WO2017108236A1 - Lidar-abtasteinrichtung und lidar-abtasteinrichtungssystem - Google Patents
Lidar-abtasteinrichtung und lidar-abtasteinrichtungssystem Download PDFInfo
- Publication number
- WO2017108236A1 WO2017108236A1 PCT/EP2016/075814 EP2016075814W WO2017108236A1 WO 2017108236 A1 WO2017108236 A1 WO 2017108236A1 EP 2016075814 W EP2016075814 W EP 2016075814W WO 2017108236 A1 WO2017108236 A1 WO 2017108236A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- lidar
- imaging elements
- scanning device
- optical imaging
- Prior art date
Links
- 238000012634 optical imaging Methods 0.000 claims abstract description 33
- 238000003384 imaging method Methods 0.000 claims description 16
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 239000000835 fiber Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/93—Lidar systems specially adapted for specific applications for anti-collision purposes
- G01S17/931—Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4816—Constructional features, e.g. arrangements of optical elements of receivers alone
Definitions
- the invention relates to a lidar scanner.
- the invention relates to a lidar scanning device for use on a motor vehicle.
- a lidar scanner includes a light source and a light detector.
- the light source emits light within a predetermined observation area and the light detector receives emitted light that has been reflected on an object in the observation area.
- the detected reflected light for example, an extent and / or a distance of the object can be determined.
- observation areas For different purposes different observation areas are beneficial. For example, if the motor vehicle is traveling on a motorway, a motor vehicle traveling in front can be detected in an observation area that has a small opening angle and a long range. On the other hand, if the motor vehicle drives slowly, then a close range can be improved with a large opening angle and a small range.
- an optical imaging element is provided in the beam path between the object and the light detector, which determines the observation area.
- the optical imaging element is fixed so that a lidar scanner is usually dedicated to a purpose or group of similar uses.
- a lidar scanner for use in a motor vehicle includes a light source for emitting light to an object; a light detector for receiving light reflected from the object; and a plurality of optical imaging elements in the beam path between the object and the light detector.
- the same lidar scanner can be used for different purposes. For example, different driver assistance systems on board the motor vehicle can access the lidar scanning device.
- An optical imaging element may comprise a taper optic, a refractive element or a diffractive element.
- a taper optic is usually formed from a large number of photoconductive fibers that image light from an entrance surface on an exit surface. The fibers are preferably monomode and may be tightly bundled to effectively form a solid block.
- a refractive element is based on refraction and may include, for example, a lens or a prism.
- a diffractive element is based on light diffraction and can work, for example, by means of a microstructure. The invention makes it possible to combine identical or different optical imaging elements.
- the optical imaging elements have different observation areas.
- the lidar scanning device can serve different purposes in an improved manner.
- the observation areas differ in an opening angle or a range.
- the observation areas differ in an orientation of their boundaries.
- the observation areas can be relative to their opening angle or their range and / or with respect to their direction, with respect to a Orientation of the motor vehicle, different.
- the variations can be combined with each other so that, for example, a first observation area in the direction of travel is directed forward and has a narrow opening angle, while a second observation area is oriented laterally (lateral) and has a large opening angle.
- an anti-collision assistant and a parking aid can use the lidar scanner with an associated observation area.
- the imaging elements form on different areas of the light detector.
- the observation areas can also be used competitively, ie simultaneously.
- the areas of the light detector on which the imaging elements are located overlap, and preferably a controllable aperture is provided for shading one of the observation areas.
- the diaphragm can be controlled to shade all but one of the observation areas.
- two individually controllable diaphragms or a common diaphragm can be provided.
- the common diaphragm can, in particular, comprise a simple perforated diaphragm which can be displaced so that its hole lies in that beam path whose assigned observation region is to be utilized. As a result, temporally successive different observation areas can be used, which can each utilize the entire light detector.
- an optical bandpass is provided in each of the beam paths of the imaging elements, wherein bandwidths and / or center wavelengths of the bandpasses are different.
- the bandwidth and / or the center wavelength of a bandpass is adapted to an associated observation area.
- an adaptation can take place with respect to an opening angle or a range. The smaller the aperture angle, the smaller the bandwidth of the bandpass filter can be, resulting in an improved Signal to Noise Ratio (SNR).
