ⁇ 3 cm, about 0.5 g is mentioned.
- the dropping height from the sample can be appropriately selected as long as the dropping water can reliably contact the sample, and examples thereof include about 1 mm to 50 mm.
- the sample is excellent in hydrophilicity, the dropped pure water adheres by, for example, soaking into the sample.
- the sample is inferior in hydrophilicity, in other words, in the case of excellent water repellency, water droplets accumulate on the surface of the sample.
- ⁇ Measurement process> ⁇ Upright sample> Immediately after dropping of the prepared pure water, place the sample vertically. Specifically, the sample is set up so that one surface of the sample and its opposite surface are parallel to the vertical direction.
- the holding time in this standing state may be an extremely short time, and may be, for example, about 1 second to 10 seconds.
- the sample is excellent in hydrophilicity, much or substantially all of the pure water attached to the sample remains at the attachment site and remains attached.
- the sample is inferior in hydrophilicity (in the case of excellent water repellency)
- the water droplets collected on the surface of the sample fall when the sample is set up and do not adhere to the sample.
- the value ((m1 ⁇ m0) / m2) ⁇ 100 obtained by dividing the amount of pure water adhering to the sample (m1 ⁇ m0) by the mass m2 of the pure water dropped is defined as the adhesion rate (%) of pure water.
- the adhesion rate (%) is used as an evaluation parameter for hydrophilicity. For example, a sample satisfying an adhesion rate of 1% or more is identified as a non-defective product excellent in hydrophilicity, and a sample less than 1% is determined as a defective product poor in hydrophilicity.
- the electrode characteristic evaluation method of Embodiment 1 can be used to select only the electrodes 10 having excellent hydrophilicity when, for example, a storage battery such as the RF battery 1 is constructed. Or it can utilize for confirming the characteristic of the electrode 10 before a driving
- the electrode characteristic evaluation method of Embodiment 1 can easily evaluate the quality of the hydrophilicity of the electrode, and can easily select an electrode having excellent hydrophilicity. Therefore, for example, the RF battery 1 having a small internal resistance can be constructed using the selected non-defective electrodes. Therefore, the electrode characteristic evaluation method of Embodiment 1 can contribute to the construction of a storage battery such as an RF battery 1 with a low internal resistance, preferably a storage battery such as an RF battery 1 with a low internal resistance over a long period of time. Or the RF battery 1 etc.
- the characteristic evaluation method of the electrode of Embodiment 1 for the quality determination of the hydrophilicity of the electrode 10 provided in the RF battery 1 etc.
- the electrode characteristic evaluation method of Embodiment 1 can be easily performed in a short time, a reduction in cost can be expected in this respect.
- Test Example 1 A plurality of electrodes with different hydrophilization conditions were prepared, and the adhesion rate of pure water was examined. Further, an RF battery was constructed using the prepared electrodes, and the internal resistance was examined.
- a carbon felt having a thickness of 3 mm is prepared and subjected to a hydrophilization treatment under the following conditions to produce a post-treatment electrode.
- a 3 cm ⁇ 3 cm square plate sample is collected from the treated electrode and subjected to the following hydrophilicity test to determine the adhesion rate (%) of pure water.
- Atmosphere Air heating temperature Select from a range of 400 ° C to 650 ° C
- Select retention time Select from a range of 20 minutes to 10 hours
- Sample No. 1-100 is a sample having a low heating temperature and a short holding time in the above-mentioned range.
- Sample No. 1-10 is a sample having a high heating temperature and a long holding time in the above-mentioned range.
- Sample No. 1-1 to 1-5 are Sample Nos. Higher than 1-100 and for a long time. The temperature is lower and shorter than 1-10, and the smaller the sample number, the lower the temperature and the shorter the holding time.
- Mass reduction rate A 15 cm ⁇ 15 cm square plate sample is taken from the carbon felt having a thickness of 3 mm and the mass M0 (g) of the sample is measured. The sample is subjected to a hydrophilization treatment under the above-described hydrophilization conditions to produce a post-treatment electrode, and its mass M1 (g) is measured. ⁇ (Mass M0 (g) of the sample before hydrophilization treatment ⁇ mass weight M1 (g) of the sample after hydrophilization treatment) / mass M0 (g) of the sample before hydrophilization treatment ⁇ ⁇ 100, Table 1 shows the mass reduction rate (%) of the sample.
