[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2017104028A1 - 非水電解質電池及び電池パック - Google Patents

非水電解質電池及び電池パック Download PDF

Info

Publication number
WO2017104028A1
WO2017104028A1 PCT/JP2015/085255 JP2015085255W WO2017104028A1 WO 2017104028 A1 WO2017104028 A1 WO 2017104028A1 JP 2015085255 W JP2015085255 W JP 2015085255W WO 2017104028 A1 WO2017104028 A1 WO 2017104028A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode active
bipolar
negative electrode
Prior art date
Application number
PCT/JP2015/085255
Other languages
English (en)
French (fr)
Inventor
一臣 吉間
康宏 原田
高見 則雄
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/085255 priority Critical patent/WO2017104028A1/ja
Priority to CN201580081641.7A priority patent/CN107851853A/zh
Priority to EP15895148.3A priority patent/EP3396773B1/en
Priority to JP2016510884A priority patent/JP6122213B1/ja
Priority to US15/262,453 priority patent/US10777820B2/en
Publication of WO2017104028A1 publication Critical patent/WO2017104028A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/029Bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • Embodiments of the present invention relate to a nonaqueous electrolyte battery and a battery pack.
  • Non-aqueous electrolyte batteries such as lithium ion secondary batteries have been actively conducted as high energy density batteries.
  • Non-aqueous electrolyte batteries are expected as a power source for uninterruptible power supplies of hybrid vehicles, electric vehicles, and mobile phone base stations.
  • the voltage obtained from the unit cell is as low as about 3.7V. For this reason, in order to obtain a high output, it is necessary to extract a large current from the large unit cell, so that there is a problem that the entire apparatus is enlarged.
  • Bipolar batteries have a positive electrode active material layer formed on one plate surface of a current collector, and a plurality of layers stacked in series with a bipolar electrode and an electrolyte layer forming a negative electrode active material layer on the other plate surface It is a battery of the structure. Since this bipolar battery is stacked in series inside the unit cell, a high voltage can be obtained even in the unit cell. Therefore, when obtaining a high output, an output can be obtained with a high voltage constant current, and furthermore, the electric resistance of the battery connection portion can be greatly reduced.
  • a structure using a liquid electrolyte is used.
  • the structure using a liquid electrolyte of a lithium ion secondary battery cannot be applied to the bipolar battery. That is, the structure of the bipolar battery needs to have a structure in which the electrodes are made independent so that a short circuit (liquid junction) due to ion conduction does not occur when the electrolytes existing between the electrode layers touch each other.
  • bipolar batteries using polymer solid electrolytes that do not contain liquid electrolytes have been proposed.
  • this method since the liquid electrolyte is not included in the battery, the possibility of a short circuit (liquid junction) due to ion conduction between the electrode layers is reduced.
  • the ionic conductivity of a solid electrolyte is as low as about 1/10 to 1/100 of that of a liquid electrolyte. For this reason, since the problem that the output density of a battery becomes low arises, it has not been put to practical use.
  • the gel electrolyte is a gel electrolyte in which a polymer such as polyethylene oxide (PEO) or polyvinylidene fluoride (PVdF) is impregnated with an electrolytic solution.
  • PEO polyethylene oxide
  • PVdF polyvinylidene fluoride
  • the challenge remains to increase the size (high energy density) of bipolar batteries.
  • a method of increasing the energy density of a bipolar battery a method of increasing the electrode area of the positive and negative electrodes, a method of connecting small-area bipolar unit cells in parallel, and the like can be considered.
  • the lithium ion secondary battery having a conventional electrode structure is intended to increase the energy density by winding the positive and negative electrodes and the separator spirally without gaps and filling the battery exterior with high density.
  • the positive electrode and the negative electrode are integrally formed because of the structure thereof, and thus the counter electrodes come into contact with each other by spiral winding. Therefore, there is a problem that a short circuit occurs unless an insulating layer such as a separator or a polymer is sandwiched between the bipolar electrode layers.
  • the non-aqueous electrolyte battery includes a bipolar electrode and a non-aqueous electrolyte layer.
  • the bipolar electrode includes a current collector, a positive electrode active material layer on one side of the current collector, and a negative electrode active material layer on the other side of the current collector.
  • the bipolar electrode is disposed at a position where the position of the positive electrode active material layer does not overlap with the position of the negative electrode active material layer in the thickness direction of the current collector.
  • a laminated body in which a plurality of the bipolar electrodes are laminated via an electrolyte layer is provided.
  • the stacked body includes one of the positive electrode active material layer and the negative electrode active material layer of the bipolar electrode, and the positive electrode active material layer and the negative electrode active material of the other bipolar electrode adjacent to the bipolar electrode in the stacking direction.
  • the material layers are sequentially stacked with one of the other material layers facing each other.
  • One of the second forms is provided.
  • FIG. 1 It is a perspective view which shows schematic structure of the laminated body of the bipolar electrode of the nonaqueous electrolyte battery of 4th Embodiment. It is a perspective view which shows schematic structure of the electrode group of the bipolar electrode of the nonaqueous electrolyte battery of 5th Embodiment. It is a disassembled perspective view which shows schematic structure of the battery pack of the nonaqueous electrolyte battery of 1st Embodiment. It is a block diagram which shows the electric circuit of the battery pack of FIG.
  • FIG. 1 is a cross-sectional perspective view showing a schematic configuration of an example nonaqueous electrolyte battery 1 according to the first embodiment.
  • a nonaqueous electrolyte battery 1 shown in FIG. 1 includes a substantially cylindrical exterior member (case) 2 and a first group of electrodes 3 in which a laminated body 9 of bipolar electrodes 8 described later is spirally wound.
  • the exterior member 2 is made of, for example, a laminate film in which a metal layer is interposed between two resin films.
  • the electrode group 3 of the first form of the laminated body 9 of the bipolar electrodes 8 is accommodated.
  • the exterior member 2 includes a bottomed cylindrical case body 5 in which a bottom surface 4a of a cylindrical body 4 is closed, and a disk-shaped lid that closes an open end 4b at the upper end of the cylindrical body 4 in FIG. And a body 6.
  • the lid body 6 is sealed in a sealed state via a sealing member 7.
  • FIG. 2 is a perspective view showing an overall schematic configuration of the electrode group 3 of the nonaqueous electrolyte battery 1 of the present embodiment.
  • the electrode group 3 of this embodiment is configured by laminating a plurality of bipolar electrodes 8 as follows.
  • the bipolar electrode 8 includes a rectangular flat current collector 10, a positive electrode active material layer 11 formed on one surface side (front surface side) of the current collector 10, and the other surface side (back surface side) of the current collector 10.
  • the negative electrode active material layer 12 is formed.
  • the positive electrode active material layer 11 and the negative electrode active material layer 12 sandwich the current collector 10, and are arranged on both sides of the current collector 10 so as not to overlap each other in the thickness direction of the current collector 10. Yes. That is, in FIG. 3A and FIG. 3B, the positive electrode active material layer 11 is disposed at a position biased to the left side of the center position in the longitudinal direction on the surface side of the current collector 10.
  • the negative electrode active material layer 12 is disposed on the back side of the current collector 10 in the figure at a position deviated to the right side from the center position in the longitudinal direction. A distance d is provided between the positive electrode active material layer 11 and the negative electrode active material layer 12 along the longitudinal direction of the current collector 10.
  • the material of the current collector 10 was made of aluminum and formed into a rectangular flat plate shape. Lithium manganese phosphate (hereinafter, LMP) was used for the positive electrode active material layer 11, and lithium titanate (hereinafter, LTO) was used for the negative electrode active material layer 12.
  • LMP Lithium manganese phosphate
  • LTO lithium titanate
  • the positive electrode active material layer 11 can occlude and release lithium.
  • the negative electrode active material layer 12 has a reaction potential in the vicinity of 1.5V.
  • LMP or LTO, a conductive additive, and a binder were mixed with 5 wt% carbon and 10 wt% polyvinylidene fluoride based on the total weight of the bipolar electrode 8. By forming these mixtures, unit elements of the bipolar electrode 8 shown in FIGS. 3A and 3B were produced.
  • FIG. 4 is a side view showing a bent state in which the current collector 10 of the unit element of the bipolar electrode 8 of FIGS. 3A and 3B is bent stepwise.
  • a first bent portion 10a bent in an L shape upward in FIG. 4 at the center position in the longitudinal direction of the current collector 10, and the first bent portion 10a is bent in an L shape horizontally.
  • the second bent portion 10b is formed.
  • the vertical board part 10c is formed between the 1st bending part 10a and the 2nd bending part 10b.
  • the 1st horizontal board part 10d connected via the 1st bending part 10a below the vertical board part 10c, and the 1st horizontal board part connected via the 2nd bending part 10b above the vertical board part 10c.
  • Two horizontal plate portions 10e are arranged.
  • the positive electrode active material layer 11 is disposed on the upper surface of the first horizontal plate portion 10d
  • the negative electrode active material layer 12 is disposed on the lower surface of the second horizontal plate portion 10e.
  • FIG. 5 is a side view of a stacked body 9 of bipolar electrodes 8 in which a plurality of unit elements of the bipolar electrode 8 of FIG. 4 are stacked in six layers in this embodiment and connected in series.
  • the unit element of the first-stage bipolar electrode 8 is expressed as a first unit element 8a
  • the second stage is similarly the second unit element 8b
  • the third stage is the third unit element 8c.
  • the fourth stage is represented as a fourth unit element 8d
  • the fifth stage as a fifth unit element 8e
  • the sixth stage as a sixth unit element 8f.
  • the same constituent parts of the unit elements 8a to 8f are displayed with the same subscripts.
  • the laminated body 9 includes one of the positive electrode active material layer 11 and the negative electrode active material layer 12 of the unit element 8 of the bipolar electrode 8 and the positive electrode of the other unit element 8 adjacent to the unit element 8 of the bipolar electrode 8 in the stacking direction.
  • the active material layer 11 and the negative electrode active material layer 12 are sequentially stacked in a state where the other one is opposed to the other.
