WO2017110154A1 - Ballast water control device and method for controlling ballast water treatment system - Google Patents
Ballast water control device and method for controlling ballast water treatment system Download PDFInfo
- Publication number
- WO2017110154A1 WO2017110154A1 PCT/JP2016/075761 JP2016075761W WO2017110154A1 WO 2017110154 A1 WO2017110154 A1 WO 2017110154A1 JP 2016075761 W JP2016075761 W JP 2016075761W WO 2017110154 A1 WO2017110154 A1 WO 2017110154A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ballast water
- supply line
- ballast
- water supply
- sampling pipe
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B13/00—Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/50—Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
Definitions
- the present invention relates to a control device and a control method for controlling ballast water by optimally determining the addition amount of a chlorine-based killing agent in ballast water treatment.
- the standard set by the International Maritime Organization (IMO) as a standard for the treatment of ship ballast water is that the number of organisms (mainly zooplankton) of 50 ⁇ m or more contained in the ship ballast water discharged from the ship is less than 10 in 1 m 3 , The number of organisms (mainly phytoplankton) of 10 ⁇ m or more and less than 50 ⁇ m is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci in 100 ml Less than 100 cfu.
- IMO International Maritime Organization
- a chlorinated biocide such as sodium hypochlorite or calcium hypochlorite is added to the ship's ballast water to ensure the residence time and remove microorganisms.
- Methods for treating ship ballast water to be killed have been proposed.
- the addition amount of the chlorine-based killing agent in this ballast water treatment is determined using the maximum allowable addition amount (MAD) set at the time of IMO basic approval as an index.
- MAD maximum allowable addition amount
- Patent Document 1 discloses that the ballast water in the ballast water supply line to which a predetermined amount of sodium hypochlorite is supplied from the chemical solution supply apparatus is sampled, and the next in the sampled sample is obtained. It is disclosed that the decay of sodium chlorite concentration is measured and the amount of sodium hypochlorite supplied from the chemical supply device to the line is adjusted based on the measured data.
- This invention solves this subject and aims at providing the apparatus for controlling the ballast water by determining the addition amount of a chlorine-type disinfectant optimally with a simple structure. Moreover, an object of this invention is to provide the control method of the ballast water using this apparatus.
- the present invention firstly provides a ballast water supply line for supplying the taken ballast water to the ballast tank, and a chlorine-based killing treatment for killing aquatic microorganisms in the ballast water.
- a ballast water treatment system comprising: a chemical solution supply device for supplying a biocide solution to the ballast water supply line; and a mixing unit for the chlorine-based disinfectant solution provided in the ballast water supply line, the ballast water supply In the line, a sampling pipe is installed extending from the mixing section to a position at least three times away from the ballast water supply line on the ballast tank side with respect to the diameter (d) of the ballast water supply line.
- An oxidizing substance concentration measuring means is provided, and a control mechanism is provided for controlling the chemical solution supply device based on the measurement result of the total residual oxidizing substance concentration measuring means.
- a control device for ballast water characterized in that the (invention 1).
- the ballast when a chlorine-based disinfectant such as sodium hypochlorite is supplied to the ballast water supply line, in order to sufficiently homogenize the concentration, the ballast is introduced from the end of the mixing section. It has been found that the length of the water supply line is required to be at least 3 times the diameter (d). Therefore, if the tip of the sampling pipe is extended to a position at least three times the ballast tank side with respect to the diameter (d) of the ballast water supply line and the ballast water is sampled from the tip of the sampling pipe, Since the concentration of the chlorine-based disinfectant is uniform, the amount of addition of the chlorine-based disinfectant can be optimally determined by measuring the total residual oxidizing substance concentration (TRO) in this ballast water. In addition, since the chemical solution supply device and the mixing unit are close to each other, it is only necessary to construct one place of the ballast water supply line by providing a sampling pipe in the vicinity of the mixing unit. Also excellent.
- TRO total residual oxidizing substance concentration
- the diameter (d1) of the sampling pipe is preferably 1/5 or less of the diameter (d) of the ballast water supply line (Invention 2).
- the area of the sampling pipe is sufficiently smaller than the area of the ballast water supply line, so that there is no hindrance to the circulation of the ballast water.
- the chemical solution supply device can add a neutralizing agent when discharging the ballast water (Invention 3).
- the amount of neutralizing agent added is optimally determined by collecting the ballast water when discharging from the sampling pipe and measuring the total residual oxidizing substance concentration (TRO). Can do.
- the present invention secondly supplies a chlorine-based disinfectant solution for killing aquatic microorganisms in the ballast water from a chemical supply device to a ballast water supply line for supplying the ballast water taken to the ballast tank.
- ballast water is collected from the tip of the sampling pipe extending to a position separated by 3 times or more on the ballast tank side, and the total residual oxidizing substance concentration (TRO) of the collected ballast water is set near the mixing unit.
- invention 4 when a chlorine-based disinfectant such as sodium hypochlorite is supplied to the ballast water supply line, the concentration is sufficiently homogenized from the end of the mixing section.
- the length (d) of the water supply line must be at least 3 times longer. Therefore, if the tip of the sampling pipe is provided to extend to a position spaced three times or more on the ballast tank side with respect to the diameter (d) of the ballast water supply line, and the ballast water is sampled from the tip of the sampling pipe, Since the concentration of chlorinated biocide in ballast water is uniform, the amount of chlorinated biocide solution added can be determined optimally by measuring the total residual oxidizing substance concentration (TRO) in this ballast water. be able to.
- TRO total residual oxidizing substance concentration
- the chemical supply device can add a neutralizing agent when discharging the ballast water (Invention 5).
- the amount of neutralizing agent added is optimally determined by collecting the ballast water when discharging from the sampling pipe and measuring the total residual oxidizing substance concentration (TRO). Can do.
- the sampling pipe is located in the ballast water supply line from the mixing portion to a position spaced three times or more on the ballast tank side with respect to the diameter (d) of the ballast water supply line. Since it is extended, ballast water can be sampled at locations where the concentration of chlorinated biocide in the ballast water is uniform. can do. Furthermore, since the chemical solution supply device and the mixing unit are close to each other, it is only necessary to construct one part of the ballast water supply line by providing a sampling pipe in the vicinity of the mixing unit.
- control device and control method for ballast water of the present invention will be described in detail based on one embodiment.
- FIG. 1 shows a control apparatus for ballast water according to an embodiment of the present invention.
- reference numeral 1 denotes a tubular ballast water for supplying ballast water taken from a water intake port to a ballast tank (not shown).
- a chemical liquid supply device 2 is connected to the ballast water supply line 1 via a chemical liquid supply line 3.
- a mixing unit 4 such as a static mixing device is provided so that the start end 4A is located at a connection location of the chemical solution supply line 3 in the ballast water supply line 1.
- a TRO meter 5 as a total residual oxidant concentration measuring means is connected to the end 4B side of the mixing unit 4 via a sampling pipe 6, and this sampling pipe 6 is connected to the ballast water supply line 1 in the ballast tank. Extends to the side.
- Reference numeral 7 denotes a chemical supply pump from the chemical supply apparatus
- 8 denotes a flow rate adjusting valve
- 9 denotes a suction pump of the sampling pipe 6.
- the TRO meter 5 a commercially available high-precision TRO meter using the DPD absorbance method can be used.
- the TRO meter 5 can transmit the measurement result to a control mechanism 10 such as a microcomputer, and the control mechanism 10 can control the chemical solution supply pump 7 and the flow rate based on the measured value of the TRO meter 5.
- the regulating valve 8 can be controlled.
- the control mechanism 10 is also connected to the chemical solution supply device 2, and this chemical solution supply device 2 is provided with a chlorine-based disinfectant tank 2A and a neutralizer tank 2B, and ballast water.
- the two tanks 2A and 2B are switched so that a chlorine-based disinfectant can be supplied from the chlorine-based disinfectant tank 2A when supplying water and a neutralizing agent can be supplied from the neutralizing tank 2B when discharging ballast water. It is possible.
- the mixing unit 4 is not particularly limited, and a general-purpose static mixing device such as a static mixer or an orifice can be used.
- the terminal end of the mixing unit 4 becomes an extension starting point of a sampling pipe 6 to be described later.
- Chlorine-based disinfectants stored in the chlorine-based disinfectant tank 2A include chlorinated isocyanuric acids such as hypochlorous acid (salt), dichloroisocyanurate and trichloroisocyanurate, hydrogen peroxide, and chlorine dioxide.
- chlorinated isocyanuric acids such as hypochlorous acid (salt)
- dichloroisocyanurate and trichloroisocyanurate hydrogen peroxide
- chlorine dioxide chlorine dioxide.
- hypochlorous acid (salt) is particularly preferable.
- sodium sulfite sodium bisulfite (sodium hydrogen sulfite), sodium thiosulfate, or the like can be used as a solution.
