[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017104326A1 - Screw compressor - Google Patents

Screw compressor Download PDF

Info

Publication number
WO2017104326A1
WO2017104326A1 PCT/JP2016/083627 JP2016083627W WO2017104326A1 WO 2017104326 A1 WO2017104326 A1 WO 2017104326A1 JP 2016083627 W JP2016083627 W JP 2016083627W WO 2017104326 A1 WO2017104326 A1 WO 2017104326A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
meshing
female
gap
male
Prior art date
Application number
PCT/JP2016/083627
Other languages
French (fr)
Japanese (ja)
Inventor
美奈子 金田
紘太郎 千葉
土屋 豪
正彦 高野
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to JP2017556425A priority Critical patent/JPWO2017104326A1/en
Publication of WO2017104326A1 publication Critical patent/WO2017104326A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type

Definitions

  • the present invention relates to a screw compressor.
  • the screw compressor for example, there is a direct drive type screw compressor in which a pair of rotors are engaged with each other and driven. And a suction bearing and a discharge bearing for instructing a pair of rotors to rotate freely.
  • the male rotor of the pair of rotors is connected to the motor.
  • the male rotor connected to the motor begins to rotate.
  • the female rotor meshing with each other in the male rotor and the lobe starts to rotate by receiving the rotating force of the male rotor.
  • the male and female rotors rotate, the volume of the working chamber formed by the two rotor lobes decreases. As the volume of the working chamber is reduced, the fluid in the working chamber is compressed.
  • the rotor is preliminarily provided with a gap between the male rotor and the female rotor for the reasons described below.
  • the gap between the male rotor and the female rotor may be reduced due to manufacturing tolerances of the rotor. Therefore, in order to prevent the rotors from contacting and seizing, it is necessary to process with a gap between the male rotor and the female rotor in advance.
  • Patent Document 1 is an invention relating to a gear-driven compressor in which a male rotor and a female rotor are rotationally driven via a timing gear.
  • Patent Document 1 aims to reduce the gap between the male rotor and the female rotor and the gap between the casing and the male rotor and the female rotor by coating the rotor surface to prevent leakage of compressed air.
  • at least one surface of a rotor and a casing is coated.
  • Patent Document 1 describes a coating method including a step of first applying a coating with a non-uniform excess thickness and leveling the member to a predetermined uniform thickness before assembling the members. ing.
  • an object of the present invention is to reduce the leakage of compressed air by reducing the gap formed by the non-engaged surfaces of the rotor.
  • a screw rotor and a casing that houses the screw rotor are included, and the screw rotor meshes with the mating rotor to drive the mating rotor, and the mating rotor.
  • a non-engaging surface that does not contribute to driving, and a coating layer is formed on the non-engaging surface so as to fill a gap formed by the non-engaging surface.
  • Compressed air leakage can be reduced by reducing the gap formed by the non-engaged surfaces of the rotor.
  • FIG. 1 is a radial cross-sectional view of a screw rotor according to Example 1.
  • FIG. It is an axial sectional view showing the whole structure of a screw compressor. It is sectional drawing seen from the side surface which shows the whole structure of a screw compressor. It is radial direction sectional drawing of the rotor in a certain angle.
  • FIG. 5 is a radial cross-sectional view of the rotor in a state where the male rotor and the female rotor are rotated at a predetermined angle from FIG. 4 and meshed with each other.
  • FIG. 6 is a radial cross-sectional view of a rotor according to Example 2;
  • FIG. 1 is a radial sectional view of a rotor according to a first embodiment
  • FIG. 2 is an axial sectional view showing the overall structure of a screw compressor to which the rotor of the present invention is applied
  • FIG. 3 is a side view of FIG. It is an axial sectional view.
  • the screw compressor 1 houses a male rotor 3 and a female rotor 2 that rotate in parallel with each other so that the helical teeth mesh with each other, and a plurality of compression working chambers 12 that house the male rotor 3 and the female rotor 2.
  • a casing 4 is formed.
  • the casing 4 has a substantially cylindrical bore 21 for housing the male rotor 3 and the female rotor 2, a suction port 13 for sucking fluid into the compression working chamber 12, and the compressed fluid outside the discharge working chamber.
  • a discharge port 14 is provided for discharging to the outlet.
  • the male rotor 3 and the female rotor 2 are rotatably supported by radial bearings 15, respectively.
  • a motor (not shown) is connected to the shaft 9 of the male rotor 3.
  • the male rotor 3 connected to the motor starts rotating.
  • the female rotor 2 meshing with the male rotor 3 by the lobe also starts rotating.
  • gas is sucked into the compression chamber working chamber 12 from the suction port 13 provided in the casing 4.
  • the volume of the compression working chamber 12 formed by the lobes of the two rotors is reduced while moving from the suction port 13 side to the discharge port 14 side as the rotor rotates.
  • the gas flowing in from the suction port moves to the discharge side while being compressed.
  • the rotation angle of the rotor reaches a predetermined angle, the compressed fluid is discharged out of the compression working chamber 12 through the discharge port 14 provided in the casing 4.
  • FIG. 4 illustrates the male rotor 3 and the female rotor 2 at a certain rotation angle.
  • FIG. 5 illustrates a state in which the male rotor 3 and the female rotor 2 are rotated at a predetermined angle from FIG. 4 and the male rotor and the female rotor are engaged with each other.
  • the male rotor 3 and the female rotor 2 at a certain angle have surfaces that mesh with each other and surfaces that do not mesh with each other.
  • the male rotor 3 and the female rotor 2 mesh with each other by the meshing surface 16.
  • the meshing surface is a surface in which the male rotor 3 and the female rotor 2 mesh with each other's rotor and contribute to driving the female rotor 2 that is not connected to the motor.
  • a surface that does not mesh with the mating rotor and does not contribute to driving of the female rotor 2 is referred to as a non-meshing surface.
  • the male rotor 3 drives the female rotor 2 by the meshing surface 16.
  • the male rotor 3 and the female rotor 2 have a meshing surface and a non-meshing surface in a steady state.
  • the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 are in a non-contact state.
  • a gap 19 exists between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2.
  • the gap 19 exists between a compression working chamber in which compressed high-pressure fluid exists and a compression working chamber in which fluid that has not been compressed exists. Therefore, the compressed fluid leaks through the gap 19 to the compression working chamber on the low pressure side.
  • a coating layer that fills the gap 19 is formed. On the other hand, such a coating layer is not formed on the meshing surface 16. As a result, when the meshing surfaces are coated with each other, it is possible to prevent the occurrence of the problem described in the problem to be solved by the present invention and to reduce the gap 19.
  • the coating layer only needs to be formed on at least one of the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2.
  • At least one of graphite, molybdenum disulfide, PTFE, graphite fluoride, boron nitride, and the like is applied to the surfaces of the non-engagement surfaces 17 and 18, so that the surfaces are easily worn and smooth.
  • the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 come into contact with each other during an unsteady operation such as before the operation is stopped or immediately after the operation is started, no seizure occurs.
  • the gap 19 between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 can be processed in advance.
  • the wear between the non-meshing surfaces to which the coating is applied is more easily worn than the wear between the meshing surfaces.
  • the non-meshing surfaces can be worn together without causing the meshing surfaces to wear. If there is an extra coating layer, for example, due to wear between the non-meshing surfaces, these are scraped off to provide an appropriate gap 19. Can be formed.
  • the gap 19 When the gap 19 is reduced, the amount of compressed fluid leaking from the high pressure side to the low pressure side space is reduced. Compressor efficiency can be improved by reducing leakage of the compressed fluid. Further, since the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor are not in contact with each other during the steady operation of the compressor, the area of the gap 19 does not increase due to a long-time operation. Since the area of the gap 19 does not increase by operation, the amount of leakage of compressed air does not increase by operation of the compressor, and stable compressor performance can be maintained over a long period of time.
  • the processing time can be shortened.
  • the compressor efficiency is improved by reducing the leakage of compressed air. Since the gap between the rotors does not change regardless of the operation time of the compressor, stable compressor performance can be maintained over a long period of time.
  • a high-functional coating such as low friction, and processing costs can be reduced.
  • FIG. 6 is a cross-sectional view of the screw rotor according to the second embodiment.
  • the coating 5 is applied to the surface of the non-meshing surface 17, so that the non-meshing surface 18 of the male rotor 3 and the female rotor 2 are in an unsteady operation such as before operation stop or immediately after operation start. Even if the non-meshing surface 17 comes into contact, it does not seize. Even if the male rotor 3 and the female rotor 2 rise in temperature during operation, thermal expansion occurs, and even if the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor come into contact with each other, seizure does not occur.
  • the gap 19 between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 can be set small. If the gap 19 is reduced, the amount of leakage of the compressed fluid can be reduced. Compressor efficiency is improved by reducing the leakage of the compressed fluid. Further, the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor do not contact during the steady operation of the compressor. Therefore, the wear of the coating hardly occurs, and the area of the gap 19 does not increase after a long operation.
  • the area of the gap 19 does not increase due to operation, stable compressor performance can be maintained over a long period of time regardless of the operation of the compressor.
  • the coating is applied only to the non-meshing surface 17 of the female rotor 2 that does not apply a high surface pressure during steady operation, it is not necessary to use a highly functional coating such as low friction, and processing costs can be reduced. Further, since it is not necessary to finish the surface roughness of the non-meshing surface 17 of the female rotor 2 to be coated with high accuracy, the processing time can be shortened.
  • the present invention has been described by taking a screw-type air compressor that compresses air as an example.
  • the present invention is not limited to air but can be used in general for screw compressors that compress gas.
  • the screw compressor provided with a male and female paired screw rotor was demonstrated, this invention can be used also for the screw compressor of a trirotor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The purpose of the present invention is to provide a screw compressor wherein the leakage of compressed air is reduced by reducing the gap between a male rotor and a female rotor. A screw compressor has screw rotors and a casing which accommodates the screw rotors. A screw rotor has: an engagement surface engaging with a counterpart-rotor to drive the counterpart-rotor; and a non-engagement surface not engaging with the counterpart-rotor and not contributing to the drive. The screw compressor is characterized in that a coating layer is formed on the non-engagement surface so as to fill a gap formed by the non-engagement surface.