  • the negative electrode active material layer 12a of the first-stage unit element 8a and the positive electrode active material layer 11b of the second-stage unit element 8b adjacent to each other in the stacking direction of the stacked body 9 are stacked to face each other. is doing. Further, a non-aqueous electrolyte layer (separator) 13 for separating the positive electrode active material layer 12b and the negative electrode active material layer 12a is inserted between the negative electrode active material layer 12a and the positive electrode active material layer 11b. Thereby, the 1st battery cell 14a is formed.
  • the stacked state between the second-stage unit element 8b of the bipolar electrode 8 and the third-stage unit element 8c adjacent in the stacking direction of the stacked body 9 has the same relationship, and further, the subsequent subsequent stages are adjacent.
  • the laminated state between the two unit elements 8 has the same relationship.
  • a laminated body 9 of bipolar electrodes 8 in which six unit elements 8a to 8f are laminated in six stages is formed.
  • a non-aqueous electrolyte layer (separator) 13 is inserted between the negative electrode active material layer 12b of the second-stage unit element 8b and the positive electrode active material layer 11c of the third-stage unit element 8c, so that the second battery A cell 14b is formed.
  • a non-aqueous electrolyte layer (separator) 13 is inserted between the negative electrode active material layer 12c of the third-stage unit element 8c and the positive electrode active material layer 11d of the fourth-stage unit element 8d. Battery cell 14c is formed. Further, a nonaqueous electrolyte layer (separator) 13 is inserted between the negative electrode active material layer 12d of the fourth-stage unit element 8d and the positive electrode active material layer 11e of the fifth-stage unit element 8e, so that the fourth battery A cell 14d is formed.
  • a nonaqueous electrolyte layer (separator) 13 is inserted between the negative electrode active material layer 12e of the fifth-stage unit element 8e and the positive electrode active material layer 11f of the sixth-stage unit element 8f, and the fifth battery cell 14e. Is formed.
  • the six unit elements 8a to 8f are displayed by being shifted in the vertical direction for easy understanding, but in reality, the six unit elements 8a to 8f are positioned at the upper end position in FIG. And the lower end position are arranged on the same plane.
  • the vertical direction is referred to as the stacking direction of the stacked body 9
  • the horizontal direction is referred to as the battery cell side-by-side direction orthogonal to the stacking direction of the stacked body 9.
  • FIG. 7 shows a laminate 9 in which unit elements of the bipolar electrode 8 are laminated in n stages (here, 13 stages).
  • FIG. 8 is a perspective view showing a mounting state of the current collecting tabs 15a and 15b of the electrode group 3 of the nonaqueous electrolyte battery 1 of the first embodiment.
  • one positive electrode current collecting tab 15a is formed on the outer peripheral surface of the electrode group 3 on one end side (right end side in FIG. 8) of the electrode group 3.
  • one negative electrode current collecting tab 15 b is formed on the other end side (left end side in FIG. 8) of the electrode group 3.
  • These current collecting tabs 15 a and 15 b are projected in parallel with the axial direction of the central axis of the spiral of the electrode group 3.
  • the projecting direction of the current collecting tabs 15a and 15b is not limited to this.
  • the current collecting tabs 15a and 15b are arranged in the tangential direction of the outer peripheral surface of the electrode group 3 (the central axis of the spiral of the electrode group 3). You may make it protrude in the direction orthogonal to an axial direction.
  • the electrode group 3 of the bipolar electrode 8 of the first form having the spiral structure is housed in the exterior member 2.
  • An insulating member such as a nonwoven fabric or a resin material is disposed on the inner peripheral surface of the exterior member 2.
  • the positive current collecting tab 15 a is connected to the current collector 10 on which the positive electrode active material layer 11 is laminated, and the negative current collecting tab 15 b is The negative electrode active material layer 12 is connected to the current collector 10 laminated.
  • the negative electrode current collecting tab 15b and the positive electrode current collecting tab 15a extend to the outside from an opening (not shown) of the exterior member 2 and are connected to the negative electrode terminal and the positive electrode terminal, respectively.
  • the bipolar electrode 8 and the nonaqueous electrolyte are completely sealed by heat-sealing the opening of the exterior member 2 with the current collecting tab 15b for the negative electrode and the current collecting tab 15a for the positive electrode interposed therebetween.
  • the electrode group can hold a non-aqueous electrolyte.
  • the nonaqueous electrolyte can also be accommodated in the main part of the exterior member 2 together with the electrode group.
  • the nonaqueous electrolyte battery 1 according to the first embodiment prevents leakage of the nonaqueous electrolyte through the opening provided in the lead holding portion, that is, leakage of the nonaqueous electrolyte from the inside of the battery to the outside of the battery. You can also.
  • the electrode lead that is heat-sealed at the periphery of the opening provided in the lead holding portion exhibits high sealing performance. Therefore, leakage of the nonaqueous electrolyte from the inside of the battery 1 to the outside of the battery 1 can be further prevented.
  • the electrode group 3 can include a positive electrode and a negative electrode. Furthermore, the electrode group 3 can also include a separator interposed between the positive electrode and the negative electrode.
  • the positive electrode can include a positive electrode current collector and a positive electrode material layer formed on the positive electrode current collector.
  • the positive electrode material layer may be formed on both sides of the positive electrode current collector, or may be formed only on one side. Further, the positive electrode current collector may include a positive electrode material layer unsupported portion in which the positive electrode material layer is not formed on any surface.
  • the positive electrode material layer can contain a positive electrode active material.
  • the positive electrode material layer can further include a conductive agent and a binder.
  • the conductive agent can be blended in order to improve current collection performance and suppress contact resistance between the positive electrode active material and the positive electrode current collector.
  • the binder can be blended to fill a gap between the dispersed positive electrode active materials and bind the positive electrode active material and the positive electrode current collector.
  • the positive electrode can be connected to the electrode lead, that is, the positive electrode lead, for example, via the positive electrode material layer unsupported portion of the positive electrode current collector.
  • the positive electrode and the positive electrode lead can be connected by, for example, welding.
  • the negative electrode can include a negative electrode current collector and a negative electrode material layer formed on the negative electrode current collector.
  • the negative electrode material layer may be formed on both sides of the negative electrode current collector, or may be formed only on one side.
  • the negative electrode current collector may include a negative electrode material layer unsupported portion in which the negative electrode material layer is not formed on any surface.
  • the negative electrode material layer can contain a negative electrode active material.
  • the negative electrode material layer can further include a conductive agent and a binder.
  • the conductive agent can be blended in order to enhance the current collecting performance and suppress the contact resistance between the negative electrode active material and the negative electrode current collector.
  • a binder can be mix
  • the negative electrode can be connected to the electrode lead, that is, the negative electrode lead, for example, via the negative electrode material layer unsupported portion of the negative electrode current collector.
  • the connection between the negative electrode and the negative electrode lead can be performed by welding, for example.
  • Negative electrode The negative electrode is produced, for example, by applying a negative electrode agent paste obtained by dispersing a negative electrode active material, a conductive agent and a binder in a suitable solvent to one or both sides of a negative electrode current collector and drying the paste. be able to. After drying, the negative electrode paste can be pressed.
  • Examples of the negative electrode active material include carbonaceous materials, metal oxides, metal sulfides, metal nitrides, alloys, and light metals that can occlude and release lithium ions.
  • Examples of the carbonaceous material that can occlude and release lithium ions include coke, carbon fiber, pyrolytic vapor phase carbonaceous material, graphite, resin fired body, mesophase pitch-based carbon fiber, or mesophase spherical carbon fired body. Can do. Among them, it is preferable to use mesophase pitch-based carbon fiber or mesophase spherical carbon graphitized at 2500 ° C. or higher because the electrode capacity can be increased.
  • the metal oxide examples include titanium-containing metal composite oxides, for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3. And tungsten-based oxides.
  • titanium-containing metal composite oxides for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3.
  • tungsten-based oxides examples include titanium-containing metal composite oxides, for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3, and silicon-based oxides such as SiO, such as WO 3. And tungsten-based oxides.
  • titanium-containing metal composite oxides for example, tin-based oxides such as SnB 0.4 P 0.6 O 3.1 and SnSiO 3
  • silicon-based oxides such as SiO, such as WO 3.
  • titanium-containing metal composite oxides examples include titanium-based oxides that do not contain lithium during lithium oxide synthesis, lithium titanium oxides, and some of the constituent elements of lithium titanium oxides such as Nb, Mo, W, P, A lithium titanium composite oxide substituted with at least one kind of different element selected from the group consisting of V, Sn, Cu, Ni and Fe can be given.
  • lithium titanium oxide examples include lithium titanate having a spinel structure (for example, Li 4 + x Ti 5 O 12 (x can be changed within a range of 0 ⁇ x ⁇ 3 by charge / discharge)), bronze Titanium oxide having a structure (B) or anatase structure (for example, Li x TiO 2 (0 ⁇ x ⁇ 1), composition before charging is TiO 2 ), ramsteride type lithium titanate (for example, Li 2 + y Ti 3 O 7 ( y can be changed within a range of 0 ⁇ y ⁇ 3 by charging / discharging), and niobium titanium oxide (for example, Li x NbaTiO 7 (0 ⁇ x, more preferably 0 ⁇ x ⁇ 1) 1 ⁇ a ⁇ 4)).
  • a spinel structure for example, Li 4 + x Ti 5 O 12 (x can be changed within a range of 0 ⁇ x ⁇ 3 by charge / discharge)
  • titanium-based oxide examples include metal composite oxides containing TiO 2 , Ti, and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Co, and Fe.
  • TiO 2 is preferably anatase type and low crystalline having a heat treatment temperature of 300 to 500 ° C.
  • the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Co, and Fe include TiO 2 —P 2 O 5 , TiO 2.
  • the metal composite oxide preferably has a microstructure in which a crystal phase and an amorphous phase coexist or exist alone. With such a microstructure, the cycle performance can be greatly improved.
