[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017119140A1 - 無線通信装置、無線通信システムおよび処理方法 - Google Patents

無線通信装置、無線通信システムおよび処理方法 Download PDF

Info

Publication number
WO2017119140A1
WO2017119140A1 PCT/JP2016/050581 JP2016050581W WO2017119140A1 WO 2017119140 A1 WO2017119140 A1 WO 2017119140A1 JP 2016050581 W JP2016050581 W JP 2016050581W WO 2017119140 A1 WO2017119140 A1 WO 2017119140A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication
communication path
path
quality
Prior art date
Application number
PCT/JP2016/050581
Other languages
English (en)
French (fr)
Inventor
好明 太田
慎一郎 相川
大出 高義
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2017560027A priority Critical patent/JP6763404B2/ja
Priority to PCT/JP2016/050581 priority patent/WO2017119140A1/ja
Publication of WO2017119140A1 publication Critical patent/WO2017119140A1/ja
Priority to US16/025,479 priority patent/US11653280B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/03Reselecting a link using a direct mode connection
    • H04W36/033Reselecting a link using a direct mode connection in pre-organised networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a processing method.
  • LTE-A LTE-Advanced
  • D2D Device to Device
  • a terminal capable of performing both cellular communication and D2D communication is under consideration.
  • a terminal when cellular communication is performed via a base station, if D2D communication is possible with a terminal serving as a communication partner, a communication path for performing D2D communication is set. D2D communication is performed via the set communication path.
  • D2D communication is performed by cellular communication via a base station. Can be switched to.
  • An object of the technology disclosed in the present application is to provide a wireless communication apparatus, a wireless communication system, and a processing method capable of switching between a communication path used for cellular communication and the like and a communication path used for D2D communication and the like. To do.
  • the wireless communication device used as the second wireless communication device includes a communication unit and a control unit.
  • the communication unit is capable of wireless communication via a first communication path with another second wireless communication apparatus and wireless communication via a second communication path with the first wireless communication apparatus. is there.
  • the control unit is configured such that the quality of the first communication path becomes lower than a predetermined quality, or another second
  • a switching instruction which is a layer 2 or layer 3 signal
  • the communication unit is controlled to perform the second communication with the first wireless communication apparatus.
  • a control part performs control which switches the radio
  • switching between the first communication path used for D2D communication and the second communication path used for cellular communication or the like can be realized. .
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a wireless communication system according to the second embodiment.
  • FIG. 3 is a diagram illustrating an example of a format of a synchronization frame transmitted / received in D2D communication.
  • FIG. 4 is a diagram illustrating an example of the flow of data after switching.
  • FIG. 5 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the second embodiment.
  • FIG. 6 is a sequence diagram illustrating an example of the operation of the wireless communication system when the quality of a one-way communication path deteriorates in the second embodiment.
  • FIG. 7 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the third embodiment.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of a wireless communication system according to the second embodiment.
  • FIG. 8 is a sequence diagram illustrating an example of the operation of the wireless communication system when the switching instruction is not received in the third embodiment.
  • FIG. 9 is a sequence diagram illustrating an example of the operation of the wireless communication system when the quality of a one-way communication path deteriorates in the third embodiment.
  • FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system when the quality of a one-way communication path deteriorates and a switching instruction is not received in the third embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the fourth embodiment.
  • FIG. 12 is a sequence diagram illustrating an example of the operation of the wireless communication system when the switching instruction is not received in the fourth embodiment.
  • FIG. 13 is a sequence diagram illustrating an example of the operation of the wireless communication system when the quality of a one-way communication path deteriorates in the fourth embodiment.
  • FIG. 14 is a sequence diagram illustrating an example of the operation of the wireless communication system when the quality of a one-way communication path is deteriorated and a switching instruction is not received by any UE in the fourth embodiment.
  • FIG. 15 is a diagram illustrating an example of a wireless communication system according to the fifth embodiment.
  • FIG. 16 is a diagram illustrating an example of a wireless communication system according to the sixth embodiment.
  • FIG. 17 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the sixth embodiment.
  • FIG. 18 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the seventh embodiment.
  • FIG. 19 is a sequence diagram illustrating an example of the operation of the wireless communication system according to the eighth embodiment.
  • FIG. 20 is a diagram illustrating an example of a first wireless communication apparatus or a communication apparatus that implements the eNB function described in the first to ninth embodiments.
  • FIG. 21 is a diagram illustrating an example of the second wireless communication apparatus illustrated in the first to ninth embodiments or a communication apparatus that implements the function of the UE.
  • FIG. 1 is a diagram illustrating an example of a wireless communication system 10 according to the first embodiment.
  • the wireless communication system 10 according to the first embodiment includes a first wireless communication device 1, a second wireless communication device 4-1, and a second wireless communication device 4-2.
  • the first wireless communication device 1 includes a control unit 2 and a communication unit 3.
  • the second wireless communication device 4-1 includes a control unit 5-1 and a communication unit 6-1.
  • the second wireless communication device 4-2 includes a control unit 5-2 and a communication unit 6-2.
  • the second wireless communication device 4-1 and the second wireless communication device 4-2 are capable of wireless communication via the first communication path 7.
  • the second wireless communication device 4-1 can wirelessly communicate with the first wireless communication device 1 via the second communication path 8-1 with the first wireless communication device 1
  • the second wireless communication device 4-2 can wirelessly communicate with the first wireless communication device 1 via the second communication path 8-2 with the first wireless communication device 1.
  • the first communication path 7 is used, for example, for D2D communication
  • the second communication paths 8-1 and 8-2 are used, for example, for cellular communication.
  • the second wireless communication device 4-1 and the second wireless communication device 4-2 are collectively referred to as the second wireless communication device 4 when not distinguished from each other.
  • the control unit 5-1 and the control unit 5-2 are collectively referred to as the control unit 5 without being distinguished, and the communication unit 6-1 and the communication unit 6-2 are distinguished from each other.
  • the second communication path 8-1 and the second communication path 8-2 are collectively referred to as the second communication path 8 without being distinguished from each other.
  • the communication unit 6 of each second wireless communication device 4 can wirelessly communicate with the other second wireless communication device 4 via the first communication path 7. Wireless communication via the second communication path 8 is possible.
  • the controller 5 of each second wireless communication device 4 has a predetermined quality of the first communication path 7 in the wireless communication with the other second wireless communication apparatus 4 via the first communication path 7. When the quality is lower than the quality, or when a switching instruction is received from another second wireless communication device 4 or the first wireless communication device 1, the communication unit 6 is controlled to establish the second communication path 8. To do.
  • the switching instruction is, for example, a layer 2 or layer 3 signal in an OSI (Open Systems Interconnection) reference model.
  • control unit 5 performs control to switch the wireless communication with the other second wireless communication device 4 via the first communication path 7 to the wireless communication via the second communication path 8.
  • wireless communication apparatus 4 can implement
  • control unit 5 of each second wireless communication device 4 has a quality of the first communication path 7 worse than a predetermined quality.
  • the communication unit 6 is controlled to establish the second communication path 8 with the first wireless communication device 1.
  • the control unit 5 controls the communication unit 6 to perform wireless communication with another second wireless communication device 4 via the first communication path 7 and wireless communication via the second communication path 8. Switch to.
  • the second wireless communication device 4 can suppress the occurrence of interruption of communication with the other second wireless communication device 4.
  • the control unit 5 determines that the quality of the first communication path 7 is predetermined in wireless communication with another second wireless communication device 4 via the first communication path 7.
  • the communication unit 6 is controlled and a switching instruction is transmitted to the other second wireless communication device 4 via the first communication path 7.
  • the control unit 5 controls the communication unit 6 to establish the second communication path 8 with the first wireless communication device 1
  • the wireless communication with the other second wireless communication device 4 via the communication path 7 is switched to the wireless communication via the second communication path 8.
  • wireless communication apparatus 4 can switch the communication path used for communication mutually synchronizing. Thereby, the time for transmission data to stay in each second wireless communication device 4 can be shortened, and the size of the transmission buffer provided in each second wireless communication device 4 can be reduced.
  • the control unit 5 continues the state in which the quality of the first communication path 7 is worse than the predetermined quality for a predetermined time or longer even when the response to the transmitted switching instruction is not received.
  • the communication unit 6 is controlled to establish the second communication path 8 with the first wireless communication device 1.
  • the control unit 5 controls the communication unit 6 to perform wireless communication with another second wireless communication device 4 via the first communication path 7 and wireless communication via the second communication path 8. Switch to.
  • the second wireless communication device 4 can more reliably suppress the occurrence of interruption of communication with the other second wireless communication device 4.
  • the control unit 5 determines that the quality of the first communication path 7 is predetermined in wireless communication with the other second wireless communication device 4 via the first communication path 7.
  • the communication unit 6 is controlled to transmit the measurement result of the quality of the first communication path 7 to the first wireless communication device 1.
  • the communication unit 3 of the first wireless communication device 1 receives the measurement result transmitted from the second wireless communication device 4.
  • the control unit 2 of the first wireless communication device 1 controls the communication unit 3 to use the layer 2 or layer 3 signal. A certain switching instruction is transmitted to each of the plurality of second wireless communication apparatuses 4-1 and 4-2. Then, the control unit 2 controls the communication unit 3 to perform control for establishing the second communication path 8 with each of the plurality of second wireless communication apparatuses 4-1 and 4-2.
  • the control unit 5 of each second wireless communication device 4 controls the communication unit 6 to communicate with the first wireless communication device 1. 2 communication path 8 is established. Then, the control unit 5 controls the communication unit 6 to perform wireless communication with another second wireless communication device 4 via the first communication path 7 and wireless communication via the second communication path 8. Switch to.
  • the communication between the second wireless communication devices 4 is generated by switching the communication path used by each second wireless communication device 4 for communication. Can be achieved with high reliability.
  • the control unit 5 controls the communication unit 6 to perform wireless communication with another second wireless communication device 4 via the first communication path 7 and wireless communication via the second communication path 8. Switch to. Thereby, the second wireless communication device 4 can more reliably suppress the occurrence of interruption of communication with the other second wireless communication device 4.
  • FIG. 2 is a diagram illustrating an example of the wireless communication system 10 according to the second embodiment.
  • the second embodiment corresponds to a subordinate concept of the first embodiment.
  • the wireless communication system 10 according to the second embodiment includes an evolved Node B (eNB) 20, a user equipment (UE) 30-1, and a UE 30-2.
  • the UE 30-1 includes a control unit 31-1 and a communication unit 32-1.
  • the UE 30-2 includes a control unit 31-2 and a communication unit 32-2.
  • the UE 30-1 and the UE 30-2 are capable of D2D communication via the communication path 15.
  • the communication path 15 is also called SLRB (Sidelink Radio Bearer).
  • the UE 30-1 can perform cellular communication with the eNB 20 via the communication path 14-1 with the eNB 20, and the UE 30-2 can communicate with the eNB 20 via the communication path 14-2 with the eNB 20. Communication is possible.
  • UE 30-1 and UE 30-2 are collectively referred to as UE 30 without being distinguished from each other.
  • the control unit 31-1 and the control unit 31-2 are collectively referred to as the control unit 31 without distinction, and the communication unit 32-1 and the communication unit 32-2 are distinguished from each other.
  • the communication unit 32 is described.
  • the communication path 14-1 and the communication path 14-2 are collectively referred to as the communication path 14 without being distinguished from each other.
  • the eNB 20 is an example of a base station
  • each UE 30 is an example of a terminal or a mobile station.
  • the eNB 20 is an example of the first radio communication device 1 in the first embodiment, and each UE 30 is an example of the second radio communication device 4 in the first embodiment.
  • the communication path 15 is an example of the first communication path 7 in the first embodiment, and each communication path 14 is an example of the second communication path 8 in the first embodiment.
  • the eNB 20 is connected to a core network 12 such as EPC (Evolved Packet Core).
  • EPC Evolved Packet Core
  • the eNB 20 establishes the communication path 14 with the UE 30 and establishes the communication path 13 with the PGW (Packet data network Gateway) 11 in the core network 12.
  • the communication path 13 and the communication path 14 are also called, for example, an EPS (Evolved Packet System) bearer.
  • the communication path 13 and the communication path 14 include a default bearer, and an individual bearer is added as necessary.
  • the communication path 14 is also called a radio bearer.
  • the communication path 13, the communication path 14, and the communication path 15 may be called a call.
  • the communication path 13-1 and the communication path 14-1 are established between the UE 30-1 and the PGW 11, and the communication path 13-2 and the communication path 14-2 are between the UE 30-2 and the PGW 11. Is established. Thereby, each UE30 transfers to RRC connected mode.
  • the communication path 13-1 and the communication path 13-2 are collectively referred to as the communication path 13 without being distinguished from each other.
  • control unit 31 of each UE 30 When the control unit 31 of each UE 30 detects another UE 30 as a communication partner, the control unit 31 controls the communication unit 32 to establish the communication path 15 with the other UE 30.
  • the control unit 31 establishes the communication path 15 using, for example, resources specified from the eNB 20.
  • the control part 31 of each UE30 controls the communication part 32, and performs D2D communication between other UE30 via the established communication path 15.
  • FIG. 3 is a diagram illustrating an example of a format of the synchronization frame 40 transmitted / received in the D2D communication.
  • the synchronization frame 40 includes PSBCH, PSSS, DMRS, SSSS, and Guard.
  • PSBCH is an abbreviation for Physical Sidelink Broadcast CHannel
  • PSSS is an abbreviation for Primary Sidelink Synchronization Signal.
  • DMRS is an abbreviation for DeModulation Reference Signal
  • SSSS is an abbreviation for Secondary Sidelink Synchronization Signal.
  • the control unit 31 of each UE 30 measures the quality of the communication path 15. For example, the control unit 31 measures the reception quality of PSSS and SSSS included in the synchronization frame 40 as the quality of the communication path 15. The control unit 31 measures the reception quality of the synchronization frame 40 based on, for example, PSSS and SSSS error rates.
  • the control unit 31 resets and starts the timer.
  • the time counted by the timer is a time that is the same as or shorter than the processing time allowed in the handover process, for example, a time in the range of several tens of milliseconds to 200 milliseconds.
  • the control unit 31 stops the timer.
  • the control unit 31 controls the communication unit 32 to transmit a communication channel establishment request to the eNB 20 and communicate with the eNB 20.
  • Establish path 14 In this embodiment, the communication path establishment request is a layer 2 or layer 3 signal in the OSI reference model.
  • the communication path 14 established between the control unit 31 and the eNB 20 includes a default bearer, and an individual bearer is added as necessary.
  • the control unit 31 also performs processing such as SPS (Semi-Persistent Scheduling) activation when establishing the communication path 14 with the eNB 20.
  • SPS Semi-Persistent Scheduling
  • control part 31 controls the communication part 32, and switches the radio
  • the radio communication between the UE 30-1 and the UE 30-2 is switched from the radio communication via the communication path 15 to the radio communication via the communication path 13 and the communication path 14, for example, as shown in FIG.
  • FIG. 4 is a diagram illustrating an example of the flow of data after switching.
  • FIG. 5 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the second embodiment.
  • UE 30-1 and UE 30-2 Prior to the sequence shown in FIG. 5, UE 30-1 and UE 30-2 perform initial access with eNB 20 and shift to the connected mode.
  • UE 30-1 and UE 30-2 Prior to the sequence shown in FIG. 5, UE 30-1 and UE 30-2 establish communication path 15 and perform D2D communication via communication path 15.
  • UE 30-1 and UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via communication path 15 (S100, S101).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality. .
  • the UE 30-2 detects the quality deterioration of the communication path 15 (S104).
  • the UE 30-2 resets and starts the timer 2 that measures a predetermined time.
  • the UE 30-2 transmits a communication path establishment request to the eNB 20 (S105). Then, the UE 30-2 establishes a communication path 14-2 with the eNB 20 (S106).
  • the UE 30-1 measures the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-2, and whether or not the measured quality of the communication path 15 is worse than a predetermined quality. Determine.
  • the quality of the communication path 15 becomes worse than the predetermined quality (S103)
  • the UE 30-1 detects the deterioration of the quality of the communication path 15 (S107).
  • the UE 30-1 If the quality deterioration of the communication path 15 is detected, the UE 30-1 resets and starts the timer 1 that measures a predetermined time. When the timer 1 expires, the UE 30-1 transmits a communication path establishment request to the eNB 20 (S108). Then, the UE 30-1 establishes a communication path 14-1 with the eNB 20 (S109). Then, the UEs 30-1 and 30-2 switch the communication via the communication path 15 to the communication via the communication path 14 established with the eNB 20, and continue the communication (S110).
  • each UE 30 of the present embodiment communicates with the eNB 20 when a state in which the quality of the communication path 15 is worse than the predetermined quality continues for a predetermined time or longer in wireless communication with other UEs 30 via the communication path 15.
  • a communication path 14 is established between them.
  • Each UE 30 switches radio communication with another UE 30 via the communication path 15 to radio communication via the communication path 14.
  • each UE30 can suppress the occurrence of interruption of communication with other UE30 due to the quality deterioration of the communication path 15.
  • FIG. 6 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the quality of the one-way communication path 15 deteriorates in the second embodiment.
  • UE 30-1 and UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via communication path 15 (S120, S121).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality.
  • the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is better than the predetermined quality (S122), but the signal from the UE 30-2 to the UE 30-1 is transmitted. It is assumed that the quality of the communication channel 15 is worse than the predetermined quality (S123).
  • the UE 30-2 Since the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is better than the predetermined quality, the UE 30-2 does not detect the quality deterioration of the communication path 15. On the other hand, since the quality of the communication path 15 in which the signal from the UE 30-2 to the UE 30-1 is transmitted is worse than the predetermined quality, the UE 30-1 detects the deterioration of the quality of the communication path 15 (S124). When the quality deterioration of the communication path 15 is detected, the UE 30-1 starts the timer 1.
  • the UE 30-1 transmits a communication path establishment request for requesting establishment of the communication path 14-1 through which a signal from the UE 30-2 to the UE 30-1 is transmitted to the eNB 20 (S125). . Then, the UE 30-1 establishes a communication path 14-1 for transmitting a signal from the UE 30-2 to the UE 30-1 with the eNB 20 (S126).
  • the eNB 20 transmits a communication path establishment instruction for instructing establishment of the communication path 14-2 through which a signal from the UE 30-2 to the UE 30-1 is transmitted to the UE 30-2 (S127).
  • the communication path establishment instruction is, for example, a layer 2 or layer 3 signal in the OSI reference model.
  • the UE 30-2 establishes a communication path 14-2 for transmitting data from the UE 30-2 to the UE 30-1 with the eNB 20 (S128).
  • the UE 30-1 and the UE 30-2 continue communication from the UE 30-2 to the UE 30-1 via the communication path 14 established with the eNB 20 (S129). Specifically, UE 30-2 transmits data addressed to UE 30-1 via communication path 14-2 established with eNB 20, and UE 30-1 transmits data from UE 30-2, The data is received via the communication path 14-1 established with the eNB 20. Further, the communication from the UE 30-1 to the UE 30-2 is continued through the communication path 15 established between the UEs 30-1 and 30-2 (S130).
  • the UE 30 when the quality of the one-way communication path 15 deteriorates in the wireless communication with the other UE 30 via the communication path 15, the UE 30 communicates with the eNB 20 for the wireless communication in the deteriorated direction. 14 is established. Then, the UE 30 switches wireless communication in the deteriorated direction from wireless communication via the communication path 15 to wireless communication via the communication path 14. Thereby, UE30 can suppress generation
  • each UE 30 issues a switching instruction to another UE 30 in communication via the communication path 15 when the quality of the communication path 15 established with the other UE 30 deteriorates from a predetermined quality. Send. And each UE30 in communication via the communication path 15 establishes the communication path 14 with the eNB 20. And each UE30 switches the radio
  • the configuration of the wireless communication system 10 in the present embodiment is the same as that of the wireless communication system 10 in Embodiment 2 described with reference to FIG.
  • the third embodiment corresponds to a subordinate concept of the first embodiment.
  • FIG. 7 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the third embodiment.
  • the UE 30-1 and the UE 30-2 Prior to the sequence shown in FIG. 7, the UE 30-1 and the UE 30-2 perform initial access with the eNB 20 and shift to the connected mode. Prior to the sequence shown in FIG. 7, UE 30-1 and UE 30-2 establish communication path 15 and perform D2D communication via communication path 15.
  • the UE 30-1 and the UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via the communication path 15 (S140, S141).
  • Each UE 30 measures the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the other UE 30, and determines whether or not the measured quality of the communication path 15 is worse than a predetermined quality. And the quality of the communication path 15 deteriorates (S142, S143).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 has deteriorated from the predetermined quality (S144). When the quality deterioration of the communication path 15 is detected, the UE 30-2 transmits a switching instruction to the UE 30-1 via the communication path 15 (S145).