- SNR Signal to Noise Ratio
- a lidar scanning system includes a light source for emitting light to an object; a light detector for receiving light reflected from the object; and a plurality of optical imaging elements, one of which in the Beam path between the object and the light detector can be arranged.
- the optical imaging element may be selected in response to a scheduled use of the lidar scanner detected by the insertion of the
- Imaging element arises. It is particularly preferred that several optical imaging elements can be arranged in the beam path at the same time, as described in more detail above.
- Observation range of the lidar scanner can be discretely varied by appropriate choice of a matching optical imaging element. In particular, the range can be adjusted discretely within a predetermined opening angle.
- a sensor housing can be improved adapted to an inserted optical imaging element.
- An observation area can be extended by adding a further optical imaging element, in particular a taper optic, a refractive element or a diffractive element.
- a light detector array comprising a plurality of discrete light detectors may be replaced by discrete single detectors. Each individual detector can be assigned an optical imaging element.
- the discrete single detectors may be less expensive and / or more robust.
- the optical imaging elements may be chosen such that the observation areas overlap one another so that a scan may be more robust, for example, to dirt or other disturbances.
- a range may be set by overlapping a plurality of observation areas so that redundant sampling is possible in this particular region of interest (ROI).
- ROI region of interest
- FIG. 2 shows different observation areas of a lidar scanning device according to FIG. 1;
- FIG. 3 illustrates graphs of different bandpasses for use on the lidar scanner of FIG. 1.
- FIG. 1 shows a representation of a lidar scanning device 100, in particular for use on a motor vehicle.
- the scanner 100 includes a
- the scanning device 100 is adapted to optically scan an object 120.
- the light source 105 emits light which can be reflected on the object 120 and thrown onto the light detector 110.
- the light source 105 preferably comprises a laser, the light of which can be guided in an embodiment in a cell shape or in rows and columns over a predetermined range.
- the light detector 110 comprises either a discrete element or a one or two-dimensional array of discrete sensor elements.
- the optical imaging element 15 is disposed in the beam path between the object 120 and the light detector 110 and is configured to focus or to expand the light passing through it in a predetermined manner.
- the optical imaging element 15 may in particular comprise a taper optic, a refractile element, a diffractive element or a combination thereof.
- An observation area 125, from which light can be incident on the light detector 110 by the imaging element 15, is usually determined mainly by the optical properties of the imaging element 15.
- an opening angle 130 or an orientation of a boundary 135 of the opening angle 130 can be defined by the imaging element 15.
- each the imaging element 1 15 be assigned to an observation area 125, wherein the entire observation area 125 of the lidar scanning device 100 may result from the combination of two observation areas 125.
- an aperture 140 and / or a bandpass 145 are provided in the beam path between the object 120 and the light detector 110.
- each imaging element 15 is assigned its own bandpass 145.
- associated diaphragms 140 or a common diaphragm for both imaging elements 15.
- the bezel 140 includes a simple pinhole that is configured to
- one or more irises, along with the pinhole, may represent the aperture 140.
- the observation areas 125 differ with regard to their orientation, their opening angle 130 and / or their range.
- the observation areas 125 may overlap or be disjunctive.
- the orientation of an observation area may be given by an angle of bisector of the opening angle 130 which extends between boundaries 135.
- the observation areas 125 may be different or overlapping one another.
- the observation areas 125 may also be identical to one another or one of the observation areas 125 may be part of the other observation area 125.
- Each optical imaging element 1 15 is configured to image light onto a predetermined, associated detection area 150 of the light detector 110. Irrespective of the relative position of the observation regions 125, the detection regions 150 may overlap one another, be identical to one another, be disjoint, or one detection region 150 may form part of the other detection region 150. In one embodiment, both detection areas 150 lie on the same light detector 110, in another embodiment two discrete light detectors 110 are provided, each of which has its own detection area 150. Due to the various possibilities of matching the observation areas 125 and the detection areas 150, a large number of different embodiments with otherwise identical components can be brought about by selecting respectively suitable optical imaging elements 15.
- a lidar scanner system 160 includes a plurality of optical imaging elements 15, of which at least one, but preferably at least two, are used to form the lidar scanner 100 described above. With the aid of the system 160, a lidar scanning device 100 can be constructed in the manner of a construction kit, which can be specifically adapted to several different purposes. In a further embodiment, three or more optical imaging elements 15 are provided in the lidar scanner 100, the above explanations applying mutatis mutandis.