Description

スクリュー圧縮機Screw compressor
 本発明は、スクリュー圧縮機に関するものである。 The present invention relates to a screw compressor.
 スクリュー圧縮機には、例えば一対のロータが互いにかみ合って駆動する直接駆動式のスクリュー圧縮機があるが、らせん状のローブにより互いに噛み合って回転する雄雌一対のロータと、一対のロータを収納するための円筒状の空間を持つケーシングと、一対のロータを各々回転自在に指示するための吸入軸受と吐出軸受によって構成される。一対のロータのうち雄ロータは、モータに接続されている。圧縮機が運転を開始すると、モータに接続されている雄ロータは回転運動を始める。雄ロータとローブで互いに噛み合っている雌ロータは、雄ロータの回転する力を受けて回転運動を始める。雄ロータと雌ロータが回転運動をすると、2つのロータのローブによって形成される作動室の容積は縮小する。作動室の容積の縮小に伴い、作動室内部の流体は圧縮される。 As the screw compressor, for example, there is a direct drive type screw compressor in which a pair of rotors are engaged with each other and driven. And a suction bearing and a discharge bearing for instructing a pair of rotors to rotate freely. The male rotor of the pair of rotors is connected to the motor. When the compressor starts operation, the male rotor connected to the motor begins to rotate. The female rotor meshing with each other in the male rotor and the lobe starts to rotate by receiving the rotating force of the male rotor. As the male and female rotors rotate, the volume of the working chamber formed by the two rotor lobes decreases. As the volume of the working chamber is reduced, the fluid in the working chamber is compressed.
 ロータは以下に記載する理由から、あらかじめ雄ロータと雌ロータの間に隙間を設けている。1つめの理由として、作動室内部の流体が圧縮される過程で加熱されると、ロータが熱膨張する。ロータの熱膨張により、雄ロータと雌ロータが接触し焼付かないようにするために、雄ロータと雌ロータの間にはあらかじめ隙間を空けて加工する必要がある。また2つめの理由として、ロータの製造公差により雄ロータと雌ロータの間隙が小さくなる可能性がある。そのためロータ同士が接触し焼付かないようにするために、雄ロータと雌ロータの間にあらかじめ隙間を空けて加工する必要がある。 The rotor is preliminarily provided with a gap between the male rotor and the female rotor for the reasons described below. First, when the fluid in the working chamber is heated in the process of being compressed, the rotor is thermally expanded. In order to prevent the male rotor and the female rotor from contacting and seizing due to the thermal expansion of the rotor, it is necessary to process with a gap between the male rotor and the female rotor in advance. The second reason is that the gap between the male rotor and the female rotor may be reduced due to manufacturing tolerances of the rotor. Therefore, in order to prevent the rotors from contacting and seizing, it is necessary to process with a gap between the male rotor and the female rotor in advance.
 しかし雄ロータと雌ロータの間に隙間を設けると、圧縮され高圧になった流体が、雄ロータと雌ロータの間隙を通って、圧力の低い吸入側の作動室へ漏洩する。圧縮空気が高圧側の作動室から低圧側の作動室へ漏洩すると、圧縮機効率が低下してしまう。雄ロータと雌ロータの隙間から流体の漏洩を防ぐ方法として、従来の技術にはロータ全体にコーティングを施し、雄ロータと雌ロータの隙間の大きさを縮小したものがある。(例えば、特許文献1参照) However, if a gap is provided between the male rotor and the female rotor, the compressed and high-pressure fluid leaks through the gap between the male rotor and the female rotor to the working chamber on the suction side where the pressure is low. When the compressed air leaks from the high pressure side working chamber to the low pressure side working chamber, the compressor efficiency is lowered. As a method for preventing fluid leakage from the gap between the male rotor and the female rotor, there is a conventional technique in which the entire rotor is coated to reduce the size of the gap between the male rotor and the female rotor. (For example, see Patent Document 1)
特表2005-515067号Special table 2005-515067
 特許文献1は雄ロータと雌ロータがタイミングギアを介して回転駆動する、ギア駆動圧縮機に関する発明である。特許文献1はロータ表面のコーティングにより、雄ロータと雌ロータの隙間や、ケーシングと雄ロータや雌ロータの隙間を小さくし、圧縮空気の漏洩を防ぐことを目的にしている。特許文献1の構造は、ロータとケーシングの少なくとも1つの表面にコーティングを施している。特許文献1は、最初にコーティングを不均一に余分な厚さを持つように施し、部材を組み付ける前にほぼ均一な所定の厚さになるようレべリングする段階を含んだコーティング方法について記載している。 Patent Document 1 is an invention relating to a gear-driven compressor in which a male rotor and a female rotor are rotationally driven via a timing gear. Patent Document 1 aims to reduce the gap between the male rotor and the female rotor and the gap between the casing and the male rotor and the female rotor by coating the rotor surface to prevent leakage of compressed air. In the structure of Patent Document 1, at least one surface of a rotor and a casing is coated. Patent Document 1 describes a coating method including a step of first applying a coating with a non-uniform excess thickness and leveling the member to a predetermined uniform thickness before assembling the members. ing.