  • the switching instruction is a signal used in layer 2 or layer 3 in the OSI reference model, for example.
  • the UE 30-1 When receiving a switching instruction from the UE 30-2 via the communication path 15, the UE 30-1 returns a switching response to the UE 30-2 via the communication path 15 (S146). If there is a master-slave relationship between the UEs 30-1 and 30-2 such that one is a master and the other is a slave, the UE 30 that operates as a master detects a deterioration in the quality of the communication path 15, and serves as a slave. You may transmit a switching instruction
  • each UE 30 detects a deterioration in the quality of the communication path 15, transmits a switching instruction to another UE 30, and other UE 30 May return a switching response.
  • the UE 30-2 When receiving a switching response from the UE 30-1 in step S146, the UE 30-2 transmits a communication path establishment request to the eNB 20 (S150). Then, the UE 30-2 establishes a communication path 14-2 with the eNB 20 (S151). In addition, after transmitting a switching response to the UE 30-2 in step S146, the UE 30-1 transmits a communication path establishment request to the eNB 20 (S152). Then, the UE 30-2 establishes a communication path 14-1 with the eNB 20 (S153). Then, the UEs 30-1 and 30-2 switch the communication via the communication path 15 to the communication via the communication path 14 established with the eNB 20, and continue the communication (S154).
  • the UE 30 of this embodiment issues a switching instruction via the communication path 15 when the quality of the communication path 15 is worse than a predetermined quality in wireless communication with other UEs 30 via the communication path 15. It transmits to other UE30. Then, when a response to the switching instruction is received, the UE 30 establishes a communication path 14 with the eNB 20, and performs wireless communication with another UE 30 via the communication path 15 via wireless communication via the communication path 14. Switch to communication. Thereby, each UE30 can switch the communication path used for communication mutually synchronizing. Thereby, the time for transmission data to stay in each UE 30 can be shortened, and the size of the transmission buffer provided in each UE 30 can be reduced.
  • FIG. 8 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the switching instruction is not received in the third embodiment.
  • the UE 30-1 and the UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via the communication path 15 (S160, S161).
  • Each UE 30 measures the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the other UE 30, and determines whether or not the measured quality of the communication path 15 is worse than a predetermined quality. And the quality of the communication path 15 deteriorates (S162, S163).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 has deteriorated from the predetermined quality (S164).
  • the UE 30-2 When the quality deterioration of the communication path 15 is detected, the UE 30-2 resets and starts the timer 2. Then, the UE 30-2 transmits a switching instruction to the UE 30-1 via the communication path 15 (S165). In the example of FIG. 8, since the quality of the communication path 15 is poor, the switching instruction transmitted from the UE 30-2 is not received by the UE 30-1. Therefore, the UE 30-1 does not return a switching response. However, even when the switching response is not received, when the timer 2 expires, the UE 30-2 transmits a communication path establishment request to the eNB 20 (S166). Then, the UE 30-2 establishes a communication path 14-2 with the eNB 20 (S167).
  • the UE 30-1 detects the deterioration of the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-2 (S168).
  • the UE 30-1 resets and starts the timer 1.
  • the UE 30-1 transmits a communication path establishment request to the eNB 20 (S169).
  • the UE 30-1 establishes a communication path 14-1 with the eNB 20 (S170).
  • the UEs 30-1 and 30-2 switch the communication via the communication path 15 to the communication via the communication path 14 established with the eNB 20, and continue the communication (S171).
  • the quality of the communication path 15 is worse than the predetermined quality.
  • the UE 30 switches radio communication with another UE 30 via the communication path 15 to radio communication via the communication path 14.
  • UE30 can suppress generation
  • FIG. 9 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the quality of the one-way communication path 15 deteriorates in the third embodiment.
  • the UE 30-1 and the UE 30-2 periodically transmit the synchronization frame 40 including the PSSS and the SSSS via the communication path 15 (S180, S181).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality. .
  • the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is worse than the predetermined quality (S182), but the signal from the UE 30-2 to the UE 30-1 It is assumed that the quality of the transmission channel 15 to be transmitted is better than the predetermined quality (S183).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 through which a signal is transmitted from the UE 30-1 to the UE 30-2 is lower than a predetermined quality (S184). ).
  • the UE 30-2 transmits a switching instruction to the UE 30-1 via the communication path 15 (S185).
  • the UE 30-1 returns a switching response to the UE 30-2 via the communication path 15 (S186).
  • the UE 30-2 When receiving a switching response from the UE 30-1, the UE 30-2 transmits to the eNB 20 a communication path establishment request for requesting establishment of the communication path 14-2 through which a signal from the UE 30-1 to the UE 30-2 is transmitted. (S187). Then, the UE 30-2 establishes a communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S188). Further, since UE 30-1 has not detected the deterioration of the quality of communication path 15, after transmitting a switching response to UE 30-2, communication path 14-1 from which signals from UE 30-1 to UE 30-2 are transmitted. A communication path establishment request for requesting establishment of the communication path is transmitted to the eNB 20 (S189). Then, the UE 30-2 establishes a communication path 14-1 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S190).
  • the UEs 30-1 and 30-2 continue communication from the UE 30-1 to the UE 30-2 via the communication path 14 established with the eNB 20 (S191). Specifically, the UE 30-1 transmits data addressed to the UE 30-2 via the communication path 14-1 established with the eNB 20, and the UE 30-2 transmits the data from the UE 30-1 The data is received via the communication path 14-2 established with the eNB 20. Further, the communication from the UE 30-2 to the UE 30-1 is continued through the communication path 15 already established between the UEs 30-1 and 30-2 (S192).
  • each UE 30 transmits a switching instruction to another UE 30 via the communication path 15 when the quality of the one-way communication path 15 deteriorates in wireless communication with the other UE 30 via the communication path 15.
  • UE30 establishes the communication path 14 between eNB20 about the radio
  • FIG. 10 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the quality of a one-way communication path deteriorates and a switching instruction is not received in the third embodiment.
  • the communication path 14 and the communication path 15 for transmitting a signal from the UE 30-1 to the UE 30-2, and the communication path 14 for transmitting a signal from the UE 30-2 to the UE 30-1 The communication path 15 is managed separately.
  • UE 30-1 and UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via communication path 15 (S200, S201).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality.
  • the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is worse than the predetermined quality (S202), but the signal from the UE 30-2 to the UE 30-1 It is assumed that the quality of the transmission path 15 to be transmitted is better than the predetermined quality (S203).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 through which a signal is transmitted from the UE 30-1 to the UE 30-2 is lower than a predetermined quality (S204). ).
  • the UE 30-2 starts resetting the timer 2.
  • the UE 30-2 transmits a switching instruction to the UE 30-1 via the communication path 15 (S205).
  • the switching instruction transmitted from the UE 30-2 is not received by the UE 30-1, the UE 30-1 does not return a switching response.
  • the UE 30-2 establishes a communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2.
  • a communication path establishment request for requesting is transmitted to the eNB 20 (S206).
  • the UE 30-2 establishes a communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S207).
  • the eNB 20 transmits a communication path establishment instruction for instructing establishment of the communication path 14-1 through which a signal from the UE 30-1 to the UE 30-2 is transmitted to the UE 30-1 (S208).
  • the UE 30-1 establishes a communication path 14-1 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S209).
  • the UEs 30-1 and 30-2 continue communication from the UE 30-1 to the UE 30-2 via the communication path 14 established with the eNB 20 (S210). Specifically, the UE 30-1 transmits data addressed to the UE 30-2 via the communication path 14-1 established with the eNB 20, and the UE 30-2 transmits the data from the UE 30-1 The data is received via the communication path 14-2 established with the eNB 20. Further, communication from the UE 30-2 to the UE 30-1 is continued through the communication path 15 already established between the UEs 30-1 and 30-2 (S211).
  • the UE 30 communicates with the eNB 20 when the quality of the communication path 15 is worse than the predetermined quality for a predetermined time or longer. A communication path 14 is established between them. Then, the UE 30 switches radio communication with another UE 30 via the communication path 15 to radio communication via the communication path 14. Thereby, UE30 can suppress generation
  • each UE 30 transmits a measurement result of the quality of the communication path 15 to the eNB 20 when the quality of the communication path 15 established with the other UE 30 is deteriorated from a predetermined quality.
  • the eNB 20 establishes the communication path 14 with each UE 30 when the quality of the communication path 15 is worse than the predetermined quality. Then, the eNB 20 instructs the UE 30 to switch the radio communication between the UEs 30 via the communication path 15 to the radio communication via the communication path 14 established with the eNB 20.
  • the configuration of the wireless communication system 10 in the present embodiment is the same as that of the wireless communication system 10 in Embodiment 2 described with reference to FIG.
  • the fourth embodiment corresponds to a subordinate concept of the first embodiment.
  • FIG. 11 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the fourth embodiment. Note that the UEs 30-1 and 30-2 perform initial access with the eNB 20 prior to the sequence shown in FIG. 11, and shift to the connected mode. Prior to the sequence shown in FIG. 11, the UEs 30-1 and 30-2 establish the communication path 15 and perform D2D communication via the communication path 15.
  • UE 30-1 and UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via communication path 15 (S220, S221).
  • Each UE 30 measures the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the other UE 30, and determines whether or not the measured quality of the communication path 15 is worse than a predetermined quality. And the quality of the communication path 15 deteriorates (S222, S223).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 has deteriorated from the predetermined quality (S224). Then, the UE 30-2 transmits the measurement result of the reception quality of the synchronization frame 40 to the eNB 20 (S225).
  • the UE 30-1 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 has deteriorated from the predetermined quality (S226). Then, the UE 30-1 transmits the measurement result of the quality of the communication path 15 to the eNB 20 (S227).
  • the measurement result is transmitted using, for example, a measurement report which is an RRC control signal. As another example, if the signal is used in layer 2 or layer 3 in the OSI reference model, the measurement result may be transmitted using another signal.
  • the eNB 20 transmits a switching instruction to the UE 30-1 and the UE 30-2 when the quality of the communication path 15 indicated by the measurement results received from the UE 30-1 and the UE 30-2 is worse than the predetermined quality (S228, S229). ).
  • the switching instruction is a signal used in layer 2 or layer 3 in the OSI reference model, for example.
  • the UE 30-2 When the UE 30-2 receives the switching instruction from the eNB 20, the UE 30-2 establishes the communication path 14-2 with the eNB 20 (S230). When receiving the switching instruction from the eNB 20, the UE 30-1 establishes the communication path 14-1 with the eNB 20 (S231). Then, the UEs 30-1 and 30-2 switch the communication via the communication path 15 to the communication via the communication path 14 established with the eNB 20, and continue the communication (S232).
  • the UE 30 of the present embodiment obtains the measurement result of the quality of the communication path 15 when the quality of the communication path 15 becomes worse than the predetermined quality in the wireless communication with the other UE 30 via the communication path 15. It transmits to eNB20.
  • the eNB 20 transmits a switching instruction to each UE 30 and establishes the communication path 14 with each UE 30. Then, the UE 30 switches the wireless communication with the other UE 30 via the communication path 15 to the wireless communication via the communication path 14 established with the eNB 20.
  • each UE 30 switches the communication path used for communication, so that it is possible to suppress the occurrence of communication interruption between the UEs 30 with high reliability.
  • FIG. 12 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the switching instruction is not received in the fourth embodiment.
  • UE-1 and UE30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via the communication path 15 (S240, S241).
  • Each UE 30 measures the quality of the communication path 15 based on the reception quality of the synchronization frame 40 transmitted from the other UE 30, and determines whether or not the measured quality of the communication path 15 is worse than a predetermined quality. And the quality of the communication path 15 deteriorates (S242, S243).
  • the UE 30-1 and the UE 30-2 detect the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 has deteriorated from the predetermined quality (S244, S245).
  • the UE 30-1 resets the timer 1 and the UE 30-2 resets the timer 2.
  • the UE 30-1 and the UE 30-2 transmit the measurement result of the quality of the communication path 15 to the eNB 20 (S246, S247).
  • the eNB 20 transmits a switching instruction to the UE 30-1 and the UE 30-2 when the quality of the communication path 15 indicated by the measurement results received from the UE 30-1 and the UE 30-2 is worse than the predetermined quality (S248, S249). ).
  • the switching instruction transmitted from the eNB 20 is received by the UE 30-2, but not received by the UE 30-1. Since the UE 30-2 receives the switching instruction from the eNB 20 before the timer 2 expires, the UE 30-2 establishes the communication path 14-2 with the eNB 20 (S250).
  • the UE 30-1 does not receive the switching instruction from the eNB 20, but transmits a communication path establishment request to the eNB 20 when the timer 1 expires (S251). Then, the UE 30-1 establishes a communication path 14-1 with the eNB 20 (S252). Then, the UEs 30-1 and 30-2 switch the communication via the communication path 15 to the communication via the communication path 14 established with the eNB 20, and continue the communication (S253).
  • the communication path with the eNB 20 remains in a state where the quality of the communication path 15 is worse than the predetermined quality for a predetermined time or longer. 14 is established. Then, the UE 30 switches radio communication with another UE 30 via the communication path 15 to radio communication via the communication path 14. Thereby, even if it is a case where reception of the switching instruction
  • FIG. 13 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the quality of the one-way communication path 15 deteriorates in the fourth embodiment.
  • the UE 30-1 and the UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via the communication path 15 (S260, S261).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality. .
  • the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is worse than the predetermined quality (S262), but the signal from the UE 30-2 to the UE 30-1 It is assumed that the quality of the transmission path 15 to be transmitted is better than the predetermined quality (S263).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 through which a signal is transmitted from the UE 30-1 to the UE 30-2 is lower than a predetermined quality (S264). ).
  • a predetermined quality S264
  • the UE 30-2 transmits the measurement result of the quality of the communication path 15 to the eNB 20 (S265).
  • the eNB 20 receives the measurement result from the UE 30-2, but does not receive the measurement result from the UE 30-1.
  • the fact that the measurement result is not transmitted from the UE 30-1 means that the quality deterioration of the communication path 15 is not detected in the UE 30-1. Therefore, the eNB 20 transmits a switching instruction for instructing establishment of the communication path 14-2 through which a signal from the UE 30-1 to the UE 30-2 is transmitted to the UE 30-2 (S266).
  • the UE 30-2 establishes a communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S267).
  • the eNB 20 transmits to the UE 30-1 a switching instruction that instructs establishment of the communication path 14-1 through which a signal from the UE 30-1 to the UE 30-2 is transmitted (S268).
  • the UE 30-1 establishes a communication path 14-1 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S269).
  • the UEs 30-1 and 30-2 continue communication from the UE 30-1 to the UE 30-2 via the communication path 14 established with the eNB 20 (S270). Specifically, the UE 30-1 transmits data addressed to the UE 30-2 via the communication path 14-1 established with the eNB 20, and the UE 30-2 transmits the data from the UE 30-1 The data is received via the communication path 14-2 established with the eNB 20. Further, the communication from the UE 30-2 to the UE 30-1 is continued through the communication path 15 already established between the UEs 30-1 and 30-2 (S271).
  • the eNB 20 when the quality of the one-way communication path 15 deteriorates, the eNB 20 establishes the communication path 14 with each UE 30 for the wireless communication in the deteriorated direction. Each UE 30 switches wireless communication in the deteriorated direction from wireless communication via the communication path 15 to wireless communication via the communication path 14. Thereby, eNB20 can suppress generation
  • FIG. 14 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 when the quality of a one-way communication path deteriorates and a switching instruction is not received in the fourth embodiment.
  • the UE 30-1 and the UE 30-2 periodically transmit a synchronization frame 40 including PSSS and SSSS via the communication path 15 (S280, S281).
  • the UE 30-2 measures the quality of the communication channel 15 based on the reception quality of the synchronization frame 40 transmitted from the UE 30-1, and determines whether the measured quality of the communication channel 15 is worse than a predetermined quality. .
  • the quality of the communication path 15 through which the signal from the UE 30-1 to the UE 30-2 is transmitted is worse than the predetermined quality (S282), but the signal from the UE 30-2 to the UE 30-1 It is assumed that the quality of the transmission path 15 to be transmitted is better than the predetermined quality (S283).
  • the UE 30-2 detects the deterioration of the quality of the communication path 15 by detecting that the quality of the communication path 15 through which a signal is transmitted from the UE 30-1 to the UE 30-2 is lower than a predetermined quality (S284). ).
  • the UE 30-2 starts resetting the timer 2.
  • the UE 30-2 transmits the measurement result of the quality of the communication path 15 to the eNB 20 (S285).
  • the eNB 20 receives the measurement result from the UE 30-2, but does not receive the measurement result from the UE 30-1.
  • the eNB 20 transmits a switching instruction for instructing establishment of the communication path 14-2 through which a signal from the UE 30-1 to the UE 30-2 is transmitted to the UE 30-2 (S286). Further, the eNB 20 transmits a switching instruction for instructing establishment of the communication path 14-1 through which a signal from the UE 30-1 to the UE 30-2 is transmitted to the UE 30-1 (S287). However, the switching instruction transmitted from the eNB 20 is not received by either the UE 30-1 or the UE 30-2.
  • the UE 30-2 Even if the UE 30-2 does not receive the switching instruction from the eNB 20, when the timer 2 expires, the UE 30-2 establishes the communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2.
  • the requested communication path establishment request is transmitted to the eNB 20 (S288).
  • the UE 30-2 establishes a communication path 14-2 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S289).
  • the eNB 20 transmits to the UE 30-1 a communication path establishment instruction that instructs establishment of the communication path 14-1 through which a signal from the UE 30-1 to the UE 30-2 is transmitted (S290). Then, the UE 30-1 establishes a communication path 14-1 for transmitting a signal from the UE 30-1 to the UE 30-2 with the eNB 20 (S291).
  • the UEs 30-1 and 30-2 continue communication from the UE 30-1 to the UE 30-2 via the communication path 14 established with the eNB 20 (S292). Specifically, the UE 30-1 transmits data addressed to the UE 30-2 via the communication path 14-1 established with the eNB 20, and the UE 30-2 transmits the data from the UE 30-1 The data is received via the communication path 14-2 established with the eNB 20. Further, the communication from the UE 30-2 to the UE 30-1 is continued through the communication path 15 already established between the UEs 30-1 and 30-2 (S293).
  • the communication path with the eNB 20 remains in a state where the quality of the communication path 15 is worse than the predetermined quality for a predetermined time or longer. 14 is established. Then, the UE 30 switches radio communication with another UE 30 via the communication path 15 to radio communication via the communication path 14. Thereby, UE30 can suppress generation
  • FIG. 15 is a diagram illustrating an example of the wireless communication system 10 according to the fifth embodiment.
  • the wireless communication system 10 according to the fifth embodiment includes a plurality of first wireless communication devices 1-1 and a first wireless communication device 1-2, a plurality of second wireless communication devices 4-1 and a second wireless communication. And a device 4-2.
  • the first wireless communication device 1-1 includes a control unit 2-1 and a communication unit 3-1.
  • the first wireless communication device 1-2 includes a control unit 2-2 and a communication unit 3-2.
  • the second wireless communication device 4-1 includes a control unit 5-1 and a communication unit 6-1.
  • the second wireless communication device 4-2 includes a control unit 5-2 and a communication unit 6-2.
  • the second wireless communication devices 4-1 and 4-2 can communicate with each other through the first wireless communication device 1-1 in the cell of the first wireless communication device 1-1. Communication is possible within the cell of the communication device 1-2 via the first wireless communication device 1-2.
  • the second wireless communication devices 4-1 and 4-2 can perform wireless communication via the first communication path 7.
  • the first communication path 7 is used for D2D communication, for example.
  • the first wireless communication devices 1-1 and 1-2 are collectively referred to as the first wireless communication device 1 without being distinguished from each other.
  • the control unit 2-1 and the control unit 2-2 are collectively referred to as the control unit 2 without being distinguished, and the communication unit 3-1 and the communication unit 3-2 are distinguished from each other.
  • it will be described as communication unit 3.
  • the second wireless communication devices 4-1 and 4-2 first belong to the first wireless communication device 1-1 and perform wireless communication via the first communication path 7. Then, the second wireless communication device 4-2 is handed over to the other first wireless communication device 1-2, and the second wireless communication devices 4-1 and 4-2 are connected to the resources of the first communication path 7. Is updated based on the resource information designated by the first wireless communication device 1-2 that is the handover destination. Thereby, the communication between the second wireless communication device 4-1 and the second wireless communication device 4-2 via the first communication path 7 is continued.
  • the communication unit 6 of each second wireless communication device 4 can perform wireless communication between the first wireless communication device 1 and the other second wireless communication device 4.
  • the communication unit 6 can perform wireless communication with the other second wireless communication device 4 via the first communication path 7.
  • the control unit 5-2 of the second wireless communication apparatus 4-2 that performs wireless communication with the second wireless communication apparatus 4-1 via the first communication path 7 performs the second wireless communication.
  • the device 4-2 performs a handover from the first wireless communication device 1-1 to the first wireless communication device 1-2, the first wireless communication device 1-1 or the first wireless communication device 1-2 is performed. To receive the resource information designated by the first wireless communication device 1-2.
  • control unit 5-1 of the second wireless communication device 4-1 receives the second wireless communication device 4-2 from the second wireless communication device 4-2 or the first wireless communication device 1-1.