- FIG. 2 shows different exemplary observation regions 125 of a lidar scanning device 100 according to FIG. 1.
- a top view shows a top view and a bottom view a side view of the observation regions 125.
- a first observation area 125.1 which is assigned to a first optical imaging element 15.1, has a small first opening angle 130.1. The range is relatively large and the first observation area 125.1 is oriented horizontally and vertically symmetrically to a direction of travel 205.
- a second observation area 125.2 is assigned to a second optical imaging element 15.2.
- a second opening angle 130.2 is smaller than the first opening angle 130.1 and the orientation of the second observation area 125.2 includes an angle with the direction of travel 205 in the horizontal direction, while the second observation area 125.2 runs in the vertical direction parallel to the direction of travel 205.
- a third observation area 125.3 is assigned to a third optical imaging element 15.3.
- An associated third opening angle 130.3 is greater than the second opening angle 130.2 and a horizontal orientation of the third
- Observation area 125.3 includes a larger angle in the horizontal direction with the direction of travel 205 than the second observation area 125.2. In the vertical direction, the third observation area 125.3 is aligned parallel to the direction of travel 205.
- the imaging elements 1 15.1, 1 15.2 and 1 15.3 can be used simultaneously or successively to scan the observation areas 125.1, 125.2 or 125.3.
- all imaging elements 15 are each part of the same lidar scanning device 100, so that 100 different scans can be made by means of the same scanning device.
- FIG. 3 shows diagrams of different bandpasses 145 for use on the lidar scanner 100 of FIG.
- a first diagram 305 is shown in the upper area and a second diagram 310 in the lower area.
- the first diagram 305 is associated with a first bandpass 145 associated with a first observation region 125
- the second diagram 310 is associated with a second bandpass 145 associated with a second observation region 125 (see Figure 1).
- the bandpass 145 may be embodied integrated in one embodiment with the respective associated optical imaging elements 1 15.
- a first transmission curve 315 is entered by a solid line, and a second transmission curve 320 is shown by a broken line and an envelope curve 325 in each case.
- the first transmission curve 315 respectively indicates the light passing through the band-pass 145 when it is incident from the direction of the bisector of the opening angle 130.
- the second transmission curve 320 analogously designates the light passing through the bandpass 145 from a direction near one of the boundaries 135.
- the envelope 325 denotes the respective passband of the two bandpasses 145.
- the envelope 325 of the bandpass 145 can be selected as a function of the opening angle 130 of the respective associated observation area 125.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680075115.4A CN108474850B (zh) | 2015-12-22 | 2016-10-26 | 激光雷达扫描装置和激光雷达扫描装置系统 |
EP16785537.8A EP3394637A1 (de) | 2015-12-22 | 2016-10-26 | Lidar-abtasteinrichtung und lidar-abtasteinrichtungssystem |
KR1020187020471A KR20180095659A (ko) | 2015-12-22 | 2016-10-26 | 라이다 스캐닝 장치 및 라이다 스캐닝 장치 시스템 |
US16/064,569 US11002834B2 (en) | 2015-12-22 | 2016-10-26 | Lidar scanning device and lidar scanning device system |
JP2018532775A JP6805254B2 (ja) | 2015-12-22 | 2016-10-26 | Lidar式走査装置およびlidar式走査システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102015226460.2A DE102015226460A1 (de) | 2015-12-22 | 2015-12-22 | LIDAR-Abtasteinrichtung und LIDAR-Abtasteinrichtungssystem |