- the sample No. 1 having an adhesion rate of pure water of 1% or more is shown.
- 1-1 to 1-5 show that the internal resistance (cell resistance) is small when a storage battery such as an RF battery is constructed.
- the sample No. 1 with a small adhesion rate of pure water of less than 1% was obtained.
- sample no. The internal resistance of 1-1 to 1-5 is as low as 0.3 ⁇ ⁇ cm 2 or more.
- sample No. 1-1 to 1-5 are thought to be because the adhesion rate of pure water was as high as 1% or more and the hydrophilicity was excellent and the battery reaction was performed well.
- Sample No. 1-1 and sample no. Compared with 1-2 to 1-5, it can be said that the larger the adhesion rate of pure water, the lower the internal resistance.
- the adhesion rate of pure water using a hydrophilic test it is possible to easily select electrodes having an adhesion rate of 1% or more, electrodes having a similar adhesion rate, and electrodes having substantially the same adhesion rate. I can say that. If only the selected electrode is used for the RF battery, for example, even if it is a high output RF battery having a plurality of sets of positive electrodes and negative electrodes and a total area of 40000 cm 2 or more, the adhesion rate is large, preferably the adhesion rate (For example, the variation is within 5%, within 3%, further within 1%, preferably substantially 0%).
- the adhesion rate is increased over substantially the entire area of the electrode, and preferably the variation in the adhesion rate is easily reduced (for example, Variation is within 5%, within 3%, further within 1%, preferably substantially 0%).
- Variation is within 5%, within 3%, further within 1%, preferably substantially 0%.
- the RF battery including an electrode with a high adhesion rate of pure water has a low internal resistance.
- an RF battery with a low internal resistance can be constructed by using an electrode with a high adhesion rate of pure water.
- the electrode evaluation method using the adhesion rate (%) of pure water for evaluating the hydrophilicity of the electrode can be used for the construction of a storage battery such as an RF battery having a low internal resistance.
- Test Example 1 a V-based electrolyte was used, but it can be changed to a Ti—Mn-based electrolyte, a Fe—Cr-based electrolyte, or other electrolytes.
- carbon felt was used as the electrode, but it can be changed to carbon paper, carbon cloth, carbon foam, or the like.