  • the resource information designated by the first wireless communication device 1-2 at the handover destination is received.
  • the control unit 5-1 of the second wireless communication apparatus 4-1 and the control unit 5-2 of the second wireless communication apparatus 4-2 make the first communication path 7 based on the received resource information.
  • Update resources such as the frequency band used for.
  • the second wireless communication device 4-1 and the second wireless communication device 4-2 are able to perform the first handover destination even when the second wireless communication device 4-2 performs a handover.
  • the wireless communication can be continued through the first communication path 7 with the updated resource without competing with the resource of the wireless communication device 1-2.
  • the control unit 2-1 of the first wireless communication device 1-1 performs the first wireless communication of the handover destination when the second wireless communication device 4-2 performs a handover.
  • the resource information designated by the device 1-2 is received from the first wireless communication device 1-2 via the communication unit 3-1.
  • the control unit 2-1 transmits the resource information designated by the first wireless communication device 1-2 to the second wireless communication device 4-2 via the communication unit 3-1.
  • the control unit 5-2 of the second wireless communication device 4-2 receives the handover destination first wireless communication device 1-2 from the first wireless communication device 1-1 via the communication unit 6-2. Receives specified resource information. Then, the control unit 5-2 uses the communication unit 6-2 to transmit the resource information received from the first wireless communication device 1-1 to the second wireless communication device 4 via the first communication path 7. To -1. Then, the control unit 5-2 updates the resource used for the first communication path 7 based on the resource information received from the first wireless communication apparatus 1-1. When the control unit 5-1 of the second wireless communication device 4-1 receives the resource information from the second wireless communication device 4-2 via the first communication path 7 and the communication unit 6-1, The resources used for the first communication path 7 are updated based on the received resource information.
  • the second wireless communication device 4-1 and the second wireless communication device 4-2 are able to perform the first handover destination even when the second wireless communication device 4-2 performs a handover.
  • the D2D communication can be continued through the first communication path 7 in which the resource is updated without competing with the resource of the wireless communication device 1-2.
  • the control unit 2-1 of the first wireless communication device 1-1 performs the first handover destination when the second wireless communication device 4-2 performs a handover.
  • Resource information designated by the wireless communication device 1-2 is received from the first wireless communication device 1-2 via the communication unit 3-1.
  • the control unit 2-1 sends the resource information designated by the first radio communication device 1-2 to the second radio communication device 4-1 and the second radio communication device via the communication unit 3-1. Send to 4-2 respectively.
  • the control unit 5-1 of the second wireless communication device 4-1 receives the handover destination first wireless communication device 1-2 from the first wireless communication device 1-1 via the communication unit 6-1.
  • the specified resource information is received, and the resource used for the first communication path 7 is updated based on the received resource information.
  • the control unit 5-2 of the second wireless communication device 4-2 receives the handover destination first wireless communication device 1-2 from the first wireless communication device 1-1 via the communication unit 6-2.
  • the specified resource information is received, and the resource used for the first communication path 7 is updated based on the received resource information.
  • the resources of the second radio communication device 4-1 and the second radio communication device 4-2 are updated even when the second radio communication device 4-2 performs a handover.
  • D2D communication can be continued via the first communication path 7.
  • the resource information designated by the first wireless communication apparatus 1-1 from the first wireless communication apparatus 1-2 that is the handover destination is transferred to the second wireless communication apparatus 4-1 and the second wireless communication apparatus 4-. 2 respectively. Therefore, the second wireless communication device 4-1 and the second wireless communication device 4-2 receive the resource information designated from the first wireless communication device 1-2 that is the handover destination with high reliability. can do.
  • the control unit 2-1 of the first wireless communication device 1-1 can execute the first handover destination when the second wireless communication device 4-2 performs a handover.
  • Resource information designated by the wireless communication device 1-2 is received from the first wireless communication device 1-2 via the communication unit 3-1.
  • the control unit 2-1 transmits the resource information received from the first wireless communication device 1-2 to the second wireless communication device 4-1 via the communication unit 3-1.
  • the control unit 2-2 of the first radio communication device 1-2 receives the resource information via the communication unit 3-2 when the handover of the second radio communication device 4-2 is completed.
  • the control unit 5-1 of the second wireless communication device 4-1 uses the first communication path 7 based on the resource information received from the first wireless communication device 1-1 via the communication unit 6-1. Update resources used for.
  • the control unit 5-2 of the second radio communication device 4-2 performs the first operation based on the resource information received from the first radio communication device 1-2 that is the handover destination via the communication unit 6-2.
  • the resources used for the communication path 7 are updated. As a result, the resources of the second radio communication device 4-1 and the second radio communication device 4-2 are updated even when the second radio communication device 4-2 performs a handover. D2D communication can be continued via the first communication path 7.
  • the resource information designated by the first wireless communication device 1-2 that is the handover destination is transmitted from the first wireless communication device 1-1 that is the handover source to the second wireless communication device 4-1, and then the handover destination
  • the data is transmitted from the first wireless communication device 1-2 to the second wireless communication device 4-2.
  • wireless communication apparatus 4 can be disperse
  • FIG. 16 is a diagram illustrating an example of the wireless communication system 10 according to the sixth embodiment.
  • the sixth embodiment corresponds to the subordinate concept of the fifth embodiment.
  • the radio communication system 10 according to the sixth embodiment includes an eNB 20-1, an eNB 20-2, a UE 30-1, and a UE 30-2.
  • the eNB 20-1 includes a control unit 21-1 and a communication unit 22-1.
  • the eNB 20-2 includes a control unit 21-2 and a communication unit 22-2.
  • the UE 30-1 includes a control unit 31-1 and a communication unit 32-1.
  • the UE 30-2 includes a control unit 31-2 and a communication unit 32-2.
  • the UE 30-1 and the UE 30-2 are capable of D2D communication via the communication path 15.
  • the communication path 15 is also called SLRB.
  • the UE 30-1 can perform cellular communication with the eNB 20-1 via the communication path 14-1 with the eNB 20-1, and the UE 30-2 can communicate with the eNB 20-1 or the eNB 20-2. Cellular communication is possible via the path 14-2.
  • eNB 20-1 and eNB 20-2 are collectively referred to as eNB 20 without being distinguished from each other.
  • the control unit 21-1 and the control unit 21-2 are collectively referred to as the control unit 21 without being distinguished, and the communication units 22-1 and 22-2 are not distinguished from each other.
  • the communication unit 22 is described.
  • Each eNB 20 is an example of a base station, and each UE 30 is an example of a terminal or a mobile station.
  • Each eNB 20 is an example of the first radio communication device 1 in the fifth embodiment, and each UE 30 is an example of the second radio communication device 4 in the fifth embodiment.
  • the communication path 15 is an example of the first communication path 7 in the fifth embodiment.
  • the eNB 20-1 and the eNB 20-2 are connected to a core network 12 such as EPC.
  • the eNB 20-1 establishes the communication path 14 with the UE 30 and establishes the communication path 13 with the PGW 11 in the core network 12.
  • the communication path 14 and the communication path 13 include, for example, a default bearer, and an individual bearer is added as necessary.
  • the communication path 13-1 and the communication path 14-1 are established between the UE 30-1 and the PGW 11, and the communication path 13-2 and the communication path 14-2 are between the UE 30-2 and the PGW 11. Is established.
  • the UE 30-2 moves into the cell 23-2 of the eNB 20-2, the UE 30-2 performs a handover to the eNB 20-2.
  • the communication path 13-2 and the communication path 14-2 between the UE 30-2 and the PGW 11 are switched from the path via the eNB 20-1 to the path via the eNB 20-2, for example, as illustrated in FIG. It is done.
  • the communication path 14 between the eNB 20 and the UE 30 is released, but the communication path 13 between the eNB 20 and the PGW 11 is maintained. Is done.
  • the control unit 21-2 of the handover destination eNB 20-2 specifies resources such as the frequency band of the communication path 15 used for D2D communication. Create information. Then, the control unit 21-2 transmits the created resource information to the handover source eNB 20-1 via the communication unit 22-2.
  • the control unit 21-1 of the handover source eNB 20-1 receives the resource information from the handover destination eNB 20-2 via the communication unit 22-1, the received resource information is transferred to the UE 30- 2 to send.
  • control unit 31 of each UE 30 When the control unit 31 of each UE 30 detects another UE 30 as a communication partner, the control unit 31 controls the communication unit 32 to establish the communication path 15 with the other UE 30. For example, the control unit 31 establishes the communication path 15 based on resource information designated by the eNB 20. And the control part 31 of each UE30 controls the communication part 32, and performs D2D communication between other UE30 via the established communication path 15.
  • control unit 31-2 of the UE 30-2 that has performed handover from the eNB 20-1 to the eNB 20-2 is designated by the handover destination eNB 20-2 from the handover source eNB 20-1 via the communication unit 32-2. Received resource information. Then, the control unit 31-2 controls the communication unit 32-2, and transmits the resource information received from the eNB 20-1 to the UE 30-1 via the communication path 15. Then, the control unit 31-2 updates the resource used for the communication path 15 based on the resource information received from the eNB 20-1. Specifically, the control unit 31-2 controls the communication unit 32-2, and transmits a signal to the UE 30-1 via the communication path 15 using the resource designated by the eNB 20-2. 2 receives a signal from the UE 30-1 via the communication path 15 using the resource designated from 2.
  • control unit 31-1 of the UE 30-1 that is performing D2D communication with the UE 30-2 that has performed the handover via the communication path 15 is connected from the UE 30-2 via the communication path 15 and the communication unit 32-1. Receive resource information. Then, the control unit 31-1 updates the resource used for the communication path 15 based on the resource information received from the UE 30-2. As a result, the UEs 30-1 and 30-2 can continue the D2D communication via the communication path 15 in which the resource is updated based on the resource information designated from the handover destination eNB 20-2.
  • FIG. 17 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the sixth embodiment.
  • the UE 30-1 and the UE 30-2 execute a connection process with the eNB 20-1, and shift to the connected mode (S300, S301). Then, the UE 30-1 and the UE 30-2 establish the communication path 15, and start D2D communication with each other via the communication path 15 (S302).
  • a HO (Hand Over) command is transmitted from the handover destination eNB 20-2 to the handover source eNB 20-1 (S303). Further, the handover destination eNB 20-2 creates resource information for designating resources used for the communication path 15, and transmits the created resource information to the handover source eNB 20-1 (S304). The handover source eNB 20-1 transmits the HO command and resource information received from the handover destination eNB 20-2 to the UE 30-2 (S305, S306).
  • the UE 30-2 transmits the resource information received from the handover source eNB 20-1 to the UE 30-1 via the communication path 15 (S307). Then, the UE 30-2 updates the resource used for the communication path 15 based on the resource information received from the handover source eNB 20-1 (S308). Further, the UE 30-1 updates the resource used for the communication path 15 based on the resource information received from the UE 30-2 (S309). Then, the UE 30-1 and the UE 30-2 continue the D2D communication via the communication path 15 in which the resource is updated (S310).
  • the handover source eNB 20-1 performs the handover of the resource information designated by the handover destination eNB 20-2. Transmit to performed UE 30-2. Then, the UE 30-2 transmits the resource information received from the eNB 20-1 that is the handover source to the UE 30-1 that is performing D2D communication via the communication path 15. Then, the UE 30-1 and the UE 30-2 update the resource used for the communication path 15 based on the resource information. Thereby, even if any of the UEs 30 performing D2D communication via the communication path 15 performs a handover, the resource of the UE 30 is updated without competing with the resources of the handover destination eNB 20. D2D communication can be continued through the communication path 15.
  • Example 7 the handover source eNB 20-1 transmits the resource information designated by the handover destination eNB 20-2 to the UE 30-1 and the UE 30-2, respectively.
  • the configuration of the wireless communication system 10 in the present embodiment is the same as that of the wireless communication system 10 in Embodiment 6 described with reference to FIG.
  • the seventh embodiment corresponds to the subordinate concept of the fifth embodiment.
  • FIG. 18 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the seventh embodiment.
  • the UE 30-1 and the UE 30-2 execute a connection process with the eNB 20-1, and shift to the connected mode (S320, S321). Then, the UE 30-1 and the UE 30-2 establish the communication path 15, and start D2D communication with each other via the communication path 15 (S322).
  • a HO command is transmitted from the handover destination eNB 20-2 to the handover source eNB 20-1 (S323). Further, the handover destination eNB 20-2 transmits resource information for designating resources used for the communication path 15 to the handover source eNB 20-1 (S324). The handover source eNB 20-1 transmits the HO command received from the handover destination eNB 20-2 to the UE 30-2 (S325). Then, the handover source eNB 20-1 transmits the resource information received from the handover destination eNB 20-2 to the UE 30-1 and the UE 30-2 (S326, S327).
  • the UE 30-1 and the UE 30-2 update resources used for the communication path 15 based on the resource information received from the handover source eNB 20-1 (S328, S329). Then, the UE 30-1 and the UE 30-2 continue the D2D communication via the communication path 15 in which the resource is updated (S330).
  • the handover source eNB 20-1 uses the resource information designated by the handover destination eNB 20-2 as the UE 30- 1 and UE 30-2, respectively. Then, the UE 30-1 and the UE 30-2 update the resource used for the communication path 15 based on the resource information. Thereby, even if any of the UEs 30 performing D2D communication via the communication path 15 performs a handover, the resource of the UE 30 is updated without competing with the resources of the handover destination eNB 20. D2D communication can be continued through the communication path 15. Further, since the handover source eNB 20-1 transmits the resource information to the UE 30-1 and the UE 30-2, the UE 30-1 and the UE 30-2 specify from the handover destination eNB 20-2 with high reliability. Resource information can be received.
  • the handover source eNB 20-1 transmits the resource information designated by the handover destination eNB 20-2 to the UE 30-1, and the handover destination eNB 20-2 performs the handover of the resource information. Transmit to UE 30-2.
  • the configuration of the wireless communication system 10 in the present embodiment is the same as that of the wireless communication system 10 in Embodiment 6 described with reference to FIG.
  • the eighth embodiment corresponds to the subordinate concept of the fifth embodiment.
  • FIG. 19 is a sequence diagram illustrating an example of the operation of the wireless communication system 10 according to the eighth embodiment.
  • the UE 30-1 and the UE 30-2 execute a connection process with the eNB 20-1, and shift to the connected mode (S340, S341). Then, the UE 30-1 and the UE 30-2 establish the communication path 15, and start D2D communication with each other via the communication path 15 (S342).
  • a HO command is transmitted from the handover destination eNB 20-2 to the handover source eNB 20-1 (S343).
  • the handover destination eNB 20-2 creates resource information for designating resources used for the communication path 15, and transmits the created resource information to the handover source eNB 20-1 (S344).
  • the handover source eNB 20-1 transmits the HO command received from the handover destination eNB 20-2 to the UE 30-2 (S345).
  • the handover source eNB 20-1 transmits the resource information received from the handover destination eNB 20-2 to the UE 30-1 (S346).
  • the UE 30-1 updates the resource used for the communication path 15 based on the resource information received from the handover source eNB 20-1 (S347).
  • the handover destination eNB 20-2 transmits resource information for designating resources used for the communication path 15 to the UE 30-2 (S349).
  • the UE 30-2 that has performed the handover updates the resource used for the communication path 15 based on the resource information received from the handover destination eNB 20-2 (S350). Then, the UE 30-1 and the UE 30-2 continue the D2D communication via the communication path 15 in which the resource is updated (S351).
  • the handover source eNB 20-1 uses the resource information designated by the handover destination eNB 20-2 as the UE 30- Send to 1. Also, the handover destination eNB 20-2 transmits the resource information to the UE 30-2 that has performed the handover. Then, the UE 30-1 and the UE 30-2 update the resource used for the communication path 15 based on the resource information. Thereby, even if any of the UEs 30 performing D2D communication via the communication path 15 performs a handover, the resource of the UE 30 is updated without competing with the resources of the handover destination eNB 20. D2D communication can be continued through the communication path 15.
  • the resource information designated by the handover destination eNB 20-2 is transmitted from the handover source eNB 20-1 to the UE 30-1, and is transmitted from the handover destination eNB 20-2 to the UE 30-2.
  • the processing load of eNB20 at the time of transmitting resource information to each UE30 can be distributed.
  • Example 9 is an example relating to a combination of Example 1 and Example 5.
  • the configuration of the wireless communication system 10 according to the ninth embodiment is the same as that of the wireless communication system 10 described with reference to FIG. 1 or FIG.
  • each second wireless communication device 4 when each second wireless communication device 4 performs wireless communication via the first communication path 7 and detects a deterioration in quality of the first communication path 7, it is the same as in the first embodiment.
  • a second communication path 8 is established with the first wireless communication apparatus 1.
  • Each second wireless communication device 4 switches the wireless communication via the first communication path 7 to the wireless communication via the second communication path 8.
  • the resource of the first communication path 7 is updated based on the resource information specified by the first wireless communication apparatus 1 that is the handover destination.
  • Examples 2 to 4 are subordinate concepts of Example 1
  • Examples 6 to 8 are subordinate concepts of Example 5. Therefore, like Example 9 which combined Example 1 and Example 5, Example 2-4 and Example 6-8 can be combined, respectively.
  • FIG. 20 is a diagram illustrating an example of the communication device 50 that implements the functions of the first wireless communication device 1 or the eNB 20 illustrated in the first to ninth embodiments.
  • the communication device 50 includes an antenna 51, an RF circuit 52, a memory 53, a processor 54, and a network interface circuit 55.
  • the RF circuit 52 performs predetermined processing such as modulation on the signal output from the processor 54, and transmits the processed signal via the antenna 51. Further, the RF circuit 52 performs predetermined processing such as demodulation on the signal received via the antenna 51 and outputs the result to the processor 54.
  • the processor 54 implement
  • the network interface circuit 55 is an interface for connecting to the core network 12 and other communication devices 50 by wired connection.
  • the RF circuit 52, the memory 53, and the processor 54 realize the functions of the communication unit 3 of the first wireless communication device 1 and the communication unit 22 of the eNB 20, for example.
  • the memory 53 stores various programs such as a program for realizing the function of the communication unit 3 or the communication unit 22.
  • the processor 54 executes the program read from the memory 53 and realizes the function of the communication unit 3 or the communication unit 22 by cooperating with the RF circuit 52 and the like.
  • FIG. 21 is a diagram illustrating an example of the communication device 60 that implements the functions of the second wireless communication device 4 or the UE 30 described in the first to ninth embodiments.
  • the communication device 60 includes an antenna 61, an RF circuit 62, a memory 63, and a processor 64.
  • the RF circuit 62 performs predetermined processing such as modulation on the signal output from the processor 64, and transmits the processed signal via the antenna 61. Further, the RF circuit 62 performs predetermined processing such as demodulation on the signal received via the antenna 61 and outputs the result to the processor 64.
  • the processor 64 implement
  • the RF circuit 62, the memory 63, and the processor 64 implement the functions of the communication unit 6 of the second wireless communication device 4 and the communication unit 32 of the UE 30, for example.
  • the memory 63 stores various programs such as a program for realizing the function of the communication unit 6 or the communication unit 32.
  • the processor 64 executes the program read from the memory 63, and realizes the function of the communication unit 6 or the communication unit 32 by cooperating with the RF circuit 62 and the like.
  • Example 3 when the quality of the communication path 15 used for D2D communication deteriorates below a predetermined quality, the UE 30 issues a switching instruction to another UE 30 that is communicating via the communication path 15.
  • the disclosed technology is not limited to this.
  • the UE 30 may stop transmitting the synchronization frame 40 that is periodically transmitted via the communication path 15.
  • the other UEs 30 in communication via the communication path 15 detect the deterioration of the quality of the communication path 15 due to the failure to receive the synchronization frame 40 and establish the communication path 14 with the eNB 20. Thereby, each UE30 can switch the radio
  • RRC Connection Re-establishment that is an RRC control signal is used for the communication path establishment request transmitted from each UE 30 to the eNB 20.
  • RRC Connection Re-establishment is also used in existing cellular systems. Therefore, when the RRC Connection Re-establishment is used for the communication path establishment request, information for distinguishing the RLF of the communication path 14 between the eNB 20 and the UE 30 and the RLF of the communication path 15 between the UE 30 is RRC Connection Re-establishment. It is preferable to be added to.
  • RLF is an abbreviation for Radio Link Failure.
  • the information added to the RRC Connection Re-establishment may be a 1-bit flag, for example.
  • a new message such as RRC D2D Connection Re-establishment may be defined as a signal used as a communication path establishment request.
  • RRC connection reconfiguration that is an RRC control signal and does not include MobilityControlInfo may be used as the communication path establishment instruction transmitted from the eNB 20 to each UE 30.
  • RRC Connection reconfiguration that is an RRC control signal and does not include Mobility Control Info may be used for the switching instruction transmitted in the third or fourth embodiment.
  • another signal may be used as a communication path establishment instruction or a switching instruction.
  • the resource information specified from the handover destination eNB 20-2 is, for example, an RRC control signal, and may be transmitted using RRC Connection reconfiguration including MobilityControlInfo.
  • the signal used for transmitting the resource information may be another signal as long as it is a signal used in layer 2 or layer 3 in the OSI reference model.
  • the communication path establishment request, the communication path establishment instruction, and the switching instruction may be transmitted using a channel newly defined in the physical layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