  • a lithium titanium oxide, a metal composite oxide containing at least one element selected from the group consisting of Ti and P, V, Sn, Cu, Ni, Co, and Fe is preferable.
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • metal sulfide examples include lithium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 , Li x FeS 2 (where 0 ⁇ x ⁇ 1)).
  • lithium cobalt nitride Li x Co y N (where 0 ⁇ x ⁇ 4, 0 ⁇ y ⁇ 0.5)
  • lithium titanate having a spinel structure is desirable to use as the negative electrode active material.
  • a carbon material can be used as the conductive agent.
  • the carbon material include acetylene black, carbon black, coke, carbon fiber, and graphite.
  • binder for example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), or the like is used.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • the negative electrode current collector various metal foils and the like can be used depending on the negative electrode potential.
  • examples thereof include aluminum foil, aluminum alloy foil, stainless steel foil, titanium foil, copper foil, and nickel foil.
  • the thickness of the foil at this time is preferably 8 ⁇ m or more and 25 ⁇ m or less.
  • the negative electrode potential can be nobler than 0.3 V with respect to metallic lithium, for example, when lithium titanium oxide is used as the negative electrode active material, the use of aluminum foil or aluminum alloy foil reduces the battery weight. Is preferable.
  • the average crystal grain size of the aluminum foil and the aluminum alloy foil is preferably 50 ⁇ m or less.
  • the aluminum foil or aluminum alloy foil having an average crystal particle size range of 50 ⁇ m or less is affected by many factors such as material composition, impurities, processing conditions, heat treatment history and annealing conditions, and the crystal The particle diameter (diameter) is adjusted by combining the above factors in the production process.
  • the thickness of the aluminum foil and the aluminum alloy foil is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% or more.
  • As the aluminum alloy an alloy containing at least one element such as magnesium, zinc, or silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less. In the case of in-vehicle use, it is particularly preferable to use an aluminum alloy foil.
  • the mixing ratio of the negative electrode active material, the conductive agent and the binder should be in the range of 80 to 95% by weight of the negative electrode active material, 3 to 20% by weight of the conductive agent, and 1.5 to 7% by weight of the binder. preferable.
  • Positive electrode The positive electrode is produced, for example, by applying a positive electrode agent paste obtained by dispersing a positive electrode active material, a conductive agent, and a binder in a suitable solvent to one or both sides of a positive electrode current collector and drying it. be able to. After drying, the positive electrode paste can be pressed.
  • a positive electrode agent paste obtained by dispersing a positive electrode active material, a conductive agent, and a binder in a suitable solvent to one or both sides of a positive electrode current collector and drying it. be able to. After drying, the positive electrode paste can be pressed.
  • the positive electrode active material examples include various oxides and sulfides.
  • LiMn y Co 1-y O 2 (where 0 ⁇ y ⁇ 1)
  • spinel type lithium manganese nickel composite oxide (Li x Mn 2-y Ni y O 4 (where 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ In a)
  • lithium phosphates having an olivine structure Li x FePO 4, Li x Fe 1-y Mn y PO 4, Li x MnPO 4, Li x Mn 1-y Fe y PO 4, Li x CoPO 4 (Where 0 ⁇ x ⁇ 1.2 and 0 ⁇ y ⁇ 1)
  • iron sulfate Fe 2 (SO 4 ) 3
  • vanadium oxide eg, V 2 O 5
  • examples of the positive electrode active material include conductive polymer materials such as polyaniline and polypyrrole, disulfide polymer materials, organic materials such as sulfur (S) and carbon fluoride, and inorganic materials.
  • More preferable positive electrode active materials are spinel-type manganese lithium (Li x Mn 2 O 4 (where 0 ⁇ x ⁇ 1.1)) and olivine-type lithium iron phosphate (Li x FePO 4 ) having high thermal stability.
  • olivine type lithium manganese phosphate Li x MnPO 4 (where 0 ⁇ x ⁇ 1)
  • olivine type lithium manganese iron phosphate Li x Mn 1-y Fe y PO 4 (where 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 0.5)).
  • acetylene black, carbon black, artificial graphite, natural graphite, conductive polymer, or the like can be used as the conductive agent.
  • binder examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), modified PVdF obtained by substituting at least one of hydrogen or fluorine of PVdF with another substituent, and vinylidene fluoride-6 fluoride.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • modified PVdF obtained by substituting at least one of hydrogen or fluorine of PVdF with another substituent
  • vinylidene fluoride-6 fluoride vinylidene fluoride-6 fluoride.
  • a copolymer of propylene fluoride, a terpolymer of polyvinylidene fluoride-tetrafluoroethylene-6propylene fluoride, or the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • Examples of the positive electrode current collector include aluminum foil, aluminum alloy foil, stainless steel foil, and titanium foil having a thickness of 8 to 25 ⁇ m.
  • the positive electrode current collector is preferably an aluminum foil or an aluminum alloy foil.
  • the average crystal grain size of the aluminum foil or aluminum alloy foil is preferably 50 ⁇ m or less. More preferably, the average crystal grain size of the aluminum foil or aluminum alloy foil is 30 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the strength of the aluminum foil or the aluminum alloy foil can be dramatically increased, the positive electrode can be densified with a high press pressure, and the battery capacity can be increased. Can be increased.
  • Aluminum foil or aluminum alloy foil having an average crystal grain size in the range of 50 ⁇ m or less is affected by a number of factors such as material structure, impurities, processing conditions, heat treatment history, and annealing conditions, and the crystal grain size is It is adjusted by combining the above factors in the manufacturing process.
  • the thickness of the aluminum foil and the aluminum alloy foil is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the purity of the aluminum foil is preferably 99% or more.
  • As the aluminum alloy an alloy containing elements such as magnesium, zinc and silicon is preferable.
  • the content of transition metals such as iron, copper, nickel and chromium is preferably 1% or less.
  • the mixing ratio of the positive electrode active material, the conductive agent and the binder should be in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive agent, and 1.5 to 7% by weight of the binder. preferable.
  • a porous separator can be used as the separator.
  • the porous separator include a porous film containing polyethylene, polypropylene, cellulose, or polyvinylidene fluoride (PVdF), and a synthetic resin nonwoven fabric.
  • PVdF polyvinylidene fluoride
  • porous films made of polyethylene or polypropylene, or both are easy to add a shutdown function that closes the pores and significantly attenuates the charge / discharge current when the battery temperature rises. This is preferable because the property can be improved. From the viewpoint of cost reduction, it is preferable to use a cellulose separator.
  • Non-aqueous electrolytes include LiBF 4 , LiPF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li (CF 3 SO 2 ) Examples thereof include organic electrolytes in which one or more lithium salts selected from 3 C, LiB [(OCO) 2 ] 2 and the like are dissolved in an organic solvent at a concentration in the range of 0.5 to 2 mol / L.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC), and dimethoxy.
  • Chain ethers such as ethane (DME) and diethoxyethane (DEE), cyclic ethers such as tetrahydrofuran (THF) and dioxolane (DOX), ⁇ -butyrolactone (GBL), acetonitrile (AN), sulfolane (SL), etc. It is preferable to use a single solvent or a mixed solvent.
  • a room temperature molten salt (ionic melt) containing lithium ions can be used as the non-aqueous electrolyte.
  • a secondary battery having a wide operating temperature can be obtained by selecting an ionic melt composed of lithium ions, an organic cation and an anion, which is liquid at 100 ° C. or less, preferably at room temperature or less.
  • the thickness of the stainless steel member that can be used as the case is desirably 0.2 mm or less.
  • the stainless steel member is composed of a composite film material in which a metal foil made of stainless steel and a rigid organic resin film are laminated in this order on a heat-fusible resin film (thermoplastic resin film) located in the innermost layer. It is possible.
  • heat-fusible resin film for example, a polyethylene (PE) film, a polypropylene (PP) film, a polypropylene-polyethylene copolymer film, an ionomer film, an ethylene vinyl acetate (EVA) film, or the like can be used.
  • a polyethylene terephthalate (PET) film, a nylon film, etc. can be used, for example.
  • the case may be composed of a case main body having a concave portion that can be a main portion for accommodating the electrode group, and an outer portion outside the concave portion, and a lid.
  • the case main body and the lid may be an integrated member that is seamless and continuous.
  • Electrode lead As the electrode lead that can be electrically connected to the positive electrode, that is, the positive electrode lead, for example, aluminum, titanium, an alloy based on them, stainless steel, or the like can be used.
  • the negative electrode lead that can be electrically connected to the negative electrode that is, the negative electrode lead, for example, nickel, copper and alloys based on them can be used.
  • the negative electrode potential is nobler than 1 V with respect to metallic lithium, for example, when lithium titanate is used as the negative electrode active material, aluminum or an aluminum alloy can be used as the negative electrode lead material. In this case, it is preferable to use aluminum or an aluminum alloy for both the positive electrode lead and the negative electrode lead because the light weight and the electric resistance can be kept small.
  • the positive electrode lead and the negative electrode lead are not much higher than the strength of the positive electrode current collector or the negative electrode current collector connected to the positive electrode lead because stress concentration at the connection portion is reduced.
  • ultrasonic welding which is one of the preferred methods, is applied as means for connecting to the current collector, stronger welding can be easily performed when the Young's modulus of the positive electrode lead or the negative electrode lead is smaller.
  • annealed pure aluminum JIS 1000 series is preferable as a material for the positive electrode lead or the negative electrode lead.
  • the thickness of the positive electrode lead is desirably 0.1 to 1 mm, and a more preferable range is 0.2 to 0.5 mm.
  • the thickness of the negative electrode lead is desirably 0.1 to 1 mm, and a more preferable range is 0.2 to 0.5 mm.
  • the nonaqueous electrolyte battery 1 includes the bipolar electrode 8 and the nonaqueous electrolyte layer 13.
  • the bipolar electrode 8 includes a current collector 10, a positive electrode active material layer 11 on one surface side of the current collector 10, and a negative electrode active material layer 12 on the other surface side of the current collector 10.
  • the bipolar electrode 8 is disposed at a position where the position of the positive electrode active material layer 11 does not overlap the position of the negative electrode active material layer 12 in the thickness direction of the current collector 10.