 本発明で対象としている直接駆動式のスクリュー圧縮機において、モータに接続された雄ロータと雌ロータが噛み合う面には、高い面圧がかかる。そのため特許文献1を直接駆動式のロータに適用すると、高い面圧のかかる面に塗布したコーティングは摩耗してしまう。コーティングの摩耗により、雄ロータと雌ロータの噛み合う面の隙間は変わらないが、噛み合っていない面の隙間は拡大する。雄ロータと雌ロータの隙間の拡大により、圧縮された高圧の流体は、雄ロータと雌ロータの隙間を通って低圧側の作動室へ漏洩する。圧縮空気の漏洩は、圧縮機効率の低下に繋がる。もし高い面圧により摩耗しないコーティング材があったとしても、コーティング材には耐圧性や耐摩耗性などの高機能性が必要となる。高機能性のコーティングを塗布するため、加工コストは増大する。 In the direct drive screw compressor that is the subject of the present invention, high surface pressure is applied to the surface where the male and female rotors connected to the motor mesh with each other. For this reason, when Patent Document 1 is applied to a directly driven rotor, the coating applied to the surface on which high surface pressure is applied is worn. The wear of the coating does not change the gap between the meshing surfaces of the male and female rotors, but the gap between the non-engaged surfaces is enlarged. Due to the enlargement of the gap between the male rotor and the female rotor, the compressed high pressure fluid leaks through the gap between the male rotor and the female rotor to the working chamber on the low pressure side. The leakage of compressed air leads to a reduction in compressor efficiency. Even if there is a coating material that does not wear due to high surface pressure, the coating material must have high functionality such as pressure resistance and wear resistance. Processing costs increase due to the application of a high functionality coating.
 そこで、本発明では、ロータの噛み合っていない面によって形成される隙間を縮小することで、圧縮空気の漏洩低減することを目的とする。 Therefore, an object of the present invention is to reduce the leakage of compressed air by reducing the gap formed by the non-engaged surfaces of the rotor.
 前述の目的を達成するため、例えば、スクリューロータと、スクリューロータを収納するケーシングと、を有し、スクリューロータは、相手のロータと噛み合うことで相手のロータを駆動する噛合面と、相手のロータと噛み合わず駆動に寄与しない非噛合面とを有し、非噛合面には、非噛合面によって形成される隙間を埋めるようにコーティング層が形成されることを特徴とするスクリュー圧縮機。 In order to achieve the above object, for example, a screw rotor and a casing that houses the screw rotor are included, and the screw rotor meshes with the mating rotor to drive the mating rotor, and the mating rotor. And a non-engaging surface that does not contribute to driving, and a coating layer is formed on the non-engaging surface so as to fill a gap formed by the non-engaging surface.
 ロータの噛み合っていない面によって形成される隙間を縮小することで、圧縮空気の漏洩低減することができる。 Compressed air leakage can be reduced by reducing the gap formed by the non-engaged surfaces of the rotor.
実施例1に係るスクリューロータの径方向断面図である。1 is a radial cross-sectional view of a screw rotor according to Example 1. FIG. スクリュー圧縮機の全体構造を示す軸方向断面図である。It is an axial sectional view showing the whole structure of a screw compressor. スクリュー圧縮機の全体構造を示す側面から見た断面図である。It is sectional drawing seen from the side surface which shows the whole structure of a screw compressor. ある角度におけるロータの径方向断面図である。It is radial direction sectional drawing of the rotor in a certain angle. 雄ロータと雌ロータが図4から所定の角度回転し、互いに噛み合った状態におけるロータの径方向断面図である。FIG. 5 is a radial cross-sectional view of the rotor in a state where the male rotor and the female rotor are rotated at a predetermined angle from FIG. 4 and meshed with each other. 実施例2にかかるロータの径方向断面図である。FIG. 6 is a radial cross-sectional view of a rotor according to Example 2;
 以下、本発明を実施する上で好適な実施の例について図面を用いて説明する。尚、下記はあくまでも実施の例に過ぎず、発明の内容が下記具体的態様に限定されるものではない。本発明は、下記態様を含めて種々の態様に変形することが無論可能である。 Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. In addition, the following is only an example of implementation, and the content of the invention is not limited to the following specific embodiment. It goes without saying that the present invention can be modified into various modes including the following modes.
 以下、実施例1を図1から図5を用いて詳細に説明する。図1は実施例1に係るロータの径方向断面図、図2は本発明のロータの適用対象であるスクリュー圧縮機の全体構造を示す軸方向断面図、図3は図2を側面から見た軸方向断面図である。 Hereinafter, Example 1 will be described in detail with reference to FIGS. FIG. 1 is a radial sectional view of a rotor according to a first embodiment, FIG. 2 is an axial sectional view showing the overall structure of a screw compressor to which the rotor of the present invention is applied, and FIG. 3 is a side view of FIG. It is an axial sectional view.