第2の無線通信装置(4-1)は、通信部(6-1)と制御部(5-1)とを備える。通信部(6-1)は、他の第2の無線通信装置(4-2)との間の第1の通信路(7)を介する無線通信、および、第1の無線通信装置(1)との間の第2の通信路(8-1)を介する無線通信が可能である。制御部(5-1)は、第1の通信路(7)の品質が所定の品質より悪くなった場合、または、他の第2の無線通信装置(4-2)もしくは第1の無線通信装置(1)からレイヤ2またはレイヤ3の信号である切替指示を受信した場合に、通信部(6-1)を制御して、第1の無線通信装置(1)との間で第2の通信路(8-1)を確立する。そして、制御部(5-1)は、第1の通信路(7)を介する他の第2の無線通信装置(4-2)との間の無線通信を、第2の通信路(8-1)を介する無線通信に切り替える制御を行う。

Description

無線通信装置、無線通信システムおよび処理方法
 本発明は、無線通信装置、無線通信システムおよび処理方法に関する。
 近年、携帯電話システムの一つであるセルラシステム等の無線通信システムにおいて、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術についての検討が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、「LTE-A(LTE-Advanced)」と呼ばれる通信規格についての検討が行われている。
 今後LTE-Aに導入される可能性があり、かつ、現在、3GPPにおいて基本的な技術検討が行われている通信技術の一つに、「D2D(Device to Device)通信」と呼ばれるユーザ端末間直接通信がある。従来のセルラ通信では、互いに近接するユーザ端末同士であっても基地局を介して通信を行うのに対し、D2D通信では、互いに近接するユーザ端末同士が基地局を介さずに直接通信を行う。
 また、セルラ通信およびD2D通信の双方を行うことが可能な端末の導入が検討されている。このような端末では、基地局を介してセルラ通信を行っている場合に、通信相手となる端末との間でD2D通信が可能であれば、D2D通信を行うための通信路の設定が行われ、設定された通信路を介してD2D通信が行われる。また、セルラ通信およびD2D通信の双方を行うことが可能な端末では、D2D通信中に、D2D通信に使用されている通信路の品質が悪化した場合に、D2D通信が基地局を介したセルラ通信に切り替えられる。
特表2014-504814号公報 国際公開第2014/065167号
3GPP TS 36.300 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 3GPP TS 36.211 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation 3GPP TS 36.212 V12.4.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Multiplexing and channel coding 3GPP TS 36.213 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures 3GPP TS 36.321 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification 3GPP TS 36.322 V12.2.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Link Control (RLC) protocol specification 3GPP TS 36.323 V12.3.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Packet Data Convergence Protocol (PDCP) specification 3GPP TS 36.331 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification 3GPP TS 36.413 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP) 3GPP TS 36.423 V12.5.0 (2015-03), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access Network (E-UTRAN); X2 Application Protocol (X2AP) 3GPP TR 36.842 V12.0.0 (2013-12), 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Small Cell enhancements for E-UTRA and E-UTRAN; Higher layer aspects
 現状では、セルラ通信とD2D通信との切り替えに関する仕様は策定されていない。そのため、端末間の通信をセルラ通信とD2D通信との間で切り替える場合の具体的な制御については、開示されていない。
 本願に開示の技術は、セルラ通信等に用いられる通信路とD2D通信等に用いられる通信路との切り替えを実現することができる無線通信装置、無線通信システムおよび処理方法を提供することを目的とする。
 1つの側面では、第1の無線通信装置および複数の第2の無線通信装置を含む無線通信システムにおいて、第2の無線通信装置として用いられる無線通信装置は、通信部と制御部とを備える。通信部は、他の第2の無線通信装置との間の第1の通信路を介する無線通信、および、第1の無線通信装置との間の第2の通信路を介する無線通信が可能である。制御部は、第1の通信路を介する他の第2の無線通信装置との間の無線通信において、第1の通信路の品質が所定の品質より悪くなった場合、または、他の第2の無線通信装置もしくは第1の無線通信装置から、レイヤ2またはレイヤ3の信号である切替指示を受信した場合に、通信部を制御して、第1の無線通信装置との間で第2の通信路を確立する。そして、制御部は、第1の通信路を介する他の第2の無線通信装置との間の無線通信を、第2の通信路を介する無線通信に切り替える制御を行う。
 1実施形態における無線通信装置、無線通信システムおよび処理方法によれば、D2D通信等に用いられる第1の通信路とセルラ通信等に用いられる第2の通信路との切り替えを実現することができる。
図1は、実施例1における無線通信システムの一例を示す図である。 図2は、実施例2における無線通信システムの一例を示す図である。 図3は、D2D通信において送受信される同期フレームのフォーマットの一例を示す図である。 図4は、切り替え後のデータの流れの一例を示す図である。 図5は、実施例2における無線通信システムの動作の一例を示すシーケンス図である。 図6は、実施例2において、片方向の通信路の品質が悪化した場合の無線通信システムの動作の一例を示すシーケンス図である。 図7は、実施例3における無線通信システムの動作の一例を示すシーケンス図である。 図8は、実施例3において、切替指示が受信されない場合の無線通信システムの動作の一例を示すシーケンス図である。 図9は、実施例3において、片方向の通信路の品質が悪化した場合の無線通信システムの動作の一例を示すシーケンス図である。 図10は、実施例3において、片方向の通信路の品質が悪化し、かつ、切替指示が受信されない場合の無線通信システムの動作の一例を示すシーケンス図である。 図11は、実施例4における無線通信システムの動作の一例を示すシーケンス図である。 図12は、実施例4において、切替指示が受信されない場合の無線通信システムの動作の一例を示すシーケンス図である。 図13は、実施例4において、片方向の通信路の品質が悪化した場合の無線通信システムの動作の一例を示すシーケンス図である。 図14は、実施例4において、片方向の通信路の品質が悪化し、かつ、いずれのUEにおいても切替指示が受信されない場合の無線通信システムの動作の一例を示すシーケンス図である。 図15は、実施例5における無線通信システムの一例を示す図である。 図16は、実施例6における無線通信システムの一例を示す図である。 図17は、実施例6における無線通信システムの動作の一例を示すシーケンス図である。 図18は、実施例7における無線通信システムの動作の一例を示すシーケンス図である。 図19は、実施例8における無線通信システムの動作の一例を示すシーケンス図である。 図20は、実施例1から9に示した第1の無線通信装置またはeNBの機能を実現する通信装置の一例を示す図である。 図21は、実施例1から9に示した第2の無線通信装置またはUEの機能を実現する通信装置の一例を示す図である。
 以下に、本願の開示する無線通信装置、無線通信システムおよび処理方法の実施例について、図面を参照しながら詳細に説明する。なお、以下に示す実施例は開示の技術を限定するものではない。また、以下に示す各実施例は、適宜組み合わせて実施してもよいことはいうまでもない。
[無線通信システム10の構成]
 図1は、実施例1における無線通信システム10の一例を示す図である。実施例1における無線通信システム10は、第1の無線通信装置1、第2の無線通信装置4-1、および第2の無線通信装置4-2を備える。第1の無線通信装置1は、制御部2および通信部3を有する。第2の無線通信装置4-1は、制御部5-1および通信部6-1を有する。第2の無線通信装置4-2は、制御部5-2および通信部6-2を有する。第2の無線通信装置4-1と第2の無線通信装置4-2とは、第1の通信路7を介し無線通信が可能である。また、第2の無線通信装置4-1は、第1の無線通信装置1との間の第2の通信路8-1を介して第1の無線通信装置1と無線通信が可能であり、第2の無線通信装置4-2は、第1の無線通信装置1との間の第2の通信路8-2を介して第1の無線通信装置1と無線通信が可能である。第1の通信路7は、例えばD2D通信に用いられ、第2の通信路8-1および8-2は、例えばセルラ通信に用いられる。
 なお、以下では、第2の無線通信装置4-1および第2の無線通信装置4-2のそれぞれを区別することなく総称する場合に第2の無線通信装置4と記載する。また、以下では、制御部5-1および制御部5-2のそれぞれを区別することなく総称する場合に制御部5と記載し、通信部6-1および通信部6-2のそれぞれを区別することなく総称する場合に通信部6と記載する。また、以下では、第2の通信路8-1および第2の通信路8-2のそれぞれを区別することなく総称する場合に第2の通信路8と記載する。
 各第2の無線通信装置4の通信部6は、他の第2の無線通信装置4との間で第1の通信路7を介する無線通信が可能であり、第1の無線通信装置1との間で第2の通信路8を介する無線通信が可能である。各第2の無線通信装置4の制御部5は、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信において、第1の通信路7の品質が所定の品質より悪くなった場合、または、他の第2の無線通信装置4もしくは第1の無線通信装置1から切替指示を受信した場合に、通信部6を制御して第2の通信路8を確立する。切替指示は、例えば、OSI(Open Systems Interconnection)参照モデルにおけるレイヤ2またはレイヤ3の信号である。そして、制御部5は、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える制御を行う。これにより、各第2の無線通信装置4は、D2D通信等に用いられる第1の通信路7とセルラ通信等に用いられる第2の通信路8との切り替えを実現することができる。
 ここで、各第2の無線通信装置4の制御部5によって行われる制御について、以下に詳細な例をいくつか挙げる。1つ目の例としては、制御部5は、第1の通信路7を介する他の第2の無線通信装置4との無線通信において、第1の通信路7の品質が所定の品質より悪い状態が所定時間以上継続した場合に、通信部6を制御して、第1の無線通信装置1との間で第2の通信路8を確立する。そして、制御部5は、通信部6を制御して、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える。これにより、第2の無線通信装置4は、他の第2の無線通信装置4との間の通信の途切れの発生を抑えることができる。
 また、2つ目の例としては、制御部5は、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信において、第1の通信路7の品質が所定の品質より悪くなった場合に、通信部6を制御して、第1の通信路7を介して切替指示を他の第2の無線通信装置4へ送信する。そして、制御部5は、切替指示に対する応答が受信された場合に、通信部6を制御して、第1の無線通信装置1との間で第2の通信路8を確立し、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える。これにより、複数の第2の無線通信装置4は、通信に用いられる通信路を互いに同期して切り替えることができる。これにより、送信データが各第2の無線通信装置4内に滞留する時間を短くすることができ、各第2の無線通信装置4内に設けられる送信バッファのサイズを小さくすることができる。
 なお、2つ目の例において、制御部5は、送信した切替指示に対する応答が受信されない場合であっても、第1の通信路7の品質が所定の品質より悪い状態が所定時間以上継続した場合には、通信部6を制御して、第1の無線通信装置1との間で第2の通信路8を確立する。そして、制御部5は、通信部6を制御して、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える。これにより、第2の無線通信装置4は、他の第2の無線通信装置4との間の通信の途切れの発生をより確実に抑えることができる。
 また、3つ目の例としては、制御部5は、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信において、第1の通信路7の品質が所定の品質より悪くなった場合に、通信部6を制御して、第1の通信路7の品質の測定結果を第1の無線通信装置1へ送信する。第1の無線通信装置1の通信部3は、第2の無線通信装置4から送信された測定結果を受信する。第1の無線通信装置1の制御部2は、測定結果が示す第1の通信路7の品質が所定の品質より悪い場合に、通信部3を制御して、レイヤ2またはレイヤ3の信号である切替指示を複数の第2の無線通信装置4-1および4-2のそれぞれへ送信する。そして、制御部2は、通信部3を制御して、複数の第2の無線通信装置4-1および4-2のそれぞれとの間で第2の通信路8を確立する制御を行う。
 各第2の無線通信装置4の制御部5は、第1の無線通信装置1から切替指示を受信した場合に、通信部6を制御して、第1の無線通信装置1との間で第2の通信路8を確立する。そして、制御部5は、通信部6を制御して、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える。第1の無線通信装置1から受信した切替指示に応じて、各第2の無線通信装置4が通信に用いられる通信路を切り替えることにより、第2の無線通信装置4間の通信の途切れの発生の抑制を、高い信頼性の元で実現することができる。
 なお、3つ目の例において、制御部5は、第1の無線通信装置1から切替指示を受信しない場合であっても、第1の通信路7の品質が所定の品質より悪い状態が所定時間以上継続した場合には、通信部6を制御して、第1の無線通信装置1との間で第2の通信路8を確立してもよい。そして、制御部5は、通信部6を制御して、第1の通信路7を介する他の第2の無線通信装置4との間の無線通信を、第2の通信路8を介する無線通信に切り替える。これにより、第2の無線通信装置4は、他の第2の無線通信装置4との間の通信の途切れの発生をより確実に抑えることができる。
[無線通信システム10の構成]
 図2は、実施例2における無線通信システム10の一例を示す図である。実施例2は、実施例1の下位概念に相当する。実施例2における無線通信システム10は、eNB(evolved Node B)20、UE(User Equipment)30-1、およびUE30-2を備える。UE30-1は、制御部31-1および通信部32-1を有する。UE30-2は、制御部31-2および通信部32-2を有する。UE30-1とUE30-2とは、通信路15を介してD2D通信が可能である。通信路15は、SLRB(Sidelink Radio Bearer)とも呼ばれる。また、UE30-1は、eNB20との間の通信路14-1を介してeNB20とセルラ通信が可能であり、UE30-2は、eNB20との間の通信路14-2を介してeNB20とセルラ通信が可能である。
 なお、以下では、UE30-1およびUE30-2のそれぞれを区別することなく総称する場合にUE30と記載する。また、以下では、制御部31-1および制御部31-2のそれぞれを区別することなく総称する場合に制御部31と記載し、通信部32-1および通信部32-2のそれぞれを区別することなく総称する場合に通信部32と記載する。また、以下では、通信路14-1および通信路14-2のそれぞれを区別することなく総称する場合に通信路14と記載する。eNB20は、基地局の一例であり、各UE30は、端末あるいは移動局の一例である。また、eNB20は、実施例1における第1の無線通信装置1の一例であり、各UE30は、実施例1における第2の無線通信装置4の一例である。また、通信路15は、実施例1における第1の通信路7の一例であり、各通信路14は、実施例1における第2の通信路8の一例である。
 eNB20は、例えばEPC(Evolved Packet Core)等のコア網12に接続されている。eNB20は、各UE30からの初期アクセスにおいて、UE30との間に通信路14を確立し、コア網12内のPGW(Packet data network GateWay)11との間に通信路13を確立する。通信路13および通信路14は、例えばEPS(Evolved Packet System)ベアラとも呼ばれる。通信路13および通信路14には、既定ベアラが含まれ、必要に応じて個別ベアラが追加される。また、通信路14は、無線ベアラとも呼ばれる。また、通信路13、通信路14、および通信路15は、呼と称されてもよい。
 図2の例では、UE30-1とPGW11との間に通信路13-1および通信路14-1が確立され、UE30-2とPGW11との間に通信路13-2および通信路14-2が確立される。これにより、各UE30は、RRCコネクテッドモードに移行する。なお、以下では、通信路13-1および通信路13-2のそれぞれを区別することなく総称する場合に通信路13と記載する。
 各UE30の制御部31は、通信相手となる他のUE30を検出した場合に、通信部32を制御して、他のUE30との間に通信路15を確立する。制御部31は、例えばeNB20から指定されたリソースを用いて通信路15を確立する。そして、各UE30の制御部31は、通信部32を制御して、確立された通信路15を介して他のUE30との間でD2D通信を行う。
 各UE30は、通信路15を介するD2D通信において、例えば図3に示すフォーマットの同期フレームを所定周期で送信する。図3は、D2D通信において送受信される同期フレーム40のフォーマットの一例を示す図である。同期フレーム40には、PSBCH、PSSS、DMRS、SSSS、およびGuardが含まれる。PSBCHは、Physical Sidelink Broadcast CHannelの略であり、PSSSは、Primary Sidelink Synchronization Signalの略である。また、DMRSは、DeModulation Reference Signalの略であり、SSSSは、Secondary Sidelink Synchronization Signalの略である。
 各UE30の制御部31は、通信路15の品質を測定する。制御部31は、例えば、同期フレーム40に含まれるPSSSおよびSSSSの受信品質を、通信路15の品質として測定する。制御部31は、例えばPSSSおよびSSSSのエラーレート等に基づいて、同期フレーム40の受信品質を測定する。通信路15の品質が所定の品質より悪くなった場合、制御部31は、タイマをリセットスタートさせる。本実施例において、タイマにより計時される時間は、ハンドオーバの処理において許容される処理時間と同程度かそれより短い時間であり、例えば数十ミリ秒から200ミリ秒の範囲内の時間である。タイマが満了する前に、通信路15の品質が所定の品質より良くなった場合、制御部31は、タイマを停止させる。通信路15の品質が所定の品質より悪い状態のまま、タイマが満了した場合、制御部31は、通信部32を制御して、eNB20へ通信路確立要求を送信し、eNB20との間に通信路14を確立する。本実施例において、通信路確立要求は、OSI参照モデルにおけるレイヤ2またはレイヤ3の信号である。制御部31がeNB20との間に確立する通信路14には、既定ベアラが含まれ、必要に応じて個別ベアラが追加される。また、制御部31は、eNB20との間に通信路14を確立する際に、SPS(Semi-Persistent Scheduling)アクティベーション等の処理も行う。
 そして、制御部31は、通信部32を制御して、通信路15を介する他のUE30との間の無線通信を、eNB20との間に確立した通信路14を介する無線通信に切り替える。これにより、UE30-1とUE30-2との間の無線通信は、例えば図4に示すように、通信路15を介する無線通信から、通信路13および通信路14を介する無線通信に切り替えられる。図4は、切り替え後のデータの流れの一例を示す図である。
[無線通信システム10の動作]