- the sampling pipe 6 extends from the end 4B of the mixing unit 4 to the ballast tank side at least 3 times the diameter (d) of the ballast water supply line 1, preferably 4 to 6 times, particularly about 5 times. Extend.
- the length of the sampling pipe 6 (the position of the tip of the sampling pipe 6 from the end 4B) is less than three times the diameter (d)
- the chlorine-based killing agent supplied from the chemical supply device 2 is homogeneous in the ballast water. Since the concentration distribution is unevenly distributed, the measurement accuracy of the chlorine-based killing agent concentration in the ballast water is lowered, and the control of the addition amount of the chlorine-based killing agent is not suitable.
- the upper limit of the length of the sampling pipe 6 (the position of the tip of the sampling pipe 6 from the end 4B) is not particularly limited. However, even if the length is too long, the accuracy corresponding to the upper limit cannot be obtained. Since the installation becomes difficult, the diameter may be about 10 times the diameter (d) or less.
- the diameter (d1) of the sampling pipe 6 is preferably 1/5 or less, particularly preferably 1/8 or less, of the diameter (d) of the ballast water supply line 1.
- the lower limit of the diameter of the sampling pipe 6 may be 6A (A is the nominal diameter of the pipe JIS standard) or more from the viewpoint of water intake.
- the diameter (d) of the ballast water supply line 1 varies depending on the amount of ballast water.
- the diameter (d1) to 25A the area of the sampling pipe 6 can be about 1.6% with respect to the area of the ballast water supply line 1, so that the influence on the circulation of the ballast water can be almost ignored.
- the ballast water supply line 1 is provided with a separate sampling location at a position somewhat away from the chemical solution supply device 2 and the TRO meter 5 is installed in the vicinity of this sampling location.
- the construction range of the ballast water supply line 1 should be greatly reduced. Is economical. Specifically, in the case of a ballast water amount of 3000 m 3 / hr, the diameter (d) of the ballast water supply line 1 is 500 A, and the sampling point is separated from the diameter (d) of the ballast water supply line 1 by 5 times.
- ballast water when killing bacteria and plankton when the ballast water is loaded using the above-described ballast water control device will be described.
- the taken ballast water W is supplied to a ballast tank (not shown) via the ballast water supply line 1.
- a sufficient amount of the chlorine-based disinfectant is stored in advance in the chlorine-based disinfectant tank 2A.
- the chemical solution supply pump 7 is driven, and the flow rate adjustment valve 8 is opened to add a chlorine-based killing agent to the ballast water W.
- the chlorine-based disinfectant is mixed and discharged from the starting end 4A to the end 4B of the mixing unit 4, but immediately after being discharged from the end 4B, the chlorine-based disinfectant is not yet sufficiently diffused and its concentration. Is unevenly distributed, and the concentration becomes uniform as it flows through the ballast water supply line 1. At least three times the diameter (d) of the ballast water supply line 1 is necessary for sufficient homogenization.
- the ballast water W is collected from the tip of the sampling pipe 6 having the diameter (d) of the ballast water supply line 1 and the total residual oxidizing substance concentration is measured by the TRO meter 5.
- the total residual oxidizing substance concentration is TRO (Total Residual Oxidants), and the oxidizing chlorine concentration by adding a chlorine-based killing agent and other oxidizing components generated by reaction with this oxidizing chlorine. Is included.
- the TRO value measured by the TRO meter 5 is transmitted to and stored in the control mechanism 10. And based on this TRO value, when the TRO value is lower than the predetermined reference value, the addition amount of the chlorine-based killing agent is increased, and when it is higher than the predetermined reference value, the addition amount of the chlorine-based killing agent is decreased.
- the supply pump 7 and the flow rate adjustment valve 8 are controlled.
- an appropriate TRO value is set on the basis of previously measured attenuation data of a chlorine-based killing agent, and a well-known PID control or the like is set so that the TRO value falls within a predetermined range. What is necessary is just to adjust the addition amount of a chlorine-type killing agent by a method.
- the addition amount of the chlorine-based killing agent is such that the total residual oxidizing substance concentration (TRO) after neutralization of the ballast water is, for example, a reference value of 0.5 to 20 mg / L (asCl 2 ). It will be set according to the ship's schedule. If the TRO value is less than 0.5 mg / L, it will be difficult to bring harmful plank, bacteria, etc. below the reference value, or reproliferation of bacteria, etc. and hatching of plankton eggs will occur. On the other hand, even if it exceeds 20 mg / L, not only a more effective killing effect of harmful plank, bacteria, etc. is obtained, but the amount of neutralizing agent required for neutralization increases or the environment during discharge Since load increases, it is not preferable.
- TRO total residual oxidizing substance concentration
- the TRO value is accurately measured by separating the sampling pipe 6 from the terminal end 4B of the mixing unit 4 at least three times the diameter (d) of the ballast water supply line 1 as described above. Therefore, the control of the reference value of the TRO value becomes accurate, and can be maintained within ⁇ 10% of the reference value, for example. As a result, the chlorine-based disinfectant can be added without excess or deficiency, so that plankton and bacteria in the ballast water W can be surely killed, and the ballast that meets the ballast water standard set by IMO at low cost. Water treatment can be realized.
- ballast water W when the ballast water W is discharged, it is discharged from the ballast tank (not shown) via the ballast water supply line 1 to the external environment. At this time, a sufficient amount of neutralizing agent is stored in advance in the neutralizing agent tank 2B. Subsequently, while the chemical solution supply pump 7 is driven, the flow rate adjustment valve 8 is opened, and a neutralizing agent is added to the ballast water W to reduce the residual chlorine concentration to the target residual chlorine concentration.
- the ballast water W is collected from the tip of the sampling pipe 6 and the total residual oxidizing substance concentration is measured by the TRO meter 5.
- the TRO value measured by the TRO meter 5 is transmitted to and stored in the control mechanism 10. Based on the TRO value, the TRO value of 0.2 mg / L (asCl 2 ) is used as a reference value. When the TRO value is higher than the reference value, the addition amount of the neutralizing agent is increased.
- the chemical solution supply pump 7 and the flow rate adjustment valve 8 are controlled so as to reduce the amount of addition of.
- the neutralizing agent can be added without excess and deficiency, and the residual chlorine concentration in the ballast water W is reduced below the target residual chlorine concentration and discharged to the external environment. be able to.
- the sampling pipe 6 is preferably provided along the inner wall surface of the ballast water supply line 1, but can be installed at various positions as long as it does not hinder the flow of the ballast water.
- the total residual oxidant concentration measuring means is not limited to the measurement using a TRO meter using the DPD absorbance method, and various measuring means can be used as long as the same measurement value can be obtained. Is applicable.
- the diameter (d) 200A of the ballast water supply line 1, the diameter (d1) 20A of the sampling pipe 6, and an orifice as the mixing unit 4 are 1000 mm ( ⁇ 5 ⁇ (d) from the end of the orifice.
- the ballast water W was filled in the ballast tank using a device in which the sampling pipe 6 was extended on the ballast tank side.
- the control mechanism 10 controlled the ballast W so that the measured value of the TRO meter 5 was 15.0 mg / L (asCl 2 ).
- Table 1 shows the maximum value, minimum value, average value, and maximum error (
- the ballast water W is ballasted using a device in which the sampling unit 6A and the TRO meter 5 are installed at a position of 1000 mm ( ⁇ 5 ⁇ (d)) with a diameter (d) 200A of the ballast water supply line 1. Filled the tank. At this time, the control mechanism 10 controlled the ballast W so that the measured value of the TRO meter 5 was 15.0 mg / L (asCl 2 ). Table 1 shows the maximum value, minimum value, average value, and maximum error (
- Example 2 the ballast water is sampled from the connection point of the sampling pipe 6 to the ballast water supply line 1 (the terminal end 4B of the mixing unit 4), and the measured value of the TRO meter 5 is similarly 15.0 mg / L ( asCl 2 ).
- Table 1 shows the maximum value, minimum value, average value, and maximum error (
- the maximum error is equal to or less than that of Comparative Example 1 as a conventional example, and the average value of TRO meter 5 is 15.0 mg / L (asCl 2 ) or more, and within ⁇ 10% of the set value, it can be seen that control can be performed reliably.
- Comparative Example 2 in which the ballast water was sampled at the terminal portion 4B of the mixing unit 4, the maximum error was 100% or more, and the average value also deviated significantly from 15.0 mg / L-Cl 2 . It turns out that it is not controlled.