  • stacked multiple bipolar electrodes 8 via the nonaqueous electrolyte layer 13 is provided.
  • the laminated body 9 includes any one of the positive electrode active material layer 11 and the negative electrode active material layer 12 of the bipolar electrode 8, and the positive electrode active material layer 11 and the negative electrode active material of the other bipolar electrode 8 adjacent to the bipolar electrode 8 in the stacking direction.
  • the layers 12 are sequentially stacked with one of the other layers 12 facing each other.
  • the laminate 9 of the first form in which the laminate 9 of the bipolar electrode 8 is spirally wound is formed, and the laminate 9 of the first form is accommodated in the exterior member 2. Therefore, with the above-described configuration, it is possible to increase the energy density and the resistance of the nonaqueous electrolyte battery 1 that is a bipolar battery with a small volume, prevent a liquid junction, and simplify the production.
  • the winding direction in which the laminated body 9 of the bipolar electrode 8 is wound in a spiral shape is wound in a direction different from the winding direction in the first embodiment. That is, in this embodiment, as shown in FIG. 10, the laminate 9 is spirally wound in the battery cell side-by-side direction of the laminate 9 (direction perpendicular to the winding direction of the laminate 9 of the first embodiment). It was configured to be.
  • one positive electrode current collecting tab 15a is formed on the outer peripheral surface of the electrode group 3 on one end side (the upper end side in FIG. 9) of the electrode group 3. .
  • one negative electrode current collecting tab 15 b is formed at the center position on the upper end side in FIG. 9 of the electrode group 3. These current collecting tabs 15 a and 15 b are projected in parallel with the axial direction of the central axis of the spiral of the electrode group 3.
  • the number of battery cells in the electrode group 3 arranged side by side, the area of each battery cell, and the like can be set as appropriate according to use conditions and applications.
  • the non-aqueous electrolyte battery 1 which is a bipolar type battery has a small volume as in the non-aqueous electrolyte battery 1 of the first embodiment, but the energy density and the resistance are reduced. It is possible to prevent liquid junction and simplify the production.
  • FIG. 11 is a perspective view showing a schematic configuration of the laminate 9 of the bipolar electrode 8 of the nonaqueous electrolyte battery according to the third embodiment.
  • the laminated body 9 of the bipolar electrodes 8 shown in FIG. 5 is divided into a plurality of parts with a predetermined length in one direction, and the divided portions 21 are sequentially folded and folded in a zigzag manner.
  • the electrode group 3 of the bipolar electrode 8 of a certain second form is configured.
  • one positive electrode current collecting tab 15a is formed at the end of one end side of the electrode group 3 (upper end side in FIG. 12).
  • One collecting tab 15b for negative electrode is provided at the end of the other end side (lower end side in FIG. 12) of the electrode group 3.
  • the electrode group 3 of the bipolar electrode 8 of this embodiment is housed in a substantially rectangular exterior member (case).
  • a certain nonaqueous electrolyte battery 1 can have a high energy density and a low resistance, can prevent liquid junction, and can be easily manufactured.
  • FIG. 12 is a perspective view showing a schematic configuration of the laminate 9 of the bipolar electrode 8 of the nonaqueous electrolyte battery according to the fourth embodiment.
  • the stacked body 9 is folded in a zigzag shape in the battery cell side-by-side direction of the stacked body 9 (a direction perpendicular to the zigzag folded direction of the stacked body 9 in the third embodiment). I made it.
  • one positive electrode current collecting tab 15a is formed at one end of the electrode group 3 of the bipolar electrode 8 (upper end in FIG. 12).
  • One negative electrode current collecting tab 15b is provided at the end of the electrode group 3 of the bipolar electrode 8 on the other end side (the lower end side in FIG. 12).
  • FIG. 13 is a perspective view showing a schematic configuration of the electrode group of the bipolar electrode of the nonaqueous electrolyte battery according to the fifth embodiment.
  • the bipolar electrode 8 having a single structure in which the positive electrode active material layer 11 is formed on one surface side of the current collector 10 and the negative electrode active material layer 12 is formed on the other surface side of the current collector 10 is arranged in one direction.
  • the electrode group 3 of the bipolar electrode 8 of the second form is configured in which the divided portions 31 are divided into a plurality of pieces with a predetermined length, and the respective divided portions 31 are sequentially folded alternately and folded in a zigzag manner. .
  • the nonaqueous electrolyte battery 1 that is a bipolar battery with a small volume. It is possible to prevent liquid junction and simplify the production.
  • a laminated body in which a plurality of bipolar electrodes 8 are laminated in the thickness direction through a nonaqueous electrolyte layer (separator) 13 is provided between the negative electrode active material layer 12 and the positive electrode active material layer 11 of the bipolar electrode 8.
  • the electrode group of the bipolar electrode 8 of the second form in which the laminated body is divided into a plurality of sections with a predetermined length in one direction, and the sections 31 are sequentially folded and folded in a zigzag manner. 3 may be configured.
  • FIG. 14 is an exploded perspective view showing a schematic configuration of a battery pack 90 incorporating the nonaqueous electrolyte battery 1 of any of the first to fifth embodiments.
  • FIG. 15 is a block diagram showing an electric circuit of the battery pack 90 of FIG.
  • the battery pack 90 shown in FIGS. 14 and 15 includes a plurality of unit cells 91.
  • the unit cell 91 is the nonaqueous electrolyte battery 1 described in the first to fifth embodiments.
  • the plurality of single cells 91 are stacked such that the negative electrode terminal 63 and the positive electrode terminal 64 extending to the outside are aligned in the same direction, and are fastened with an adhesive tape 65 to constitute an assembled battery 66. These unit cells 91 are electrically connected to each other in series as shown in FIG.
  • the printed wiring board 67 is disposed to face the side surface from which the negative electrode terminal 63 and the positive electrode terminal 64 of the unit cell 91 extend. As shown in FIG. 15, a thermistor 68, a protection circuit 69, and a terminal 70 for energizing external devices are mounted on the printed wiring board 67. An insulating plate (not shown) is attached to the surface of the printed wiring board 67 facing the assembled battery 66 in order to avoid unnecessary wiring and wiring of the assembled battery 66.
  • the positive electrode side lead 71 is connected to a positive electrode terminal 64 located in the lowermost layer of the assembled battery 66, and the tip thereof is inserted into the positive electrode side connector 72 of the printed wiring board 67 and electrically connected thereto.
  • the negative electrode side lead 73 is connected to the negative electrode terminal 63 located on the uppermost layer of the assembled battery 66, and the tip thereof is inserted into the negative electrode side connector 74 of the printed wiring board 67 and electrically connected thereto.
  • These connectors 72 and 74 are connected to the protection circuit 69 through wirings 75 and 76 formed on the printed wiring board 67.
  • the thermistor 68 detects the temperature of the unit cell 91, and the detection signal is transmitted to the protection circuit 69.
  • the protection circuit 69 can cut off the plus side wiring 77a and the minus side wiring 77b between the protection circuit 69 and the terminal 70 for energization to an external device under a predetermined condition.
  • An example of the predetermined condition is, for example, when the temperature detected by the thermistor 68 is equal to or higher than a predetermined temperature.
  • Another example of the predetermined condition is when, for example, overcharge, overdischarge, overcurrent, or the like of the unit cell 91 is detected. This detection of overcharge or the like is performed on each individual cell 91 or the entire assembled battery 66.
  • the battery voltage When detecting the individual cells 91, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected. In the latter case, a lithium electrode used as a reference electrode is inserted into each unit cell 91.
  • a wiring 78 for voltage detection is connected to each of the single cells 91. A detection signal is transmitted to the protection circuit 69 through these wirings 78.
  • Protective sheets 79 made of rubber or resin are disposed on the three side surfaces of the assembled battery 66 excluding the side surfaces from which the positive electrode terminal 64 and the negative electrode terminal 63 protrude.
  • the assembled battery 66 is stored in the storage container 80 together with each protective sheet 79 and the printed wiring board 67. That is, the protective sheet 79 is disposed on each of the inner side surface in the long side direction and the inner side surface in the short side direction of the storage container 80, and the printed wiring board 67 is disposed on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 66 is located in a space surrounded by the protective sheet 79 and the printed wiring board 67.
  • the lid 81 is attached to the upper surface of the storage container 80.
  • a heat shrink tape may be used instead of the adhesive tape 65 for fixing the assembled battery 66.
  • the protective sheets 79 are arranged on both side surfaces of the assembled battery 66, the heat shrinkable tube is circulated, and then the heat shrinkable tube is thermally contracted to bind the assembled battery 66.
  • the assembled battery pack 90 can also be connected in series and / or in parallel.
  • the mode of the battery pack 90 is appropriately changed depending on the use.
  • a use of the battery pack 90 one in which cycle characteristics with a large current characteristic are desired is preferable.
  • Specific applications include power supplies for digital cameras, and in-vehicle applications such as two-wheel to four-wheel hybrid electric vehicles, two-wheel to four-wheel electric vehicles, and assist bicycles.
  • the battery pack 90 is particularly suitable for in-vehicle use.
  • the bipolar battery in which the positive electrode active material layer is formed on one plate surface of the current collector and the negative electrode active material is formed on the other plate surface is intended to increase the energy density and reduce the resistance.
  • a bipolar battery, a method of manufacturing the same, and a battery pack can be provided.
  • SYMBOLS 1 Non-aqueous electrolyte battery, 2 ... Exterior member, 3 ... Electrode group, 8 ... Bipolar electrode, 8a-8f ... Unit element, 9 ... Laminated body, 10 ... Current collector, 11 ... Positive electrode active material layer, 12 ... Negative electrode Active material layer, 13 ... Nonaqueous electrolyte layer, 14 ... Battery cell, 15 ... Current collecting tab, 90 ... Battery pack, 91 ... Single cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 実施形態は、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができる非水電解質電池及び電池パックを提供することが課題である。 非水電解質電池1は、バイポーラ電極8と、非水電解質層13と、を具備する。バイポーラ電極8は、集電体10と、集電体10の一面側の正極活物質層11と、他面側の負極活物質層12とを有する。バイポーラ電極8は、正極活物質層11の位置が負極活物質層12の位置と集電体10の厚さ方向に重ならない位置に配置している。そして、バイポーラ電極8を非水電解質層13を介して積層させた積層体9を設けている。積層体9を渦巻き状に巻回している第1の形態の電極群、または積層体9を互い違いにそれぞれ折り曲げて折り畳んで重ねてある第2の形態の電極群のいずれか一方を有する。