 図5は、実施例2における無線通信システム10の動作の一例を示すシーケンス図である。なお、UE30-1およびUE30-2は、図5に示すシーケンスに先立って、eNB20との間で初期アクセスを実行し、コネクテッドモードに移行している。また、UE30-1およびUE30-2は、図5に示すシーケンスに先立って、通信路15を確立し、通信路15を介してD2D通信を行っている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S100、S101)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。
 通信路15の品質が所定の品質より悪くなった場合(S102)、UE30-2は、通信路15の品質悪化を検出する(S104)。通信路15の品質悪化を検出した場合、UE30-2は、所定時間を計時するタイマ2をリセットスタートさせる。そして、タイマ2が満了した場合、UE30-2は、eNB20へ通信路確立要求を送信する(S105)。そして、UE30-2は、eNB20との間で通信路14-2を確立する(S106)。
 同様に、UE30-1は、UE30-2から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。通信路15の品質が所定の品質より悪くなった場合(S103)、UE30-1は、通信路15の品質悪化を検出する(S107)。
 通信路15の品質悪化を検出した場合、UE30-1は、所定時間を計時するタイマ1をリセットスタートさせる。そして、タイマ1が満了した場合、UE30-1は、eNB20へ通信路確立要求を送信する(S108)。そして、UE30-1は、eNB20との間で通信路14-1を確立する(S109)。そして、UE30-1および30-2は、通信路15を介する通信をeNB20との間に確立された通信路14を介する通信に切り替え、通信を継続する(S110)。
 このように、本実施例の各UE30は、通信路15を介する他のUE30との無線通信において、通信路15の品質が所定の品質より悪い状態が所定時間以上継続した場合に、eNB20との間で通信路14を確立する。そして、各UE30は、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、各UE30は、通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
[片方向の通信路15の品質が悪化した場合の無線通信システム10の動作]
 なお、通信路15の無線環境によっては、UE30-1からUE30-2への信号が送信される通信路15と、UE30-2からUE30-1への信号が送信される通信路15とのいずれか一方の品質が悪化する場合がある。以下では、そのような場面での無線通信システム10の動作について説明する。図6は、実施例2において、片方向の通信路15の品質が悪化した場合の無線通信システム10の動作の一例を示すシーケンス図である。なお、図6に示す例では、UE30-1からUE30-2への信号が送信される通信路14および通信路15と、UE30-2からUE30-1への信号が送信される通信路14および通信路15とが別々に管理されている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S120、S121)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。図6に示す例では、UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも良いが(S122)、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質より悪くなったと仮定する(S123)。
 UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも良いため、UE30-2は、通信路15の品質悪化を検出しない。一方、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質より悪いため、UE30-1は、通信路15の品質悪化を検出する(S124)。通信路15の品質悪化を検出した場合、UE30-1は、タイマ1をスタートさせる。そして、タイマ1が満了した場合、UE30-1は、UE30-2からUE30-1への信号が送信される通信路14-1の確立を要求する通信路確立要求をeNB20へ送信する(S125)。そして、UE30-1は、eNB20との間で、UE30-2からUE30-1への信号が送信される通信路14-1を確立する(S126)。
 次に、eNB20は、UE30-2からUE30-1への信号が送信される通信路14-2の確立を指示する通信路確立指示をUE30-2へ送信する(S127)。通信路確立指示は、例えばOSI参照モデルにおけるレイヤ2またはレイヤ3の信号である。そして、UE30-2は、eNB20との間で、UE30-2からUE30-1へのデータが送信される通信路14-2を確立する(S128)。
 そして、UE30-1およびUE30-2は、eNB20との間で確立された通信路14を介して、UE30-2からUE30-1への通信を継続する(S129)。具体的には、UE30-2は、UE30-1宛のデータを、eNB20との間で確立された通信路14-2を介して送信し、UE30-1は、UE30-2からのデータを、eNB20との間で確立された通信路14-1を介して受信する。また、UE30-1からUE30-2への通信は、UE30-1と30-2との間に確立されている通信路15を介して継続される(S130)。
 このように、UE30は、通信路15を介する他のUE30との無線通信において、片方向の通信路15の品質が悪化した場合に、悪化した方向の無線通信について、eNB20との間で通信路14を確立する。そして、UE30は、悪化した方向の無線通信を、通信路15を介する無線通信から、通信路14を介する無線通信に切り替える。これにより、UE30は、片方向の通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
 実施例3では、各UE30は、他のUE30との間に確立された通信路15の品質が所定の品質より悪化した場合に、通信路15を介して通信中の他のUE30へ切替指示を送信する。そして、通信路15を介して通信中の各UE30は、eNB20との間で通信路14を確立する。そして、各UE30は、通信路15を介する無線通信を、eNB20との間で確立した通信路14を介する無線通信に切り替える。なお、本実施例における無線通信システム10の構成は、図2を用いて説明した実施例2における無線通信システム10と同様であるため詳細な説明を省略する。実施例3は、実施例1の下位概念に相当する。
[無線通信システム10の動作]
 図7は、実施例3における無線通信システム10の動作の一例を示すシーケンス図である。なお、UE30-1およびUE30-2は、図7に示すシーケンスに先立って、eNB20との間で初期アクセスを実行し、コネクテッドモードに移行している。また、UE30-1およびUE30-2は、図7に示すシーケンスに先立って、通信路15を確立し、通信路15を介してD2D通信を行っている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S140、S141)。各UE30は、他のUE30から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。そして、通信路15の品質が悪化する(S142、S143)。
 UE30-2は、通信路15の品質が所定の品質より悪化したことを検出することにより、通信路15の品質悪化を検出する(S144)。通信路15の品質悪化を検出した場合、UE30-2は、通信路15を介して切替指示をUE30-1へ送信する(S145)。切替指示は、例えばOSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号である。
 UE30-1は、通信路15を介してUE30-2から切替指示を受信した場合に、通信路15を介して切替応答をUE30-2へ返信する(S146)。なお、UE30-1と30-2との間に、一方がマスタ、他方がスレーブとなるような主従関係が存在する場合、マスタとして動作するUE30が通信路15の品質悪化を検出し、スレーブとして動作するUE30へ切替指示を送信してもよい。また、そのような主従関係が存在しない場合には、例えばステップS147からS149に示すように、各UE30が通信路15の品質悪化を検出し、他のUE30へ切替指示を送信し、他のUE30が切替応答を返信するようにしてもよい。
 UE30-2は、ステップS146においてUE30-1から切替応答を受信した場合に、eNB20へ通信路確立要求を送信する(S150)。そして、UE30-2は、eNB20との間で通信路14-2を確立する(S151)。また、UE30-1は、ステップS146においてUE30-2へ切替応答を送信した後に、eNB20へ通信路確立要求を送信する(S152)。そして、UE30-2は、eNB20との間で通信路14-1を確立する(S153)。そして、UE30-1および30-2は、通信路15を介する通信をeNB20との間に確立された通信路14を介する通信に切り替え、通信を継続する(S154)。
 このように、本実施例のUE30は、通信路15を介する他のUE30との無線通信において、通信路15の品質が所定の品質より悪くなった場合に、通信路15を介して切替指示を他のUE30へ送信する。そして、UE30は、切替指示に対する応答が受信された場合に、eNB20との間で通信路14を確立し、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、各UE30は、通信に用いられる通信路を互いに同期して切り替えることができる。これにより、送信データが各UE30内に滞留する時間を短くすることができ、各UE30内に設けられる送信バッファのサイズを小さくすることができる。
[切替指示が受信されない場合の無線通信システム10の動作]
 なお、通信路15の無線環境が急激に変化した場合には、UE30-2からUE30-1へ送信される切替指示がUE30-1において受信されない場合がある。以下では、そのような場面でも、UE30間の通信の途切れの発生を抑える仕組みについて説明する。図8は、実施例3において、切替指示が受信されない場合の無線通信システム10の動作の一例を示すシーケンス図である。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S160、S161)。各UE30は、他のUE30から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。そして、通信路15の品質が悪化する(S162、S163)。UE30-2は、通信路15の品質が所定の品質より悪化したことを検出することにより、通信路15の品質悪化を検出する(S164)。
 通信路15の品質悪化を検出した場合、UE30-2は、タイマ2をリセットスタートさせる。そして、UE30-2は、通信路15を介して切替指示をUE30-1へ送信する(S165)。図8の例では、通信路15の品質が悪いために、UE30-2から送信された切替指示はUE30-1において受信されない。そのため、UE30-1は、切替応答を返信しない。しかし、切替応答を受信しなかった場合であっても、タイマ2が満了した場合には、UE30-2は、eNB20へ通信路確立要求を送信する(S166)。そして、UE30-2は、eNB20との間で通信路14-2を確立する(S167)。
 一方、UE30-1は、UE30-2から送信された同期フレーム40の受信品質に基づいて通信路15の品質悪化を検出する(S168)。通信路15の品質悪化を検出した場合、UE30-1は、タイマ1をリセットスタートさせる。そして、UE30-1は、UE30-2から切替指示を受信しなかった場合であっても、タイマ1が満了した場合には、eNB20へ通信路確立要求を送信する(S169)。そして、UE30-1は、eNB20との間で通信路14-1を確立する(S170)。そして、UE30-1および30-2は、通信路15を介する通信をeNB20との間に確立された通信路14を介する通信に切り替え、通信を継続する(S171)。
 このように、本実施例のUE30は、通信路15を介して他のUE30へ送信した切替指示に対する応答を受信しなかった場合であっても、通信路15の品質が所定の品質より悪い状態が所定時間以上継続した場合に、eNB20との間で通信路14を確立する。そして、UE30は、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、UE30は、通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
[片方向の通信路15の品質が悪化した場合の無線通信システム10の動作]
 また、通信路15の無線環境によっては、UE30-1からUE30-2への信号が送信される通信路15と、UE30-2からUE30-1への信号が送信される通信路15とのいずれか一方の品質が悪化する場合がある。以下では、そのような場面での無線通信システム10の動作について説明する。図9は、実施例3において、片方向の通信路15の品質が悪化した場合の無線通信システム10の動作の一例を示すシーケンス図である。なお、図9に示す例では、UE30-1からUE30-2への信号が送信される通信路14および通信路15と、UE30-2からUE30-1への信号が送信される通信路14および通信路15とが別々に管理されている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S180、S181)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。図9に示す例では、UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも悪化するが(S182)、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質よりも良いと仮定する(S183)。
 UE30-2は、UE30-1からUE30-2への信号が送信される通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S184)。通信路15の品質悪化を検出した場合、UE30-2は、通信路15を介して切替指示をUE30-1へ送信する(S185)。UE30-1は、通信路15を介してUE30-2から切替指示を受信した場合に、通信路15を介して切替応答をUE30-2へ返信する(S186)。
 UE30-2は、UE30-1から切替応答を受信した場合に、UE30-1からUE30-2への信号が送信される通信路14-2の確立を要求する通信路確立要求をeNB20へ送信する(S187)。そして、UE30-2は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-2を確立する(S188)。また、UE30-1は、通信路15の品質悪化を検出していないため、UE30-2へ切替応答を送信した後に、UE30-1からUE30-2への信号が送信される通信路14-1の確立を要求する通信路確立要求をeNB20へ送信する(S189)。そして、UE30-2は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-1を確立する(S190)。
 そして、UE30-1および30-2は、eNB20との間で確立された通信路14を介して、UE30-1からUE30-2への通信を継続する(S191)。具体的には、UE30-1は、UE30-2宛のデータを、eNB20との間で確立された通信路14-1を介して送信し、UE30-2は、UE30-1からのデータを、eNB20との間で確立された通信路14-2を介して受信する。また、UE30-2からUE30-1への通信は、UE30-1と30-2との間に既に確立されている通信路15を介して継続される(S192)。
 このように、各UE30は、通信路15を介する他のUE30との無線通信において、片方向の通信路15の品質が悪化した場合に、通信路15を介して切替指示を他のUE30へ送信する。そして、UE30は、切替指示に対する応答が受信された場合に、悪化した方向の無線通信について、eNB20との間で通信路14を確立する。そして、UE30は、悪化した方向の無線通信を、通信路15を介する無線通信から、通信路14を介する無線通信に切り替える。これにより、UE30は、片方向の通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
[片方向の通信路15の品質が悪化し、かつ、切替指示が受信されない場合の無線通信システム10の動作]
 また、通信路15の無線環境によっては、UE30-1からUE30-2への信号が送信される通信路15と、UE30-2からUE30-1への信号が送信される通信路15とのいずれか一方の品質が悪化すると共に、切替指示が受信されない場合がある。以下では、そのような場面での無線通信システム10の動作について説明する。図10は、実施例3において、片方向の通信路の品質が悪化し、かつ、切替指示が受信されない場合の無線通信システム10の動作の一例を示すシーケンス図である。なお、図10に示す例では、UE30-1からUE30-2への信号が送信される通信路14および通信路15と、UE30-2からUE30-1への信号が送信される通信路14および通信路15とが別々に管理されている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S200、S201)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。図10に示す例では、UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも悪化するが(S202)、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質よりも良いと仮定する(S203)。
 UE30-2は、UE30-1からUE30-2への信号が送信される通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S204)。通信路15の品質悪化を検出した場合、UE30-2は、タイマ2をリセットスタートさせる。そして、UE30-2は、通信路15を介して切替指示をUE30-1へ送信する(S205)。図10の例では、UE30-2から送信された切替指示はUE30-1において受信されないため、UE30-1は、切替応答を返信しない。しかし、切替応答を受信しなかった場合であっても、タイマ2が満了した場合には、UE30-2は、UE30-1からUE30-2への信号が送信される通信路14-2の確立を要求する通信路確立要求をeNB20へ送信する(S206)。そして、UE30-2は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-2を確立する(S207)。
 次に、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-1の確立を指示する通信路確立指示をUE30-1へ送信する(S208)。UE30-1は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-1を確立する(S209)。
 そして、UE30-1および30-2は、eNB20との間で確立された通信路14を介して、UE30-1からUE30-2への通信を継続する(S210)。具体的には、UE30-1は、UE30-2宛のデータを、eNB20との間で確立された通信路14-1を介して送信し、UE30-2は、UE30-1からのデータを、eNB20との間で確立された通信路14-2を介して受信する。また、UE30-2からUE30-1への通信は、UE30-1と30-2との間に既に確立されている通信路15を介して継続される(S211)。
 このように、本実施例のUE30は、切替指示に対する応答を受信しなかった場合であっても、通信路15の品質が所定の品質より悪い状態が所定時間以上継続した場合に、eNB20との間で通信路14を確立する。そして、UE30は、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、UE30は、通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
 実施例4では、各UE30は、他のUE30との間に確立された通信路15の品質が所定の品質より悪化した場合に、eNB20へ通信路15の品質の測定結果を送信する。eNB20は、通信路15の品質が所定の品質より悪い場合に、各UE30との間に通信路14を確立する。そして、eNB20は、UE30に指示して、通信路15を介するUE30間の無線通信を、eNB20との間で確立した通信路14を介する無線通信に切り替えさせる。なお、本実施例における無線通信システム10の構成は、図2を用いて説明した実施例2における無線通信システム10と同様であるため詳細な説明を省略する。実施例4は、実施例1の下位概念に相当する。
[無線通信システム10の動作]
 図11は、実施例4における無線通信システム10の動作の一例を示すシーケンス図である。なお、UE30-1および30-2は、図11に示すシーケンスに先立って、eNB20との間で初期アクセスを実行し、コネクテッドモードに移行している。また、UE30-1および30-2は、図11に示すシーケンスに先立って、通信路15を確立し、通信路15を介してD2D通信を行っている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S220、S221)。各UE30は、他のUE30から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。そして、通信路15の品質が悪化する(S222、S223)。UE30-2は、通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S224)。そして、UE30-2は、同期フレーム40の受信品質の測定結果をeNB20へ送信する(S225)。