DE102015226460.2 | 2015-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017108236A1 true WO2017108236A1 (de) | 2017-06-29 |
Family
ID=57200041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2016/075814 WO2017108236A1 (de) | 2015-12-22 | 2016-10-26 | Lidar-abtasteinrichtung und lidar-abtasteinrichtungssystem |
Country Status (7)
Country | Link |
---|---|
US (1) | US11002834B2 (de) |
EP (1) | EP3394637A1 (de) |
JP (1) | JP6805254B2 (de) |
KR (1) | KR20180095659A (de) |
CN (1) | CN108474850B (de) |
DE (1) | DE102015226460A1 (de) |
WO (1) | WO2017108236A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12123950B2 (en) | 2016-02-15 | 2024-10-22 | Red Creamery, LLC | Hybrid LADAR with co-planar scanning and imaging field-of-view |
DE102017116598A1 (de) * | 2017-07-24 | 2019-01-24 | Valeo Schalter Und Sensoren Gmbh | Sendevorrichtung für ein abtastendes optisches Detektionssystem eines Fahrzeugs, Detektionssystem, Fahrerassistenzsystem und Verfahren zum optischen Abtasten eines Überwachungsbereichs |
US10551840B2 (en) * | 2018-07-02 | 2020-02-04 | Baidu Usa Llc | Planning driven perception system for autonomous driving vehicles |
DE102018221083A1 (de) * | 2018-12-06 | 2020-06-10 | Robert Bosch Gmbh | LiDAR-System sowie Kraftfahrzeug |
DE102019206480A1 (de) | 2019-05-06 | 2020-11-12 | Audi Ag | Kraftfahrzeug mit einer äußeren Oberfläche und Verfahren zum Betrieb eines Kraftfahrzeugs |
DE102019118029A1 (de) * | 2019-07-04 | 2021-01-07 | Valeo Schalter Und Sensoren Gmbh | Optische Messvorrichtung zur Bestimmung von Objektinformationen von Objekten in wenigstens einem Überwachungsbereich |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
CN110967777B (zh) * | 2019-12-23 | 2022-08-23 | 宁波飞芯电子科技有限公司 | 相干探测接收装置、退相干处理方法、设备及介质 |
EP3933442A1 (de) * | 2020-06-29 | 2022-01-05 | Pepperl+Fuchs AG | Sensor zum dreidimensionalen optischen vermessen eines objekts |
DE102022200642A1 (de) | 2022-01-20 | 2023-07-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Optisches System und LiDAR-System |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253394A (zh) * | 2011-04-21 | 2011-11-23 | 北京理工大学 | 一种多光谱条纹管激光雷达三维成像装置 |
DE102013205589A1 (de) * | 2013-03-28 | 2014-10-02 | Hilti Aktiengesellschaft | Vorrichtung zur optischen Messung einer Distanz zu einem reflektierenden oder streuenden Zielobjekt |
DE102014217209A1 (de) * | 2013-11-27 | 2015-05-28 | Hyundai Mobis Co., Ltd. | Lidar-Sensorsystem |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06242224A (ja) | 1993-02-23 | 1994-09-02 | Sumitomo Electric Ind Ltd | 車載用障害物検知装置 |
JP3962929B2 (ja) | 2004-05-18 | 2007-08-22 | 防衛省技術研究本部長 | レーザ距離画像生成装置及び方法 |
JP2009267314A (ja) | 2008-04-30 | 2009-11-12 | Toyota Central R&D Labs Inc | 受光装置 |
JP2010133828A (ja) | 2008-12-04 | 2010-06-17 | Denso Corp | レーダ装置 |
US8917395B2 (en) * | 2010-04-19 | 2014-12-23 | Florida Atlantic University | MEMS microdisplay optical imaging and sensor systems for underwater scattering environments |
LU91737B1 (en) * | 2010-09-17 | 2012-03-19 | Iee Sarl | Lidar imager |
US8659748B2 (en) * | 2011-02-15 | 2014-02-25 | Optical Air Data Systems, Llc | Scanning non-scanning LIDAR |
-
2015
- 2015-12-22 DE DE102015226460.2A patent/DE102015226460A1/de active Pending
-
2016
- 2016-10-26 CN CN201680075115.4A patent/CN108474850B/zh active Active
- 2016-10-26 US US16/064,569 patent/US11002834B2/en active Active
- 2016-10-26 EP EP16785537.8A patent/EP3394637A1/de not_active Ceased
- 2016-10-26 KR KR1020187020471A patent/KR20180095659A/ko active Search and Examination
- 2016-10-26 JP JP2018532775A patent/JP6805254B2/ja active Active