Description

非水電解質電池及び電池パック
 本発明の実施形態は、非水電解質電池及び電池パックに関する。
 近年、高エネルギー密度電池として、リチウムイオン二次電池のような非水電解質電池の研究開発が盛んに進められている。非水電解質電池は、ハイブリッド自動車や、電気自動車、携帯電話基地局の無停電電源用などの電源として期待されている。しかしながら、リチウムイオン二次電池の単電池を大型化しても単電池から得られる電圧は3.7V程度と低電圧である。そのため、高出力を得るためには、大型化した単電池から大電流を取り出す必要があるので、装置全体が大型化する問題がある。
 これらの問題を解決する電池として、バイポーラ型電池が提案されている。バイポーラ型電池は、集電体の一方の板面に正極活物質層を形成するとともに、同他方の板面に負極活物質層を形成するバイポーラ電極と電解質層とを挟んで複数枚直列に積層した構造の電池である。このバイポーラ型電池では、単電池内部で直列に積層するため、単電池においても高電圧を得ることができる。よって、高出力を得る際にも高電圧定電流で出力が得られ、さらには、電池接続部の電気抵抗を大幅に低減できる。
 リチウムイオン二次電池では、液状の電解質を用いた構造が用いられている。しかしながら、バイポーラ型電池は単電池中で正極と負極が繰り返されるため、リチウムイオン二次電池の液状の電解質を用いた構造をバイポーラ型電池に適応することはできない。すなわち、バイポーラ型電池の構造上、電極層間に存在する電解液が互いに触れることによりイオン伝導による短絡(液絡)が起きないように、各電極間を独立させた構造をとる必要がある。
 これまでに、液状の電解質を含まない高分子固体電解質を用いたバイポーラ型電池が提案されている。この方法を用いると電池内に液状の電解質を含まないことから、電極層間のイオン伝導による短絡(液絡)の可能性が低くなる。しかし、一般的に固体電解質のイオン伝導度は液状の電解質に比べて1/10から1/100程度と非常に低い。このため、電池の出力密度が低くなってしまう問題が生じるため、実用化にはいたっていない。
 これらの事情を鑑みて、液状の電解質を半固形化したゲル電解質を用いたバイポーラ型電池が提案されている。ゲル電解質は、ポリエチレンオキサイド(PEO)、ポリフッ化ビニリデン(PVdF)などの高分子に電解液を染み込ませたゲル状の電解質である。このゲル電解質は、イオン伝導度が高く、電池の出力密度も十分に得られることが期待される。
特表2012-521624号公報
 バイポーラ型電池を大型化(高エネルギー密度化)するためには課題が残っている。バイポーラ型電池を高エネルギー密度化する方法として、正負極の電極面積を大きくする方法や、小面積のバイポーラ型単電池を並列に接続する方法などが考えられる。
 従来の電極構造を持つリチウムイオン二次電池は、正負極の電極とセパレータを隙間なく渦巻き状に巻き付けて、電池外装に高密度で充填することで高エネルギー密度化を図っている。しかし、バイポーラ型電池においては、その構造上、正極及び負極が一体となって形成されていることから、渦巻き状の巻き付けにより対極が互いに接触することになる。このため、バイポーラ電極層間にセパレータやポリマーなどの絶縁層を挟むなどしない限りは短絡してしまうという問題がある。
 本実施形態は、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる非水電解質電池及び電池パックを提供することを課題とする。
 実施形態によれば、非水電解質電池は、バイポーラ電極と、非水電解質層とを具備する。バイポーラ電極は、集電体と、前記集電体の一面側の正極活物質層と、前記集電体の他面側の負極活物質層とを有する。前記バイポーラ電極は、前記正極活物質層の位置が前記負極活物質層の位置と前記集電体の厚さ方向に重ならない位置に配置している。前記バイポーラ電極を電解質層を介して複数積層させた積層体を設けている。前記積層体は、前記バイポーラ電極の前記正極活物質層および前記負極活物質層のいずれか一方と、前記バイポーラ電極と積層方向に隣接する他の前記バイポーラ電極の前記正極活物質層および前記負極活物質層のいずれか他方とを対向配置させた状態で順次、積層している。前記バイポーラ電極を渦巻き状に巻回している第1の形態、または前記バイポーラ電極を一方向に所定の長さで複数に区分けし、各区分け部分間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある第2の形態のいずれか一方を有する。
第1の実施形態の非水電解質電池の概略構成を示す断面斜視図である。 第1の実施形態の非水電解質電池の電極群全体の概略構成を示す斜視図である。 バイポーラ電極の単位要素の概略構成を示す側面図である。 図3Aのバイポーラ電極の単位要素の平面図である。 バイポーラ電極の集電体の屈曲状態を示す側面図である。 バイポーラ電極の積層体の側面図である。 バイポーラ電極の積層体における積層状態を説明するための平面図である。 バイポーラ電極の積層体を渦巻き状に巻回している第1の形態の巻回状態を説明するための概略構成図である。 第1の実施形態の非水電解質電池の集電タブの取り付け状態を示す斜視図である。 第2の実施形態の非水電解質電池のバイポーラ電極の積層体の概略構成を示す斜視図である。 第2の実施形態のバイポーラ電極の積層体の積層状態を説明するための斜視図である。 第3の実施形態の非水電解質電池のバイポーラ電極の積層体の概略構成を示す斜視図である。 第4の実施形態の非水電解質電池のバイポーラ電極の積層体の概略構成を示す斜視図である。 第5の実施形態の非水電解質電池のバイポーラ電極の電極群の概略構成を示す斜視図である。 第1の実施形態の非水電解質電池の電池パックの概略構成を示す分解斜視図である。 図14の電池パックの電気回路を示すブロック図である。
 以下に、第1の実施形態に係る非水電解質電池及び電池パックについて図面を参照して説明する。なお、実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。
 (第1実施形態) 
 図1乃至図8は、第1の実施形態を示す。図1は、第1の実施形態に係る一例の非水電解質電池1の概略構成を示す断面斜視図である。図1に示す非水電解質電池1は、ほぼ円筒形状の外装部材(ケース)2と、後述するバイポーラ電極8の積層体9を渦巻き状に巻回している第1の形態の電極群3とを有する。外装部材2は、例えば2枚の樹脂フィルムの間に金属層を介在したラミネートフィルムからなる。この外装部材2内にバイポーラ電極8の積層体9の第1の形態の電極群3が収納されている。
 本実施形態の外装部材2は、円筒体4の底面4aが閉塞された有底円筒状のケース本体5と、円筒体4の図1中で上端の開口端4bを閉塞する円板状の蓋体6とを有する。蓋体6は、封止部材7を介して密閉状態に封止されている。
 図2は、本実施形態の非水電解質電池1の電極群3の全体の概略構成を示す斜視図である。本実施形態の電極群3は次の通り複数のバイポーラ電極8を積層させて構成されている。
 図3A、図3Bは、バイポーラ電極8の単位要素の基本構造を示す。バイポーラ電極8は、長方形の平板状の集電体10と、集電体10の一面側(表面側)に形成された正極活物質層11と、集電体10の他面側(裏面側)に形成された負極活物質層12とを有する。ここで、正極活物質層11と負極活物質層12とは、集電体10を挟み、その両側に集電体10の厚さ方向に互いに重ならない位置に横にずらした状態で配置されている。すなわち、図3A、図3B中で、正極活物質層11は、集電体10の表面側で長手方向の中央位置よりも左側に偏った位置に配置されている。負極活物質層12は、同図中で集電体10の裏面側で長手方向の中央位置よりも右側に偏った位置に配置されている。そして、集電体10の長手方向に沿って正極活物質層11と負極活物質層12との間に距離dの間隔が空いている。
 集電体10の素材にはアルミニウムを用い、長方形の平板状に成形した。正極活物質層11にはリン酸マンガンリチウム(以下LMP)、負極活物質層12にはチタン酸リチウム(以下LTO)を用いた。正極活物質層11は、リチウムを吸蔵及び放出可能である。負極活物質層12は、1.5V付近に反応電位が存在する。LMPもしくはLTOと導電助剤、粘結材をそれぞれバイポーラ電極8の総重量に対してカーボンを5wt%、ポリフッ化ビニリデンを10wt%混合した。これらの混合物を成形することで、図3A、図3Bに示すバイポーラ電極8の単位要素を作製した。
 図4は、図3A、図3Bのバイポーラ電極8の単位要素の集電体10を段状に屈曲させた屈曲状態を示す側面図である。ここでは、集電体10の長手方向の中央位置に図4中で上向きにL字状に屈曲させた第1の屈曲部10aと、この第1の屈曲部10aを横向きにL字状に屈曲させた第2の屈曲部10bとを形成している。これにより、第1の屈曲部10aと第2の屈曲部10bとの間に縦板部10cが形成されている。さらに、縦板部10cの下側に第1の屈曲部10aを介して連結される第1の横板部10d、縦板部10cの上側に第2の屈曲部10bを介して連結される第2の横板部10eがそれぞれ配置されている。そして、第1の横板部10dの上面には、正極活物質層11、第2の横板部10eの下面には、負極活物質層12がそれぞれ配置されている。
 図5は、図4のバイポーラ電極8の単位要素を複数、本実施形態では6段に積層させて直列接続したバイポーラ電極8の積層体9の側面図である。本実施形態の積層体9は、1段目のバイポーラ電極8の単位要素を第1単位要素8aと表記し、2段目を同様に第2単位要素8b、3段目を第3単位要素8c、4段目を第4単位要素8d、5段目を第5単位要素8e、6段目を第6単位要素8fとそれぞれ表記する。さらに、各単位要素8a~8fの同一の構成部分には、同一の添え字を付して表示する。
 積層体9は、バイポーラ電極8の単位要素8の正極活物質層11および負極活物質層12のいずれか一方と、バイポーラ電極8の単位要素8と積層方向に隣接する他の単位要素8の正極活物質層11および負極活物質層12のいずれか他方とを対向配置させた状態で順次、積層している。
 図5では、1段目の単位要素8aの負極活物質層12aと、積層体9の積層方向に隣接する2段目の単位要素8bの正極活物質層11bとを対向配置させた状態で積層している。さらに、負極活物質層12aと正極活物質層11bとの間には、正極活物質層12bと負極活物質層12aとを隔離するための非水電解質層(セパレータ)13が挿入されている。これにより、第1の電池セル14aが形成されている。
 バイポーラ電極8の2段目の単位要素8bと、積層体9の積層方向に隣接する3段目の単位要素8cとの間の積層状態も同様の関係であり、さらに、以降の後段の隣接する2つの単位要素8間の積層状態も同様の関係である。これにより、図6に模式的に示すように6個の単位要素8a~8fを6段に積層させたバイポーラ電極8の積層体9が形成されている。そして、2段目の単位要素8bの負極活物質層12bと、3段目の単位要素8cの正極活物質層11cとの間に非水電解質層(セパレータ)13が挿入され、第2の電池セル14bが形成されている。
 同様に、3段目の単位要素8cの負極活物質層12cと、4段目の単位要素8dの正極活物質層11dとの間に非水電解質層(セパレータ)13が挿入され、第3の電池セル14cが形成されている。さらに、4段目の単位要素8dの負極活物質層12dと、5段目の単位要素8eの正極活物質層11eとの間に非水電解質層(セパレータ)13が挿入され、第4の電池セル14dが形成されている。5段目の単位要素8eの負極活物質層12eと、6段目の単位要素8fの正極活物質層11fとの間に非水電解質層(セパレータ)13が挿入され、第5の電池セル14eが形成されている。
 なお、図6では、6個の単位要素8a~8fは、理解しやすいように上下方向にずらして表示しているが、実際は、6個の単位要素8a~8fは、図6中の上端位置と下端位置とは同一面に配置されている。さらに、図5中で、上下方向を積層体9の積層方向、左右方向を積層体9の積層方向と直交する電池セル横並び方向と称する。
 本実施形態では、上述した積層体9を図7に示すようにこの積層体9の積層方向に渦巻き状に巻回して第1の形態のバイポーラ電極8の電極群3を構成したものである。なお、図7は、バイポーラ電極8の単位要素をn段(ここでは13段)に積層させた積層体9を示している。
 さらに、図8は、第1の実施形態の非水電解質電池1の電極群3の集電タブ15a、15bの取り付け状態を示す斜視図である。ここでは、図8に示すように電極群3の一端側(図8中で右端側)の電極群3の外周面に1つの正極用の集電用タブ15aが形成されている。さらに、電極群3の他端側(図8中で左端側)に1つの負極用の集電用タブ15bが形成されている。これらの集電タブ15a、15bは、電極群3の渦巻きの中心軸の軸方向と平行に突出させている。なお、集電タブ15a、15bの突出方向は、これに限られるものではなく、例えば、集電タブ15a、15bは、電極群3の外周面の接線方向(電極群3の渦巻きの中心軸の軸方向と直交する方向)に突出させてもよい。
 図1に示すように第1の実施形態に係る非水電解質電池1では、上記渦巻き構造の第1の形態のバイポーラ電極8の電極群3が外装部材2内に収納されている。外装部材2の内周面には、例えば不織布や、樹脂材料などの絶縁部材が配設されている。
 バイポーラ電極8の電極群3の外周端近傍において、正極用の集電用タブ15aは、正極活物質層11が積層された集電体10に接続され、負極用の集電用タブ15bは、負極活物質層12が積層された集電体10に接続されている。これらの負極用の集電用タブ15b及び正極用の集電用タブ15aは、外装部材2の図示しない開口部から外部に延出され、負極端子及び正極端子にそれぞれ接続されている。外装部材2の開口部を負極用の集電用タブ15b及び正極用の集電用タブ15aを挟んでヒートシールすることによりバイポーラ電極8及び非水電解質を完全密封している。
 次に、第1の実施形態に係る非水電解質電池1をより詳細に説明する。電極群は、非水電解質を保持することができる。非水電解質も、電極群と共に、外装部材2の主部に収納され得る。