 同様に、UE30-1は、通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S226)。そして、UE30-1は、通信路15の品質の測定結果をeNB20へ送信する(S227)。測定結果は、例えばRRCの制御信号であるMeasurement Reportを用いて送信される。なお、他の例として、OSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号であれば、他の信号を用いて測定結果が送信されてもよい。
 eNB20は、UE30-1およびUE30-2から受信した測定結果で示される通信路15の品質が所定の品質より悪い場合に、UE30-1およびUE30-2に、切替指示を送信する(S228、S229)。切替指示は、例えばOSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号である。
 UE30-2は、eNB20から切替指示を受信した場合に、eNB20との間で通信路14-2を確立する(S230)。UE30-1は、eNB20から切替指示を受信した場合に、eNB20との間で通信路14-1を確立する(S231)。そして、UE30-1および30-2は、通信路15を介する通信をeNB20との間に確立された通信路14を介する通信に切り替え、通信を継続する(S232)。
 このように、本実施例のUE30は、通信路15を介する他のUE30との無線通信において、通信路15の品質が所定の品質より悪くなった場合に、通信路15の品質の測定結果をeNB20へ送信する。eNB20は、各UE30から受信した測定結果が示す通信路15の品質が所定の品質よりも悪い場合に、各UE30へ切替指示を送信し、各UE30との間で通信路14を確立する。そして、UE30は、通信路15を介する他のUE30との間の無線通信を、eNB20との間に確立した通信路14を介する無線通信に切り替える。eNB20から受信した切替指示に応じて、各UE30が通信に用いられる通信路を切り替えることにより、UE30間の通信の途切れの発生の抑制を、高い信頼性の元で実現することができる。
[切替指示が受信されない場合の無線通信システム10の動作]
 なお、UE30とeNB20との間の無線環境によっては、eNB20からの切替指示がUE30で受信されない場合がある。以下では、そのような場面でも、UE30間の通信の途切れの発生を抑える仕組みについて説明する。図12は、実施例4において、切替指示が受信されない場合の無線通信システム10の動作の一例を示すシーケンス図である。
 まず、UE-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S240、S241)。各UE30は、他のUE30から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。そして、通信路15の品質が悪化する(S242、S243)。
 UE30-1およびUE30-2は、通信路15の品質が所定の品質より悪化したことを検出することにより、通信路15の品質悪化を検出する(S244、S245)。通信路15の品質悪化を検出した場合、UE30-1はタイマ1をリセットスタートさせ、UE30-2はタイマ2をリセットスタートさせる。そして、UE30-1およびUE30-2は、通信路15の品質の測定結果をeNB20へ送信する(S246、S247)。
 eNB20は、UE30-1およびUE30-2から受信した測定結果で示される通信路15の品質が所定の品質より悪い場合に、UE30-1およびUE30-2に、切替指示を送信する(S248、S249)。図12に示す例では、eNB20から送信された切替指示は、UE30-2では受信されるが、UE30-1では受信されない。UE30-2は、タイマ2が満了する前にeNB20から切替指示を受信したため、eNB20との間で通信路14-2を確立する(S250)。
 一方、UE30-1は、eNB20からの切替指示を受信しないが、タイマ1の満了により、eNB20へ通信路確立要求を送信する(S251)。そして、UE30-1は、eNB20との間で通信路14-1を確立する(S252)。そして、UE30-1および30-2は、通信路15を介する通信をeNB20との間に確立された通信路14を介する通信に切り替え、通信を継続する(S253)。
 このように、UE30は、eNB20から切替指示を受信しなかった場合であっても、通信路15の品質が所定の品質より悪い状態が所定時間以上継続した場合に、eNB20との間で通信路14を確立する。そして、UE30は、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、UE30は、eNB20からの切替指示の受信に失敗した場合であっても、通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
[片方向の通信路15の品質が悪化した場合の無線通信システム10の動作]
 また、通信路15の無線環境によっては、UE30-1からUE30-2への信号が送信される通信路15と、UE30-2からUE30-1への信号が送信される通信路15とのいずれか一方の品質が悪化する場合がある。以下では、そのような場面での無線通信システム10の動作について説明する。図13は、実施例4において、片方向の通信路15の品質が悪化した場合の無線通信システム10の動作の一例を示すシーケンス図である。なお、図13に示す例では、UE30-1からUE30-2への信号が送信される通信路14および通信路15と、UE30-2からUE30-1への信号が送信される通信路14および通信路15とが別々に管理されている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S260、S261)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。図13に示す例では、UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも悪化するが(S262)、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質よりも良いと仮定する(S263)。
 UE30-2は、UE30-1からUE30-2への信号が送信される通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S264)。通信路15の品質悪化を検出した場合、UE30-2は、通信路15の品質の測定結果をeNB20へ送信する(S265)。
 eNB20は、UE30-2からは測定結果を受信するが、UE30-1からは測定結果を受信しない。UE30-1から測定結果が送信されないということは、UE30-1において通信路15の品質悪化が検出されなかったことを意味する。そのため、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-2の確立を指示する切替指示をUE30-2へ送信する(S266)。UE30-2は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-2を確立する(S267)。
 また、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-1の確立を指示する切替指示をUE30-1へ送信する(S268)。UE30-1は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-1を確立する(S269)。
 そして、UE30-1および30-2は、eNB20との間で確立された通信路14を介して、UE30-1からUE30-2への通信を継続する(S270)。具体的には、UE30-1は、UE30-2宛のデータを、eNB20との間で確立された通信路14-1を介して送信し、UE30-2は、UE30-1からのデータを、eNB20との間で確立された通信路14-2を介して受信する。また、UE30-2からUE30-1への通信は、UE30-1と30-2との間に既に確立されている通信路15を介して継続される(S271)。
 このように、eNB20は、片方向の通信路15の品質が悪化した場合に、悪化した方向の無線通信について、各UE30との間で通信路14を確立する。そして、各UE30は、悪化した方向の無線通信を、通信路15を介する無線通信から、通信路14を介する無線通信に切り替える。これにより、eNB20は、片方向の通信路15の品質悪化によるUE30間の通信の途切れの発生を抑えることができる。
[片方向の通信路15の品質が悪化し、かつ、切替指示が受信されない場合の無線通信システム10の動作]
 また、通信路15の無線環境によっては、片方向の通信路15の品質が悪化すると共に、eNB20からの切替指示がUE30において受信されない場合がある。以下では、そのような場面での無線通信システム10の動作について説明する。図14は、実施例4において、片方向の通信路の品質が悪化し、かつ、切替指示が受信されない場合の無線通信システム10の動作の一例を示すシーケンス図である。なお、図14に示す例では、UE30-1からUE30-2への信号が送信される通信路14および通信路15と、UE30-2からUE30-1への信号が送信される通信路14および通信路15とが別々に管理されている。
 まず、UE30-1およびUE30-2は、通信路15を介して、PSSSおよびSSSSを含む同期フレーム40を定期的に送信する(S280、S281)。UE30-2は、UE30-1から送信された同期フレーム40の受信品質に基づいて通信路15の品質を測定し、測定された通信路15の品質が所定の品質より悪いか否かを判定する。図14に示す例では、UE30-1からUE30-2への信号が送信される通信路15の品質は所定の品質よりも悪化するが(S282)、UE30-2からUE30-1への信号が送信される通信路15の品質は所定の品質よりも良いと仮定する(S283)。
 UE30-2は、UE30-1からUE30-2への信号が送信される通信路15の品質が所定の品質よりも悪化したことを検出することにより、通信路15の品質悪化を検出する(S284)。通信路15の品質悪化を検出した場合、UE30-2は、タイマ2をリセットスタートさせる。そして、UE30-2は、通信路15の品質の測定結果をeNB20へ送信する(S285)。eNB20は、UE30-2から測定結果を受信するが、UE30-1からは測定結果を受信しない。そのため、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-2の確立を指示する切替指示をUE30-2へ送信する(S286)。また、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-1の確立を指示する切替指示をUE30-1へ送信する(S287)。しかし、eNB20から送信された切替指示は、UE30-1およびUE30-2のいずれにおいても受信されない。
 UE30-2は、eNB20からの切替指示を受信しない場合であっても、タイマ2が満了した場合には、UE30-1からUE30-2への信号が送信される通信路14-2の確立を要求する通信路確立要求をeNB20へ送信する(S288)。そして、UE30-2は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-2を確立する(S289)。
 次に、eNB20は、UE30-1からUE30-2への信号が送信される通信路14-1の確立を指示する通信路確立指示をUE30-1へ送信する(S290)。そして、UE30-1は、eNB20との間で、UE30-1からUE30-2への信号が送信される通信路14-1を確立する(S291)。
 そして、UE30-1および30-2は、eNB20との間で確立された通信路14を介して、UE30-1からUE30-2への通信を継続する(S292)。具体的には、UE30-1は、UE30-2宛のデータを、eNB20との間で確立された通信路14-1を介して送信し、UE30-2は、UE30-1からのデータを、eNB20との間で確立された通信路14-2を介して受信する。また、UE30-2からUE30-1への通信は、UE30-1と30-2との間に既に確立されている通信路15を介して継続される(S293)。
 このように、UE30は、eNB20から切替指示を受信しなかった場合であっても、通信路15の品質が所定の品質より悪い状態が所定時間以上継続した場合に、eNB20との間で通信路14を確立する。そして、UE30は、通信路15を介する他のUE30との間の無線通信を、通信路14を介する無線通信に切り替える。これにより、UE30は、通信路15の品質悪化による他のUE30との間の通信の途切れの発生を抑えることができる。
[無線通信システム10の構成]
 図15は、実施例5における無線通信システム10の一例を示す図である。実施例5における無線通信システム10は、複数の第1の無線通信装置1-1および第1の無線通信装置1-2と、複数の第2の無線通信装置4-1および第2の無線通信装置4-2とを備える。第1の無線通信装置1-1は、制御部2-1および通信部3-1を有する。第1の無線通信装置1-2は、制御部2-2および通信部3-2を有する。第2の無線通信装置4-1は、制御部5-1および通信部6-1を有する。第2の無線通信装置4-2は、制御部5-2および通信部6-2を有する。第2の無線通信装置4-1および4-2は、第1の無線通信装置1-1のセル内において第1の無線通信装置1-1を介して通信が可能であり、第1の無線通信装置1-2のセル内において第1の無線通信装置1-2を介して通信が可能である。また、第2の無線通信装置4-1および4-2は、第1の通信路7を介して無線通信が可能である。第1の通信路7は、例えばD2D通信に用いられる。
 なお、以下では、第1の無線通信装置1-1および1-2のそれぞれを区別することなく総称する場合に第1の無線通信装置1と記載する。また、以下では、制御部2-1および制御部2-2のそれぞれを区別することなく総称する場合に制御部2と記載し、通信部3-1および通信部3-2のそれぞれを区別することなく総称する場合に通信部3と記載する。
 本実施例では、第2の無線通信装置4-1および4-2は、まず、第1の無線通信装置1-1に帰属し、第1の通信路7を介して無線通信を行う。そして、第2の無線通信装置4-2が他の第1の無線通信装置1-2へハンドオーバし、第2の無線通信装置4-1および4-2は、第1の通信路7のリソースを、ハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報に基づいて更新する。これにより、第1の通信路7を介する第2の無線通信装置4-1と第2の無線通信装置4-2との間の通信が継続される。
 各第2の無線通信装置4の通信部6は、第1の無線通信装置1および他の第2の無線通信装置4との間で無線通信が可能である。通信部6は、他の第2の無線通信装置4との間で、第1の通信路7を介して無線通信が可能である。第2の無線通信装置4-1との間で第1の通信路7を介して無線通信を行っている第2の無線通信装置4-2の制御部5-2は、第2の無線通信装置4-2が第1の無線通信装置1-1から第1の無線通信装置1-2へハンドオーバを行った場合、第1の無線通信装置1-1または第1の無線通信装置1-2から第1の無線通信装置1-2が指定したリソース情報を受信する。また、第2の無線通信装置4-1の制御部5-1は、第2の無線通信装置4-2または第1の無線通信装置1-1から、第2の無線通信装置4-2のハンドオーバ先の第1の無線通信装置1-2が指定したリソース情報を受信する。そして、第2の無線通信装置4-1の制御部5-1と第2の無線通信装置4-2の制御部5-2とは、受信したリソース情報に基づいて、第1の通信路7に使用される周波数帯域等のリソースを更新する。これにより、第2の無線通信装置4-1と第2の無線通信装置4-2とは、第2の無線通信装置4-2がハンドオーバを行った場合であっても、ハンドオーバ先の第1の無線通信装置1-2のリソースと競合することなく、リソースが更新された第1の通信路7を介して無線通信を継続することができる。
 ここで、第1の無線通信装置1および第2の無線通信装置4によって行われる制御について、以下に詳細な例をいくつか挙げる。1つ目の例としては、第1の無線通信装置1-1の制御部2-1は、第2の無線通信装置4-2がハンドオーバを行った場合に、ハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報を、通信部3-1を介して第1の無線通信装置1-2から受信する。そして、制御部2-1は、第1の無線通信装置1-2から指定されたリソース情報を、通信部3-1を介して第2の無線通信装置4-2へ送信する。
 第2の無線通信装置4-2の制御部5-2は、通信部6-2を介して、第1の無線通信装置1-1から、ハンドオーバ先の第1の無線通信装置1-2が指定したリソース情報を受信する。そして、制御部5-2は、第1の無線通信装置1-1から受信したリソース情報を、通信部6-2を用いて、第1の通信路7を介して第2の無線通信装置4-1へ送信する。そして、制御部5-2は、第1の無線通信装置1-1から受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。第2の無線通信装置4-1の制御部5-1は、第1の通信路7および通信部6-1を介して、第2の無線通信装置4-2からリソース情報を受信した場合に、受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。これにより、第2の無線通信装置4-1と第2の無線通信装置4-2とは、第2の無線通信装置4-2がハンドオーバを行った場合であっても、ハンドオーバ先の第1の無線通信装置1-2のリソースと競合することなく、リソースが更新された第1の通信路7を介してD2D通信を継続することができる。
 また、2つ目の例としては、第1の無線通信装置1-1の制御部2-1は、第2の無線通信装置4-2がハンドオーバを行った場合に、ハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報を、通信部3-1を介して第1の無線通信装置1-2から受信する。そして、制御部2-1は、第1の無線通信装置1-2から指定されたリソース情報を、通信部3-1を介して第2の無線通信装置4-1および第2の無線通信装置4-2へそれぞれ送信する。
 第2の無線通信装置4-1の制御部5-1は、通信部6-1を介して、第1の無線通信装置1-1から、ハンドオーバ先の第1の無線通信装置1-2が指定したリソース情報を受信し、受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。第2の無線通信装置4-2の制御部5-2は、通信部6-2を介して、第1の無線通信装置1-1から、ハンドオーバ先の第1の無線通信装置1-2が指定したリソース情報を受信し、受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。
 これにより、第2の無線通信装置4-1と第2の無線通信装置4-2とは、第2の無線通信装置4-2がハンドオーバを行った場合であっても、リソースが更新された第1の通信路7を介してD2D通信を継続することができる。また、第1の無線通信装置1-1がハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報を、第2の無線通信装置4-1および第2の無線通信装置4-2へそれぞれ送信する。そのため、第2の無線通信装置4-1および第2の無線通信装置4-2は、高い信頼性の元で、ハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報を受信することができる。
 また、3つ目の例としては、第1の無線通信装置1-1の制御部2-1は、第2の無線通信装置4-2がハンドオーバを行った場合に、ハンドオーバ先の第1の無線通信装置1-2から指定されたリソース情報を、通信部3-1を介して第1の無線通信装置1-2から受信する。そして、制御部2-1は、第1の無線通信装置1-2から受信したリソース情報を、通信部3-1を介して第2の無線通信装置4-1へ送信する。また、第1の無線通信装置1-2の制御部2-2は、第2の無線通信装置4-2のハンドオーバが完了した場合に、リソース情報を、通信部3-2を介して第2の無線通信装置4-2へ送信する。
 第2の無線通信装置4-1の制御部5-1は、通信部6-1を介して、第1の無線通信装置1-1から受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。第2の無線通信装置4-2の制御部5-2は、通信部6-2を介して、ハンドオーバ先の第1の無線通信装置1-2から受信したリソース情報に基づいて、第1の通信路7に用いるリソースを更新する。これにより、第2の無線通信装置4-1と第2の無線通信装置4-2とは、第2の無線通信装置4-2がハンドオーバを行った場合であっても、リソースが更新された第1の通信路7を介してD2D通信を継続することができる。また、ハンドオーバ先の第1の無線通信装置1-2が指定したリソース情報は、ハンドオーバ元の第1の無線通信装置1-1から第2の無線通信装置4-1へ送信され、ハンドオーバ先の第1の無線通信装置1-2から第2の無線通信装置4-2へ送信される。これにより、リソース情報を各第2の無線通信装置4へ送信する際の各第1の無線通信装置1の処理負荷を分散させることができる。
[無線通信システム10の構成]
 図16は、実施例6における無線通信システム10の一例を示す図である。実施例6は、実施例5の下位概念に相当する。実施例6における無線通信システム10は、eNB20-1、eNB20-2、UE30-1、およびUE30-2を備える。eNB20-1は、制御部21-1および通信部22-1を有する。eNB20-2は、制御部21-2および通信部22-2を有する。UE30-1は、制御部31-1および通信部32-1を有する。UE30-2は、制御部31-2および通信部32-2を有する。UE30-1とUE30-2とは、通信路15を介してD2D通信が可能である。通信路15は、SLRBとも呼ばれる。また、UE30-1は、eNB20-1との間の通信路14-1を介してeNB20-1とセルラ通信が可能であり、UE30-2は、eNB20-1またはeNB20-2との間の通信路14-2を介してセルラ通信が可能である。
 なお、以下では、eNB20-1およびeNB20-2のそれぞれを区別することなく総称する場合にeNB20と記載する。また、以下では、制御部21-1および制御部21-2のそれぞれを区別することなく総称する場合に制御部21と記載し、通信部22-1および22-2のそれぞれを区別することなく総称する場合に通信部22と記載する。各eNB20は、基地局の一例であり、各UE30は、端末あるいは移動局の一例である。また、各eNB20は、実施例5における第1の無線通信装置1の一例であり、各UE30は、実施例5における第2の無線通信装置4の一例である。また、通信路15は、実施例5における第1の通信路7の一例である。
 eNB20-1およびeNB20-2は、EPC等のコア網12に接続されている。eNB20-1は、セル23-1内の各UE30からの初期アクセスにおいて、UE30との間に通信路14を確立し、コア網12内のPGW11との間に通信路13を確立する。通信路14および通信路13には、例えば既定ベアラが含まれ、必要に応じて個別ベアラが追加される。図16の例では、UE30-1とPGW11との間に通信路13-1および通信路14-1が確立され、UE30-2とPGW11との間に通信路13-2および通信路14-2が確立される。そして、UE30-2が、eNB20-2のセル23-2内に移動した場合、UE30-2は、eNB20-2へハンドオーバを行う。このとき、UE30-2とPGW11との間の通信路13-2および通信路14-2は、例えば図16に示すように、eNB20-1を経由する経路からeNB20-2を経由する経路に切り替えられる。なお、各eNB20と各UE30との間で所定期間データ通信が行われなかった場合、eNB20とUE30との間の通信路14は解放されるが、eNB20とPGW11との間の通信路13は維持される。
 UE30-2がeNB20-1からeNB20-2へハンドオーバを行った場合、ハンドオーバ先のeNB20-2の制御部21-2は、D2D通信に用いられる通信路15の周波数帯域等のリソースを指定するリソース情報を作成する。そして、制御部21-2は、作成したリソース情報を、通信部22-2を介して、ハンドオーバ元のeNB20-1へ送信する。
 ハンドオーバ元のeNB20-1の制御部21-1は、通信部22-1を介して、ハンドオーバ先のeNB20-2からリソース情報を受信した場合、受信したリソース情報を、ハンドオーバを行っているUE30-2へ送信する。
 各UE30の制御部31は、通信相手となる他のUE30を検出した場合に、通信部32を制御して、他のUE30との間に通信路15を確立する。制御部31は、例えばeNB20から指定されたリソースの情報に基づいて通信路15を確立する。そして、各UE30の制御部31は、通信部32を制御して、確立された通信路15を介して他のUE30との間でD2D通信を行う。
 また、eNB20-1からeNB20-2へハンドオーバを行ったUE30-2の制御部31-2は、通信部32-2を介して、ハンドオーバ元のeNB20-1から、ハンドオーバ先のeNB20-2が指定したリソース情報を受信する。そして、制御部31-2は、通信部32-2を制御して、eNB20-1から受信したリソース情報を、通信路15を介してUE30-1へ送信する。そして、制御部31-2は、eNB20-1から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する。具体的には、制御部31-2は、通信部32-2を制御して、eNB20-2から指定されたリソースを用いた通信路15を介してUE30-1へ信号を送信し、eNB20-2から指定されたリソースを用いた通信路15を介してUE30-1から信号を受信する。
 また、ハンドオーバを行ったUE30-2と通信路15を介してD2D通信を行っているUE30-1の制御部31-1は、通信路15および通信部32-1を介して、UE30-2からリソース情報を受信する。そして、制御部31-1は、UE30-2から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する。これにより、UE30-1と30-2とは、ハンドオーバ先のeNB20-2から指定されたリソース情報に基づいてリソースが更新された通信路15を介してD2D通信を継続することができる。
[無線通信システム10の動作]
 図17は、実施例6における無線通信システム10の動作の一例を示すシーケンス図である。
 まず、UE30-1およびUE30-2は、eNB20-1との間で接続処理を実行し、コネクテッドモードに移行する(S300、S301)。そして、UE30-1およびUE30-2は、通信路15を確立し、通信路15を介して互いにD2D通信を開始する(S302)。
 次に、UE30-2がeNB20-1からeNB20-2へハンドオーバの処理を開始すると、ハンドオーバ先のeNB20-2からハンドオーバ元のeNB20-1へHO(Hand Over)コマンドが送信される(S303)。また、ハンドオーバ先のeNB20-2は、通信路15に使用するリソースを指定するリソース情報を作成し、作成したリソース情報をハンドオーバ元のeNB20-1へ送信する(S304)。ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から受信したHOコマンドおよびリソース情報をUE30-2へ送信する(S305、S306)。
 次に、UE30-2は、ハンドオーバ元のeNB20-1から受信したリソース情報を、通信路15を介してUE30-1へ送信する(S307)。そして、UE30-2は、ハンドオーバ元のeNB20-1から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する(S308)。また、UE30-1は、UE30-2から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する(S309)。そして、UE30-1およびUE30-2は、リソースが更新された通信路15を介して、D2D通信を継続する(S310)。
 このように、通信路15を介してD2D通信を行っているUE30-2がハンドオーバを行った場合、ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から指定されたリソース情報を、ハンドオーバを行ったUE30-2へ送信する。そして、UE30-2は、ハンドオーバ元のeNB20-1から受信したリソース情報を、通信路15を介してD2D通信を行っているUE30-1へ送信する。そして、UE30-1およびUE30-2は、リソース情報に基づいて、通信路15に用いるリソースを更新する。これにより、通信路15を介してD2D通信を行っているUE30のいずれかがハンドオーバを行った場合であっても、UE30は、ハンドオーバ先のeNB20のリソースと競合することなく、リソースが更新された通信路15を介してD2D通信を継続できる。
 実施例7では、ハンドオーバ元のeNB20-1が、ハンドオーバ先のeNB20-2から指定されたリソース情報を、UE30-1およびUE30-2へそれぞれ送信する。本実施例における無線通信システム10の構成は、図16を用いて説明した実施例6における無線通信システム10と同様であるため詳細な説明を省略する。実施例7は、実施例5の下位概念に相当する。
[無線通信システム10の動作]
 図18は、実施例7における無線通信システム10の動作の一例を示すシーケンス図である。
 まず、UE30-1およびUE30-2は、eNB20-1との間で接続処理を実行し、コネクテッドモードに移行する(S320、S321)。そして、UE30-1およびUE30-2は、通信路15を確立し、通信路15を介して互いにD2D通信を開始する(S322)。
 次に、UE30-2がeNB20-1からeNB20-2へハンドオーバを行うと、ハンドオーバ先のeNB20-2からハンドオーバ元のeNB20-1へHOコマンドが送信される(S323)。また、ハンドオーバ先のeNB20-2は、通信路15に使用するリソースを指定するリソース情報を、ハンドオーバ元のeNB20-1へ送信する(S324)。ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から受信したHOコマンドをUE30-2へ送信する(S325)。そして、ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から受信したリソース情報をUE30-1およびUE30-2へ送信する(S326、S327)。
 次に、UE30-1およびUE30-2は、ハンドオーバ元のeNB20-1から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する(S328、S329)。そして、UE30-1およびUE30-2は、リソースが更新された通信路15を介して、D2D通信を継続する(S330)。
 このように、通信路15を介してD2D通信を行っているUE30-2がハンドオーバを行った場合、ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から指定されたリソース情報を、UE30-1およびUE30-2へそれぞれ送信する。そして、UE30-1およびUE30-2は、リソース情報に基づいて、通信路15に用いるリソースを更新する。これにより、通信路15を介してD2D通信を行っているUE30のいずれかがハンドオーバを行った場合であっても、UE30は、ハンドオーバ先のeNB20のリソースと競合することなく、リソースが更新された通信路15を介してD2D通信を継続できる。また、ハンドオーバ元のeNB20-1がリソース情報を、UE30-1およびUE30-2へそれぞれ送信するため、UE30-1およびUE30-2は、高い信頼性の元で、ハンドオーバ先のeNB20-2から指定されたリソース情報を受信することができる。
 実施例8では、ハンドオーバ元のeNB20-1が、ハンドオーバ先のeNB20-2から指定されたリソース情報を、UE30-1へ送信し、ハンドオーバ先のeNB20-2が、リソース情報を、ハンドオーバを行ったUE30-2へ送信する。本実施例における無線通信システム10の構成は、図16を用いて説明した実施例6における無線通信システム10と同様であるため詳細な説明を省略する。実施例8は、実施例5の下位概念に相当する。
[無線通信システム10の動作]
 図19は、実施例8における無線通信システム10の動作の一例を示すシーケンス図である。
 まず、UE30-1およびUE30-2は、eNB20-1との間で接続処理を実行し、コネクテッドモードに移行する(S340、S341)。そして、UE30-1およびUE30-2は、通信路15を確立し、通信路15を介して互いにD2D通信を開始する(S342)。
 次に、UE30-2がeNB20-1からeNB20-2へハンドオーバを行うと、ハンドオーバ先のeNB20-2からハンドオーバ元のeNB20-1へHOコマンドが送信される(S343)。また、ハンドオーバ先のeNB20-2は、通信路15に使用するリソースを指定するリソース情報を作成し、作成したリソース情報をハンドオーバ元のeNB20-1へ送信する(S344)。ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から受信したHOコマンドをUE30-2へ送信する(S345)。そして、ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から受信したリソース情報をUE30-1へ送信する(S346)。UE30-1は、ハンドオーバ元のeNB20-1から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する(S347)。
 また、ハンドオーバが完了した場合(S348)、ハンドオーバ先のeNB20-2は、通信路15に使用するリソースを指定するリソース情報を、UE30-2へ送信する(S349)。ハンドオーバを行ったUE30-2は、ハンドオーバ先のeNB20-2から受信したリソース情報に基づいて、通信路15に用いるリソースを更新する(S350)。そして、UE30-1およびUE30-2は、リソースが更新された通信路15を介して、D2D通信を継続する(S351)。
 このように、通信路15を介してD2D通信を行っているUE30-2がハンドオーバを行った場合、ハンドオーバ元のeNB20-1は、ハンドオーバ先のeNB20-2から指定されたリソース情報を、UE30-1へ送信する。また、ハンドオーバ先のeNB20-2は、リソース情報を、ハンドオーバを行ったUE30-2へ送信する。そして、UE30-1およびUE30-2は、リソース情報に基づいて、通信路15に用いるリソースを更新する。これにより、通信路15を介してD2D通信を行っているUE30のいずれかがハンドオーバを行った場合であっても、UE30は、ハンドオーバ先のeNB20のリソースと競合することなく、リソースが更新された通信路15を介してD2D通信を継続できる。また、ハンドオーバ先のeNB20-2が指定したリソース情報は、ハンドオーバ元のeNB20-1からUE30-1へ送信され、ハンドオーバ先のeNB20-2からUE30-2へ送信される。これにより、リソース情報を各UE30へ送信する際のeNB20の処理負荷を分散させることができる。
 実施例9は、実施例1と実施例5との組み合わせに関する実施例である。実施例9における無線通信システム10の構成は、図1または図15を用いて説明した無線通信システム10と同様であるため説明を省略する。
 本実施例において、各第2の無線通信装置4は、第1の通信路7を介する無線通信を行っている場合に、第1の通信路7の品質悪化を検出すると、実施例1と同様に、第1の無線通信装置1との間に第2の通信路8を確立する。そして、各第2の無線通信装置4は、第1の通信路7を介する無線通信を、第2の通信路8を介する無線通信に切り替える。また、各第2の無線通信装置4は、第1の通信路7を介する無線通信を行っている場合に、いずれかの第2の無線通信装置4がハンドオーバを行うと、実施例5と同様に、ハンドオーバ先の第1の無線通信装置1から指定されたリソース情報に基づいて第1の通信路7のリソースを更新する。これにより、第1の通信路7の品質が悪化した場合や、第2の無線通信装置4がハンドオーバを行った場合であっても、無線通信システム10は、第2の無線通信装置4間の通信の途切れの発生を抑えることができる。
 なお、実施例2から4は、実施例1の下位概念であり、実施例6から8は、実施例5の下位概念である。そのため、実施例1と実施例5を組み合わせた実施例9のように、実施例2から4と、実施例6から8とは、それぞれ組み合わせることが可能である。
[ハードウェア]
 図20は、実施例1から9に示した第1の無線通信装置1またはeNB20の機能を実現する通信装置50の一例を示す図である。通信装置50は、例えば図20に示すように、アンテナ51、RF回路52、メモリ53、プロセッサ54、およびネットワークインターフェイス回路55を有する。
 RF回路52は、プロセッサ54から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ51を介して送信する。また、RF回路52は、アンテナ51を介して受信した信号に復調等の所定の処理を施してプロセッサ54へ出力する。プロセッサ54は、例えば、第1の無線通信装置1の制御部2およびeNB20の制御部21の機能を実現する。ネットワークインターフェイス回路55は、有線接続によってコア網12や他の通信装置50と接続するためのインタフェースである。
 RF回路52、メモリ53、およびプロセッサ54は、例えば、第1の無線通信装置1の通信部3およびeNB20の通信部22の機能を実現する。例えば、メモリ53には、通信部3または通信部22の機能を実現するためのプログラムなどの各種プログラムが格納される。そして、プロセッサ54は、メモリ53から読み出したプログラムを実行し、RF回路52等と協働することで通信部3または通信部22の機能を実現する。
 図21は、実施例1から9に示した第2の無線通信装置4またはUE30の機能を実現する通信装置60の一例を示す図である。通信装置60は、例えば図21に示すように、アンテナ61、RF回路62、メモリ63、およびプロセッサ64を有する。
 RF回路62は、プロセッサ64から出力された信号に変調等の所定の処理を施し、処理後の信号をアンテナ61を介して送信する。また、RF回路62は、アンテナ61を介して受信した信号に復調等の所定の処理を施してプロセッサ64へ出力する。プロセッサ64は、例えば、第2の無線通信装置4の制御部5およびUE30の制御部31の機能を実現する。
 RF回路62、メモリ63、およびプロセッサ64は、例えば、第2の無線通信装置4の通信部6およびUE30の通信部32の機能を実現する。例えば、メモリ63には、通信部6または通信部32の機能を実現するためのプログラムなどの各種プログラムが格納される。そして、プロセッサ64は、メモリ63から読み出したプログラムを実行し、RF回路62等と協働することで通信部6または通信部32の機能を実現する。
[その他]
 なお、開示の技術は、上記した各実施例に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
 例えば、上記した実施例3において、UE30は、D2D通信に使用している通信路15の品質が所定の品質より悪化した場合に、通信路15を介して通信中の他のUE30へ切替指示を送信するが、開示の技術はこれに限られない。例えば、通信路15の品質が所定の品質より悪化した場合に、UE30は、通信路15を介して定期的に送信している同期フレーム40の送信を停止してもよい。これにより、通信路15を介して通信中の他のUE30は、同期フレーム40の受信失敗により通信路15の品質悪化を検出し、eNB20との間で通信路14を確立する。これにより、各UE30は、通信路15を介する無線通信を、eNB20との間で確立した通信路14を介する無線通信に切り替えることができる。
 また、上記した実施例2から4において、各UE30からeNB20へ送信される通信路確立要求には、例えばRRCの制御信号であるRRC Connection Re-establishmentが用いられる。また、OSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号であれば、他の信号が通信路確立要求として用いられてもよい。なお、既存のセルラシステムにおいても、RRC Connection Re-establishmentが使用されている。そのため、通信路確立要求にRRC Connection Re-establishmentが用いられる場合、eNB20とUE30との間の通信路14のRLFと、UE30間の通信路15のRLFとを区別する情報がRRC Connection Re-establishmentに付加されることが好ましい。RLFは、Radio Link Failureの略である。RRC Connection Re-establishmentに付加される情報は、例えば1ビットのフラグであってもよい。また、既存のRRC Connection Re-establishmentと区別するために、RRC D2D Connection Re-establishment等の新たなメッセージが通信路確立要求として用いる信号として定義されてもよい。
 また、上記した実施例2から4において、eNB20から各UE30へ送信される通信路確立指示には、例えばRRCの制御信号であって、MobilityControlInfoを含まないRRC Connection reconfigurationが用いられてもよい。また、上記した実施例3または4において送信される切替指示には、例えばRRCの制御信号であって、MobilityControlInfoを含まないRRC Connection reconfigurationが用いられてもよい。なお、OSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号であれば、他の信号が通信路確立指示や切替指示として用いられてもよい。
 また、上記した実施例6から8において、ハンドオーバ先のeNB20-2から指定されたリソース情報は、例えばRRCの制御信号であって、MobilityControlInfoを含むRRC Connection reconfigurationを用いて送信されてもよい。なお、リソース情報の送信に用いられる信号は、OSI参照モデルにおけるレイヤ2またはレイヤ3で用いられる信号であれば、他の信号であってもよい。
 また、通信路確立要求、通信路確立指示、および切替指示は、物理層に新たに定義されたチャネルを用いて送信されてもよい。
1 第1の無線通信装置
2 制御部
3 通信部
4 第2の無線通信装置
5 制御部
6 通信部
7 第1の通信路
8 第2の通信路
10 無線通信システム
11 PGW
12 コア網
13 通信路
14 通信路
15 通信路
20 eNB
21 制御部
22 通信部
23 セル
30 UE
31 制御部
32 通信部
40 同期フレーム