- 2016-10-26 WO PCT/EP2016/075814 patent/WO2017108236A1/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102253394A (zh) * | 2011-04-21 | 2011-11-23 | 北京理工大学 | 一种多光谱条纹管激光雷达三维成像装置 |
DE102013205589A1 (de) * | 2013-03-28 | 2014-10-02 | Hilti Aktiengesellschaft | Vorrichtung zur optischen Messung einer Distanz zu einem reflektierenden oder streuenden Zielobjekt |
DE102014217209A1 (de) * | 2013-11-27 | 2015-05-28 | Hyundai Mobis Co., Ltd. | Lidar-Sensorsystem |
Also Published As
Publication number | Publication date |
---|---|
US20190004153A1 (en) | 2019-01-03 |
JP2019502921A (ja) | 2019-01-31 |
US11002834B2 (en) | 2021-05-11 |
DE102015226460A1 (de) | 2017-06-22 |
EP3394637A1 (de) | 2018-10-31 |
KR20180095659A (ko) | 2018-08-27 |
JP6805254B2 (ja) | 2020-12-23 |
CN108474850A (zh) | 2018-08-31 |
CN108474850B (zh) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017108236A1 (de) | Lidar-abtasteinrichtung und lidar-abtasteinrichtungssystem | |
DE112009004828B4 (de) | Spektrum-messvorrichtung | |
DE2260474C3 (de) | Verfahren und Einrichtung zur Scharfeinstellung eines Objektivs | |
DE102013209436A1 (de) | Vorrichtung und Verfahren zum Erzeugen eines Beleuchtungsmusters | |
DE102015112960B3 (de) | Vorrichtung für die konfokale Beleuchtung einer Probe | |
DE102015107406A1 (de) | Kamera für ein Kraftfahrzeug mit zumindest zwei Lichtleitern und einem optischenFilterelement, Fahrerassistenzsystem sowie Kraftfahrzeug | |
EP2856755B1 (de) | Vorrichtung und verfahren zur aufnahme von bildern eines fahrzeugunterbodens | |
DE102017105210A1 (de) | Optische Abstrahlvorrichtung für Laserpulse mit selektiver Optik | |
DE102010055882A1 (de) | Pinhole für ein konfokales Laser-Scanning Mikroskop | |
EP2731831A1 (de) | Kamerasystem für den einsatz in einem fahrzeug sowie fahrzeug mit einem derartigen kamerasystem | |
DE102008010407B4 (de) | Verfahren und eine Vorrichtung zum Projizieren einer optischen Projektion auf eine Projektionsfläche | |
DE102017130772A1 (de) | Spektrometeranordnung, Verfahren zur Erzeugung eines zweidimensionalen Spektrums mittels einer solchen | |
DE102014218460B4 (de) | Assistenzsystem eines Kraftfahrzeugs, mit einer Kamera und Bildsensor | |
DE4012513A1 (de) | Augenfunduskamera der stereo-art | |
DE2946185C2 (de) | Vorrichtung zur Erfassung der Schärfeneinstellung eines optischen Systems | |
DE102012111199A1 (de) | Optische Vorrichtung mit multifokaler Bilderfassung | |
DE102022202778B4 (de) | System und Verfahren zur konfokal-chromatischen Linienabstandsmessung | |
WO2019110206A1 (de) | Lidar-system zur umfelderfassung und verfahren zum betreiben eines lidar-systems | |
DE102021120807A1 (de) | Lidar-sensorvorrichtung und messverfahren | |
DE102009056178A1 (de) | Bildaufnehmer, Bilderzeugungseinrichtung sowie Spektroskop für die ortsaufgelöste Spektroskopie | |
DE102019006911A1 (de) | Vorrichtung und Verfahren zur automatisierten Erfassung eines Fahrtzielbereichs | |
DE102016118481A1 (de) | Abtasteinheit einer optischen Sende- und Empfangseinrichtung einer optischen Detektionsvorrichtung eines Fahrzeugs | |
DE3237040C2 (de) | Vorrichtung zum Feststellen der Scharfeinstellung eines Objektivs | |
DE102019118029A1 (de) | Optische Messvorrichtung zur Bestimmung von Objektinformationen von Objekten in wenigstens einem Überwachungsbereich | |
EP0105209A1 (de) | Optische Anordnung zur Erkennung und Auswertung der Lage eines Objekts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16785537 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018532775 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201680075115.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187020471 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020187020471 Country of ref document: KR |