- the redox flow battery of the present invention is a storage battery for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus generated power, load leveling, etc., for power generation of natural energy such as solar power generation and wind power generation. Available.
- the redox flow battery of the present invention can be used as a storage battery that is provided in a general power plant for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.
- the electrode for redox flow batteries of the present invention can be used as a component of a redox flow battery.
- the electrode characteristic evaluation method of the present invention can be used to evaluate the quality of the electrode provided in a storage battery using an electrolyte such as the above-described redox flow battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
前記電極から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下する工程と、
前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、前記試料に付着した前記純水の量を調べる工程とを備える。
前記電極の合計面積が40000cm2以上であり、
積層された前記電極の任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上である。
面積が500cm2以上であり、
任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上である。
最初に本発明の実施形態の内容を列記して説明する。
(1)本発明の一態様に係る電極の特性評価方法は、電解液を備える蓄電池に用いられる電極の特性を評価する電極の特性評価方法であって、
前記電極から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下する工程と、
前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、前記試料に付着した前記純水の量を調べる工程とを備える。
前記電極の合計面積が40000cm2以上であり、
積層された前記電極の任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上である。
上記「電極の合計面積」とは、積層された電極の枚数と、1枚の電極における積層方向に向いた一面の面積との積で求められる面積とする。
面積が500cm2以上であり、
任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上である。
上記「面積」とは、シート状の電極の一面又はその対向面であり、一極の電極としてRF電池に組み付けられた場合に他極の電極に向かい合う面の面積である。
以下、図面を適宜参照して、本発明の実施形態に係るレドックスフロー電池(RF電池)、本発明の実施形態に係るRF電池用電極、本発明の実施形態に係る電極の特性評価方法を詳細に説明する。図中、同一符号は同一名称物を示す。
まず、図1,図2を参照して、実施形態1のRF電池1の概要、及びRF電池1を備えるRF電池システムの概要を説明する。図1において正極タンク106内及び負極タンク107内に示すイオンは、各極の電解液中に含むイオン種の一例を示す。図1において実線矢印は充電、破線矢印は放電を意味する。
実施形態1のRF電池1は、図1に示すようなRF電池1に電解液を循環供給する循環機構が設けられたRF電池システムを構築して利用される。RF電池1は、代表的には、交流/直流変換器200や変電設備210などを介して、発電部300と、電力系統や需要家などの負荷400とに接続される。RF電池1は、発電部300を電力供給源として充電を行い、負荷400を電力提供対象として放電を行う。発電部300は、例えば、太陽光発電機、風力発電機、その他一般の発電所などが挙げられる。
RF電池1は、正極電解液が供給される正極電極10cと、負極電解液が供給される負極電極10aと、両極の電極10c,10a間に介在される隔膜11とを備える電池セル100を主な構成要素とする。RF電池1は、電解液が供給されて電池反応を行う正極電極10c及び負極電極10aを含む電極の組を1組以上備える多セル電池、又は1組の電極10c,10aを備える単セル電池である。多セル電池では、隣り合う電池セル100,100間に双極板12(図2)を備える。
隔膜11は、両極の電極10c,10aを分離すると共に所定のイオンを透過する正負の分離部材である。