- ballast water control device of the present invention it is possible to optimally determine the addition amount of the chlorine-based killing agent by constructing only one place of the ballast water supply line. Economic efficiency improves, and as a result, the spread of the ballast water control device becomes easy.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Provided is a ballast water control device having a chemical liquid feed device 2 connected partway along a ballast water feed line 1, a mixing part 4 provided at a location at which a chemical liquid feed line 3 is connected, and a TRO meter 5 provided across a sampling pipe 6 connected to the terminal end 4B-side of the mixing part 4. The TRO meter 5 is capable of transmitting the result of measurement by the TRO meter 5 to a control mechanism 10. The control mechanism 10 is capable of controlling the chemical liquid feed device 2 on the basis of the value of measurement by the TRO meter 5. The position of the distal end of the sampling pipe 6 extends towards the ballast tank side by at least three times the diameter (d) of the ballast water feed line 1 from the terminal end 4B of the mixing part 4. According to this ballast water control device, it is possible to determine an optimum amount of a chorine-based killing agent to add, and to control the ballast water through a simple structure.
Description
本発明は、バラスト水処理における塩素系殺滅剤の添加量を最適に決定してバラスト水を制御するための制御装置及び制御方法に関する。
The present invention relates to a control device and a control method for controlling ballast water by optimally determining the addition amount of a chlorine-based killing agent in ballast water treatment.
一般に船舶、特に貨物船は、積載貨物などの重量を含めて設計されているため、空荷または積荷が少ない状態の船舶は、プロペラ没水深度の確保、空荷時における安全航行の確保等の必要性から、出港前に港において海水を取水して船舶のバランスを取るが、このバラストとして用いられる水のことを船舶バラスト水とよぶ。この船舶バラスト水は、無積載で出港するとき、その出港地で港の海水などをバラストタンクに積み込む一方、逆に港内で積荷をするときには、船舶バラスト水の排水を行う。
In general, since ships, especially cargo ships, are designed to include the weight of cargo, etc., ships that are unloaded or lightly loaded must be able to ensure proper submersion depth and safe navigation during unloaded conditions. From the necessity, seawater is taken in the port before leaving the port to balance the ship. The water used as this ballast is called ship ballast water. When the ship ballast water leaves the port without loading, the seawater of the port is loaded into the ballast tank at the port of departure, while the ship ballast water is drained when loading in the port.
ところで、環境の異なる荷積み港と荷下し港との間を往復する船舶によって船舶バラスト水の注排水が行われると、荷積み港と荷下し港における船舶バラスト水に含まれる微生物の差異により沿岸生態系に悪影響を及ぼすことが懸念されている。そこで、船舶の船舶バラスト水管理に関する国際会議において2004年2月に船舶の船舶バラスト水及び沈殿物の規制及び管理のための国際条約が採択され、船舶バラスト水の処理が義務付けられることとなった。
By the way, when the ship ballast water is poured and discharged by a ship that goes back and forth between the loading port and the unloading port in different environments, the difference in microorganisms contained in the ship ballast water at the loading port and the unloading port. There are concerns that it will adversely affect coastal ecosystems. Therefore, an international convention for the regulation and management of ship ballast water and sediment of ships was adopted in February 2004 at the international conference on ship ballast water management of ships, and the treatment of ship ballast water became obligatory. .
船舶バラスト水の処理基準として国際海事機構(IMO)が定める基準は、船舶から排出される船舶バラスト水に含まれる50μm以上の生物(主に動物プランクトン)の数が1m3中に10個未満、10μm以上50μm未満の生物(主に植物プランクトン)の数が1ml中に10個未満、コレラ菌の数が100ml中に1cfu未満、大腸菌の数が100ml中に250cfu未満、腸球菌の数が100ml中に100cfu未満となっている。
The standard set by the International Maritime Organization (IMO) as a standard for the treatment of ship ballast water is that the number of organisms (mainly zooplankton) of 50 μm or more contained in the ship ballast water discharged from the ship is less than 10 in 1 m 3 , The number of organisms (mainly phytoplankton) of 10 μm or more and less than 50 μm is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci in 100 ml Less than 100 cfu.
このようなバラスト水の処理基準を満たすために、船舶バラスト水に次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの塩素系殺滅剤を添加して、滞留時間を確保することにより微生物等を殺滅する船舶バラスト水の処理方法が提案されている。このバラスト水処理における塩素系殺滅剤の添加量は、IMO基本承認時に設定された最大許容添加量(MAD)を指標として決定される。
In order to meet these ballast water treatment standards, a chlorinated biocide such as sodium hypochlorite or calcium hypochlorite is added to the ship's ballast water to ensure the residence time and remove microorganisms. Methods for treating ship ballast water to be killed have been proposed. The addition amount of the chlorine-based killing agent in this ballast water treatment is determined using the maximum allowable addition amount (MAD) set at the time of IMO basic approval as an index.
このようにバラスト水に塩素系殺滅剤を添加する場合、時間とともに塩素が消費されるので、塩素系活性物質の消費速度を算出して、バラスト水の排出時、すなわち航海の終了時までの必要量を添加するのが望ましい。そこで、このようなバラスト水の制御方法として特許文献1には、薬液供給装置から所定量の次亜塩素酸ナトリウムが供給されたバラスト水供給ライン中のバラスト水をサンプリングし、サンプリングした試料における次亜塩素酸ナトリウム濃度の減衰を測定し、該測定データに基づいて薬液供給装置から前記ラインへ供給する次亜塩素酸ナトリウムの供給量を調節することが開示されている。
Thus, when adding a chlorine-based biocide to ballast water, chlorine is consumed over time, so the consumption rate of the chlorine-based active substance is calculated and the ballast water is discharged, that is, until the end of the voyage. It is desirable to add the necessary amount. Therefore, as a method for controlling such ballast water, Patent Document 1 discloses that the ballast water in the ballast water supply line to which a predetermined amount of sodium hypochlorite is supplied from the chemical solution supply apparatus is sampled, and the next in the sampled sample is obtained. It is disclosed that the decay of sodium chlorite concentration is measured and the amount of sodium hypochlorite supplied from the chemical supply device to the line is adjusted based on the measured data.
しかしながら、特許文献1に記載されている方法では、次亜塩素酸ナトリウムが供給されたバラスト水供給ライン中のバラスト水をサンプリングしているが、次亜塩素酸ナトリウムが供給されたバラスト水は、混合直後はいまだ濃度が偏在化しているので次亜塩素酸ナトリウムの供給箇所からある程度離れた位置でサンプリングしなければならない。このため次亜塩素酸ナトリウムの供給装置とサンプリング及び次亜塩素酸ナトリウム濃度測定装置を船舶の内部に埋設されたバラスト水供給ラインの2か所で広い範囲で施工する必要があり、既存の船舶に設置する場合には工期が長くなるだけでなく、費用も嵩むという問題点がある。
However, in the method described in Patent Document 1, the ballast water in the ballast water supply line supplied with sodium hypochlorite is sampled, but the ballast water supplied with sodium hypochlorite is Immediately after mixing, the concentration is still unevenly distributed, so it must be sampled at some distance from the sodium hypochlorite supply location. For this reason, it is necessary to construct a sodium hypochlorite supply device and sampling and sodium hypochlorite concentration measuring device in two areas of the ballast water supply line embedded in the ship in a wide range, In the case where it is installed, there is a problem that not only the construction period becomes longer, but also the cost increases.
本発明は、かかる課題を解決して、簡便な構造で塩素系殺滅剤の添加量を最適に決定してバラスト水を制御するための装置を提供することを目的とする。また、本発明は、かかる装置を用いたバラスト水の制御方法を提供することを目的とする。
This invention solves this subject and aims at providing the apparatus for controlling the ballast water by determining the addition amount of a chlorine-type disinfectant optimally with a simple structure. Moreover, an object of this invention is to provide the control method of the ballast water using this apparatus.
上記課題を解決するために、本発明は第一に、取水されたバラスト水をバラストタンクに供給するためのバラスト水供給ラインと、前記バラスト水中の水生微生物を殺滅処理するための塩素系殺滅剤溶液を前記バラスト水供給ラインに供給する薬液供給装置と、前記バラスト水供給ライン内に設けられた前記塩素系殺滅剤溶液の混合部とを備えるバラスト水処理システムにおいて、前記バラスト水供給ライン内に前記混合部から該バラスト水供給ラインの直径(d)に対しバラストタンク側に3倍以上離間した位置にまで延在してサンプリング配管を設置するとともにこのサンプリング配管に接続して全残留酸化性物質濃度計測手段を設け、該全残留酸化性物質濃度計測手段の測定結果に基づいて前記薬液供給装置を制御する制御機構を備えたことを特徴とするバラスト水の制御装置を提供する(発明1)。
In order to solve the above problems, the present invention firstly provides a ballast water supply line for supplying the taken ballast water to the ballast tank, and a chlorine-based killing treatment for killing aquatic microorganisms in the ballast water. In the ballast water treatment system, comprising: a chemical solution supply device for supplying a biocide solution to the ballast water supply line; and a mixing unit for the chlorine-based disinfectant solution provided in the ballast water supply line, the ballast water supply In the line, a sampling pipe is installed extending from the mixing section to a position at least three times away from the ballast water supply line on the ballast tank side with respect to the diameter (d) of the ballast water supply line. An oxidizing substance concentration measuring means is provided, and a control mechanism is provided for controlling the chemical solution supply device based on the measurement result of the total residual oxidizing substance concentration measuring means. To provide a control device for ballast water, characterized in that the (invention 1).
かかる発明(発明1)によれば、次亜塩素酸ナトリウムなどの塩素系殺滅剤をバラスト水供給ラインに供給した場合、その濃度が十分に均質化するためには、混合部の終端からバラスト水供給ラインの直径(d)に対して3倍以上の長さが必要であることがわかった。したがって、サンプリング配管の先端をバラスト水供給ラインの直径(d)に対しバラストタンク側に3倍以上離間した位置にまで延在させ、このサンプリング配管の先端からバラスト水をサンプリングすれば、バラスト水の塩素系殺滅剤濃度が均質となっているので、このバラスト水中の全残留酸化性物質濃度(TRO)を測定することで、塩素系殺滅剤の添加量を最適に決定することができる。しかも、薬液供給装置と混合部とは近接しているので、前記混合部の近傍にサンプリング配管を設けることにより、バラスト水供給ラインの一か所を施工するだけでよく、簡便な構造で経済的にも優れている。
According to this invention (Invention 1), when a chlorine-based disinfectant such as sodium hypochlorite is supplied to the ballast water supply line, in order to sufficiently homogenize the concentration, the ballast is introduced from the end of the mixing section. It has been found that the length of the water supply line is required to be at least 3 times the diameter (d). Therefore, if the tip of the sampling pipe is extended to a position at least three times the ballast tank side with respect to the diameter (d) of the ballast water supply line and the ballast water is sampled from the tip of the sampling pipe, Since the concentration of the chlorine-based disinfectant is uniform, the amount of addition of the chlorine-based disinfectant can be optimally determined by measuring the total residual oxidizing substance concentration (TRO) in this ballast water. In addition, since the chemical solution supply device and the mixing unit are close to each other, it is only necessary to construct one place of the ballast water supply line by providing a sampling pipe in the vicinity of the mixing unit. Also excellent.
上記発明(発明1)においては、前記サンプリング配管の径(d1)が前記バラスト水供給ラインの径(d)の1/5以下であるのが好ましい(発明2)。
In the above invention (Invention 1), the diameter (d1) of the sampling pipe is preferably 1/5 or less of the diameter (d) of the ballast water supply line (Invention 2).
かかる発明(発明2)によれば、サンプリング配管の面積がバラスト水供給ラインの面積に対し十分に小さくなるので、バラスト水の流通に支障をきたすことがない。
According to this invention (Invention 2), the area of the sampling pipe is sufficiently smaller than the area of the ballast water supply line, so that there is no hindrance to the circulation of the ballast water.
上記発明(発明1、2)においては、前記薬液供給装置が前記バラスト水の排出時の中和剤を添加可能となっているのが好ましい(発明3)。
In the above inventions (Inventions 1 and 2), it is preferable that the chemical solution supply device can add a neutralizing agent when discharging the ballast water (Invention 3).
かかる発明(発明3)によれば、排出する際のバラスト水をサンプリング配管から採取して全残留酸化性物質濃度(TRO)を計測することで、中和剤の添加量を最適に決定することができる。
According to this invention (Invention 3), the amount of neutralizing agent added is optimally determined by collecting the ballast water when discharging from the sampling pipe and measuring the total residual oxidizing substance concentration (TRO). Can do.
また、本発明は第二に、取水されたバラスト水をバラストタンクに供給するバラスト水供給ラインに前記バラスト水中の水生微生物を殺滅処理するための塩素系殺滅剤溶液を薬液供給装置から供給して前記バラスト水供給ライン内に設けられた混合部で混合するバラスト水処理システムの制御方法であって、前記バラスト水供給ライン内を前記混合部から該バラスト水供給ラインの直径(d)に対してバラストタンク側に3倍以上離間した位置にまで延在したサンプリング配管の先端からバラスト水を採取し、この採取したバラスト水の全残留酸化性物質濃度(TRO)を前記混合部の近傍に設けた全残留酸化性物質濃度計測手段により測定し、該全残留酸化性物質濃度計測手段の測定結果に基づいて前記塩素系殺滅剤溶液の供給量を制御することを特徴とするバラスト水処理システムの制御方法を提供する(発明4)。
In addition, the present invention secondly supplies a chlorine-based disinfectant solution for killing aquatic microorganisms in the ballast water from a chemical supply device to a ballast water supply line for supplying the ballast water taken to the ballast tank. And a ballast water treatment system control method for mixing in a mixing section provided in the ballast water supply line, wherein the ballast water supply line is changed from the mixing section to the diameter (d) of the ballast water supply line. On the other hand, ballast water is collected from the tip of the sampling pipe extending to a position separated by 3 times or more on the ballast tank side, and the total residual oxidizing substance concentration (TRO) of the collected ballast water is set near the mixing unit. Measured by the total residual oxidizing substance concentration measuring means provided, and the supply amount of the chlorine-based biocide solution is controlled based on the measurement result of the total residual oxidizing substance concentration measuring means To provide a control method for ballast water treatment system characterized Rukoto (invention 4).
かかる発明(発明4)によれば、次亜塩素酸ナトリウムなどの塩素系殺滅剤をバラスト水供給ラインに供給した場合、その濃度が十分に均質化するためには、混合部の終端からバラスト水供給ラインの直径(d)に対して、3倍以上の長さが必要である。したがって、サンプリング配管の先端をバラスト水供給ラインの直径(d)に対しバラストタンク側に3倍以上離間した位置にまで延在して設けて、このサンプリング配管の先端からバラスト水をサンプリングすれば、バラスト水の塩素系殺滅剤濃度が均質となっているので、このバラスト水中の全残留酸化性物質濃度(TRO)を測定することで、塩素系殺滅剤溶液の添加量を最適に決定することができる。
According to this invention (Invention 4), when a chlorine-based disinfectant such as sodium hypochlorite is supplied to the ballast water supply line, the concentration is sufficiently homogenized from the end of the mixing section. The length (d) of the water supply line must be at least 3 times longer. Therefore, if the tip of the sampling pipe is provided to extend to a position spaced three times or more on the ballast tank side with respect to the diameter (d) of the ballast water supply line, and the ballast water is sampled from the tip of the sampling pipe, Since the concentration of chlorinated biocide in ballast water is uniform, the amount of chlorinated biocide solution added can be determined optimally by measuring the total residual oxidizing substance concentration (TRO) in this ballast water. be able to.
上記発明(発明4)においては、前記薬液供給装置が前記バラスト水の排出時の中和剤を添加可能となっているのが好ましい(発明5)。
In the above invention (Invention 4), it is preferable that the chemical supply device can add a neutralizing agent when discharging the ballast water (Invention 5).
かかる発明(発明5)によれば、排出する際のバラスト水をサンプリング配管から採取して全残留酸化性物質濃度(TRO)を計測することで、中和剤の添加量を最適に決定することができる。
According to this invention (invention 5), the amount of neutralizing agent added is optimally determined by collecting the ballast water when discharging from the sampling pipe and measuring the total residual oxidizing substance concentration (TRO). Can do.
本発明のバラスト水の制御装置によれば、サンプリング配管を前記バラスト水供給ライン内に前記混合部から該バラスト水供給ラインの直径(d)に対しバラストタンク側に3倍以上離間した位置にまで延在して設置しているので、バラスト水の塩素系殺滅剤濃度が均質となっている箇所でバラスト水をサンプリングすることができ、これにより塩素系殺滅剤の添加量を最適に決定することができる。さらに、しかも、薬液供給装置と混合部とは近接しているので、前記混合部の近傍にサンプリング配管を設けることにより、バラスト水供給ラインの一か所を施工するだけでよい。
According to the ballast water control device of the present invention, the sampling pipe is located in the ballast water supply line from the mixing portion to a position spaced three times or more on the ballast tank side with respect to the diameter (d) of the ballast water supply line. Since it is extended, ballast water can be sampled at locations where the concentration of chlorinated biocide in the ballast water is uniform. can do. Furthermore, since the chemical solution supply device and the mixing unit are close to each other, it is only necessary to construct one part of the ballast water supply line by providing a sampling pipe in the vicinity of the mixing unit.
以下、本発明のバラスト水の制御装置及び制御方法について、一実施形態に基づき詳細に説明する。
Hereinafter, the control device and control method for ballast water of the present invention will be described in detail based on one embodiment.
図1は本発明の一実施形態によるバラスト水の制御装置を示しており、図1において、1は取水口から取り入れたバラスト水をバラストタンク(図示せず)に供給するための管状のバラスト水供給ラインであり、このバラスト水供給ライン1の途中には薬液供給装置2が薬液供給ライン3を介して接続されている。また、バラスト水供給ライン1内の薬液供給ライン3の接続箇所に始端4Aが位置するように静的混合デバイスなどの混合部4が設けられている。一方、混合部4の終端4B側には、全残留酸化性物質濃度計測手段たるTRO計5がサンプリング配管6を介して接続されていて、このサンプリング配管6はバラスト水供給ライン1内をバラストタンク側に延在している。この結果、薬液供給装置2とTRO計5とは近接することになる。なお、7は薬液供給装置からの薬液供給ポンプであり、8は流量調整弁であり、9はサンプリング配管6の吸入ポンプである。また、TRO計5としては、DPD吸光度法を用いた市販の高精度TRO計を用いることができる。
FIG. 1 shows a control apparatus for ballast water according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a tubular ballast water for supplying ballast water taken from a water intake port to a ballast tank (not shown). A chemical liquid supply device 2 is connected to the ballast water supply line 1 via a chemical liquid supply line 3. In addition, a mixing unit 4 such as a static mixing device is provided so that the start end 4A is located at a connection location of the chemical solution supply line 3 in the ballast water supply line 1. On the other hand, a TRO meter 5 as a total residual oxidant concentration measuring means is connected to the end 4B side of the mixing unit 4 via a sampling pipe 6, and this sampling pipe 6 is connected to the ballast water supply line 1 in the ballast tank. Extends to the side. As a result, the chemical solution supply device 2 and the TRO meter 5 are close to each other. Reference numeral 7 denotes a chemical supply pump from the chemical supply apparatus, 8 denotes a flow rate adjusting valve, and 9 denotes a suction pump of the sampling pipe 6. In addition, as the TRO meter 5, a commercially available high-precision TRO meter using the DPD absorbance method can be used.
このバラスト水制御装置において、TRO計5はその計測結果をマイクロコンピュータなどの制御機構10に送信可能となっており、この制御機構10はTRO計5の計測値に基づいて薬液供給ポンプ7及び流量調整弁8を制御可能となっている。そして、本実施形態においては、制御機構10は薬液供給装置2にも接続しており、この薬液供給装置2は塩素系殺滅剤タンク2Aと中和剤タンク2Bとを備えていて、バラスト水の給水時には塩素系殺滅剤タンク2Aから塩素系殺滅剤を供給するとともに、バラスト水の排出時には中和剤タンク2Bから中和剤を供給することができるように両タンク2A、2Bを切り替え可能となっている。
In this ballast water control device, the TRO meter 5 can transmit the measurement result to a control mechanism 10 such as a microcomputer, and the control mechanism 10 can control the chemical solution supply pump 7 and the flow rate based on the measured value of the TRO meter 5. The regulating valve 8 can be controlled. In the present embodiment, the control mechanism 10 is also connected to the chemical solution supply device 2, and this chemical solution supply device 2 is provided with a chlorine-based disinfectant tank 2A and a neutralizer tank 2B, and ballast water. The two tanks 2A and 2B are switched so that a chlorine-based disinfectant can be supplied from the chlorine-based disinfectant tank 2A when supplying water and a neutralizing agent can be supplied from the neutralizing tank 2B when discharging ballast water. It is possible.
上述したような装置において、混合部4としては特に制限はなく、スタテックミキサー、オリフィスなど汎用の静的混合デバイスを用いることができる。この混合部4の終端が後述するサンプリング配管6の延設起点となる。
In the apparatus as described above, the mixing unit 4 is not particularly limited, and a general-purpose static mixing device such as a static mixer or an orifice can be used. The terminal end of the mixing unit 4 becomes an extension starting point of a sampling pipe 6 to be described later.
塩素系殺滅剤タンク2Aに貯留する塩素系殺滅剤としては、次亜塩素酸(塩)、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩などの塩素化イソシアヌール酸、過酸化水素、二酸化塩素から選ばれた1種または2種以上を溶液として用いることができ、特に次亜塩素酸(塩)が好ましい。
Chlorine-based disinfectants stored in the chlorine-based disinfectant tank 2A include chlorinated isocyanuric acids such as hypochlorous acid (salt), dichloroisocyanurate and trichloroisocyanurate, hydrogen peroxide, and chlorine dioxide. One or two or more selected ones can be used as a solution, and hypochlorous acid (salt) is particularly preferable.
また、中和剤タンク2Bに貯留する中和剤としては、亜硫酸ナトリウム、重亜硫酸ナトリウム(亜硫酸水素ナトリウム)、チオ硫酸ナトリウムなどを溶液として用いることができる。
As the neutralizing agent stored in the neutralizing agent tank 2B, sodium sulfite, sodium bisulfite (sodium hydrogen sulfite), sodium thiosulfate, or the like can be used as a solution.
そして、本実施形態においては、サンプリング配管6は混合部4の終端4Bからバラスト水供給ライン1の直径(d)の3倍以上、好ましくは4~6倍、特に約5倍程度バラストタンク側に延在させる。サンプリング配管6の延在する長さ(終端4Bからのサンプリング配管6の先端の位置)が直径(d)の3倍未満では、薬液供給装置2から供給した塩素系殺滅剤がバラスト水中に均質に分散しきれず濃度分布が偏在化するため、バラスト水中の塩素系殺滅剤濃度の測定精度が低くなり、塩素系殺滅剤の添加量の制御が好適でなくなる。なお、サンプリング配管6の延在する長さ(終端4Bからのサンプリング配管6の先端の位置)の上限については特に制限はないが、あまり長くしてもそれに見合う精度の向上が得られないばかりか、設置が困難となることから直径(d)の10倍以下程度とすればよい。
In this embodiment, the sampling pipe 6 extends from the end 4B of the mixing unit 4 to the ballast tank side at least 3 times the diameter (d) of the ballast water supply line 1, preferably 4 to 6 times, particularly about 5 times. Extend. When the length of the sampling pipe 6 (the position of the tip of the sampling pipe 6 from the end 4B) is less than three times the diameter (d), the chlorine-based killing agent supplied from the chemical supply device 2 is homogeneous in the ballast water. Since the concentration distribution is unevenly distributed, the measurement accuracy of the chlorine-based killing agent concentration in the ballast water is lowered, and the control of the addition amount of the chlorine-based killing agent is not suitable. The upper limit of the length of the sampling pipe 6 (the position of the tip of the sampling pipe 6 from the end 4B) is not particularly limited. However, even if the length is too long, the accuracy corresponding to the upper limit cannot be obtained. Since the installation becomes difficult, the diameter may be about 10 times the diameter (d) or less.
また、サンプリング配管6の直径(d1)は、バラスト水供給ライン1の直径(d)の1/5以下、特に1/8以下であるのが好ましい。バラスト水供給ライン1の直径(d)の1/5以下とすることにより、バラスト水供給ライン1の面積に対しサンプリング配管6の面積が十分に小さくなるので、バラスト水の流通に支障をきたすことがない。サンプリング配管6の直径の下限については、取水性の観点から6A(Aは配管のJIS規格の呼び径)以上とすればよい。
The diameter (d1) of the sampling pipe 6 is preferably 1/5 or less, particularly preferably 1/8 or less, of the diameter (d) of the ballast water supply line 1. By setting the ballast water supply line 1 to 1/5 or less of the diameter (d) of the ballast water supply line 1, the area of the sampling pipe 6 is sufficiently small relative to the area of the ballast water supply line 1. There is no. The lower limit of the diameter of the sampling pipe 6 may be 6A (A is the nominal diameter of the pipe JIS standard) or more from the viewpoint of water intake.
具体的には、バラスト水供給ライン1の直径(d)はバラスト水量により異なるが、例えばバラスト水供給ライン1の直径(d)が200Aのバラスト水供給ライン1の場合、サンプリング配管6の直径(d1)を25Aとすることにより、バラスト水供給ライン1の面積に対しサンプリング配管6の面積を1.6%程度とすることができるので、バラスト水の流通に対する影響をほとんど無視することができる。
Specifically, the diameter (d) of the ballast water supply line 1 varies depending on the amount of ballast water. For example, in the case of the ballast water supply line 1 having a ballast water supply line 1 having a diameter (d) of 200 A, the diameter ( By setting d1) to 25A, the area of the sampling pipe 6 can be about 1.6% with respect to the area of the ballast water supply line 1, so that the influence on the circulation of the ballast water can be almost ignored.
従来のバラスト水の制御装置では、バラスト水供給ライン1に薬液供給装置2からある程度離れた位置に別途サンプリング箇所を設け、このサンプリング箇所の近傍にTRO計5を設置するため、バラスト水供給ライン1の広い範囲を施工する必要があるが、上述したような本実施形態のバラスト水の制御装置によれば、施工個所が一か所で済むのでバラスト水供給ライン1施工範囲を大幅に削減することができて経済的である。具体的には、バラスト水量3000m3/hrの場合であって、バラスト水供給ライン1の径(d)が500Aでサンプリング箇所をバラスト水供給ライン1の径(d)に対して5倍離間した位置としたときには、従来の装置ではバラスト水供給ライン1の2500mm(500A×5)の範囲を施工する必要があるが、本実施形態では1か所で済むため施工範囲自体を約2500mm少なくすることができる。
In the conventional ballast water control device, the ballast water supply line 1 is provided with a separate sampling location at a position somewhat away from the chemical solution supply device 2 and the TRO meter 5 is installed in the vicinity of this sampling location. However, according to the control device for ballast water of the present embodiment as described above, since only one construction site is required, the construction range of the ballast water supply line 1 should be greatly reduced. Is economical. Specifically, in the case of a ballast water amount of 3000 m 3 / hr, the diameter (d) of the ballast water supply line 1 is 500 A, and the sampling point is separated from the diameter (d) of the ballast water supply line 1 by 5 times. In the case of the position, it is necessary to construct the 2500 mm (500 A × 5) range of the ballast water supply line 1 in the conventional apparatus, but in this embodiment, since only one place is required, the construction range itself should be reduced by about 2500 mm. Can do.
次に上記バラスト水の制御装置を用いて、バラスト水の積込み時に細菌類やプランクトンの殺滅処理を行う際のバラスト水の制御方法について説明する。
Next, a control method for ballast water when killing bacteria and plankton when the ballast water is loaded using the above-described ballast water control device will be described.
まず、バラスト水Wの積込み時には、取水したバラスト水Wを、バラスト水供給ライン1を経由してバラストタンク(図示せず)に供給する。このとき塩素系殺滅剤タンク2Aには、あらかじめ十分な量の塩素系殺滅剤を貯留しておく。
First, when the ballast water W is loaded, the taken ballast water W is supplied to a ballast tank (not shown) via the ballast water supply line 1. At this time, a sufficient amount of the chlorine-based disinfectant is stored in advance in the chlorine-based disinfectant tank 2A.
そして、薬液供給ポンプ7を駆動するとともに、流量調整弁8を開成してバラスト水Wに塩素系殺滅剤を添加する。この塩素系殺滅剤は、混合部4の始端4Aから終端4Bにかけて混合され吐出されるが、終端4Bから吐出された直後では、まだ塩素系殺滅剤が十分に拡散しておらずその濃度が偏在化しており、バラスト水供給ライン1を流れるにしたがって濃度が均質化する。十分に均質化するにはバラスト水供給ライン1の直径(d)の3倍の長さが少なくとも必要である。
Then, the chemical solution supply pump 7 is driven, and the flow rate adjustment valve 8 is opened to add a chlorine-based killing agent to the ballast water W. The chlorine-based disinfectant is mixed and discharged from the starting end 4A to the end 4B of the mixing unit 4, but immediately after being discharged from the end 4B, the chlorine-based disinfectant is not yet sufficiently diffused and its concentration. Is unevenly distributed, and the concentration becomes uniform as it flows through the ballast water supply line 1. At least three times the diameter (d) of the ballast water supply line 1 is necessary for sufficient homogenization.
続いて本実施形態においては、バラスト水供給ライン1の直径(d)のサンプリング配管6の先端からバラスト水Wを採取し、TRO計5により全残留酸化性物質濃度を測定する。なお、全残留酸化性物質濃度とは、TRO(Total Residual Oxidants)のことであり、塩素系殺滅剤の添加による酸化性塩素濃度、及びこの酸化性塩素との反応により生じる他の酸化性成分が含まれる。
Subsequently, in this embodiment, the ballast water W is collected from the tip of the sampling pipe 6 having the diameter (d) of the ballast water supply line 1 and the total residual oxidizing substance concentration is measured by the TRO meter 5. The total residual oxidizing substance concentration is TRO (Total Residual Oxidants), and the oxidizing chlorine concentration by adding a chlorine-based killing agent and other oxidizing components generated by reaction with this oxidizing chlorine. Is included.
このTRO計5で計測されたTRO値は、制御機構10に伝達され記憶される。そして、このTRO値に基づき、TRO値が所定の基準値より低い時には塩素系殺滅剤の添加量を増やす一方、所定の基準値より高い時には塩素系殺滅剤の添加量を減らすように薬液供給ポンプ7及び流量調整弁8を制御する。この制御は例えば、あらかじめ測定しておいた塩素系殺滅剤の減衰データ等に基づいて適正TRO値を設定しておき、該TRO値が所定の範囲内となるようにPID制御などの周知の方法により塩素系殺滅剤の添加量を調整すればよい。
The TRO value measured by the TRO meter 5 is transmitted to and stored in the control mechanism 10. And based on this TRO value, when the TRO value is lower than the predetermined reference value, the addition amount of the chlorine-based killing agent is increased, and when it is higher than the predetermined reference value, the addition amount of the chlorine-based killing agent is decreased. The supply pump 7 and the flow rate adjustment valve 8 are controlled. For this control, for example, an appropriate TRO value is set on the basis of previously measured attenuation data of a chlorine-based killing agent, and a well-known PID control or the like is set so that the TRO value falls within a predetermined range. What is necessary is just to adjust the addition amount of a chlorine-type killing agent by a method.
具体的には、塩素系殺滅剤の添加量は、前記バラスト水の中和後の全残留酸化性物質濃度(TRO)が、例えば0.5~20mg/L(asCl2)の基準値となるように船舶の運航日程等に応じて設定する。TRO値が0.5mg/L未満では、有害なプランク、バクテリア等を基準値以下にするのが困難となるか、あるいはバクテリア等の再増殖やプランクトンの卵の孵化を招いたりする。一方、20mg/Lを超えても、それ以上の有害なプランク、バクテリア等の殺滅効果が得られないばかりか、中和に必要な中和剤の量が多くなるか、あるいは排出時の環境負荷が増大するため好ましくない。
Specifically, the addition amount of the chlorine-based killing agent is such that the total residual oxidizing substance concentration (TRO) after neutralization of the ballast water is, for example, a reference value of 0.5 to 20 mg / L (asCl 2 ). It will be set according to the ship's schedule. If the TRO value is less than 0.5 mg / L, it will be difficult to bring harmful plank, bacteria, etc. below the reference value, or reproliferation of bacteria, etc. and hatching of plankton eggs will occur. On the other hand, even if it exceeds 20 mg / L, not only a more effective killing effect of harmful plank, bacteria, etc. is obtained, but the amount of neutralizing agent required for neutralization increases or the environment during discharge Since load increases, it is not preferable.
この際、本実施形態においては、前述したようにサンプリング配管6が混合部4の終端4Bからバラスト水供給ライン1の直径(d)の3倍以上離間させることによりTRO値を精度よく計測することができるので、TRO値の基準値の制御も正確となり、例えば基準値の±10%以内に維持することができる。これにより、塩素系殺滅剤を過不足なく添加することができるので、バラスト水W中のプランクトンや細菌類を確実に殺滅させることができ、かつ安価にIMOが定めるバラスト水基準を満たすバラスト水の処理が実現できる。
At this time, in this embodiment, the TRO value is accurately measured by separating the sampling pipe 6 from the terminal end 4B of the mixing unit 4 at least three times the diameter (d) of the ballast water supply line 1 as described above. Therefore, the control of the reference value of the TRO value becomes accurate, and can be maintained within ± 10% of the reference value, for example. As a result, the chlorine-based disinfectant can be added without excess or deficiency, so that plankton and bacteria in the ballast water W can be surely killed, and the ballast that meets the ballast water standard set by IMO at low cost. Water treatment can be realized.
次にバラスト水Wを排出する際には、バラストタンク(図示せず)からバラスト水供給ライン1を経由して外部環境に放出する。このとき、中和剤タンク2Bには、あらかじめ十分な量の中和剤を貯留しておく。続いて薬液供給ポンプ7を駆動するとともに、流量調整弁8を開成して、バラスト水Wに中和剤を添加して、残留塩素濃度を目標残留塩素濃度にまで低減する。
Next, when the ballast water W is discharged, it is discharged from the ballast tank (not shown) via the ballast water supply line 1 to the external environment. At this time, a sufficient amount of neutralizing agent is stored in advance in the neutralizing agent tank 2B. Subsequently, while the chemical solution supply pump 7 is driven, the flow rate adjustment valve 8 is opened, and a neutralizing agent is added to the ballast water W to reduce the residual chlorine concentration to the target residual chlorine concentration.
このとき本実施形態においてはサンプリング配管6の先端からバラスト水Wを採取し、TRO計5により全残留酸化性物質濃度を測定する。このTRO計5で計測されたTRO値は、制御機構10に伝達され記憶される。そして、このTRO値に基づき、TRO値0.2mg/L(asCl2)を基準値として、この基準値より高い時には中和剤の添加量を増やす一方、基準値より大幅に低い時には中和剤の添加量を減らすように薬液供給ポンプ7及び流量調整弁8を制御する。
At this time, in this embodiment, the ballast water W is collected from the tip of the sampling pipe 6 and the total residual oxidizing substance concentration is measured by the TRO meter 5. The TRO value measured by the TRO meter 5 is transmitted to and stored in the control mechanism 10. Based on the TRO value, the TRO value of 0.2 mg / L (asCl 2 ) is used as a reference value. When the TRO value is higher than the reference value, the addition amount of the neutralizing agent is increased. The chemical solution supply pump 7 and the flow rate adjustment valve 8 are controlled so as to reduce the amount of addition of.