Claims (15)

  1.  第1の無線通信装置および複数の第2の無線通信装置を含む無線通信システムにおいて、前記第2の無線通信装置として用いられる無線通信装置であって、
     他の前記第2の無線通信装置との間の第1の通信路を介する無線通信、および、前記第1の無線通信装置との間の第2の通信路を介する無線通信が可能な通信部と、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪くなった場合、または、前記他の第2の無線通信装置もしくは前記第1の無線通信装置からレイヤ2またはレイヤ3の信号である切替指示を受信した場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替える制御を行う制御部と、
     を備えることを特徴とする無線通信装置。
  2.  前記制御部は、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪い状態が所定時間以上継続した場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替えることを特徴とする請求項1に記載の無線通信装置。
  3.  前記制御部は、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪くなった場合に、前記通信部を制御して、前記第1の通信路を介して前記切替指示を前記他の第2の無線通信装置へ送信し、前記切替指示に対する応答が受信された場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替えることを特徴とする請求項1に記載の無線通信装置。
  4.  前記制御部は、
     前記切替指示に対する応答が受信されない場合であっても、前記第1の通信路の品質が所定の品質より悪い状態が所定時間以上継続した場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替えることを特徴とする請求項3に記載の無線通信装置。
  5.  前記制御部は、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪くなった場合に、前記通信部を制御して、前記第1の通信路の品質の測定結果を前記第1の無線通信装置へ送信し、前記第1の無線通信装置から前記切替指示を受信した場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替えることを特徴とする請求項1に記載の無線通信装置。
  6.  前記制御部は、
     前記切替指示を受信しない場合であっても、前記第1の通信路の品質が所定の品質より悪い状態が所定時間以上継続した場合に、前記通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替えることを特徴とする請求項5に記載の無線通信装置。
  7.  前記第1の無線通信装置は、基地局であり、
     前記第2の無線通信装置は、端末あるいは移動局であることを特徴とする請求項1に記載の無線通信装置。
  8.  第1の無線通信装置および複数の第2の無線通信装置を含む無線通信システムにおいて、前記第1の無線通信装置として用いられる無線通信装置であって、
     第1の通信路を介して互いに通信を行う前記複数の第2の無線通信装置のそれぞれから、前記第1の通信路の品質の測定結果を受信する通信部と、
     前記測定結果が示す前記第1の通信路の品質が所定の品質より悪い場合に、前記通信部を制御して、レイヤ2またはレイヤ3の信号である切替指示を前記複数の第2の無線通信装置のそれぞれへ送信し、前記複数の第2の無線通信装置のそれぞれとの間で第2の通信路を確立し、前記第1の通信路を介する前記複数の第2の無線通信装置間の無線通信を、前記第2の通信路を介する無線通信に切り替えさせる制御を行う制御部と、
     を備えることを特徴とする無線通信装置。
  9.  前記第1の無線通信装置は、基地局であり、
     前記第2の無線通信装置は、端末あるいは移動局であることを特徴とする請求項8に記載の無線通信装置。
  10.  第1の無線通信装置と複数の第2の無線通信装置とを備える無線通信システムにおいて、
     それぞれの前記第2の無線通信装置は、
     他の第2の無線通信装置との間の第1の通信路を介する無線通信、および、前記第1の無線通信装置との間の第2の通信路を介する無線通信が可能な第1の通信部と、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪くなった場合に、前記第1の通信部を制御して、前記第1の通信路の品質の測定結果を前記第1の無線通信装置へ送信し、レイヤ2またはレイヤ3の信号である切替指示を前記第1の無線通信装置から受信した場合に、前記第1の通信部を制御して、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替える制御を行う第1の制御部と、
     を有し、
     前記第1の無線通信装置は、
     前記第1の通信路を介して互いに通信を行う前記複数の第2の無線通信装置のそれぞれから、前記測定結果を受信する第2の通信部と、
     前記測定結果が示す前記第1の通信路の品質が所定の品質より悪い場合に、前記第2の通信部を制御して、前記切替指示を前記複数の第2の無線通信装置のそれぞれへ送信し、前記複数の第2の無線通信装置のそれぞれとの間で前記第2の通信路を確立する制御を行う第2の制御部と、
     を有することを特徴とする無線通信システム。
  11.  前記第1の無線通信装置は、基地局であり、
     前記第2の無線通信装置は、端末あるいは移動局であることを特徴とする請求項10に記載の無線通信システム。
  12.  第1の無線通信装置および複数の第2の無線通信装置を含む無線通信システムに用いられる前記第2の無線通信装置が、
     他の第2の無線通信装置との間の第1の通信路を介する無線通信、または、前記第1の無線通信装置との間の第2の通信路を介する無線通信を行い、
     前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信において、前記第1の通信路の品質が所定の品質より悪くなった場合、または、前記他の第2の無線通信装置もしくは前記第1の無線通信装置からレイヤ2またはレイヤ3の信号である切替指示を受信した場合に、前記第1の無線通信装置との間で前記第2の通信路を確立し、前記第1の通信路を介する前記他の第2の無線通信装置との間の無線通信を、前記第2の通信路を介する無線通信に切り替える
     処理を行うことを特徴とする処理方法。
  13.  前記第1の無線通信装置は、基地局であり、
     前記第2の無線通信装置は、端末あるいは移動局であることを特徴とする請求項12に記載の処理方法。
  14.  第1の無線通信装置および複数の第2の無線通信装置を含む無線通信システムに用いられる前記第1の無線通信装置が、
     第1の通信路を介して互いに通信を行う前記複数の第2の無線通信装置のそれぞれから、前記第1の通信路の品質の測定結果を受信し、
     前記測定結果が示す前記第1の通信路の品質が所定の品質より悪い場合に、レイヤ2またはレイヤ3の信号である切替指示を前記複数の第2の無線通信装置のそれぞれへ送信し、前記複数の第2の無線通信装置のそれぞれとの間で第2の通信路を確立し、前記第1の通信路を介する前記複数の第2の無線通信装置間の無線通信を、前記第2の通信路を介する無線通信に切り替えさせる
     処理を行うことを特徴とする処理方法。
  15.  前記第1の無線通信装置は、基地局であり、
     前記第2の無線通信装置は、端末あるいは移動局であることを特徴とする請求項12に記載の処理方法。
PCT/JP2016/050581 2016-01-08 2016-01-08 無線通信装置、無線通信システムおよび処理方法 WO2017119140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017560027A JP6763404B2 (ja) 2016-01-08 2016-01-08 無線通信装置、無線通信システムおよび処理方法
PCT/JP2016/050581 WO2017119140A1 (ja) 2016-01-08 2016-01-08 無線通信装置、無線通信システムおよび処理方法
US16/025,479 US11653280B2 (en) 2016-01-08 2018-07-02 Device-to-device and device to network wireless communication apparatus, wireless communication system, and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050581 WO2017119140A1 (ja) 2016-01-08 2016-01-08 無線通信装置、無線通信システムおよび処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/025,479 Continuation US11653280B2 (en) 2016-01-08 2018-07-02 Device-to-device and device to network wireless communication apparatus, wireless communication system, and processing method

Publications (1)

Publication Number Publication Date
WO2017119140A1 true WO2017119140A1 (ja) 2017-07-13

Family

ID=59274157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050581 WO2017119140A1 (ja) 2016-01-08 2016-01-08 無線通信装置、無線通信システムおよび処理方法

Country Status (3)

Country Link
US (1) US11653280B2 (ja)
JP (1) JP6763404B2 (ja)
WO (1) WO2017119140A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11395217B2 (en) * 2016-09-30 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatuses for network selection
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
CN113630128A (zh) * 2020-05-06 2021-11-09 展讯通信(上海)有限公司 一种频率处理方法、装置、终端设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151383A (ja) * 2003-11-19 2005-06-09 Hitachi Communication Technologies Ltd 無線通信システム及び無線チャネル制御方法
WO2013183732A1 (ja) * 2012-06-06 2013-12-12 京セラ株式会社 通信制御方法及び基地局
JP2015536620A (ja) * 2012-11-15 2015-12-21 アルカテル−ルーセント デバイス間通信のための方法および対応する制御方法

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1622677A (zh) * 2003-11-27 2005-06-01 皇家飞利浦电子股份有限公司 一种无线通信网络中支持点到点通信切换的方法
WO2008153302A2 (en) 2007-06-15 2008-12-18 Lg Electronics Inc. Network signaling for point-to-multipoint service over single frequency network mode
US8577363B2 (en) * 2008-07-14 2013-11-05 Nokia Corporation Setup of device-to-device connection
US8687545B2 (en) 2008-08-11 2014-04-01 Qualcomm Incorporated Anchor carrier in a multiple carrier wireless communication system
WO2010038590A1 (ja) * 2008-10-02 2010-04-08 日本電気株式会社 無線基地局、スケジューリングシステム、割り当て制御方法および記録媒体
US9320067B2 (en) 2008-11-24 2016-04-19 Qualcomm Incorporated Configuration of user equipment for peer-to-peer communication
CN102415155B (zh) * 2009-03-13 2015-08-19 Lg电子株式会社 考虑上行链路/下行链路分量载波设定所执行的切换
US9351340B2 (en) * 2009-04-08 2016-05-24 Nokia Technologies Oy Apparatus and method for mode selection for device-to-device communications
US8213360B2 (en) * 2009-04-29 2012-07-03 Nokia Corporation Apparatus and method for flexible switching between device-to-device communication mode and cellular communication mode
US9516686B2 (en) * 2010-03-17 2016-12-06 Qualcomm Incorporated Method and apparatus for establishing and maintaining peer-to-peer (P2P) communication on unlicensed spectrum
KR101879593B1 (ko) * 2010-12-27 2018-07-19 한국전자통신연구원 단말간 직접 통신 및 단말 릴레잉 방법
EP2676381B1 (en) * 2011-02-15 2019-07-17 Samsung Electronics Co., Ltd. Method and apparatus for peer-to-peer service in wireless communication system
WO2012157941A2 (ko) * 2011-05-16 2012-11-22 엘지전자 주식회사 기기간 통신을 지원하는 무선접속시스템에서 핸드오버 수행 방법 및 이를 지원하는 장치
US20140105178A1 (en) * 2011-05-25 2014-04-17 Lg Electronics Inc. Method for simultaneous handover in a wireless access system that supports device-to-device communication and apparatus for supporting the method
CN103733682A (zh) 2011-06-01 2014-04-16 株式会社Ntt都科摩 使用小节点设备的移动通信中的增强的本地接入
US20140122607A1 (en) * 2011-06-17 2014-05-01 Telefonaktiebolaget L M Ericsson (Publ) Method and Radio Base Station in a Cellular Communications Network for Device-to-Device Communications
GB2492544A (en) 2011-07-01 2013-01-09 Intellectual Ventures Holding 81 Llc Selecting a radio access type for packet data communication
US9155002B2 (en) * 2011-07-15 2015-10-06 Lg Electronics Inc. Method for performing handover during device-to-device communication in wireless access system and device for same
US9288729B2 (en) * 2011-08-31 2016-03-15 Lg Electronics Inc. Method for performing a change of mode in devices directly communicating with each other in a wireless connection system, and apparatus for same
US9185613B2 (en) * 2011-09-12 2015-11-10 Ofinno Technologies, Llc Handover in heterogeneous wireless networks
CN103037450B (zh) * 2011-09-29 2017-01-25 华为技术有限公司 一种通信模式切换的方法和装置
JP5813241B2 (ja) 2011-10-14 2015-11-17 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ユーザ機器及び無線ネットワークノード、並びにそれらにおけるデバイスツーデバイス通信のための方法
WO2013073915A1 (ko) * 2011-11-18 2013-05-23 엘지전자 주식회사 무선 접속 시스템에서 단말 간 통신 요청 방법 및 이를 위한 장치
CN105163398B (zh) * 2011-11-22 2019-01-18 华为技术有限公司 连接建立方法和用户设备
KR20140096317A (ko) * 2011-11-29 2014-08-05 엘지전자 주식회사 기기간 통신을 지원하는 무선접속시스템에서 기기간 동기화 및 식별을 지원하는 방법
WO2013089414A1 (ko) 2011-12-13 2013-06-20 엘지전자 주식회사 무선 통신 시스템에서 데이터 오프로딩 방법 및 이를 위한 장치
US8885569B2 (en) * 2011-12-19 2014-11-11 Ofinno Technologies, Llc Beamforming signaling in a wireless network
BR112014015388A8 (pt) 2011-12-29 2017-07-04 Ericsson Telefon Ab L M equipamento de usuário e nó de rede de rádio, e métodos dos mesmos
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
US9185690B2 (en) 2012-02-29 2015-11-10 Sharp Kabushiki Kaisha Allocating and determining resources for a device-to-device link
US9450667B2 (en) * 2012-03-19 2016-09-20 Industrial Technology Research Institute Method for device to device communication and base station and user equipment using the same
US9554406B2 (en) * 2012-03-19 2017-01-24 Industrial Technology Research Institute Method for device to device communication and control node using the same
CN104303582B (zh) * 2012-05-18 2019-02-19 诺基亚技术有限公司 用于切换的方法和装置
TWI620459B (zh) * 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US20130336230A1 (en) * 2012-06-14 2013-12-19 Alcatel-Lucent Usa Inc. Methods and apparatus for opportunistic offloading of network communications to device-to-device communication
WO2014007494A1 (en) * 2012-07-02 2014-01-09 Lg Electronics Inc. Method and apparatus for switching connection in wireless communication system
EP2875685A2 (en) * 2012-07-23 2015-05-27 Interdigital Patent Holdings, Inc. Methods and apparatus for frequency synchronization, power control, and cell configuration for ul-only operation in dss bands
CN103634852B (zh) * 2012-08-28 2017-10-17 华为技术有限公司 D2d通信的资源协商方法、设备及系统
CN103686691B (zh) * 2012-09-18 2018-01-05 电信科学技术研究院 信号及配置信息发送和终端发现方法与设备
EP2903390B1 (en) * 2012-09-27 2018-01-03 Kyocera Corporation Mobile communication system
EP2904854A4 (en) * 2012-10-05 2016-06-08 Ericsson Telefon Ab L M METHOD, APPARATUS AND COMPUTER PROGRAM FOR MANAGING TERRESTRIAL BONDS
US11496948B2 (en) * 2012-10-19 2022-11-08 Samsung Electronics Co., Ltd. System and method for ad-hoc/network assisted device discovery protocol for device to device communications
JP5852261B2 (ja) 2012-10-26 2016-02-03 京セラ株式会社 移動通信システム、ユーザ端末、基地局、プロセッサ及び通信制御方法
WO2014063747A1 (en) * 2012-10-26 2014-05-01 Nokia Solutions And Networks Oy Configuration of handovers in communication systems
CN104885552A (zh) * 2012-11-06 2015-09-02 诺基亚技术有限公司 用于装置-到-装置通信的方法和设备
US9407302B2 (en) * 2012-12-03 2016-08-02 Intel Corporation Communication device, mobile terminal, method for requesting information and method for providing information
JP5844937B2 (ja) 2013-02-19 2016-01-20 京セラ株式会社 移動通信システム、ユーザ端末、基地局、プロセッサ及び基地局の制御方法
US9955408B2 (en) * 2013-02-22 2018-04-24 Samsung Electronics Co., Ltd. Network-assisted multi-cell device discovery protocol for device-to-device communications
US9532400B2 (en) * 2013-02-28 2016-12-27 Intel Deutschland Gmbh Radio communication devices and cellular wide area radio base station
US8989807B2 (en) * 2013-02-28 2015-03-24 Intel Mobile Communications GmbH Communication terminal device, communication device, communication network server and method for controlling
US8855645B2 (en) * 2013-02-28 2014-10-07 Intel Mobile Communications GmbH Radio communication devices and cellular wide area radio base station
KR102039908B1 (ko) 2013-04-01 2019-11-04 삼성전자주식회사 단말간 통신을 위한 상태 천이 방법 및 장치
EP2790456B1 (en) 2013-04-10 2015-10-21 Fujitsu Limited D2D communication in wireless networks
GB2514373B (en) * 2013-05-21 2015-07-08 Broadcom Corp Method, apparatus and computer program for controlling a user equipment
JP6144550B2 (ja) 2013-06-26 2017-06-07 京セラ株式会社 ユーザ端末及びプロセッサ
JP5864034B2 (ja) * 2013-10-11 2016-02-17 京セラ株式会社 通信制御方法、ユーザ端末及び通信装置
EP3039930B1 (en) * 2013-10-31 2018-10-17 Sony Corporation Communications system, communications device, infrastructure equipment and method of communicating
EP3039931B1 (en) * 2013-10-31 2018-10-17 Sony Corporation Communications system, communications device and method of communicating
US9264968B2 (en) * 2013-12-03 2016-02-16 Apple Inc. Device to device communications with carrier aggregation
US9848454B2 (en) * 2014-01-28 2017-12-19 Qualcomm Incorporated Switching mode of operation in D2D communications
CN104936164B (zh) 2014-03-17 2019-01-25 电信科学技术研究院 指示d2d相关信息和确定d2d发送资源的方法及装置
US9609680B2 (en) * 2014-03-18 2017-03-28 Qualcomm Incorporated Signaling flows and buffer status report for a group in device-to-device broadcast communication
US10660146B2 (en) * 2014-03-21 2020-05-19 Samsung Electronics Co., Ltd. Methods and apparatus for device to device synchronization priority
US10292191B2 (en) * 2014-03-25 2019-05-14 Futurewei Technologies, Inc. Systems and methods for control plane for D2D communications
US20150289127A1 (en) * 2014-04-02 2015-10-08 Innovative Sonic Corporation Method and apparatus for providing proximity information in a wireless communication system
US9661653B2 (en) * 2014-05-08 2017-05-23 Intel IP Corporation Device to-device (D2D) communications
TWI583231B (zh) * 2014-05-09 2017-05-11 財團法人資訊工業策進會 用於無線通訊系統之基地台、裝置對裝置使用者裝置、傳輸方法、回報方法及資源調整方法
WO2015170690A1 (ja) 2014-05-09 2015-11-12 シャープ株式会社 通信制御方法、端末装置、サーバ装置および通信システム
EP3142435B1 (en) * 2014-05-09 2024-04-03 LG Electronics Inc. Method for allocating resources for communication between transceiving terminals in communication system supporting device-to-device communication, and apparatus therefor
EP3651486B1 (en) * 2014-05-09 2024-04-17 Sun Patent Trust Resource allocation for d2d discovery transmission
US10667249B2 (en) * 2014-06-24 2020-05-26 Lg Electronics Inc. Resource allocation method for communication between transceiving terminals in communication system supporting device to device communication, and apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151383A (ja) * 2003-11-19 2005-06-09 Hitachi Communication Technologies Ltd 無線通信システム及び無線チャネル制御方法
WO2013183732A1 (ja) * 2012-06-06 2013-12-12 京セラ株式会社 通信制御方法及び基地局
JP2015536620A (ja) * 2012-11-15 2015-12-21 アルカテル−ルーセント デバイス間通信のための方法および対応する制御方法

Also Published As

Publication number Publication date
JP6763404B2 (ja) 2020-09-30
JPWO2017119140A1 (ja) 2018-10-11
US11653280B2 (en) 2023-05-16
US20180310217A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
JP6451783B2 (ja) 第1の基地局及びその方法
WO2021155839A1 (en) Methods and apparatus of path switch based service continuity for ue-to-network relay
RU2752242C1 (ru) Способы, обеспечивающие возможность двойного подключения для избыточных путей плоскости пользователя, и соответствующие сетевые узлы
US9843966B2 (en) Radio communication system
WO2014073302A1 (ja) 無線通信システムおよび通信制御方法
CN103220815B (zh) 一种基站间接口连接建立方法及装置
CN102238667A (zh) 一种建立基站间连接的方法
US20120099516A1 (en) Mobile communication system
WO2013107385A1 (zh) 用户上下文释放方法、基站以及家庭基站网关
JP2014093591A (ja) 無線通信システムおよび制御方法
JP6763404B2 (ja) 無線通信装置、無線通信システムおよび処理方法
WO2014109082A1 (ja) 上位基地局、下位基地局、および無線通信システム
WO2009147940A1 (ja) ハンドオーバ方法、無線基地局および移動端末
JP7235085B2 (ja) 無線通信装置、無線通信システムおよび処理方法
WO2022130777A1 (ja) 通信装置、通信装置の制御方法、およびプログラム
CN117121556A (zh) 用于时间敏感联网的切换技术
WO2019146204A1 (ja) 端末装置、中継装置、制御方法、及びプログラム
JP6627889B2 (ja) 無線通信装置、無線通信システムおよび処理方法
WO2019146203A1 (ja) 端末装置、制御装置、制御方法、及びプログラム
WO2021261580A1 (ja) 中継装置の接続先変更処理を効率化する、中継装置、基地局装置、制御方法、および、プログラム
WO2017201717A1 (zh) 通信方法、网络设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560027

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883643

Country of ref document: EP

Kind code of ref document: A1