双極板12は、その表裏面が両極の電極10c,10aに挟まれる平板状の部材であり、電流を流すが電解液を通さない導電性部材である。双極板12は、代表的には、図2に示すように双極板12の外周に配置される枠体150を備えるフレームアッシー15の状態で利用される。枠体150は、その表裏面に開口し、双極板12上に配置された電極10に各極の電解液を供給する給液孔152c,152a及び各極の電解液を排出する排液孔154c,154aを有する。
複数の電池セル100は積層されて、セルスタックと呼ばれる形態で利用される。セルスタックは、図2に示すように、あるフレームアッシー15の双極板12、正極電極10c、隔膜11、負極電極10a、別のフレームアッシー15の双極板12、…と順に繰り返し積層されて構成される。大出力のRF電池1では、所定数の電池セル100をサブセルスタックとし、複数のサブセルスタックを積層した形態で利用されることがある。図2は、複数のサブセルスタックを備える例を示す。
サブセルスタックやセルスタックにおける電池セル100の積層方向の両端に位置する電極10には、双極板12に代えて集電板(図示せず)が配置される。セルスタックにおける電池セル100の積層方向の両端に、代表的にはエンドプレート170,170が配置される。一対のエンドプレート170,170間が長ボルトなどの連結部材172で連結されて一体化される。
RF電池システムは、RF電池1と、以下の循環機構とを備える(図1)。
循環機構は、正極電極10cに循環供給する正極電解液を貯留する正極タンク106と、負極電極10aに循環供給する負極電解液を貯留する負極タンク107と、正極タンク106とRF電池1との間を接続する配管108,110と、負極タンク107とRF電池1との間を接続する配管109,111と、上流側(供給側)の配管108,109に設けられたポンプ112,113とを備える。複数のフレームアッシー15を積層することで給液孔152c,152a及び排液孔154c,154aは電解液の流通管路を構成し、この管路に配管108~111が接続される。
<材質及び構造>
電極10は、炭素繊維や黒鉛繊維、炭素粉末、カーボンブラックやカーボンナノチューブなどの炭素材料を主体とし、複数の開気孔を有する多孔体で構成されるシート状の部材である。炭素材料は導電性に優れる上に耐薬品性、耐酸化性などに優れる。また、炭素材料を主体とする多孔体に親水化処理を施すことで、電解液との親水性を高められる。そのため、炭素材料を主体とする多孔体に親水化処理などを施したものは、導電性、電解液に対する耐性、電解液との親水性などが求められる電極10に適する。なお、親水化処理が施された電極10は、一般に、酸素原子を含む親水基を備える。電極10に含まれる酸素量(原子数など)は、例えば、X線光電子分光法を利用することで測定できる(特許文献1参照)。
この例の正極電極10c,負極電極10aはいずれも、シート材の繊維集合体であり、親水化処理が施されている。
電極10は、種々の平面形状をとり得る。図2では、長方形状(正方形を含む)の電極10c,10aを例示する。その他、電極10の平面形状は、円形や楕円、多角形状などが挙げられる。この例のような多セル電池では、代表的には、各電極10の形状、大きさを等しくする。
この例のRF電池1に備えられる複数組の正極電極10c及び負極電極10aはいずれも、実質的に同じ大きさである。例えば、両極の電極10c,10aにおける互いに向かい合う面S10(隔膜11との対向面でもある)の面積が実質的に等しい。これら複数の正極電極10cの面S10の合計面積は20000cm2以上である。また、複数の負極電極10aの面S10の合計面積は20000cm2以上であり、上述した複数の正極電極10cの合計面積に等しい。上述した複数の電極10の合計面積は、これら複数組の正極電極10c及び負極電極10aの合計面積となる。複数の電極10の合計面積は、RF電池1の出力に応じて適宜選択することができる。
実施形態1のRF電池1は、各極の電極10c,10aに対して以下の親水試験を行って求めた付着率が1%以上であることを特徴の一つとする。
≪親水試験≫
積層された正極電極10c,負極電極10aの任意の位置から所定の大きさの試料を採取する。採取した試料を水平に置いた状態で、試料の上方から所定量の純水を滴下し、純水が滴下された試料を垂直に立てた後に、この試料の質量m1を測定する。この測定値(質量m1)から純水を滴下する前の試料の質量m0を除いた量(m1-m0)を滴下した純水の質量m2で除した値((m1-m0)/m2)×100を求め、この値を付着率(%)とする。親水試験の詳細は、電極の特性評価方法で説明する。
電極10は、公知の製造方法を利用して製造できる。特に、親水化処理を行う。親水化処理の具体例として、熱処理、プラズマ法、光化学法(水銀ランプ、各種のレーザ光など利用)、イオン注入法などが挙げられる。親水化処理の条件は、公知の条件を利用できる(特許文献1など参照)。例えば、熱処理条件は、以下が挙げられる。
(雰囲気)大気雰囲気などの酸素を含む雰囲気
(加熱温度)500℃程度以上700℃程度以下
(保持時間)20分程度以上8時間程度以下
双極板12は、電気抵抗が小さい導電性材料であって、電解液と反応せず、電解液に対する耐性(耐薬品性、耐酸性など)を有する導電性プラスチックなどで構成される。
枠体150は、電解液に対する耐性、電気絶縁性に優れる樹脂などで構成される。
隔膜11は、例えば、陽イオン交換膜や陰イオン交換膜といったイオン交換膜が挙げられる。
RF電池1に利用する電解液は、金属イオンや非金属イオンなどの活物質イオンを含む。例えば、正極活物質及び負極活物質として、価数の異なるバナジウム(V)イオン(図1)を含むV系電解液が挙げられる。その他、正極活物質として鉄(Fe)イオン、負極活物質としてクロム(Cr)イオンを含むFe-Cr系電解液、正極活物質としてマンガン(Mn)イオン、負極活物質としてチタン(Ti)イオンを含むMn-Ti系電解液などが挙げられる。電解液は、活物質に加えて、硫酸、リン酸、硝酸、及び塩酸から選択される少なくとも1種の酸又は酸塩を含む水溶液などを利用できる。