このようにしてTRO値に基づき制御することにより、中和剤を過不足なく添加することができ、バラスト水W中の残留塩素濃度を目標残留塩素濃度以下にまで低減して外部環境に排出することができる。
By controlling based on the TRO value in this way, the neutralizing agent can be added without excess and deficiency, and the residual chlorine concentration in the ballast water W is reduced below the target residual chlorine concentration and discharged to the external environment. be able to.
以上、本発明について添付図面を参照して説明してきたが、本発明は前記実施形態に限定されず、種々の変形実施が可能である。例えば、サンプリング配管6は、バラスト水供給ライン1の内壁面に沿って設けるのが好ましいが、バラスト水の流通を阻害しなければ種々の位置に設置可能である。また、全残留酸化性物質濃度計測手段は、DPD吸光度法を用いたTRO計を用いて測定することに限定されるものではなく、同様の測定値が得られるものであれば、種々の測定手段が適用可能である。
The present invention has been described above with reference to the accompanying drawings. However, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the sampling pipe 6 is preferably provided along the inner wall surface of the ballast water supply line 1, but can be installed at various positions as long as it does not hinder the flow of the ballast water. Further, the total residual oxidant concentration measuring means is not limited to the measurement using a TRO meter using the DPD absorbance method, and various measuring means can be used as long as the same measurement value can be obtained. Is applicable.
以下の具体的実施例により、本発明をさらに詳細に説明する。
〔実施例1〕
図1に示す装置において、バラスト水供給ライン1の径(d)200A、サンプリング配管6の径(d1)20A、混合部4としてオリフィスを用い、このオリフィスの終端から1000mm(≒5×(d))の長さバラストタンク側にサンプリング配管6を延設した装置を用いて、バラスト水Wをバラストタンクに充填した。この際バラストWのTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1に示す。 The following specific examples further illustrate the present invention.
[Example 1]
In the apparatus shown in FIG. 1, the diameter (d) 200A of the ballastwater supply line 1, the diameter (d1) 20A of the sampling pipe 6, and an orifice as the mixing unit 4 are 1000 mm (≈5 × (d) from the end of the orifice. The ballast water W was filled in the ballast tank using a device in which the sampling pipe 6 was extended on the ballast tank side. At this time, the control mechanism 10 controlled the ballast W so that the measured value of the TRO meter 5 was 15.0 mg / L (asCl 2 ). Table 1 shows the maximum value, minimum value, average value, and maximum error (| maximum value or minimum value−average value | / average value × 100) (%) of the measured values of the TRO meter 5 during this period.
〔実施例1〕
図1に示す装置において、バラスト水供給ライン1の径(d)200A、サンプリング配管6の径(d1)20A、混合部4としてオリフィスを用い、このオリフィスの終端から1000mm(≒5×(d))の長さバラストタンク側にサンプリング配管6を延設した装置を用いて、バラスト水Wをバラストタンクに充填した。この際バラストWのTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1に示す。 The following specific examples further illustrate the present invention.
[Example 1]
In the apparatus shown in FIG. 1, the diameter (d) 200A of the ballast
〔比較例1〕
図2に示すようにバラスト水供給ライン1の径(d)200Aで1000mm(≒5×(d))の位置にサンプリング部6AとTRO計5を設置した装置を用いて、バラスト水Wをバラストタンクに充填した。この際バラストWのTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1にあわせて示す。 [Comparative Example 1]
As shown in FIG. 2, the ballast water W is ballasted using a device in which thesampling unit 6A and the TRO meter 5 are installed at a position of 1000 mm (≈5 × (d)) with a diameter (d) 200A of the ballast water supply line 1. Filled the tank. At this time, the control mechanism 10 controlled the ballast W so that the measured value of the TRO meter 5 was 15.0 mg / L (asCl 2 ). Table 1 shows the maximum value, minimum value, average value, and maximum error (| maximum value or minimum value−average value | / average value × 100) (%) of the measured values of the TRO meter 5 during this period.
図2に示すようにバラスト水供給ライン1の径(d)200Aで1000mm(≒5×(d))の位置にサンプリング部6AとTRO計5を設置した装置を用いて、バラスト水Wをバラストタンクに充填した。この際バラストWのTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1にあわせて示す。 [Comparative Example 1]
As shown in FIG. 2, the ballast water W is ballasted using a device in which the
〔比較例2〕
実施例1において、バラスト水供給ライン1へのサンプリング配管6の接続箇所(混合部4の終端部4B)からバラスト水をサンプリングして、同様にTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1にあわせて示す。 [Comparative Example 2]
In Example 1, the ballast water is sampled from the connection point of thesampling pipe 6 to the ballast water supply line 1 (the terminal end 4B of the mixing unit 4), and the measured value of the TRO meter 5 is similarly 15.0 mg / L ( asCl 2 ). Table 1 shows the maximum value, minimum value, average value, and maximum error (| maximum value or minimum value−average value | / average value × 100) (%) of the measured values of the TRO meter 5 during this period.
実施例1において、バラスト水供給ライン1へのサンプリング配管6の接続箇所(混合部4の終端部4B)からバラスト水をサンプリングして、同様にTRO計5の測定値が15.0mg/L(asCl2)となるように制御機構10により制御した。この間のTRO計5の測定値の最大値、最小値、平均値及び最大誤差(|最大値又は最小値-平均値|/平均値×100)(%)を表1にあわせて示す。 [Comparative Example 2]
In Example 1, the ballast water is sampled from the connection point of the
表1から明らかなとおり、実施例1のバラスト水の制御装置では、従来例である比較例1と比べて最大誤差が同等以下であり、TRO計5の平均値が15.0mg/L(asCl2)以上であり、かつ設定値に対して±10%以内で推移しており確実に制御できていることがわかる。これに対し、混合部4の終端部4Bでバラスト水をサンプリングした比較例2では、最大誤差が100%以上であり、平均値も15.0mg/L‐Cl2から大幅に逸脱しており、制御できていないことがわかる。
As is apparent from Table 1, in the ballast water control device of Example 1, the maximum error is equal to or less than that of Comparative Example 1 as a conventional example, and the average value of TRO meter 5 is 15.0 mg / L (asCl 2 ) or more, and within ± 10% of the set value, it can be seen that control can be performed reliably. On the other hand, in Comparative Example 2 in which the ballast water was sampled at the terminal portion 4B of the mixing unit 4, the maximum error was 100% or more, and the average value also deviated significantly from 15.0 mg / L-Cl 2 . It turns out that it is not controlled.
本発明のバラスト水の制御装置により、バラスト水供給ラインの一か所を施工するだけで、塩素系殺滅剤の添加量を最適に決定することができるので、既存の船舶に設置する際の経済性が向上し、結果的にバラスト水の制御装置の普及が容易となる。
With the ballast water control device of the present invention, it is possible to optimally determine the addition amount of the chlorine-based killing agent by constructing only one place of the ballast water supply line. Economic efficiency improves, and as a result, the spread of the ballast water control device becomes easy.
1…バラスト水供給ライン
2…薬液供給装置
2A…塩素系殺滅剤タンク
2B…中和剤タンク
3…薬液供給ライン
4…混合部
4A…始端
4B…終端
5…TRO計(全残留酸化性物質濃度計測手段)
6…サンプリング配管
7…薬液供給ポンプ
8…流量調整弁
9…吸入ポンプ
10…制御機構
W…バラスト水
d…バラスト水供給ラインの径
d1…サンプリング配管の径 DESCRIPTION OFSYMBOLS 1 ... Ballast water supply line 2 ... Chemical liquid supply apparatus 2A ... Chlorine-type killing agent tank 2B ... Neutralizer tank 3 ... Chemical liquid supply line 4 ... Mixing part 4A ... Start end 4B ... End 5 ... TRO meter (total residual oxidizing substance) Concentration measuring means)
6 ...Sampling pipe 7 ... Chemical supply pump 8 ... Flow rate adjusting valve 9 ... Suction pump 10 ... Control mechanism W ... Ballast water d ... Ballast water supply line diameter d1 ... Sampling pipe diameter
2…薬液供給装置
2A…塩素系殺滅剤タンク
2B…中和剤タンク
3…薬液供給ライン
4…混合部
4A…始端
4B…終端
5…TRO計(全残留酸化性物質濃度計測手段)
6…サンプリング配管
7…薬液供給ポンプ
8…流量調整弁
9…吸入ポンプ
10…制御機構
W…バラスト水
d…バラスト水供給ラインの径
d1…サンプリング配管の径 DESCRIPTION OF
6 ...
Claims (5)
- 取水されたバラスト水をバラストタンクに供給するためのバラスト水供給ラインと、前記バラスト水中の水生微生物を殺滅処理するための塩素系殺滅剤溶液を前記バラスト水供給ラインに供給する薬液供給装置と、前記バラスト水供給ライン内に設けられた前記塩素系殺滅剤溶液の混合部とを備えるバラスト水処理システムにおいて、
前記バラスト水供給ライン内に前記混合部から該バラスト水供給ラインの直径(d)に対しバラストタンク側に3倍以上離間した位置にまで延在してサンプリング配管を設置するとともにこのサンプリング配管に接続して全残留酸化性物質濃度計測手段を設け、
該全残留酸化性物質濃度計測手段の測定結果に基づいて前記薬液供給装置を制御する制御機構を備えた
ことを特徴とするバラスト水の制御装置。 A ballast water supply line for supplying the taken ballast water to the ballast tank, and a chemical solution supply device for supplying a chlorinated biocide solution for killing aquatic microorganisms in the ballast water to the ballast water supply line And a ballast water treatment system comprising a mixing part of the chlorine-based disinfectant solution provided in the ballast water supply line,
A sampling pipe is installed in the ballast water supply line so as to extend from the mixing section to a position at least three times the ballast tank side with respect to the diameter (d) of the ballast water supply line, and connected to the sampling pipe. To provide a means for measuring the total residual oxidizing substance concentration
A control device for controlling ballast water, comprising a control mechanism for controlling the chemical solution supply device based on a measurement result of the total residual oxidant concentration measuring means. - 前記サンプリング配管の径(d1)が前記バラスト水供給ラインの径(d)の1/5以下であることを特徴とする請求項1に記載のバラスト水の制御装置。 The ballast water control device according to claim 1, wherein a diameter (d1) of the sampling pipe is 1/5 or less of a diameter (d) of the ballast water supply line.
- 前記薬液供給装置が前記バラスト水の排出時の中和剤を添加可能となっていることを特徴とする請求項1又は2に記載のバラスト水の制御装置。 3. The ballast water control device according to claim 1, wherein the chemical solution supply device can add a neutralizing agent when discharging the ballast water.
- 取水されたバラスト水をバラストタンクに供給するバラスト水供給ラインに前記バラスト水中の水生微生物を殺滅処理するための塩素系殺滅剤溶液を薬液供給装置から供給して前記バラスト水供給ライン内に設けられた混合部で混合するバラスト水処理システムの制御方法であって、
前記バラスト水供給ライン内を前記混合部から該バラスト水供給ラインの直径(d)に対してバラストタンク側に3倍以上離間した位置にまで延在したサンプリング配管の先端からバラスト水を採取し、
この採取したバラスト水の全残留酸化性物質濃度(TRO)を前記混合部の近傍に設けた全残留酸化性物質濃度計測手段により測定し、
該全残留酸化性物質濃度計測手段の測定結果に基づいて前記塩素系殺滅剤溶液の供給量を制御することを特徴とするバラスト水処理システムの制御方法。 A chlorine-based disinfectant solution for killing aquatic microorganisms in the ballast water is supplied from a chemical supply device to the ballast water supply line that supplies the taken ballast water to the ballast tank, and the ballast water supply line enters the ballast water supply line. A control method of a ballast water treatment system for mixing in a provided mixing unit,
The ballast water is collected from the tip of a sampling pipe that extends from the mixing section to a position spaced three times or more on the ballast tank side with respect to the diameter (d) of the ballast water supply line in the ballast water supply line,
The total residual oxidizing substance concentration (TRO) of the collected ballast water is measured by a total residual oxidizing substance concentration measuring means provided in the vicinity of the mixing unit,
A control method for a ballast water treatment system, wherein a supply amount of the chlorine-based disinfectant solution is controlled based on a measurement result of the total residual oxidizing substance concentration measuring means. - 前記薬液供給装置が前記バラスト水の排出時の中和剤を添加可能となっていることを特徴とする請求項4に記載のバラスト水処理システムの制御方法。 The method for controlling a ballast water treatment system according to claim 4, wherein the chemical solution supply device can add a neutralizing agent when discharging the ballast water.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-252682 | 2015-12-24 | ||
JP2015252682A JP6686424B2 (en) | 2015-12-24 | 2015-12-24 | Ballast water control device and ballast water treatment system control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017110154A1 true WO2017110154A1 (en) | 2017-06-29 |
Family
ID=59090000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075761 WO2017110154A1 (en) | 2015-12-24 | 2016-09-02 | Ballast water control device and method for controlling ballast water treatment system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6686424B2 (en) |
WO (1) | WO2017110154A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3597606A4 (en) * | 2017-03-16 | 2021-01-20 | JFE Engineering Corporation | Ballast water treatment device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0630768U (en) * | 1992-09-29 | 1994-04-22 | 株式会社クボタ | Water quality measuring device |
JP2004330051A (en) * | 2003-05-06 | 2004-11-25 | Kurita Water Ind Ltd | Hypochlorite injector |
JP2012007969A (en) * | 2010-06-24 | 2012-01-12 | Hokuto Denko Kk | Monitoring method of total residual oxidant (tro) concentration in ballast water |
WO2012053224A1 (en) * | 2010-10-22 | 2012-04-26 | パナソニック株式会社 | Ballast water treatment system and ballast water treatment method |
JP2012217894A (en) * | 2011-04-06 | 2012-11-12 | Kawamoto Densan Kk | Liquid medicine injection device |
JP2013043107A (en) * | 2011-08-23 | 2013-03-04 | Jfe Engineering Corp | Apparatus and method for treating ballast water |
WO2013077496A1 (en) * | 2011-11-22 | 2013-05-30 | 주식회사 파나시아 | Method and device for treating ship ballast water |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012106224A (en) * | 2010-10-22 | 2012-06-07 | Panasonic Corp | Ballast water control method and ballast water treatment system |
-
2015
- 2015-12-24 JP JP2015252682A patent/JP6686424B2/en not_active Expired - Fee Related
-
2016
- 2016-09-02 WO PCT/JP2016/075761 patent/WO2017110154A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0630768U (en) * | 1992-09-29 | 1994-04-22 | 株式会社クボタ | Water quality measuring device |
JP2004330051A (en) * | 2003-05-06 | 2004-11-25 | Kurita Water Ind Ltd | Hypochlorite injector |
JP2012007969A (en) * | 2010-06-24 | 2012-01-12 | Hokuto Denko Kk | Monitoring method of total residual oxidant (tro) concentration in ballast water |
WO2012053224A1 (en) * | 2010-10-22 | 2012-04-26 | パナソニック株式会社 | Ballast water treatment system and ballast water treatment method |
JP2012217894A (en) * | 2011-04-06 | 2012-11-12 | Kawamoto Densan Kk | Liquid medicine injection device |
JP2013043107A (en) * | 2011-08-23 | 2013-03-04 | Jfe Engineering Corp | Apparatus and method for treating ballast water |
WO2013077496A1 (en) * | 2011-11-22 | 2013-05-30 | 주식회사 파나시아 | Method and device for treating ship ballast water |
Also Published As
Publication number | Publication date |
---|---|
JP6686424B2 (en) | 2020-04-22 |
JP2017113710A (en) | 2017-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101715431B (en) | Ballast tank circulation management system | |
KR101640593B1 (en) | Method and system for treating ballast water | |
JP5831327B2 (en) | Remote monitoring device and remote monitoring method for ballast water treatment system | |
KR102387513B1 (en) | Ship Ballast Water Management System | |
CN109231369A (en) | Ballast water treatment plant | |
JP5942373B2 (en) | Ship ballast water treatment system | |
US20140360935A1 (en) | Method and device for treating ballast water | |
WO2017110154A1 (en) | Ballast water control device and method for controlling ballast water treatment system | |
KR102133663B1 (en) | Ballast water treatment device and ballast water treatment method | |
JP5776367B2 (en) | Ship ballast water treatment method | |
JP6338150B2 (en) | Ballast water treatment apparatus and ballast water treatment method | |
JP7329440B2 (en) | Ballast water treatment and neutralization | |
JP6529706B1 (en) | Ballast water treatment method | |
JP2013006173A (en) | Method for treating ship ballast water | |
WO2015075820A1 (en) | Method for controlling ballast water | |
KR101674419B1 (en) | Apparatus for supplying counteragent of ballast water treatmenting system and method of supplying counteragent using the same | |
KR20170041211A (en) | Method for treating ballast water | |
KR101415207B1 (en) | Smart ballast water treatment system using electrolysis opitmumly supplying counteractive and method for controlling the same | |
JP6107077B2 (en) | Ballast water control method | |
JP6191255B2 (en) | Ballast water treatment method | |
KR20170140384A (en) | Ballast water treatment device and ballast water treatment method | |
JP2015166200A (en) | Ballast water processing method | |
KR20190140793A (en) | System for disinfecting drinking water in ship |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16878051 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16878051 Country of ref document: EP Kind code of ref document: A1 |