 第1の実施形態に係る非水電解質電池1は、リード挟持部に設けられた開口部を介しての非水電解質の漏出、すなわち、電池内部から電池外部への非水電解質の漏出を防ぐこともできる。特に、第1の実施形態に係る非水電解質電池1のうち、電極リードがリード挟持部に設けられた開口部の周縁に熱シールされているものは、熱シールが高いシール性を示す。そのため、電池1の内部から電池1の外部への非水電解質の漏出を更に防ぐことができる。電極群3は正極及び負極を含み得る。更に、電極群3は、正極と負極との間に介在したセパレータを含むこともできる。
 正極は、正極集電体と正極集電体上に形成された正極材料層とを備えることができる。正極材料層は、正極集電体の両面上に形成されていてもよいし、又は片面のみに形成されていてもよい。また、正極集電体は、いずれの面上にも正極材料層が形成されていない正極材料層無担持部を含んでいてもよい。
 正極材料層は、正極活物質を含むことができる。正極材料層は、導電剤及び結着剤を更に含むことができる。導電剤は、集電性能を高め、且つ、正極活物質と正極集電体との間の接触抵抗を抑えるために配合することができる。結着剤は、分散された正極活物質の間隙を埋め、また、正極活物質と正極集電体とを結着させるために配合することができる。
 正極は、例えば正極集電体の正極材料層無担持部を介して、電極リード、すなわち正極リードに接続することができる。正極と正極リードとの接続は、例えば溶接によって行うことができる。
 負極は、負極集電体と負極集電体上に形成された負極材料層とを備えることができる。負極材料層は、負極集電体の両面上に形成されていてもよいし、又は片面のみに形成されていてもよい。また、負極集電体は、いずれの面上にも負極材料層が形成されていない負極材料層無担持部を含んでいてもよい。
 負極材料層は、負極活物質を含むことができる。負極材料層は、導電剤及び結着剤を更に含むことができる。導電剤は、集電性能を高め、且つ、負極活物質と負極集電体との間の接触抵抗を抑えるために配合することができる。結着剤は、分散された負極活物質の間隙を埋め、また、負極活物質と負極集電体とを結着させるために配合することができる。
 負極は、例えば負極集電体の負極材料層無担持部を介して、電極リード、すなわち負極リードに接続することができる。負極と負極リードとの接続は、例えば溶接によって行うことができる。
 以下、第1の実施形態に係る非水電解質電池において用いることができる部材及び材料について説明する。
 [1]負極 
 負極は、例えば、負極活物質、導電剤及び結着剤を適当な溶媒に分散させて得られる負極剤ペーストを、負極集電体の片側又は両面に塗布し、これを乾燥させることにより作製することができる。乾燥後、負極剤ペーストを、プレスをすることもできる。
 負極活物質としては、例えばリチウムイオンを吸蔵及び放出することができる炭素質物、金属酸化物、金属硫化物、金属窒化物、合金、軽金属などを挙げることができる。
 リチウムイオンを吸蔵及び放出することができる炭素質物としては、例えばコークス、炭素繊維、熱分解気相炭素物、黒鉛、樹脂焼成体、メソフェーズピッチ系炭素繊維又はメソフェーズ球状カーボンの焼成体などを挙げることができる。中でも、2500℃以上で黒鉛化したメソフェーズピッチ系炭素繊維又はメソフェーズ球状カーボンを用いることが、電極容量を高くすることができるため好ましい。
 金属酸化物としては、例えば、チタン含有金属複合酸化物、例えばSnB0.40.63.1やSnSiOなどのスズ系酸化物、例えばSiOなどのケイ素系酸化物、例えばWOなどのタングステン系酸化物などが挙げられる。これら金属酸化物の中で、金属リチウムに対する電位が0.5Vよりも高い負極活物質、例えばチタン酸リチウムのようなチタン含有金属複合酸化物を用いることが、電池を急速に充電した場合でも負極上でのリチウムデンドライトの発生を抑えることができ、ひいては劣化を抑えることができるため、好ましい。
 チタン含有金属複合酸化物としては、例えば、酸化物合成時はリチウムを含まないチタン系酸化物、リチウムチタン酸化物、リチウムチタン酸化物の構成元素の一部を例えばNb、Mo,W,P、V、Sn、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の異種元素で置換したリチウムチタン複合酸化物などを挙げることができる。リチウムチタン酸化物としては、例えば、スピネル構造を有するチタン酸リチウム(例えばLi4+xTi12(xは、充放電により0≦x≦3の範囲内で変化し得るものである))、ブロンズ構造(B)又はアナターゼ構造のチタン酸化物(例えばLiTiO(0≦x≦1)、充電前の組成はTiO)、ラムステライド型のチタン酸リチウム(例えばLi2+yTi(yは、充放電により0≦y≦3の範囲内で変化し得るものである)、で表されるニオブチタン酸化物(例えばLiNbaTiO(0≦x、より好ましい範囲は0≦x≦1、1≦a≦4))などを挙げることができる。
 チタン系酸化物としては、TiO、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物などが挙げられる。TiOはアナターゼ型で熱処理温度が300~500℃の低結晶性のものが好ましい。TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MeO(MeはCu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素)などを挙げることができる。この金属複合酸化物は、結晶相とアモルファス相とが共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能が大幅に向上することができる。中でも、リチウムチタン酸化物、TiとP、V、Sn、Cu、Ni、Co及びFeよりなる群から選択される少なくとも1種類の元素を含有する金属複合酸化物が好ましい。
 金属硫化物として硫化リチウム(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS、LiFeS(ここで、0<x≦1である)などが挙げられる。金属窒化物としては、リチウムコバルト窒化物(LiCoN(ここで、0<x<4、0<y<0.5である))などが挙げられる。
 負極活物質としては、スピネル構造を有するチタン酸リチウムを使用することが望ましい。
 導電剤としては、炭素材料を用いることができる。炭素材料としては、例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等を挙げることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。
 負極集電体としては、負極電位に応じて種々の金属箔等を用いることができるが、例えばアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔、銅箔、ニッケル箔などが挙げられる。このときの箔の厚さは、8μm以上25μm以下であることが好ましい。また、負極電位が金属リチウムに対して0.3Vよりも貴となり得る場合、例えば負極活物質としてリチウムチタン酸化物を使用する場合、アルミニウム箔やアルミニウム合金箔を用いることが、電池重量を抑えることができるため好ましい。
 アルミニウム箔及びアルミニウム合金箔の平均結晶粒径は、50μm以下であることが好ましい。これにより、負極集電体の強度を飛躍的に増大させることができるため、負極を高いプレス圧で高密度化することが可能となり、電池容量を増大させることができる。また、高温環境下(40℃以上)における過放電サイクルでの負極集電体の溶解及び腐食劣化を防ぐことができるため、負極インピーダンスの上昇を抑制することができる。更に、出力特性、急速充電、充放電サイクル特性も向上させることができる。平均結晶粒径のより好ましい範囲は30μm以下であり、更に好ましい範囲は5μm以下である。
 平均結晶粒径は次のようにして求められる。集電体表面の組織を光学顕微鏡で組織観察し、1mm×1mm内に存在する結晶粒の数nを求める。このnを用いてS=1x106/n(μm)から平均結晶粒子面積Sを求める。得られたSの値から下記(A)式により平均結晶粒子径d(μm)を算出することができる。 
    d=2(S/π)1/2       (A)
 平均結晶粒子径の範囲が50μm以下の範囲にあるアルミニウム箔又はアルミニウム合金箔は、材料組成、不純物、加工条件、熱処理履歴ならび焼なましの加熱条件など多くの因子に複雑に影響され、前記結晶粒子径(直径)は、製造工程の中で、前記諸因子を組み合わせて調整される。
 アルミニウム箔及びアルミニウム合金箔の厚さは、20μm以下であることが好ましく、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの少なくとも1種の元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。なお、車載用の場合、アルミニウム合金箔を用いることが特に好ましい。
 前記負極の活物質、導電剤及び結着剤の配合比は、負極活物質80~95重量%、導電剤3~20重量%、結着剤1.5~7重量%の範囲にすることが好ましい。
 [2]正極 
 正極は、例えば、正極活物質、導電剤及び結着剤を適当な溶媒に分散させて得られる正極剤ペーストを、正極集電体の片側又は両面に塗布し、これを乾燥させることにより作製することができる。乾燥後、正極剤ペーストは、プレスを行うこともできる。
 正極活物質としては、種々の酸化物、硫化物などが挙げられる。例えば、二酸化マンガン(MnO)、酸化鉄、酸化銅、酸化ニッケル、リチウムマンガン複合酸化物(例えばLiMn又はLiMnO(ここで、0≦x≦1.2である))、リチウムニッケル複合酸化物(例えばLiNiO(ここで、0≦x≦1.2である))、リチウムコバルト複合酸化物(LiCoO(ここで、0≦x≦1.2である))、リチウムニッケルコバルト複合酸化物(例えばLiNi1-yCo(ここで、0<y≦1である))、リチウムマンガンコバルト複合酸化物(例えばLiMnCo1-y(ここで、0<y≦1である))、スピネル型リチウムマンガンニッケル複合酸化物(LiMn2-yNi(ここで、0≦x≦1.2であり、0<y≦1である))、オリビン構造を有するリチウムリン酸化物(LiFePO、LiFe1-yMnPO、LiMnPO、LiMn1-yFePO、LiCoPOなど(ここで、0≦x≦1.2であり、0<y≦1である))、硫酸鉄(Fe(SO)、バナジウム酸化物(例えばV)などが挙げられる。
 また、正極活物質としては、ポリアニリンやポリピロールなどの導電性ポリマー材料、ジスルフィド系ポリマー材料、イオウ(S)、フッ化カーボンなどの有機材料及び無機材料も挙げることができる。
 より好ましい正極活物質は、熱安定性の高いスピネル型マンガンリチウム(LiMn(ここで、0≦x≦1.1である))、オリビン型リン酸鉄リチウム(LiFePO(ここで、0≦x≦1である))、オリビン型リン酸マンガンリチウム(LiMnPO(ここで、0≦x≦1である))、オリビン型リン酸マンガン鉄リチウム(LiMn1-yFePO(ここで、0≦x≦1であり、0<y≦0.5である))などが挙げられる。
 或いは、これらを二種以上混合したものも用いることができる。
 導電剤としては、例えばアセチレンブラック、カーボンブラック、人工黒鉛、天然黒鉛、導電性ポリマー等を用いることができる。
 結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、PVdFの水素もしくはフッ素のうち、少なくとも1つを他の置換基で置換した変性PVdF、フッ化ビニリデン-6フッ化プロピレンの共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-6フッ化プロピレンの3元共重合体等を用いることができる。
 結着剤を分散させるための有機溶媒としては、N-メチル-2-ピロリドン(NMP)、ジメチルホルムアミド(DMF)等が使用される。
 正極集電体としては、例えば厚さ8~25μmのアルミニウム箔、アルミニウム合金箔、ステンレス箔、チタン箔等を挙げることができる。
 正極集電体は、アルミニウム箔若しくはアルミニウム合金箔が好ましく、負極集電体と同様にアルミニウム箔若しくはアルミニウム合金箔の平均結晶粒径は50μm以下であることが好ましい。より好ましくは、アルミニウム箔若しくはアルミニウム合金箔の平均結晶粒径は30μm以下であり、更に好ましくは5μm以下である。前記平均結晶粒径が50μm以下であることにより、アルミニウム箔又はアルミニウム合金箔の強度を飛躍的に増大させることができ、正極を高いプレス圧で高密度化することが可能になり、電池容量を増大させることができる。
 平均結晶粒径の範囲が50μm以下の範囲にあるアルミニウム箔又はアルミニウム合金箔は、材料組織、不純物、加工条件、熱処理履歴、ならびに焼鈍条件など複数の因子に複雑に影響され、前記結晶粒径は製造工程の中で、前記諸因子を組合せて調整される。
 アルミニウム箔及びアルミニウム合金箔の厚さは、20μm以下であることが好ましく、より好ましくは15μm以下である。アルミニウム箔の純度は99%以上が好ましい。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素、などの元素を含む合金が好ましい。一方、鉄、銅、ニッケル、クロムなどの遷移金属の含有量は1%以下にすることが好ましい。
 前記正極の活物質、導電剤及び結着剤の配合比は、正極活物質80~95重量%、導電剤3~20重量%、結着剤1.5~7重量%の範囲にすることが好ましい。
 [3]セパレータ 
 セパレータとしては、例えば、多孔質セパレータを用いることができる。多孔質セパレータとしては、例えば、ポリエチレン、ポリプロピレン、セルロース、又はポリフッ化ビニリデン(PVdF)を含む多孔質フィルム、合成樹脂製不織布等を挙げることができる。中でも、ポリエチレンか、あるいはポリプロピレン、又は両者からなる多孔質フィルムは、電池温度が上昇した場合に細孔を閉塞して充放電電流を大幅に減衰させるシャットダウン機能を付加しやすく、二次電池の安全性を向上できるため、好ましい。低コスト化の観点からは、セルロース系のセパレータを用いることが好ましい。