 スクリュー圧縮機1は回転軸が平行で、かつらせん状の歯が噛み合うように各々回転する雄ロータ3および雌ロータ2と、雄ロータ3と雌ロータ2を収納して複数の圧縮作動室12を形成するケーシング4を備えている。ケーシング4には雄ロータ3と雌ロータ2を収納するための略円筒状のボア21と、圧縮作動室12に流体を吸入するための吸入口13と、圧縮された流体を吐出作動室の外へ吐出するための吐出口14が設けられている。ケーシング4の内部において雄ロータ3と雌ロータ2は、それぞれラジアル軸受15によって回転可能に支持されている。雄ロータ3の軸9には、モータ(図示せず)が接続されている。圧縮機の稼働により、モータに接続されている雄ロータ3が回転運動を始める。雄ロータ3の回転に伴い、雄ロータ3とローブにより噛み合っている雌ロータ2も回転運動を始める。雄雌ロータが回転を始めると、ケーシング4設けられた吸入口13から圧縮室作動室12内部へ気体が吸入される。2つのロータのローブによって形成される圧縮作動室12の容積は、ロータの回転とともに吸入口13側から吐出口14側に移動しながら縮小する。圧縮作動室12の容積縮小により、吸入口から流入した気体は圧縮されながら吐出側に移動していく。ロータの回転角度が所定の角度に達すると、圧縮された流体はケーシング4に設けられた吐出口14を通り圧縮作動室12の外へ吐出される。 The screw compressor 1 houses a male rotor 3 and a female rotor 2 that rotate in parallel with each other so that the helical teeth mesh with each other, and a plurality of compression working chambers 12 that house the male rotor 3 and the female rotor 2. A casing 4 is formed. The casing 4 has a substantially cylindrical bore 21 for housing the male rotor 3 and the female rotor 2, a suction port 13 for sucking fluid into the compression working chamber 12, and the compressed fluid outside the discharge working chamber. A discharge port 14 is provided for discharging to the outlet. Inside the casing 4, the male rotor 3 and the female rotor 2 are rotatably supported by radial bearings 15, respectively. A motor (not shown) is connected to the shaft 9 of the male rotor 3. By the operation of the compressor, the male rotor 3 connected to the motor starts rotating. As the male rotor 3 rotates, the female rotor 2 meshing with the male rotor 3 by the lobe also starts rotating. When the male and female rotors start to rotate, gas is sucked into the compression chamber working chamber 12 from the suction port 13 provided in the casing 4. The volume of the compression working chamber 12 formed by the lobes of the two rotors is reduced while moving from the suction port 13 side to the discharge port 14 side as the rotor rotates. As the volume of the compression working chamber 12 is reduced, the gas flowing in from the suction port moves to the discharge side while being compressed. When the rotation angle of the rotor reaches a predetermined angle, the compressed fluid is discharged out of the compression working chamber 12 through the discharge port 14 provided in the casing 4.
 圧縮作動室12の外へ吐出された圧縮流体は、吐出経路10を通ってスクリュー圧縮機1の外へ吐出される。ここで雄ロータ3及び雌ロータ2が回転するときの様子を図4、図5を用いて詳細に説明する。図4はある回転角度における雄ロータ3と雌ロータ2を図示したものである。図5は図4からある所定の角度、雄ロータ3と雌ロータ2が回転し、雄ロータと雌ロータが噛み合った状態を図示したものである。 Compressed fluid discharged out of the compression working chamber 12 is discharged out of the screw compressor 1 through the discharge path 10. Here, a state when the male rotor 3 and the female rotor 2 rotate will be described in detail with reference to FIGS. 4 and 5. FIG. 4 illustrates the male rotor 3 and the female rotor 2 at a certain rotation angle. FIG. 5 illustrates a state in which the male rotor 3 and the female rotor 2 are rotated at a predetermined angle from FIG. 4 and the male rotor and the female rotor are engaged with each other.
 図4から分かるように、ある角度における雄ロータ3と雌ロータ2は、互いに噛みあう面と噛みあわない面とを有している。この状態からある所定の角度雄ロータ3および雌ロータ2が回転すると、雄ロータ3と雌ロータ2は噛合面16によって互いに噛合っている。ここで噛合面とは雄ロータ3及び雌ロータ2が互いに相手のロータと噛合い、モータに接続されていない雌ロータ2の駆動に寄与する面のことである。相手ロータと噛み合わず、雌ロータ2の駆動に寄与しない面を非噛合面と呼ぶ。雄ロータ3は噛合面16によって、雌ロータ2を駆動している。このように、雄ロータ3と雌ロータ2は定常状態において噛合面および非噛合面を有している。 As can be seen from FIG. 4, the male rotor 3 and the female rotor 2 at a certain angle have surfaces that mesh with each other and surfaces that do not mesh with each other. When the male rotor 3 and the female rotor 2 rotate at a predetermined angle from this state, the male rotor 3 and the female rotor 2 mesh with each other by the meshing surface 16. Here, the meshing surface is a surface in which the male rotor 3 and the female rotor 2 mesh with each other's rotor and contribute to driving the female rotor 2 that is not connected to the motor. A surface that does not mesh with the mating rotor and does not contribute to driving of the female rotor 2 is referred to as a non-meshing surface. The male rotor 3 drives the female rotor 2 by the meshing surface 16. Thus, the male rotor 3 and the female rotor 2 have a meshing surface and a non-meshing surface in a steady state.