実施形態1のRF電池1は、複数組の正極電極10c及び負極電極10aを備える大出力の電池であるものの、各極の電極10c,10aにおける純水の付着率が1%以上であり、各セルが親水性に優れる電極10を備えるため、内部抵抗が低い。例えば、内部抵抗が1Ω・cm2以下のRF電池1とすることができる。この効果は、試験例1で具体的に説明する。また、このRF電池1は、具備する全ての電極10の付着率が高く、好ましくは付着率のばらつきも小さいため、長期に亘り、電池特性が安定し易く、内部抵抗が低い状態を良好に維持して、大出力を提供できると期待される。その他、実施形態1のRF電池1は、特性の良否が簡単に把握できるため、この点でコストの低減も期待できる
実施形態2のRF電池は、単一の電池セル100を備える単セル電池であり、大型の電極を有する大出力の電池である。詳しくは、正極電極10cにおける負極電極10aに向かい合う面S10の面積及び負極電極10aにおける正極電極10cに向かい合う面S10の面積のいずれもが、500cm2以上である。そして、実施形態2のRF電池は、各極の電極10c,10aについて、任意の位置から採取した所定の大きさの試料について上述の親水試験を行って求めた純水の付着率が1%以上を満たす。この電極10は、上記付着率が低い箇所が局所的に存在せず、実質的に全域が付着率1%以上を満たす。
次に、実施形態1の電極の特性評価方法を説明する。
実施形態1の電極の特性評価方法は、電解液を備える蓄電池、例えば、上述した実施形態1,2のRF電池1などに代表される、活物質を含む電解液を備える蓄電池に用いられる電極について、その特性を評価する際に利用する。この特性とは電極における電解液との親水性である。実施形態1の電極の特性評価方法は、電極から採取した試料に液体を滴下したときに、電極に染み込んで付着した液体の量を電解液との親水性の指標に利用して、親水性を定量的に評価する。
≪試料の採取≫
測定対象となる試料は、RF電池などの蓄電池に組み付ける前の電極から採取することが挙げられる。この場合、上記付着率などが大きく、親水性に優れる「良品」のみをRF電池などの蓄電池に用いて、内部抵抗が小さい蓄電池を構築できる。
又は、多セル電池や大型の電池を構築する場合、所定の設計寸法に裕度を含んだ大きさの電極を複数用意することがある。このような電極であれば、所定の設計寸法に影響を与えない範囲で任意の大きさの試料を採取できる。
上述のように試料を用意すれば、全数試験を行えて、付着率の信頼性、付着率のばらつきの信頼性を高められる。
採取した板状の試料は、その一面及びその対向面が水平となるように配置する。水平台に配置することができる。水平に配置する前に、試料の質量m0(g)を測定しておく。
試料に滴下する純水は、市販のものが利用できる。滴下する純水の質量m2(g)は、試料の大きさ又は上述の仮想的に分割した小領域の大きさに応じて適宜選択できる。例えば、3cm×3cmの試料であれば、0.5g程度が挙げられる。
≪試料の直立≫
用意した純水の滴下が終わったら、直ちに試料を垂直に立てる。詳しくは試料の一面及びその対向面が鉛直方向に平行するように試料を立てた状態にする。この立てた状態の保持時間は極短時間でよく、例えば、1秒以上10秒以下程度が挙げられる。試料が親水性に優れる場合には、試料に付着された純水の多く、又は実質的に全てがその付着場所に留まり、付着されたままになる。試料が親水性に劣る場合(撥水性に優れる場合)には、試料の表面に溜まった水滴は試料を立てた状態にすることで落下し、試料に付着されない。
上述のように試料を立てた状態にした後、試料の質量m1を測定し、滴下後の試料の質量m1から、滴下前の試料の質量m0を除いた値(m1-m0)を求める。この値(m1-m0)は、試料に付着した純水の量となり、用意した純水の質量m2以下である。
試料に付着した純水の量(m1-m0)が大きく、用意した純水の質量m2に近いほど、この試料は、電解液などの液体が染み込み易く親水性に優れるといえる。上記付着した純水の量(m1-m0)が小さいほど親水性に劣るといえる。そのため、上記付着した純水の量(m1-m0)の大小をそのまま親水性の良否評価に利用できる。但し、この量(m1-m0)の大小は用意した純水の質量m2の大小に影響を受ける。そこで、試料に付着した純水の量(m1-m0)を滴下した純水の質量m2で除した値((m1-m0)/m2)×100を純水の付着率(%)とし、この付着率(%)を親水性の良否の評価パラメータに利用する。例えば、付着率が1%以上を満たす試料を親水性に優れる良品、1%未満の試料を親水性に劣る不良品と判別することが挙げられる。
実施形態1の電極の特性評価方法は、例えば、RF電池1などの蓄電池を構築する際に、親水性に優れる電極10のみを選別することに利用できる。又は、電解液を含浸していない未使用のRF電池1などの蓄電池に対して、運転前に電極10の特性確認を行うことに利用できる。
実施形態1の電極の特性評価方法は、電極の親水性の良否評価を簡便に行えて、親水性に優れる電極を容易に選別できる。そのため、例えば、選別された良品の電極を用いて内部抵抗が小さいRF電池1などを構築できる。従って、実施形態1の電極の特性評価方法は、内部抵抗が小さいRF電池1などの蓄電池、好ましくは長期に亘り内部抵抗が小さいRF電池1などの蓄電池の構築に寄与することができる。又は、実施形態1の電極の特性評価方法をRF電池1などに備える電極10の親水性の良否判定に利用することで、内部抵抗が小さいRF電池1などをより確実に提供できる。その他、実施形態1の電極の特性評価方法は、簡単に短時間で実施できるため、この点でコストの低減も期待できる。
親水化処理の条件を異ならせた複数の電極を用意して、純水の付着率を調べた。また、用意した電極を用いてRF電池を構築して、内部抵抗を調べた。
雰囲気 大気雰囲気
加熱温度 400℃~650℃の範囲から選択
保持時間 20分~10時間の範囲から選択
試料の質量m0(g)を測定してから、試料の一面(3cm×3cmの面)及びその対向面が水平となるように配置し、試料を水平に置いた状態で、試料の5mm上方から0.5g(=m2)の純水をマイクロピペットで滴下する。滴下後、試料を垂直に立て(5秒保持)、その後にこの試料の質量m1(g)を測定する。{(滴下後の試料の質量m1(g)-滴下前の試料の質量m0(g))/滴下した純水の質量m2(g)}×100を求め、この値を純水の付着率(%)とし、表1に示す。
上述の厚さ3mmのカーボンフェルトから15cm×15cmの正方形板状の試料を採取し、試料の質量M0(g)を測定する。この試料に上述の親水化条件で親水化処理を施して処理後電極を作製し、その質量M1(g)を測定する。{(親水化処理前の試料の質量M0(g)-親水化処理後の試料の質量M1(g))/親水化処理前の試料の質量M0(g)}×100を求め、この値を試料の質量減少率(%)とし、表1に示す。
親水試験に供した試料(3cm×3cm)を用いて、単一の電池セルを備えるRF電池(単セル電池)を構築し、内部抵抗(ここではセル抵抗に同義、Ω・cm2)を測定した結果を表1に示す。この試験では、バナジウムイオンと硫酸とを含むバナジウム系電解液を上記単セル電池に供給して、一定の電流密度(70A/cm2)の電流を印加し、所定時間経過後のセル電圧と、このときの電流値とを用いて、内部抵抗を求める。隔膜には、市販のイオン交換膜(厚さ55μm)を用いた。
例えば、試験例1では、V系電解液を用いたが、Ti-Mn系電解液、Fe-Cr系電解液、その他の電解液に変更できる。また、試験例1では、電極としてカーボンフェルトを用いたが、カーボンペーパー、カーボンクロス、炭素発泡体などに変更できる。
10c 正極電極 10a 負極電極 11 隔膜 12 双極板
100 電池セル
15 フレームアッシー 150 枠体
152c,152a 給液孔 154c,154a 排液孔
170 エンドプレート 172 連結部材
106 正極タンク 107 負極タンク 108~111 配管
112,113 ポンプ
200 交流/直流変換器 210 変電設備 300 発電部 400 負荷
Claims (5)
- 電解液を備える蓄電池に用いられる電極の特性を評価する電極の特性評価方法であって、
前記電極から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下する工程と、
前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、前記試料に付着した前記純水の量を調べる工程とを備える電極の特性評価方法。 - 電解液が供給されて電池反応を行う正極電極及び負極電極を含む電極の組を1組以上積層して備えるレドックスフロー電池であって、
前記電極の合計面積が40000cm2以上であり、
積層された前記電極の任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上であるレドックスフロー電池。 - 前記正極電極における前記付着率のばらつき及び前記負極電極における前記付着率のばらつきがそれぞれ5%以下である請求項2に記載のレドックスフロー電池。
- 前記付着率が95%以上である請求項2又は請求項3に記載のレドックスフロー電池。
- 電解液が供給されて電池反応を行うレドックスフロー電池に用いられるレドックスフロー電池用電極であって、
面積が500cm2以上であり、
任意の位置から採取した所定の大きさの試料を水平に置いた状態で、前記試料の上方から所定量の純水を滴下し、前記純水が滴下された前記試料を垂直に立てた後にこの試料の質量を測定し、この測定値から滴下前の試料の質量を除いた量を滴下した前記純水の質量で除した値を付着率とするとき、前記付着率が1%以上であるレドックスフロー電池用電極。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017559997A JPWO2017119110A1 (ja) | 2016-01-07 | 2016-01-07 | レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 |
CN201680077976.6A CN108432022A (zh) | 2016-01-07 | 2016-01-07 | 氧化还原液流电池、氧化还原液流电池的电极以及电极特性评估方法 |
DE112016006180.3T DE112016006180T5 (de) | 2016-01-07 | 2016-01-07 | Redox-Flussbatterie, Elektrode für Redox-Flussbatterie und Elektrodencharakteristik-Evaluierungsverfahren |
KR1020187018425A KR20180102078A (ko) | 2016-01-07 | 2016-01-07 | 레독스 플로우 전지, 레독스 플로우 전지용 전극, 및 전극의 특성 평가 방법 |
US16/068,160 US20190027770A1 (en) | 2016-01-07 | 2016-01-07 | Redox flow battery, electrode for redox flow battery, and electrode characteristic evaluation method |
PCT/JP2016/050405 WO2017119110A1 (ja) | 2016-01-07 | 2016-01-07 | レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 |
TW105139696A TWI699927B (zh) | 2016-01-07 | 2016-12-01 | 氧化還原液流電池、氧化還原液流電池用電極及電極之特性評估方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/050405 WO2017119110A1 (ja) | 2016-01-07 | 2016-01-07 | レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017119110A1 true WO2017119110A1 (ja) | 2017-07-13 |
Family
ID=59273425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050405 WO2017119110A1 (ja) | 2016-01-07 | 2016-01-07 | レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190027770A1 (ja) |
JP (1) | JPWO2017119110A1 (ja) |
KR (1) | KR20180102078A (ja) |
CN (1) | CN108432022A (ja) |
DE (1) | DE112016006180T5 (ja) |
TW (1) | TWI699927B (ja) |
WO (1) | WO2017119110A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0592720U (ja) * | 1992-05-13 | 1993-12-17 | 鐘紡株式会社 | 布帛の吸水性測定装置 |
JP2000030715A (ja) * | 1998-07-10 | 2000-01-28 | Sumitomo Electric Ind Ltd | 電池電極材、その製造方法および電気化学電池 |
JP2000357521A (ja) * | 1999-06-11 | 2000-12-26 | Toyobo Co Ltd | レドックスフロー電池用炭素電極材 |
JP2007145653A (ja) * | 2005-11-29 | 2007-06-14 | Tokai Carbon Co Ltd | 親水性多孔質炭素材料及びその製造方法 |
JP2007145896A (ja) * | 2005-11-24 | 2007-06-14 | Kazariichi:Kk | 木材表面塗工液及び木材表面の処理方法 |
JP2007207597A (ja) * | 2006-02-02 | 2007-08-16 | Hitachi Ltd | 燃料電池用ウイッキング構造体 |
JP2014029035A (ja) * | 2012-07-31 | 2014-02-13 | Toho Tenax Co Ltd | 炭素繊維フェルト、その製造方法、及び電極 |
JP2015532761A (ja) * | 2012-07-20 | 2015-11-12 | カール・フロイデンベルク・カーゲーCarl FreudenbergKG | 導電性の生地シート |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3474828B2 (ja) | 1998-07-10 | 2003-12-08 | 住友電気工業株式会社 | 全バナジウムレドックスフロー電池用電極材および全バナジウムレドックスフロー電池の製造方法 |
WO2005013399A1 (ja) * | 2003-07-31 | 2005-02-10 | Toyo Boseki Kabushiki Kaisha | 電解質膜・電極構造体およびそれを用いた燃料電池、電解質膜・電極構造体の製造方法 |
CN103155257B (zh) * | 2010-08-18 | 2016-08-17 | 麻省理工学院 | 固定的流体氧化还原电极 |
JP5281706B2 (ja) * | 2011-10-25 | 2013-09-04 | 株式会社神戸製鋼所 | 集電体、集電体の製造方法、電極および二次電池 |
CN103268946A (zh) * | 2013-06-03 | 2013-08-28 | 大连交通大学 | 一种液流电池石墨毡电极烧结改性处理方法 |
JP6160591B2 (ja) * | 2014-10-24 | 2017-07-12 | トヨタ自動車株式会社 | 触媒電極層、膜電極接合体、および、燃料電池 |
WO2016164008A1 (en) * | 2015-04-08 | 2016-10-13 | United Technologies Corporation | Redox-air indirect fuel cell |
-
2016
- 2016-01-07 WO PCT/JP2016/050405 patent/WO2017119110A1/ja active Application Filing
- 2016-01-07 JP JP2017559997A patent/JPWO2017119110A1/ja active Pending
- 2016-01-07 US US16/068,160 patent/US20190027770A1/en not_active Abandoned
- 2016-01-07 KR KR1020187018425A patent/KR20180102078A/ko unknown
- 2016-01-07 CN CN201680077976.6A patent/CN108432022A/zh active Pending
- 2016-01-07 DE DE112016006180.3T patent/DE112016006180T5/de not_active Withdrawn
- 2016-12-01 TW TW105139696A patent/TWI699927B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0592720U (ja) * | 1992-05-13 | 1993-12-17 | 鐘紡株式会社 | 布帛の吸水性測定装置 |
JP2000030715A (ja) * | 1998-07-10 | 2000-01-28 | Sumitomo Electric Ind Ltd | 電池電極材、その製造方法および電気化学電池 |
JP2000357521A (ja) * | 1999-06-11 | 2000-12-26 | Toyobo Co Ltd | レドックスフロー電池用炭素電極材 |
JP2007145896A (ja) * | 2005-11-24 | 2007-06-14 | Kazariichi:Kk | 木材表面塗工液及び木材表面の処理方法 |
JP2007145653A (ja) * | 2005-11-29 | 2007-06-14 | Tokai Carbon Co Ltd | 親水性多孔質炭素材料及びその製造方法 |
JP2007207597A (ja) * | 2006-02-02 | 2007-08-16 | Hitachi Ltd | 燃料電池用ウイッキング構造体 |
JP2015532761A (ja) * | 2012-07-20 | 2015-11-12 | カール・フロイデンベルク・カーゲーCarl FreudenbergKG | 導電性の生地シート |
JP2014029035A (ja) * | 2012-07-31 | 2014-02-13 | Toho Tenax Co Ltd | 炭素繊維フェルト、その製造方法、及び電極 |
Also Published As
Publication number | Publication date |
---|---|
KR20180102078A (ko) | 2018-09-14 |
TW201801387A (zh) | 2018-01-01 |
JPWO2017119110A1 (ja) | 2018-11-01 |
TWI699927B (zh) | 2020-07-21 |
DE112016006180T5 (de) | 2018-09-20 |
CN108432022A (zh) | 2018-08-21 |
US20190027770A1 (en) | 2019-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6890151B2 (ja) | レドックスフロー電池の充電状態確定方法及び基準電極の較正方法 | |
JP6924389B2 (ja) | レドックスフロー電池、電気量の測定システム、及び電気量の測定方法 | |
WO2017006729A1 (ja) | レドックスフロー電池用電極、及びレドックスフロー電池システム | |
JP6066141B1 (ja) | レドックスフロー電池用電極、レドックスフロー電池、及び電極の特性評価方法 | |
WO2017119110A1 (ja) | レドックスフロー電池、レドックスフロー電池用電極、及び電極の特性評価方法 | |
JP2017050297A (ja) | レドックスフロー電池用電極、レドックスフロー電池、及び電極の特性評価方法 | |
Ravichandran et al. | Performance evaluation of a cylindrical PEM fuel cell and the stack | |
JP7232431B2 (ja) | 電極、電池セル、セルスタック、及びレドックスフロー電池システム | |
US11901597B2 (en) | Redox flow battery cell, cell stack and redox flow battery system | |
US12191506B2 (en) | Redox flow battery cell, cell stack and redox flow battery system | |
JP2017174541A (ja) | レドックスフロー電池の正・負極の過電圧測定方法およびその方法を行うための装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16883613 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017559997 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187018425 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016006180 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16883613 Country of ref document: EP Kind code of ref document: A1 |