 [4]非水電解質 
 非水電解質としては、LiBF、LiPF、LiAsF、LiClO、LiCFSO、LiN(CFSO、LiN(CSO、Li(CFSOC、LiB[(OCO)などから選ばれる一種以上のリチウム塩を0.5~2mol/Lの範囲内にある濃度で有機溶媒に溶解した有機電解液が挙げられる。
 有機溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネートや、ジエチレルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)などの鎖状カーボネートや、ジメトキシエタン(DME)、ジエトキシエタン(DEE)などの鎖状エーテルや、テトラヒドロフラン(THF)、ジオキソラン(DOX)などの環状エーテルや、γ-ブチロラクトン(GBL)、アセトニトリル(AN)、スルホラン(SL)などの単独もしくは混合溶媒を用いることが好ましい。
 また、非水電解質としては、リチウムイオンを含有した常温溶融塩(イオン性融体)を用いることもできる。リチウムイオンと有機物カチオンとアニオンから構成されるイオン性融体であり、100℃以下、好ましくは室温以下でも液状であるものを選択すると、広い動作温度の二次電池を得ることができる。
 [5]ケース 
 ケースとして使用され得るステンレス部材の厚さは、0.2mm以下にすることが望ましい。例えば、ステンレス部材は、最内層に位置する熱融着性樹脂フィルム(熱可塑性樹脂フィルム)の上にステンレスからなる金属箔及び剛性を有する有機樹脂フィルムをこの順序で積層した複合フィルム材から構成することが可能である。
 熱融着性樹脂フィルムとしては、例えばポリエチレン(PE)フィルム、ポリプロピレン(PP)フィルム、ポリプロピレン-ポリエチレン共重合体フィルム、アイオノマーフィルム、エチレンビニルアセテート(EVA)フィルム等を用いることができる。また、前記剛性を有する有機樹脂フィルムとしては、例えばポリエチレンテレフタレート(PET)フィルム、ナイロンフィルム等を用いることができる。
 ケースは、電極群を収納する主部となり得る凹部及びこの凹部の外側の外郭部を有するケース本体と、蓋体とから構成されていてもよい。この場合、ケース本体と蓋体とは、シームレスで連続している一体部材であってもよい。
 [6]電極リード 
 正極に電気的に接続され得る電極リード、すなわち正極リードとしては、例えばアルミニウム、チタン及びそれらをもとにした合金、ステンレスなどを用いることができる。
 負極に電気的に接続され得る電極リード、すなわち負極リードとしては、例えばニッケル、銅及びそれらをもとにした合金などを用いることができる。負極電位が金属リチウムに対し1Vよりも貴な場合、例えば負極活物質としてチタン酸リチウムを使用した場合などは、負極リードの材料としてアルミニウムあるいはアルミニウム合金を用いることができる。この場合、正極リード及び負極リード共に、アルミニウム又はアルミニウム合金を用いることが、軽量かつ電気抵抗を小さく抑えることができるため好ましい。
 正極リード及び負極リードは、機械的特性の観点では、それに接続される正極集電体又は負極集電体の強度を大きく超えて高強度でない方が、接続部分の応力集中が緩和されるため好ましい。集電体との接続手段として、好ましい方法の一つである超音波溶接を適用した場合、正極リードあるいは負極リードのヤング率が小さい方が、強固な溶接を容易に行うことが可能となる。
 例えば焼鈍処理した純アルミ(JIS1000番台)は、正極リード又は負極リードの材料として好ましい。
 正極リードの厚さは、0.1~1mmにすることが望ましく、より好ましい範囲は、0.2~0.5mmである。
 負極リードの厚さは、0.1~1mmにすることが望ましく、より好ましい範囲は、0.2~0.5mmである。
 上記構成の第1の実施形態に係る非水電解質電池1では、バイポーラ電極8と、非水電解質層13とを具備する。バイポーラ電極8は、集電体10と、集電体10の一面側の正極活物質層11と、集電体10の他面側の負極活物質層12とを有する。バイポーラ電極8は、正極活物質層11の位置が負極活物質層12の位置と集電体10の厚さ方向に重ならない位置に配置している。そして、バイポーラ電極8を非水電解質層13を介して複数積層させた積層体9を設けている。積層体9は、バイポーラ電極8の正極活物質層11および負極活物質層12のいずれか一方と、バイポーラ電極8と積層方向に隣接する他のバイポーラ電極8の正極活物質層11および負極活物質層12のいずれか他方とを対向配置させた状態で順次、積層している。さらに、バイポーラ電極8の積層体9を渦巻き状に巻回している第1の形態の積層体9を形成し、この第1の形態の積層体9を外装部材2内に収納した。そのため、上記構成により、小体積ながらバイポーラ型電池である非水電解質電池1の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる。
 図9および図10は、非水電解質電池の第2の実施形態を示す。本実施形態は、バイポーラ電極8の積層体9を渦巻き状に巻回する巻回方向を第1の実施形態の巻回方向とは異なる方向に巻回したものである。すなわち、本実施形態では、図10に示すように積層体9の電池セル横並び方向(第1の実施形態の積層体9の巻回方向と直交する方向)に積層体9を渦巻き状に巻回する構成にした。
 本実施形態のバイポーラ電極8の積層体9は、電極群3の一端側(図9中で上端側)の電極群3の外周面に1つの正極用の集電用タブ15aが形成されている。さらに、電極群3の図9中で上端側中央位置に1つの負極用の集電用タブ15bが形成されている。これらの集電タブ15a、15bは、電極群3の渦巻きの中心軸の軸方向と平行に突出させている。
 なお、電極群3の電池セルの並設個数や、各電池セルの面積などは使用条件や、用途に応じて適宜、設定可能である。
 本実施形態の非水電解質電池であっても第1の実施形態の非水電解質電池1と同様に小体積ながらバイポーラ型電池である非水電解質電池1の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる。
 図11は、第3の実施形態の非水電解質電池のバイポーラ電極8の積層体9の概略構成を示す斜視図である。本実施形態は、図5に示すバイポーラ電極8の積層体9を一方向に所定の長さで複数に区分けし、各区分け部分21間を順次、互い違いにそれぞれ折り曲げてつづら折り状に折り畳んで重ねてある第2の形態のバイポーラ電極8の電極群3を構成したものである。
 ここでは、図11に示すように電極群3の一端側(図12中で上端側)の端部に1つの正極用の集電用タブ15aが形成されている。電極群3の他端側(図12中で下端側)の端部に1つの負極用の集電用タブ15bが設けられている。
 本実施形態のバイポーラ電極8の電極群3は、ほぼ矩形状の外装部材(ケース)内に収納されている。
 本実施形態では、図5に示すバイポーラ電極8の積層体9をつづら折り状に折り畳んで重ねてある第2の形態のバイポーラ電極8の電極群3を構成したことで、小体積ながらバイポーラ型電池である非水電解質電池1の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる。
 図12は、第4の実施形態の非水電解質電池のバイポーラ電極8の積層体9の概略構成を示す斜視図である。本実施形態は、図12に示すように積層体9の電池セル横並び方向(第3の実施形態の積層体9のつづら折り状に折り畳み方向と直交する方向)に積層体9をつづら折り状に折り畳む構成にした。
 そして、図12に示すようにバイポーラ電極8の電極群3の一端側(図12中で上端側)の端部に1つの正極用の集電用タブ15aが形成されている。バイポーラ電極8の電極群3の他端側(図12中で下端側)の端部に1つの負極用の集電用タブ15bが設けられている。
 本実施形態でも第3の実施形態のバイポーラ電極8の電極群3と同様に、図5に示すバイポーラ電極8の積層体9をつづら折り状に折り畳んで重ねてある第2の形態のバイポーラ電極8の電極群3を構成している。これにより、第3の実施形態と同様に、小体積ながらバイポーラ型電池である非水電解質電池1の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる。
 図13は、第5の実施形態の非水電解質電池のバイポーラ電極の電極群の概略構成を示す斜視図である。本実施形態は、集電体10の一面側に正極活物質層11が形成され、集電体10の他面側に負極活物質層12が形成された単一構造のバイポーラ電極8を一方向に所定の長さで複数に区分けし、各区分け部分31間を順次、互い違いにそれぞれ折り曲げてつづら折り状に折り畳んで重ねてある第2の形態のバイポーラ電極8の電極群3を構成したものである。
 本実施形態でも第3、第4の実施形態のバイポーラ電極8の電極群3と同様に、小体積ながらバイポーラ型電池である非水電解質電池1の高エネルギー密度化と低抵抗化を図ることができ、液絡を防止し、作製を簡易にすることができる。
 なお、バイポーラ電極8の負極活物質層12と正極活物質層11との間に、非水電解質層(セパレータ)13を介してバイポーラ電極8を厚さ方向に複数段積層させた積層体を設け、この積層体を一方向に所定の長さで複数に区分けし、各区分け部分31間を順次、互い違いにそれぞれ折り曲げてつづら折り状に折り畳んで重ねてある第2の形態のバイポーラ電極8の電極群3を構成してもよい。
 また、図14は、上記第1~5の実施形態のいずれかの非水電解質電池1を組み込んだ電池パック90の概略構成を示す分解斜視図である。図15は、図14の電池パック90の電気回路を示すブロック図である。図14及び図15に示す電池パック90は、複数個の単電池91を備える。単電池91は、上記第1~5の実施形態で説明した非水電解質電池1である。
 複数の単電池91は、外部に延出した負極端子63及び正極端子64が同じ向きに揃えられるように積層され、粘着テープ65で締結することにより組電池66を構成している。これらの単電池91は、図15に示すように互いに電気的に直列に接続されている。
 プリント配線基板67は、単電池91の負極端子63及び正極端子64が延出する側面に対向して配置されている。プリント配線基板67には、図15に示すようにサーミスタ68、保護回路69及び外部機器への通電用端子70が搭載されている。なお、組電池66と対向するプリント配線基板67の面には組電池66の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード71は、組電池66の最下層に位置する正極端子64に接続され、その先端はプリント配線基板67の正極側コネクタ72に挿入されて電気的に接続されている。負極側リード73は、組電池66の最上層に位置する負極端子63に接続され、その先端はプリント配線基板67の負極側コネクタ74に挿入されて電気的に接続されている。これらのコネクタ72及び74は、プリント配線基板67に形成された配線75及び76を通して保護回路69に接続されている。
 サーミスタ68は、単電池91の温度を検出し、その検出信号は保護回路69に送信される。保護回路69は、所定の条件で保護回路69と外部機器への通電用端子70との間のプラス側配線77a及びマイナス側配線77bを遮断できる。所定の条件の一例とは、例えば、サーミスタ68の検出温度が所定温度以上になったときである。また、所定の条件の他の例とは、例えば、単電池91の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池91もしくは組電池66全体について行われる。
 個々の単電池91を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池91中に参照極として用いるリチウム電極が挿入される。図14及び図15の電池パック90の場合、単電池91それぞれに電圧検出のための配線78が接続されている。これら配線78を通して検出信号が保護回路69に送信される。
 正極端子64及び負極端子63が突出する側面を除く組電池66の三側面には、ゴムもしくは樹脂からなる保護シート79がそれぞれ配置されている。
 組電池66は、各保護シート79及びプリント配線基板67と共に収納容器80内に収納される。すなわち、収納容器80の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート79が配置され、短辺方向の反対側の内側面にプリント配線基板67が配置される。組電池66は、保護シート79及びプリント配線基板67で囲まれた空間内に位置する。蓋81は、収納容器80の上面に取り付けられている。
 なお、組電池66の固定には粘着テープ65に代えて、熱収縮テープを用いてもよい。この場合、組電池66の両側面に保護シート79を配置し、熱収縮チューブを周回させた後、熱収縮チューブを熱収縮させて組電池66を結束させる。
 図14及び図15では単電池91を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パック90を直列及び/又は並列に接続することもできる。
 また、電池パック90の態様は用途により適宜変更される。電池パック90の用途としては、大電流特性でのサイクル特性が望まれるものが好ましい。具体的な用途としては、デジタルカメラの電源用や、二輪乃至四輪のハイブリッド電気自動車、二輪乃至四輪の電気自動車、アシスト自転車等の車載用が挙げられる。電池パック90は、特に、車載用が好適である。
 これらの実施形態によれば、集電体の一方の板面に正極活物質層、同他方の板面に負極活物質をそれぞれ形成するバイポーラ型電池の高エネルギー密度化と低抵抗化を図ることができるバイポーラ型電池とその製造方法及び電池パックを提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
  1…非水電解質電池、2…外装部材、3…電極群、8…バイポーラ電極、8a~8f…単位要素、9…積層体、10…集電体、11…正極活物質層、12…負極活物質層、13…非水電解質層、14…電池セル、15…集電タブ、90…電池パック、91…単電池。