 図5の状態において、雄ロータ3の非噛合面18と雌ロータ2の非噛合面17は非接触の状態にある。雄ロータ3の非噛合面18と雌ロータ2の非噛合面17の間には、間隙19が存在する。間隙19は、圧縮された高圧流体が存在する圧縮作動室と、まだ圧縮されていない流体が存在する圧縮作動室との間に存在する。そのため圧縮された流体は、間隙19を通って低圧側の圧縮作動室へ漏洩してしまう。しかし本実施形態によれば、隙間19を埋めるようなコーティング層が形成されている。一方で、噛合面16にはこのようなコーティング層は形成されていない。これにより、噛合面同士にコーティングが施されている場合に、上記発明が解決しようとする課題で述べたようなことが生じることを防とともに、間隙19を小さくすることができる。 5, the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 are in a non-contact state. A gap 19 exists between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2. The gap 19 exists between a compression working chamber in which compressed high-pressure fluid exists and a compression working chamber in which fluid that has not been compressed exists. Therefore, the compressed fluid leaks through the gap 19 to the compression working chamber on the low pressure side. However, according to the present embodiment, a coating layer that fills the gap 19 is formed. On the other hand, such a coating layer is not formed on the meshing surface 16. As a result, when the meshing surfaces are coated with each other, it is possible to prevent the occurrence of the problem described in the problem to be solved by the present invention and to reduce the gap 19.
 なお、当該コーティング層は、雄ロータ3の非噛合面18と雌ロータ2の非噛合面17の少なくとも一方に形成されていればよい。 The coating layer only needs to be formed on at least one of the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2.
 非噛合面17、18の表面には、例えばグラファイト、二硫化モリブデン、PTFE、フッ化黒鉛、窒化ホウ素などのすくなくとも一つが施されることで、表面が摩耗し滑らかになりやすい状態になっている。また、運転停止前や運転開始直後などの非定常運転時に、雄ロータ3の非噛合面18と雌ロータ2の非噛合面17が接触しても焼付かない。また、たとえ運転中に雄ロータ3と雌ロータ2の温度上昇により熱膨張が生じ、雄ロータ3の非噛合面18と雌ロータの非噛合面17が接触したとしても焼付かない。ロータ同士の焼付きが生じないため、雄ロータ3の非噛合面18と、雌ロータ2の非噛合面17の間隙19をあらかじめ小さく加工することができる。 For example, at least one of graphite, molybdenum disulfide, PTFE, graphite fluoride, boron nitride, and the like is applied to the surfaces of the non-engagement surfaces 17 and 18, so that the surfaces are easily worn and smooth. . Further, even when the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 come into contact with each other during an unsteady operation such as before the operation is stopped or immediately after the operation is started, no seizure occurs. Further, even if the male rotor 3 and the female rotor 2 rise in temperature during operation and thermal expansion occurs, even if the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor come into contact with each other, seizure does not occur. Since seizure between the rotors does not occur, the gap 19 between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 can be processed in advance.
 また、前記コーティングが施された非噛合面同士の摩耗は、前記噛合面同士の摩耗よりも摩耗しやすくなっている。これにより、噛合面同士が摩耗することなく非噛合面同士が摩耗することが出来、非噛合面同士の摩耗によって、例えば余分なコーティング層があった場合にはこれらが削られ適切な間隙19を形成することが出来る。 Also, the wear between the non-meshing surfaces to which the coating is applied is more easily worn than the wear between the meshing surfaces. As a result, the non-meshing surfaces can be worn together without causing the meshing surfaces to wear.If there is an extra coating layer, for example, due to wear between the non-meshing surfaces, these are scraped off to provide an appropriate gap 19. Can be formed.
 間隙19を小さくすると、高圧側から低圧側の空間への圧縮流体の漏洩量が低減される。圧縮流体の漏洩を低下することにより圧縮機効率を向上することができる。また、圧縮機の定常運転時において雄ロータ3の非噛合面18と雌ロータの非噛合面17が接触しないため、長時間の運転により間隙19の面積が増大しない。間隙19の面積が運転によって増大しないため、圧縮機の運転により圧縮空気の漏洩量が増加することがなく、長期間にわたり安定した圧縮機性能を維持できる。またコーティングを施す雄ロータ3の非噛合面18の表面粗さを高精度に仕上げる必要がないため、加工時間を短縮することができる。また、圧縮空気の漏洩を低減することで圧縮機効率は向上する。圧縮機の運転時間によらずロータ間の隙間が変わらないため、安定した圧縮機性能を長期間にわたり維持できる。なお、定常運転時に高い面圧のかからない非噛合面18または非噛合面17のみにコーティングをした場合、低摩擦性などの高機能性のコーティングを使用する必要がなく、加工コストを抑えられる。 When the gap 19 is reduced, the amount of compressed fluid leaking from the high pressure side to the low pressure side space is reduced. Compressor efficiency can be improved by reducing leakage of the compressed fluid. Further, since the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor are not in contact with each other during the steady operation of the compressor, the area of the gap 19 does not increase due to a long-time operation. Since the area of the gap 19 does not increase by operation, the amount of leakage of compressed air does not increase by operation of the compressor, and stable compressor performance can be maintained over a long period of time. Further, since it is not necessary to finish the surface roughness of the non-meshing surface 18 of the male rotor 3 to be coated with high accuracy, the processing time can be shortened. Further, the compressor efficiency is improved by reducing the leakage of compressed air. Since the gap between the rotors does not change regardless of the operation time of the compressor, stable compressor performance can be maintained over a long period of time. In addition, when only the non-meshing surface 18 or the non-meshing surface 17 that is not subjected to high surface pressure during steady operation is coated, it is not necessary to use a high-functional coating such as low friction, and processing costs can be reduced.
 次に、実施例2に係る密閉形圧縮機の構造について図6を用いて説明する。 Next, the structure of the hermetic compressor according to the second embodiment will be described with reference to FIG.
 図6は実施例2にかかるスクリューロータの断面図である。本実施例において、例えば非噛合面17の表面にはコーティング5が施されているため、運転停止前や運転開始直後などの非定常運転時に、雄ロータ3の非噛合面18と雌ロータ2の非噛合面17が接触しても焼付かない。たとえ運転中に雄ロータ3と雌ロータ2の温度上昇により熱膨張が生じ、雄ロータ3の非噛合面18と雌ロータの非噛合面17が接触したとしても焼付かない。ロータ同士の焼付きが生じないため、雄ロータ3の非噛合面18と、雌ロータ2の非噛合面17の間隙19を小さく設定できる。間隙19を小さくすると、圧縮流体の漏洩量が低減できる。圧縮流体の漏洩を低下することにより圧縮機効率は向上する。また、圧縮機の定常運転時において雄ロータ3の非噛合面18と雌ロータの非噛合面17は接触しない。そのためコーティングの摩耗が生じにくく、長時間の運転により間隙19の面積が増大しない。 FIG. 6 is a cross-sectional view of the screw rotor according to the second embodiment. In this embodiment, for example, the coating 5 is applied to the surface of the non-meshing surface 17, so that the non-meshing surface 18 of the male rotor 3 and the female rotor 2 are in an unsteady operation such as before operation stop or immediately after operation start. Even if the non-meshing surface 17 comes into contact, it does not seize. Even if the male rotor 3 and the female rotor 2 rise in temperature during operation, thermal expansion occurs, and even if the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor come into contact with each other, seizure does not occur. Since seizure between the rotors does not occur, the gap 19 between the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor 2 can be set small. If the gap 19 is reduced, the amount of leakage of the compressed fluid can be reduced. Compressor efficiency is improved by reducing the leakage of the compressed fluid. Further, the non-meshing surface 18 of the male rotor 3 and the non-meshing surface 17 of the female rotor do not contact during the steady operation of the compressor. Therefore, the wear of the coating hardly occurs, and the area of the gap 19 does not increase after a long operation.
 間隙19の面積が運転によって増大しないため、圧縮機の運転によらず長期間にわたって安定した圧縮機性能を維持できる。また定常運転時に高い面圧のかからない雌ロータ2の非噛合面17のみのコーティングであるため、低摩擦性などの高機能性のコーティングを使用する必要がなく、加工コストを抑えられる。またコーティングを施す雌ロータ2の非噛合面17の表面粗さを高精度に仕上げる必要がないため、加工時間を短縮することができる。 Since the area of the gap 19 does not increase due to operation, stable compressor performance can be maintained over a long period of time regardless of the operation of the compressor. In addition, since the coating is applied only to the non-meshing surface 17 of the female rotor 2 that does not apply a high surface pressure during steady operation, it is not necessary to use a highly functional coating such as low friction, and processing costs can be reduced. Further, since it is not necessary to finish the surface roughness of the non-meshing surface 17 of the female rotor 2 to be coated with high accuracy, the processing time can be shortened.
 また、雌ロータ2の非噛合面17と雌ロータの噛合面20の摩耗のしやすさが異なっているため、実施例1で説明したように適切な間隙19を得ることが出来る。 Further, since the ease of wear of the non-engagement surface 17 of the female rotor 2 and the engagement surface 20 of the female rotor is different, an appropriate gap 19 can be obtained as described in the first embodiment.
 なお、上記の各実施例では、空気を圧縮するスクリュー型空気圧縮機を例に本発明を説明したが、本発明は、空気に限らず、気体を圧縮するスクリュー圧縮機全般に用いることができる。また、雌雄一対のスクリューロータを備えるスクリュー圧縮機について説明したが、本発明は、トリロータのスクリュー圧縮機にも用いることができる。 In each of the above-described embodiments, the present invention has been described by taking a screw-type air compressor that compresses air as an example. However, the present invention is not limited to air but can be used in general for screw compressors that compress gas. . Moreover, although the screw compressor provided with a male and female paired screw rotor was demonstrated, this invention can be used also for the screw compressor of a trirotor.
 1…スクリュー圧縮機、2…雌ロータ、3…雄ロータ、4…ケーシング、5…コーティング、6…吐出カバー、9…雄ロータの軸、10…吐出経路、12…圧縮作動室、13…吸入口、14…吐出口、15…ラジアル軸受、16…噛合面、17…雌ロータの非噛合面、18…雄ロータの非噛合面、19…間隙、20…雌ロータの噛合面 DESCRIPTION OF SYMBOLS 1 ... Screw compressor, 2 ... Female rotor, 3 ... Male rotor, 4 ... Casing, 5 ... Coating, 6 ... Discharge cover, 9 ... Shaft of male rotor, 10 ... Discharge path, 12 ... Compression working chamber, 13 ... Suction Numeral 14, discharge port 15, radial bearing 16, meshing surface 17, non-meshing surface of female rotor 18, non-meshing surface of male rotor 19, gap 20, meshing surface of female rotor

Claims (4)

  1.   スクリューロータと、
     前記スクリューロータを収納するケーシングと、を有し、
     前記スクリューロータは、相手のロータと噛み合うことで相手のロータを駆動する噛合面と、相手のロータと噛み合わず駆動に寄与しない非噛合面とを有し、前記非噛合面には、前記非噛合面によって形成される隙間を埋めるようにコーティング層が形成されることを特徴とするスクリュー圧縮機。
    A screw rotor;
    A casing for housing the screw rotor,
    The screw rotor has a meshing surface that drives the mating rotor by meshing with the mating rotor, and a non-meshing surface that does not mesh with the mating rotor and does not contribute to driving, and the non-meshing surface includes the non-meshing surface. A screw compressor, wherein a coating layer is formed so as to fill a gap formed by a surface.
  2.  前記スクリューロータが回転する場合における、前記コーティングが施された前記非噛合面同士の摩耗のしやすさは、前記噛合面同士の摩耗のしやすさよりも大きいことを特徴とする請求項1に記載のスクリュー圧縮機。 The ease of wear of the non-meshing surfaces provided with the coating when the screw rotor rotates is greater than the ease of wear of the meshing surfaces. Screw compressor.
  3.  前記噛合面には、コーティング層が形成されないことを特徴とする請求項1または2に記載のスクリュー圧縮機。 The screw compressor according to claim 1 or 2, wherein a coating layer is not formed on the meshing surface.
  4.  前記コーティングには、グラファイト、二硫化モリブデン、PTFE、フッ化黒鉛、窒化ホウ素の少なくとも一つが用いられることを特徴とする請求項1ないし3のいずれかに記載のスクリュー圧縮機。 The screw compressor according to any one of claims 1 to 3, wherein at least one of graphite, molybdenum disulfide, PTFE, graphite fluoride, and boron nitride is used for the coating.
PCT/JP2016/083627 2015-12-15 2016-11-14 Screw compressor WO2017104326A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556425A JPWO2017104326A1 (en) 2015-12-15 2016-11-14 Screw compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015243731 2015-12-15
JP2015-243731 2015-12-15

Publications (1)

Publication Number Publication Date
WO2017104326A1 true WO2017104326A1 (en) 2017-06-22

Family

ID=59056284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083627 WO2017104326A1 (en) 2015-12-15 2016-11-14 Screw compressor

Country Status (2)

Country Link
JP (1) JPWO2017104326A1 (en)
WO (1) WO2017104326A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489514U (en) * 1977-12-07 1979-06-25
JPS588701U (en) * 1981-07-10 1983-01-20 株式会社日立製作所 screw rotor
US20020187064A1 (en) * 1999-06-23 2002-12-12 Danilo Vigano Gas rotary screw compressor
JP2005515067A (en) * 2002-01-23 2005-05-26 キャリア コーポレイション Easy assembly of rough-coated parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489514U (en) * 1977-12-07 1979-06-25
JPS588701U (en) * 1981-07-10 1983-01-20 株式会社日立製作所 screw rotor
US20020187064A1 (en) * 1999-06-23 2002-12-12 Danilo Vigano Gas rotary screw compressor
JP2005515067A (en) * 2002-01-23 2005-05-26 キャリア コーポレイション Easy assembly of rough-coated parts

Also Published As

Publication number Publication date
JPWO2017104326A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
TWI479078B (en) Multistage dry pump
EP1988288B1 (en) Moineau pump
EP2035708B1 (en) Moineau pump
WO2016157450A1 (en) Gas compressor
WO2017104326A1 (en) Screw compressor
JP6532713B2 (en) Scroll compressor
JP2010159724A (en) Oil pump
JP4211871B2 (en) Screw compressor
JP6599099B2 (en) Scroll fluid machinery
CN112780553A (en) Rotor subassembly, compressor and air conditioner
JP2000027769A (en) Internal gear pump or motor, and manufacture thereof
JP4813135B2 (en) Rotary compressor
JP2008215245A (en) Single screw compressor
JP3911469B2 (en) Oil-free screw compressor for fuel cells
JP4762764B2 (en) How to adjust the screw rotor
JP2016079877A (en) Screw compressor
JP2016011650A (en) Scroll type fluid machinery
JP2005201103A (en) Trochoid type pump
US20230114095A1 (en) Screw compressor
JP7284045B2 (en) Fluid machinery
JPS6014952Y2 (en) Worm compressor
JP4349254B2 (en) Screw compressor
JP2007211639A (en) Oil free screw compressor
JP2002213381A (en) Fluid machinery
JP2021014811A (en) Scroll type fluid machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875310

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875310

Country of ref document: EP

Kind code of ref document: A1