Claims (5)

  1. 集電体と、
     前記集電体の一面側に形成された正極活物質層と、
     前記集電体の他面側に形成された負極活物質層とを有するバイポーラ電極と、
     前記正極活物質層と前記負極活物質層とを隔離するための非水電解質層とを具備し、
     前記バイポーラ電極は、前記正極活物質層の位置が前記負極活物質層の位置と前記集電体の厚さ方向に重ならない位置に配置され、
     前記バイポーラ電極を電解質層を介して複数積層させた積層体を設け、
     前記積層体は、前記バイポーラ電極の前記正極活物質層および前記負極活物質層のいずれか一方と、前記バイポーラ電極と積層方向に隣接する他の前記バイポーラ電極の前記正極活物質層および前記負極活物質層のいずれか他方とを対向配置させた状態で順次、積層され、
     前記バイポーラ電極を渦巻き状に巻回している第1の形態、または前記バイポーラ電極を一方向に所定の長さで複数に区分けされ、各区分け部分間を順次、互い違いにそれぞれ折り曲げて折り畳んで重ねてある第2の形態のいずれか一方である非水電解質電池。
  2. 前記負極活物質層は、1.5V付近に反応電位が存在する請求項1に記載の非水電解質電池。
  3. 前記集電体は、アルミニウムを用いている請求項1に記載の非水電解質電池。
  4. 前記正極活物質層は、リチウムを吸蔵及び放出可能である請求項1に記載の非水電解質電池。
  5. 請求項1に記載の非水電解質電池を含むことを特徴とする電池パック。
PCT/JP2015/085255 2015-12-16 2015-12-16 非水電解質電池及び電池パック WO2017104028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2015/085255 WO2017104028A1 (ja) 2015-12-16 2015-12-16 非水電解質電池及び電池パック
CN201580081641.7A CN107851853A (zh) 2015-12-16 2015-12-16 非水电解质电池及电池组
EP15895148.3A EP3396773B1 (en) 2015-12-16 2015-12-16 Non-aqueous electrolyte battery and battery pack
JP2016510884A JP6122213B1 (ja) 2015-12-16 2015-12-16 非水電解質電池、電池パック及び自動車
US15/262,453 US10777820B2 (en) 2015-12-16 2016-09-12 Non-aqueous electrolyte battery and battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085255 WO2017104028A1 (ja) 2015-12-16 2015-12-16 非水電解質電池及び電池パック

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/262,453 Continuation US10777820B2 (en) 2015-12-16 2016-09-12 Non-aqueous electrolyte battery and battery pack

Publications (1)

Publication Number Publication Date
WO2017104028A1 true WO2017104028A1 (ja) 2017-06-22

Family

ID=58666554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085255 WO2017104028A1 (ja) 2015-12-16 2015-12-16 非水電解質電池及び電池パック

Country Status (5)

Country Link
US (1) US10777820B2 (ja)
EP (1) EP3396773B1 (ja)
JP (1) JP6122213B1 (ja)
CN (1) CN107851853A (ja)
WO (1) WO2017104028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069664A1 (ja) * 2017-10-05 2019-04-11 イビデン株式会社 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6975400B2 (ja) * 2017-09-12 2021-12-01 株式会社Gsユアサ 蓄電素子
US11121408B2 (en) 2019-03-14 2021-09-14 Medtronic, Inc. Lithium-ion battery
JP7354971B2 (ja) * 2020-09-11 2023-10-03 トヨタ自動車株式会社 電池モジュール
CN117012957B (zh) * 2023-10-08 2024-01-19 深圳市贝特瑞新能源技术研究院有限公司 耐低温磷酸铁锂半固态电池及其正极浆料和制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038312A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 電極体、全固体型電池素子および全固体型電池
JP2012521624A (ja) 2009-03-26 2012-09-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 動作が改善されたバイポーラ電池
JP2012212600A (ja) * 2011-03-31 2012-11-01 Tdk Corp バイポーラ型2次電池

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211833A (en) * 1978-12-08 1980-07-08 Exxon Research & Engineering Co. Bipolar battery
JP3419311B2 (ja) * 1998-07-15 2003-06-23 トヨタ自動車株式会社 バイポーラ型リチウムイオン2次電池
US6465125B1 (en) 1998-09-17 2002-10-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and method of manufacturing nonaqueous electrolyte secondary battery
JP2002075455A (ja) 2000-08-24 2002-03-15 Matsushita Electric Ind Co Ltd リチウム二次電池
JP2004087238A (ja) 2002-08-26 2004-03-18 Nissan Motor Co Ltd 積層型電池
CN1497760A (zh) * 2002-10-10 2004-05-19 日产自动车株式会社 叠层电池、组装电池及车辆
US20070212604A1 (en) 2006-03-11 2007-09-13 Ovshinsky Stanford R Bipolar battery
KR101372780B1 (ko) 2009-09-01 2014-03-10 닛산 지도우샤 가부시키가이샤 전지
FR2974674B1 (fr) * 2011-04-26 2013-06-28 Commissariat Energie Atomique Accumulateur electrochimique li-ion de type bipolaire a capacite augmentee
CN104205474B (zh) * 2012-04-10 2017-05-10 丰田自动车株式会社 非水电解质二次电池
JP6125265B2 (ja) * 2012-05-07 2017-05-10 日東電工株式会社 積層型導電シート、その製造方法、集電体およびバイポーラ電池
JP2014229663A (ja) 2013-05-20 2014-12-08 三菱電機株式会社 太陽電池モジュール
JP6382641B2 (ja) 2013-09-11 2018-08-29 株式会社東芝 非水電解質電池及び非水電解質電池の製造方法
JP2015070143A (ja) 2013-09-30 2015-04-13 三洋電機株式会社 太陽電池モジュール
CN104577132B (zh) * 2013-10-17 2016-11-16 北京好风光储能技术有限公司 一种双极性集流体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038312A1 (ja) * 2008-10-03 2010-04-08 トヨタ自動車株式会社 電極体、全固体型電池素子および全固体型電池
JP2012521624A (ja) 2009-03-26 2012-09-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 動作が改善されたバイポーラ電池
JP2012212600A (ja) * 2011-03-31 2012-11-01 Tdk Corp バイポーラ型2次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3396773A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019069664A1 (ja) * 2017-10-05 2019-04-11 イビデン株式会社 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法
JP2019067730A (ja) * 2017-10-05 2019-04-25 イビデン株式会社 蓄電デバイス用電極、蓄電デバイス及び蓄電デバイス用電極の製造方法
CN111133612A (zh) * 2017-10-05 2020-05-08 揖斐电株式会社 蓄电器件用电极、蓄电器件和蓄电器件用电极的制造方法

Also Published As

Publication number Publication date
EP3396773B1 (en) 2022-06-01
EP3396773A1 (en) 2018-10-31
JP6122213B1 (ja) 2017-04-26
JPWO2017104028A1 (ja) 2017-12-14
EP3396773A4 (en) 2019-07-10
US10777820B2 (en) 2020-09-15
US20170179493A1 (en) 2017-06-22
CN107851853A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6870914B2 (ja) 非水電解質電池、電池パック及び車両
JP6246901B2 (ja) 非水電解質電池及び電池パック
US9515298B2 (en) Nonaqueous electrolyte battery and battery pack
JP5694221B2 (ja) 非水電解質電池及び電池パック
JP6305263B2 (ja) 非水電解質電池、組電池、電池パック及び車
JP5710533B2 (ja) 非水電解質二次電池、該電池用電極、および電池パック
JP6122213B1 (ja) 非水電解質電池、電池パック及び自動車
JP6479984B2 (ja) 非水電解質電池及び電池パック
JP6258082B2 (ja) 非水電解質電池及び電池パック
JP2013054950A (ja) 非水電解質電池及び電池パック
WO2016143123A1 (ja) 非水電解質電池及び電池パック
JP6178183B2 (ja) 非水電解質電池、組電池及び蓄電池装置
JPWO2015045009A1 (ja) 非水電解質電池及び電池パック
JP6479943B2 (ja) 非水電解質電池及び電池パック
JP2016085910A (ja) 電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510884

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015895148

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE